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Abstract
We study the n-dimensional wave equation with an elasto-plastic nonlinear stress-strain

relation. We investigate the case of heterogeneous materials, i.e. x-dependent parameters
that are periodic at the scale η > 0. We study the limit η → 0 and derive the plasticity
equations for the homogenized material. We prove the well-posedness for the original and
the effective system with a finite-element approximation. The approximate solutions are
used in the homogenization proof which is based on oscillating test function and an adapted
version of the div-curl Lemma.
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1 Introduction

We are interested in the description of deformation waves in plastic materials and in the
derivation of effective (or homogenized) models. For the description of the problem we use a
polygonal reference volume Ω ⊂ Rn occupied by the plastic material, a time interval (0, T )
and ΩT := Ω × (0, T ). The dependent variables are the deformation u : ΩT → Rn with
symmetric gradient ε̄ : ΩT → Rn×n (strain), and the stress tensor σ : ΩT → Rn×n. The
wave equation with density ρ and volume load f then reads

ρ∂2
t u−∇ · σ = f (1.1)

on ΩT , it expresses conservation of momentum and is valid for elastic and plastic materials.
Elastic materials are characterized by a linear dependence between strain ε̄ and stress σ.
Plastic materials show an elastic response for deformations ε̄ within a subset of Rn×n, beyond
the boundary of this set (the flow surface), even small forces can result in large deformations.
In the Prandtl-Reuss model with linear hardening (see [1, 13]) one uses

∂tε̄−B∂tσ ∈ ∂ϕ(σ −Aε̄). (1.2)

Here B and A are tensors that describe the response of the material before and after plas-
tic flow sets in, the nonlinear function ϕ : Rn×n → R̄ is an indicator function which is
discontinuous at the flow surface.

1Technische Universität Dortmund, Fakultät für Mathematik, Vogelpothsweg 87, D-44227 Dortmund,
Germany.



2 Periodic homogenization of plasticity equations in arbitrary dimension

One of our results is an existence result for the above problem, where we use a solution
concept that is adapted to energy estimates. Our method of proof relies on a regularization
of the equations and a finite element scheme to construct approximate solutions. Uniform
estimates for the approximate solutions allow to take limits, which turn out to be strong
variational solutions. Theorem 1.1 provides an existence result for the original system with
variable parameters and, additionally, an existence result for the homogenized system.

Our main interest lies in the homogenization of the above equations. We assume that the
material characteristics A, B, ρ, and ϕ depend on x ∈ Ω in a periodic way. More precisely,
for the unit cube Y := [0, 1[n with periodic identifications of the boundaries, we assume that
with A : Y → Rn×n the first material parameter is Aη(x) = A(x/η), and similarly for the
other parameters. The vector of unknowns in the η-problem is

(uη(x, t), ση(x, t), εη(x, t)) = (displacement vector, stress tensor, strain tensor).

Our interest is to find a homogenized model that allows to calculate directly the weak limits
(u, σ, ε) for η → 0 of the above solutions. We emphasize at this point that we will work with
the modified strain tensor ε = ε̄ − Bσ, which has the advantage that the left hand side of
(1.2) is simply ∂tε. The tensor ε represents the plastic part of the total strain ε̄, as in [1].

The homogenized model has the form of a two-scale model [6], i.e. some quantities
depend not only on the coarse scale parameters x and t, but additionally on the fine scale
parameter y ∈ Y . The main unknowns in the homogenized problem are

(u(x, t), z(x, t, y), w(x, t, y)) = (displacement vector, stress tensor, strain tensor).

The equations for the η-problem and the homogenized system are given as problems (Pη)
and (P) in Subsection 1.1. With our main result, Theorem 1.2, we show that solutions of
problem (Pη) converge to solutions of problem (P).

The method of proof is to start from a solution to problem (P), to construct from
these functions a family of approximate solutions to problem (Pη), and to use them as
test-functions in problem (Pη). An important technical problem is that system (P) does
not provide the regularity that is needed to make this method rigorous. This problem was
solved in [5, 18, 19] with a regularization procedure. Our approach is to use the finite element
approximate solution to problem (P) for the construction of test-functions.

Literature. As a general reference for plasticity equations we mention the books [1, 13],
a more general treatment of hysteresis equations is given in [8, 24]. Existence results for
plasticity equations can be found in all these books, additionally e.g. in [4] and in all the
references below concerning homogenization. The reference [1] covers very general laws,
classified as “constitutive equations of monotone type”. This class includes our problem (Pη),
but not the limit problem (P). Reference [4] concerns an existence theory for the quasistatic
approximation of viscoelasticity with nonlinear kinematic hardening (or no hardening).

Homogenization of the (spatially) one-dimensional case was studied in [10, 12, 23]. The
one-dimensional case is much more accessible than the general case, since with the divergence
of the stress all derivatives of the stress are controlled.

Homogenization of plasticity equations in higher space dimension has been treated with
different techniques. The two-scale convergence method [6, 20] was employed for the quasi-
static (no ∂2

t u-term)2 visco-elasticity (ϕ ∈ C0) in [27], for the Kelvin-Voigt model (ϕ ∈ C0

2in the description of other models of the literature we indicate in brackets the main distinction to our model.
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and B = 0) in [26], for Maxwell (ϕ ∈ C0 and A = 0) and for Prandtl-Reuss without strain
hardening (A = 0) in [28]. We note that in some publications the name “Prager model” is
used instead of “Prandtl-Reuss” (e.g. in [23, 25]), but the additional assumption B = 0 is as-
sumed for the Prager-model e.g. in [26] (which does not contain the rigorous homogenization
of that model). Gamma-convergence served the investigation of rate-independent systems
in [16]. The tools of Steklov regularization and phase-shift convergence were adopted in
the homogenization of quasi-static monotone constitutive equations [5, 18, 19]. We refer
additionally to [2, 3] for the development of these tools.

Homogenization is also a recent subject in investigations from the engineering point of
view, e.g. in [14, 15, 9]. The only reference for rigorous homogenization in the stochastic
case seems to be [23], which is restricted to the one-dimensional case. We emphasize that,
as in the contribution [22] regarding hysteresis in porous media, the homogenized system
is transformed into a system of simpler structure than in the case of higher dimensional
plasticity equations: it is not a general two-scale system with doubled spatial variables x
and y, but a system in only x and t with an averaged hysteresis operator of Prandtl-Ishlinskii
type.

Our results are closest to [5] and [28], but we treat the wave equation and A 6= 0 (and
an oscillatory density). The main distinction is that we use a different method, namely the
very direct and general (compare [17]) tool of oscillating test functions developed by Tartar
(e.g. appendix of [21], see also [7]). The main advantage of this method is that, in principle,
it can be used also in the stochastic case, see [23].

1.1 Statement of the problems and main results

In order to model highly heterogeneous media, we assume that the material parameters are
given by maps A,B,L : Y → T 2

s , where Y := [0, 1[n is the periodic unit cell and T 2
s is the

space of symmetric second order tensors, i.e. linear maps Rn×n → Rn×n. Furthermore, we
assume that the flow surface of the plastic material is given by a convex function ϕ( · ; y),
which is, for every y ∈ Y , an indicator function of a closed convex set ω(y). The precise
assumptions are given in Subsection 1.2. Denoting by η > 0 the small length scale of the
periodicity cells, we consider

Aη(x) = A

(
x

η

)
, Lη(x) = L

(
x

η

)
, ϕη( · ;x) = ϕ

(
· ;
x

η

)
,

and analogously for Bη(x) and ρη(x). We now formulate (1.1)–(1.2) for oscillatory coef-
ficients and state the homogenized two-scale problem, which contains y as an additional
independent variable. An interesting aspect of the homogenized problem (P) is the addi-
tional unknown v in (1.4c), which models local variations of the displacement vector. It
plays the role of a Lagrange parameter for the local incompressibility constraint (1.4d).

Problem (Pη). Find uη : ΩT → Rn and ση, εη : ΩT → T 2
s solving

ρη∂
2
t u

η −∇ · ση = f, (1.3a)
∂tε

η ∈ ∂ϕ(Lησ
η −Aηε

η ; x
η ), (1.3b)

εη = ∇suη −Bησ
η, (1.3c)

and we emphasize that (1.3b) includes the condition Lησ
η −Aηε

η ∈ ω(x
η ).
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Limit Problem (P). For given ρ̄ > 0, find u : ΩT → Rn, v : ΩT × Y → Rn, and
w, z : ΩT × Y → T 2

s , solving

ρ̄∂2
t u−∇ ·

(∫
Y
z dy

)
= f, (1.4a)

∂tw ∈ ∂ϕ(Lz −Aw ; y), (1.4b)
w = ∇s

xu+∇s
yv −Bz, (1.4c)

divyz = 0. (1.4d)

In Section 2 we prove the existence and uniqueness of strong solutions to problems (Pη)
and (P), in Section 3 we prove the homogenization result. We state these two theorems here
and refer to Subsections 1.3 and 1.4 for the choice of boundary data and for the definition
of strong solutions, respectively.

Theorem 1.1. Let f ∈ H1(0, T ;L2(Ω; Rn)) be given, and let initial data and boundary
conditions be as specified below and compatible in the sense of (1.18) and (1.22). For all
y ∈ Y , let ϕ(y) be the indicator function of a set ω(y), as in (1.10). Then, with a constant
C that depends on ᾱ, β̄, ρ̄, and ΩT , but not on η, we have the following existence result with
uniform estimates.

For every η > 0 there exists a unique strong solution (uη, εη, ση) of problem (P η) with

‖uη‖W 1,∞(0,T ;H1(Ω;Rn)) + ‖∂2
t u

η‖L∞(0,T ;L2(Ω;Rn))

+ ‖εη‖W 1,∞(0,T ;L2(Ω;T 2
s )) + ‖ση‖W 1,∞(0,T ;L2(Ω;T 2

s )) ≤ C
(
‖u0‖H1(Ω;Rn)

+‖u1‖H1(Ω;Rn) + ‖σ0‖L2(Ω;T 2
s ) + ‖divσ0‖L2 + ‖f‖H1(0,T ;L2(Ω))

)
.

There exists a unique strong solution (u, v, w, z) of the homogenized problem (P) with

‖u‖W 1,∞(0,T ;H1(Ω;Rn)) + ‖∂2
t u‖L∞(0,T ;L2(Ω;Rn)) + ‖∇yv‖W 1,∞(0,T ;L2(Ω×Y ;T 2

s ))

+ ‖w‖W 1,∞(0,T ;L2(Ω×Y ;T 2
s )) + ‖z‖W 1,∞(0,T ;L2(Ω×Y ;T 2

s ))

≤ C
(
‖u∗0‖H1(Ω;Rn) + ‖u∗1‖H1(Ω;Rn) + ‖v0‖L2(Ω;H1(Y ;Rn))

+ ‖div z̄0‖L2(Ω) + ‖z0‖L2(Ω×Y ;T 2
s ) + ‖f‖H1(0,T ;L2(Ω))

)
.

Theorem 1.2. Let (uη, εη, ση) be sequence of strong solutions of problems (P η) and let
(u, v, w, z) be a strong solution of problem (P), as in Theorem 1.1. Set ρ̄ =

∫
Y ρ. Let the

initial data be compatible in the sense of (1.18) and (1.22), and let them be in relation (1.23)
to each other. Then, as η → 0,

∂tu
η → ∂tu strongly in L2(ΩT ),

ση ⇀

∫
Y
z dy, εη ⇀

∫
Y
w dy weakly in L2(ΩT ).

1.2 The rheological model

Under the hypothesis of small displacements, the stress tensor depends only on the linear
strain, i.e. on the symmetrized gradient of the displacement ∇su := 1

2

(
∇u+∇uT

)
. The

linear maps A and B−1 map strain tensors to stress tensors and we therefore introduce some
notation regarding tensors.
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We denote the space of second order tensors by T 2 = L(Rn,Rn) and symmetric tensors by
T 2

s . As a scalar product on the space T 2 we adopt the standard product σ : ε =
∑n

i,j=1 σijεij ,

with the induced norm |σ|2 = σ : σ =
∑n

i,j=1 σ
2
ij . The space of fourth order tensors is denoted

by T 4 := L(T 2, T 2). With indices we write A = {akl
ij} ∈ T 4 and, for ξ = {ξij} ∈ T 2,

(Aξ)ij =
∑

k,l a
kl
ijξkl.

Review of convex analysis

We review some basic facts of convex analysis. We give the statements in the case when X is
a separable Hilbert space, with scalar product “·”, having in mind the application X = T 2

s .
Let

ϕ : X → R ∪ {+∞}, convex and lower-semicontinuous, with ϕ ≡/+∞. (1.5)

The domain of ϕ is
dom(ϕ) := {σ ∈ X : ϕ(σ) < +∞} .

The Legendre-Fenchel conjugate ϕ∗ is given by

ϕ∗ : X → R ∪ {+∞}, ε 7→ sup
σ∈X

{ε · σ − ϕ(σ)}.

The subdifferential ∂ϕ : dom(ϕ) → P(X) is the set

∂ϕ(σ) = {ε ∈ X such that ϕ(ξ) ≥ ϕ(σ) + ε · (ξ − σ) ∀ ξ ∈ X} .

A multivalued operator f : dom(f) ⊂ X → P(X) is said to be monotone if

(σ1 − σ2) · (ε1 − ε2) ≥ 0, ∀ εi ∈ dom(f), ∀σi ∈ f(εi), (i = 1, 2).

Some useful properties of convex functions are summarized in the following lemma, for a
proof we refer to [11].

Lemma 1.3. For every ϕ as in (1.5) holds

(i) ϕ∗ is convex, lower-semicontinuous, and dom(ϕ∗) 6= ∅,
(ii) ∂ϕ, ∂ϕ∗ are monotone operators,

(iii) ϕ(σ) + ϕ∗(ε) ≥ σ · ε, ∀σ, ε ∈ X.

(iv) σ ∈ dom(ϕ) and ε ∈ ∂ϕ(σ) ⇔ ε ∈ dom(ϕ∗) and σ ∈ ∂ϕ∗(ε).
(v) ε ∈ dom(ϕ∗) and σ ∈ ∂ϕ∗(ε) ⇔ ϕ(σ) + ϕ∗(ε) = σ · ε.

The equality in (v) is known as Fenchel’s equality, while (iii) is referred to as Fenchel’s
inequality.

Decomposition into spheric and deviatoric part

In our setting of plasticity, the plastic response is given by two 4th-order tensors A and B
and a flow surface in T 2

s , which defines the convex function ϕ. In order to describe real
materials, it is important to note that the flow surface is contained in a lower dimensional
subspace of T 2

s , the deviatoric tensors. This reflects the fact that the material responds in
an elastic way to deformations that correspond to purely volumetric changes. We therefore
use an orthogonal decomposition of T 2

s into spheric and deviatoric components [13],

T 2
s = S2 +D2, σ = σS + σD,
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the first component associated to volumetric changes, the latter associated to other defor-
mations. For σ ∈ T 2

s , the projections onto spheric part σS and deviatoric part σD are given
by

σS := PS(σ) :=
1
n
tr(σ)IT 2 , σD := PD(σ) := σ − σS ,

where IT 2 is the identity tensor in T 2 and n is the space dimension. We note that the
subspaces S2 = PS(T 2

s ) and D2 = PD(T 2
s ) are orthogonal, σS : σD = 0 for all σS ∈ S2 and

σD ∈ D2.

The indicator function ϕ (including von-Mises and Tresca models)

We represent the yield criterion of the studied material by a set ω and a function χω

ω ⊂ T 2
s is a bounded closed convex set, 0 ∈ ω,

χω : T 2 → R ∪ {+∞} χω(σ) :=
{

0 if σ ∈ ω,
+∞ if σ /∈ ω, .

(1.6)

An example is the von-Mises yield criterion, which introduces, for a radius γ > 0,

ωM :=
{
σ ∈ T 2

s : |σD| ≤ γ, σS = 0
}
.

The constraint on the spheric part is introduced in order to impose, by equation (1.2), a
linear relation between the spheric parts of strain and stress. The condition on the deviatoric
part determines the plastic behavior of the material. We want to allow ω to depend on the
spatial variable x. In the homogenization process we will assume that the spatial dependence
is highly oscillatory, therefore the set ω is assumed to depend on the fine-scale variable y.

As a special case of our setting, we discuss here the von-Mises yield criterion with a
variable positive radius γ ∈ C(Y ; R). It reads

ωM (y) :=
{
σ ∈ T 2

s : |σD| ≤ γ(y), σS = 0
}
.

In this model, we can compute explicitly

∂χωM (σ; y) =
{
ε ∈ T 2

s such that ε : (ξ − σ) ≤ 0, ∀ ξ ∈ ωM (y)
}

=
{
S2 if |σ| < γ(y),
S2 + {λσ, λ ≥ 0} if |σ| = γ(y),

χ∗ωM
(ε; y) = max

σ∈ωM (y)
{ε : σ} = γ(y)|εD|,

∂χ∗ωM
(ε; y) =


ωM (y) if εD = 0,

γ(y)
εD

|εD|
if |εD| > 0,

where we identified the one-point set {γ(y)εD/|εD|} of the last line with its element.
Another frequently used model is given by the Tresca criterion

ωTr(y) :=
{
σ ∈ T 2

s : max
i,j=1,...,n

|λi(σD)− λj(σD)| ≤ γ(y), σS = 0
}
, (1.7)

where λi(σ) are the eigenvalues of σ.
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Remark 1.4. An indicator function ϕ = χω, as in (1.6), has an important feature: even
though ∂ϕ∗ is a multivalued operator, the map ε 7→ ∂ϕ∗(ε) : ε is single valued. In fact, owing
to Lemma 1.3–(v)

∂ϕ∗(ε) : ε = ϕ∗(ε) + ϕ(σ) = ϕ∗(ε) ≥ 0, ∀ ε ∈ X, ∀σ ∈ ∂ϕ∗(ε).

Note that the boundedness of ω implies that dom(ϕ∗) = X, and that 0 ∈ ω implies that
ϕ∗ ≥ 0.

We emphasize that the subdifferential inclusion of (1.2),

∂tε̄−B∂tσ ∈ ∂ϕ(σ −Aε̄),

always demands, in particular, that σ − Aε̄ ∈ dom(ϕ). For both of the above models, the
additional consequences can be described as follows. (i) spherical responses are given by A
through (σ −Aε̄)S = 0. (ii) for (σ −Aε̄) inside ω ⊂ D2, the deviatoric response is given by
B through (∂tε̄ − B∂tσ)D = 0. (iii) on the yield surface, i.e. for σ − Aε̄ ∈ ∂ω ⊂ D2, the
point ξ := σ−Aε̄ determines the affine material response. Loosely speaking, the flow of the
plastic strain εD = (ε̄−Bσ)D occurs in direction ξ.

Structural assumptions, positivity and continuity

To keep notations simple, we assume that the elastic responses given by A,B ∈ T 4 can be
described by two coefficients as in the case of Lamé constants,

A(y) = αS(y)PS + α(y)PD, B(y) = βS(y)PS + β(y)PD, (1.8)

where PS , PD : T 2 → T 2 are the projections onto the spheric and deviatoric subspaces.
With this choice, the (elastic) spherical law is described by αS , the elastic deviatoric law for
small deformations is given by β (or, better, by 1/β), and plastic deviatoric deformations are
described by α. Note that the choice of βS does not enter in the equations, since an elastic
response is assumed in the spheric direction. We will always assume the strict positivity of
the above constants. Finally, we assume α(y)β(y) < 1, which expresses that the material
gets weaker when flowing sets in. To summarize,

αS , α, β ∈ C(Y ; R) satisfy, for some ᾱ, β̄ > 0 :
αS , α ≥ ᾱ, β ≥ β̄, αβ < 1.

(1.9)

We assume that the convex function ϕ is given by

ϕ(σ ; y) := χω(y)(σ) with ω(y) ⊂ T 2
s as in (1.6),

|ϕ∗(σ ; y1)− ϕ∗(σ ; y2)| ≤ m(|y2 − y1|)|σ| ∀ y1, y2 ∈ Y
(1.10)

where the continuous functionm withm(0) = 0 is an upper bound for the continuity modulus
of ϕ∗(σ ; ·). This model includes the von-Mises and the Tresca criterion for continuous γ(y).
Inclusion (1.2) can be simplified by setting ε = ε̄ − Bσ and using L := (IT 2 − AB) =
IT 2 − αSβSP

S − αβPD,
∂tε ∈ ∂ϕ(Lσ −Aε ; y),

Owing to Lemma 1.3–(iv), this inclusion can be equivalently formulated as

σ ∈ L−1(Aε+ ∂ϕ∗(∂tε ; y)), (1.11)
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where we use that L can be inverted due to the last condition of (1.9). More precisely, we
set βS := (α/αS)β (which does not alter the model), such that

L(y)−1 = `(y)IT 2 , ` := (1− αβ)−1 ≥ ¯̀> 0 (1.12)

by the continuity of the coefficients. Finally, we denote by ρ ∈ L∞(Y ; R) the density of the
material. We assume that there exists ρ̄ > 0 such that

ρ(y) ≥ ρ̄ a.e. in Y. (1.13)

We conclude the summary of our assumptions by a remark on possible generalizations.
The positivity of all coefficients as above is crucial for our method. This restricts the method
to models with kinematic hardening and excludes e.g. the case of perfect plasticity. The
assumption (1.8) on the existence of Lamé constants can be weakened, but some symmetry
requirements are necessary for our method, which uses that (Aε)S = AεS and symmetry
of A and B. Regarding the latter it is important to demand Bkl

ij = Bij
kl in order to have

∂t(σ : Bσ) = 2σ : B∂tσ. A more severe restriction is that we need a monotonicity of the
expression in (1.11) in the argument ∂tε. To be more precise, we will use

∂tε : L−1(Aε+ ∂ϕ∗(∂tε)) =
1
2
∂t[ε : L−1Aε] + ∂tε : L−1∂ϕ∗(∂tε) ≥

1
2
∂t[ε : L−1Aε],

and a positivity of the expression in brackets on the right hand side. Both are satisfied
under our assumptions by positivity of A and by L−1 = `IT 2 . The inequality in the above
calculation is valid for every element in ∂ϕ∗(∂tε), cp. Remark 1.4.

Regularized model

The proofs of Theorem 1.1 and of Theorem 1.2 are based on the existence of a regularization
of ϕ. We assume that there exists a family of convex functions {ϕδ}δ, depending on δ ∈ (0, 1)
and on the parameter y ∈ Y , which satisfies the following requirements.

ϕδ, ϕ
∗
δ : T 2

s → R, convex (1.14a)

lim
δ→0

ϕδ(σ ; y) = ϕ(σ ; y), ∀σ ∈ T 2
s , (1.14b)

|ϕ∗δ(ε ; y)− ϕ∗δ(ε ; y)| ≤ Cδ|ε|, ∀ ε ∈ T 2
s , (1.14c)

for all y ∈ Y . We additionally ask that ϕδ, ϕ
∗
δ ≥ −Cδ on T 2

s , in order to fix the rate of
convergence and give an explicit bound in the a priori estimates.

A possible regularization for the von-Mises yield criterion is given by

ϕδ(ξ, y) :=


δ

2

(
|ξ|2

γ2(y)
− 1

)
+

[tr(ξ)]2

2δ
if |ξ| ≤ γ(y),

1
2δ

(
|ξ|
γ(y)

− 1 + δ2
)2

− δ3

2
+

[tr(ξ)]2

2δ
if |ξ| > γ(y).

1.3 Initial and boundary conditions

Special care must be taken of compatibility requirements on the initial data.
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Compatible initial data for problem (P η). Initial values for problem (1.3) are
given by u0, u1 ∈ H1(Ω,Rn) and σ0 ∈ L2(Ω, T 2

s ) with divσ0 ∈ L2(Ω,Rn), and we impose
the initial and boundary conditions

uη(·, 0) = u0, ∂tu
η(·, 0) = u1, ση(·, 0) = σ0 in Ω (1.15)

ση · ν = 0 on ∂Ω× (0, T ), (1.16)

where ν is the outward-directed unit normal vector on ∂Ω. In order to satisfy (1.3b) we
demand that the plastic strain, according to (1.3c) initially given by

εη0 := ∇su0 −Bησ0, (1.17)

satisfies the compatibility condition

Lησ0 −Aηε
η
0 ∈ dom(ϕη) in Ω. (1.18)

It would also be possible to allow for oscillating initial displacements uη
0. We restrict to

non-oscillating for an easier form of the compatibility condition below.

Compatible initial data for problem (P). For the homogenized problem (1.4),
initial and boundary conditions are given by u∗0, u

∗
1 ∈ H1(Ω,Rn), v0 ∈ L2(Ω;H1(Y,Rn)),

and z0 ∈ L2(Ω× Y, T 2
s ) through

u(·, 0) = u∗0, ∂tu(·, 0) = u∗1, v(·, 0) = v0, z(·, 0) = z0 in Ω (1.19)
z · ν = 0 on ∂Ω× (0, T ), (1.20)

where we used z̄(x) =
∫
Y z(x, .) for the Y -average. We demand divyz0 = 0 and div z̄0 ∈

L2(Ω,Rn) for the Y -average z̄0(x) =
∫
Y z0(x, .).

With the help of (1.4c) we can extract from the above data also the initial condition for
w as

w0(x, y) := ∇su∗0(x) +∇s
yv0(x, y)−B(y)z0(x, y). (1.21)

We assume the compatibility condition

Lz0 −Aw0 ∈ dom(ϕ) in Ω× Y. (1.22)

Relation of the initial values for original and limit problem.

According to the definition of εη0 in (1.17) we demand the relations

u∗0 = u0, u∗1 = u1, w0(x, y) = ∇su0(x)−B(y)σ0(x). (1.23)

Loosely speaking, we calculate w0 from the initial data u0 and σ0 of the η-problem and
demand that the initial data v0 and z0 satisfy (1.21) as in a Hopf decomposition. We
emphasize that the choice of trivial initial conditions (for position, velocity, and stress) is
compatible for both problems and satisfies (1.23).
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1.4 Solution concepts.

We can now define a concept of strong solution for our problems.

Definition 1.5 (Strong solutions). Let f ∈ H1(0, T ;L2(Ω)) be given. A vector (uη, εη, ση) ∈
L2(ΩT ; Rn) × L2(ΩT ; T 2

s )2 is called a strong solution to Problem (P η) if the distributional
derivatives satisfy

∂2
t u

η, ∂t∇uη, ∂tε
η, ∂tσ

η ∈ L∞(0, T ;L2(Ω)), (1.24)

equations (1.3a), (1.3c) are satisfied in the sense of distributions and relation (1.3b) is
satisfied almost everywhere in ΩT .

A vector (u, v, w, z) ∈ L2(ΩT ; Rn)×L2(ΩT ×Y ; Rn)×L2(ΩT ×Y ; T 2
s )2 is called a strong

solution to Problem (P) if the distributional derivatives satisfy

∂2
t u, ∂t∇u ∈ L∞(0, T ;L2(Ω)), (1.25)
∂t∇yv, ∂tw, ∂tz ∈ L∞(0, T ;L2(Ω× Y )), (1.26)

equations (1.4a), (1.4c), and (1.4d) are satisfied in the sense of distributions and equation
(1.4b) is satisfied almost everywhere in ΩT × Y .

In both problems we additionally demand that the initial conditions are satisfied in the
sense of traces, the boundary condition through the weak formulation of equations (1.3a) and
(1.4a).

Remark. Due to the regularity of strong solutions, equations (1.3c) and (1.4c) hold
pointwise almost everywhere. The weak formulation of (1.3a), which contains the boundary
condition of a vanishing normal component of the stress, is

−
∫

ΩT

ρη∂tu
η · ∂tψ +

∫
ΩT

ση : ∇ψ =
∫

ΩT

f · ψ, ∀ψ ∈ C∞
c ((0, T )× Ω).

The weak formulation of (1.4a) is analogous.

It will be useful to introduce a second concept of solutions. This concept of variational
solutions, which was already exploited in [23], uses an energy inequality in the character-
ization of solutions. It will actually turn out to be equivalent to the first concept, but it
can easier be verified for weak limits. We emphasize that the use of an energy inequality is
common in the analysis of hysteresis problems, (iv)η was employed e.g. in [25, 26, 27, 28] in
order to characterize weak variational solutions.

Definition 1.6 (Strong variational solutions). Let f ∈ H1(0, T ;L2(Ω)) be given. A vector
(uη, εη, ση) ∈ L2(ΩT ; Rn) × L2(ΩT ; T 2

s )2 is called a strong variational solution to Problem
(P η) if

(i)η it has the regularity of a strong solution (1.24),

(ii)η it solves equations (1.3a) and (1.3c) in the distributional sense in ΩT ,

(iii)η Lησ
η −Aηε

η ∈ ω
(

x
η

)
a.e. in ΩT ,

(iv)η it satisfies the energy inequality

1
2

∫
Ω
ρη|∂tu

η|2 + εη : [`ηAη] εη + ση :Bησ
η
∣∣∣t
0

+
∫

Ωt

`ηϕ
∗
η(∂tε

η) ≤
∫

Ωt

f · ∂tu
η (1.27)

for almost every t ∈ (0, T ).
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A vector (u, v, w, z) ∈ L2(ΩT ; Rn) × L2(ΩT × Y ; Rn) × L2(ΩT × Y ; T 2
s )2 is called a strong

variational solution to Problem (P) if

(i) it has the regularity of a strong solution (1.25), (1.26),

(ii) it solves equations (1.4a), (1.4c), and (1.4d) in the distributional sense in ΩT × Y ,

(iii) Lz −Aw ∈ ω(y), a.e. in ΩT × Y ,

(iv) it satisfies the energy inequality

1
2

(∫
Ω
ρ̄|∂tu|2 +

∫
Ω×Y

w :
[
`A

]
w + z : Bz

) ∣∣∣t
0

+
∫

Ωt×Y
`ϕ∗(∂tw) ≤

∫
Ωt

f · ∂tu. (1.28)

for almost every t ∈ (0, T ).

Lemma 1.7. Every strong variational solution according to Definition 1.6 is also a strong
solution in the sense of Definition 1.5. Vice versa, every strong solution is a strong varia-
tional solution.

Proof. We show the result for problem (Pη), the proof for the limit problem (P) is analo-
gous. It is easy to check that every strong solution of problem (Pη) satisfies (1.27) as an
equality. We skip this calculation, which is also contained in the proof of Lemma 2.1. The
regularity assumed in (1.24) is sufficient to perform all the computations rigorously. With
this observation it is shown that every strong solution is a strong variational solution.

Let us prove the converse implication: for a strong variational solution (uη, εη, ση) of
problem (Pη) we need to show that equation (1.3b) is satisfied a.e. in ΩT . We start from
the energy inequality (1.27) to calculate∫

Ωt

`ηϕ
∗
η(∂tε

η) ≤
∫

Ωt

f · ∂tu
η − 1

2

∫
Ω
ρη|∂tu

η|2 + εη : (`ηAη)εη + ση : Bησ
η
∣∣∣t
0

=
∫

Ωt

f · ∂tu
η −

∫
Ωt

ρη∂
2
t u

η · ∂tu
η + ∂tε

η : (`ηAη)εη + ση : Bη∂tσ
η

(1.3a)
=

∫
Ωt

ση : ∂t∇uη −
∫

Ωt

∂tε
η : (`ηAη)εη + ση : Bη∂tσ

η

(1.3c)
=

∫
Ωt

ση : ∂t(Bησ
η + εη)−

∫
Ωt

∂tε
η : (`ηAη)εη + ση : Bη∂tσ

η

=
∫

Ωt

∂tε
η :

[
ση − (`ηAη)εη

]
=

∫
Ωt

`η∂tε
η :

[
Lησ

η −Aηε
η
]
.

(1.29)

The last integrand can be estimated by Fenchel’s inequality (Lemma 1.3-(iii)) as

∂tε
η :

[
Lησ

η −Aηε
η
]
≤ ϕ∗η(∂tε

η) + ϕη(Lησ
η −Aηε

η), a.e. in Ω. (1.30)

Due to property (iii)η of Definition 1.6 we have ϕη(Lησ
η − Aηε

η) = 0. We can therefore
estimate the integrand of the right hand side of (1.29) by the integrand of the left hand side.
We obtain the equality

∂tε
η :

[
Lησ

η −Aηε
η
]

= ϕ∗η(∂tε
η) + ϕη(Lησ

η −Aηε
η), a.e. in Ω.

Properties (iv) and (v) of Lemma 1.3 imply

∂tε
η ∈ ∂ϕη(Lησ

η −Aηε
η).

This shows (1.3b) and hence the equivalence of the solution concepts.
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2 Existence

In this section we prove Theorem 1.1 with the help of approximate equations. We replace
the nonlinear function ϕ (which has flat parts and infinite slopes) by a regularized function
ϕδ satisfying hypothesis (1.14a)–(1.14c). Furthermore, we will discretize the equations in
space with a small parameter h, such that the existence to the approximate system will
be a consequence of the Picard-Lindelöf theorem for ordinary differential equations. The
derivation of uniform estimates for the approximate problems allows to perform the limits
δ → 0 and h → 0 and to find solutions to the original problems together with the same
estimates.

For ease of notation we perform all calculations in this section under the hypothesis
ρ ≡ 1, i.e. ρη = ρ̄ = 1. In Section 3 we allow again the y-dependent density.

2.1 Regularization and a priori estimates

Let ϕδ,η( · ) := ϕδ( · ; x/η), ϕδ( · ) := ϕδ( · ; y), and denote

U := Ω× Y, UT := Ω× Y × (0, T ).

In the statement of the regularized problems we use the formulation of the subdifferential
inclusion as in (1.11).

Regularized Problem (Pη
δ). Find uη

δ : ΩT → Rn and ση
δ , ε

η
δ : ΩT → T 2

s solving

∂2
t u

η
δ −∇ · ση

δ = f

ση
δ = `η

[
Aηε

η
δ +∇ϕ∗δ,η(∂tε

η
δ )

]
εηδ = ∇suη

δ −Bησ
η
δ .

Regularized Limit Problem (Pδ). Find uδ : ΩT → Rn, vδ : UT → Rn, and wδ, zδ : UT →
T 2

s , solving

∂2
t uδ −∇ ·

(∫
Y
zδ dy

)
= f (2.1a)

zδ = `[Awδ +∇ϕ∗δ(∂twδ)] (2.1b)
wδ = ∇suδ +∇s

yvδ −Bzδ (2.1c)
divyzδ = 0. (2.1d)

The following lemma collects the energy estimates for strong solutions. It helps to identify
useful function spaces for the construction of solutions. For our methods, it will be necessary
to improve the estimates by one order in time, which is done in Lemma 2.2.

Lemma 2.1 (Energy estimates for the δ-regularized problem). There exists a constant
C > 0, independent of δ and η, such that strong solutions (uη

δ , σ
η
δ , ε

η
δ ) of (P η

δ ) satisfy

‖εηδ‖
2
L∞(0,T ;L2(Ω))

+ ‖ση
δ ‖

2
L∞(0,T ;L2(Ω))

+ ‖ϕ∗δ,η(∂tε
η
δ )‖

L1(ΩT )

+ ‖ϕδ,η(Lησ
η
δ −Aηε

η
δ )‖

L1(ΩT )
+ ‖∂tu

η
δ‖

2
L∞(0,T ;L2(Ω))

+ ‖uη
δ‖

2
L∞(0,T ;H1(Ω))

≤ C
(
‖uη

0‖
2
H1(Ω) + ‖aη

0‖
2
L2(Ω) + ‖ση

0‖
2
L2(Ω) + ‖f‖2

L2(UT ) + δ
)
,
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and solutions (uδ, vδ, wδ, zδ) of (Pδ) satisfy

‖wδ‖2
L∞(0,T ;L2(U)) + ‖zδ‖2

L∞(0,T ;L2(U)) + ‖ϕ∗δ(∂twδ)‖L1(UT ) + ‖ϕδ(Lzδ −Awδ)‖L1(UT )

+ ‖∂tuδ‖2
L∞(0,T ;L2(Ω)) + ‖uδ‖2

L∞(0,T ;H1(Ω)) + ‖∇yvδ‖2
L2(UT )

≤ C
(
‖u∗0‖

2
H1(Ω) + ‖u∗1‖

2
L2(Ω) + ‖v0‖2

L2(Ω;H1(Y )) + ‖z0‖2
L2(U) + ‖f‖2

L2(UT ) + δ
)
. (2.2)

Proof. We multiply equation (2.1a) with ∂tuδ and integrate over Ω to obtain

1
2
d

dt

∫
Ω
|∂tuδ|2 −

∫
Ω
f · ∂tuδ = −

∫
Ω

(∫
Y
zδ dy

)
: ∂t∇suδ

= −
∫

U
zδ : ∂t∇suδ

(2.1c)
= −

∫
U
zδ : ∂t(wδ +Bzδ −∇s

yvδ)

= −
∫

U
(zδ : ∂twδ)−

∫
U

(zδ : B∂tzδ) +
∫

U
(zδ : ∂t∇s

yvδ)

=: −I1 − I2 + I3. (2.3)

Using relation (2.1b) and Fenchel’s equality, we compute

I1 =
∫

U
(zδ : ∂twδ) =

∫
U
`
[
Awδ + Lzδ −Awδ

]
: ∂twδ

=
∫

U
∂twδ : (`A)wδ +

∫
U
`
(
ϕδ(Lzδ −Awδ) + ϕ∗δ(∂twδ)

)
=

1
2
d

dt

∫
U
wδ : (`A)wδ +

∫
U
`ϕδ(Lzδ −Awδ) +

∫
U
`ϕ∗δ(∂twδ)

I2 =
1
2
d

dt

∫
U
zδ : Bzδ

I3 =
∫

Ω

∫
Y
zδ : ∂t∇yvδ =

∫
Ω

∫
Y

divyzδ · ∂tvδ
(2.1d)

= 0.

Inserting into (2.3) and integrating in time from 0 to s we find

1
2

( ∫
Ω
|∂tuδ|2 +

∫
U
wδ : (`A)wδ +

∫
U
zδ : Bzδ

)∣∣∣t=s

t=0

+
∫

U
`ϕδ(Lzδ −Awδ) +

∫
U
`ϕ∗δ(∂twδ) =

∫
Ωs

f · ∂tuδ.

By positivity of A,B, and `, we can write this as an estimate in function spaces with the
help of the Cauchy-Schwarz inequality.

‖∂tuδ‖2
L∞(0,T ;L2(Ω)) + ‖wδ‖2

L∞(0,T ;L2(U)) + ‖zδ‖2
L∞(0,T ;L2(U)) + ‖ϕ∗δ(∂twδ)‖L1(UT )

+ ‖ϕδ(Lzδ −Awδ)‖L1(UT ) ≤ C
(
‖u∗1‖

2
L2(Ω) + ‖u∗0‖

2
H1(Ω) + ‖z0‖2

L2(U) + ‖f‖2
L2(ΩT ) + δ

)
.

It remains to conclude the H1(Ω)-type estimate for uδ and the L2(U)-type estimate for ∇yvδ

in (2.2). We exploit relation (2.1c),

wδ(x, y) +B(y)zδ(x, y) = ∇suδ(x) +∇s
yvδ(x, y).

Integration over Y yields, because of Y -periodicity of vδ and y-independence of uδ,∫
Y

[wδ(x, y) +B(y)zδ(x, y)] dy = ∇suδ(x),
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such that Korn’s inequality implies the H1(Ω)-bound for uδ. This, in turn, provides the
estimate for ∇yvδ from relation (2.1c).

We can obtain higher order estimates by differentiating the equation with respect to
time and testing with ∂2

t uδ. We will state and motivate the estimates here and provide the
rigorous proof with a spatial discretization in the next subsection.

Lemma 2.2 (Higher order estimates for the δ-regularized problem). There exists a constant
C > 0, independent of δ and η, such that solutions (uη

δ , σ
η
δ , ε

η
δ ) of (P η

δ ) satisfy

‖∂tu
η
δ‖

2
L∞(0,T ;H1(Ω)) + ‖∂2

t u
η
δ‖

2
L∞(0,T ;L2(Ω)) + ‖∂tε

η
δ‖

2
L∞(0,T ;L2(Ω))

+ ‖∂tσ
η
δ ‖

2
L∞(0,T ;L2(Ω)) ≤ C

(
‖divσ0‖2

L2(Ω) + ‖u1‖2
H1(Ω) + ‖f‖2

H1(0,T ;L2(Ω))

)
,

and solutions (uδ, vδ, wδ, zδ) of (Pδ) satisfy

‖∂twδ‖2
L∞(0,T ;L2(U)) + ‖∂tzδ‖2

L∞(0,T ;L2(U)) + ‖∂2
t uδ‖2

L∞(0,T ;L2(Ω))

+ ‖∂tuδ‖2
L∞(0,T ;H1(Ω)) + ‖∂t∇yvδ‖2

L∞(0,T ;L2(U))

≤ C
(
‖div z̄0‖2

L2(Ω) + ‖u∗1‖
2
H1(Ω) + ‖f‖2

H1(0,T ;L2(Ω))

)
.

For simplicity, we assume in this calculation ϕ∗δ ∈ C2(T 2
s ), and note that the assumption

can be relaxed to ϕ∗δ ∈ C1,1(T 2
s ) as in (1.14a), by an argument with finite differences. We

differentiate equation (2.1a) with respect to time. The resulting equation is multiplied with
∂2

t uδ and integrated. We set g := ∂tf to find

1
2
d

dt

∫
Ω
|∂2

t uδ|2 −
∫

Ω
g · ∂2

t uδ = −
∫

U
∂tzδ : ∂2

t∇suδ

(2.1c)
= −

∫
U
∂tzδ : ∂2

t (wδ +Bzδ −∇s
yvδ)

= −
∫

U
(∂tzδ : ∂2

twδ)−
∫

U
(∂tzδ : B∂2

t zδ) +
∫

U
(∂tzδ : ∂2

t∇s
yvδ)

(2.1b)
= −

∫
U
`∂t

[
Awδ +∇ϕ∗δ(∂twδ)

]
: ∂2

twδ

− 1
2
d

dt

∫
U
∂tzδ : B(∂tzδ)−

∫
Ω

∫
Y
∂t(divyzδ) · ∂2

t vδ

= −1
2
d

dt

∫
U
∂twδ : (`A)∂twδ −

∫
U
`
[
∇2ϕ∗δ(∂twδ)∂2

twδ

]
: ∂2

twδ

− 1
2
d

dt

∫
U
∂tzδ : B(∂tzδ).

By convexity of ϕ∗δ (1.14a), we can estimate( ∫
Ω
|∂2

t uδ|2 +
∫

U
∂twδ : (`A)∂twδ +

∫
U
∂tzδ : B(∂tzδ)

)∣∣∣t=s

t=0
≤ 2

∫
Ωs

g · ∂tuδ. (2.4)

Note that the compatibility condition (1.22) and property (1.14b) of the regularization imply
that ∂twδ|t=0 is bounded in L∞(U), independently of δ. By equation (1.4a) we get

∂2
t uδ|t=0 = div

∫
Y
z0 dy + f |t=0 ∈ L2(Ω).



B. Schweizer and M. Veneroni 15

Differentiating (1.4c) with respect to time and multiplication with ∂tz provides, exploiting
(1.4d), ∫

Ω×Y
B∂tz : ∂tz dx dy =

∫
Ω
∇∂tu :

∫
Y
∂tz dy dx−

∫
Ω×Y

∂tw : ∂tz dy dx,

and hence
‖∂tzδ(0)‖2

L2(U) ≤ C
(
‖u∗1‖

2
H1(Ω) + ‖∂twδ(0)‖2

L2(U)

)
.

Estimate (2.4) then yields

‖∂2
t uδ‖

2
L∞(0,T ;L2(Ω)) + ‖∂twδ‖2

L∞(0,T ;L2(U)) + ‖∂tzδ‖2
L∞(0,T ;L2(U))

≤ C
(
‖div z̄0‖2

L2(Ω) + ‖u∗1‖
2
H1(Ω) + ‖f‖2

H1(0,T ;L2(Ω))

)
.

Treating the remaining two quantities as in the energy estimate, we find the result.

2.2 Discretization and rigorous estimates

We introduce a space-discretization of the limit system (P). Let Ω be polygonal and let

T Ω
h := {Kq}q∈ΛΩ

h
be a subdivision of Ω,

where Kq are simplices such that max{diam(Kq), q ∈ ΛΩ
h } = h and ΛΩ

h is a finite set of
indexes. In the same way, we choose a triangular mesh T Y

τ of Y with maximal diameter
τ . Let Pk(K) be the space of polynomials of degree at most k ≥ 0 on K. Moreover, for
every q ∈ ΛΩ

h , p ∈ ΛY
τ we can choose a point xq ∈ K◦

q (the internal part of the triangle Kq),
and a point yp ∈ K◦

p , for example the baricenters. We can then use the projections PΩ
h , P

Y
τ ,

defined almost everywhere,

PΩ
h (x) := xq if x ∈ K◦

q

P Y
τ (y) := yp if y ∈ K◦

p

to discretize the tensors and functions as

Aτ (y) := A(P Y
τ (y)), Bτ (y) := B(P Y

τ (y)), Lτ (y) := L(P Y
τ (y)),

such that L−1
τ (y) = `τ (y) := `(P Y

τ (y)). Similarly, the discretization of the regularized
function ϕδ is

ϕδ,τ (ξ; y) := ϕδ(ξ; P Y
τ (y)), (2.5)

which implies ϕ∗δ,τ (ξ; y) := ϕ∗δ(ξ; P Y
τ (y)). We define spaces of piecewise linear and piecewise

constant functions as

PLτ (Y ; Rn) :=
{
v ∈ H1(Y ; Rn) : v|K ∈ P1(K; Rn), ∀K ∈ T Y

τ

}
PCh(Ω; T 2

s ) := {f : L2(Ω; T 2
s ) : f|K ∈ P0(K; T 2

s ), ∀K ∈ T Ω
h },

and will search for the approximate solution in the finite-dimensional spaces

Uh := PLh(Ω; Rn) :=
{
u ∈ H1(Ω; Rn) : u|K ∈ P1(K; Rn)∀K ∈ T Ω

h

}
,

Vh,τ :=
{
v ∈ L2(Ω;H1(Y ; Rn)) : v|K ∈ P0(K;PLτ (Y ; Rn)) ∀K ∈ T Ω

h

}
,

Wh,τ :=
{
w : L2(Ω× Y ; Rn×n) : w|Kq×Kp

∈ P0(Kq ×Kp) ∀Kq ∈ T Ω
h , Kp ∈ T Y

τ

}
.
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The discretized problems and local existence.

We now define approximated problems which constitute the core of the proof of existence
for the original problems. The notation is unavoidably involved, so we first summarize the
employed symbols. Starting from the approximation of the homogenized problem (P), the
solutions depend on three parameters.

h is the size of the mesh on Ω,
τ is the size of the mesh on Y,

δ is the regularization parameter for ϕ.

For every t ∈ (0, T ], the unknowns of the problem are then

uh,τ,δ(t) ∈ Uh, vh,τ,δ(t) ∈ Vh,τ , wh,τ,δ(t), zh,τ,δ(t) ∈Wh,τ .

With the combined function space Xh,τ := Uh × Vh,τ ×Wh,τ ×Wh,τ , we can now define the
space-discretized approximation corresponding to problem (P). Find

(uh,τ,δ, vh,τ,δ, wh,τ,δ, zh,τ,δ) : [0, T ] → Xh,τ ,

such that for a.e. t ∈ (0, T ), ∂tuh,τ,δ, ∂
2
t uh,τ,δ ∈ Uh, ∂twh,τ,δ ∈Wh,τ , and the following system

(Ph,τ,δ) of equations is satisfied∫
Ω
∂2

t uh,τ,δ · ψ dx+
∫

Ω

(∫
Y
zh,τ,δ dy

)
: ∇ψ dx =

∫
Ω
f · ψ dx ∀ψ ∈ Uh, (2.6a)

∂twh,τ,δ = (∇ϕδ,τ )(Lτzh,τ,δ −Aτwh,τ,δ; y), a.e. (x, y) ∈ Ω×Y (2.6b)
Bτzh,τ,δ = ∇suh,τ,δ +∇s

yvh,τ,δ − wh,τ,δ, a.e. (x, y) ∈ Ω×Y (2.6c)∫
Ω

∫
Y
zh,τ,δ : ∇yξ dy dx = 0 ∀ ξ ∈ Vh,τ . (2.6d)

We give some remarks on the above discrete system. Relation (2.6a) consists in dim(Uh)-
equations, and can hence be understood as an evolution equation for the vector uh,τ,δ. All
the functions appearing in (2.6b) and (2.6c) are in Wh,τ , i.e. piecewise constant in x and
y. The nonlinear function ∇ϕδ,τ is the y-discretized gradient (in the matrix entry) of the
regularized function of (2.5). Finally, from the number of equations, the side condition
(2.6d) can determine vh,τ,δ(t) ∈ Vh,τ .

To pose the initial conditions, we denote by P(x;X) the orthogonal projection of x onto
the space X. We ask that solutions of (2.6) satisfy the initial data

uh,τ,δ(0) = P(u∗0;Uh), ∂tuh,τ,δ(0) = P(u∗1;Uh), (2.7)
vh,τ,δ(0) = P(v0;Vh,τ ), zh,τ,δ(0) = P(z0;Zh,τ ), (2.8)

where
Zh,τ := {z ∈Wh,τ : z satisfies (2.6d)} .

As in the original problem, the initial value for wh,τ,δ is determined, through equation (2.6c),
by

wh,τ,δ(0) = ∇suh,τ,δ(0) +∇s
yvh,τ,δ(0)−Bzh,τ,δ(0). (2.9)

Note that, as h → 0, P (u∗0;Uh) → u∗0 ∈ H1(Ω) (and similarly for the other initial data).
Furthermore, the norms of the discrete initial data are bounded by the norms of the original
initial data.
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Lemma 2.3. The space-discrete problem (Ph,τ,δ) of (2.6a)-(2.6d) can be written as a system
of ordinary differential equations with Lipschitz continuous right hand side in the unknowns
uh,τ,δ ∈ Uh and wh,τ,δ ∈Wh,τ . It admits a unique solution satisfying

(uh,τ,δ, ∂tuh,τ,δ, vh,τ,δ, wh,τ,δ, zh,τ,δ)

∈ C1
(
[0, T ];Uh × Uh × PCh(Ω, V Y

τ )×Wh,τ ×Wh,τ

)
to the initial data (2.7)-(2.9).

Proof. The evolution system is given by (2.6a) for uh,τ,δ and (2.6b) for wh,τ,δ when we insert
the solutions zh,τ,δ and vh,τ,δ of the other two equations.

The first step of this procedure is to invert Bτ in order to find an explicit expression for
zh,τ,δ in terms of (uh,τ,δ, vh,τ,δ, wh,τ,δ). We note that Bτ is invertible by positivity of B and
that expressions simplify when we use (LB−1)w = (B−1−A)w. After this first modification
the system reads∫

Ω
∂2

t uh,τ,δ · ψ dx = −
∫

Ω

(∫
Y
B−1

τ (∇suh,τ,δ +∇s
yvh,τ,δ) dy

)
: ∇ψ dx

+
∫

Ω

[
f · ψ +

∫
Y
B−1

τ wh,τ,δ dy : ∇ψ
]
dx ∀ψ ∈ Uh,

(2.10)

∂twh,τ,δ = (∇ϕδ,τ )(LτB
−1
τ (∇suh,τ,δ +∇s

yvh,τ,δ)−B−1
τ wh,τ,δ; y)

for a.e. (x, y) ∈ Ω× Y,
(2.11)∫

Y
B−1

τ ∇s
yvh,τ,δ : ∇yξ dy = −

∫
Y
B−1

τ ∇suh,τ,δ : ∇yξ dy

+
∫

Y
B−1

τ wh,τ,δ : ∇yξ dy ∀ ξ ∈ Vh,τ , a.e. x ∈ Ω.
(2.12)

By positivity of B−1
τ , relation (2.12) is, for every x = xq, q ∈ ΛΩ

h , (the discretized version
of) an elliptic equation on Y for the piecewise linear function vh,τ,δ(x, .). Normalizing the
solution e.g. with the condition of a vanishing average, by the Lax Milgram Lemma the
system admits a unique solution vh,τ,δ(t) = Fv(uh,τ,δ(t), wh,τ,δ(t)) ∈ Vh,τ , with a linear
solution operator Fv : Uh ×Wh,τ → Vh,τ . In the existence argument it is crucial that the
construction provides functions Bτ , ∇suh,τ,δ, and wh,τ,δ that are piecewise constant on the
triangulation of Ω. For later use we note that the norm of Fv only depends on the lower
bound for B−1

τ ,

‖∇yvh,τ,δ(t)‖L2(Ω×Y ) ≤ C
(
‖∇suh,τ,δ(t)‖L2(Ω) + ‖wh,τ,δ(t)‖L2(Ω×Y )

)
,

with C independent of the parameters h, τ, δ.
We can now insert vh,τ,δ(t) = Fv(uh,τ,δ(t), wh,τ,δ(t)) in equations (2.10) and (2.11). The

result is the desired ordinary differential equation with a Lipschitz continuous right-hand
side, since by (1.14a) the function ∇ϕδ,τ = ((∇σϕδ)( · ; y))h,τ is Lipschitz-continuous T 2

s →
T 2

s . Equation (2.10) can be solved for the finitely many unknowns of ∂2
t uh,τ,δ, since the mass

matrix to piecewise linear elements on Ω is invertible.
In order to conclude the proof of the Lemma, it remains to show that the local solution can

be extended to the whole interval [0, T ]. This fact is a consequence of the time-independent
L∞ estimates on solutions, which are provided in Lemma 2.5 below.

After having described the spatial discretization of the homogenized system, we also
briefly describe the discretization of the (regularized) η-problem. Since no dependence on
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the y-variable appears, the discretization is much simpler. For every t ∈ (0, T ], the unknowns
of the problem are

uη
h,δ(t) ∈ Uh, εηh,δ(t), ση

h,δ(t) ∈ PCh(Ω; T 2
s ).

In perfect analogy with the homogenized problem, we define the space-discretized approxi-
mation of problem (Pη

δ ) which we label (Pη
h,δ),∫

Ω ∂
2
t uh,δ · ψ dx = −

∫
Ω σ

η
h,δ : ∇ψ dx+

∫
Ω f · ψ dx ∀ψ ∈ Uh, (2.13a)

∂tε
η
h,δ = ∇ϕη,h,δ(Lη,hσ

η
h,δ −Aη,hε

η
h,δ; x) for a.e. x ∈ Ω, (2.13b)

Bη,hσ
η
h,δ = ∇suη

h,δ − εηh,δ for a.e. x ∈ Ω, (2.13c)

supplied with suitable initial data. Equation (2.13c) contains only piecewise constant func-
tions on Ω, by positivity of B it can be solved for ση

h,δ. At this point we note that the
coefficient functions are obtained as the piecewise constant discretizations of the functions,
e.g. x 7→ A(x/η), hence

Aη,h(x) := Aη(PΩ
h (x)) = A

(
PΩ

h (x)
η

)
,

and similarly for Bη,h, Lη,h, ϕη,h,δ.
Inserting the solution ση

h,δ of (2.13c) into equations (2.13a) and (2.13b), the latter trans-
form into into an ordinary differential equation with Lipschitz continuous right hand side.
Up to the uniform bounds for solutions which are provided below, we find the following
result for the η-problem.

Lemma 2.4. There exists a unique solution of problem (P η
h,δ),

(uη
h, ∂tu

η
h, ε

η
h, σ

η
h) ∈ C1([0, T ];Uh × Uh × PCh(Ω; T 2

s )× PCh(Ω; T 2
s )).

Uniform estimates for the discretized problems.

In order to abbreviate the statement of the uniform estimates, we set E := W 1,∞(0, T ;
L2(Ω × Y ); T 2), and extend ∇u as constant functions to Ω × Y by setting ∇uh,τ,δ(x, y) :=
∇uh,τ,δ(x).

Lemma 2.5. There exists a constant C > 0, independent of T and independent of h, τ, δ,
such that every solution of system (Ph,τ,δ) as in Lemma 2.3 satisfies

‖∂2
t uh,τ,δ‖L∞(0,T ;L2(Ω)) + ‖∇uh,τ,δ‖E + ‖∇yvh,τ,δ‖E + ‖wh,τ,δ‖E + ‖zh,τ,δ‖E

≤ C
(
‖u∗0‖H1(Ω) + ‖u∗1‖H1(Ω) + ‖v0‖L2(Ω;H1(Y ))

+ ‖div z̄0‖L2(Ω) + ‖z0‖L2(Ω×Y ) + ‖f‖H1(0,T ;L2(Ω)) + δ
)
. (2.14)

We recall that initial data are given by u∗0, u
∗
1, v0, z0 through (2.7)–(2.9), the right hand side

be given by f .

Proof. We note that t 7→ ∂tuh,τ,δ(t) ∈ Uh and t 7→ ∂2
t uh,τ,δ(t) ∈ Uh have sufficient regu-

larity in order to be used as test functions in equation (2.6a). We can therefore follow the
calculations of Lemma 2.1 and of Lemma 2.2. Using ψ = ∂tuh,τ,δ in (2.6a) we find∫

Ω
∂2

t uh,τ,δ · ∂tuh,τ,δ +
∫

Ω
z̄h,τ,δ : ∂t∇suh,τ,δ =

∫
Ω
f · ∂tuh,τ,δ.
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The functions zh,τ,δ, wh,τ,δ and ∇uh,τ,δ are piecewise constant functions on every Kq ×Kp ∈
T Ω

h ×T Y
τ . Therefore, the integrals below are in fact simply weighted sums.

1
2
d

dt

∫
Ω
|∂tuh,τ,δ|2 −

∫
Ω
f · ∂tuh,τ,δ = −

∫
Ω

∫
Y
zh,τ,δ : ∂t∇suh,τ,δ

= −
∫

Ω

∫
Y
zh,τ,δ : ∂t

[
wh,τ,δ +Bτzh,τ,δ −∇s

yvh,τ,δ

]
= −I1 − I2 + I3.

With the help of (2.6b) we replace zh,τ,δ in I1 and compute with Lemma 1.3–(v)

I1 =
∫

Ω

∫
Y
`τ

[
Aτwh,τ,δ : ∂twh,τ,δ +

(
Lτzh,τ,δ −Aτwh,τ,δ

)
: ∂twh,τ,δ

]
=

1
2
d

dt

∫
Ω

∫
Y
wh,τ,δ : `τAτwh,τ,δ

+
∫

Ω

∫
Y
`τ

[
ϕδ,τ (Lτzh,τ,δ −Aτwh,τ,δ) + ϕ∗δ,τ (∂twh,τ,δ)

]
,

I2 =
1
2
d

dt

∫
Ω

∫
Y
zh,τ,δ : Bτzh,τ,δ .

The function ξ = ∂tvh,τ,δ is admissible in equation (2.6d) and therefore

I3 =
∫

Ω

∫
Y
zh,τ,δ : ∇y∂tvh,τ,δ = 0.

For arbitrary s ∈ (0, T ) in the interval of existence of the discrete solution we integrate over
t ∈ (0, s) to find

1
2

( ∫
Ω

∫
Y
|∂tuh,τ,δ|2 + wh,τ,δ : (`τAτ )wh,τ,δ + zh,τ,δ : Bτzh,τ,δ

)∣∣∣t=s

t=0

+
∫ s

0

∫
Ω

∫
Y
`τ

[
ϕδ,τ (Lτzh,τ,δ −Aτwh,τ,δ) + ϕ∗δ,τ (∂twh,τ,δ)

]
=

∫
Ωs

f · ∂tuh,τ,δ. (2.15)

With Gronwall’s inequality we conclude the uniform bound

sup
s∈(0,ε)

{∫
Ω

∫
Y
|∂tuh,τ,δ(s)|2 + wh,τ,δ(s) : `τAτwh,τ,δ(s) + zh,τ,δ(s) : Bτzh,τ,δ(s)

}
+

∫ ε

0

∫
Ω

∫
Y
`τ

[
ϕδ,τ (Lτzh,τ,δ −Aτwh,τ,δ) + ϕ∗δ,τ (∂twh,τ,δ)

]
≤ C

(
‖u∗0‖

2
H1(Ω) + ‖u∗1‖

2
L2(Ω) + ‖v0‖2

L2(Ω;H1(Y )) + ‖z0‖2
L2(U) + ‖f‖2

L2(ΩT )

)
.

This uniform bound is the discrete analogue of the energy estimate of Lemma 2.1. It
provides, in particular, the existence of the solution to the ordinary differential equation of
Lemma 2.3 on the whole interval [0, T ]. Moreover, following the calculations of the higher
order estimates of Lemma 2.2 and proceeding as above, we obtain (2.14).

2.3 Proof of the existence theorem

We are now in the position to give the rigorous proof of the main existence theorem stated
in the introduction. We will obtain the solution as a weak limit of the approximate discrete
solutions. We note already here that the estimates of Lemma 2.5 carry over to the limit
solution, thus providing the proof of the estimates in Lemma 2.2.
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Proof of Theorem 1.1. We will show existence and uniqueness of strong solutions (u, v, w, z)
of the homogenized problem (P). Once more, the proof for problem (Pη) is completely
analogous, actually slightly simpler.

Existence. The approach to the existence result is very direct. We use the solution
(uh,τ,δ, vh,τ,δ, wh,τ,δ, zh,τ,δ) of problem (Ph,τ,δ), which exists on [0, T ] by Lemma 2.3. Owing
to the a priori estimates in Lemma 2.5 we find a subsequence {hk, τk, δk}k∈N, which we
relabel h, τ, δ, and a limit vector (∇ū,∇yv̄, w̄, z̄) ∈ E4 such that, for all p ∈ [1,∞), as
(h, τ, δ) → (0, 0, 0),

(∇uh,τ,δ,∇yvh,τ,δ, wh,τ,δ, zh,τ,δ) ⇀ (∇ū,∇yv̄, w̄, z̄),

weakly in W 1,p(0, T ;L2(Ω× Y )). Our aim is to show that the vector (ū, v̄, w̄, z̄) is a strong
variational solution of problem (P), (see Definition 1.6). Lemma 1.7 then guarantees that
(ū, v̄, w̄, z̄) is a strong solution.

Step 1. Properties (i) and (ii) of Definition 1.6. The estimates of Lemma 2.5 coincide
exactly with the regularity requirement (i) of Definition 1.6.

Regarding the solution properties we note that we can pass directly to the limit in equa-
tion (2.6a) and find (1.4a). Similarly, taking limits in equation (2.6c) yields that (ū, v̄, w̄, z̄)
satisfies equation (1.4c) for a.e. (x, y) ∈ Ω×Y and in the distributional sense. Analogously,
(1.4d) follows from (2.6d).

Step 2. Properties (iii) and (iv) of Definition 1.6. We pass to the limit in inequality
(2.15). For every y ∈ Y, ∀ τ > 0 the maps

ξ 7→ ξ : (`τAτ )ξ, ξ 7→ ξ : Bτξ, and ξ 7→ |ξ|2

are convex, and therefore lower-semicontinuous w.r.t. weak convergence in L2(Ω×Y ). Since
(1.9) and (1.12) imply that `τAτ → `A, and Bτ → B, uniformly in Y as τ → 0, we deduce
that for a.e. s ∈ (0, T )

lim inf
h,τ,δ→0

( ∫
Ω

∫
Y
|∂tuh,τ,δ|2 + wh,τ,δ : (`τAτ )wh,τ,δ + zh,τ,δ : Bτzh,τ,δ

)∣∣∣t=s

t=0

≥
( ∫

Ω

∫
Y
|∂tū|2 + w̄ : (`A)w̄ + z̄ : Bz̄ dx dy

)∣∣∣t=s

t=0
.

(2.16)

Regarding the convergence of ϕ∗δ,τ , by hypothesis (1.14c) and (1.10) we obtain∫
Us

`τϕ
∗
δ,τ (∂twh,τ,δ) =

∫
Us

`τ

[
ϕ∗δ,τ (∂twh,τ,δ)− ϕ∗τ (∂twh,τ,δ) + ϕ∗τ (∂twh,τ,δ)

− ϕ∗(∂twh,τ,δ) + ϕ∗(∂twh,τ,δ)
]
≥ −C(δ +m(τ))

∫
Us

|∂twh,τ,δ|+
∫

Us

`τϕ
∗(∂twh,τ,δ),

where Us = Ω× Y × (0, s). By estimate (2.14) and convexity of ϕ∗ we conclude

lim inf
h,τ,δ→0

∫
Us

`τϕ
∗
δ,τ (∂twh,τ,δ) ≥

∫
Us

` ϕ∗(∂tw̄). (2.17)

Collecting inequalities (2.16), (2.17), and taking the liminf in (2.15), we get

1
2

( ∫
Ω

∫
Y
|∂tū|2 + w̄ : (`A)w̄ + z̄ : Bz̄

)∣∣∣t=s

t=0
+

∫
Us

`ϕ∗(∂tw̄) ≤
∫

Ωs

f · ∂tū
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which is the energy inequality (1.28). Thus property (iv) is satisfied. Let ϕk := ϕδk,τk
,

gk := Lτk
zhk,τk,δk

−Aτk
whk,τk,δk

, and let g := Lz̄−Aw̄ be the weak limit of gk in L2(Us). Let
Bρ(y) := {σ ∈ T 2

s : d(σ, ω(y)) ≤ ρ} and let ψρ
y : T 2

s → R be given by ψρ
y(σ) := d(Bρ(y), σ).

By (1.14b) we can find a monotone function λ : R → R+:

lim
k→∞

λ(k) = +∞, and λ(k)ψρ
y(σ) ≤ ϕk(σ ; y), ∀σ ∈ T 2

s , y ∈ Y. (2.18)

In order to prove property (iii) in Definition 1.6 we show that∫
Us

ϕk(gk) ≤ C, ∀ k ∈ N ⇒ g(x, y, t) ∈ ω(y) for a.e. (x, y, t) ∈ Us,

by proving that ψρ
y(g(x, y, t)) = 0 for a.e. (x, y, t) ∈ Us, ∀ ρ > 0. By convexity of ψρ

y(·), and
continuity of y 7→ ψρ

y we obtain∫
Us

ψρ
y(g) ≤ lim inf

k→∞

∫
Us

ψρ
y(gk)

(2.18)

≤ lim inf
k→∞

1
λ(k)

∫
Us

ϕk(gk ; y)
(2.15)

≤ lim inf
k→∞

C

λ(k)
= 0.

By arbitrariety of ρ > 0, we conclude that g ∈ ω(y) a.e. in Us.

Uniqueness. Let (ui, vi, wi, zi), i = 1, 2, be two strong solutions of Problem (P), with
the same initial data, and let (ũ, ṽ, w̃, z̃) := (u1, v1, w1, z1)−(u2, v2, w2, z2) be their difference.
By equation (1.4a), orthogonality of z̃ and ∇yṽ, and (1.4b), we can calculate∫

Ω
∂2

t ũ · ∂tũ = −
∫

Ω

(∫
Y
z̃

)
: ∇s∂tũ = −

∫
Ω×Y

z̃ : ∇s∂tũ

= −
∫

Ω×Y
z̃ : ∂t

(
w̃ +Bz̃ −∇yṽ

)
∈ −

∫
Ω×Y

z̃ : B∂tz̃

−
∫

Ω×Y
`(∂ϕ∗(∂tw1)− ∂ϕ∗(∂tw2)) : ∂t(w1 − w2)−

∫
Ω×Y

`Aw̃ : ∂tw̃.

Monotonicity of ∂ϕ∗ implies ∂tũ = w̃ = z̃ = 0, which also provides ṽ = 0.

Partial limit of the discretized solutions as τ, δ → 0.

In order to prove existence for solutions of problem (P), we performed the limit as all the
parameters h, τ, δ → 0 simultaneously. For the purpose of homogenization we need a test
function which

• is regular enough to be evaluated in (x, y) = (x, x/η);

• is exactly divy-free (in the component approximating the stress);

• solves a suitable approximation of problem (P).

We choose to take the limit as τ → 0 and δ → 0, leaving h as a positive parameter related
to the spatial discretization on Ω. Let (uh,τ,δ, vh,τ,δ, wh,τ,δ, zh,τ,δ) be the solution of problem
(Pη

h,τ,δ) found in Lemma 2.3. By compactness we can find a subsequence (τk, δk) → 0 and a
limit (uh, vh, wh, zh) ≡ (uh,0,0, vh,0,0, wh,0,0, zh,0,0) such that

(∇uh,τk,δk
, vh,τk,δk

, wh,τk,δk
, zh,τk,δk

) ⇀ (∇uh, vh, wh, zh)

weakly in the topology of W 1,∞(0, T ;L2(Ω× Y ))4. with the function spaces

Vh :=
{
v ∈ L2(Ω;H1(Y ; Rn)) : v|K ∈ P0(K;H1(Y ; Rn)) ∀K ∈ T Ω

h

}
,

Wh :=
{
w : L2(Ω;L2(Y ; Rn×n) : w|K ∈ P0(K;L2(Y ; Rn×n)) ∀K ∈ T Ω

h

}
.

we find the following existence result.
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Lemma 2.6. Every weak limit (uh, vh, wh, zh) solves the following system (Ph)∫
Ω

(∫
Y
zh dy

)
: ∇ψ =

∫
Ω

(f − ∂2
t uh) · ψ ∀ψ ∈ Uh (2.19a)

∂twh ∈ ∂ϕ(Lzh −Awh; y) for a.e. (x, y) ∈ Ω× Y (2.19b)
Bzh = ∇suh +∇s

yvh − wh for a.e. (x, y) ∈ Ω× Y (2.19c)∫
Y
zh : ∇ξ = 0, ∀ ξ ∈ H1(Y ), for a.e.x ∈ Ω, (2.19d)

with initial conditions

uh(0) = P(u∗0;Uh), ∂tuh(0) = P(u∗1;Uh), vh(0) = P(v0;Vh), zh(0) = P(z0;Wh). (2.20)

It satisfies an a priori estimate as in (2.14).

As above, equation (2.19c) allows to extract the initial condition

wh,0(x, y) := ∇sP(u∗0;Uh)(x) +∇s
yP(v0;Vh)(x, y)−B(y)P(z0;Wh)(x, y). (2.21)

Proof. We only sketch the proof which is similar to that of Theorem 1.1. The a pri-
ori estimate (2.14) allows to select a weakly convergent subsequence, with the weak limit
(uh, vh, wh, zh) satisfying the same estimates. It is straightforward to conclude from equa-
tions (2.6a), (2.6c), and (2.6d) for the h, τ, δ-solutions equations (2.19a), (2.19c), and (2.19d)
for (uh, vh, wh, zh).

Passing to the liminf as τ, δ → 0 in inequality (2.15) we obtain

1
2

( ∫
Ω×Y

|∂tuh|2 + wh : (`A)wh + zh : Bzh
)∣∣∣t=s

t=0

+
∫ s

0

∫
Ω×Y

`
(
ϕ(Lzh −Awh) + ϕ∗(∂twh)

)
≤

∫
Ωs

f · ∂tuh.

We can once more argue by the equivalence of strong solutions and strong variational solu-
tions to conclude that ∂twh ∈ ∂ϕ(Lzh − Awh; y), a.e. in Ω × Y × (0, T ). We recall that in
this formula all functions are piecewise constant in Ω.

3 Homogenization

This Section is devoted to the proof of Theorem 1.2, which provides, in particular, the
convergence uη → u. We state below with Proposition 3.1 an intermediate result which
compares uη with the solution uh of the discretized problem. The theorem is an immediate
consequence of the proposition.

In the formulation and in the proof of the proposition, the fundamental tool is to con-
struct from multi-scale solutions such as w(x, y, t) oscillating functions on ΩT . We denote
the resulting oscillatory function with a lower index η. To be precise, for any function g
defined on Ω× Y × (0, T ), we set

gη = gη(x, t) := g(x, x
η , t).
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Proposition 3.1. Let (uη, εη, ση) be a sequence of strong solutions to problem (P η) in (1.3).
Let (uh, vh, wh, zh) be a sequence of semi-discrete solutions to problem (Ph) with parameter
h > 0 in (2.19). Then

lim
h→0

lim
η→0

‖∂tu
η − ∂tuh‖L∞(0,T ;L2(Ω)) = 0,

lim
h→0

lim
η→0

‖εη − wh,η‖L∞(0,T ;L2(Ω)) = 0,

lim
h→0

lim
η→0

‖ση − zh,η‖L∞(0,T ;L2(Ω)) = 0.

The proof of the proposition is given in Subsection 3.3.
We note here that Theorem 1.2 follows easily from Proposition 3.1. We use the triangle

inequality

‖∂tu
η − ∂tu‖L2(ΩT ) ≤ ‖∂tu

η − ∂tuh‖L2(ΩT ) + ‖∂tuh − ∂tu‖L2(ΩT ),

and notice that the first term of the right-hand side vanishes for η → 0 and h → 0 by
Proposition 3.1, and that the last term vanishes for h → 0 due to estimates (2.14) and the
compact embedding H1(ΩT ) ⊂ L2(ΩT ).

Similarly, concerning the weak convergence of the strains, we write for an arbitrary
φ ∈ L2(ΩT )∣∣∣∣∫

ΩT

(
εη −

∫
Y
w

)
φ

∣∣∣∣ ≤ ∣∣∣∣∫
ΩT

(εη − wh,η)φ
∣∣∣∣ +

∣∣∣∣∫
ΩT

(
wh,η −

∫
Y
w

)
φ

∣∣∣∣ . (3.1)

The convergence to 0 of the first term of the right hand side is stated in the proposition.
Concerning the second term we recall that wh is piecewise constant in x, the values in
the grid points are functions in W 1,∞(0, T ;L2(Y )). The regularity in x allows to calculate
the weak limits of the corresponding oscillating functions in the classical way as averages.
Furthermore, averages of wh converge to averages of w.

wh,η ⇀

∫
Y
wh dy in L2(ΩT ) for η → 0,

∫
Y
wh dy ⇀

∫
Y
w dy in L2(ΩT ) for h→ 0.

Therefore, with respect to the weak topology of L2(ΩT ), we may write

lim
h→0

(
lim
η→0

wh,η

)
=

∫
Y
w dy.

This provides the convergence of the last term in (3.1). The weak convergence of ση to its
Y -average is calculated in exactly the same way.

Before giving the proof of Proposition 3.1, we provide a short computation, with the
intent of showing the core of the homogenization procedure.

3.1 Homogenization with appropriate test-functions

In the following remark we present the estimate that is the key of the homogenization result.
It is only formal, since expressions such as

(∂tw)η(x) = ∂tw

(
x,
x

η
, t

)
are used. Since ∂tw is only of the quality L2(ΩT × Y ), this function need not even be
measurable (see e.g. [6]). In that sense, the result of the remark is only reflecting a formal
calculation.
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Remark 3.2. Let (uη, εη, ση) be a solution of Problem (P η) in (1.3) and let (u, v, w, z) be
a solution of Problem (P) in (1.4). Denote

ρη = ρ

(
x

η

)
, wη = w

(
x,
x

η
, t

)
, zη = z

(
x,
x

η
, t

)
, (∇yv)η = (∇yv)

(
x,
x

η
, t

)
.

Then, assuming that all involved functions exist in appropriate L2 spaces, there holds

d

dt

∫
Ω

{
ρη|∂tu

η − ∂tu|2 + (ση − zη) : Bη(ση − zη) + `ηAη(εη − wη) : (εη − wη)
}

≤ −
∫

Ω

[
zη −

∫
Y
z

]
· ∂t∇s(uη − u)−

∫
Ω

(ση − zη) : ∂t(∇yv)η

+
∫

Ω

[
ρη −

∫
Y
ρ

]
∂2

t u · (∂tu
η − ∂tu).

(3.2)

Proof. Let ρ̄ =
∫
Y ρ dy. We examine the following expression.

Eη :=
∫

Ω
(ρη∂

2
t u

η − ρ̄∂2
t u) · ∂t(uη − u) +

∫
Ω

(ση − zη) : ∂t(∇suη −∇su− (∇yv)η).

Using equation (1.3c) to replace ∇suη and (1.4c) to replace (∇su+(∇yv)η), we compute

Eη =
1
2
d

dt

∫
Ω
ρη|∂tu

η − ∂tu|2 +
∫

Ω
(ρη − ρ̄)∂2

t u · (∂tu
η − ∂tu)

+
∫

Ω
(ση − zη) : ∂t

[
εη +Bησ

η − (wη +Bηzη)
]

=
1
2
d

dt

∫
Ω
ρη|∂tu

η − ∂tu|2 +
∫

Ω
(ρη − ρ̄)∂2

t u · (∂tu
η − ∂tu)

+
∫

Ω
(ση − zη) : ∂t (εη − wη) +

∫
Ω

(ση − zη) : Bη∂t(ση − zη).

Denoting the integrals on the right-hand side by I1 to I4, we note that I1 and I4 are time
derivatives of positive quantities. In order to treat I3 we recall that the inverse relations to
(1.4b) and (1.3b) are

zη ∈ `η
[
Aηwη + ∂ϕ∗η(∂twη)

]
, ση ∈ `η

[
Aηε

η + ∂ϕ∗η(∂tε
η)

]
,

so that I3 becomes∫
Ω

(ση − zη) : ∂t(εη − wη) ∈
∫

Ω
`ηAη(εη − wη) : ∂t(εη − wη)

+
∫

Ω
`η(∂ϕ∗η(∂tε

η)− ∂ϕ∗η(∂twη)) : ∂t(εη − wη).

This expression is the time derivative of a positive quantity plus a non-negative term, owing
to monotonicity of ∂ϕ∗η. The integral I2 remains as an error term on the right hand side of
(3.2).

We note that Eη is constructed as a difference of similar equations, tested by the time
derivative of a solution difference, with the addition of a term containing ∇yv. In fact, we
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have, by (1.3a) and (1.4a),

Eη =
∫

Ω

[ (
ρη∂

2
t u

η − divση
)
−

(
ρ̄∂2

t u− div zη
) ]
· ∂t(uη − u)−

∫
Ω

(ση − zη) : ∂t(∇s
yv)η

=
∫

Ω

[
f − f − div

∫
Y
z + div zη

]
· ∂t(uη − u)−

∫
Ω

(ση − zη) : ∂t(∇s
yv)η

= −
∫

Ω

[
zη −

∫
Y
z

]
· ∂t∇s(uη − u)−

∫
Ω

(ση − zη) : ∂t(∇s
yv)η.

Collecting the various terms implies (3.2).

In order to conclude the homogenization result from a result as in Remark 3.2, we must
derive the smallness of the right hand side of (3.2). Concerning the first integral we note
that — if z has some regularity —

zη ⇀

∫
Y
z(y) dy weakly in L2(ΩT ). (3.3)

Also the second factor in the first integral has some weak limit. In order to deal with the
product of two weakly convergent sequences, the idea is to use the div-curl Lemma in order
to pass to the two weak limits under the integral. If an appropriate div-curl Lemma can be
applied, we find a vanishing limit of the integral in the limit η → 0.

Concerning the second integral we note that — if ∇yv is regular enough —

(∇yv)η ⇀

∫
Y
∇yv(y) dy = 0 weakly in L2(ΩT ). (3.4)

Since the first factor of the second integral has a weak limit, an application of a suitable
div-curl Lemma can show that also second integral vanishes for η → 0.

The vanishing limit of the third term is immediate, since ρ ∈ C0 ensures ρη ⇀ ρ̄, weakly
in any Lp(ΩT ), while the second factor converges strongly.

This concludes the homogenization limit, since the left hand side of (3.2) controls differ-
ences between η-solutions and homogenized solutions.

Obstacles to the rigorous justification. We have to overcome the following diffi-
culties

i) we need some regularity of z(·, t, y), in the calculation of Remark 3.2 and for (3.3)

ii) we need some regularity of ∇yv(·, t, y), in order for (3.4) to hold.

iii) we need to analyze the divergence of zη −
∫
Y z

iv) we need to analyze the curl of ∇yv

v) we need a div-curl lemma with boundary

We solve problems i) and ii) by analyzing a discretized problem and using the test functions
zh and vh and, correspondingly, the oscillating functions zh,η and (∇yvh)η. In order to exploit
(2.19d) which provides a relation for test functions in Uh, we will introduce projections.

Problem v) corresponds to the fact that the weak convergence of the integrand to 0 does
not imply the convergence of the integral to 0, since concentration effects may occur along
the boundary. We solve problems iii) and v) simultaneously with the div-curl type Lemma
3.3. Problem iv) is solved by a variant of that lemma, formulated as Lemma 3.4. The core
of both lemmata is that concentration effects are ruled out by the periodicity of zη and that
of (∇yv)η. In the application of Lemma 3.3 we insert zh(x, t, .) for the function u, while in
the application of Lemma 3.4 we use (∂tvh)η for ϕη.
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3.2 The div-curl lemma with boundary

Lemma 3.3 (div-curl Lemma with boundary). Let T ⊂ Rm be an open and bounded set,
with Lipschitz boundary ∂T , and let Y := [0, 1[m denote the flat torus. Assume

u ∈ L2(Y ; Rm) with divu = 0 in D′(Y ), (3.5)

ϕη, ϕ ∈ H1(T ; R) with ϕη ⇀ ϕ in H1(T ; R). (3.6)

Then
lim
η→0

∫
T
u
(

x
η

)
· ∇ϕη(x) dx =

∫
T
ū · ∇ϕ(x) dx,

where ū :=
∫

Y
u(y) dy.

Proof. The result is clearly true for constant functions u. By linearity of the expressions it is
therefore sufficient to show the result for functions with vanishing average. In the following
we hence analyze oscillatory functions uη(x) := u(x

η ) with ū = 0.
Step 1. Boundary layer. Let δ > 0 be small. We consider tubular δ-neighborhood Vδ of

the boundary ∂T ,
Vδ := Bδ(∂T ) ∩ T := {x ∈ T : d(x, ∂T ) < δ}.

We divide Rm into d-cubes of size η

Y η
k := η(Y + k), Lm(Y η

k ) = ηm, ∀ k ∈ Zm.

It is useful to define a suitable covering of Vδ by cubes. Precisely, let us define the set of
indices Iη

δ := {k ∈ Zm : Y η
k ∩ Vδ 6= ∅}, then

Vδ ⊂
⋃

k∈Iη
δ

Y η
k =: V η

δ .

Denoting by Lm the m-dimensional Lebesgue measure, by Lipschitz regularity of ∂T , we
have

Lm(Vδ) ≤ Lm(V η
δ ) ≤ C(δ + η). (3.7)

The small volume of V η
δ together with the periodicity of uη implies that there exists C > 0,

independent of δ and η, such that

‖uη‖2
L2(Vδ) ≤ C

(
δ + η

)
, ∀ δ > 0, ∀ η > 0. (3.8)

Indeed, ∫
Vδ

|uη(x)|2 dx ≤
∑
k∈Iη

δ

∫
Y η

k

∣∣u(x
η

)∣∣2 dx = ηm
∑
k∈Iη

δ

∫
Y
|u(y)|2 dy

= ‖u‖2
L2(Y )

∑
k∈Iη

δ

Lm(Y η
k ) = ‖u‖2

L2(Y ) L
m(V η

δ ).

Step 2. Convergence. With the Euclidean distance d in Rm we define Lipschitz-continuous
cut-off function ψ : T → R

ψ(x) := min
{

1
δ
d(x, ∂T ), 1

}
.
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We start our convergence calculation with the Gauß theorem. Using ψ(x) ≡ 0 on ∂T and
(3.5) yields

0 =
∫

T
div (uηϕ

ηψ) dx =
∫

T
uη · ∇ϕηψ dx+

∫
T
uη · ∇ψϕη dx.

The last integral converges to 0 for η → 0, since ϕη converges strongly in L2 and uη converges
weakly to its average 0. We conclude that also the first integral on the right hand side
vanishes in the limit η → 0.

With this information we write the expression of interest as∣∣∣∣∫
T
uη · ∇ϕη

∣∣∣∣ ≤ ∣∣∣∣∫
T
uη · ∇ϕηψ

∣∣∣∣ +
∣∣∣∣∫

T
uη · ∇ϕη(1− ψ)

∣∣∣∣ .
For the first integral on the right hand side we already know convergence to 0. In the second
integral we can replace the integral over T by an integral over Vδ and calculate using (3.6)
and (3.8),∣∣∣∣∫

Vδ

uη(x) · ∇ϕη(x)(1− ψ(x)) dx
∣∣∣∣ ≤ ‖uη‖L2(Vδ)‖∇ϕ

η‖L2(Vδ) ≤ C(δ + η)1/2.

Since δ > 0 can be chosen arbitrarily small, this provides the convergence result.

Lemma 3.4 (Variant of the div-curl Lemma with boundary). Let T ⊂ Rm be an open and
bounded set with Lipschitz boundary ∂T , and let Y := [0, 1[m denote the flat torus. Assume
uη ⇀ u in L2(T,Rm) with divuη ⇀ u in L2(T ). Let, for ϕ ∈ H1(Y ), ϕη be the η-periodic
function ϕη(x) = ϕ(x/η). Then

lim
η→0

∫
T
uη · ∇(ηϕη)(x) dx = 0.

Proof. We use the notation of the last proof. We start once more with the Gauß theorem.
Since the cut-off function satisfies ψ(x) ≡ 0 on ∂T , there holds

0 =
∫

T
div (uηηϕηψ) =

∫
T

(divuη)ηϕηψ +
∫

T
uη · ∇(ηϕη)ψ +

∫
T
uη · ∇ψηϕη.

The first and the last integral converge to 0 for η → 0 due to the explicit η-factor. The
second integral coincides with the integral of the claim except for the error

eδη =
∣∣∣∣∫

T
uη · ∇(ηϕη)(1− ψ)

∣∣∣∣ .
Smallness of eδη for small δ > 0 (independent of η) follows as in the last line of the last proof
from the boundedness of uη ∈ L2(T ) and the boundedness and periodicity of ∇(ηϕη) ∈
L2(T ).

We note that a very short proof of the div-curl lemma with boundary can be given with
the theory of two-scale convergence. One only has to exploit that one of the two factors
under the integral converges weakly in two scales, the other factor converges strongly in two
scales. We are grateful to A. Visintin for pointing out this alternative proof. We include
here the more elementary proof since it is independent of two-scale convergence methods.
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3.3 Rigorous homogenization estimate

We can now give the proof of the homogenization result of Proposition 3.1. As announced,
we construct test-functions from the semi-discrete approximate solutions of Lemma 2.6. We
have to be careful about the fact that, in equation (2.19a), the test-function must be piece-
wise linear. We therefore introduce Ph : L2(Ω) → Uh, the orthogonal projection onto the
space Uh of piece-wise linear functions on the mesh T Ω

h , and let I be the identity operator
in L2(Ω). We first state and prove the rigorous version of Remark 3.2 in the next lemma.
We will afterwards show that the error terms on the right-hand side vanish in the limit.

Lemma 3.5. Let (uη, εη, ση) be a solution of Problem (P η) in (1.3) and let (uh, vh, wh, zh)
be a solution of Problem (Ph) in (2.19). The functions wh, zh, and vh are piece-wise constant
in x and we introduce the measurable functions

wh,η(x, t) = wh

(
x,
x

η
, t

)
, zh,η(x, t) = zh

(
x,
x

η
, t

)
, (∇yvh)η(x, t) = (∇yvh)

(
x,
x

η
, t

)
.

Then

1
2
d

dt

∫
Ω
ρη|∂tu

η − ∂tuh|2 + (ση − zh,η) : Bη(ση − zh,η) + `ηAη(εη − wh,η) : (εη − wh,η)

≤
∫

Ω

[∫
Y
zh − zh,η

]
: ∇sPh(∂tu

η − ∂tuh)−
∫

Ω
(ση − zh,η) : (∇s

y∂tvh)η

+
∫

Ω
(ρη − ρ̄)∂2

t uh · (∂tu
η − ∂tuh) +

∫
Ω

(ρη∂
2
t u

η − ρ̄∂2
t uh) · (I − Ph)(∂tu

η − ∂tuh)

+
∫

Ω
(ση − zh,η) : ∇s(I − Ph)(∂tu

η − ∂tuh).

(3.9)

Proof. We examine the following expression.

Eh,η :=
∫

Ω
(ρη∂

2
t u

η − ρ̄∂2
t uh) · ∂t(uη − uh)

+
∫

Ω
(ση − zh,η) : ∂t(∇suη −∇suh − (∇s

yvh)η).

As in the proof of Remark 3.2, using equation (1.3c) and (2.19c), we compute

Eη =
1
2
d

dt

∫
Ω
ρη|∂tu

η − ∂tuh|2 +
∫

Ω
(ρη − ρ̄)∂2

t uh · (∂tu
η − ∂tuh)

+
∫

Ω
(ση − zh,η) : ∂t (εη − wh,η) +

∫
Ω

(ση − zh,η) : Bη∂t(ση − zh,η).

Denoting the integrals on the right by I1 to I4, we note that I1 and I4 are time derivatives
of positive quantities. In order to treat I3, we use the inverse relations to (2.19b) and (1.3b)
so that ∫

Ω
(ση − zh,η) : ∂t(εη − wh,η) ∈

∫
Ω
`ηAη(εη − wh,η) : ∂t(εη − wh,η)

+
∫

Ω
`η(∂ϕ∗η(∂tε

η)− ∂ϕ∗η(∂twh,η)) : ∂t(εη − wh,η).

This expression is the time derivative of a positive quantity plus a non-negative term, owing
to monotonicity of ∂ϕ∗η.
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It remains to evaluate Eh,η. We expect the smallness of the expression due to the
conservation laws for uη and uh. To find this result, we re-write Eh,η is such a way that (1.3a)
and (2.19a) appear as the first two integrals. We use the abbreviation ψh,η := (∂tu

η − ∂tuh)
and blow up the expression Eh,η by writing (terms 2,4 and 6 can be added and terms 1 and
3 can be added)

Eh,η =
∫

Ω

[
ρη∂

2
t u

η − ρ̄∂2
t uh

]
· Ph(ψh,η) +

∫
Ω

[
ση −

∫
Y
zh

]
: ∇sPh(ψh,η)

+
∫

Ω
(ρη∂

2
t u

η − ρ̄∂2
t uh) · (I − Ph)(ψh,η)−

∫
Ω

[
zh,η −

∫
Y
zh

]
: ∇sPh(ψh,η)

−
∫

Ω
(ση − zh,η) : (∇s

y∂tvh)η +
∫

Ω
[ση − zh,η] : ∇s(I − Ph)(ψh,η).

The integrals in the first line vanish by the conservation laws. Collecting the other terms
yields (3.9).

With this estimate we can now conclude the proof of Proposition 3.1 and thus the
homogenization result of Theorem 1.2.

Proof of Proposition 3.1. It remains to show that the right-hand side of estimate (3.9) van-
ishes, in the limit as η → 0 and then h→ 0. Note that by estimate (2.14), up to subsequences,
{∂tuh}h and {∂tu

η}η converge weakly in H1(ΩT ) and strongly in L2(ΩT ). We denote the
limits of uη and uh by u∗ and u∗, respectively.

The first integral is

I1 :=
∫

Ω

[∫
Y
zh − zh,η

]
: ∇sPh(ψh,η) =

∑
T∈T Ω

h

∫
T

[∫
Y
zh − zh,η

]
: ∇sPh(ψh,η).

Using Lemma 3.3 with u = zh on each triangle T , we find limη→0 I1 = 0.
Similarly, we treat the second integral. We use Lemma 3.3 on each triangle T with

factors zh and ∇(η∂tvh,η). The latter converges weakly to 0 in L2(T ). For the contribution
of ση we use Lemma 3.4.

I2 :=
∫

Ω
(zh,η − ση) : (∇y∂tvh)η =

∑
T∈T Ω

h

∫
T

(zh,η − ση) : ∇y(η∂tvh) → 0.

Concerning the third integral, we recall that ρη ⇀ ρ̄, weakly in L2(ΩT ). By strong
convergence of ∂tu

η in L2(ΩT ) we obtain for η → 0, recalling that uh maps into a finite
dimensional space,

I3 :=
∫

Ω
(ρη − ρ̄)∂2

t uh · (∂tu
η − ∂tuh) → 0.

In the fourth integral we exploit that uh maps into the right function space such that it
coincides with its projection. The fourth integral therefore reads

I4 :=
∫

Ω
(ρη∂

2
t u

η − ρ̄∂2
t uh) · (I − Ph)(ψh,η) =

∫
Ω

(ρη∂
2
t u

η − ρ̄∂2
t uh) · (I − Ph)(∂tu

η).

Let ξ be the L2(ΩT )-weak limit of ρη∂
2
t u

η (if necessary, along a further subsequence). We
note that for all φ ∈ H1(Ω), (I − Ph)φ→ 0 strongly in H1(Ω), so that

lim
h→0

(
lim
η→0

I4

)
= lim

h→0

(∫
Ω

(ξ − ρ̄∂2
t uh) · (I − Ph)(∂tu

∗)
)

= 0.
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Concerning the fifth term, equation (1.3a) implies

I5,1 :=
∫

Ω
ση : ∇s(I − Ph)(ψh,η) =

∫
Ω

(
f − ∂2

t u
η
)
· (I − Ph)(ψh,η),

so that, as in I4,

lim
h→0

(
lim
η→0

I5,1

)
= lim

h→0

(∫
Ω

(
f − ∂2

t u
∗) · (I − Ph)(∂tu

∗)
)

= 0.

Finally, owing to Lemma 3.3,

I5,2 := −
∫

Ω
zh,η : ∇s(I − Ph)(ψh,η) → −

∫
Ω

[∫
Y
zh

]
: ∇(I − Ph)(∂tu

∗).

This expression vanishes in the limit h→ 0, since ∂tu
∗ is an H1(ΩT )-function.

Convergence of the initial data In order to conclude convergence from (3.9), it
remains to show smallness, as h, η → 0, of

R1 :=
∫

Ω
ρη|u1 − P(u∗1;Uh)|2

R2 :=
∫

Ω
(σ0 − (zh,0)η) : Bη(σ0 − (zh,0)η)

R3 :=
∫

Ω
`ηAη(εη0 − (wh,0)η) : (εη0 − (wh,0)η).

We show the computation for R2, for R1 and R3 the calculation is analogous.
We consider ûh := P(u0;Uh), σ̂h := P(σ0;PCh(Ω)), v̂h := P(v0(·, y);PCh(Ω)), and

ẑh(., y) := P(z0(·, y);PCh(Ω)). The discretization of (1.23) and (1.21) yields

∇sûh(x)−B(y)σ̂h(x)
(1.23)

= wh,0(x, y) (3.10)
(1.21)

= ∇sûh(x) +∇s
yv̂h(x, y)−B(y)ẑh(x, y),

which implies

B(y)σ̂h(x) = −∇s
yv̂h(x, y) +B(y)ẑh(x, y), a.e. in Ω× Y. (3.11)

Using (3.11) we compute

Bη(σ0 − (ẑh)η) = Bη(σ0 − σ̂h) +Bη(σ̂h − (ẑh)η) = Bη(σ0 − σ̂h)−
(
∇s

yv̂h

)
η
.

Since the first term on the right-hand side converges strongly to zero in L2(Ω), we obtain

lim
h→0

(
lim
η→0

R2

)
= lim

h→0

 lim
η→0

∑
K∈T Ω

h

∫
K

(σ0 − (ẑh)η)) :
(
∇s

yv̂h

)
η

 .

For all K ∈ T Ω
h , ∀ y ∈ Y , we have that x 7→ v̂h(x, y) is constant on K, and as η → 0

(∇yv̂h)η ⇀

∫
Y
∇v̂h(y) dy = 0, weakly in L2(K),
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so that

lim
η→0

∑
K∈T Ω

h

∫
K
σ0 : (∇yv̂h)η = 0.

On the other hand, with an integration by parts, we find∫
K

(ẑh)η :
(
∇s

yv̂h

)
η

= −
∫

K
(divy ẑh)η · (v̂h)η + η

∫
∂K

(ẑh)ην · (v̂h)η.

Since divyz0 = 0, and the traces of z0ν and v0 are bounded in L2(∂K), we conclude

lim
h→0

(
lim
η→0

R2

)
= 0.

This concludes the proof of Proposition 3.1.
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