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The Symbol Assoiated with the Solution of aStohasti Di�erential EquationRené L. Shilling∗ and Alexander Shnurr∗∗

AbstratLet (Zt)t>0 be an Rn-valued Lévy proess. We onsider stohasti di�erentialequations of the form
dXx

t = Φ(Xx
t−) dZt

Xx
0 = x, x ∈ R

d,where Φ : Rd → Rd×n is Lipshitz ontinuous. We show that the in�nitesimalgenerator of the solution proess (Xx
t )t>0 is a pseudo-di�erential operator whosesymbol p : Rd ×Rd → C an be alulated by

p(x, ξ) := − lim
t↓0

E
x

(
ei(X

σ
t −x)

⊤ξ − 1

t

)
.For a large lass of Feller proesses many properties of the sample paths an bederived by analysing the symbol. It turns out that the proess (Xx

t )t>0 is a Fellerproess if Φ is bounded and that the symbol is of the form p(x, ξ) = ψ(Φ⊤(x)ξ),where ψ is the harateristi exponent of the driving Lévy proess.MSC 2010: 60J75; 47G30; 60H20; 60J25; 60G51; 60G17.1 IntrodutionWithin the last ten years a rih theory onerning the relationship between Feller pro-esses and their so alled symbols whih appear in the Fourier representation of theirgenerator has been developed, see for example the monographs [15, 16, 17℄ by Jaob orthe fundamental ontributions by Hoh [9, 10, 11℄ and Kaÿmann [20℄; see also [5℄ and [14℄for a survey. In this paper we establish a stohasti formula to alulate the symbol ofa lass of Markov proesses whih we then apply to the solutions of ertain stohastidi�erential equations (SDEs). If the oe�ient of the SDE is bounded, the solution turnsout to be a Feller proess. As there are di�erent onventions in de�ning this lass of
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proesses in the literature, let us �rst �x some terminology: onsider a time homoge-neous Markov proess (Ω,F, (Ft)t>0, (Xt)t>0,P
x)x∈Rd with state spae Rd; we will alwaysassume that the proess is normal, i.e. Px(X0 = x) = 1. As usual, we an assoiate witha Markov proess a semigroup (Tt)t>0 of operators on Bb(R

d) by setting
Ttu(x) := E

xu(Xt), t > 0, x ∈ R
d.Denote by C∞ = C∞(Rd,R) the spae of all funtions u : Rd → R whih are ontinuousand vanish at in�nity, lim|x|→∞ u(x) = 0; then (C∞, ‖·‖∞) is a Banah spae and Tt is forevery t a ontrative, positivity preserving and sub-Markovian operator on Bb(R

d). Weall (Tt)t>0 a Feller semigroup and (Xt)t>0 a Feller proess if the following onditions aresatis�ed:(F1) Tt : C∞ → C∞ for every t > 0,(F2) limt↓0 ‖Ttu− u‖∞ = 0 for every u ∈ C∞.The generator (A,D(A)) is the losed operator given by
Au := lim

t↓0

Ttu− u

t
for u ∈ D(A) (1)where the domain D(A) onsists of all u ∈ C∞ for whih the limit (1) exists uniformly.Often we have to assume that D(A) ontains su�iently many funtions. This is, forexample the ase, if

C∞
c ⊂ D(A). (R)A lassial result due to Ph. Courrège [7℄ shows that, if (R) is ful�lled, A|C∞

c
is a pseudodi�erential operator with symbol −p(x, ξ), i.e. A an be written as

Au(x) = −

∫

Rd

eix
⊤ξp(x, ξ)û(ξ) dξ, u ∈ C∞

c (2)where û(ξ) = (2π)−d
∫
e−iy

⊤ξu(y)dy denotes the Fourier transform and p : Rd ×Rd → Cis loally bounded and, for �xed x, a ontinuous negative de�nite funtion in the sense ofShoenberg in the o-variable ξ. This means it admits a Lévy-Khinthine representation
p(x, ξ) = −iℓ⊤(x)ξ +

1

2
ξ⊤Q(x)ξ −

∫

y 6=0

(
eiξ

⊤y − 1− iξ⊤y · 1{|y|<1}(y)
)
N(x, dy) (3)where for eah x ∈ Rd (ℓ(x), Q(x), N(x, dy)) is a Lévy triplet, i.e. ℓ(x) = (ℓ(j)(x))16j6d ∈

Rd, Q(x) = (qjk(x))16j,k6d is a symmetri positive semide�nite matrix and N(x, dy) is ameasure on R
d \ {0} suh that ∫

y 6=0
(1∧ |y|2)N(x, dy) <∞. The funtion p(x, ξ) is alledthe symbol of the operator. For details we refer to the treatise by Jaob [15, 16, 17℄.Combining (2) and (3) the generator A of a Feller proess satisfying ondition (R)an be written in the following way

Au(x) = ℓ(x)⊤∇u(x) +
1

2

d∑

j,k=1

qjk(x)∂j∂ku(x)

+

∫

y 6=0

(
u(x+ y)− u(x)− y⊤∇u(x) · 1B1(0)(y)

)
N(x, dy)2



for u ∈ C∞
c (Rd). This is alled the integro-di�erential form of the operator.An important sublass of Feller proesses are Lévy proesses. These are proesseswhih have stationary and independent inrements and whih are stohastially ontin-uous. For Lévy proesses (Zt)t>0 it is well known that the harateristi funtion an bewritten in the following way

E
z
(
ei(Zt−z)⊤ξ

)
= E

0
(
eiZ

⊤
t ξ
)
= e−t ψ(ξ)where ψ : Rd → C is a ontinuous negative de�nite funtion, i.e. it has a Lévy-Khinthinerepresentation where the Lévy triplet (ℓ, Q,N) does not depend on x.This is losely onneted to the following result. Every Lévy proess (Zt)t>0 withLévy triplet (ℓ, Q,N) has the following Lévy-It� deomposition

Zt = ℓt+ ΣWt +

∫

[0,t]×{|y|<1}

y
(
µZ(ds, dy)− dsN(dy)

)
+
∑

0<s6t

∆Zs1{|∆Zs|>1} (4)where ℓ ∈ Rd, Σ is the unique positive semide�nite square root of Q ∈ Rd×d, (Wt)t>0 isa standard Brownian motion, and µZ is the Poisson point measure given by the jumpsof Z whose intensity measure is the Lévy measure N . The seond and third termsappearing in (4) are martingales, while the other two terms are of �nite variation onompats. Therefore every Lévy proess is a semimartingale. Note that all four termsare independent.The generator of a Lévy proess is given by
Au(x) = −

∫

Rd

eix
⊤ξψ(ξ)û(ξ) dξ, u ∈ C∞

c , (5)i.e. Lévy proesses are exatly those Feller proesses whose generator has `onstant oef-�ients'.Every Lévy proess has a symbol (that is: a harateristi exponent) ψ; on the otherhand, every ψ and every Lévy triplet (ℓ, Q,N) de�nes a Lévy proess. For Feller proessesthe situation is di�erent: every Feller proess satisfying (R) admits a symbol, but it isnot known if every symbol of the form (3) yields a proess. See [14, 17℄ for a survey. Onthe other hand it is known that the symbol p(x, ξ) an be used to derive many propertiesof the assoiated proess X .In this paper we prove a probabilisti formula for the symbol. We use this formula toalulate the symbol of the solution of a Lévy driven SDE. Let us give a brief outline howthe paper is organized: in Setion 2 we introdue the symbol of a Markov proess. It turnsout that the symbol whih is de�ned in a probabilisti way oinides with the analyti (inthe sense of pseudo-di�erential operators) symbol for the lass of Feller proesses whihsatisfy (R). The main result of the paper an be found in Setion 3, where we alulate thesymbol of a Feller proess, whih is given as the strong solution of a stohasti di�erentialequation. In Setion 4 we onsider some extensions; these omprise, in partiular, thease
dXx = Φ(Xx) dZt +Ψ(Xx) dt, Xx

0 = x,whih is often used in appliations. We lose by using the symbol of the proess Xx toinvestigate some of its path properties. 3



2 The Symbol of a Markov ProessDe�nition 2.1. Let X be an R
d-valued Markov proess, whih is onservative and nor-mal. Fix a starting point x and de�ne σ = σxR to be the �rst exit time from the ball ofradius R > 0:

σ := σxR := inf
{
t > 0 : ‖Xx

t − x‖ > R
}
.The funtion p : Rd ×Rd → C given by

p(x, ξ) := − lim
t↓0

E
x

(
ei(X

σ
t −x)⊤ξ − 1

t

) (6)is alled the symbol of the proess, if the limit exists for every x, ξ ∈ Rd independently ofthe hoie of R > 0.Remark 2.2. (a) In [30℄ the following is shown even for the larger lass of It� proessesin the sense of [6℄: �x x ∈ R
d; if the limit (6) exists for one R, then it exists for every Rand the limit is independent of R.(b) For �xed x the funtion p(x, ξ) is negative de�nite as a funtion of ξ. This anbe shown as follows: for every t > 0 the funtion ξ 7→ Exei(X

σ
t −x)

⊤ξ is the harateristifuntion of the random variable Xσ
t − x. Therefore it is a ontinuous positive de�nitefuntion. By Corollary 3.6.10 of [15℄ we onlude that ξ 7→ −(Exei(X

⊤
t −x)⊤ξ − 1) is aontinuous negative de�nite funtion. Sine the negative de�nite funtions are a onewhih is losed under pointwise limits, (6) shows that ξ 7→ p(x, ξ) is negative de�nite.Note, however, that ξ 7→ p(x, ξ) is not neessarily ontinuous.If X is a Feller proess satisfying (R) the symbol p(x, ξ) is exatly the negative de�nitesymbol whih appears in the pseudo di�erential representation of its generator (2). Aposteriori this justi�es the name.We need three tehnial lemmas. The �rst one is known as Dynkin's formula. Itfollows from the well known fat that

M
[u]
t := u(Xt)− u(x)−

∫ t

0

Au(Xs) dsis a martingale for every u ∈ D(A) with respet to every Px, x ∈ Rd, see e.g. [25℄Proposition VII.1.6.Lemma 2.3. Let X be a Feller proess and σ a stopping time. Then we have
E
x

∫ σ∧t

0

Au(Xs) ds = E
xu(Xσ∧t)− u(x) (7)for all t > 0 and u ∈ D(A).Lemma 2.4. Let Y y be an R-valued proess, starting a.s. in y, whih is right ontinuousat zero and bounded. Then we have

1

t
E

∫ t

0

Y y
s ds

t↓0
−→ y.4



Proof. It is easy to see that
∣∣∣∣E
(
1

t

∫ t

0

(Y y
s − Y y

0 ) ds

)∣∣∣∣ 6 E

(
sup
06s6t

|Y y
s − Y y

0 |

)
.The result follows from the bounded onvergene theorem.Lemma 2.5. Let K ⊂ Rd be a ompat set. Let χ : Rd → R be a smooth ut-o� funtion,i.e. χ ∈ C∞

c (Rd) with
1B1(0)(y) 6 χ(y) 6 1B2(0)(y)for y ∈ Rd. Furthermore we de�ne χxn(y) := χ((y−x)/n) and uxn(y) := χxn(y)e

iy⊤ξ. Thenwe have for all z ∈ K
∣∣uxn(z + y)− uxn(z)− y⊤∇uxn(z)1B1(0)(y)

∣∣ 6 C ·
(
|y|2 ∧ 1

)
.Proof. Fix a ompat set K ⊂ Rd. An appliation of Taylor's formula shows that thereexists a onstant CK > 0 suh that

∣∣uxn(z + y)− uxn(z)− y⊤∇un(z)1B1(0)(y)
∣∣ 6 CK

(
|y|2 ∧ 1

) ∑

|α|62

‖∂αuxn‖∞uniformly for all z ∈ K. By the partiular hoie of the sequene (χxn)n∈N and Leibniz' rulewe obtain that ∑|α|62 ‖∂
αuxn‖∞ 6

∑
|α|62 ‖∂

αχ‖∞ (1 + |ξ|2), i.e. it is uniformly boundedfor all n ∈ N.Theorem 2.6. Let X = (Xt)t>0 be a onservative Feller proess satisfying ondition (R).Then the generator A|C∞
c

is a pseudo-di�erential operator with symbol −p(x, ξ), f. (2).Let
σ := σxR := inf{s > 0 : ‖Xs − x‖ > R}. (8)If x 7→ p(x, ξ) is ontinuous, then we have
lim
t↓0

E
x

(
ei(X

σ
t −x)

⊤ξ − 1

t

)
= −p(x, ξ),i.e. the symbol of the proess exists and oinides with the symbol of the generator.The assumption that x 7→ p(x, ξ) is ontinuous is not a severe restrition. All non-pathologial known examples of Feller proesses satisfy this ondition. It is always ful-�lled, if X has only bounded jumps, f. the disussion in [5℄.Proof of Theorem 2.6. Let (χxn)n∈N be the sequene of ut-o� funtions of Lemma 2.5and we write eξ(x) := eix

⊤ξ for x, ξ ∈ Rd. By the bounded onvergene theorem andDynkin's formula (7) we see
E
x
(
ei(X

σ
t −x)⊤ξ − 1

)
= lim

n→∞

(
E
xχxn(X

σ
t )eξ(X

σ
t )e−ξ(x)− 1

)

= e−ξ(x) lim
n→∞

E
x
(
χxn(X

σ
t )eξ(X

σ
t )− χxn(x)eξ(x)

)

= e−ξ(x) lim
n→∞

E
x

∫ σ∧t

0

A(χxneξ)(Xs) ds

= e−ξ(x) lim
n→∞

E
x

∫ σ∧t

0

A(χxneξ)(Xs−) ds.5



The last equality follows sine we are integrating with respet to Lebesgue measure andsine a àdlàg proess has a.s. a ountable number of jumps. Using Lemma 2.5 and theintegro-di�erential representation of the generator A it is not hard to see that for all
z ∈ K := BR(x)

A(χneξ)(z) 6 cχ

(
|ℓ(z)|+

1

2

d∑

j,k=1

|qjk(z)| +

∫

y 6=0

(1 ∧ |y|2)N(z, dy)

)
(1 + |ξ|2)

6 c′χ sup
z∈K

sup
|ξ|61

|p(z, ξ)|;the last estimate follows with (some modi�ations of) tehniques from [28℄ whih we will,for the readers' onveniene, work out in the Appendix. Being the symbol of a Fellerproess, p(x, ξ) is loally bounded. By de�nition of the stopping time σ we know thatfor all s 6 σ ∧ t we have z = Xs− ∈ BR(x) = K. Therefore, the integrand A(χxneξ)(Xs−),
s 6 σ ∧ t appearing in the above integral is bounded and we may use the dominatedonvergene theorem to interhange limit and integration. This yields

E
x
(
ei(X

σ
t −x)

⊤ξ − 1
)
= e−ξ(x)E

x

∫ σ∧t

0

lim
n→∞

A(χxneξ)(z)|z=Xs−
ds

= −e−ξ(x)E
x

∫ σ∧t

0

eξ(z)p(z, ξ)|z=Xs−
ds.The seond equality follows from [7℄ Setions 3.3 and 3.4. Therefore,

lim
t↓0

E
x
(
ei(X

σ
t −x)⊤ξ − 1

)

t
= −e−ξ(x) lim

t↓0
E
x

(
1

t

∫ t

0

eξ(X
σ
s−)p(X

σ
s−, ξ)1J0,σJ(s) ds

)

= −e−ξ(x) lim
t↓0

E
x

(
1

t

∫ t

0

eξ(X
σ
s )p(X

σ
s , ξ)1J0,σJ(s) ds

)sine we are integrating with respet to Lebesgue measure. The proess Xσ is boundedon the stohasti interval J0, σJ and x 7→ p(x, ξ) is ontinuous for every ξ ∈ Rd. Thus,Lemma 2.4 is appliable and gives
lim
t↓0

Ex
(
ei(X

σ
t −x)⊤ξ − 1

)

t
= −e−ξ(x)eξ(x)p(x, ξ) = −p(x, ξ).Theorem 2.6 extends an earlier result from [27℄ where additional assumptions areneeded for p(x, ξ). An extension to It� proesses is ontained in [30℄.3 Calulating the SymbolLet Z = (Zt)t>0 be an n-dimensional Lévy proess starting at zero with symbol ψ andonsider the following SDE

dXx
t = Φ(Xx

t−) dZt (9)
Xx

0 = x6



where Φ : Rd → R
d×n is loally Lipshitz ontinuous and satis�es the following lineargrowth ondition: there exists a K > 0 suh that for every x ∈ Rd

|Φ(x)|2 6 K(1 + |x|2). (10)Sine Z takes values in Rn and the solution Xx is Rd-valued, (9) is a shorthand for thesystem of stohasti integral equations
Xx,(j) = x(j) +

n∑

k=1

∫
Φ(X−)

jk dZ(k), j = 1, . . . , d.A minor tehnial di�ulty arises if one takes the starting point into aount and ifall proesses Xx should be de�ned on the same probability spae. The original spae
(Ω,F, (Ft)t>0,P) where the driving Lévy proess is de�ned is, in general, too small as asoure of randomness for the solution proesses. We overome this problem by enlargingthe underlying stohasti basis as in [24℄, Setion 5.6:

Ω := R
d × Ω, P

x := εx × P, x ∈ R
d,

F0
t := B

d ⊗ Ft Ft :=
⋂

u>t

F0
uwhere εx denotes the Dira measure in x. A random variable Z de�ned on Ω is onsideredto be extended automatially to Ω by Z(ω) = Z(ω), for ω = (x, ω).It is well known that under the loal Lipshitz and linear growth onditions imposedabove, there exists a unique onservative solution of the SDE (9), see e.g. [22℄ Theorem34.7 and Corollary 35.3.Theorem 3.1. The unique strong solution of the SDE (9) Xx

t (ω) has the symbol p :
Rd ×Rd → C given by

p(x, ξ) = ψ(Φ⊤(x)ξ)where Φ is the oe�ient of the SDE and ψ the symbol of the driving Lévy proess.Proof. To keep notation simple, we give only the proof for d = n = 1. The multi-dimensional version is proved along the same lines, the only ompliation being notational;a detailed aount is given in [30℄. Let σ be the stopping time given by (8). Fix x, ξ ∈ R.We apply It�'s formula for jump proesses to the funtion eξ(· − x) = exp(i(· − x)ξ):
1

t
E
x
(
ei(X

σ
t −x)ξ − 1

)

=
1

t
E
x

(∫ t

0+

iξ ei(X
σ
s−−x)ξ dXσ

s −
1

2

∫ t

0+

ξ2 ei(X
σ
s−−x)ξ d[Xσ, Xσ]cs

+ e−ixξ
∑

0<s6t

(
eiX

σ
s ξ − eiX

σ
s−ξ − iξeiX

σ
s−ξ∆Xσ

s

))
.

(11)
7



For the �rst term we get
1

t
E
x

∫ t

0+

(
iξ ei(X

σ
s−−x)ξ

)
dXσ

s

=
1

t
E
x

∫ t

0+

(
iξ ei(X

σ
s−−x)ξ

)
d

(∫ s

0

Φ(Xr−)1J0,σK(·, r) dZr

)

=
1

t
E
x

∫ t

0+

(
iξ ei(X

σ
s−−x)ξΦ(Xs−)1J0,σK(·, s)

)
dZs

=
1

t
E
x

∫ t

0+

(
iξ ei(X

σ
s−−x)ξΦ(Xs−)1J0,σK(·, s)

)
d(ℓs) (12)

+
1

t
E
x

∫ t

0+

(
iξ ei(X

σ
s−−x)ξΦ(Xs−)1J0,σK(·, s)

)
d

(
∑

0<r6s

∆Zr1{|∆Zr|>1}

) (13)where we have used the Lévy-It� deomposition (4). Sine the integrand is bounded, themartingale terms of (4) yield martingales whose expeted value is zero.First we deal with (13) ontaining the big jumps. Adding this integral to the thirdexpression on the right-hand side of (11) we obtain
1

t
E
x
∑

0<s6t

(
ei(X

σ
s−−x)ξ

(
eiΦ(Xs−)∆Zsξ − 1− iξΦ(Xs−)∆Zs1{|∆Xs|<1}

)
1J0,σK(·, s)

)

=
1

t
E
x

∫

]0,t]×R\{0}

Hx,ξ(· ; s−, y)µ
X(· ; ds, dy)

=
1

t
E
x

∫

]0,t]×R\{0}

Hx,ξ(· ; s−, y)ν(· ; ds, dy)

t↓0
−→

∫

R\{0}

(
eiΦ(x)yξ − 1− iξΦ(x)y1{|y|<1}

)
N(dy)where we have used Lemma 2.4 and the shorthand

Hx,ξ(ω; s, y) := ei(X
σ
s (ω)−x)ξ

(
eiΦ(Xs(ω))yξ − 1− iξΦ(Xs(ω))y1{|y|<1}

)
1J0,σK(ω, s).The alulation above uses some well known results about integration with respet tointeger valued random measures, see [12℄ Setion II.3, whih allow us to integrate `underthe expetation' with respet to the ompensating measure ν(· ; ds, dy) instead of therandom measure itself. In the ase of a Lévy proess the ompensator is of the form

ν(· ; ds, dy) = N(dy) ds, see [12℄ Example II.4.2.For the drift part (12) we obtain
1

t
E
x

∫ t

0+

(
iξ · ei(X

σ
s−−x)ξΦ(Xs−)1J0,σK(·, s)ℓ

)
ds

= iξℓ · Ex1

t

∫ t

0

(
ei(X

σ
s −x)ξΦ(Xs)1J0,σJ(·, s)

)
ds

t↓0
−→ iξℓΦ(x)where we have used Lemma 2.4 in a similar way as in the proof of Theorem 2.6.8



We an deal with the seond expression on the right-hand side of (11) in a similarway, one we have worked out the square braket of the proess.
[Xσ, Xσ]ct = ([X,X ]ct)

σ =
([∫ ·

0
Φ(Xr−)dZr,

∫ ·

0
Φ(Xr−)dZr

]c
t

)σ

=

∫ t

0

Φ(Xs−)
2
1J0,σK(·, s) d[Z,Z]

c
s

=

∫ t

0

Φ(Xs−)
2
1J0,σK(·, s) d(Qs)Now we an alulate the limit for the seond term

1

2t
E
x

∫ t

0+

(
−ξ2 ei(X

σ
s−−x)ξ

)
d[Xσ, Xσ]cs

=
1

2t
E
x

∫ t

0+

(
−ξ2 ei(X

σ
s−−x)ξ

)
d

(∫ s

0

(Φ(Xr−))
2
1J0,σK(·, r)Qdr

)

= −
1

2
ξ2QE

x

(
1

t

∫ t

0

(
ei(X

σ
s −x)ξΦ(Xs)

2
1J0,σJ(·, s)

)
ds

)

t↓0
−→ −

1

2
ξ2QΦ(x)2.In the end we obtain

p(x, ξ) = −iℓ(Φ(x)ξ) +
1

2
(Φ(x)ξ)Q(Φ(x)ξ)

−

∫

y 6=0

(
ei(Φ(x)ξ)y − 1− i(Φ(x)ξ)y · 1{|y|<1}(y)

)
N(dy)

= ψ(Φ(x)ξ).Note that in the multi-dimensional ase the matrix Φ(x) has to be transposed, i.e. thesymbol of the solution is ψ(Φ⊤(x)ξ).Theorem 3.1 shows that it is possible to alulate the symbol, even if we do not knowwhether the solution proess is a Feller proess. However, most of the interesting resultsonerning the symbol of a proess are restrited to Feller proesses. Therefore it isinteresting to have onditions guaranteeing that the solution of (9) is a Feller proess.Theorem 3.2. Let Z be a d-dimensional Lévy proesses suh that Z0 = 0. Then thesolution of (9) is a strong Markov proess under eah P
x. Furthermore the solutionproess is time homogeneous and the transition semigroups oinide for every Px, x ∈ Rd.Proof. See Protter [24℄ Theorem V.32 and [23℄ Theorem (5.3). Note that Protter statesthe theorem only for the speial ase where the omponents of the proess are indepen-dent. However the independene is not used in the proof.Some lengthy alulations lead from Theorem 3.2 diretly to the following result whihan be found in [1℄ Theorem 6.7.2 and, with an alternative proof, in [30℄ Theorem 2.49.Corollary 3.3. If the oe�ient Φ is bounded, the solution proess Xx

t of the SDE givenby (9) is a Feller proess. 9



Remark 3.4. In [30℄ it is shown that if Φ is not bounded the solution of (9) may fail tobe a Feller proess. Consider the stohasti integral equation
Xt = x−

∫ t

0

Xs− dNswhere N = (Nt)t>0 is a standard Poisson proess. The solution proess starts in x,stays there for an exponentially distributed waiting time (whih is independent of x)and then jumps to zero, where it remains forever. There exists a time t0 > 0 for whih
Px(Xt0 = x) = Px(Xt0 = 0) = 1/2. For a funtion u ∈ Cc(R) with the property u(0) = 1we obtain

E
x(u(Xt0)) =

1

2
for every x /∈ suppu.Therefore Tt0u does not vanish at in�nity.Next we show that the solution of the SDE satis�es ondition (R) if Φ is bounded.Theorem 3.5. Let Φ be bounded and loally Lipshitz ontinuous. In this ase the solu-tion Xx

t of the SDE
Xt = x+

∫ t

0

Φ(Xs−) dZs, x ∈ R
d,ful�lls ondition (R), i.e. the test funtions are ontained in the domain D(A) of thegenerator A.Proof. Again we only give the proof in dimension one. The multi-dimensional version issimilar. Let u ∈ C∞

c (R). By It�'s formula we get
Dt :=

Exu(Xt)− u(x)

t

=
1

t
E
x(u(Xt)− u(x))

=
1

t
E
x

(∫ t

0+

u′(Xs−) dXs +
1

2

∫ t

0+

u′′(Xs−) d[X,X ]cs

+
∑

0<s6t

(
u(Xs)− u(Xs−)− u′(Xs−)∆Xs

))
.Sine Xt = x+

∫ t
0
Φ(Xs−) dZs we obtain

Dt =
1

t
E
x

(∫ t

0+

u′(Xs−)Φ(Xs−) dZs +
1

2

∫ t

0+

u′′(Xs−)Φ(Xs−)
2 d[Z,Z]cs

+

∫

y 6=0

∫ t

0

(
u (Xs− + Φ(Xs−)y)− u(Xs−)− u′(Xs−)Φ(Xs−)y

)
µZ(· ; ds, dy)

)where µZ is the random measure given by the jumps of the Lévy proess Z. Next we usethe Lévy-It� deomposition Z in the �rst term. The expeted value of the integral withrespet to the martingale part of Z is zero, sine the integral
∫ t

0

u′(Xs−)Φ(Xs−) d

(
ΣWt +

∫

[0,t]×{|y|<1}

y
(
µZ(ds, dy)− dsN(dy)

))10



is an L2-martingale. Therefore we obtain
Dt =

1

t
E
x

∫ t

0+

u′(Xs−)Φ(Xs−) d

(
ℓt+

∑

0<r6s

∆Zr1{|∆Zr |>1}

)

+
1

2

1

t
E
x

∫ t

0+

u′′(Xs−)Φ(Xs−) d(Σ
2s)

+
1

t
E
x

∫

y 6=0

∫ t

0

(
u (Xs− + Φ(Xs−)y)− u(Xs−)− u′(Xs−)Φ(Xs−)y

)
µZ(· ; ds, dy).We write the jump part of the �rst term as an integral with respet to µZ and add it tothe third term. The integrand

H(· ; s, y) := u
(
Xs− + Φ(Xs−)y

)
− u(Xs−)− u′(Xs−)Φ(Xs−)y 1{|y|<1}is in the lass F 1

p of Ikeda and Watanabe, [12℄ Setion II.3, i.e. it is preditable and
E

(∫ t

0

∫

y 6=0

|H(· ; s, y)| ν(·, ds, dy)

)
<∞where ν denotes the ompensator of µX . Indeed, the measurability riterion is ful�lledbeause of the left-ontinuity of H(· ; s, ·), the integrability follows from

∣∣u
(
Xs− + Φ(Xs−)y

)
− u(Xs−)− u′(Xs−)Φ(Xs−)y 1{|y|<1}

∣∣
6
∣∣{u
(
Xs− + Φ(Xs−)y

)
− u(Xs−)− u′(Xs−)Φ(Xs−)y

}
1{|y|<1}

∣∣ + 2 ‖u‖∞ 1{|y|>1}

6
1

2
y2Φ(Xs−)

2 ‖u′′‖∞ 1{|y|<1} + 2 ‖u‖∞ 1{|y|>1}

6
(
2 ∨ ‖Φ‖2∞

) (
y2 ∧ 1

)
(‖u‖∞ + ‖u′′‖∞)where we used a Taylor expansion for the �rst term. Therefore H ∈ F 1

p and we an,`under the expetation', integrate with respet to the ompensator of the random measureinstead of the measure itself, see [12℄ Setion II.3. Thus,
Dt =

1

t
E
x

∫ t

0+

u′(Xs−)Φ(Xs−)ℓ ds+
1

2t
E
x

∫ t

0+

u′′(Xs−)Φ(Xs−)Σ
2 ds

+
1

t
E
x

∫

y 6=0

∫ t

0

(
u(Xs− + Φ(Xs−)y)− u(Xs−)− u′(Xs−)Φ(Xs−)y1{|y|<1}

)
dsN(dy).Sine we are integrating with respet to Lebesgue measure and sine the paths of a àdlàgproess have only ountably many jumps we get

Dt =
1

t
E
x

∫ t

0

u′(Xs)Φ(Xs)ℓ ds+
1

2t
E
x

∫ t

0

u′′(Xs)Φ(Xs)Σ
2 ds

+
1

t
E
x

∫ t

0

∫

y 6=0

(
u(Xs + Φ(Xs)y)− u(Xs)− u′(Xs)Φ(Xs)y1{|y|<1}

)
N(dy) ds.11



The hange of the order of integration is again justi�ed by the estimate of |H|. By Lemma2.4 we see that
Exu(Xt)− u(x)

t

t↓0
−→ ℓu′(x)Φ(x) +

1

2
Σ2u′′(x)Φ(x)2

+

∫

y 6=0

(
u(x+ Φ(x)y)− u(x)− u′(x)Φ(x)y · 1{|y|<1}

)
N(dy).As a funtion of x, the limit is ontinuous and vanishes at in�nity. Therefore the testfuntions are ontained in the domain, f. Sato [26℄ Lemma 31.7.Remark 3.6. In the one-dimensional ase the following weaker ondition is su�ient toguarantee that the test funtions are ontained in the domain of the solution. Let Φ beloally Lipshitz ontinuous satisfying (10) and assume that

x 7→ sup
λ∈]0,1[

1

x+ λΦ(x)
∈ C∞(R). (14)The produts u′Φ and u′′Φ are bounded for every ontinuous Φ, beause u has ompatsupport. The only other step in the proof of Theorem 3.5 whih requires the boundednessof Φ is the estimate of |H| in order to get H ∈ F 1

p .However, (14) implies that for every r > 0 there exists some R > 0 suh that
|x+ λΦ(x)| > r for all |x| > R, λ ∈]0, 1[. (15)Therefore, see the proof of Theorem 3.5, we an use Taylor's formula to get

|H(· ; x, y)|1{|y|<1} =
∣∣{u
(
Xs− + Φ(Xs−)y

)
− u(Xs−)− u′(Xs−)Φ(Xs−)y

}
1{|y|<1}

∣∣

6

∣∣∣∣
1

2
y2Φ

(
Xs−

)2
u′′
(
Xs− + ϑyΦ(Xs−)

)
1{|y|<1}

∣∣∣∣for some ϑ ∈]0, 1[. Set λ := ϑ · y and pik r suh that suppu′′ ⊂ Br(0); then (15) showsthat Φ(Xs−)
2 u′′(Xs− + ϑyΦ(Xs−)) is bounded.Combining our results, we obtain the following existene result for Feller proesses.Corollary 3.7. For every negative de�nite symbol having the following struture

p(x, ξ) = ψ(Φ⊤(x)ξ)where ψ : Rn → C is a ontinuous negative de�nite funtion and Φ : Rd → Rd×n isbounded and Lipshitz ontinuous, there exists a unique Feller proess Xx. The domain
D(A) of the in�nitesimal generator A ontains the test funtions C∞

c = C∞
c (Rn) and

A|C∞
c

is a pseudo-di�erential operator with symbol −p(x, ξ).We lose this setion by mentioning that in a ertain sense our investigations of theSDE (9) annot be generalized. For this we ite the following theorem by Jaod andProtter [19℄ whih is a onverse to our above onsiderations.Theorem 3.8. Let (Ω,F, (Ft)t>0,P) be a �ltered probability spae with a semimartingale
Z. Let f ∈ B(R) suh that f is never zero and is suh that for every x ∈ R the equation(9) has a unique (strong) solution Xx. If eah of the proesses Xx is a time homogeneousMarkov proess with the same transition semigroup then Z is a Lévy proess.12



4 ExamplesIn the ase d = 1 we obtain results for various proesses whih are used most often inappliations:Corollary 4.1. Let Z1, . . . , Zn be independent Lévy proesses with symbols (i.e. har-ateristi exponents) ψ1, . . . , ψn and let Φ1, . . . ,Φn be bounded and Lipshitz ontinuousfuntions on R. Then the SDE
dXx

t = Φ1(Xx
t−) dZ

1
t + · · ·+ Φn(Xx

t−) dZ
n
t

Xx
0 = x

(16)has a unique solution Xx whih is a Feller proess and admits the symbol
p(x, ξ) =

n∑

j=1

ψj(Φ
j(x)ξ), x, ξ ∈ R.Proof. This follows diretly from the multi-dimensional ase of Theorem 3.1 if one writesthe SDE (9) in the form

dXt = (Φ1, . . . ,Φn)(Xt−) d



Z1
t...

Zn
t




Xx
0 = x.Example 4.2 (Lévy plus Lebesgue). Let Φ,Ψ : R → R be bounded and Lipshitz ontin-uous and (Zt)t>0 be a one-dimensional Lévy proess with symbol ψ. The unique solutionproess Xx of the SDE
dXx

t = Φ(Xx
t−) dZt +Ψ(Xx

t−) dt

Xx
0 = x

(17)has the symbol p(x, ξ) = ψ(Φ(x)ξ)− i(Ψ(x)ξ). Note that the driving proesses dXx
t and

dt are independent sine the latter is deterministi.Example 4.3 (Wiener plus Lebesgue). Let Φ,Ψ : R → R be bounded and Lipshitzontinuous and (Wt)t>0 be a one-dimensional Brownian motion. The unique solutionproess Xx of the SDE
dXx

t = Φ(Xx
t−) dWt +Ψ(Xx

t−) dt

Xx
0 = x

(18)has the symbol p(x, ξ) = |Φ(x)|2 |ξ|2 − iΨ(x)ξ.Example 4.4 (Symmetri α-stable). Let (Zj
t )t>0, j = 1, . . . , n, be independent symmetrione-dimensional αj-stable Lévy proesses, i.e. the harateristi exponents are of the form

ψ(ξ) = |ξ|αj with αj ∈ (0, 2], and let Φj : R → R be bounded and Lipshitz ontinuous.The unique solution proess Xx of the SDE
dXx

t = Φ1(X
x
t−) dZ

1
t + · · ·+ Φn(X

x
t−) dZ

n
t

Xx
0 = x

(19)has the symbol p(x, ξ) =∑n
j=1 |Φj(x)|

αj · |ξ|αj .13



5 Some AppliationsUsing the symbol of a Feller Proess it is possible to introdue so-alled indies whihare generalizations of the Blumenthal-Getoor index β for a Lévy proess, see e.g. [28, 14℄.These indies an be used to obtain results about the global behaviour and the paths ofthe proess.Remark 5.1. It is shown in [13℄ Lemma 5.2, see also Lemma 6.1 in the Appendix, that
|y|2

1 + |y|2
=

∫

Rd\{0}

(
1− cos(y⊤ρ)

)
gd(ρ) dρwhere

gd(ρ) =
1

2

∫ ∞

0

(2πλ)−d/2e−|ρ|2/(2λ)e−λ/2 dλ, ρ ∈ R
d \ {0}. (20)It is straightforward to see that ∫

Rd\{0}
|ρ|j g(ρ) dρ <∞ for all j = 0, 1, 2, . . .Let p(x, ξ), x, ξ ∈ Rd, be the symbol of a Markov proess. Set

H(x,R) := sup
|y−x|62R

sup
|e|61

(∫ ∞

−∞

Re p
(
y,
ρe

R

)
g(ρ) dρ+

∣∣∣p
(
y,

e

R

)∣∣∣
) (21)with the funtion g = g1 from Remark 5.1. If the symbol satis�es the following setor-typeondition, |Im p(x, ξ)| 6 c0 · Re p(x, ξ), we set

h(x,R) := inf
|y−x|62R

sup
|e|61

Re p
(
y,

e

4κR

) (22)where κ := (4 arctan(1/2c0))
−1.De�nition 5.2. Let p(x, ξ), x, ξ ∈ Rd be the symbol of a Markov proess. Then

βx∞ := inf

{
λ > 0 : lim sup

R→0
RλH(x,R) = 0

}is the generalized upper index at in�nity. If | Im p(x, ξ)| 6 c0 · Re p(x, ξ), then
β0 := sup

{
λ > 0 : lim sup

R→∞
Rλ sup

x∈Rd

H(x,R) = 0

}is the generalized upper index at zero.In a similar fashion one an de�ne lower versions of these indies using the funtion
h(x,R) and lim inf whih are useful for �ne properties of the sample paths, f. [28℄ fordetails. Here we restrit our attention to βx∞ and β0. The next lemma helps to simplifythe De�nition 5.2.Lemma 5.3. H(x,R) ≍ sup

|y−x|62R

sup
|e|61

∣∣∣p
(
y,

e

R

)∣∣∣ for all R > 0 and x ∈ Rd.14



Proof. The estimate H(x,R) > sup|y−x|62R sup|e|61

∣∣p
(
y, e

R

)∣∣ follows immediately from(21). Sine ξ 7→ p(x, ξ) is negative de�nite, the square root is subadditive, f. [3℄,
√

|p(x, ξ + η)| 6
√

|p(x, ξ)|+
√
|p(x, η)|and we onlude that for all R, ρ > 0 and y ∈ Rd

sup
|e|61

√∣∣∣p
(
y, ρ

e

R

)∣∣∣ 6 sup
|e|61

(√∣∣∣p
(
y,

e

R

)∣∣∣ ⌊ρ⌋ +
√∣∣∣p

(
y, (ρ− ⌊ρ⌋)

e

R

)∣∣∣
)

6 2 sup
|e|61

√∣∣∣p
(
y,

e

R

)∣∣∣
(
1 + ρ

)
.Sine ∫∞

−∞
(1 + ρ)2 g(ρ) dρ <∞, the lemma follows.Example 5.4. (a) For a d-dimensional symmetri α-stable Lévy proess the symbol isgiven by p(x, ξ) = ψ(ξ) = |ξ|α, x, ξ ∈ Rd. In this ase βx∞ = α and β0 = α.(b) The symbol p(x, ξ) = |ξ|α(x), x, ξ ∈ R, where α : R → [0, 2] is Lipshitz ontinuousand satis�es 0 < α = inf α(x) 6 supα(x) 6 α < 2, orresponds to the so-alled stable-likeFeller proess, f. [2℄. In this ase βx∞ = α(x) and β0 = α.Lemma 5.5. The only ontinuous negative de�nite funtion vanishing at in�nity is on-stantly zero.Proof. Let ψ be a ontinuous negative de�nite funtion whih vanishes at in�nity. Forevery ε > 0 there exists some R > 0 suh that |ψ(ξ)| 6 ε2/4 if |ξ| > R. For every

γ ∈ BR(0) there exist two vetors ξ, η ∈ BR(0)
c suh that γ = ξ + η. By the sub-additivity of √|ψ| we obtain

√
|ψ(γ)| =

√
|ψ(ξ + η)| 6

√
|ψ(ξ)|+

√
|ψ(η)| 6 εwhih ompletes the proof.We an now simplify the alulation of the upper index. The assumptions of thefollowing proposition are trivially satis�ed by any Feller proess satisfying ondition (R),f. [7℄.Proposition 5.6. Let p(x, ξ) be a non-trivial (i.e. non-onstant) symbol of a Markovproess whih is loally bounded. The generalized upper index βx∞ an be alulated in thefollowing way

βx∞ = β(x) := lim sup
|η|→∞

sup
|y−x|62/|η|

log |p(y, η)|

log |η|
.Proof. First we show that β(x) ∈ [0, 2]. Fix x ∈ Rd. For |η| > 1 we have only to onsiderpoints y suh that |y − x| 6 2. The argument used in the proof of Lemma 5.3 an bemodi�ed to prove that

|p(y, η)| 6 h(y) · (1 + |η|2), h(y) = 4 sup
|ξ|61

|p(y, ξ)|.15



Sine p(y, η) is loally bounded, we see there exists a onstant C > 0 suh that
log |p(y, η)|

log |η|
6

log(2C) + log |η|2

log |η|
6

log(2C)

log |η|
+ 2.The right-hand side tends to 2 as |η| → ∞. This shows that β(x) 6 2. In order to seethat β(x) > 0, we note that

sup
|y−x|62/|η|

log |p(y, η)|

log |η|
>

log |p(x, η)|

log |η|
.Beause of Lemma 5.5 there exists a δ > 0 suh that for every R > 0 there is some ξ with

|ξ| > R and |p(x, ξ)| > δ. Therefore,
lim sup
|η|→∞

log |p(x, η)|

log |η|
> lim sup

|η|→∞

log δ

log |η|
= 0,and we onlude that β(x) > 0.In view of Lemma 5.3, βx∞ = β(x) follows, if we an show that

lim sup
|ξ|→∞

sup|x−y|62/|ξ| |p(y, ξ)|

|ξ|λ
= 0 or ∞aording to λ > β(x) or λ < β(x). Let h ∈ R. Then

sup|x−y|62/|ξ| |p(y, ξ)|

|ξ|β(x)+h
= exp

(
log

(
sup

|x−y|62/|ξ|

|p(y, ξ)|

)
− (β(x) + h) log |ξ|

)

= exp

((
sup|y−x|62/|ξ| log |p(y, ξ)|

log |ξ|
− β(x)

)
· log |ξ| − h · log |ξ|

)
.Taking the lim sup for |ξ| → ∞ of this expression, the inner braket onverges to zerosine β(x) ∈ [0, 2] as we have seen above. This means there exists some r = rh > 0 suhthat for every R > r

(
sup
|ξ|>R

sup|y−x|62/|ξ| log |p(y, ξ)|

log |ξ|
− β(x)

)
<
h

2
.Thus, if h > 0,

lim sup
|ξ|→∞

sup|x−y|62/|ξ| |p(y, ξ)|

|ξ|β(x)+h
6 lim sup

|ξ|→∞

exp(log(|ξ|−h/2)) = 0;if h < 0,
lim sup
|ξ|→∞

sup|x−y|62/|ξ| |p(y, ξ)|

|ξ|β(x)+h
> lim sup

|ξ|→∞

exp(log(|ξ|−h/2)) = ∞,whih ompletes the proof. 16



Theorem 5.7. Let X be a solution proess of the SDE (9) with d = n and where thelinear mapping ξ 7→ Φ⊤(y)ξ is bijetive for every y ∈ Rd. If the driving Lévy proess hasthe non-onstant symbol ψ and index βψ∞, then the solution X of the SDE has, for every
x ∈ Rd, the upper index βx∞ ≡ βψ∞.Proof. Fix x ∈ Rd. We use the haraterization of the index from Proposition 5.6

βx∞ = lim sup
|η|→∞

sup
|y−x|62/|η|

log |p(y, η)|

log |η|
.>From Theorem 3.1 we know that p(x, ξ) = ψ(Φ⊤(x)ξ). Therefore,

log
∣∣ψ(Φ⊤(y)η)

∣∣
log |η|

=
log
∣∣ψ(Φ⊤(y)η)

∣∣
log |Φ⊤(x)η|

·
log
∣∣Φ⊤(x)η

∣∣
log |η|where the seond fator is bounded from above and below, sine the funtion η 7→ φ⊤(x)ηis bijetive. Consequently,

βx∞ = lim sup
|η|→∞

sup
|y−x|62/|η|

log
∣∣ψ(Φ⊤(y)η)

∣∣
log |Φ⊤(x)η|

.By Lemma 5.5 ψ does not vanish at in�nity. In partiular there exists an ε > 0 and asequene (ξn)n∈N suh that |ξn| → ∞ and |ψ(ξn)| > ε for every n ∈ N. Sine η 7→ Φ⊤(x)ηis linear and bijetive there exists a sequene (ηn)n∈N suh that ∣∣ψ(Φ⊤(x)ηn)
∣∣ > ε forevery n ∈ N and |ηn| → ∞. In order to alulate the upper limit it is, therefore, enoughto onsider the set

{
η ∈ R

d :
∣∣ψ(Φ⊤(x)η)

∣∣ > ε
}
. (23)We write

sup
|y−x|62/|η|

log
∣∣ψ(Φ⊤(y)η)

∣∣
log |Φ⊤(x)η|

=
sup|y−x|62/|η| log

∣∣ψ(Φ⊤(y)η)
∣∣− log

∣∣ψ(Φ⊤(x)η)
∣∣

log |Φ⊤(x)η|
+

log
∣∣ψ(Φ⊤(x)η)

∣∣
log |Φ⊤(x)η|

.

(24)Denoting the loal Lipshitz onstant of y 7→ Φ(y) in a neighbourhood of x by Lx > 0,we obtain for |y − x| 6 2/ |η|

∣∣Φ⊤(y)η − Φ⊤(x)η
∣∣ 6 |η| · |Φ(y)− Φ(x)| 6 |η| · Lx |y − x| 6 2Lx.It follows that the numerator of the �rst term on the right-hand side of (24) is boundedon the set (23) beause the funtion y 7→ log |y| is uniformly ontinuous on [ε,∞[; for theseond term we obtain

lim sup
|η|→∞

log
∣∣ψ(Φ⊤(x)η)

∣∣
log |Φ⊤(x)η|

= lim sup
|ξ|→∞

log |ψ(ξ)|

log |ξ|
= βψ∞sine the funtion η 7→ φ⊤(x)η is bijetive and linear.17



Remark 5.8. In order to obtain βx∞ 6 βψ∞ in the ase d 6 n it is su�ient to demand that
Φ(y) never vanishes.We will �rst use this theorem to derive a result on the (strong) γ-variation of theproess X .De�nition 5.9. If γ ∈]0,∞[ and g is an Rd-valued funtion on the interval [a, b] then

V γ(g; [a, b]) := sup
πn

n∑

j=1

|g(tj)− g(tj−1)|
γwhere the supremum is taken over all partitions πn = (a = t0 < t1 < . . . < tn = b) of

[a, b] is alled the (strong) γ-variation of g on [a, b].Corollary 5.10. Let Xx = (Xx
t )t>0 be the solution of the SDE (9) where Z is a Lévyproess with harateristi exponent ψ. Denote by βx∞ the generalized upper index of X.Then

V γ(Xx; [0, T ]) <∞ P
x-a.s. for every T > 0if γ > supx β

x
∞.Note that in the situation of Theorem 5.7 the index supx β

x
∞ = βψ∞ where βψ∞ is theupper index of the driving Lévy proess.Proof of Corollary 5.10. Sine X is a strong Markov proess we an use a riterion forthe �niteness of γ-variations due to Manstavi£ius [21℄. Consider for h ∈ [0, T ] and r > 0

α(h, r) = sup
{
P
x(|Xt − x| > r) : x ∈ R

d, 0 6 t 6 (h ∧ T )
}

6 sup
t6h

sup
x∈Rd

P
x

(
sup
06s6t

|Xs − x| > r

)
.Using Lemma 4.1 and Lemma 5.1 in [28℄ we obtain

P
x

(
sup
06s6t

|Xs − x| > r

)
6 C · t sup

|y−x|62r

sup
|e|61

∣∣∣p
(
y,

e

r

)∣∣∣where C > 0 is independent of x and t. Hene,
α(h, r) 6 sup

t6h
sup
x∈Rd

C · t sup
|y−x|62r

sup
|e|61

∣∣∣p
(
y,

e

r

)∣∣∣

6 C · h sup
x∈Rd

(
sup

|y−x|62r

sup
|e|61

∣∣∣p
(
y,

e

r

)∣∣∣
)

6 C · h sup
x∈Rd

(
sup

|η|6(1/r)

sup
|y−x|6(2/|η|)

|p (y, η)|

)
.>From Lemma 5.3 we know that for every λ > supx β

x
∞

lim
|η|→∞

sup|y−x|6(2/|η|) |p (y, η)|

|η|λ
= 0.18



Therefore we �nd for every x a ompat set K suh that
sup

|y−x|62/|η|

|p (y, η)| 6 C̃ · |η|λ 6 C̃ · r−λon the omplement of K. Sine the right-hand side is independent of x, there exists an
r0 > 0 suh that for all r ∈]0, r0] we have

α(h, r) 6 C · C̃ ·
h1

rλwhih means that X is in the lass M(1, βψ∞) of Manstavi£ius. The result follows from[21℄ Theorem 1.3.We an use the indies to obtain information on the Hölder and growth behaviour ofthe solution of the SDE (9). As usual, we write (X· − x)∗t := sup06s6t |Xs − x|.Corollary 5.11. Let Xx = (Xx
t )t>0 be the solution of the SDE (9) where Z is a Lévy pro-ess with harateristi exponent ψ satisfying the setor ondition | Imψ(ξ)| 6 c0Reψ(ξ)for some onstant c0 > 0. Denote by βx∞ and β0 the generalized upper indies of X. Then

lim
t→0

t−1/λ(X· − x)∗t = 0 if λ > sup
x
βx∞ and lim

t→∞
t−1/λ(X· − x)∗t = 0 if 0 < λ < β0.Under the assumptions of Theorem 5.7, supx βx∞ is the upper index of the driving Lévyproess: βψ∞.Proof. This is a ombination of Proposition 5.6 and Theorem 5.7 with the abstrat resultfrom [28℄, Theorems 4.3 and 4.6. For the growth result as t → ∞ we need the setorondition for the symbol p(x, ξ) whih is diretly inherited from the setor ondition of

ψ. Note that one an identify values for λ by using, in general di�erent, indies suh thatthe above limits beome +∞.Let us �nally indiate how we an measure the `smoothness' of the sample paths ofthe solution of the SDE (9). Sine we deal with àdlàg-funtions, in general, the rightsale of funtion spaes are (polynomially weighted) Besov spaes Bs
q(L

p((1+ t2)−µ/2 dt))with parameters p, q ∈ (0,∞] and s, µ > 0. We refer to the monographs by Triebel [31℄and the survey [8℄ by DeVore for details. Note that information on Besov regularity isimportant if one is interested in the e�etiveness of numerial adaptive algorithms for thesolutions of an SDE. In a deterministi ontext this is disussed in [8℄.Corollary 5.12. Let Xx = (Xx
t )t>0 be the solution of the SDE (9) where Z is a Lévyproess with non-degenerate (i.e. non-onstant) harateristi exponent ψ. Denote by βx∞and β0 the generalized upper indies of X. Then we have almost surely

{t 7→ Xx
t } ∈ Bs

q(L
p((1 + t2)−µ/2 dt)) if s · sup

y
{p, q, βy∞} < 1 and µ >

1

β0
+

1

p
.In partiular we get loally

{t 7→ Xx
t } ∈ Bs,lo

q (Lp(dt)) if s · sup
y
{p, q, βy∞} < 1and

{t 7→ Xx
t } 6∈ Bs,lo

q (Lp(dt)) if sp > 1.19



Proof. This is a onsequene of Theorems 4.2 and 6.5 in [29℄. Note that, although allstatements are in terms of Feller proesses, only the existene of a symbol of the underlyingproess is required. In [29℄ we assume that the smoothness index s satis�es the ondition
s > (p−1−1)+. This restrition an be easily overome by using the imbedding Bs

q(L
p) →֒

Bt
r(L

p) whih holds for all s > t, all p ∈ (0,∞] and all r, q ∈ (0,∞], see [31℄, vol. III,Theorem 1.97.6 AppendixFor the readers' onveniene we ollet in this appendix some variations on standardestimates for symbols of Feller proesses. They are based on methods from [28℄ and analso be found in [30℄. For the rest of the paper we use the notation ‖f‖K := supz∈K |f(z)|where | · | an be a vetor or matrix norm.Lemma 6.1. We have
|y|2

1 + |y|2
=

∫ (
1− cos(y⊤ρ)

)
g(ρ) dρ, y ∈ R

d,where g(ρ) = 1
2

∫∞

0
(2πλ)−d/2 e−|ρ|2/2λ e−λ/2 dλ is integrable and has absolute moments ofarbitrary order.Proof. The Tonelli-Fubini Theorem and a hange of variables show for k ∈ N0

∫
|ρ|k g(ρ) dρ =

1

2

∫ ∞

0

(2πλ)−d/2
∫

|ρ|k e−|ρ|2/2λ dρ e−λ/2 dλ

=
1

2

∫ ∞

0

(2πλ)−d/2
∫
λk/2|η|k e−|η|2/2λd/2 dη e−λ/2 dλ

=
1

2
(2π)−d/2

∫
|η|k e−|η|2/2 dη

∫ ∞

0

λ(k+d)/2 e−λ/2 dλ,i.e., g has absolute moments of any order. Moreover, the elementary formula
e−λ|y|

2/2 = (2πλ)−d/2
∫
e−|ρ|2/2λ eiy

⊤ρ dρand Fubini's Theorem yield
|y|2

1 + |y|2
=

1

2

∫ ∞

0

(
1− e−λ|y|

2/2
)
e−λ/2 dλ

=
1

2

∫ ∞

0

∫
(2πλ)−d/2

(
1− eiy

⊤ρ
)
e−|ρ|2/2λ e−λ/2 dρ dλ

=

∫ (
1− eiy

⊤ρ
)
g(ρ) dρ.The assertion follows sine the left-hand side is real-valued.Lemma 6.2. Let p(x, ξ) be a negative de�nite symbol of the form (3) with Lévy triplet

(ℓ(x), Q(x), N(x, dy)) and let K ⊂ Rd be a ompat set or K = Rd. Then the followingassertions are equivalent. 20



(a) ‖p(·, ξ)‖K 6 cp(1 + |ξ|2), ξ ∈ R
d;(b) ‖ℓ‖K + ‖Q‖K +

∥∥∥∥
∫

y 6=0

|y|2

1 + |y|2
N(·, dy)

∥∥∥∥
K

<∞;() sup
|ξ|61

sup
x∈K

|p(x, ξ)| <∞.If one, hene all, of the above onditions hold, there exists a onstant c > 0 suh that
‖ℓ‖K + ‖Q‖K +

∥∥∥∥
∫

y 6=0

|y|2

1 + |y|2
N(·, dy)

∥∥∥∥
K

6 c sup
|ξ|61

sup
x∈K

|p(x, ξ)|.Proof. (a)⇒(b). By Lemma 6.1 we have
∫

y 6=0

|y|2

1 + |y|2
N(x, dy) =

∫

y 6=0

∫ (
1− cos(η⊤y)

)
g(η) dηN(x, dy)

=

∫ (
Re p(x, η)− η⊤Q(x)η

)
g(η) dη

6

∫
Re p(x, η) g(η) dη

6 cp

∫ (
1 + |η|2

)
g(η) dηuniformly for all x ∈ K. Using Taylor's formula and Lemma 6.1 we �nd

|ℓ(x)⊤ξ| 6
∣∣ Im p(x, ξ)

∣∣+ Im

∫

y 6=0

∣∣∣∣1− eiξ
⊤y +

iξ⊤y

1 + |y|2

∣∣∣∣ N(x, dy)

6

(
cp + c

∫

y 6=0

|y|2

1 + |y|2
N(x, dy)

)
(1 + |ξ|2)

6 cp

(
1 + c

∫ (
1 + |η|2

)
g(η) dη

)
(1 + |ξ|2)uniformly in x ∈ K and for all ξ ∈ Rd, so ‖ℓ‖K <∞. Finally,

|ξ⊤Q(x)ξ| 6 Re p(x, ξ) 6 |p(x, ξ)| 6 cp(1 + |ξ|2)whih shows that ‖Q‖K <∞.(b)⇒(). Using the Lévy-Khinhine representation for p(x, ξ) and Taylor's formula we�nd
|p(x, ξ)| 6 ‖ℓ‖K |ξ|+ ‖Q‖K |ξ|2 + 2

∫
|y|2

1 + |y|2
N(x, dy) (1 + |ξ|2)(we use the ℓ2-norm in Rd and Rd×d) and () follows.()⇒(a). Set P (ξ) := supx∈K |p(x, ξ)|. Sine both ξ 7→
√
p(x, ξ) and the supx aresubadditive, we onlude

√
P (ξ + η) 6

√
P (ξ) +

√
P (η), ξ, η ∈ R

d,21



i.e., √P (·) is subadditive. Fix ξ and hoose the unique N = Nξ ∈ N suh that N − 1 6

|ξ| < N . Applying the subadditivity estimate N times gives
P (ξ) 6 N2P

(
ξ
N

)
6 N2 sup

|η|61

P (η) 6 2
(
1 + |ξ|2

)
sup
|η|61

P (η)and this is laimed in (a).An inspetion of the proof of (a)⇒(b) shows that eah of the terms ‖ℓ‖K , ‖Q‖K and∥∥∥
∫
y 6=0

|y|2(1 + |y|2)−1N(·, dy)
∥∥∥
K
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