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Motivation

During the last decade quantum dot based devices and their application in op-
tical communication technology have made great progress. In particular semi-
conductor lasers and amplifiers have entered the focus of interest. They were
theoretically predicted in 1961 [I] and realized technically the year after [2]. To-
day semiconductor lasers are found in several every-day devices like CD- and
DVD- players, hard drives or laser printers. For the further development of these
lasers improved methods for creating semiconductors and semiconductor based
devices play a great role. In the past the effect of quantum confinement allowed
to decrease the dimensions of the active material systematically. One expects
best performance of the current zero-dimensional quantum dots (QDs). A high
gain, a low and temperature-independent threshold current density and discrete
energy levels are their advantages.

In this work the ultrafast optical characteristics of quantum dot based devices
are studied regarding GHz application using advanced pump-probe techniques.
Our device consists of InAs quantum dots embedded in a wave guiding diode-
structure. This quantum dot amplifiers groundstate emits at 1,3um, one of the
wavelength for communication applications. To measure phase and amplitude of
the signal at the same time all experiments were done with heterodyne technology.
The gain dynamics of the system where measured in dependence of temperature,
bias current and signal intensity to model several working conditions.

To clarify if devices like the ones studied during this work are suited to be
used in modern communication technology an additional point is of importance.

The question is if the relaxation times of the ground state are provided also
for high pulse rates. Here it becomes more important which processes dominate
the refilling of the ground states and how fast or efficient they are than how fast
the ground state itself is refilled. Customizing our pump-probe setup to run with
femtosecond pulse trains (of up to four pulses) to study directly the behavior of
the ground-state recovery after GHz operation (up to 1 THz) and choosing the
device carefully (e.g. p-doping and quantum dot in a well structure) we achieved
a deeper understanding of the refilling processes. To anticipate some of the results
we found direct carrier capture from the surrounding 2D-reservoir build by the
well and wetting layer to be the guiding process in contradiction to a cascade-like
recovery that involves the excited state proposed some time ago by theory [3].

The experimental conclusions are supported by two different models. Once
a model using optical Bloch equations and microscopically calculated Coulomb
scattering rates and second a rate equation model are compared to the measure-
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ments with good agreement.

This work is structured in five chapters with the first one centering on the the-
oretical background, the explanation of the sample and the experimental imple-
mentation. It starts with an introduction of semiconductors and nanostructures
in general, goes on with the description of semiconductor optical amplifiers and
the heterodyne pump-probe setup and ends with providing the theoretical tools
used in the course of this thesis.

The second chapter introduces our way of implementing pulse trains. It starts
with the description of general pulse shapers, focuses at second on our first ap-
proach using a liquid crystal based phase mask to create pulse trains and ends
with the final solution based on a two-stage Michelson interferometer.

In the third chapter first results are presented showing the usability of quan-
tum dot amplifiers for high-speed applications. E.g. the complete gain recovery
of a double pulse is shown here.

The fourth chapter includes an advanced model based on optical Bloch equa-
tions including microscopically calculated Coulomb scattering rates. The inter-
pretation leads to a coupled dynamics of population and polarization.

A rate equation model is introduced in chapter five for understanding the
mostly population dependent section of the gain recovery. This model takes
propagation effects of the device into account.

I will conclude with a summary and outlook showing possible applications
how this work can help to create more powerful optical devices.



Chapter 1

Introduction to experimental and
theoretical fundamentals

All experiments performed in this work deal with a device that is a quantum
dot based semiconductor optical amplifier. This chapter explains why especially
InAs quantum dots in a waveguide were chosen to perform them. In addition
all basics necessary to understand the experimental methods, the setup and the
models will be described.

The first section will deal with semiconductors and the special terminology
used for describing them. After that the advantages of quantum dots in compar-
ison to other semiconductor nanostructures are clarified.

In the third section the device itself is focused, the Semiconductor Optical
Amplifier (SOA) and its characteristics. First the design will be discussed then
the optical characteristics.

The performed experiments are described in detail in the fourth section of this
chapter. Both the technical setup and the used methods will be explained. This
sections is completed with a first characterization of the sample.

At last I introduce the theory necessary for following the models used in
chapter 4 and 5 of this thesis.

1.1 Semiconductors

Talking about semiconductors a special class of material is addressed whose elec-
trical conductivity lies between the one of metal and insulator. But more inter-
esting for our purpose is that some semiconductors are well suited for using them
in optical telecommunication networks provided they are processed accordingly.
E.g. quantum dot lasers have proved to be appropriate to achieve a telecommu-
nication wavelength of 1.3 pum at room temperature (300 K) [4, [5]. They show
a small and temperature independent threshold current density [0, [7] and a high
amplification factor [§]. In this section the structure of semiconductors in general
and in special of InAs, the material used for our device, are explained.
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1.1.1 Crystal
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Figure 1.1: Left: Unit cell of the Bravais lattice of a zinc blende structure, e.g. of InAs.
Right: First Brillouin-zone of the reciprocal zinc blende lattice.

Our semiconductor has a crystalline zinc blende structure. ”Crystal” refers
to a material that has a periodic structure. The structure of InAs for instance
is shown in figure[l.I|(left). InAs has a diatomic base, i.e. its unit cell contains
two different atoms indium and arsenic. Zinc blende structure describes a con-
figuration in which there are two fcc (face centered cubic) lattices shifted against
each other by a quarter of the body diagonal (see fig.[1.1)). The lattice constant
of InAs, i.e. the edge length of its unit cell, is a = 0, 606nm.

Taking a closer look at the first Brillouin zone of the reciprocal lattice there
are points of special geometry, marked in ﬁg.(right). In the further course of
the consideration the I'-point, i.e. the center of the Brillouin zone, is of special
interest.
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1.1.2 Band model
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Figure 1.2: a) Band structure of InAs, calculated with the method of non-localized pseu-
dopotentials [9]. b) Parabolic approximation of the band structure in the environment of the
I'-point.

In a quantum mechanical approach to describe a crystal, ionic nuclei and
electrons are represented by wavefunctions, with Hamilton operators accounting
for the interaction between them. In the one-electron-approximation the ionic
bodies are set to their stationary values. The effect that the ions and the electrons
of the inner shell have over the external electrons is calculated assuming a periodic
lattice potential U(r), whose influence on a single electron is observed. The
Hamilton operator is:

o,
H=—V"+U(r 1.1
S U (L)
where mg is the mass of the free electrons.
The corresponding Schrédinger equation is:

Hppie(r) = Enk¥nk (1) (1.2)

where k is the wave vector and ¢, (r) is the wave function. The energy
eigenvalues with equal quantum number n that belong to ¢, are combined to so
called energy bands.

In fig.[.2) a) the energy bands of InAs are shown schematically. One differs
between valence- and conduction-bands. With increasing energy the valence-



6 Chapter 1. Introduction to experimental and theoretical fundamentals

N\

E /<y

N

]
o\

/

7T\

///

Figure 1.3: Band structure of a direct semiconductor (e.g. InAs) (left) in comparison with the
band structure of an indirect semiconductor (e.g. Si)(right).

bands are filled with electrons following the Pauli-principle. The highest valence-
band is the last completely filled and the lowest conduction-band is the first
emptied band.

The energetic distance between the highest valence- and the lowest conduction-
band is a characteristic feature of every semiconductor. It is called energy gap
Ey. It is important to distinguish between direct and indirect semiconductors.
InAs is a direct semiconductor. It differs from an indirect semiconductor (e.g.
silicon) in such a way, that the minimum of the highest valence-band has the
same value of the wave vector as the maximum of the lowest conduction-band.
For visualization see fig.[I.3]

For optical concerns only the region around the I'-point, the origin of the
wave vector, is important. Given a direct semiconductor another approximation
is applicable. In adjacencies of the I'-point the structure of the bands’ shape is
approximately parabolic. It follows that the energy eingenvalues are:

h*k?

Enk — Enko + % 5 (13)

n

with the effective electron mass defined by:

1 O?E,
(mn)* Rz Ok? '
The approximated band structure is shown in ﬁg. b). One can notice that
the valence-band is degenerated at the I'-point. The strong bent band is named

light hole (1h) band, the one with the smooth band curvature is called heavy hole
(hh) band. This nomenclature results from the definition in equation[l.3][L.4]

(1.4)
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because the band curvature equates the effective mass. In addition there exists a
split off (so) band.
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Figure 1.4: Lattice constants and energy gaps of some semiconductors with zinc blende struc-
ture at roomtemperature. Courtesy of www.flickr.com/photos/mitopensourceware

In fig.[T.4] the band gaps of some material combinations are shown in depen-
dence of their lattice constant. The two materials most important for this work
have, corresponding to their lattice constant, band gaps of Eynas) =~ 0.36 eV
and Eggaas) = 1.42 eV at roomtemperature.
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1.1.3 Excitons
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Figure 1.5: Schematics of the two-particle-picture (electron and hole) on the left and of the
one-particle picture (exciton) on the right. [I0]

For having a semiconductor emitting light one has to shift electrons from the
valence- to the conduction-band so that their subsequent recombination creates a
photon. There are two possible ways of describing the new situation. First there
is the two particle picture where the electron now situated in the conduction-band
is the one particle and the hole which it leaves in the valence band is considered as
a second particle. The charge of the hole is the negative equivalent of the electron
charge. This charge is essential to the implementation of the one particle picture,
which is the second possibility to describe the excitation. Because of the charges
and the Coulomb exchange interaction there is an attractive connection between
the electron and the hole. For the purpose of simplification the electron-hole pair
is considered as a quasiparticle which is named exciton. In fig.[1.5] the potentials
for both pictures are shown schematically.

To assure the validity of the approximation made in this work with the intro-
duction of the effective mass it has to be clarified that the excitons are considered
to be Wannier-excitons. That is, the electron-hole pair, which represents the ex-
citon, extends through the distance of some lattice constants. This definition
is contrary to the so called Frenkel-excitons, where electron and hole a located
within one lattice constant.
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1.2 Quantum dots

If one is working with semiconductors it is important to clarify in which dimension
they are existent.

Figure 1.6: Different semiconductor nanostructures: bulk-material, quantum-well, quantum-
wire and quantum-dot.

Semiconductors with quantum confinement in zero to three dimensions are
shown in fig.[I.6] The simplest form of a semiconductor is the bulk-semiconductor
which is limited in no spatial direction and is therefore three-dimensional. If
the extend is prevented in one dimension one gets a flat semiconductor-film,
namely a quantum well. Decreasing the structure to one dimension one gets a
semiconductor-line, a quantum-wire. The smallest existing nanostructure is the
one used in this work, the zero-dimensional quantum dot whose extend is limited
in all three dimensions.

Bulk semiconductor Quantum well Quantum wire Quantum dot

2D 1D 0D
3D P

Density of states

Energy
Figure 1.7: Density of states for three-, two-, one- and zero-dimensional systems.

The different nano-structures can be described through a so called confinement
potential. Because of the restriction of the dimensions of extension there are
energy edges between the single materials that build the potential. Thereby
the movement of the carriers is restricted. This potential has influence on the
density of states. In fig.[.7] the relation between the energy and the density of
states is shown. The density of states of an unrestricted bulk-semiconductor (3-
dimensional) goes with VE. A step-like density of states is given for a restriction
in one dimension (quantum well). The density of states of the here relevant
quantum dots has discrete energy-levels. Because of this characteristic, quantum
dots are often referred to as artificial atoms.
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1.2.1 Creation of quantum dots
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Figure 1.8: Schematic presentation of a MBE-chamber which can be used to produce self-
assembled quantum dots. Courtesy of M. Gerbracht

There are three major methods known to build up quantum dots: 1. Etching,
where the dots are literally cut out of quantum wells. 2. Colloidal quantum
dots, that are created in liquids by chemical processes. 3. Self-assembling, were
the dots grow by themselves because of a sufficient mixture of different materials
having suitable properties. The latter is how the quantum dots used in this work
are created. More concrete the dots where made by using molecular beam epitaxy
(MBE) [11], that is explained in the following. A schematic drawing of a MBE-
chamber is shown in fig.[I.8] At first the material for application is evaporated
in the effusion-chambers, which is in our case indium, arsenic and gallium. At
second the molecular-beam is aligned to the substrate (GaAs). The atoms of the
molecular beam settle on its surface. With the temperature of the substrate and
the timing of applying material one can finally control the growth. Usually some
layers of the substrate material are grown in advance of the nanostructures to
overcome substrate irregularities.

There are two kinds of phenomena corresponding to the self-organized growth
of layers, layer- and island-growth. Which one appears depends on the lattice
constant of the different materials that have been introduced in section 1.1. If
the lattice constant of the substrate and the applied material are similar smooth
layers are formed. Is there on the other hand a significant difference between the
lattice constants strain is created which can prevent the growth of closed layers
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Figure 1.9: a) Scheme of the growth of quantum dots. Top) Wetting layer with quantum dots.
Middle) Application of a well meant to shift the emission wavelength. Bottom) Application
of a spacer. b) AFM-picture of an ensemble of self-assembled quantum dots. Courtesy of A.
Wieck, Ruhr-Uni Bochum

and lead to the appearance of islands. In most cases, which is true also for the
current, first a closed coating of few mono-layers is formed which is called wetting
layer. Only when the strain is big enough islands grow on top of it, see ﬁg. a)
top). In ﬁg.b) an AFM-picture of an ensemble of such self-assembled quantum
dots can be seen. Furthermore, chosen the right environmental conditions, i. e.
giving the material not enough time to react to the stress, it is possible also to
grow highly stressed quantum-wells.

After creation of the quantum dots either a spacing layer is applied to the
sample that acts as a barrier (mostly the substrate material is used) or, like in
our case, a well is grown on top of the dots shifting the emission wavelength to
more desired ones followed by the spacer (as can be seen in fig.[1.9 a)). Such
a nanostructure is called quantum dots in a well (DWELL). After that another
layer of dots can be applied following the same methods. In our case 15 lay-
ers of quantum dots in a well where grown, the nominal density of the dots is
nqp 2210*cm ™2 and the thickness of the spacer layer is 33-35 nm.
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1.3 Quantum dot amplifiers

15 layers of
InGaAs QDs

@ p-GaAs

Figure 1.10: Sketch of a quantum-dot amplifier with fifteen layers of quantum dots. The
quantum-dot-layers are surrounded by GaAs-layers which are embedded in AlGaAs. The facet
of the waveguide are antireflex-coated to avoid multiple-reflection.

The formerly explained quantum dots were integrated into a device for studies.
This device (ﬁg. is a semiconductor optical amplifier. The quantum dot lay-
ers form a waveguide situated in the intrinsic region of a positive-intrinsic-negative
diode-structure. Whose cladding layers are made from AlGaAs. Furthermore the
device consists of a deeply edged ridge structure to provide optical confinement
and waveguiding. Two metal contacts are attached in a way that a current can
be applied for injecting carriers, one on top of a p-doped GaAs contact layer, the
other one is connected to the GaAs wafer as a bottom contact. Both contacts are
top contacts to allow easy access for wiring (see ﬁg. for clarification). The
length of the device is 1mm; the width of the ridge is 2um. The endfacets of the
waveguide are coated with an anti-reflex coating which avoids multiple-reflections
and therefore lasing allowing single pass experiments.

p-contact

Contact layer
Insulation

Cladding
Active zone

n-contact

Cladding

GaAs-Wafer

Figure 1.11: Left: Photograph of a topview of the sample. Only one of the visible waveguides
is contacted and used. Right: Sketch of a cut trough the device.

In fig.[I.11)a photograph of the sample topview and a schematic of a cut trough
the sample are shown. As the picture shows each sample contains more than one
waveguide but only one of them is contacted, either A/b (4 ym) or C/d (2 pm).
The contact pads directly connected to the waveguide provide the top contact,
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the disconnected ones with the letters are the bottom contact. The dark blue
material provides isolation.

100F (] -

I[mA]

1.0 1.2 1.4 1.6 1.8 2.0

U[V]

Figure 1.12: Current-voltage graph of the device. The diode structure of the sample is well
represented by its characteristics

A proof of the diode-structure of the device is given by taking a look on
its characteristics which is shown in fig.[1.12] The diode-like behavior is clearly
obvious.
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1.4 Experiment and sample characteristics

1.4.1 Experimental setup

+v,

Figure 1.13: Schematic drawing of the experimental setup.
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The setup used to analyze the device contains three main parts. The laser-
source, a pulse-train generation unit being able to create pulse trains of differ-
ent repetition rates and a heterodyne pump-probe setup whose specialty is the
sensitivity corresponding to amplitude and phase [12, 13]. This provides the
opportunity to study several properties of the semiconductor optical amplifiers.
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Fig.|1.13| shows the complete setup including the laser-source, the pulse train
creation and the heterodyne-setup itself.

Laser source and pulse train generation

We use a diode-pumped Nd:YVOy laser (cw) as a pump-laser in our laboratory.
It pumps a Titan:Sapphire-laser, that provides the necessary 150fs long laser
pulses with a repetition rate of 76 MHz. In order to reach a wavelength in the
telecommunication range (around 1.3 gum) we use an optic parametric oscillator
(OPO). A two-stage Michelson interferometer is used to create a pulse train (see
chapter 2 for details).

Heterodyne-setup

Following the beam path in ﬁg. the beam (for better understanding, I keep
referring to the pulse-train as a single beam) is split into two parts after entering
the setup and each of them passes through an acousto-optic modulator (AOM).
This creates a pump- (orange), a probe- (blue) and a reference-beam (black).

Acousto-optic modulator

(DAO M

-

e o
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Figure 1.14: Schematic drawing of an acousto-optic-modulator.

The purpose of the acousto-optic modulator is to shift the frequency of each
incoming beam. Following the sketch in fig.[1.14] the mode of operation will
be explained. In essence an acousto-optic modulator is build of an optically
permeable crystal and an attached piezo-crystal, which can be stimulated to
oscillate. The oscillations of the piezo create acoustic waves in the crystal, which
can be understood as a grating, that diffracts the incoming beams. A beam with
the frequency w, hits the crystal under the angle © that leads to a beam in the
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zero order direction with the same frequency and in addition a deflected beam is
created in the direction k, = k. + kg with the frequency wy = we + waowm -

The reference beam and another beam going to an autocorrelator for diag-
nostic purpose have the same frequency like the beam that enters the setup.
The pump-beam is frequency-shifted by AOM2 by ws=79MHz the probe-beam
by AOM1 by w;=80MHz. Pump and probe beam are reunited and form the
collinear beam focused by a lens onto the device. An aperture placed after the
device makes sure, that the signal contains only desired modes. For the balance-
detection the signal coming from the device and the reference-beam are united
and split in two equal parts.

Balanced detection

Considering two beams that interfere in a beam splitter, while one beam (a) is
phase shifted against the other beam (b):

E,(t) ~ exp{—iw,t} (1.5)

Ey(t) ~ exp{—iwpt + ¢} (1.6)

The easiest way of describing the process of transmission in the beam-splitter
is the matrix-formalism [14] [15]:

(20)-["" S (BY) e

T is the transmission coefficient of the beam-splitter. The beams leaving the
beam-splitter (beam 1 and beam 2) are in case of a 50:50 ratio:

Bi(t) = = Balt) = S (18)
Calculating now the intensity of these beams I; = | E;|, one gets:
L=1-T"L+TL++T(1-T)P (1.9)
L=Q1-T"L1+TL—+\T(1-T)P (1.10)
where both fields are only present in P:
P~ E,(t)E;(t) ~ exp{(wa — wp)t — ¢} (1.11)

With a lock-in amplifier it is possible to detect the amplitude and the phase
because of the beating w, — wy, &~ 1MHz. If one of the electric fields is constant
(reference beam) changes in amplitude and phase of the other one (either pump
or probe beam) are detectable. This is the case for our setup.
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The two beam-parts of the balanced detection are detected by using two
InGaAs-PIN-photo diodes. The detectors are switched contrariwise. That fil-
ters constant parts from the signal. Such an arrangement with one beam-splitter
and two detectors is named balanced two-channel-detection.

One of the advantages of the setup, if not the advantage at all, is the sensitivity
of the setup corresponding to amplitude and phase of the signal.

In addition to the balanced detection there exists the possibility to direct
the signal of the device instead of uniting it with the reference-beam on a single
germanium-detector or the signal can be directed to a spectrometer.
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1.4.2 Measurement methods
Measurement of emission spectra

To get the spectra of the amplified spontaneous emission injection currents of
different strengths are applied to the device. For this type of measurement no
laser-beam is required. The signal emitted by the device is guided to a spec-
trometer. A nitrogen-cooled germanium-detector is attached to the spectrometer
which collects the signal. A corresponding graph is shown in fig.[1.17]

Single pulse transmission

Only one of the signal-beams (pump- or probe-) is used for this kind of mea-
surements. The light which is transmitted through the device is collected by the
germanium detector, the balanced-detection is not involved here. The variable
parameter is the intensity of the incoming beam that is manipulated with the
corresponding acousto-optic modulator. Fig.[I.20] shows a graph measured using
this method.

Differential transmission spectroscopy

I start with the explanation of a slightly differently constructed setup, which
makes it easier to illustrate the principle of differential transmission spectroscopy.
This setup is shown in fig.[1.15]

lens Sample

/

< 2k -k,

Figure 1.15: Sketch of an experiment of differential transmission spectroscopy with direction
selection.

The beam coming from the laser is split into two parts as already explained.
One of the split beams hits the sample directly. The other one is delayed by
a delay stage about a time span 7. Both of the beams are directed towards
the sample and focused onto it by a lens. The beams are hitting the sample
under two directions ky and ka. One of the beams (probe) is used to detect
the changes of the optical properties of the sample induced by the other beam
(pump). Therefore the power of the probe beam is chosen to be weak enough to
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not disturb the system by itself. In the geometry shown in fig.[I.15| the beams are
distinguished by their direction. In addition to the beams at k; and ks additional
dispersed beams can be detected at 2k; — ko and 2ks — ky. They can be used
to study the polarization evolution of the sample. In our case the transmitted
electric field of the probe-pulse is the thing of interest and is therefore detected.
It has the form

E(r,w) = Egexp{i[n(w)kr — wt] }exp{—r(w)kr} (1.12)

where r is the position vector, Eq the amplitude of the field, w the frequency, k
the wave vector, ¢ the vacuum speed of light, n(w) the refractive index and (w)
the extinction coefficient. If eq.[I.12]is considered as a decay of a intensity prop-
agating through a material I(r) = I(0)exp{—ar} the variables used in eq.[l.12]
and the absorption coefficient « are linked by the relation a(w) = 22k(w). This
absorption coefficient is directly connected to the situation inside of the sample,
more precisely with the carrier density of the electrons and holes. As will be
shown later the pump-pulse creates excited states that affect the probe-pulse.
If one compares the transmitted signal with a previous pump-pulse (7') with
the transmitted signal without a previous pump-pulse (7j) one gets information
about the absorption coefficient and therefore about x. More precise is

T —"1Tp

dAa = (1.13)
0
where d is the length of the sample, in our case 1 mm.
N Eres ~ €Xp(iot)
L\
) Det. 1
N N Probe ST |
VAN [\ 1
——— A
E iy €XP(i(0g0,) 1) .
' N\ dairr = 1i- 1o
E e €XP(0,0,) 1 () ,
Y | \'I'/ Lock-Ir

Det. 2 |—{ > -

Figure 1.16: Sketch of an experiment with differential transmission-spectroscopy with fre-
quency selection.

Hence our device is a single-mode-waveguide where pump- and probe-beam are
traveling through the same mode there is no possibility to use direction selection.
To approach this problem the heterodyne setup is used. The clue in this is that
the beams are now distinguished by their frequency instead of their direction. In
fig.[I.16] the essential parts of the heterodyne-setup are shown once again to make
the explanation easier.
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As already mentioned pump- and probe-beam experience an acousto-optic
modulator controlled frequency-shift (w; and wy) corresponding to entrance- and
reference-beam. Exactly like for direction selection the probe-beam is delayed
compared to the pump-beam. The actual selection takes place after the union of
the three beams inside the beam-splitter (C3)and the re-splitting into two signals
send to the detectors. The form of the two signals is already known from eqs.|1.9

and Their shared mixed term is, (see in addition eq.|1.11])

P~ Eprope(t) Ry (t) ~ exp{i(wat — @)} . (1.14)

To give a complete overview about the possible experiments that can be per-
formed using this setup I have to ad four-wave-mixing which was done some time
ago [16]. Since we did not keep on with this I abstain from explaining it.

1.4.3 Sample characteristics

First characteristic features of the device such as its energetic structure and dif-
ferential gain are shown in this subsection.

Amplified spontaneous emission

Spectra of the room temperature amplified spontaneous emission (ASE) are
shown in fig.[I.17] for different injection currents. The emission wavelength for
the quantum dot ground state lays at 1,29 pm. The first exited states emits at
1,22 pm. Therefore the energetic gap between the quantum dot ground state
and the first excited state is 70 meV. For low injection currents it can be clearly
seen, that the quantum dot ground state is the only populated state. We call
this case low-density-case because the quantum dots are filled with few excitons
only. With increasing current the first excited state is populated too and exceeds
the ground state for injection currents higher than 75 mA. This is called the
high-density-case in which nearly all quantum dots are filled with some excitons.
If it was possible to increase the current further without destroying the device it
is likely that the excited state would show the same saturation behavior as the
ground state.

In addition to the two cases of high and low density there exists the in-between-
case of transparency. In transparency the quantum dots are filled with one exciton
in average leading to a balanced situation between absorption and gain. In the
spectra of the amplified spontaneous emission one can not notice this case, but
it will become important and be shown in a later part of this work.

To identify the energy of the two states the spectra were fitted with a dou-
ble Gaussian function for each injection current. In addition an estimation of
the population of the single states was done by calculating the area below the
Gaussian fits. The scale was chosen to have two as maximum of the ground-state
population corresponding to the Pauli principle. The four of the excited state
maximum turns out naturally, as seen in the inset of fig.[I.17]
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Figure 1.17: Spectra of the amplified spontaneous emission at room temperature for different
injection currents and, in the inset, the corresponding populations of the two excitonic quantum
dot states.

Temperature determination with interferometry

As mentioned earlier the device was antireflex coated in order to prevent reflec-
tions. Since this method is not perfect a small amount of light is still reflected
and causes a ripple of the amplified spontaneous emission that becomes visible if
one uses a high enough spectral resolution. Some spectra with such a resolution
are shown on the left side of fig.[1.1§

If one takes smaller steps in current and observes only a small part of the
spectra one can clearly see, that the ripple experiences a phase shift with changing
injection current, see fig.[I.18 right.

On the left side of fig.[1.19] this phase shift is plotted in dependence of the
injection current. The phase of the device is connected with its refractive index

as follows
A

An = 47TLA(I)’

We did measurements of the current-dependent phase shift at different regions

of the ASE-spectrum to determine a dependence of the wavelength which we did
not find. So we attribute the phase shift to the refractive index only and its
dependence of the temperature. To calibrate our thermometric measurement we
kept the injection current fixed and changed the temperature externally. That

(1.15)
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Figure 1.18: Left: High resolution ASE for four different injection currents with obvious gain
ripple. Right: Phase shift of the ASE for small injection current steps; curves are displaced for
enhanced visibility.
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Figure 1.19: Injection current induced phase- (left) and temperature-shift (right).

yields a temperature-dependence of the refractive index of

0
a—; = 1.4x1073K !, (1.16)

The literature value for pure GaAs at a wavelength of 1um is 1.5x1072K~!. The
difference results from the waveguide-structure, the impurity of indium and tem-
perature induced changes of the device length. Finally the change of temperature
in the device induced by the injection current is shown in ﬁg. right), the tem-
perature changes by almost 80 K for a change in injection current from zero to
150 mA.
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Differential gain characteristics

In fig.[1.20] the ratio of the incoupled and transmitted energy is shown in depen-
dence of the incoupled energy. This ratio is called gain G. This data was taken for
different injection currents. Just as for the spectra of the amplified spontaneous
emission one can distinguish between a high- and a low-density case.

LA L A A | LJ LA AL A A | L T ey L TR reTeey

4| e 20 MA
. e 40 MA
2F e 100 MA

Gain G (dB)
R R R R R Y

———— el
1
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Incoupled intensity ¢. (pJ/pulse)

Figure 1.20: Gain in dependence of the incoupled energy for different injection currents.

At first we want to examine the low-density case: Most of the quantum dots
are empty, i.e. the incoming laser-pulse is absorbed creating excitons. With
increasing intensity of the incoming pulse stimulated transitions become likely.
This effect is called bleaching and leads to a saturation of the gain. If the incoming
power increase further (above 1 pJ) a process called two-photon absorption where
carriers can escape into the surrounding bulk-material by the absorption of two
photons, is possible.

The high-density-case differs from the low-density one mostly for low ener-
gies. Because of the injected current most of the quantum dots are filled with
two excitons. If more energy is coupled in, there will not be anymore excitons
created because of their fermionic character. The existing excitons will radia-
tively recombine instead. This leads to an increase of photons in the pulse which
means that it is amplified. With increasing intensity the effects of bleaching and
two-photon-absorption take place like in the case of low density. Independent of
the injected current the signal will disappear at high input powers.

At a gain factor of 1 the case of transparency is present, i.e. that each quantum
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dot in average is filled with one exciton. The incoming beam can on one hand
create another exciton and lose therefore energy or on the other hand it can
lead an already existing exciton to stimulated recombination and therefore gain
energy. Because none of this processes is more likely the energy of the beam stays
equal in average. For the device studied in this work the transparency current of
the ground state was determined to be at 7.5 mA.

To calibrate the axes some results of the differential transmission, discussed
in chapter 3, were used. The transparency current was found there. The axes
were chosen in a way that for low incoming energies and at transparency the gain
G=1.

The mathematical relation between the gain G and the modal gain factor g,0q
is the following.

Eout _ _9modL
o e : (1.17)
where L is the length of the device.

The modal gain factor is known from the differential transmission spectroscopy
measurements. However equation[l.17] is only true inside of the device, for the
calibration of the axes reflection losses at lenses and the entrance of the waveguide
have to be taken into account.
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1.5 Theoretical description of gain dynamics and Coulomb
scattering processes

This section describes briefly the formalism of the density matrix theory, a pow-
erful method allowing the microscopic calculation of expectation values of any
observable. To facilitate this theoretical basis the following is a short review of
the PhD-thesis of Dr. Ermin Mali¢ (chapter 2) whose simulations are discussed
in chapter 4.

At first the Hamilton operator of the system is determined. It allows a
straight-forward inclusion of many-body interactions, such as electron-electron
or electron-phonon coupling, as well as the description of nonlinear effects.[17].
From there the semiconductor Bloch equations are derived. Finally, the absorp-
tion coefficient is calculated and used to determine the gain dynamics.

Since the measurement of a complete set of commuting observables necessary
for an exact description of a quantum confined solid state structure can not be
performed the state vector of that system stays unknown. Instead a statistical
mixture of possible states and their probability can be described by the density
operator p

p= ZPZN’J(‘I’@\ with Zpi =1, (1.18)

which is a sum of projectors onto the possible state vectors |V;), each weighted
by a classical probability p; with 0 < p; < 1 [18] 19]. The state vector |¥(¢)) of
a system is given in the Schrédinger picture by |W(t)) = >, ¢i(t)|u;), where the
vectors |u;) form an orthonormal basis of the state space. The evolution of the
state vector is described by the Schrodinger equation

d
i W () = H (1)) (1.19)

with the Hamilton operator H. The expectation value of an observable A is
defined as (A)(t) = (V(¢)[A[V(t)) = >, ; ci (t)e;(¢)(uil Aluy). 1t is determined by
the coefficients ¢;(t). Under certain circumstances it can be expressed as the trace
over the density operator

(A) (@) = Te[p(t) Al (1.20)
since (A)(t) = (W(OIA[W(1)) = D, ;(wilp(t)[ug) (uil Alug) = 52 (wil p(t) A i)

(for further details see [20] sec.2.1) The time evolution of the density operator is
given by the Von Neumann equation

i p(t) = [H, p(t)]. (1.21)

A system consisting just of one valence- and one conduction-band (see sec.|1.1.2))
provides already good information about the optical properties of many struc-
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tures. In such a case, the state vector is given by |U(t)) = c1(t)|u1) + calt)|u2)
and the density operator can be written as a 2 X 2 matrix

. ( enlt) ci(t)es(t) ) _ ( pn(t) pis(t) )  am

c(t)ey(t) cs(t)ea(t) )\ par(t) paal(t)

The positive real number p;(t) = |c;(t)|* expresses the probability for finding
the system in the state |u;). It describes the population dynamics of the states
i. The non-diagonal elements p12(t) = p3,(t) = ¢;(t)cy(t) express the interference
effects between the states |u;) and |ug) which can only appear when |U) is a
coherent linear superposition of these states. They correspond to the probability
amplitude for an optical transition, and are often called coherence or microscopic
polarization.

The second quantization formalism used in this calculations bases on creation
a; and annihilation a, operators with the compound index I = (), k), the band
index A and with the index k representing all quantum numbers of the system.
The symmetry conditions are expressed in fundamental commutation relations
between these operators

| 2

oy apls =y aff Faja =, (1.23)

lay s ay = =la], ap] = 0. (1.24)

The fermion’s operators anti-commute ([ ... |;), while the boson’s operators
commute ([ ... ]—). All many-particle states can now be traced back to a vacuum

state | 0). For example, an N-particle state can be expressed by creation operators
as follows [21]

|y - iy )T

1

:WQZCLZ aZv|0> .

The notation of the population probability is changed correspondingly to pp(t) =
(a},a,,) and the microscopic polarization is simplified to pi(t) = (af,ay ).
These i)arameters allow the calculation of expectation values of any obsérvable,
e.g. the macroscopic polarization P(t) or the macroscopic current density j(t).
These observables are necessary to determine the absorption coefficient a(w) fun-
damental for the description of non-linear pump-probe experiments. To complete
the formalism the observables expressed by operators need to be transformed into
the second quantization notation, too. All physically relevant N-particle observ-
ables Ay can be described by a sum of one-particle A% and two-particle operators

Ag’j ) yielding[21]

N i#]j
1 ij
Av = DA+ 5> A =Y (alAiler) of o
i=1 ,J

LU

1 1.2
+ 5 0 (00 0n |45 0w, o) o, af, ay ay,

LU
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The starting point for deriving the temporal evolution of the microscopic
polarization pg(t) and the population probabilities in the conduction pg(f) and
the valence band p}.(t) is the Hamilton operator for a many-particle system within
the formalism of the second quantization

H= HO,C + Hc—f + Hc—c

_ lila + +
E gaa; + E diy - E(t)a) al,+2 E Vit g agap,ay, -

L li,la,l3,ly

(1.25)

The first two terms Hy.. and H.¢ describe the non-interacting carrier system
in the presence of the external electromagnetic field. H.. is the part of unper-
turbed free carriers and H.¢ is the carrier-field interaction part. The last term of
the Hamiltonian H,.. is given by the carrier-carrier interaction. (For a detailed
discussion of the single contributions of the Hamiltonian see [20] section 2.2). The
time evolution of an observable O can be obtained from the Heisenberg equation
of motion

d A 0 -
zhdtO( ) =1[0(t), H]- + 815

If O(t) has no explicit time dependence, the second contribution vanishes. In
the Heisenberg picture the observables are considered to contain the entire time
dependence. The equation of motion for the corresponding expectation value is
called the Ehrenfest-theorem

—O(t). (1.26)

i (0(0) = ([O(1), H].) (1.27)

Applying the Hamilton operator from (1.25)), utilizing (1.27)), and the com-
mutation relations from eqs. (|1.23[)-(|1.24]), the equations of motlon for the micro-
scopic polarization pg(t) and the population probabilities pj.(t) (j = ¢,v) can be
derived

Pr(t) = —iwkpk(t) — Q1) [pr(t) — pi(t)] (1.28)

- Z el R Wpu(t) + Ve, K)pao(0) + Vi O K e ()] = )

§(8) = 2Im [Q*(t)pk(t)]Jr;]m p(t) S Vi (ke K pae ()| — = () + 517(1.29)

TU

These three differential equations are called semiconductor Bloch equations.[22]
The color illustrates, which part of Bloch equations origins in which section of the
Hamilton operator (see eq.[1.25). The free-particle contributions are colored blue.
The first term in ([1.28)) describes the free dynamics of the carriers. It leads to an
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oscillation of the microscopic polarization with the frequency wy = wWeg — Wyk COI-
responding to the band gap. The second part describes the carrier-field coupling
which depends on the difference in population probabilities for the two involved
states. Its strength is given by the Rabi frequency Q(t) = tdue - E(t).

The carrier-carrier interactions (colored red) account for the fact that the set
of equations obtained from the Heisenberg equation is not closed. The carrier-
carrier interactions couple the dynamics of single-particle elements of the den-
sity matrix to higher-order correlation terms.In this calculations, the correlation
expansion|23] is used to obtain the presented Bloch equations. The idea of this
approximation is that higher-order terms involving an increasing number of car-
riers become less important.[24, [I7] The four-operator term is factorized into
products of two-operator terms.

This factorization leads to a closed set of equations of motion for the single-
particle elements of the density matrix. If the correlation term is neglected,
the truncation is called Hartree-Fock factorization or mean-field approximation.
Then, the carrier-carrier interaction leads to: i) V,.,(k, k’) - renormalization of
the single-particle energy, ii) V.,.(k, k') - formation of excitons and iii) Vg, (k, k')
- depolarization part describing processes with no momentum transfer.

Since the correlation of carriers plays an important role for our investigations
the Bloch equations (egs. —) have been derived beyond the Hartree-
Fock approximation going up to the second order in the carrier-carrier and carrier-
phonon interaction. The evaluation of the correlation terms, i.e. the consideration
of two-particle correlations (also known as the second Born approximation), de-
scribes the scattering contributions leading to the coherence decay time 7T, and
the population scattering time 7T7.

To minimize the necessary effort on time and calculation power several ap-
proximations were applied that will be discussed briefly in the following.

Within the rotating wave approximation (RWA) a rapidly oscillating part of
the considered function is neglected because of resonance effects. The microscopic
polarization pg(t) as well as the Rabi frequency €(t) can be expressed as a product
of a fast oscillating part and a slowly varying envelope function. If inserted into
the Bloch equation two exponents become interesting: for interactions
near resonance, the exponential function with the relatively small argument (w; —
w) contributes considerably more than the one with (w; + w). The second one
oscillates fast and its contribution vanishes when integrated over a time interval
which is long compared to the time of a single oscillation,[25] 26]. Therefore
the corresponding term is neglected leading to the modified semiconductor Bloch
equation

Dr(t) = —i(wr, — w)pr(t) — Q) [p5(1) — k(1) - (1.30)

This simplified equation is numerically less demanding.

The Markov approximation helps with solving the hierarchy problem men-
tioned earlier in this section. Key to this approximation is that the memory
effects introduced by quantum mechanical smearing of the wave functions are ne-
glected. This approximation is applicable for many-particle systems and systems
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with short scattering time scales.

Applying the Markov approximation, yields the Boltzmann equation for the
occupation probability of an arbitrary state. (see

The random phase approximation uses the assumption that all non-diagonal
elements (a; ,a,,/) and {(a},a, ,,) are not necessary to describe the investigated
system. This is due to the 7assf1mption that the phase factors of these quantities
are not correlated and therefore cancel each other out in a summation. This
approximation leaves the microscopic polarization pg(t) = (aikac’k> and the oc-
cupation probabilities pj(t) = (a;,a, ) with i = ¢,v as the dominant k diagonal
quantities for the description of the investigated system.

As will be seen later (see chapter 4) for having the possibility to compare
theoretical modeled data with experimentally achieved data the absorption coef-
ficient and the optical susceptibility are of interest. They can be achieved using
the complex description of the wave vector

2
k(w) = K +ik" = 2 (¢ +ic") (1.31)

c2

The Beer-Lambert law for the intensity /(z,w) of an electromagnetic wave is

I(z,w) = |E(2)|? = e '@z = g=alw)z (1.32)

with the absorption coefficient a(w) = 2k”(w). It determines the traveling
distance of the light through a material.

The real part of the wave vector gives the refractive index n(w) with n(w) =
<K' (w). It determines the change of the speed of light in a medium ¢, (w) = TR
For most structures the real part of the dielectric function e(w) is larger than
the imaginary part resulting in the widely used approximation n(w) =~ \/e(w).
Often, the refractive index has only a weak dependence on frequency. Therefore,

the absorption coefficient can be simplified to
a(w) x wime(w) = wlm x(w) (1.33)
with the dielectric function e(w) = x(w) + 1.
The optical susceptibility y(w) can be calculated with the Fourier transform
of the macroscopic polarization P(w) and can be written as[27]
P(w)
= —. 1.34
W) = 2 (1.34)
The classical macroscopic polarization P(r,t) = e> . rdé(r — r’) is defined

as dipole density. In second quantization it can be written as a sum over the
microscopic polarization pg(t) = (a,a.,) and the dipole matrix element d,.(k)

P(t) = Z dye(k)pr(t) + c.c.. (1.35)

The dynamics of the microscopic polarization can be calculated with the Bloch
equations [egs. ((1.28])-(1.29)]. The optical matrix element d,.(k) is often adjusted
to experimental data.
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Chapter 2

Concepts and realization of GHz
optical pulse-train generation

An essential and advanced part of the experiments is the generation of the in-
coming optical pulse train in the range of 10 GHz to 1 THz. In this chapter
different ideas how to generate pulse trains will be explained. At first the general
idea of pulse-shaping is introduced. It follows a pulse shaper based on a liquid
crystal display (LCD) in an improved 4f-geometry, which was used in our first
attempt to generate pulse trains. At last the current used solution, a two-stage
Michelson interferometer, will be explained. The advantages and disadvantages
of the methods are discussed briefly at the end of the chapter.

2.1 Theoretical concepts related with pulse shaping

This section gives the theoretical background necessary for understanding the
pulse shaping process. Its major element is the Fourier transformation. In addi-
tion the diffraction at a grating is very important for its functionality. Because
interference effects played a roll in our ideas during the development they will be
explained too.

2.1.1 Fourier transformation

It is well known [28] that a wave can be described as a linear combination of
harmonic oscillations

CRE |
f(z,t) = W/—oo /_OO F(k,w)exp{—i(kx + wt) }dkdw, (2.1)
with o e
Fhw) = /_ /_ F(@, Hexplilks + wt) s (2.2)

being their Fourier transformation.
The beam entering the pulse shaper is supposed to be a linear combination
of plane waves. At first we define the beam as dependent on space and time
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f(z,t). For later discussions keep in mind, that every lens induces a spatial
Fourier transformation to the incoming beam.[28]

2.1.2 Diffraction at a grating

Each grating corresponds to a frequency Fourier transformation, diffracting the
incoming beam depending on the included frequencies according to the grating
equation

d(sinOgys — SiNOy,) = NA (2.3)

with d being the distance between two lines of the grating, A the wavelength
of the light, ©;, the incoming, ©,, the outgoing angle and n the order of the
diffracted beam.

Diffraction can be depicted using the Huygens’ principle. A wavefront hits
an obstacle, a grating in our case, then each point of the wave is suggested to
be the starting point of an elementary wave and the wave after the obstacle is
described as the envelope of these elementary waves. The single waves gain a
phase difference depending on the length of their specific path each wave travels
between obstacle and the observation point. Corresponding to the interference
principal explained in the following section there will be differences in the beams
for different directions, beams with increased intensity and beams with up to zero
intensity. Counting beams of high intensity one defines orders of beams, starting
with zero.

2.1.3 Interference

The principle of superposition is valid for light, i.e. the electrical field strength
at a given point is a sum of all corresponding field strengths. Two waves

E1 (I't) = EOlcos(rkl —wt + (51) (24)
and

Ez(rt) = E02COS(I'k2 —wt + 52) (25)
meet at a certain point, then the intensity of the field in that point is given by

1
I~ |E|2 = 5 [E(z)l + E32E01E02C05(rk1 -+ 51 — I'k2 — (52)] (26)

with the argument of the cosine being the difference in phase between the beam
parts. Summarizing slightly, E3 /2 = I; and correspondingly Fp, as well as
0 =rky; — rky + 61 — 02, one obtains

I~ 1+ Iy + 2/ 11 I5c0s6 . (2.7)

The last term in eq.[2.7]is called interference term and it is obvious that the overall
intensity can reach all values between 0 and I; + I5 in dependence of the phase
difference of the beam parts due to this term. Destructive interference, meaning
complete cancellation takes place at a phase difference of § = +m, £37, +5m7, ...,
constructive interference, i.e. I = I} + Iy + 24/11 15, instead at a phase difference
of § = 0,27, +4m, ...



2.2. Pulse shaper development 33

2.2 Pulse shaper development

Starting from the simple pulse shaper introduced to the beam path directly af-
ter the OPO to compensate a possible chirp, over the classical 4f-geometry used
for most pulse shapers and a modified version with a phase mask the develop-
ment of the final solution to generate pulse trains with a two-stage Michelson
interferometer will be explained.

2.2.1 Pulse shaper for chirp compensation

Directly after the laser pulse leaves the OPO it is aligned through a simple pulse
shaper to compensate a possible chirp.

L
i aperture
grating: L+ | lense | \ 8
“ 3
___________________________________________________________________________________________________________________ principal
m % axis
AV 3
Lo f, .S
of,

Figure 2.1: Schematic drawing of a simple pulse shaper.

A schematic of that pulse shaper is shown in fig.[2.1] It consists of one grating
to separate the different parts of the spectrum, a lens for focusing the beam and
a concave mirror.

The beam hits the grating slightly below the principal axis and is split in
its spectral constituents as explained in the previous section. Using a lens the
spectral parts are focused on a concave mirror and reflected back through the lens
that transforms the beam back to being parallel. Next the beam hits the grating
again this time slightly above the principal axis. There the spectral constituents
are merged respectively the beam is transformed back.

The important parameter in the concern of compensating a chirp is the dis-
tance Ly between the center of the grating and the lens. To have the image point
in the center of the grating Ly has to match the following condition.

Lo=f1— f—12 (2.8)

2/
Fig.[2.2] shows an exaggerated version of a setup where is L < Lo. By shifting the
grating relative to the lens the image point walks out of the center of the mirror.
In the given example it moves to the left. For better visualization a longwave
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grating

principal

axis

Figure 2.2: Schematic of the compensation of a negative chirp.

(red) and a shortwave (blue) part of the beam is plotted. It is obvious that the
shortwave bundle has to travel a longer way than the longwave one, which would
lead to a compensation of a possible negative chirp.

Using an adequate aperture in front of the concave mirror one can already
shape the spectrum of the beam with such a pulse shaper by cutting its edges.
Indeed this method is far away from being precise and does not allow for a
controlled shaping. Therefore this method of pulse shaping is of no further interest
here.

But basically all parts necessary in more advanced pulse shapers are already
present in this simple one. One of the parts not yet explained is the liquid crystal
display. This device, also referred to as mask, is available in two versions either
as a phase- or as an amplitude-mask. The display we used is a phase mask. Its
structure is shown in fig.[2.4]

2.2.2 Phase mask

The active region contains the liquid crystal. The orientation of the molecules
of the liquid crystal can be modified by applying an electric field (see ﬁg..
These manipulations control the effect the display has to an electro-magnetic
wave traveling through it. Applying a field to the liquid crystal induces dipoles
in the molecules. Their force moves the molecules from their stationary position
and aligns them with the applied field. The refractive index of the liquid crystal
depends on the orientation of its molecules. Therefore the optical path lengths
of two beams hitting two differently aligned areas of the mask are different which
leads to a phase shift between them. Thereby their delay depends linearly on the
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Figure 2.3: Sketch of a liquid crystal display. With the influence of applied voltage.

difference of the refractive indices.
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Figure 2.4: Sketch of a phase mask. [29]

The liquid crystal of our display is 9 pm thick. The length of the display is
64 mm, its hight 10 mm. The liquid crystal is placed between two glass plates
on whose inner surface 640 transparent electrodes are attached. Each electrode
has a width of 97 pum and there is a gap between them of 3 ym. l.e. we have
640 separately addressable pixels. The measures of the display are also shown in

fig.2.4)



36 Chapter 2. Concepts and realization of GHz optical pulse-train generation

Gitter 1 Linse X Linse Gitter 2

2/

Tok

blau

| Maske

Figure 2.5: Sketch of a pulse shaper with phase mask and lenses.

2.2.3 A4f-setup

The structure of the setup schematically shown in fig.[2.5]is known as 4f-geometry
and is sufficient for describing the operating mode of our LCD shaper even if we
modified it. The beam coming from the laser hits the grating and splits up
spectrally. Then it is imaged on the mask similar to how it happens in the simple
pulse shaper. After the separated spectral parts of the beam were manipulated
by the mask, they are merged again by the mirror-symmetric setup. In case the
mask is an amplitude mask the transparency of single pixels can be controlled
and the intensity of the individual frequencies can be reduced. Is it instead a
phase mask only the phases of the different frequencies can be shifted against
each other.

Parabolspiegeal 2

Parabolsmeagel 1

L
>

Planspiegel 1 Flanspegel 2

Maske
Chtter 1 (itter 2

Figure 2.6: Sketch of a pulse shaper with phase mask and mirrors.

The weak spot of the 4f-geometry is the use of the lenses which are, corre-
sponding to their spherical shape and also due to their complex production, a
serious source for errors, not to mention chromatic aberration. We therefore re-
placed the lenses by parabolic mirrors. That rids us of the problems provided
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that we keep in mind that imaging with a parabolic mirror is only more precise
than it would be with a lens if the angle between incoming and outgoing beam
is small. Since the mirrors have to be placed at the side of the mask only angles
of at minimum 12° can be achieved being definitively too big. Therefore a re-
constructed version of the setup, as schematically shown in fig.[2.6] is used. Here
each lens is replaced by a combination of a parabolic and a plane mirror. This
allows on one hand for beams close to the principal axis and is on the other hand
a way of saving space.

2.2.4 Amplitude modulation with a phase mask

An important point is furthermore that even if we are using a phase mask we are
still capable of doing amplitude modulation. With the previous considerations of
this chapter the concept of this idea can now be explained.

The first idea for pulse shaping was to group the pixels in adjacent pairs, each
assigned to one frequency. This idea bases on interference:

If the wave hitting the mask is known,

Ein = Eol-exp{i@} (29)
and in addition the wave desired in the end,
Eout = Eooexp{igo} , (2.10)

one can define a transfer function out of it:

Ein : Etrans — Liout (211)

Eyo . .
Etrans = E—ZGXP{l(% - ¢1)} = EOteXp{l¢t} (212)

Unless only the phase lag induced by the display can be controlled, eq.[2.12)] is
transformed to

Etrans == EOteXp{¢t} = eXp{igby} (213)

where B
. Oo

by = ¢ — Pi £ arccos (5 EOi) (2.14)
because of

1 EOo .

- = Reexp{ig*} = cos(¢x), (2.15)

2 Ey;

Observing two neighboring pixels, with + and - chosen contrary

Bl = Texp{igi} - exp {i ((aso — ) + arccos <1 EO)) } (2.16)
2 Fy

Ejy = Texp{igi} - exp {i <(¢o — ¢;) — arccos (% ];°°>> } (2.17)

0i
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and then letting the transmitted functions interfere, one gets

Eéut +E(€1€t = Epiexp{i¢; +1ido —igi}
1 Ego ) 1 Eoo
(exp {iarccos (5 E(())i> } + exp {1arccos <§ E((]n) }) (2.18)

= Egexp{ido} <2 COS (arccos <% EO()))) = Egoexp{ioo} . (2.19)
0i

That means that with a known entrance function a free selectable exit function
can be generated using a transfer function defined by these two functions.

The transfer function was planned to be calculated by a self made program
that should regulate the voltage to be applied to each pixel for realizing the
function.

As it turned out, there is a much more simple method for amplitude modu-
lation with a phase mask. Applying a continuous function to the pixels can do
the trick as well. If one, for instance, puts a sinus-shaped function on the mask
the back transformation of the manipulated beam gives a double-pulse. The pre-
conditions thereby are ideal conditions such as a continuous phase modulation.
Since in reality the phase function will be stepwise due to the limited pixel size a
control program could compensate these errors.

Challenges and drawbacks of the setup based on a phase mask

As an example two possible sources for errors are mentioned here.

- The gratings are positioned with their center in the focus of the parabolic
mirror on each side of the mask. Unfortunately the beam hitting the mirror has
a certain width, i.e. a certain frequency can not be focused on a single pixel but
instead to a group a several pixels. Therefore the phase shift of a single pixel
is applied to several frequencies respectively spatially separated parts of a single
frequency experience different phase shifts. The phase mask is quasi a grating on
its own, with each pixel having a defined phase and leaving parts of the spectrum
unmodified in between the pixels. Therefore diffraction effects are expected.

- It is not likely that the pulse leaving the pulse shaper after applying just a
theoretically calculated function to the mask will show the desired shape. For this
reason the function should be controlled by a computer and be modified by a self
learning algorithm until the outgoing beam fits the given shape with a certain
accuracy [30]. For this purpose the beam leaving the pulse shaper is directed
towards an autocorrelator with an oscilloscope attached. The information about
the pulse shape is sent back to the computer that recalculates the transfer function
and modifies the voltage applied to the mask correspondingly.
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2.3 Practical realization of a pulse shaper using a phase
mask

In this section the individual parts of the setup are described. I will show the
status of the hard- and software and conclude with some example figures.

2.3.1 Hardware

Phasenmaske ?

Planspiegel .

Figure 2.7: Photography of the pulse shaper.

Fig.[2.7 shows a photography of the pulse shaper. All previously mentioned
parts are labeled. Additionally the stepper motor is visible which turns the
grating to move the central frequency of the beam to the central pixel of the device
which allows for using the pulse shaper with beams of different wavelengths.

2.3.2 Software

The current status of the user interface is shown in fig.2.§. It consists of sev-
eral control units: In the upper right corner the user can choose the shape of
the incoming and outgoing beam. At the moment one can choose between a
Gaussian, Lorentz or sech shape or one can import a user-defined function. The
two diagrams on the right show the chosen pulses. It is possible to plot either
intensity or amplitude depending on time, frequency or space (either real space
or k-space). The possibility of directing a certain frequency to a certain pixel is
implemented at the center part of the left. The third diagram allows for moni-
toring the transfer function after its calculation and was planned to be removed
with completion of the user interface. Some other boxes would not be part of
the final version, too. They control function tests or are used for the calibration
of the pulse shaper. No self-learning algorithm was implemented at the current
state.
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Figure 2.8: Screenshot of the user interface of the control program of the pulse shaper.
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2.3.3 Examples

111.83 |ps r111.94|ps 4390 |ps F43.94 |ps

- 1 | Rainbow 2 'L ¥ Rainbow 2
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ooce-0 | . | i1.00E+0 oooe-0 | D | . | [1.00E+0

Figure 2.9: Screenshot of two different calculations made during the creation of the routine to
determine the transferfunction.

In fig.[2.9 two typical pictures are shown, that were reached during the devel-
opment of a routine to create the transfer function. The left of the figure shows
what is expected to be the outcome if a Gaussian beam is transformed to be
separated in three parts. The effect of the mask being a grating is clearly visi-
ble. The right part of this figure shows a close look to a central peak of another
transformation. These calculation stay on a level, where the transfer function is
calculated directly. No self-learning technic is implemented here. Things that
where taken into account are the geometry of the liquid crystal mask (including
the gaps between the single pixels) and the size of the aperture at the entrance of
the pulse-shaper. Up to now, no measurements for comparison were performed.

amp
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2.4 Pulse train generation with a two-stage Michelson in-
terferometer

In this section the final solution for generating the desired pulse-trains will be
discussed.

Previous to the setup itself we introduced two Michelson-interferometers into
the beam-path that allow us to create short pulse-trains of up to 4 pulses (one
or two are still possible by blocking the corresponding mirrors) with a temporal
separation between 0.5 and around 10 ps (This corresponds to repetition rates of
up to 2 THz). To assure that all pulses have the same energy part of the beam
is directed to an autocorrelator.

A schematic drawing of the Michelson-interferometers and the mechanism of
pulse-train creation supported by autocorrelation-spectra are shown in figure[2.10]
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Figure 2.10: Sketch of the two stage Michelson-interferometer and autocorrelation spectra of
different stages of the four-pulse train generation. In the final pulse train (d) each pulse contains
the same energy.

The beam enters on the lower left and is split by a 50:50 beam-splitter cube.
One of the beam parts hits a fixed mirror the other one a movable mirror. This
mirror is displaced to the other one to generate a delay time 7y between the beam
parts. Both beams hit again the beam splitter and enter the next Michelson
interferometer. It works exactly the same as the first one with the difference
being the delay time doubled. The process of pulse-train creation is controlled
by checking the autocorrelation of the pulse train in each step.

The autocorrelations a) and b) are taken while using just one of the Michelson
interferometers. This is achieved simply by blocking one mirror in the other
Michelson interferometer. One can see that the delay times of the two Michelson
interferometers is different, the first one has the desired delay time 75 and the other
one the doubled. The autocorrelation is a convenient tool to estimate whether
the beams contain the same energy although it can not provide a number. Part



2.4. Pulse train generation with a two-stage Michelson interferometer 43

c) of ﬁg. shows an autocorrelation of a complete four-pulse train with bad
alignment. If all pulses contain the same energy the autocorrelation spectrum
looks like ﬁg. d). In a separate measurement we calculated the energy per
pulse to be 0.1 pJ.

The implementation and operation of a two-stage Michelson interferometer for
pulse-train generation is easier by far than the construction and programming for
using a LCD-mask based pulse shaper presented throughout the latter sections.
Nevertheless the pulse shaper exists and waits for completion. Maybe further
applications will need a more complex pulse shape than it can be provided by
the Michelson interferometers which could lead to a revival of this project. In
addition also the Michelson interferometers can be improved by automating the
movement of the movable mirrors and allowing for a computer control of the
pulse-train delays.
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Chapter 3

Ultrafast gain dynamics of
quantum dot based
semiconductor optical amplifiers

In this chapter our first attempt to achieving a complete gain-recovery is shown
and discussed. The pulses used for study here are single-pulse, double-pulse or
four-pulse train. They are resonant to the ground or excited state. All mea-
surements were performed at room-temperature (300 K) and under high optical
pumping-conditions explained in the first chapter.

3.1 Interpreting differential transmission spectroscopy (DTS)
graphs

Starting with simple single pulse experiments (resonant to the ground state) I
want to explain how the graphs of the differential transmission spectroscopy have
to be interpreted. In fig.[3.1 some graphs of such a measurement are shown for
different injection currents. They represent the gain of the device in dependence
of the delay between pump- and probe-beam. The gain is calculated from the
measured amplitude A following the expression

AG(dB) = 20log(A/Ay) (3.1)

where A is the amplitude of the probe-beam measured with the pump-beam
running while Ay is the amplitude without pump-beam. This description is equal
to the picture of the ratio between the transmitted intensity and the intensity in
front of the device.

3.1.1 Analyzing the graphs

The three population-cases already introduced in chapter one are distinguishable
again. At low injection-currents in the case of low carrier-densities the graph
(red) shows absorption. At currents around 7.5 mA the case of transparency is
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Figure 3.1: Pump probe curves measured at different injection currents to show the different
cases of high (red) and low (blue) carrier densities and the case of transparency (green).

visible (green) and at high injection currents, that create the case of high carrier-
densities, gain is visible (blue).

Following fig.[3.2] the effects creating the different curves will be explained.
To keep things simple assume that the probe-beam enters the sample after the
pump-beam.

First the case of low carrier-density is explained (see upper part of fig.|3.2)):

All quantum dots are empty at the arrival of the pump-beam. Corresponding to
the intensity of the beam excitons are created in the ground state of the quantum
dots. The incoming probe-beam is amplified by the stimulated recombination of
the available excitons. As the delay between pump- and probe-beam is extended,
the probe-beam faces existing excitons more seldom. The excitons may have
changed their energy-level to the excited state or to the surrounding material of
the quantum dot or their carriers recombined already in advance of the probe-
beams arrival.

The next case to be discussed is the case of a high carrier-density (see lower part
of fig.|3.2)):

At the arrival of the pump-beam the ground- and even the excited state are pop-
ulated with excitons. Its photons stimulate a recombination of excitons leading
to an amplification of the pump-beam. Therefore these excitons are not present
anymore at the arrival of the probe-beam. Now the photons of the probe-beam
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low carrier-density:

high carrier-density:

Figure 3.2: Schematic drawing of the different effects explaining the transmission of pump-
and probe-beam in the case of low (top) and high (bottom) carrier density.

are absorbed creating excitons themselves. A delay between pump- and probe-
beam offers scattering-processes the possibility to take place in the meantime
repopulating the quantum dot ground state. The scattering can include again
the excited state as well as the quantum dot surrounding material.

In case of transparency the curve seems to be uninfluenced by the transmission
through the device:

This injection current region provides an amount of carriers to fill the quantum
dot ground state with one exciton in average. That leads to an even possibility
of pump- and probe-beam to be either amplified by stimulated emission or be
absorbed to create another exciton.
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3.2 Complete gain recovery and its conditions

(a) Ground state (b) Excited state
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Figure 3.3: Dynamics of gain recovery (a) in the ground state and (b) in the excited state, for
different values of injection current.

Now having the tools to discuss more complex gain-curves I want to proceed
with our first attempt of showing complete gain recovery after a 200 GHz double-
pulse. Using one Michelson interferometer a pulse-train of two 150 fs long pulses
having a temporal distance of 5 ps (equivalent to the 200 GHz repetition rate)
was created and directed through our device. The measurements were done at
wavelengths resonant to the ground and to the excited state.

The temporal evolution of the ground- and excited-state gain AG(7) induced
by the two pump-pulses is shown in fig.|3.3| for different injection currents. An
ultrafast and complete gain recovery is achieved for the ground state at high
injection currents (100 mA inf3.3(a)) after both pump-pulses. Decreasing the in-
jection current prolongates the gain recovery and the second beam faces a partial
gain reduction compared to the first beam. For the excited state no complete
gain recovery can be achieved for any available injection current (see[3.3|(b)).

A quantitative comparison of the gain reduction factors induced by the first,
AG; = AG(5ps), and second pump-pulse, AGy = AG(10ps) — AGy, is shown in
fig.[3.4 and marks the first step toward an understanding of the amplification of
longer (more than two pulses) pulse trains.

For low injection currents both absolute values of AG; and AG, decrease
with increasing current up to Iy ~ 20 mA where a minimum is reached. While
increasing more they reach values of zero at high currents around 100 mA when
a complete gain recovery is achieved. Taking a look back at the spectra of the
amplified spontaneous emission e.g. in fig. one can observe that Iy coincides
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with the appearance of the excited state. This observation emphasizes the impor-
tance of the excited states population for the ultrafast refilling of the ground state.
This fits with the conclusion Urayama et al. [31] stated, that the recovery of the
ground state can be distinctly accelerated by a significant excited state popula-
tion. For the excited state AGy o decreases until it saturates at Iy ~ 80 —100 mA
(see also the curves for 80 and 100 mA in fig.[3.3). The zero-line transition of
AGj 2 at around 40 mA corresponds to the transparency current of the excited
state that in gain measurements was found to be at 37.5 mA.

|AG;| > |AG,] is obvious for ground and excited state from fig.[3.4] If the
intradot recovery, excited to ground state, would be the only source for refilling
the ground state, the partial depletion of the excited state after the first beam
would lead to an increasing reduction of the gain after the second beam [3]. This
is contradictory to our observation. Therefore we conclude that direct capture
from the wetting layer participates in the recovery of the ground state, too.

Following chapters will show studies in direction of proving this thought by
comparison of experiment with two theories covering different areas of the delay
time between pump- and probe-beam.
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Figure 3.4: Gain reduction AG; and AGs induced by a double pump pulse in the ground and
excited state.
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3.3 Multiexponential fit of DTS curves
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Figure 3.5: Gain dynamics after amplification of 1, 2 and 4 pulses at an injection current of
40 mA. The solid lines correspond to multi-exponential fittings of the experimental data as
described in the text.

In order to have a first quantitative analysis of the heterodyne pump and probe
measurements, it is quite common to use a fitting expression [32], [33] B34]: three
exponential decays plus an offset term analytically convoluted to the gaussian
response of the system. We apply it to our pump and probe data for 1, 2 and
4 pulse trains in the gain regime (1.=10-150 mA), see fig.[3.5l The physically
interesting time constants retrieved from the fit are the two fastest, 71 and 7
which are plotted along with their relative weighting in fig.[3.6, The slowest
component (73) is in the range of quantum dots radiative lifetime and its relative
weight decreases quickly with current, becoming negligible above I, =20-30 mA.

The results obtained for 7 and 75 from the fitting routines are plotted in
logarithmic scale in ﬁgure(a). For single pulse experiments it holds a relation
of 73 = 10 - 75 &~ 100 - 7, for the retrieved time constants.

For I. <30 mA, i.e. carrier injection currents close to the transparency current
I;., 71 and 7y increase with increasing I.. Such a behavior can be assigned to an
inhomogeneous absorption process during the propagation of pulses through the
waveguide. Therefore the focus will be on the discussion of results from moderate
to high injection currents, I, > 30mA, i.e. those accelerating the gain recovery,
as seen in figure|3.6|

In that range of 30 < I. < 40mA, both 7, and 7, strongly decrease with
increasing I, followed by a nearly constant behaviour for I, >60 mA. In addi-
tion, the relative weight of the fastest component (the 7 weight) grows until it
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Figure 3.6: (a) Time constants 71 and 75 derived from the fitting as described in the text. (b)
Relative weight of the fastest component, 71, as a function of injection current I..

comprises 90% of the total recovery dynamics at I, = 150 mA.
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For the following analysis of the experiments with 2 and 4 pulses in the train,
71 and 7 are fixed to the values obtained from the fits of the corresponding single
pulse experiments. As can be seen in fig.[3.5] all fits, as described above, show
good agreement with the experimental data.

For all three experiments with 1, 2 and 4 pulses, we found a systematic de-
crease of 7 along with an increase in its weight when I, is increased. Therefore
we discuss in the following only that fastest component 7, relative weight, as
presented in ﬁgure(b). From the experimental result we can state that an
increase (decrease) of 7y relative weight corresponds to a speed up (slow down) of
the gain recovery dynamics. Under conditions of powerful electrical injection, the
71 relative weight reduces only gradually after amplification, even if the power
per pulse used is sufficient to fully deplete the ground state population inversion
(see chapter 1). 7 weight decreases slowly from single pulse to double pulse ex-
periments and remains almost unchanged when comparing 2 and 4 pulse trains
dynamics. The microscopic background of that 7 time constant is nonlinear
Coulomb scattering in a thermal non-equilibrium situation and subject of the
next chapter.
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Chapter 4

Impact of Coulomb scattering on
the ultrafast gain recovery

In this chapter, the ultrafast gain recovery in quantum dot semiconductor optical
amplifiers is addressed by a microscopic approach containing the semiconductor
Bloch equations for the polarization and population dynamics. The incorporated
microscopically calculated Coulomb scattering rates describe the Auger transi-
tions between localized quantum dot and continuous wetting layer states. The
Coulomb interaction is found to strongly influence the gain dynamics of quantum
dot amplifiers. The calculations performed throughout this chapter were done by
Dr. Ermin Mali¢ performed under the supervision of Prof. Dr. Andreas Knorr.

4.1 Deriving Coulomb scattering rates

As described in chapter one our sample contains several layers of quantum dots. A
sketch of a corresponding quantum dot-wetting layer system is shown in ﬁg.a).
Figure[f.Ip demonstrates the dynamics of an electrically pumped quantum
dot amplifier. If one considers the direct capture from the wetting layer to be
important only the energetically lowest electron and hole levels in quantum dots
have the main contribution to the system dynamics. That leads to a two-level
system for electrons and holes. The continuous wetting layer states are filled with
carriers by the injected current. The Coulomb interaction leads to a capture of
electrons and holes into the bound quantum dot states from where they relax
radiatively via spontaneous or induced emission. The corresponding scattering
and radiative processes are described within an approach combining the semi-
conductor Bloch equations (derived in sec. with microscopically calculated
Coulomb scattering rates. These are determined by considering the Coulomb
interaction up to the second order in the screened Coulomb potential. In the
gain regime, where the carrier density in the wetting layer is high, the capture
dynamics within the quantum dot-wetting layer structure is assumed to be domi-
nated by Coulomb scattering (nonlocal Auger recombination).[35], 36]. Therefore
electron-phonon processes are of less importance, and thus will be neglected.
The quantum dots in a layered structure such as ours are known to have
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Figure 4.1: (a) Structure of a quantum dot and the surrounding wetting layer. (b) Sketch of
the in and out scattering of electrons and holes due to Coulomb interaction described by the
rates S and S°“!. n,, describes the density of the thereby generated photons.

lens-like shapes. In such a case the ground state wave function has cylindrical
symmetry [37].

Since the confinement in the z-direction of our system is much stronger than
within the x-y-plane (see ﬁg. the wave function of that system can be divided
in an in-plane part and a z-component.

The in-plane energy of the charge carriers in wetting layer states is calculated
within the effective-mass approximation [38], see sec.m. The energy of charge
carriers in quantum dots is determined by simple levels £, with b = e, h and
n=20,1,2,.... The energies of bound quantum dot states for a quantum dot of an
assumed width of 17 nm is found to be for the electron ground state e, = 240 meV
and for the hole ground state ¢, = 105meV with respect to the energy of the
wetting layer edge corresponding to [39].

The wave function for the entire quantum dot-wetting layer system yields
within the effective mass approximation [38]

U3, (r) = ¢i(p) & (2) u'(r), (4.1)

where u®(r) are Bloch functions with b = e, h, ©(p) is the in-plane part
of the wave function, and £2(z) is the z-component of the wave function with
the quantum number o. The in-plane component of the wave function for lens-
shaped quantum dot with a small aspect ratio (considered height: 4nm) can be
approximated by the eigenfunctions of a two-dimensional harmonic oscillator |40
19]. Assuming that only the ground state is of importance for scattering processes,
the oscillator energy hwy corresponds to the quantum dot ground state energy &,,.

The z-component of the wave function corresponds to the eigenfunctions of a
finite barrier well. These eigenfunctions are independent of the carrier type b.

For a small wetting layer thickness and a small quantum dot height, the energy
spacing of the levels due to the confinement in the z-direction is large. Therefore,
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it is sufficient to consider only the lowest quantum number n = 0. In addition it
is assumed that the quantum dots and the wetting layer share the same height
leading to the same z-confinement for both. In this case, the confinement of the
investigated quantum dot-wetting layer system is completely given by the strain
in the x-y plane[38].

The in-plane component of the wave function of the wetting layer states is
described by orthogonalized plane waves (OPWs)[41]

or(p) = Nbl(k) [exp(ik - p) — 204 (k) exp (—%ﬁf/ﬁ)} (4.2)
with
47 9
Ny(k) = \/1 - A_Bgab(k) (4.3)

given by the the normalization condition (%) = 1.

The OPW approach takes the influence of the confinement potential into ac-

count and is therefore more realistic than a plane wave description.
For describing the dynamics of quantum dot amplifiers the light-matter interac-
tion and the Coulomb interaction are taken into account. Their strengths are
given by the optical matrix element in the first case and the Coulomb matrix
element in the second case. The optical matrix element is calculated using an
interband dipole moment d,. according to the experimental results, in the range
of 0.3 — 0.6 egnm.

Starting with the carrier-carrier Hamiltonian (see also sec.[L.5)) we consider
the capture of carriers from one of the continuous wetting layer states denoted
by the wave vectors k into the electron or hole quantum dot ground state. Since
the carriers are completely localized within the quantum dots, the wave vector k
can not be well defined.

These capture processes are described by the Coulomb matrix element Vbl;cl ?,;fc,jg,
using the wavefunctions calculated previously in this section. Figure [4.2] illus-
trates the Coulomb interaction. It involves always two particles. One carrier
((b,kq)) is captured into a quantum dot state b and another carrier is shifted
within the wetting layer to conserve the energy of the process.

The rates corresponding to the Coulomb scattering are calculated microsp-
copically as a function of the wetting layer electron and hole density w, and wy,.
As shown in Sec. [L.5] the Coulomb contributions are taken into account up to
the second order Born approximation, yielding the Boltzmann equation[22] [42]

d , 1 ,

e :Sm 1— __ Qout - +Sm 4.4

TP =5y (L= po) = S5y py T, (4.4)
where p, is the occupation probability in the electron or hole quantum dot

state (b = e, h) and T; is the population scattering time. The Boltzmann equation

contains Coulomb in- and out-scattering rates S;™ and Sy**
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Figure 4.2: Tllustration of the different scattering processes for electrons and holes. Figure
parts (a) and (c) show pure scattering (electron-electron and hole-hole) and figure parts (b)
and (d) show mixed scattering (electron-hole and hole-electron).
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with the characteristic functions for in- and out-scattering

in,b / / out,b / /
fklkgkgb/ = pI;clpI;63(]‘ - pI;CQ) a‘nd fklltczkgb/ = pl;c?(l - pI;c;g)(]‘ - pI;cl) ‘ (46)

The sum in eq. runs over all wetting layer states (occupation probabilities
pl,’cl, ng, and pl,’@). The respective single particle energies in the wetting layer are
denoted by %, , el % and in the quantum dot by &). The summation over spin
leads to a factor 2 in front of the direct term assuming that the wetting layer
population is independent of the carrier spin. It also accounts for the Kronecker
symbol in front of the exchange term. In case electrons and holes with anti-
parallel-spin collide the interference vanishes leaving only contributions of pure
electron-electron and hole-hole scattering processes [43].

In addition, it is assumed that the carrier distributions are close to the quasi-
equilibrium Fermi distributions, i.e. p} = f2 + dfp with §f2 < 1 and the Fermi-
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Dirac distribution

1
fr= (4.7)
k 1+ exp (k:%’r(ell)c — up(T, wb)))

and the quasi-Fermi level y,(7, wp). This can be obtained analytically in the
two-dimensional case [44], yielding

2
(T, wy) = kT In {exp <%) - 11 . (4.8)

According to the relaxation rate approximation, [26] it can be assumed that the
influence of d fr on the scattering rates S™ and S°“ is negligible, i.e. S™(pg) ~
S™(fr) and S (pg) = S°“*( fx). To find an expression for the Coulomb scattering
rates finally the previously mentioned Coulomb matrix elements are unserted
into eq. . Unfortunately, the integrals cannot be solved analytically. They
are evaluated using the Simpson rule, a numerical method for solving definite
integrals by approximating the function by a quadratic polynomial.[45]

Since the efficiency of scattering processes depends on the amount of available
scattering partners the scattering rates Si" and S¢** depend on the wetting layer
carrier density w,. Following fig.[4.2]it is necessary to take the carrier densities of
holes and electrons into account for both carrier types’ scattering rates since the
scattering partner can be electron as well as hole. The electron in-scattering rate
S e.g., is consequently a function of both the electron and hole wetting layer car-
rier density S (we, wy). However the dynamics of w, (t) and wy,(t) are similar [20]
and their different stationary values suggest the relation w,(t) = g.(j)wp(t) with
the ratio coefficient ¢.(j), which varies with the injection current density j[46].
During these calculations g. = 2.3 for an injection current density of 1.9j;,, where
Jn is the threshold current density. The fact, that the scattering rates can be now
calculated as a function of w, respectively wy, reduces the numerical calculation
effort drastically.

A figure with the Coulomb scattering rates for electrons and holes is shown
later in the chapter (see ﬁg. as a function of the carrier density in the respec-
tive wetting layer. The figure shows that the Coulomb scattering rates become
larger for increasing wetting layer carrier densities wj, as expected with the in-
crease of available scattering partners. For high w;, the increase is stopped by
the Pauli exclusion principle that leads to a maximum in the scattering rates.
The effect is more pronounced for the out-scattering processes (ﬁg.eft axes)
and influences the electron scattering rates stronger. The first observation corre-
sponds to the proportionality of the Pauli blocking terms to (1 — p?)(1 — p2), see
eq. . The second one relates on the fact that the hole bands have a smaller
curvature (see sec. and thus the population of hole wetting layer states
is distributed over a larger k-range. As a result, the Pauli exclusion principle
influences the electrons stronger.

The in-scattering rates are small for low w;, where just a few scattering part-
ners are available and increases with increasing carrier density up to a point



60 Chapter 4. Impact of Coulomb scattering on the ultrafast gain recovery

where almost all the wetting layer states are filled and scattering becomes im-
probable again. The in-scattering rates are proportional to the product of two
occupation probabilities in the wetting layer states p? P, see eq. . Conse-
quently, they become dominant at higher wetting layer carrier densities at which
the out-scattering is already diminished by Pauli blocking.

As mentioned earlier the electron w, and hole wetting layer carrier density
wy, are connected by the relation we(t) = g.(7)wp(t). The value of g.(j) has an
important influence on the in-scattering rates [46]. For out-scattering processes,
the mixed contributions turn out to have an influence on the height of the scat-
tering rates, but less on their qualitative shape, since the out-scattering is only
important at low wetting layer densities and decreases strongly right after the
maximal value is reached.

4.1.1 7T) and 7T, times

According to eq.[d.4] the T}, time determining the decay of the electron and hole
population (b = e, h), respectively, is given by (Sj™ + S¢“)~1. The T, time
describes the decay of the coherence. Both times are calculated microscopically
using the Boltzmann equation including Auger transitions between wetting layer
and quantum dot states. Figurel4.3|shows both times as a function of the wetting
layer carrier density wy.

In agreement with the discussion of the scattering rates in the last section,
both T, times decrease with increasing wy, accounting for the stronger Coulomb
scattering. The times are the shortest (& 1ps) in the range of (1 —5) x 102 cm 2.
Then, the scattering rates are reduced and 77 increase.

The T5 time follows the equation

27 Py, vk 0, bk
= [ A Z (| hk:, b’k§|2 6(e + 522 5k3 5k1) | eekl,b/k32,|2
oy kaksb!

-1

(S(Sh—i—s?c;—sz5 5k1)> <f fi, (1 f]?;)—i_(l_f]?;)<]‘_f]:3)f]g;>:|(4'9)

that was calculated by Kim et al. [47]. It shows a similar behavior as the T3
times. After a strong decrease at low wetting layer carrier densities, the T, time
remains approximately constant (= 2 ps).

The destruction of the coherence (also called dephasing) is known, for con-
ventional three-dimensional systems, to arise from transitions between different
states, i.e. from thermalization, energy relaxation, or recombination processes.
In quantum dots, however, the dephasing of optical coherence is mainly due to
virtual transitions [48]. These do not change the population dynamics. There-
fore, this contribution is often called pure dephasing. Since the energy separation
between quantum dot states can be few hundreds of meV, the probability for tran-
sitions between real states is suppressed, and pure dephasing plays an important
role [49]. The dephasing time in quantum dots can be determined experimen-
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Figure 4.3: (a) The Coulomb scattering times T; . and Tj j for electrons and holes and (b)
the dephasing time T, are plotted as a function of the wetting layer carrier density. [20]

tally and lies in the range of picoseconds to femtoseconds and depends on the
temperature strongly [50].

The expression for the dephasing time can be separated into a Coulomb scat-
tering related part and a part connected to pure dephasing:

1 1 1
+ . (4.10)

T2 T2,scat T2,pure

The first term corresponds to the microscopically calculation shown in fig. [£.3p.
The second term has been discussed in Lorke et al. [36]. The temperature depen-
dence of the overall dephasing time 7T is assumed to be guided by the Coulomb
part 15 ¢at. Thus, it is sufficient to obtain the 75 time for one temperature and
then calculate microscopically the corresponding values for other temperatures.
Starting from Ty, = 25fs, determined experimentally for room temperature, the
T, times at 350 K, 400 K, 450 K, and 500 K, are calculated using eq. , yielding
Ty, = 201s, 17 1s, 15 fs, 13 fs, respectively.
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4.2 Gain dynamics in model and experiment

Since we want to compare our experimental data to the theoretically achieved,
they have to be presented in a similar way. Usually we provide gain curves such
as shown in chapter three. Measurements can be performed in dependence of
several parameters. We can control the temperature of the device, the injected
current and the intensity of the incoming beam. The gain dynamics in quan-
tum dot semiconductor optical amplifiers can be theoretically described by the
semiconductor quantum dot Bloch equations (derived in sec..

To model the gain dynamics, the absorption coefficient a(w, 7) is calculated as
a function of the pulse frequency w and the delay time 7 between the pump and
probe pulse. The system is in the gain regime, if the absorption coefficient o(w, 7)
is negative, i.e. the imaginary part of the optical susceptibility x(w). Within the
r - E approach the absorption coefficient can be expressed in the frequency space
as the ratio between the macroscopic polarization P(w) and the electrical field

E(w)

Ppump+probe (Wa 7_) - Ppump (w>
Eprobe (w)

Key of pump-probe experiments is to measure the changes of the probe signal
inflicted by the pump pulse. Therefore, the macroscopic polarization Ppymp(w)
describing the contribution arising from the pump pulse alone needs to be sub-
tracted from Pumpprobe(w, 7) obtained when considering both the pump and the
probe pulse. This method gives the response coming from the probe pulse only,
but taking into account the influence of the pump pulse [51].

As shown in sec.[L.5] the macroscopic polarization P(t) = d,.p(t) is determined
by the optical dipole moment d,. and the microscopic polarization p(t). The first
is known from experiments, the second is calculated using the semiconductor
Bloch equations.

Within the rotating wave approximation, and for the resonant case with hw =
fuwgqa = 0.95 eV equations of motion for the microscopic polarization p(t), and the
quantum dot population probability of electrons p¢(t) and holes p®(t) are obtained

pp(w, 7) x wlim (4.11)

1

B0 = Q00 + o) 1 = 7). (4.12)
) = —2mlQ0p (0] - 7o)+ S0 (4.13)
§0) = 2RO (O] - 760 + S (4.14)

Since the carriers are localized completely in the quantum dots the described
dynamics is k-independent. As mentioned earlier the phonon-coupling will be
neglected in egs. — due to the fact that the experiments are performed
within the gain regime where wetting layer carrier densities are in the range of
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10'2 — 10"® ecm~2 where the Coulomb interaction can be assumed as dominant.
However, the influence of phonon induced processes for the dephasing is taken
into account during the 75 time calculation, see sec.[4.1.1, It should be mentioned
that in this first study, excitonic effects and memory contribution in the electron-
electron scattering are not considered. Since only the region around the resonance
is of interest the rotating wave approximation is applicable here. The stationary
values before the arrival of the pulse are given by p§(0) = ST} ., ph(0) = ST} 4,
and po(0) = 0.
Then, the gain condition p§(0) + p§(0) > 1 can be expressed in terms of the
scattering rates
gin gin
Sin 4 Sout * Spr + Syt
The gain condition is independent of the 75 time, since the stationary values are
reached long after the polarization has decayed. All values for the wetting layer
carrier densities used in the following meet the gain condition from eq. that
represents the operation of a quantum dot semiconductor optical amplifier in the
gain regime. The strength of the light-matter interaction is given by the Rabi

frequency Q(t) = d”c—g(t) with the electrical field E(t) = Eyexp (—%) and the

interband dipole moment d,., which is set to 0.6 egnm according to experimental
data. The amplitude E, determines the pulse area © (expressed in units of )

@E/Q(t)dt:% dhg 0.

This definition goes back to the generation of Rabi flops [48]. For a pulse
area of © = 2m, the populations p¢ and p" are inverted corresponding to one
complete Rabi flop. The pump-probe experiment is modeled with two sets of
Bloch equations: i) including only the pump pulse and ii) including both the
pump and the probe pulse. The length of both pulses is set to 150 fs, and their
intensity ratio is Iprope/Ipump = 0.01 in agreement with our experimental setup
(see section[1.4] for details).

In general, eqgs. — cannot be solved analytically. The Bloch equa-
tions are evaluated numerically using the Runge-Kutta method. In agreement
with our experiment, the gain dynamics is calculated for the case that the pulse
is in resonance to the quantum dot ground state energy w = wgyq, i.e. the gain
is given as a function only of the delay time 7. In addition, it is normalized to
the value at times long before the pump pulse arrives. In the following the gain
dynamics will be discussed and shown in dependence of the temperature 7', the
wetting layer carrier density wj, the pulse area ©, and the dephasing time T5.

>1. (4.15)

4.2.1 Temperature and wetting layer carrier density dependence

In fig.14.4|(b) and fig.[4.6|(a) experimental pump-probe curves are shown depend-
ing on the temperature and on the injection current respectively. Since the eval-
uation of the Bloch equations for different temperatures and wetting layer carrier
densities is available a comparison with theoretical results is achievable. In fig.[4.4]
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the normalized gain is plotted as a function of the pump-probe delay time 7 for
different temperatures.

1.0 %
0.0

0.8} c
= ©.01
(®)]
5 0.6} 3
g N .02,
= 0 =15=x ©
£ 041 —300k] £ .|
2 — 350K Z-O.3=—

0.2t —— 400K 0.6+

0.0 a) 500K -0.94

' 0 2 4 6 0 2 4 6 8 10 12 14 16 18 20
Pump probe delay time t (ps) Pump probe delay time z (ps)

Figure 4.4: Normalized gain as a function of the pump-probe delay time 7 for different tempera-
tures. (a) Theoretical calculation for a fixed wetting layer carrier density of w, = 5.7x 102 cm~2
(corresponding to the density at which the electron in-scattering S is maximal). The pulse
area is fixed to © = 1.5m. The gain is calculated for a realistic situation, where the T5 time varies
with the temperature, see Sec. [1.1.1] The T5 times are 25, 20, 17 and 13. (b) Experimental
data taken while controlling the temperature externally.

Taking a look at the general shape of the gain curves the behavior in the
first 200fs is interesting. At first there is a minimum followed by an ultrafast
gain recovery on a femtosecond time scale. This effect cannot be explained by
Coulomb induced refilling processes, since they are on a picosecond time scale.
We explain this characteristic feature of the gain can by the so-called coherent
artifact, a coherent effect describing the interference between the pump and the
probe pulse. The overlap generates a grating in the absorption which scatters a
part of the pump pulse in the probe direction. As a result, the probe signal is
enhanced. This effect turns out to be sensitive to the dephasing time (following
in the next but one section).

In terms of temperature dependence figured.4] shows that the gain recovery
time is reduced with increasing temperatures for both, experiment and theory.
The faster gain recovery can be attributed to the stronger scattering rates at
higher temperatures, as shown in fig.[4.5] This leads to a higher efficiency of the
refilling process of the quantum dot ground with carriers from the wetting layer,
resulting in a shorter gain recovery time. An increase in temperature affects, in
particular, the in-scattering processes, since Si™ is proportional to the product of
two fermi functions f,g2 f,’;3, see eq. . The Fermi distributions become broader
at higher temperatures increasing the probability for the capture of charge car-
riers into the quantum dot ground state. This has a stronger influence on holes
due to their larger effective mass and a flatter band structure. A temperature
increase of AT = 200 K leads to a more than twice as large hole in-scattering rate
Sin. The goal of using semiconductor optical amplifiers for high-speed commu-
nication applications asks for a fast gain recovery. Unfortunately an increase in
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temperature is not the solution since it does not only speed up the gain recovery
but reduces the gain. The optimization of the refilling of quantum dot states
leads at the same time to a less pronounced gain peak.
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Figure 4.5: Temperature dependence of Coulomb in- out-scattering rates for (a) electrons and
(b) holes. Generally, the scattering becomes more efficient with increasing temperatures.

The difference in gain depletion is reduced by approximately 30% at a temper-
ature increase of AT = 200 K. This effect is not visible in the experimental data
due to a different normalization process. Note that the gain depletion depends
only indirectly on the temperature. It is the change of the dephasing time 75
with the temperature that causes the reduction of the gain depletion (see [20]
fig. 4.15D).
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Figure 4.6: Normalized gain as a function of the pump-probe delay time 7. (a) Experimental
data for different injection currents I. Unfortunately the injection current changes not only the
carrier density but also strongly the temperature as was shown in section (b) Theoretical
calculation for different wetting layer carrier densities (for a fixed temperature of T' = 300 K)[20].

The change in temperature for measuring the data in fig.}4.4] (a) was achieved
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by controlling the temperature of the device directly. However as shown in sec.|1.4
the increasing injection current changes the temperature as well. This effect,
namely the increase of the wetting layer carrier density, is shown in fig.[4.6. Here,
the dependence of the normalized gain on the wetting layer carrier density w,
is illustrated and compared with experimental data showing the normalized gain
for different injection currents.

The theoretical result feels unexpected at first, with rising w,, the gain recov-
ery becomes slower. One would expect higher wetting layer carrier densities to
be advantageous for a fast gain recovery. However, as already seen in fig.[4.5 the
scattering rates have a complex dependence on wy. At the wetting layer electron
density w, = 5.7x 10" ecm™2, the electron in-scattering rate S has its maximum.
For w. = 6.7 x 10'2cm™2 and w. = 7.7 x 102 cm™2, the capture of electrons via
Auger processes is already reduced. The scattering rates increase with increasing
wetting layer carrier densities up to a certain value, then they decrease due to
Pauli blocking. As a result, fig.[4.6] reflects how efficient the refilling of the quan-
tum dot ground state is. The gain recovery is fastest at w, = 5.7 x 10'2ecm—2,
where the electron in-scattering is maximal. This effect is not visible in the exper-
imental data due to the fact, that the injected current leads to a strong heating
effect (as shown in section[1.4)) that masks the effect of pure carrier injection.
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4.2.2 Pulse area dependence
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Figure 4.7: Normalized gain as a function of the pump-probe delay time 7. (a) Theoretical
calculation for different pulse areas © (for a fixed temperature of 350 K and the wetting layer
carrier density w, = 5.7 x 10'2cm~2). In addition the importance of the hole dynamics is
illustrated. The dashed lines show the normalized gain under the condition that only the
electron dynamics is taken into account. It is clearly seen how important the holes are for a
correct simulation of ultrafast gain dynamics. (b) Experimental data for different powers of the
probe-beam at a fixed injection current of I=40mA.

Another factor influencing the gain dynamics is the pulse area © as defined by
eq.[4.16] In fig.[4.7] (a), the normalized gain is shown as a function of the pump-
probe delay time 7 for three different pulse areas © = 0.757, 1.07, and 1.57. The
wetting layer carrier density is fixed to w, = 5.7 x 10*? cm~2, corresponding to
the density at which the electron in-scattering S is maximal. The temperature
is set to 350K and the corresponding dephasing time T, is 20fs. Figure[4.7]
(b) shows experimental data depending on the power of the input-beam that is
directly related to the pulse-area. The figure illustrates that the gain depletion is
strongly dependent on the input power/ pulse area. Increasing © from 0.757 to
1.57 enhances the amplitude of the renormalized gain approximately by a factor
of three. Unfortunately, at the same time, the gain recovery is slowed down. Both
effects can be seen in the experimental data as well. As with the temperature
dependence a choice has to be made between speeding up the gain recovery and
reducing the total gain. The optimization of a semiconductor optical amplifier
turns out to be a balancing act once again. Note that the absolute refilling time
of the quantum dot ground state does not depend on the pulse area. The system
needs longer to recover, since the gain reduction at large pulse areas is high.

In addition fig.[4.7) (a) illustrates the importance of taking the dynamics of
both electrons and holes into account. The dashed curves show a pure electron
dynamics. Considering only electrons leads to strongly reduced in-scattering
processes. The capture of electrons described by S™ is one order of magnitude
weaker at the considered wetting layer carrier density of w, = 5.7 x 102 cm™2 due
to the missing efficient electron-hole processes. Consequently, the gain recovery
is considerably slowed down. This shows again the importance of holes for the
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acceleration of the gain dynamics, which is made allowance for by the p-doping
of our device.
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Figure 4.8: (a) Theoretical calculation of the normalized gain as a function of the pump-
probe delay time 7 for different dephasing times 75 showing that the characteristic gain peak
disappears for long T5 times. The behavior for negative delay times is ascribed to the optical
Stark effect. (b) Ilustration of the coupled population and coherence dynamics and their
influence on the characteristic gain peak. In the first 200 fs, the gain dynamics is dominated by
the coherence, then, the population dynamics is crucial.

Furthermore, ﬁg. (a) illustrates that holes have no influence on the gain
depletion since the first peak is equal for either solid or dashed lines.
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4.2.3 Dephasing time dependence
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Figure 4.9: (a) Gain at a delay time of 7=0 (pump and probe arriving at the same time) as
a function of the intensity of the pump-beam for different injection currents. (b) Normalized
gain at 7=0 as a function of the pump-beam intensity.

The influence of the dephasing time 75 on the gain dynamics is strongly related
with the behavior of the gain curve within the first 200 fs after the arrival of the
pump pulse. As can be seen in fig. [4.8| (b), the gain dynamics is composed of
a population part and a polarization part. The curve follows the microscopic
polarization as long as the pump pulse is present, then it reflects the population
dynamics. The gain peak right after the arrival of the pump pulse is strongly
influenced by the T3 time, while the gain recovery time is determined by the T /5,
times. The interference effects between the pump and the probe pulse at very
short pump-probe delay times create the characteristic gain peak that depends
strongly on the dephasing time T3, as shown in fig.[4.8) (a). The pronounced
minima only appears if the 75 time is low enough, i.e. in the order of some
femtoseconds - the time scale of the coherence artifact.

After the peak the gain curve possesses a turning point after a delay time of
approximately 200 fs, when the influence of the pump pulse is elapsed and the pop-
ulation related gain recovery starts with the capture of carriers from the wetting
layer states. The gain peak has been discussed controversially in literature.[52]
One widely spread explanation is obtained by including the two-photon absorp-
tion. This assumption accounts for the quadratic-like dip in the gain curve within
a rate equation approach. However, the dependence of the gain depletion on the
injection current does not support this explanation. Furthermore, experiments
show that the normalized gain has a linear dependence on the optical pump power
over a wide range (see fig.[4.9)).
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Chapter 5

The rate equation approach

Since the model based on Bloch equations introduced in the last chapter is difficult
to connect to experiments due to the lag of being able to measure scattering rates
directly the idea of adapting a more simple laser-like rate equation system to the
conditions of our experiment arose. We were curious how adequately such a model
would reproduce the different time domains of the recovery process.

In the first part of this chapter the model is described in detail. The applied
rate equation model describes pump-probe experiments as transient recovery of
a steady-state situation after an external optical perturbation. Our goal is to
achieve a consistent agreement between laser-theory and optically measured ex-
perimental rates. Propagation effects (section were taken into account and
we describe the active medium as a population-inverted system that is forced into
a state of non-equilibrium (section[5.1.2)). In the second part of the chapter I will
explain the analysis of the corresponding experimental results.

5.1 Rate equation model

Our goal was to adjust rate equations developed for the description of lasers and
amplifiers to our heterodyne pump-probe measurements with medium to high
optical excitation and simultaneous electrical carrier injection. We are mainly
interested in a quantitative model of the gain recovery dynamics in a time frame
of the first few picoseconds, i. e. the typical region where Coulomb-scattering
takes place [38, 53]. We neglected the dynamics of the very first picosecond, that
matches the temporal width of the incoming pulse, as well as the late dynamics
that correspond to the carrier recombination. For achieving a qualitative descrip-
tion of the ultrafast gain recovery, we developed a simple rate equation system
based on the evolution of the carrier population of the confined quantum dot
levels and the surrounding 2D-reservoir of carriers formed by the well and the
wetting layer. The model emphasizes in addition the following peculiarities of
the experimental systems:

Propagation-effects in the waveguide. The intensity of the incoming pulses
grows during its guided propagation through the device in gain-mode. Therefore
the population is depleted irregularly along the propagation direction.
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Figure 5.1: Diagram of the iterative numerical treatment used in the proposed model.

The pump-probe experiment is described as return to the steady-state situation in
an electrical inverted system after a perturbation by an external electro-magnetic

field.

5.1.1 Propagation effects

Taking into account the inhomogeneous absorption profile we included propa-
gation effects to our model as follows: We divided the waveguide in 200 slices
each 5 pum thin perpendicular to the propagation direction. We calculated for a
given photon flux through each slice z, the temporal evolution and the resulting
outcoming photon flux (¢(t, z,41)). Subsequently we used the transmitted and
amplified photon flux as incoming pulse for the next slice z,1.

We took into account two different photon fluxes, pump (¢, (¢, z,)) and probe
(¢pr(t, 2n, 7)). The initial pump photon flux ¢, (0, z,) contains a sum of temporal
Gaussians corresponding to the pulse-train experiment. The first Gaussian ist
centered at ¢t = 0 and provides thus the temporal origin for the simulation.

The initial probe photon flux, ¢,,(0, z,, 7), contains a single Gauss pulse cen-
tered at t = 7, i. e. the distance between pump- and probe-pulse. For a fixed
delay time 7 in an interval 7=[-1, 8], we calculated 30 ps (from t=-1 ps to t=29
ps) of temporal evolution for all 200 slices, following the integration procedure
sketch in figure[5.1]

The experimental result of a pump-probe experiment is the gain (or absorp-
tion) achieved by the probe-beam. We calculated this gain G(7) following

- ¢pr(n : l7 22005 T)

G(t) = o0 (0220, 7) (5.1)
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where n is the refractive index of GaAs and [ the length of the device. This
calculation represents in principal the ratio of the transmitted and the initial
probe-pulse as a function of the delay time 7. The result is a normalized gain
value G0 that can be compared directly with the experimental gain curves
once they have been normalized.

5.1.2 Steady-state limit in the inverted quantum dot system

The population inversion in a quantum dot system is determined by the applied
injection current, i. e. for a given I, the carrier distribution of the system is given
by the steady-state equilibrium between capture-, escape- and spontaneous and
stimulated radiative rates among the energy levels. This forced thermal equilib-
rium induced by I. is stable and unchanged as long as .. stays fixed. The short
pulse of the probe beam perturbs the equilibrium and forces the electrically in-
verted population out of the steady-state situation. The pump-probe experiment
monitors the return process to the steady-state situation. In our simulation we
first calculated the steady-state population without transmission of external light
through the device for a fixed injection current I.. Subsequently we determined
the temporal evolution of the pump-probe experiment choosing the initial state
of the individual slices to be the one of the steady-state population.

To simplify the model we abstain from using quantum dot Bloch equations
instead of rate equations for describing the quantum dot system. We only take
into account the population dynamics and neglect the coupled polarization devel-
opment that takes place in the fs range at room temperature. In the last chapter
the polarization dynamics was described using quantum dot Bloch equations.

We defined two subensembles of quantum dots, one with the ground respec-
tively excited state of the quantum dots resonant (rs) and the other one non-
resonant (nr) to the energy of the pump and probe pulses. We took the per-
centage of rs quantum dots from the overlap between the ASE and the pulse
spectrum. Both subensembles are usually isolated from each other however they
can be thermally coupled through the 2D-reservoir they share. The p-doping of
the device gives rise to an excess of holes close to the quantum dots and a built-in
population of holes in the quantum dot [54]; therefore we assume that the overall
dynamic is governed by the electrons. We created different population equations
for both subensembles (n;;"). The core of our system is given by the following
equation system:

dnap
dt

= I+ Scepng™” — Sapa (2Ngps —ng™”)

rS,nrs rS,nrs
+ Sgpapny ™" — Sapr (4Ngps — ny ™)

— »r2DN2D (5.2)
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dnrs,nrs — -
st = Sepp(4Ngps —ng""") — Spapny’
r8,nrs nTS,m“s
Ds
rs,nrs n,rs’n?"s rs,nrs
+ Saeng’ (1 — 4](5[@ ) — Sy, (5.3)
Ds
dnrs,nrs . _—
Zt = Sopc(2Ngps —ne™”) — Saepng’
rsrs nT’S,TLT’S
Ds
ER nTGS,m“S TS,NTSs
+ Seeny (1— Y > — Sng
QDs
+ S¢G(n€? - NQDs)gb - Scohng9 s (54)
d¢ s rs
E = S¢G(TLG — NQDs)qb — SCOhTLG — Oéqb. (55)

T§,NTS rS,NTS

ng o, ng, nep are the electron population of the ground and excited state
as well as the 2D-reservoir population. Ngps is the total number of quantum dots
in the observed volume and ¢ corresponds to the entire photon flux traveling
through the device. The term I.. stands for the effective induced current that
describes the actual part of carriers transmitted into the system formed by the
quantum dots and the 2D-reservoir contrary to the total current injected into the
device I..

Figure[5.2] shows a diagram of the energy levels taken into account in our
model. The physical processes marked in figure[5.2] by arrows are represented
as rates (Srnitiairina, With Initial, Final=G(GS), E(ES) and 2D(2D Reservoir))
in the differential equations system. The particular calculation of the scattering
rates was shown in the last chapter including a microscopic approach that takes
into account the actual carrier density of the included energy levels [55] 53 [38].
The effective times 7 are defined here in relation to the rates S and are used
as free parameters for the fitting procedure of the experimental data. Since we
were interested mainly in the dynamics of the first picoseconds after the pulse, we
treated coherent phenomena that appear during or directly after the pulse arrival
as a coherent offset (S..,) in the rate equations. This offset is proportional to the
photon flux (¢). This simplification bases in the low dephasing time (73) that
quantum dots experience at temperatures equal or higher than room temperature
[56, 50].

S, is the inverse of the radiative life time 7, of ground and excited state
(suggested to be equal for both states), while S,op is the inverse of the effective
residence time m5p of the 2D-reservoir.

The capture rates from the 2D-reservoir to the ground state (excited state),
Sapa(k), depend on the available electron population in the 2D-reservoir (nap).
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Figure 5.2: Scheme of the InGaAs QD-in-a-well based SOA energy states included in the
modelling.
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In rate equation models concentrating on regions with low signals and injection

currents this term is expressed as ——22—— where ¢ = 2,4 for the ground
Topa(E)ENQDs

respectively excited state and mypg(g) represents the capture time from the 2D-
reservoir to the ground state (excited state). For high currents however this term

leads to rates higher than one (nap > Ngps), therefor we approximated the term
by

1 —ng D
SQDG = (]_ — GQNQDS) (56)

T2DG
—ngD
(1 - e4NQDS) (5.7)

This term tends to become 1 for nop > Ngps, but recovers the standard form
for Nop K NQDs-
The thermal redistribution of carriers is considered by the escape rates Sg(g)2p

and Sgg. We connected them with the capture rates by introduction of the
AElnitial Final
Boltzmann factor e *s7¢ | where T, is the carrier temperature not to be

mistaken wit the device temperature [57, [58] [59)].

SopE =
T2DE

1 AEgop

Sgap = e kple (5.8)
ToDG
1 AEgp
Sgap = e Fnte (5.9)
ToDE
1 aE
Sep = ——e Fple (5.10)

TEG
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This terms lead to a thermal steady-state situation as described at the begin-
ning of this section.
The gain-/absorption rate , Syq, is finally written as:

Sec = (1 —e7?) (5.11)

with ¢ being the gain/absorption per slice of thickness dz. For ¢ < Ngp, the
term represents the usual form (g-¢) and provides for high photon fluxes no gain
rates higher than ng (after multiplication with the rest of the term), that allows
for reproducing the region of high photon luxes given in our experiments.
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5.2 Comparison of model and experiment

In this section the rate equation model defined in the last section was applied
to systematically analyze the gain dynamics of single-, double- and four-pulse
experiments with repetition rates of the input-pulse up to 1 THz. We chose the
experimental conditions for the multi-pulse experiments in a way that the energy
per pulse was equal for all pulses of the incoming pulse-train at constant I..
Therefore we were able to fit groups of data (1, 2 and 4 pulse-curves, measured for
the same I.) with a shared parameter-set in a global least-squared minimization
routine. This limited the fit to consistent parameter values that can reproduce
the observed after-pulse-dynamics.

Part of the parameters used for the simulation were defined by the experi-
mental settings (lower part of table. We split the analyzes of the experimen-
tally determined data in two parts. In the first one we fitted the data for fixed
I,=35 mA and identified the best fit-parameters (figure[5.3). Table[5.1] shows an
overview of these acquired parameter set. After discussing these parameters, we
fitted in a second part the remaining measured I. curves basing on the results of
the first part.

Parameter Value (Units)
ToDGsT2DE 100 fs
TEG 500 fs
TG, TrE 445 ps
TroD 0.7 ps
Effective injected current I.c 5 mA
Carrier temperature 7T, 403 K
AEEG 45 meV
AEQ DG 210 meV
g (gain in 5um) 0.125 photons™!
waveguide losses « 5cm!
Pump Intensity 0.1 pJ per pulse
Probe Intensity 0.001 pJ per pulse

Table 5.1: Best fit (upper panel) and abinitio fixed (lower panel) parameters used to fit
the experimental normalized gain at fixed I. = 35 mA (figure |5.3)). TrnitiaiFinal, Where
Initial, Final=G(GS), E(ES) and 2D(2D reservoir), are the time constants associated
to the process connecting the initial and final energy levels. AEr,;tiaiFinal, is the energy
splitting between the initial and final electron levels.

The fast capture rates opg and mpg, i. e., constant relaxation times from
the 2D-reservoir to the ground and excited state, are similar to the 7 parame-
ter, determined beforehand as the fast component of the multi-exponential fitting
routine that is shown in fig.[3.0] in the last section of chapter three. If using rate
equations for description, i. e. neglecting polarization dynamics and focusing
only to population dynamics, then the fastest time constant requires to consist
with the rate of the direct capture from the 2D-reservoir into the confined states
of the quantum dots. The most remarkable result we achieved with our analy-
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Figure 5.3: Normalized gain curves as a function of I. measured for 1, 2 and 4 pulses in the
train. Solid lines show the corresponding model simulations.
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sis is however the fact that a fast mpg constant is mandatory to reproduce the
experimentally achieved gain recovery of several pulse trains. The continual low-
ering predicted after multiple pulse trains [3] decreases, if a direct capture into
the quantum dot ground state is considered additionally. The time constant 7z¢,
the relaxation time of the carriers into the quantum dot, is bigger than 7 po and
Topg. This fact leads us again to the conclusion that scattering processes that
involve carriers not confined at the quantum dots dominate.

Finally I would like to emphasize that the variation of the temperature is
important to achieve a satisfying fit, which is a clear hint to a thermal non-
equilibrium situation. The calculated values are higher than the temperature of
the device (ﬁgure, as could be expected for an electrically pumped system.
Nevertheless, this needs further studies. Maybe the thermalization in pulsed
experiments is for short times below the recombination lifetime not complete and
Tearriers > Tequitibrium holds within the device.

The time constants 7, and 7,5 are compatible with typical radiative quantum
dot lifetimes but their value can be influenced by the amplification processes the
spontaneous emission experiences in the waveguide. In addition the fitting showed
that only ~15% of the total injected current enters the quantum dot 2D-reservoir
system. The main parameter to reproduce the experimental variation of I. is
obviously the effective current 1.

A variation of the injection current I. has further effect on the device proper-
ties:
The temperature of the device depends on I.., as can be seen in figure[l.19) and
leads to an non-equilibrium situation of the carrier temperature 7.
The effective residence time of the carriers in the 2D-reservoir 7,op depends on
the current-induced carrier drift and the related change in the wetting layer de-
generacy, that is a function of the temperature too [60].
I. affects Topg, Topr and Teg by change of the carrier density (ng, ng and nop).

To study the influence of I. to the experimental results more carefully, we
simulated the gain curves for several different injection currents I, using only
three free parameters: I.., T, and 7,op whereas Topg, Topr and 7o were fixed
at the values achieved for 1.=35 mA (table. Fits for 1, 2 and 4 pulse trains
are shown in figure[5.3| for different injection currents. It is quite visible that our
model satisfyingly represents the pulse amplification process of the semiconductor
optical amplifier; this taking into account only experimental data of the ultrafast
experiment and a small amount of parameters that represent the actual operation
of the device. Note that our model does not reproduce half of the first picosecond
after pulse arrival because we treated coherent processes from the start just as an
coherent offset. A much more detailed discussion of the early time region can be
found in the last chapter based on semiconductor quantum dot Bloch equations
and specific T, measurements as a function of I..

Figure[5.4] shows the best-fit parameters of our systematic analysis. Appar-
ently our model provides further valuable informations, as e. g. the average
population of the thermal equilibrium, i. e. in advance of the arrival of the opti-
cal probe beam (pump-probe delay 7 < 0). We achieved the average population
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Figure 5.4: (a) Effective injected current I.. (scattered points), (b) Average population per
quantum dot in the system (ng, ng and nap), (c) Effective lifetime in the 2D reservoir 7,.9p and
(d) Carrier Temperature T, versus the experimental injected current I, to the device. Dashed
dot line in (a) is an eye-guideline y = I,

of the ground state ng as well, that increases with the current but saturates at
1.5 excitons per dot (2 corresponds to the maximum degeneracy of the ground
state). The thermal carrier redistribution reduces the maximum achievable gain
[61]. The general trend of the data approves that the dynamics is governed by the
total injected current rather than by the average population of the highest energy
level. As expected we can describe the normalized gain evolution qualitatively
by adjusting the induced current and its effect to the device.

Though the rate equation approach looks appropriate as a first approxima-
tion, I want to point out that scattering rate calculations, accomplished for similar
2D-reservoir carrier densities, predict slightly lower values for this process [46].
This can be attributed to the neglect of the dephasing that was taken into ac-
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count in the model of the previous chapter. In that model on the other hand no
propagation effects were included, i.e. the population was assumed to be homo-
geneous throughout the length of the device. It is obvious that there is plenty of
improvement to be done yet for both models that will be accomplished in future
work.
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Summary and outlook

In the framework of this thesis the gain recovery of a quantum dot semiconductor
optical amplifier was studied using ultrafast pump-probe spectroscopy. We were
able to show that the device we used suffices the needs of modern optical com-
munication networks speaking in first place of the speed of pulse-transmissions.

Extended measurements of up to four-pulse-trains measurements were per-
formed and different methods to achieve such trains were shown starting from
simple pulse shapers over amplitude modulation with a phase mask to a two-
stage Michelson interferometer.

We proved the complete gain recovery of the quantum dot ground state after
the amplification of a 200 GHz double pulse. This shows that there are no physical
obstacles for high rate operations of semiconductor optical amplifiers. The results
indicate that the relaxation dynamics is guided by direct capture processes from
the environment of the quantum dot, i.e. the well and the wetting layer.

A model using optical Bloch equations as well as a laser-like rate-equation
model were used to discuss the experiments. The first is a microscopic description
with coupled polarization- and population-dynamics in a thermal non-equilibrium
situation. It uses semiconductor quantum dot Bloch equations including micro-
scopically calculated Coulomb scattering rates. The latter describes the popu-
lation dynamics as a recovery process of a forced steady-state situation after an
optical induced perturbation.

It is confirmed that the gain dynamics is governed by the overall injected
current rather than by the population of the higher energy states. We found that
phonon-induced dephasing and a heated carrier population in the 2D-continuum
are crucial for the quantum dot-gain recovery and that the initial subpicosecond
dynamics is governed by the optical pump-pulse area and small T, times as well.

The necessity for rebuilding our setup gives us the opportunity to create it
in a way that lets us take influence in the pump- and probe-arm of the setup
separately allowing for example two color-experiments, i.e. having a different
wavelength for pump- and probe-beam. In addition it gives us the possibility
of creating pulse-trains only as a pump leaving us a higher range of power to
experiment with. We also plan on doing polarization-dependent measurements
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and more temperature related studies are up to come.

A combination of the effects taken into account by each of the two models
presented in this work could lead to a great improvement in the agreement be-
tween experiment and theory. Of course we will provide the data for comparison,
looking forward to deeper understanding of coherent and incoherent processes
related to gain dynamics.

The knowledge gained for improving devices by e.g. p-doping will provide us
with a new generation of amplifiers on our way to contribute in creating whole
optical communication networks for the future applications.
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