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CHAPTER 1

Introduction

Starting with Mendel’s discovery of hereditary transmission of characteristic traits in
pea plants in the 19th century, genetics has ever since been an active field of research.
Today, huge interest lies in analysing the association of genetic predisposition with the
development of diseases (e.g., cancer), promising a better understanding of the disease
mechanisms as well as enabling preventive action and better suited treatment.
One step within this vast framework of ambitious aims is to find relationships between
several genetic characteristics and group them into different classes (or clusters). This
structural information can be used to form new hypothesis about the interplay between
genes in the disease mechanism.
A different task is the classification of potential patients into diseased and non-diseased
individuals. The classification method provides information about the given data set
and, in addition, can be used to predict the probable disease status of future patients.
It can also provide insight into the way the genetic profile influences a specific disease
and, in a second step, might help to identify genes that are associated with the disease.
There is a variety of genetic information available. In this thesis, we deal with Single
Nucleotide Polymorphisms (SNPs). SNPs are single base exchanges within the DNA that
are present in at least 1% of a population. They can be found in abundance in the hu-
man genome and can be assessed via high throughput methods. SNPs can influence
body processes in different ways. For example, they might alter proteins (that are con-
structed by translating the genetic code that the SNPs belongs to). In the worst case,
the protein cannot fulfill its assigned task anymore. E.g, if it is responsible for repair-
ing disrupted DNA, some damages could remain unrepaired and increase the disease
risks.
The association between a disease and SNPs can be illuminated with appropriate sta-
tistical methods. Together with the rapid development of technology for assessing
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SNPs, the need for better suited analysis methods rose with equal speed. In an inter-
active fashion, mutual improvements in both areas drove and still drive the progress
(LaFramboise, 2009). Despite successes and constant improvement, the challenges con-
nected to SNP analyses are still demanding. There is a tremendously huge number of
SNPs to consider (about one million for Affymetrix (Affymetrix, 2007) and Illumina (Il-
lumina, 2009) chips, and numbers still increasing), and they are assumed to have only
a moderate to small effect on the disease risk, at least if the disease of interest is com-
mon ("Common disease, common variant"-hypothesis, Risch and Merikengas (1996)).
Additionally, SNPs are assumed to impact disease risk in interaction with each other
rather than alone (Garte, 2001). It is also reasonable to assume that there might be dif-
ferent genetic profiles that lead to a similar disease risk.
These aspects of SNP analysis can be summarised by high dimensionality, interaction
effects and locality (due to alternative ways of developing a disease). Thus, we adapt
and investigate methods that can handle one or more of these challenges.
The analyses are carried out on different data sets: We design a simulation study that
reflects the three characteristics of SNP data and incorporates different genetic models
of association between SNP interactions and the disease. Different effect sizes of the
causative SNPs allow to answer the question "Which effect size is needed to detect dif-
ferences between diseased and healthy patients?" Furthermore, we analyse data from
the GENICA study on sporadic breast cancer (Justenhoven et al., 2004) and a subset of
the publicly available HapMap data (The International HapMap Consortium, 2007).
This thesis consists of two types of methodology: Cluster and discrimination analy-
sis. Cluster methods divide all SNPs into several subgroups, and thus enable us to
describe their relationship and investigate differences in these relationships between
diseased and healthy patients. As clusterings do not rely on known class labels, it is
not straight forward how to judge the quality of a partition. To solve this problem,
we define sensible goals for a desirable partition and present coefficients that measure
how closely these goals are met. To allow for an overall comparison between different
partitions, the quality measures are combined into one single desirability index. In a
different approach, we use cluster analysis on the observations and try to achieve clus-
ters with a high fraction of either cases or controls.
In the second part, we present suitable classification methods for SNP data that we
either developed or adapted from existing methods and show how they incorporate
possible interactions and locality. Five methods borrow concepts from the field of data
mining. The algorithm we use (called apriori, Agrawal et al., 1996) has been developed
to handle huge amounts of data, e.g. from internet purchase data bases or spam filters.
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It is used to search for frequent itemsets, i.e. frequent combination of variable values,
and association rules, which give information about the likeliness to observe one item
if a different itemset is known to be present. We adapt them to suit the genetic envi-
ronment and translate frequent itemsets as genetic profiles, while association rules are
descriptive predictions of the disease status given a certain genetic profile.
The first two methods we present use frequent genetic profiles to either build new inter-
action variables (feature construction) or to divide the data into subgroups and perform
profile-specific analysis (local class).
The remaining three classification methods originate from associative classification (Liu
et al., 1998), i.e. classification and association rules combined into one method. They
are based on all interesting association rules that can be found in the data, and classify
a new observation based on either the best rule (naive classification) or on a voting of
all applicable rules (associative classification based on voting and on weighted voting).
Additionally, we localise logic regression (Ruczinski et al., 2003), an existing method
for analysing SNP data, and investigate the impact of the localisation. All classifica-
tion methods are compared by their misclassification rates. Logic regression, CART
(Breiman et al., 1984) and Random Forests (Breiman, 2001) serve as standards.
This dissertation is organised as follows: It starts with an introduction to SNPs and
genetics in Chapter 2, followed by a description in Chapter 3 of the simulation study
and the data sets used in the analyses. The methodological section is divided into two
different chapters: The cluster analysis and the corresponding quality measures are
presented in Chapter 4, while the classification methods are described in Chapter 5.
All results of both the cluster and the discrimination analysis are presented in Chapter
6. In the final Chapter 7, the findings will be summarised, and an outlook to future
perspective and work will be given.



CHAPTER 2

Single Nucleotide Polymorphisms and Disease

Human genetic information (like all eukaryotic genetic information) is stored in de-
oxyribonucleic acid (DNA) contained in the nucleus of nearly every body. DNA is
a polymer that, for stability reasons, arranges as a helical intertwined double DNA
strand. Each strand consists of nucleotides interconnected via phosphodiester bonds.
Every nucleotide is built out of a phosphate group, a deoxyribose sugar and of one of
four nitrogen bases (adenine (A), thymine (T), cytosine (C) or guanine (G)). Adenine
and guanine are pyrimidines, while cytosine and thymine are purines and therefore
heterobicyclic. Two kinds of bases (A and T, C and G) are complementary, meaning that
they can connected and allow the two strands of DNA to be attached to each other via
two (A and T) or three (G and C) hydrogen bonds (Haines and Pericak-Vance, 2006).
Single sections of the DNA build functional units (genes) that contain all necessary
information for the production of a certain protein (which consists of an amino acid
chain). The DNA provides the required code: three DNA bases together (triplet) form
codons that encode for one of the 20 amino acids. The number of codons (43=64) ex-
ceeds the number of amino acids, which results in a redundancy. Thus, several differ-
ent codons encode for the same amino acid, while others contain information where
to start and stop reading the DNA code. According to the central dogma of molecular
biology (Jorde et al., 1995), the relevant genetic code is transcribed from the DNA into
mRNA (a single stranded ribonucleic acid) by splitting the double stranded helix open,
reading the base order and arranging the respective complementary bases. Note that
instead of thymine, mRNA consists of the similar base uracil (U). The flexible mRNA
can leave the cell’s nucleus and translate its information into proteins with the aid of
ribosomes and tRNA molecules (cf. Figure 2.1).
Not every part of the DNA encodes for the production of proteins. The regions that
do consist of exons and introns. For translating the genetic information, introns have
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Figure 2.1: Central dogma of molecular biology: The DNA is transcribed into mRNA
in the cell’s nucleus. After posttranscriptional modifications, the introns
are spliced out leaving a strand of exons. The flexible mRNA can leave
the nucleus into the cytoplasma and translate its information into proteins
with the aid of ribosomes. Source: Haines and Pericak-Vance (2006), figure
adapted from Jorde et al. (1995).

to be spliced out from the gene (cf. Figure 2.1). The main proportion of DNA is not
transcribed.

DNA is arranged in chromosomes. Humans have 23 pairs of chromosomes, 22 ho-
mologous pairs (one maternal and one paternal chromosome) and two gonosomes that
differ between men (who inherit one X and one Y chromosome) and women (with two
X chromosomes).
In the case of mutation of one base in the coding regions three different situations can
occur: Because of the redundancy of the genetic code this mutation can be silent be-
cause more than one triplett encode for the specific amino acid. Secondly, the mutation
results in a missense mutation which results in an exchange of the specific amino acid
the triplett encodes for. The extent of this mutation depends on the substituted amino
acid. A modification of an important functional domain is possible which can result a
loss of function. At least, this mutation can lead to a nonsense-mutation, which means
that the triplett which encodes for the specific amino acid is substituted by the triplett
encoding for the stop codon. In this case the translation of this protein is terminated



6

Figure 2.2: Human (male) set of chromosomes, taken from National Human Genome
Research Institute (http://www.genome.gov).

misleadingly and important functional domains can be deleted. These changes in the
amino acid sequence might play a role in the susceptibility for certain diseases (either
malignant or beneficial changes).
If one base in the genome is substituted (in comparison to some reference), and this
variation occurs in more than 1% of a population, this is called Single Nucleotide Poly-
morphism or SNP. These SNPs are the genetic information of interest in this thesis. For
the homologous chromosome pairs, each genetic position (called locus, pl.: loci) ex-
ists twice, once on each chromosome. Therefore, a SNP can take three possible values
(genotypes): Either there is no variant in comparison to some kind of reference coding
(homozygous reference) or the variation occurs on one of the two chromosomes (het-
erozygous), or both chromosomes express the variant base (homozygous variant), cf.
Figure 2.3.
SNPs cannot be measure directly, but have to be assessed indirectly and inferred from

the results afterwards (called genotyping). Due to a rapid development in technology,
genotyping has changed completely recently. The GENICA data (cf. Chapter 3) were
measured around the year 2002, measuring one SNP at a time via time-of-flight mass
spectrometry (MALDI-TOF, cf. Justenhoven et al. (2004)). Today, SNP chips (e.g., by
Affymetrix) allowing to genotype up to one million SNPs simultaneously are available
and widely used (LaFramboise, 2009), e.g. for the HapMap data (cf. Chapter 3).
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A genetic component plays a certain part in complex human disease (Garte, 2001). SNP
association studies can be aimed at finding such genetic risk factors for a binary trait
like disease status. For the search, it is important to note that instead of directly causing
diseases, SNPs give information about the risk of developing a particular disease. This
can be shown by the following example:
The gene apolipoprotein E (apoE) is associated with the development of Alzheimer’s dis-
ease (Rocca et al., 1986). apoE contains two SNPs which lead to the three different SNP
combinations on a chromosome E2, E3, and E4. If at least one chromosome of a per-
son expresses E4, the risk of developing Alzheimer’s disease increases. On the other
hand, inheriting E2 seems to be protective. However, it is by any means also possible
to remain free of Alzheimer’s disease even with an inherited copy of E4 while someone
with the protective combination can still fall ill.
In addition to the problem that the predisposition can be present without inducing a
visible phenotype, there are other challenges that complicate a SNP analysis. As, e.g.,
stated on the website of the Human Genome Project (2008), even though apoE has been
successfully associated with the Alzheimer’s disease risk, it is highly likely that such a
complex disease is influenced by variations in several genes.
This implies problems for methods to analyse SNP data: There might be alternative
ways of developing a disease (Clark et al., 2005) and it is unlikely that a single SNP
alone influences the risk of developing complex diseases as Alzheimer’s or cancer
(Garte, 2001, Goldstein and Cavalleri, 2005).
Another challenge is the dimension of the data sets produced by high throughput
methods nowadays: SNP association studies usually contain many variables, espe-
cially if interactions in addition to main effects are of interest. Multiple testing leads
to a high number of false positive test results (Storey and Tibshirani, 2003) plainly be-
cause of the vast number of tests. As the data matrix is high dimensional and consists
of more columns than rows, it is unsuitable for applying standard procedures, e.g., lo-
gistic regression (Hoh and Ott, 2003). Furthermore, a stepwise regression approach can
be shown to be suboptimal (Rao and Wu, 2001). Therefore, methods from the field of
data mining and machine learning gain a lot of attention in genomic research as they
can handle a huge amount of data.
All challenges mentioned above are key words for the main topics of this thesis: lo-
cality (due to alternative ways of developing a disease), interaction effects and high
dimensionality.
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Figure 2.3: Schematic illustration of single nucleotide polymorphisms: On several loci,
the allelic state of both chromosomes is compared to the reference bases and
results in three possible genotypes.

2.1 Genetic Terms

Throughout this thesis we will use genetic technical terms in order to describe the data
and hypothesis underlying the disease risk mechanism.

Definition 2.1. An allele is the state of a genetic site, either of a single base or of a larger piece
of DNA.

Definition 2.2. The minor allele frequency is the relative frequency of the less frequent variant
of an allele in a population or study.

Definition 2.3. The penetrance of an allele is the probability of developing the disease D given
the respective allele A, written as P(D|A).

Definition 2.4. The haplotype is the allelic state on one of the two chromosomes.

This means that if SNP values are determined, the result usually gives information
about both chromosomes together (genotype). E.g., if two loci A and B from the same
chromosome are investigated and both turn out to be heterozygous, this can either
mean that on chromosome 1, both loci show the variant, while on chromosome 2, both
show the reference base. On the other hand, it is possible that on chromosome 1, locus
A shows the variant and B the reference, and vice versa on chromosome 2. If the exact
position of the bases on the respective chromosome is known, it is called haplotype.
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During the process of meiosis, the parents’ DNA is split up to be united in the baby
cell as a new genome. This never occurs without disturbance, as the DNA can break
into pieces and can be put together in a different fashion (cross over, recombination).
Not all loci on the genome are equally likely to break, therefore, some DNA pieces are
inherited together more often than others with are frequently separated.(one reason,
e.g., is the physical distance of loci). The phenomenon can be measures statistically by
linkage disequilibrium.

Definition 2.5. Linkage disequilibrium is the non-random association of alleles at two or more
loci on the genome.



CHAPTER 3

Data

Throughout the thesis SNP values will be coded with 0 (homozygous reference), 1 (het-
erozygous) and 2 (homozygous variant).
Our methods will be tested on different kinds of SNP data. Initially, we analyse sim-
ulated data with different genetic models underlying the disease risk. The simulation
should give information about the performance of the methods on the one hand and
help to define minimum detection thresholds under which even a good method is un-
able to find influential SNPs on the other hand.
One simulated data set is inflated to comprise 10 000 SNPs with the same SNP structure
as in the smaller simulated data sets. The genetic model is also the same.
The initial real world data set, a subset of the German GENICA study (Justenhoven
et al., 2004) on breast cancer, is chosen as this study triggered our research in the area
of molecular epidemiology. As a publicly available set we chose the HapMap data (The
International HapMap Consortium, 2003). In all real-world data sets, we avoid miss-
ing values, either by removing observations or SNPs from the study or by imputing the
missing values. This is necessary to guarantee comparability of the results of different
classification methods because not all methods can handle missing values.

3.1 Simulation of SNP Data Using the Software SNaP

The simulated data are created using the software SNaP (Nothnagel, 2002), which has
been established in different investigations, e.g., Zhao et al. (2005), Wu et al. (2008).
Its underlying algorithm is based on the theory that the genome consists of haplotype
blocks that are more likely to be inherited in one piece than being split into several

10
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Figure 3.1: Basic idea of SNaP simulation: For a haplotype block with a specified num-
ber of loci (five in this example), several possible states are fixed. From
the pool of available haplotype blocks, two are randomly drawn (with re-
placement) for each observation. The genotype is then inferred from the
haplotypes.

parts by recombination (Gabriel et al., 2002) and cross-over. That implies a dependency
structure between the loci within a block and independence between loci of different
blocks.
As can be seen in Figure 3.1, for a haplotype block a given number of loci to investigate
is specified. Several states of the different loci of the block are defined. For an indivi-
dual, two haplotyes from the pool of available haplotype blocks are drawn with given
probabilities and then combined to yield the persons’s genotype.
For association studies, we simulate cases and controls. The software allows to choose
causative SNPs whose values influence the probability to belong to either of the two
collectives. By simulating data sets we mimic the characteristics of the GENICA study
(cf. Subsection 3.2.1). Thus, all simulations consist of 100 SNPs, 500 cases, 500 controls
and 20 blocks (with block sizes varying between three and eight SNPs per block). All
parameter choices can be seen in Table 3.1.

The possibilities of specifying genetic interaction models in the software are limited
by the maximum number of causative SNPs (not more than six causative SNPs al-
lowed). Therefore, we investigate three different scenarios: They comprise one, two
and three two-way interactions, respectively. The most important feature of the simu-
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Parameter Value(s)
number of cases and controls 500 and 500

number of SNPs 100

number of blocks 20

number of SNPs per each block (individually) ∈ {3, 4, . . . , 8}
number of block alleles ∈ {3, 4, . . . , 13}
frequencies of block alleles ∈ [0.01, 0.62]

number of causative SNPs ∈ {2, 4, 6}
causative SNPs SNP4, SNP12, SNP48,

SNP51, SNP 68, SNP82

frequencies of causative SNPs ∈ [0.22, 0.35]

Table 3.1: Parameter settings for the simulation software SNaP.

lations are the different penetrances which determine the genetic interaction model and
the strength of the disease risk. In the case of two-way interactions, according to Mar-
chini et al. (2005a), a possible genetic interaction model involving two loci (expressed
in terms of odds) can take the form described in Table 3.2. The baseline odds α denote
the odds of developing the disease given that at least one SNP shows the homozygous
reference (note that P(D) is the probability of developing the disease and that SNP
variables can take possible values 0, 1 and 2):

α =
P(D|SNP A = 0∨ SNP B = 0)

1− (P(D|SNP A = 0∨ SNP B = 0))
.

This transforms to the penetrance given at least one SNP is homozygous referent:

P(D|SNP A = 0∨ SNP B = 0) =
α

1 + α
.

All penetrances can be found in Table 3.3. Here, θ denotes the effect size of the interac-
tion. We assume equal effect sizes for all loci.

In order to obtain sensible parameters for the simulation study, we choose α = 0.1 and
increase the effect size θ by steps of 0.2, starting at θ = 0.5 (small effect, see Marchini
et al. (2005b)) to θ = 1.9.
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SNP B

0 1 2

0 α α α

SNP A 1 α α(1 + θ) α(1 + θ)2

2 α α(1 + θ)2 α(1 + θ)4

α(1 + θ)2 α(1 + θ)2 α(1 + θ)2

Table 3.2: Odds of developing a disease in the multiplicative genetic interaction model.
The baseline odds for an effect is denoted by α, while θ is the effect size
determined by the interaction. Source: Marchini et al. (2005a).

SNP B

0 1 2

0 α
1+α

α
1+α

α
1+α

SNP A 1 α
1+α

α(1+θ)
1+α(1+θ)

α(1+θ)2

1+α(1+θ)2

2 α
1+α

α(1+θ)2

1+α(1+θ)2
α(1+θ)4

1+α(1+θ)4

1 + (α(1 + θ)4) 1 + (α(1 + θ)4) 1 + (α(1 + θ)4)
Table 3.3: Penetrances of developing a disease in the multiplicative genetic interaction

model. The baseline odds for an effect is denoted by α, while θ is the effect
size determined by the interaction. Adapted from Marchini et al. (2005a).

The simulation process simulates genotypes first and obtains the disease status accord-
ing to the penetrances chosen afterwards. Due to the setting that cases are generated if
variants are present in the causative SNPs and the probability of simulating this geno-
type is much lower than simulating control genotypes, the study’s controls are quickly
generated (in our case 500), while we are still lacking many cases needed for the given
study size. The simulation process continues with the difference that all additional
controls as discarded and only cases are kept in the study until both collectives have
reached their pre-specified size. Most of the cases’ disease status will be due to a more
common genotype with lower penetrance (e.g., heterozygous causative SNPs), rather
than a rare genotype with higher penetrance. We will analyse all simulated data sets
descriptively and show the respective number of cases belonging to each causative
genotype.
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Interactions of order 3 or higher might also occur in SNP data sets. Still, the theoretical
justification as given for the two-way interactions is not as straight forward anymore.
Thus, we set the simulation of higher interactions aside. In ad hoc simulation scenarios
it could be shown that the classification methods that will be described in subsequent
chapters can handle three-way interactions without problems (Müller et al., 2008).
Due to the process of drawing cases and controls during the simulation, the structure
of the simulated data sets differs from the configuration of the penetrances. The em-
pirical genotype distributions of the causative SNPs, separated into cases and controls,
can be seen in Figures 3.2, 3.3 and A.1. Note that the frequencies are averaged over all
10 data sets of the same setting.

 00  10  20  01  11  21  20  21  22

Genotypes, θθ=0.05

F
re

qu
en

cy

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

 00  10  20  01  11  21  20  21  22

Genotypes, θθ=0.11

F
re

qu
en

cy

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

 00  10  20  01  11  21  20  21  22

Genotypes, θθ=0.19

F
re

qu
en

cy

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figure 3.2: Different genotype distributions for causative SNPs between cases (red)
and controls (blue) for different effect sizes, given one causative SNP in-
teraction.

For small effect sizes, the differences between cases and controls are very small. They
become more pronounced with rising effect size. However, if several interactions are
associated with the disease risk, the differences between cases and controls for the sin-
gle interactions diminish again. Thus, classifying observations into cases and controls
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will be difficult as in real world SNP data sets.

To investigate the influence of a higher SNP number with similar causation process, one
simulated data set is inflated to comprise 10 000 SNPs. This is achieved by retaining
the dependence structure of the different SNP blocks. In permutated order, they are
added to the individuals to form a genotype of 10 000 SNPs with one causative SNP
interaction with an effect size of θ = 1.9. The data set will be referred to as the 10000-
SNPs simulation.

3.2 Real-World Data

3.2.1 GENICA

The GENICA study on Genetic and Environmental Interactions and Sporadic Breast
Cancer (Justenhoven et al. (2004), Justenhoven et al. (2008)) was designed as an age-
matched population-based candidate SNP association study which aims to identify
associations between genetic and environmental factors and breast cancer in women.
It was carried out in two phases between 2000 and 2004 in the Greater Bonn region,
Germany. All women within the study were under 80 years of age, current residents in
the study area and of Caucasian ethnicity.
The actual study comprises SNP data as well as epidemiological variables such as re-
productive information, occupation, medication etc., but in this thesis we will focus on
the genetic information only.
Considering both phases, the GENICA study consists of about 150 polymorphisms and
2298 women. Only data from the first phase is considered in this thesis. We will analyse
a subset of 63 SNP variables (belonging to genes from different pathways, the steroid
and xenobiotic metabolic pathway, the cell-cycle control mechanisms, and from DNA
repair mechanisms) and 1191 observations (561 cases and 630 controls) previously in-
vestigated in Ickstadt et al. (2006) and Nunkesser et al. (2007). The preprocessing en-
sured that all observations show less than six missing values and that all SNP variables
included in the subset do not have more than 10% missing values nor have fewer than
30 patients expressing a heterozygous or homozygous variant genotype. Observations
and variables that did not meet these criteria were deleted. The few missing values
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Figure 3.3: Different genotype distributions for causative SNPs between cases (red)
and controls (blue) for different effect sizes, given two causative SNP in-
teractions.
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remaining in the data set are replaced SNP-wise by random draws from the marginal
distribution of the respective SNP.
For evaluating the results, the limits of the study have to be taken into account: It was
designed as a candidate study in the beginnings of SNP analysis, therefore, the num-
ber of variables within the study is comparatively small. Causative variants might be
missing in the data and prevent results from being satisfactory.

3.2.2 HapMap

The HapMap Project (The International HapMap Consortium, 2003) was founded to
catalogue SNPs and to identify haplotypes and tagSNPs representing all SNPs of a
haplotype. Thus, if a researcher wants to test for an association between a disease and
SNPs of a genome-wide scan, the number of tests is reduced if he refers to the tagSNPs
only as they contain all information necessary.
Up to 2007, the HapMap Consortium genotyped about 3.1 million SNPs (in two phases)
in 270 persons of four different ethnicities (Yoruba in Ibadan (Nigeria), Japanese in
Tokyo (Japan), Han Chinese in Beijing (China) and Utah residents with ancestry from
northern and western Europe (USA)) without assessing any information about diseases
or other traits. Thus, the label for HapMap data is ethnicity. In contrast to the other data
sets, the natural relationship between the genetic profile and the outcome is rather de-
terministic in this example if the respective SNPs are part of the data. However, the
analytic interest lies in the data structure which can be compared to that of association
studies with cases and controls.
We will analyse a subset of the HapMap data. The SNPs measured with the Affymetrix
GeneChip Mapping 500K Array Set (in particular, the SNPs from the Nsp array) and
assessed as BRLMM genotypes (Bayesian Robust Linear Model with Mahalanobis dis-
tance, Affymetrix (2006)). The data subset is additionally reduced by the following
criteria the SNPs have to meet:

1. The SNPs show no missing genotypes for the two ethnicities (omitting (54 400
SNPs).

2. All three possible genotypes are observed (omitting 75 481 SNPs).

3. Their minor allele frequency yields > 0.1 (omitting 10 609 SNPs).
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4. The false discovery rate of chosen subset (by Significance Analysis of Microarrays
(Tusher et al., 2001) adapted for categorical data (Schwender, 2003)) yields 0.069
(omitting 121 617 SNPs).

The remaining SNP subset comprises 157 SNPs. We chose the two collectives of un-
related Japanese from Tokyo and unrelated Han Chinese from Bejing (45 observations
per class) to create a two class problem similar to an association study.
All discrimination methods described in Chapter 5 are then applied to this subset of
SNPs, and the misclassification is estimated by 9-fold crossvalidation, where each of
the nine subsets is composed of five randomly chosen Han Chinese and five randomly
chosen Japanese participants.



CHAPTER 4

Clustering

Cluster analysis is a multipurpose method for unsupervised learning (Hastie et al.,
2001). Its main application is to divide a set of variables or observations into subgroups
or clusters. As a side effect, the degree of similarity (or distance) between the clustered
objects is calculated. It can also be used to check if distinct subgroups in the data sets
do exist.
In this thesis, we will use average linkage, a hierarchical agglomerative algorithm de-
scribed in Subsection 4.1. Average linkage is based on a similarity matrix containing all
pairwise similarities between all cluster objects of interest. There are many possibili-
ties to define similarity, but we will focus on matching coefficients, a specific class of
similarity measures, and on Pearson’s corrected contingency coefficient, all introduced
in Section 4.1 . Throughout the first part of this chapter, the cluster objects will be SNP
variables, and partitions should give information about genetic structure and relation-
ships between SNPs.
The most relevant part of the cluster section is given in Section 4.3: Validation coeffi-
cients for cluster partitions. For the specific situation of genetic SNP data (cf. Section
4.2), certain characteristics for a good clustering are required. We incorporate them
into four goodness-of-fit measures which are defined and motivated in this section.
Furthermore, all four coefficients are combined to a single score (or desirability index) to
allow for an unambiguous comparison of clustering partitions.
In the final section, the cluster objects will be the observations instead of the variables.
Thus, the cluster analysis now aims at finding distinctive clusters of cases and clusters
of controls. We describe a suitable cluster algorithm that clusters observations on an
optimal set of SNP variables (due to an integrated variable selection).

19
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4.1 Similarity and Cluster Algorithm

Similarity and Distance

Let the data consist of n objects and m variables, with V = {V1, . . . , Vm} describing the
set of variables. For now, we are interested in clustering the variables, not observa-
tions. To define a notion of similarity between elements of V, we introduce a function
S : V ×V → R called similarity measure (Jain and Dubes, 1988). It should yield higher
values for cluster objects that are more similar to each other than for objects less similar
and meet at least the first three of the following requirements (with i, j = 1, . . . , m):

1. S(Vi, Vj) = S(Vj, Vi), symmetry,

2. S(Vi, Vj) ≤ S(Vi, Vi), natural order,

3. S(Vi, Vj) ≥ 0, positivity,

4. S(Vi, Vi) = 1, normality.

Assumptions 3 and 4 are often useful, though not necessary for S(·) for being a simi-
larity measure.
In most practical investigations, distances rather than similarities are of interest. For
categorical data in general and SNP data in particular, it is common practice to com-
pute the similarity S(·) first and then transform it into a distance D(·) (Cox and Cox,
2001). Large similarities correspond to small distances and vice versa. Therefore, we
use the following transformation if S(·) ∈ [0, 1]:

D(Vk, Vl) = 1− S(Vk, Vl), ∀Vk, Vl ∈ V. (4.1)

If [min (S(·)), max (S(·))] 6⊂ [0, 1], we apply

D(Vk, Vl) =


1− S(Vk ,Vl)

|max S(Vi ,Vj)| , if min S(Vi, Vj) ≥ 0

1− S(Vk ,Vl)+|min S(Vi ,Vj)|
|max S(Vi ,Vj)|+|min S(Vi ,Vj)| , else,

∀Vk, Vl ∈ V, and i, j = 1, . . . , m. The resulting distance satisfies D(·) ∈ [0, 1] (Fahrmeir
et al., 1996).
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Vl

0 1 2

0 m00 m01 m02

Vk 1 m10 m11 m12

2 m20 m21 m22

n
Table 4.1: 3× 3 - contingency table for matching coefficients in the case of SNP data

The choice of a particular similarity measure S depends on the data structure. A suit-
able option for SNP data are matching coefficients (Anderberg (1973) and Cox and
Cox (2001)). Based on the contingency table of two variables Vk and Vl with three
levels each, resulting into nine categories (Table 4.1), matching coefficients relate the
number of matching objects (given in the matching categories) to the remaining ob-
jects and thus evaluate the similarity between Vk and Vl . Classically, the n+ cate-
gories on the diagonal of the contingency table are considered as matching categories
m+ := (m00, m11, m22)′, while all other classes build up the n− mismatching categories
m− := (m01, m02, m10, m12, m20, m21)′. With 1Ib a b-dimensional vector of ones, the ordi-
nary simple matching coefficient SMC, giving the fraction of matches compared to the
total number of observations, can be written as:

SMC(Vk, Vl) =
1I′n+
·m+

1I′n+
·m+ + 1I′n− ·m−

.

The SMC can be generalised in two ways: Initially, the division into matching and
mismatching categories can be relaxed. All entries of the contingency table can be
labeled user-specified as either matching or mismatching, regardless of their position
within the table. Furthermore, the user can assign individual weights w+

F (for matches)
or w−F (for mismatches), respectively, to all categories. The resulting flexible matching
coefficient reflectcs the characteristics of SNP data described in Section 4.2.

Definition 4.1. Let V = {V1, . . . , Vm} be the set of variables, let m+
F (m−F ) be the vector of the

numbers of elements in the n+ matching (the n− mismatching) categories and let w+
F (w−F ) be

respective weights that reflect the matches (mismatches) importance. Then the flexible matching
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coefficient FMCwF : V ×V → R is given by

FMCwF(Vk, Vl) :=
w+ ′

F ·m
+
F

w+ ′
F ·m

+
F + w− ′F ·m

−
F

.

The following restrictions apply:

1. 1I′n+
·w+

F > 0 and 1I′n− ·w
−
F > 0.

2. e′i ·w
+
F ≥ 0 ∀ i , e′j ·w

−
F ≥ 0 ∀ j, with ei, ej being the unity vectors of respective

order with value 1 at position i and j, respectively, with i ∈ {1, . . . , n+} and
j ∈ {1, . . . , n−}.

3. w+ ′
F ·m

+
F + w− ′F ·m

−
F > 0.

The distinction into matches and mismatches as well as the specification of the weights
can be chosen to fit best by the user. The properties of the FMC are given in Selinski
and Ickstadt (2005). Müller (2004), Ickstadt et al. (2006) and Selinski and Ickstadt (2008)
show that the clustering performance on SNP data can be improved by employing
FMCs. Additionally, conventional matching coefficients can be formulated as special
cases of FMCs, e.g. Jaccard’s coefficient (Anderberg, 1973). It is defined as all matching
objects except if they share a null category (m00) divided by all objects excluding the
objects of the null category. In our notation, this yields an FMC with w+ ′

F = (0, 1, 1),
m+

F = (m00, m11, m22), w− ′F = (1, 1, 1, 1, 1, 1) and m−F = (m01, m02, m10, m12, m20, m21).
A different idea of similarity is introduced by using the χ2-coefficient and yielding
Pearson’s corrected contingency coefficient

PCC =

√
3
2

χ2

m + χ2 . (4.2)

Here, variables are considered similar if they are dependent.

Cluster Algorithm

Based on the similarities of cluster objects, a cluster algorithm divides the data into
different clusters. Agglomerative hierarchical clustering methods build a data partition
for every number of classes m, . . . , 1, starting with m clusters (each object forming its
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own cluster) and finishing with all objects fused into a single cluster. All fusions are
based on the similarity matrix obtained by calculating pairwise similarities. Following
the notation S(·), we call S̄(·) the similarity measure for clusters. The average linkage
cluster method computes the similarity between two clusters Ct and Cr with mCt and
mCr elements, respectively, as follows:

S̄(Ct, Cr) =
1

mCt mCr
∑

Vi∈Ct

∑
Vj∈Cr

S(Vi, Vj), i = 1, . . . , mCt ,

j = 1, . . . , mCr .

Given the initial situation that every variable is regarded as a cluster with only one
element, the algorithm works as follows:

1. Fuse the two clusters with the highest similarity.

2. Recompute the similarity for the newly established group to all remaining clus-
ters.

3. Iterate steps 1 and 2 until all variables form a single cluster.

Number of Clusters

As there are specific data partitions for m to 1 clusters, a certain cluster number choice
is not necessary in advance to start the algorithm. Nevertheless, to receive interpretable
results or compare and evaluate different partitions, a best number of clusters has to
be determined. A choice could be made graphically by regarding the resulting den-
drogram and assessing the most relevant increase in overall distance between clusters.
However, that quickly becomes too time-consuming when analysing many partitions.
Alternatively, background knowledge can determine a number of clusters or a range of
sensible numbers of clusters.
For the simulated data, we want to find the best partition according to the desirability
index (cf. Subsection 4.3). We use one data set of the same configuration as training
set for obtaining the optimal number of clusters and employ the results on a respective
test data set to calculate the desirability index. For the real world data, we will consider
reasonable assumptions and the results from the simulated data.
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4.2 Application to Genetic SNP Data

The flexible matching coefficients described above meet the data characteristics of SNPs
as they are suited for categorical data and they give possibilities to down-weight the
less informative (but generally more abundant) category of homozygous references,
while stressing the importance of matching variants (for details, see Technical Report
Müller et al. (2005)). Pearson’s corrected contingency coefficient can also be applied to
categorical data.
We use cluster analysis for a first insight into genetic SNP data. All SNP variables
should be clustered separately for cases and controls to allow for differences between
the genetic profiles to be visible. Ideally, similar SNPs cluster in the same group, while
diverse variables are assigned to different clusters. Several assumptions concerning the
emerging partitions can be made:

1. SNPs in high linkage disequilibrium (cf. Subsection 2.1) might be grouped in one
cluster.

2. SNPs with similar or linked biological functions might be grouped in one cluster.
3. SNPs responsible for disease risk might be clustered differently in the case and in

the control collective.

For the simulated SNP data, the notion of linkage disequilibrium (Goal 1) is expressed
in the blocking structure of the SNP variables (cf. Chapter 3). Several blocks with
different numbers of SNPs are used to generate genotypes in a way that SNPs within
a block are correlated, while SNPs of different blocks are assumed to be independent.
Therefore, the blocks are used to investigate Goal 1 in the following description of
cluster validation.

4.3 Cluster Validation

As there are numerous possibilities to choose a cluster method and a similarity measure
or weights for a particular similarity measure, a means of evaluating and comparing
different clusterings is desirable. Existing validation methods can be grouped into three
different types (Halkidi et al., 2001): External (comparing the resulting partition with
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a standard partition given beforehand, internal (using the data the partition was built
of itself) and relative criterion (evaluating partitions from the same algorithm, but with
different parameters). The introduced measures f1, f2, f3 and f4 will all be of the third
type, but f1, f3 and f4 also rely on external information.
According to the aspired assumptions of the last section, a good partition should fulfill
the following goals:

1. Detecting linkage disequilibrium (or the underlying blocking structure) of the
variables (cf. assumption 1. in Section 4.2).

2. Avoiding clusters with only one element. Uninformative partitions tend to add
each variable separately to one big cluster, leaving most other clusters with just
one element. It is more desirable to obtain a clustering with several distinctive
clusters consisting of a couple of SNPs each.

3. Help to distinguish between causative and non-causative SNPs in the case, but
not in the control collective. If a causative SNP combination influences the risk of
developing a disease, it is likely that all involved SNPs express similar genotypes
in the case collective. On the other hand, they should not show any pattern in the
controls as they do not have an effect in these observations. SNPs clustering in
both collectives seem to be in linkage disequilibrium rather than to be responsible
for the disease under investigation.

We have designed quality measures for each of these goals (Selinski and Ickstadt (2008),
Müller (2004)). For ease of understanding, note that the letter m with some meaningful
index corresponds to numbers of variables and capital calligraphy letters refer to sets
of variables.
The first goal corresponds to measuring the linkage disequilibrium between two loci.
Usually, a common measure like D′ or r2 (Lewontin (1964), Devlin and Risch (1995),
Hill and Robertson (1968)) would be used to assess linkage disequilibrium. However,
as our goal is not to compute linkage disequilibrium, but to measure properties of
the similarity coefficients used, we calculate f1 as an indicator for an existing blocking
structure (as used in the simulated data):

Definition 4.2. For a data partition with K clusters Ck and B linkage disequilibrium blocks
underlying the SNP structure (cf. Chapter 3), the number of SNPs of block b in cluster k is
given by mCk ,b, b = 1, . . . , B and k = 1, . . . , K, while the number of elements in cluster k is
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given by mCk . Then the average proportion of SNPs of the same block in a common cluster is
calculated by

f1 :=
1
K

K

∑
k=1

m∗Ck

mCk

, m∗Ck
:=


maxb=1,...,B mCk ,b , if mCk > 1,

0 , if mCk = 1,

with b = 1, . . . , B, k = 1, . . . , K.

Some properties of f1 are that f1 ∈ [0, 1] with f1 = 0 if no SNPs of the same block share
a cluster and f1 = 1 if all linkage disequilibrium blocks form their own clusters. This
means that high values of f1 correspond to a good clustering according to goal 1.

The second goal, avoiding clusters with just one element, is examined by f2.

Definition 4.3. Given a data partition with K clusters Ck, the proportion of the K1 clusters
with just one element is calculated by

f2 := 1− K1

K
.

Again, it is desirable to yield high values of f2 ∈ [0, 1].

Both f1 and f2 should be calculated for cases and controls separately. Thus, in order
to obtain a single measure for the clustering of a data set, the two values have to be
combined. This can be done, e.g., by building the arithmetic mean, or by taking two
values per measure into the desirability index (see following subsection).

To test the performance of a clustering concerning the third goal, we need to split its
different aspects into two measures. They should investigate if the clusterings of the
two collectives differ with respect to the causative SNPs ( f3) and if they resemble each
other in clustering the non-causative SNPs ( f4).

Definition 4.4. Two separate data partitions are given for the case and for the control collective.
Let mc be the total number of causative SNPs, which are arbitrarily labeled from 1 to mc. They
are distributed over different clusters in the case and in the control collective, with ki indicating
the index of the cluster containing causative SNP i, i = 1, . . . , mc. Cca,ki denotes the set of
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SNPs in cluster ki for the cases and Ccon,ki for the controls, respectively. The united set of SNPs
from clusters ki in both partitions is called Uki = Cca,ki ∪ Ccon,ki and contains mUki

elements.
Equivalently, the intersecting set of SNPs belonging to cluster ki in both partitions is called
Iki = Cca,ki ∩ Ccon,ki with mIki

being the number of SNPs within Iki . The measure

f3 :=
1

mc

mc

∑
i=1

mUki
−mIki

mUki

gives the mean fraction of SNPs (over all clusters ki, i = 1, . . . , mc) present in only one of the
two corresponding clusters of both partitions containing a causative SNP.

In contrast to showing different clusterings for the causative SNPs, we need to ensure
that the two partitions do not differ considerably in the clustering of the non-causative
SNPs. It is not detectable straight forward, as clusters are labeled arbitrarily and not
consistently over different partitions. Therefore, we search for the clusters with a max-
imum agreement of shared non-causative SNPs between the two clusterings.

Definition 4.5. Two separate data partitions are given for the case and for the control collective.
Let mnc

ca,k′ be the number of non-causative SNPs in cluster k′ in the case collective Cca,k′ and
mnc

con,k the number of SNPs in cluster k of the control collective Ccon,k, respectively. With mnc
Uk,k′

as the number of non-causative SNPs in the union Uk,k′ = Cca,k′ ∪Ccon,k, the maximum number
of common variables in clusters k and k′ is given by

manc
k :=


maxk′

mnc
Uk,k′

min{mnc
ca,k′ ,m

nc
con,k}

, if min{mnc
ca,k′ , mnc

con,k} > 1

0, else.

With manc
k ,

f4 :=
1

K+

K+

∑
k=1

manc
k ,

gives the mean number of agreeing SNPs between maximally similar clusters of the two clus-
terings (with K+ being the number of cluster pairs where both clusters contain more than one
non-causative SNP).

For both measures, f3 ∈ [0, 1], f4 ∈ [0, 1], with high values corresponding to a better
partition.
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There might be partitions which are good in terms of one of these measures, but yield
inferior values for another. For a valid overall comparison, we can employ a desir-
ability index (Harrington, 1965) which is built up by the values of all four validation
measures, but gives only one score for the total performance of a clustering (Neumann,
2007). A short introduction to the theory of desirabilities and desirability indices will
be given in the next section.

Desirability Index

If different quality aspects have to be assessed simultaneously, it is effective to condense
the quality values from different measures into a single score value. Useful methods for
this purpose are desirability functions and desirability indices (Steuer (2005), Harring-
ton (1965), Trautmann and Weihs (2006)) and come from the field of product quality
management.

Definition 4.6. Let Yi be a quality measure with real-valued realisations yi, i = 1, . . . , z. A
function

d : IR→ [0, 1] (4.3)

yi 7→ d(yi)

is called desirability function. Higher values of d indicate better performance in terms of the
desired quality. If d(yi) = 0, the desirability is unacceptable, while a value of 1 indicates that
further improvement will be unnecessary.

Harrington (1965) proposes a certain family of functions for d which ensure that the
desirabilities are scale-free. In our current situation, f1, f2, f3 and f4 take values within
the interval [0, 1] already. Even though they are not necessarily scale-free, we treat them
as desirabilities from now on (cf. Neumann (2007)).
They can be condensed into a desirability index (Steuer, 2005).

Definition 4.7. Let d1, . . . , dz be z desirability functions belonging to the quality components
y = (y1, . . . , yz) of Yi, . . . Yz, respectively. The function

q : [0, 1]z → [0, 1] (4.4)

(d1(y1), . . . , dz(yz))′ 7→ q(y)
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is called strong desirability index, if the following monotonicity characteristic holds for two
different measurements y1,i and y2,i, i = 1, . . . , z:

di(y1,i) ≥ di(y2,i)∀i ∈ {1, . . . , z} and ∃ i ∈ {1, . . . , z}with di(y1,i) > di(y2,i)⇒ q(y1) > q(y2).

If > is replaced by≥ the former inequality, then the index is be called weak desirability index.

Harrington (1965) suggests to use the geometric mean of the desirability functions as
the desirability index. As a reason for this choice, he states that this index turns zero if at
least one desirability function takes the unacceptable value zero. Thus, no desirability
function is neglected.

Definition 4.8. Let d1, . . . , dz be z desirability functions belonging to the quality components
y = (y1, . . . , yz). The function

qHarr :=

(
z

∏
i=1

di(yi)

)1/z

(4.5)

is called Harrington’s desirability index.

In the following we base our analyses on this choice as our desirability index as all
quality measures (desirability functions) should yield values sufficiently different from
zero. Further possibilities for desirability functions and indices are given in, e.g., Steuer
(2005) and Trautmann and Weihs (2006).

4.4 Clustering Objects - Variable Selection and Classification

Instead of clustering variables, a different approach is to cluster the observations into
distinct clusters according to their genetic profile. Note that the number of objects to
be clustered is now n instead of m.
In an idealised setting, the resulting clusters would be pure and contain only obser-
vations of the same class. Leaving the field of unsupervised learning, we could use
the class information, label the clusters accordingly and classify future observations by
assigning them to a cluster and let them inherit the class label.
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Pure clusters rarely evolve in real data, therefore we label a cluster Ck "case" if the
majority of all observations within the cluster are cases. A possible validation of this
kind of classification clustering is the average over the purity (Xinhua et al., 2006) of
the clusters Ck, k = 1, . . . , K. Given that nCk is the number of observations in cluster
Ck, with nCk ,ca and nCk ,con being the respective number of cases and controls in Ck, the
purity takes the form

pur(Ck) :=
max{nCk ,ca, nCk ,con}

nCk

.

Clusters with just one element do not yield a sensible statement and are therefore ne-
glected. That leaves a total of K−1 clusters. Purity needs the information about the class
labels and is therefore an external quality measure. Other possible measures are, e.g.,
entropy (measuring the uncertainty) and the overall F-measure that quantifies the re-
lationship between recall and precision of objects assigned to clusters (Steinbach et al.
(2000), Larsen and Aone (1999)). We choose purity because if can be seen as a natural
estimator of the misclassification rate (cf. Chapter 5) and is therefore consistent with
the evaluation of the classification methods in the next chapter.
As irrelevant variables can blur actual effects, we improve the purity of clusters by
choosing a subset Vopt of mopt variables that best explains cases and controls by means
of algorithm 1 (backward selection). Note that Ck|V/{Vi} refers to cluster Ck formed
by a clustering based on all variables except variable Vi.

Algorithm 1 Backward Variable Selection by Means of Clustering

V1 = argmax{Vi∈V} ∑K−1

k=1
nCk

n pur(Ck|V/{Vi})
while j ≤ (m− 1) do

V j = argmax{Vi∈V} ∑K−1

k=1
nCk

n pur(Ck|V/{Vi, V1, . . . V j−1})

if ∑K−1

k=1
nCk

n pur(Ck|V/{V1, . . . V j}) < ∑K−1

k=1
nCk

n pur(Ck|V/{V1, . . . V j−1}) then

Stop; set m−opt = j− 1 and Vopt = V/{V1, . . . Vm−opt}
else

Iterate until j = (m− 1)

end if

Set m−opt = m and Vopt = V{V1, . . . Vm−opt}
end while



CHAPTER 5

Classification

The last part of Chapter 4 has already built a bridge from clustering to classification be-
cause the achieved clustering is used for both labelling observations with known class
labels and selecting variables that are important for a good classification.
In this chapter, we focus on different classification approaches and their success at clas-
sifying patients into cases and controls according to their genetic profile. We will pay
special attention to the existence of influential SNP interactions and of several local
mechanisms that alter the disease risk for different subgroups of patients.
The first kind of classifiers will be based on the theory of frequent itemsets and asso-
ciation rules. After giving all necessary background on the topic, we introduce two
classification methods based on frequent itemsets, namely feature construction and local
class. More sophisticated methods from the field of associative classification (in which the
classification is based on association rules) are described in Subsection 5.3. Finally, in
Section 5.4 we present a localised version of logic regression (Ruczinski et al., 2003), a
tree-based method that was especially designed for SNP data, to classify new patients.

The main task in any classification scenario consists of finding a classifier C(·) that
assigns the correct class label yi to a given observation based on one or more predictors
x. Ideally, the classifier (or model) is built on one data set, while its quality is evaluated
on a separate data set. In real life, circumstances usually leave us with only one data
set to be used for both the model fitting and the model evaluation. Depending on the
sample size which determines the feasibility, we will either employ cross validation
(for smaller data sets) or a partition into training and test data (for larger data sets) to
prevent overfitting. In the following description, we will concentrate on the test and
training data approach. Note that if an optimisation procedure is part of building a
classifier, the optimisation has to be carried out on a subset of the training data that is

31



32

treated as test data within the training data.
Throughout the analyses, logic regression (Ruczinski et al. (2003), cf. Chapter 5.4) as
a regression method specifically designed for SNP analysis as well as CART (Breiman
et al., 1984) and Random Forests (Breiman, 2001) as standard classification procedures
will be used as benchmark classification methods.
The following notation will be used throughout this chapter until stated otherwise.
The response for a certain observation i, i = 1, . . . , n, is given by yi, with corresponding
covariates xi = (xi1, . . . , xim)′. A variable considered for all observations is denoted by
xj, (x1j, . . . , xn,j)′ j = 1, . . . , m. Even though it is a vector, it is written in normal script to
distinguish it from xi. The complete data can be written as

y =



y1

...

yi

...

yn


, X =



x11 . . . x1m

...
. . .

...

xi1 . . . xim

...
. . .

...

xn1 . . . xnm


.

For SNP data analysis, the response variable is binary with outcomes 1 (= case) and 0
(= control), while the covariates are categorical with three possible values 0, 1 and 2.
If a classifier yields good results, only few observations should be assigned to the
wrong class which can be assessed by the misclassification rate MCR. Assume that
we have built a classifier on the training data (y, X) with m predictors and nTr obser-
vations. Furthermore, we call ŷi, i = 1, . . . , nTe the respective predictions for the test
observations with ŷi ∈ {0, 1}. The proportion of misclassified observations is given by

MCR =
∑nTe

i |ŷi − yi|
nTe

.

For convenience, we write nmiss instead of ∑nTe
i |ŷi − yi|.
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5.1 Frequent Itemsets and Association Rules

To introduce the theory of frequent itemsets and association rules, we start with an
example from their field of origin: market basket analysis.
Consider a supermarket that provides several thousand (total number = mI ) items Ij,
j = 1, . . . , mI , all items forming the set of items I . When shopping, a customer buys
a specific set of items. The corresponding transaction Ti is a binary vector of length
mI with entry 1 at all positions corresponding to the items the customer bought and 0
otherwise. All transactions Ti ⊆ I , i = 1, · · · , n, build the data set D (cf. Table 5.1).

Item I1 Item I2 Item I3 Item I4

transaction T1 0 1 1 0

transaction T2 0 0 1 0

transaction T3 1 1 1 1

Table 5.1: Example of a data set D consisting of four items and three transactions. The
customer corresponding to transaction T1 bought items I2 and I3.

Given D, the supermarket manager seeks knowledge about the behaviour of his cus-
tomers to react accordingly and maximise profit. If he knew which combinations of
items are frequently bought together (frequent itemsets), he could, e.g., place the shelves
containing these items adjacent to each other to increase the number of customers buy-
ing both items instead of just one (Borgelt and Kruse, 2002).
We extend the concept of frequent itemsets to association rules. They are of the form
B → H, with B and H being itemsets (B, H ⊂ I , B ∩ H = ∅). B is called antecedent
or body, while H is the consequent or head. An association rule gives information about
the occurrence of H if B is known to be part of the transaction. A common example
taken from the supermarket environment says that "people who buy bread and milk
are likely to buy butter as well". Here, bread and milk build the antecedent and butter
is the consequent. Only rules that occur with a given frequency and that are true for
a given percentage are of interest. These two concepts and a search algorithm will be
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introduced in the following subsection.
Beforehand, we explain the relationship of SNP data (y, X) and transactions and items.
All covariates xj, j = 1, . . . m are categorical with range {0, 1, 2}. For frequent item-
sets, we need a binary data base with a 0-1-variable for each possible genotype at each
possible locus. This is achieved by coding each variable xj into three binary dummy
variables, now called items:

xj ∈ {0, 1, 2} ⇒

xj.0 ∈ {0, 1} = I3·j−2

xj.1 ∈ {0, 1} = I3·j−1

xj.2 ∈ {0, 1} = I3·j, j = 1, . . . , m.

Note that different dummy codings, especially if only two dummy variables are in-
volved, cannot be used as we clearly need one dummy variable/item for each level of
the original SNP.
Each of the three items belonging to a SNP are responsible for one genotype. If their
genotype is present in an observation i they take the value 1 at position i while the
other two items are 0, resulting into 3 · m = mI binary predictors that, together with
two binary variables for disease status, form the data base D. All observations given
the binary data are now called transactions Ti, i = 1, . . . , n. They correspond to the xi

of the original data.
We show the relationship of variables and items as well as observations and transac-
tions in the following example: For two cases (x1 and x2), two controls (x3 and x4) and
two SNPs (x1 and x2), an example data set may look like the right table in Table 5.2. We
then translate the data set into transaction data given in the left table.

A frequent itemset corresponds to a certain genetic profile shared by a sufficiently large
percentage of the subjects. If the consequent of an association rule is restricted to consist
of one of the class labels only, it indicates that a certain fraction of the subjects that
inherit the genetic profile in the antecedent belong to the class given in the consequent.
A quantitative definition of these qualities is given in the following section.
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SNP1 SNP2 status SNP1 SNP2 status

x1 x2 y I1 I2 I3 I4 I5 I6 Istatus1 Istatus0

x1 0 1 1 T1 1 0 0 0 1 0 1 0

x2 0 1 1 sce T2 1 0 0 0 1 0 1 0

x3 0 1 0 T3 1 0 0 0 1 0 0 1

x4 2 0 0 T4 0 0 1 1 0 0 0 1

Table 5.2: This table is a toy example SNP data set with n = 4 observations and m =
2 variables (lefthand side). On the righthand side, the data has been trans-
formed into transactional data with n = 4 transactions and mI = 6 items.

5.1.1 Quality Measures and Statistical Equivalence

An exhaustive search over all possible itemsets and association rules fails in terms of
computational feasibility if the data set gets large. Therefore, Agrawal et al. (1996)
introduced the famous apriori algorithm (cf. Section 5.1.2) which is able to discover
itemsets and association rules that satisfy the quality measures support and confidence.

Definition 5.1. Given a set of items I = {I1, I2, ..., ImI} and a data set D consisting of trans-
actions Ti ⊆ I , i = 1, . . . , n, the support of an itemset B ⊂ I is defined by:

supp(B) =
|DB|

n
· 100%,

where DB = {Ti ∈ D|B ⊂ Ti} and |· | denotes the magnitude of a set (Borgelt and Kruse
(2002)).

A minimum support suppmin is set as a threshold. All itemsets exceeding this threshold
are considered frequent.

Definition 5.2. Given a set of items I = {I1, I2, ..., ImI} and a data set D consisting of trans-
actions Ti ⊆ I , i = 1, . . . , n, the confidence of an association rule B → H, B, H ⊂ I ,
B ∩ H = ∅ is given by:

con(B→ H) =
supp(B ∪ H)

supp(B)
· 100%,
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where supp(B ∪ H) = |DB∪H |
n · 100%, DB∪H = {Ti ∈ D|B ∪ H ⊂ Ti} and |· | denotes the

magnitude of a set (Borgelt and Kruse, 2002).

Again, for the algorithm a minimum confidence threshold conmin has to be chosen.
An association rule’s support can be measured analogously. The original support of
an association rule introduced by Agrawal et al. (1993) is defined as the support of
the combined set suppOrig(B → H) = supp(B ∪ H), but Borgelt and Kruse (2002)
proposed supp(B→ H) = supp(B) instead to achieve flexibility in case another quality
measure than confidence is employed. We will use the latter, more flexible definition.
For the toy example in Table 5.2, choosing a support of 0.5 and a confidence of 0.6, we
find the association rules given in Table 5.3 if we restrict the consequent to consist of
the disease status.

Besides support and confidence, there exist numerous proposals of additional quality
or interest measures for association rules, see, e.g., Tan et al. (2002) or Piatetsky-Shapiro
(1991). They can either be used to prune the mined set of association rules further or to
order the rules. This is important for the classification approaches described in Section
5.3. Different choices of interest measures are meaningful for different kinds of data;
there is no overall best coefficient (Tan et al., 2002).
A selection of commonly used measures are lift, conviction and oddsRatio.

rule support confidence translation

SNP1 = 0→ 2
3 of observations with

I1 → status = 1 3
4

2
3 this genotype are cases

SNP2 = 1→ 2
3 of observations with

I5 → status = 1 3
4

2
3 this genotype are cases

SNP1 = 0 and SNP2 = 1→ 2
3 of obser-

{I1, I5} → status = 1 3
4

2
3 vations with this genotype are cases

Table 5.3: For the data set given in Table 5.2, we find the following association rules
(with the disease status in the consequent) meeting a minimum support of
0.5 and a minimum confidence of 0.6.
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Definition 5.3. Given a set of items I = {I1, I2, ..., ImI}, a data set D consisting of transac-
tions Ti ⊆ I , i = 1, . . . , n and supp(B) = P(B),

(a) the lift of an association rule B→ H, B, H ⊂ I , B ∩ H = ∅ is given by:

li f t(B→ H) =
con(B→ H)

P(H)

(b) the conviction of an association rule B→ H, B, H ⊂ I , B ∩ H = ∅ and H̄ =I \H is
given by:

conviction(B→ H) =
P(B)P(H̄)
P(B ∪ H̄)

(c) the oddsRatio of an association rule B → H, B, H ⊂ I , B ∩ H = ∅ and H̄ =I \H,
and B̄ =I \B is given by:

oddsRatio(B→ H) =
P(B ∪ H)P(B̄ ∪ H̄)
P(B ∪ H̄)P(B̄ ∪ H)

.

Statistical Equivalents

The support of an itemset B equals an estimate of the probability of its occurrence in
a random transaction Ti, denoted by P({B} ⊂ Ti) =: P({B}). The confidence of a
rule can be seen as an estimate of the conditional probability P({H}|{B}) while the
probability that H and B are both present in a transaction is written as P({B ∪ H}).
In the data mining literature, the brackets are left out, resulting, e.g., in P({B ∪ H}) =
P(B ∪ H). The concept is clarified by the following relationship:

P({B ∪ H}) estimated by
|DB∪H |

n
(5.1)

=
|{Ti ∈ D|{B ∪ H} ⊂ Ti}|

n

=
|{Ti ∈ D|B ⊂ Ti} ∩ {Ti ∈ D|H ⊂ Ti}|

n

=
|DB ∩DH |

n
.

We go back to the example in Table 5.2 with n=4, B = {I1, I5} and H = Istatus. The
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relationship in formula 5.1 translates into the following tables.

SNP1 SNP2 status

D I1 I2 I3 I4 I5 I6 Istatus1 Istatus0

T1 1 0 0 0 1 0 1 0

T2 1 0 0 0 1 0 1 0

T3 1 0 0 0 1 0 0 1

T4 0 0 1 1 0 0 0 1

DB I1 I5 Istatus1 DH I1 I5 Istatus1 D{B∪H} I1 I5 Istatus1

T1 1 1 1 T1 1 1 1 T1 1 1 1

T2 1 1 1 T2 1 1 1 T2 1 1 1

T3 1 1 0

DB = {T1, T2, T3} DH = {T1, T2} DB∪H = DB ∩DH = {T1, T2}

5.1.2 The apriori Algorithm and Its Implementation

The apriori algorithm (Agrawal et al., 1996) mines the frequent itemsets first and builds
association rules in a second step. The pseudo-code of the algorithm can be seen in
Algorithm 2. The fundamental idea which is exploited at several steps within the al-
gorithm is called downward-closure, meaning that a superset of an itemset can only be
frequent if all contained items and subsets of items themselves are already frequent.

The apriori algorithm starts with itemsets of length 1 (1-itemsets). Each item whose
support exceeds the minimum support is stored in F1, the set of frequent 1-itemsets. In
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Algorithm 2 apriori Algorithm, adapted from Agrawal et al. (1996)

Frequent itemsets

F1 = {frequent 1-itemsets}
for (k ≥ 2, Fk−1 6= ∅) do

FCk = apriori-gen(Fk−1); # new candidates with function apriori-gen

for all transactions T ∈ D do

FCT =subset(FCk, T); # candidates contained in transaction T

for all candidates f c ∈ FCT do

f c.count = f c.count +1

end for
end for
Fk = { f c ∈ FCk | f c.count≥ suppmin };
k = k + 1;

end for
set of frequent itemsets =

⋃
k Fk

the (k − 1)th pass over the data set, a seed set of frequent (k − 1)-itemsets is used to
generate a set of potentially frequent k-itemsets (the candidate set FCk) using the func-
tion apriori-gen. It consists of two steps: the join step and the prune step. In the join-step,
apriori-gen generates k-itemsets by merging (k − 1)-itemsets that share the first k − 2
elements. Afterwards, during the prune-step, all new itemsets that contain infrequent
subsets are deleted. Each transaction is now examined to see if it contains candidate
itemsets. The itemsets’ support is updated during every pass. Among the candidate
itemsets, the actually frequent itemsets build the seed set for the next pass. Finally, all
sets of frequent itemsets Fk are joint to build the output.
Subsequently, the association rules are generated from the set of frequent itemsets. In
the general case, different consequents out of the frequent itemsets have to be tested,
but as we will restrict the rules’ consequent to consist of one of two specific single items
only, this process is abbreviated. Only the itemsets containing these chosen consequent
items are investigated, and if their confidence exceeds the minimum confidence, then
the association rule and its quality measure values are returned.
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Figure 5.1: Prefix tree of five items. All possible itemsets made out of I1, I2, I3, I4, I5,
with no regard to the ordering within a set. If an item or an itemset is not
frequent, its branch further down the tree is not searched.

Implementation

A very popular version of apriori was implemented by Borgelt and Kruse (2002). One
of their achievements is the arrangement of items and possible itemsets in a prefix tree
(cf. Figure 5.1). The top boxes I1, I2, I3, I4, I5 display the single items. The boxes in the
second layer give all possible combinations of two items. Further down the tree, in
each layer the number of items in a set is increased. The letters next to the lines show
which items are added to the sets in the next layer, until all five items are covered by
one set at the bottom of the tree. Note that the tree is unbalanced as the order of the
items in a set does not matter. If an item or itemset cannot be found in a large number
of transactions, it is impossible that any of its combinations with other items occurs
frequently. Therefore, beginning with the single items at the top, the search space over
the tree is pruned and only itemsets with frequent subsets are investigated.
Furthermore, Borgelt and Kruse (2002) improved the node organisation, the item cod-
ing and used recursive counting for assessing support values. Hahsler et al. (2005)
implemented this software in the package arules into the R environment (R Develop-
ment Core Team, 2008).
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Other Algorithms

Despite its age (initially published in 1996), the apriori algorithm and extensions to it
are still widely used to mine association rules. Nevertheless, there exist alternative ap-
proaches. Two of them, Eclat (Zaki et al., 1997) and D-Miner (Besson et al., 2004), were
investigated in comparison to apriori with respect to their performance on genetic data
in Breiter (2008). In contrast to apriori which mines frequent itemsets, Eclat searches
for maximal frequent itemsets (frequent itemsets that do not have a frequent superset),
while D-Miner finds closed frequent itemsets (frequent itemsets with no subset of the
same support). Breiter (2008) showed that D-Miner is unsuitable for the given problem
as the minimum support could not be chosen low enough to produce reasonable re-
sults and still ensure feasibility. Eclat mined itemsets on which the formed association
rules gave good classification results (cf. Section 5.3). The same is true for the results
for apriori. Eclat was faster at generating itemsets as the tighter restriction on the cha-
racteristics of the itemsets can be exploited during the run.
On the other hand, the association rule generation is not part of the Eclat algorithm,
while they are automatically produced with apriori. Therefore, the time saved during
the frequent itemset generation is lost again with Eclat while generating rules. All nec-
essary customisation of the association rule search as well as the calculation of quality
measures is implemented in the apriori algorithm. To allow for the best possible han-
dling of the data, we therefore choose the apriori algorithm to mine association rules
in this thesis.

5.2 Classification Approaches Using Frequent Itemsets

5.2.1 Local Class

The approach local class borrows the idea of clustering objects described in Section 4.4.
The difference lies in the construction of clusters, or groups in this case, as with local
class, patients that share a frequent itemsets are grouped together. We will restrict the
analysis to itemsets with a maximum number of three items.
In particular, the algorithm allocates groups according to Algorithm 4 (in the appendix):
Choose three different support thresholds suppmink for k = 1, 2, 3 and find all fre-
quent k-itemsets on the training data that exceed their threshold. Order the frequent
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k-itemsets according to their support (descending) within the different itemset groups,
then combine the three ordered sets, starting with the 3-itemsets. The result is a list
of itemsets F, starting with the 3-itemset f3,1 with the highest support among all 3-
itemsets, followed by all other 3-itemsets with descending support. Then the 2-itemset
with the highest support within its group of itemsets and so forth. Each itemset corre-
sponds to a future group which is labeled with the rule’s rank number (e.g. group G1

for the first itemset of F).
Allocate the transactions from the test and from the training data separately to the first
group whose corresponding itemset is present in the transaction. All patients that did
not fit into an existing group or that are allocated to a group with less than 20 members
are fused into the miscellaneous group Gmisc. If one or several groups are only present
for training or for test data, dissolve the respective group and allocate its transactions
to Gmisc. Now call the number of still existing groups besides the miscellaneous group
nG. The number of transactions within each group Gg for the test data will be denoted
by nGg .
After establishing the subclasses, build an individual model (using CART) on the train-
ing observations in each subgroup Gg, g = 1, . . . , nG as well as in the miscellaneous
group and assess the misclassification rate by applying the model to the corresponding

test data by MCRGg = n
Gg
miss

nGg
and MCRGmisc = nGmisc

miss
nGmisc

. Averaging over all groups yields

the overall misclassification rate MCR = 1
nG+1 (∑nG

g=1 MCRGg + MCRGmisc).

5.2.2 Feature Construction

Feature construction is a well known tool in data mining (Flach and Lavrac, 2000).
Instead of building a classifier using the original variables, new variables or features are
constructed first and, in a second step, a classifier based on these constructed features
is learned and evaluated. Flach and Lavrac (2000) distinguish between features that
describe an interesting subgroup and features that describe a frequent itemset. As our
analyses are based on the apriori algorithm and frequent itemsets, we choose the latter
version of feature construction.
In particular, we use all frequent itemsets found in local class as input variables for
building a classifier. The resulting new data set is binary, as it contains the information
if the itemset forming the variable is present (=1) or not (=0) in a patient/transaction.
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CART will be employed on the constructed new features.

5.3 Associative Classification

Association rules can also be employed in a classification framework. The concept of
associative classification is not new (introduced by Ali et al. (1997) and Liu et al. (1998)),
but so far it is not heavily used. A review on most of the current algorithms can be
found in Thabtah (2005).
The underlying idea of associative classification is to combine the advantages of as-
sociation rule mining (exhaustive search for interesting patterns instead of heuristic)
and classification (extending the description to prediction) to improve the accuracy of
assigning objects to certain classes. Several studies (e.g., Liu et al. (1998), Dong et al.
(1999)) show that associative classification performs well in comparison with other clas-
sification approaches such as C4.5 (Quinlan, 1992).
In contrast to association rule discovery, the search for association rules in associa-
tive classification is restricted to rules with a class label as consequent, in our case this
translates to a consequent H consisting either of "status = case" or "status = control".
For convenience, we adopt the notation H = 1 for "status = case" and H = 0 for "status
= control".
There are numerous associative classification algorithms, but the general procedure of
all methods can be divided into three separate steps:

1. Discover association rules, yielding a rule set R consisting of nR elements.
2. Select the association rules used for the classification.
3. Evaluate the classifier on the test data.

We will concentrate on methods close to Classification Based Associations (CBA) by
Liu et al. (1998). It generates association rules Rr ∈ R, r = 1, ..., nR, which satisfy the
given thresholds for support and confidence using the apriori algorithm. Then, all Rr

are ordered (with Ra � Rb meaning that Ra has a higher rank than Rb):

1. Ra � Rb if con(Ra) > con(Rb).
2. If con(Ra) = con(Rb): Ra � Rb if supp(Ra) > supp(Rb).
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3. If con(Ra) = con(Rb) and supp(Ra) = supp(Rb): Ra � Rb if Ra was generated
earlier than Rb.

Thus, the classifier consists of an ordered list of association rules. A new observation is
classified according to the label of the first rule of that list which is applicable, meaning
whose antecedent is contained in the new observation’s transaction. If no association
rule of the list is applicable, the new observation is assigned to a default class.
We choose CBA because it will be most comparable to our different approaches for
using frequent itemsets and association rules as analysis tools for genetic association
studies. Furthermore, adaptions (e.g. in weighting rules) can be related directly to
themselves instead of diffusing processes within the classification.

5.3.1 Naive Associative Classification

The associative classifier that we call naive associative classification resembles actually the
original CBA if the ranking of association rules is conducted according to the instruc-
tion given above. We use our own implementation which also allows the ordering of
the rule set to be conducted according to any interest measure, leading to several dif-
ferent rankings and different classification results.
An advantage of employing the confidence is that it was computed during the algo-
rithm, whereas the values of the other interest measures would have to be computed
separately. Additionally, it can be shown that two of the interest measures we intro-
duced in Subsection 5.1.1, lift and conviction, result in the same order of rules than
ordering them by their confidence value if the consequent is the same item for the rules
(cf. Appendix). This is due to the proportion of cases P(H = 1) being a constant in this
case. With this constraint, all measures mentioned above form monotonous transfor-
mations of the confidence on the interval [0, 1] (for similar considerations see Bayardo
and Agrawal (1999) ). The proofs can be found in the Section C.1 in the Appendix.
As we are dealing with several rules from now on, the antecedent and consequent of a
rule have to be labeled with an index, yielding Br → Hr for association rule Rr . We set
Hr to equal 1 if the rule is a case rule and 0 if it is a control rule. Let R(Ti) be the ordered
set of nR(Ti) applicable rules for transaction Ti, applicable meaning that Br ⊂ Ti. The
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appropriate decision rule is

δ1(R(Ti)) :=


1, if H1 = 1 with H1 ∈ R1, R1 ⊂ R(Ti)

0, else
(5.2)

and it implies that transactions with an empty set of applicable rules are classified as
controls by default.

5.3.2 Voting

Even though the naive method proves itself intuitive and sensible, one of its weak-
nesses lies in the lack of robustness. If by chance the first applicable rule in the ordered
set is random instead of meaningful, the respective observation might be misclassified.
Also, alternative interactions influencing the disease risk can only be captured by al-
lowing for different association rules.
To solve this problem, we use the whole set of applicable rules for a new test observa-
tion instead of just the best applicable rule. The respective rules vote for the new ob-
servations class label. An intuitive choice would be a majority vote (Baralis and Garza,
2003). However, in the case of SNP data, several mechanisms typical for healthy per-
sons might also be present in a diseased person. If there are many association rules
describing this control-specific genetic profile and only one rule representing the risk
factors, the control rules might lead to a wrong prediction of the diseased observation.
Therefore, the information carried by a case rule seems to be more valuable than the
information given by an applicable control rule, which will be expressed in terms of
weights the different kinds of rules will be given in the voting process. For our analy-
sis, the decision rule

δ2(R(Ti)) :=


1, if 1

nR(Ti)
∑

nR(Ti)

r=1 Hr ≥ γ

0, else
(5.3)

with Hr = 1 for case rules and Hr = 0 for control rules will be investigated in two
different settings.
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1. We apply the classical majority vote (γ = 0.5).

2. We perform a grid search over possible proportions γ ∈ [0, 1] to find the best
proportion between case and control rules in the vote.

For an even more specific approach, each rule gets an individual weight:

δ3(R(Ti)) :=


1, if ∑

nR(Ti)

r=1 wr I{Hr=1} ≥ ∑Rr⊂R(Ti) wr I{Hr=0}

⇔ ∑
nR(Ti)

r=1 wr Hr ≥ 0.5

0, else

(5.4)

The first part of the equivalence on the right-hand side says that the sum of weighted
case rules has to exceed the sum of the weighted control rules. As the weights sum up
to 1, so do the two combined sums. Thus, comparing the weighted sum of case rules
to 0.5 gives and equivalent decision .
We construct weights w∗r by combining support and confidence values by their geo-
metric mean, w∗r =

√
supp(Rr) · con(Rr)). As the applicable rule set differs for every

test observation to be classified, weights w∗r would not always sum up to one if they
were initially chosen for the whole set of rules. Therefore, we scale them if necessary
with scaling parameter ν to ensure ∑

nR(Ti)

r=1
w∗r
ν = 1, and wr = w∗r

ν .

5.3.3 Locality and Interaction

The methods based on association rules can be considered as local and can handle inter-
action effects. The interactions are directly present in itemsets (antecedents) of length
greater than one. A resulting effect on the disease risk is attributable to the described
genotype. Another huge advantage of frequent itemsets and association rules is the
ready interpretability which allows to present the rules directly to biologists or toxicol-
ogists interested in the results of the analysis.
The proof of locality of the methods is more complicated as the term "local" does not
have a clean cut definition. Although, e.g., in computer science, the terms local and
global are used as well, their meaning differs from the one used in this thesis. Thab-
tah (2005) considers associative classification global, as the complete (training) data set
was used for every rule generated. Other search strategies, such as divide-and-conquer
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(Fürnkranz, 2005) remove all observations covered by a mined rule and discover the
next rule based only on the remaining observations. Fürnkranz (2005) calls this ap-
proach local. Following this definition, associative classification and feature construc-
tion would not be considered local.
But from our point of view, associative classification definitely is local: It employs a
local subset of all mined rules that is applicable to each specific observation, in the
voting approach even with individual observation-wise weights. Alternative ways of
influencing the disease risk can therefore be modeled by using different association
rules for classifying observations from different subgroups.
The statement that associative classification is a local method is also supported by
Mielikäinen (2005) who says that pattern detection in general is a local model, and
finding association rules is a method of pattern detection.

In the following section, local logic regression is introduced. Local regression has a
fixed definition; every observation is classified by an individual regression model that
ensures that observations close to the observation to be classified contribute to the
model with higher weights.

5.4 Localised Logic Regression

Logic regression (Ruczinski et al., 2003) is a regression and classification technique which
was especially developed for the analysis of SNP data. It is based on logic expres-
sions formed by boolean variables. Compared to other classification approaches, it
performed considerably well on different genetic data sets (Kooperberg et al. (2001),
Ruczinski et al. (2004), Schwender (2007)). In this thesis, we combine the proposed
idea of localisation from previous chapters with logic regression using the well es-
tablished theoretical background of local regression and local likelihood methodology
(Loader, 1999).
The first part of this section introduces logic regression, followed by a short insight into
local regression theory in Subsection 5.4.2. Subsection 5.4.3 combines the local aspects
with logic regression and compares the result to a boosting approach (which might seem
similar to localisation).
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5.4.1 Logic Regression

This section is primarily based on Ruczinski (2000) and Ruczinski et al. (2003). In
addition to the notation given in the introduction to this chapter, in the following
the response variable will be denoted as y, while the m predictor variables will be
x = (x1, . . . , xm)′.
The main idea of logic regression in contrast to ordinary regression, where mostly main
effects or at most interactions of low order are considered, is to allow for the integration
of high-order interaction effects in the form of a generalized additive model based on
boolean logic expressions Li(x), i = 1, . . . , q:

f (y) = β0 +
q

∑
i=1

βi · ILi(x)is true. (5.5)

The logic expressions of the explanatory variables are not given beforehand, but have
to be constructed during the fitting process.
Suppose you have a set of p binary predictors x and a response variable y. In our case, y
is binary as well, but this is not mandatory for logic regression. These binary predictors
x can form logic expressions L of the form, e.g.,

L = (x1 ∧ xC
2 ) ∨ x3 (5.6)

which are either true or false for a specific observation. Possible operators to connect
the predictors are and (∧) and or (∨), while not (C) is needed to incorporate both values
of a predictor.
Each logic expression can be constructed iteratively as a combination of two predictors
(e.g., x1 and xC

2 in the expression above), of a predictor and a logic expression or of
two logic expressions. A visualisation of Equation 5.6 in form of a logic tree following
the iterative construction scheme can be seen in Figure 5.2. Logic trees (we will use
this term equivalently to logic expression) can either form a logic model consisting of a
single tree (e.g. as in classification with two possible class labels), or be incorporated in
a bigger logic model in which several logic trees are combined appropriately (e.g., in
multiple logistic regression). A good logic model should describe the outcome y as pre-
cisely as possible, as well as predict the outcome of a new observation reliably. For the
different contexts that logic regression can be applied to, different measures of quality
(score functions) have to be chosen. For logistic regression, e.g., the score function is the
deviance (cf. Equation 5.8).
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Due to computational infeasibility, we cannot carry out an exhaustive search over all
models to find the best one as there are just too many possibilities. Therefore, we have
to employ search algorithms. Two different types are considered in logic regression: a
greedy search and a simulated annealing approach. As the greedy search is compu-
tational less complex, we will concentrate on this search method only even though it
might get stuck in local optimal solutions. Simulated annealing, combined with a lo-
calised approach, will be computational infeasible.
Let’s start with a single tree scenario: Initially, a greedy search algorithm builds a tree
by selecting the single variable that yields the best quality with regard to its predictive
power on y, using the appropriate scoring function. Afterwards, all neighbouring trees
are generated using the following move set (Ruczinski, 2000):

• Alternating a leave,
• changing an operator,
• growing a new branch,
• pruning a branch as well as
• splitting or deleting a leave.

If the new tree scores better than the original tree and all other neighbours, it replaces
the initial tree, and the algorithm starts again. It stops as soon as no improvement can
be made in a single step.
Equipped with the means to find the best single tree, the methodology can be extended
to bigger logic models y = β0 + ∑

q
i=1 βi · ILi(x)is true. If we allow for multiple trees in

the model, the move set to find neighbour logic expressions has to be enlarged by the
move Start a new tree.
The search algorithm starts with an empty model. Then, for all possible single pre-
dictor, a model is build by maximising the likelihood L(µ, y) = ∑n

i=1 ln f (yi, µ), with

Figure 5.2: Logic Tree
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f (yi, µ) being the density of y and µ being the parameter of interest. The model which
scores best with respect to the score function is chosen as basis for the next iteration of
the search algorithm, the enlarged move set is employed, and the best of the resulting
models is chosen for the next iteration step.

Logistic Regression

The data we want to analyse contain a binary outcome yi, i = 1, . . . , n. The respective
probabilities are given by P(yi = 1|L(xi)) = π(xi) and P(yi = 0|L(xi)) = 1− π(xi)
with xi = (xi,1, . . . , xi,m). For convenience, we will write πi instead of π(xi), and
π = (π1, . . . , πn). The suitable regression technique is logistic regression. Instead
of modelling the plain probabilities by a linear combination of the logic expressions,
ln
(

π
1−π

)
= the log odds of belonging to class 1 are modeled (cf. Section 5.4.2). There-

fore, given q independent logic expressions Lj, j = 1, . . . , q that can be either true or
false, the following regression equation evolves:

ln
(

π

1−π

)
= β0 + β1 I{L1 is true} + · · ·+ βq I{Lq is true} (5.7)

⇔ π =
e(β0+β1 I{L1 is true}+···+βq I{Lq is true})

1 + e(β0+β1 I{L1 is true}+···+βq I{Lq is true})
.

The coefficients β j, j = 1, . . . , q determine the influence of each indicator variable
I{Lj is true}. They depend on the set of predictors x and could be rewritten as β j(xj) to
stress the issue.
An estimate π̂ for π can be found by maximising the log likelihood

L(π, y) =
n

∑
i=1

yi · ln(
πi

1− πi
) + ln(1− πi)

numerically via iterative Fisher-Scoring (cf. e.g. Cramer (2003)).
Returning to the algorithm, the competing models of an algorithmic step are evaluated
by their score function, the deviance (McCullagh and Nelder, 1989):

D(y, π̂) = 2
n

∑
i=1

(yi · ln(
yi

π̂i
) + (1− yi)ln(

1− yi

1− π̂i
))

⇔ D(y, π̂) = −2
n

∑
i=1

(yi · ln(π̂i) + (1− yi)ln(1− π̂i)). (5.8)
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Classification

In a classification scenario with two classes, we restrict the number of logic trees in the
model to a single tree L, which we use to construct the best classification rule C:

C = I{L is true}. (5.9)

If L is true for an observation, it is labeled class 1, otherwise it is assigned to class 0.
An appropriate score function is the misclassification rate

MCR =
nmiss

n
, (5.10)

where nmiss is the number of misclassified observations. MCR gives the percentage of
misclassified observations.
A more detailed description of the methodology, theoretic background and applica-
tions can be found in Ruczinski (2000).

5.4.2 Local Regression and Local Likelihood

All methodology is taken from Loader (1999), Hastie et al. (2001) and Bornkamp (2006).
There are numerous applications where a local regression approach is more advisable
than ordinary regression. One of them is the analysis of SNP data, where we assume
local relationships which are true in a close neighbourhood of xi, but may change for a
different xj, corresponding to alternative ways of developing a disease.
The basic idea of local likelihood regression says: Instead of building one global ex-
planatory model for yi where all observations xi, i = 1, . . . , n influence the fit in equal
parts, different models for different fitting points x0 are computed for assessing the
corresponding ŷ0. During the estimation of the regression parameters, observations
in a close neighbourhood of x0 contribute with a higher weight wi(x0) to the estimate
ŷ0 than distant observations. The necessary measure for the amount of closeness be-
tween the fitting point and the data points within the window {xi|d(xi, x0) ≤ h(x0)} is
a weighting function

wi(x0) = W
(

d(xi, x0)
h(x0)

)
. (5.11)
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It assigns a weight to each observation xi according to its distance d to x0 and depend-
ing on the bandwidth h(x0). All sensible weighting functions increases as d(xi, x0)
decreases (cf. Subsection 5.4.2.1).
We will now show the underlying theory for local logistic regression as a special case
of likelihood regression. It was already investigated in the case of high dimensions and
continuous regression variables by Tutz and Binder (2005) and applied to SNP data by
Schiffner et al. (2009).
The initial situation is similar to Section 5.4.1: We have a binary outcome yi, i = 1, . . . , n
and a set of binary predictors xi. The probabilities of belonging to class one or zero, re-
spectively, look like (cf. Section 5.4.1):

P(yi = 1|xi) = πi, P(yi = 0|xi) = 1− πi,

with π = (π1, . . . , πn). The corresponding log likelihood l of πi gives:

l(πi) = yiln(πi) + (1− yi)ln(1− πi)

= yiln(
πi

1− πi
) + ln(1− πi). (5.12)

As already mentioned in Section 5.4.1, πi should not be modeled directly, therefore, we
use the logit function as a link function θ(·) to map the range of the estimation from
[0, 1] to (−∞, ∞):

θ(x) = ln(
π

1−π
) (5.13)

⇔ π =
eθ(x)

1 + eθ(x) .

The function θ(x) = x′β, with β = (β1, . . . , βp)′ being the vector of regression coeffi-
cients.
Now, using Equations 5.12 and 5.13, a global log likelihood for logistic regression is

L(θ, y) =
n

∑
i=1

(yi · θ(xi) + ln(1− eθ(xi)

1 + eθ(xi)
)).

In a general logistic regression scenario, the local approximation of θ(x) following Tay-
lor’s theorem would be achieved in fitting a local polynomial of a user specified de-
gree around x0 to θ(x) and incorporate it together with the weights into the likelihood
regression. As in our case all input variables are binary, the approximation via a poly-
nomial is only sensible for a constant polynomial of degree 0, which means that the



5.4 Localised Logic Regression 53

original θ(x) remains in the likelihood equation.
This translates to the local log likelihood for x0 including weights wi(x0):

Lx0(θ, y) =
n

∑
i=1

wi(x0)(yi · θ(xi) + ln(1− eθ(xi)

1 + eθ(xi)
)).

The estimate θ̂(x0) is given by optimising Lx0(θ, y). As we are rather interested in the
local π, we invert the link function and get

π̂ =
eθ̂(x0)

1 + eθ̂(x0)
.

Tutz and Binder (2005) choose a notation which directly relates to π instead of θ, yield-
ing

Lx0(π, y) =
n

∑
i=1

wi(x0)(yi · ln(πi) + (1− yi) · ln(1− πi)), (5.14)

which is the form we want to use in later contexts.
A major problem, discussed, e.g., in Hastie et al. (2001) and Tutz and Binder (2005),
is the curse of dimensionality (Bellman, 2000). It implies that for high dimensions, a
local likelihood approach is hardly local as a neighbourhood with a sufficient number
of observations has to be chosen too large to be considered local anymore. Therefore,
Tutz and Binder (2005) suggest a variable selection procedure prior to the fitting of
local regression or likelihood methods to reduce the dimension. We will both adapt
their suggestion of preselecting relevant variables as well as carry out a local analysis
of the complete data.

5.4.2.1 Weighting Function and Bandwidth

As all local models relevant to our analysis will be multivariate, we will describe dis-
tances and weights directly for vectors xi.
The weighting function W(x) determines the influence of an observation xi on the es-
timate at the local fitting point x0. Its general structure was already given in Equation
5.11. Useful features (defined for kernels but also useful for weighting functions) of
W(x) are (Fahrmeir et al., 1996):
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• Symmetry around 0,
• maximum value at 0 and
• non-negativity.

There are numerous possibilities to define such a function; we will use the structure
of the classical tricube weighting function Wtw f (x) = (1− |x|3)3 · I{x≤1} described in
Loader (1999). Wtw f (x) fulfills all desired features as it is only applied to observations
within the window d(xi, x0) ≤ h(x0). With this restraint, in contrast to, e.g., a Gaussian
kernel function for which all observations add to the estimation, Wtw f (x) saves com-
putation time and effort.
The distance function d used in most multivariate applications is based on the length
of a vector x ∈ Rm (Loader, 1999):

||x||2 =
m

∑
j=1

(
xj

sj

)

with sj > 0 being a scaling parameter in dimension j. We will use this standard ap-
proach for comparison, but focus on an adaption of our Flexible Matching Coefficient
FMC from Section 4.1 for calculating the distances d. In contrast to the standard ap-
proach, they are suitable for categorical data. They also fulfill all required useful fea-
tures if the similarity is transformed into a distance according to Equation 4.1. This
yields

WFMC

(
1− FMC(xi, x0)

h(x0)

)
with WFMC(x) = (1− |x|3)3 · I{x≤1}.

The parameters chosen for FMC will reflect quality aspects derived in Chapter 4 and
promise a coherent analysis according to data structure.
The appropriate bandwidth lies in between too small values leading to an estimate that
might be based on very few up to no observations and a noisy fit with a high variance.
If h(x0), x0 being the fitting point, is very large, the locality of the model ceases, result-
ing in fits with a low variance, but a high bias.
In spite of the high dimension of the data, we can still ensure to have sufficient observa-
tions in a close neighbourhood around x0 by choosing a bandwidth reflecting a nearest
neighbourhood quality: We compute all distances d(xi, x0), i = 1, . . . , n (based on the
distance used in the weighting function W(·)). Then we choose a smoothing parameter
λ ∈ [0, 1] and define h(x0) to be the kth smallest distance with k = λn.
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5.4.3 Local Logic Regression

Now we want to localise logic regression, which means that we need a separate model
for every observation xi, i = 1, . . . , n. For the case of using logic regression in the
regression environment with binary outcome y and multiple trees, a straight-forward
approach is to incorporate weights in the log likelihood during the fitting process (cf.
equation 5.14). The resulting likelihood equation is

Lx0(β, y) =
n

∑
i=1

wi(x0)(yi · ln(
e(β0+β1 I{L1 is true}+···+βq I{Lq is true})

1 + e(β0+β1 I{L1 is true}+···+βq I{Lq is true})
)

+ (1− yi) · ln(1− e(β0+β1 I{L1 is true}+···+βq I{Lq is true})

1 + e(β0+β1 I{L1 is true}+···+βq I{Lq is true})
))

⇔ Lx0(π, y) =
n

∑
i=1

wi(x0)(yi · ln(πi) + (1− yi) · ln(1− πi)) (5.15)

and it reflects all characteristics shown in the previous section. However, logic regres-
sion consists of two steps: the model fitting and the model selection step. The latter
employs the deviance as the scoring function for logistic regression. It is directly re-
lated to the log likelihood via

D(y, π̂) = 2(L(y, y)−L(π̂, y)),

and as for all comparisons between different fitted values π̂ the first part of the de-
viance stays constant, it reduces to −2 ∑n

i=1(yi · ln(π̂i) + (1− yi)ln(1− π̂i)). Now, as-
suming a local likelihood as in Equation 5.15, this translates to

Dx0(y, π̂) = 2(Lx0(y, y)−Lx0(π̂, y))

and the scoring can be assessed by calculating

−2(Lx0(π̂, y)) = −2 ∑
i

wi(x0)[yi · ln(π̂i) + (1− yi)ln(1− π̂i)].

However, the application of logic regression is much broader than the special case of lo-
gistic regression only; it comprises more regression scenarios as well as a methodology
for classification. The locality can be inserted analogously to the proceeding described
above.
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Primarily, in our analysis we will be dealing with the classification approach. Although
logistic regression can without any difficulty be adapted to serve as a classifier as well,
the computational effort of a localised logic regression with logistic regression applica-
tion is merely infeasible. On the other hand, most of the other classifiers we describe in
different sections resemble the ad hoc kind of classification as the one we will stick to
for logic regression better, and therefore, a comparison is more meaningful.
The effect of localisation in classification is expressed explicitly in the scoring function,
the misclassification rate, which is weighted by the respective values wi:

MCRx0 = ∑
i

wi(x0) · (ŷi − yi)2. (5.16)

The formula looks slightly different than the local variant in Equation 5.10, but for
wi = 1

n , it yields the same structure as the squared difference is only 1 if prediction ŷi

and original value yi differ:

MCRx0 = ∑
i

wi(x0) · (ŷi − yi)2

MCRx0 = ∑
i

1
n
· (ŷi − yi)2

MCRx0 =
1
n
·∑

i
(ŷi − yi)2

MCRx0 =
nmiss

n
.

Locality for the general regression model in 5.5 for a constant polynomial fit and a pa-
rameter vector of interest µ results in a likelihood of the formLx0(µ, y) = ∑n

i=1 wi(ln f (yi, µ)).
The respective score functions inherit the local weight in a similar manner to the de-
viance and the misclassification rate.

5.4.4 Separation from Boosting Logic Regression

In contrast to the previous section, we will concentrate on the classification scenario
only when describing the boosting approach. All classifiers will be build on training
data, while the final misclassification error will be assessed using the training model
on the test data.
At first glance, boosting logic regression, as boosting does include multiplicative weights



5.4 Localised Logic Regression 57

as well, might seem similar to the local approach described in the previous section. But
taking a closer look, we find that boosting works from a completely different perspec-
tive: The underlying idea of boosting is to construct a series of weak classifiers Lj, logic
trees in our case, and predict the outcome of a new observation according to a weighted
vote given by these classifiers (Hastie et al., 2001). Weak means that the prediction of
the classifier itself is quite close to random guessing. Still, during the iterative construc-
tion of new classifiers, they perform better and better for difficult observations as more
emphasis is laid upon observations that have been misclassified before by adjusting
the individual observation weights wB i. Thus, the weights have a completely different
interpretation as in local regression; instead of reflecting a closeness to and therefore an
influence on a fitting point x0, the wB i are increased or decreased due to how well the
corresponding outcome can be predicted by the classifiers.
The popular algorithm AdaBoost.M1. (Freund and Schapire, 1997) is described in Algo-

Algorithm 3 AdaBoost.M1.

Set all initial observation weights to w1
B i = 1

n , i = 1, . . . , n.

for j = 1 to J do

Fit a classifier/logic expression Lj(x) to the training data using weights wj
B i.

Compute the weighted misclassification rate

MCRwB
j =

∑n
i=1 wj

B i I(yi 6= Lj(x)))

∑n
i=1 wj

B i

.

Compute the voting weight of Lj(x): αj = ln(
1−MCRwB

j

MCRwB
j

)

Update weights: wj+1
B i <- wj

B i · exp(αj · I(yi 6= Lj(x))), i = 1, . . . , n.

Recode class labels:

cj(x) =

 1 , if Lj(x) = 1

−1 , if Lj(x) = 0

end for

Set class to

C(x0) = sign

(
J

∑
j=1

αj · cj(x0)

)
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rithm 3 (structure adapted from Hastie et al. (2001)) with slight changes as AdaBoost.M.
expects class labels to be -1 and 1 instead of 0 and 1.

5.5 Comparing Classification Results

To avoid an arbitrary comparison of the performance of two classifiers CA and CB, we
employ a test to evaluate differences between two estimated misclassification rates.
Dietterich (1998) compared five different tests designed for this purpose and suggested
the use of 5× 2cv paired t-test. It works as follows:
Initially, the data set D is randomly divided into two equal parts D1 and D2. Both
parts serve as training and test set once for both classifiers, yielding four different es-
timated misclassification rates MCR1

CA
, MCR1

CB
, MCR2

CA
and MCR2

CB
with estimated

differences MCR1 = MCR1
CA
− MCR1

CB
and MCR2 = MCR2

CA
− MCR2

CB
. The super-

script indicates which data subset was used for training. A suitable estimated variance
is s2 = (MCR1 − ¯MCR)2 + (MCR2 − ¯MCR)2, with ¯MCR = (MCR1 + MCR2)/2.
This procedure is replicated five times, yielding one estimate s2

i , i = 1, . . . , 5 for each
run. All five values are used to provide a stabilized estimated variance of the difference
of the misclassification rates. The null hypothesis of "both classifiers yielding the same
misclassification rates" results into

H0 : MCRCA = MCRCB vs. H1 : MCRCA 6= MCRCB ,

with MCRCA and MCRCB being the true misclassification rates of the two classifiers. We
test the hypothesis by means of a test statistics whose structure is similar to a paired
t-test (cf. Equation 5.17). Even though we perform five classifications for each classifier,
only the difference MCR1

1 from the first of the five runs serves as numerator and the
stabilized variance estimate as denominator:

t̃ =
MCR1

1√
1
5 ∑5

i=1 s2
i

approx∼ t5. (5.17)

Under the assumptions that the binomial distribution of the proportions (= misclassifi-
cation rates) approximates the normal distribution, that MCR1

i and MCR2
i are indepen-

dent of each other, that all s2
i are independent and that the numerator and denominator

of t̃ are independent, t̃ approximately follows a t-distribution with five degrees of free-
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dom. Dietterich (1998) shows that minor violations of these assumptions do not worsen
the result of the testing procedure substantially.
In the case of the simulation study, we do not need the cross-validation as we have
results of ten different training and test sets already. In contrast to the test procedure
described above, we use the ten different test and training settings for assessing the
variance estimate and again choose the first difference in misclassification rates for
the test statistic’s numerator. The resulting test statistics approximately follows a t-
distribution with 10 degrees of freedom.



CHAPTER 6

Results

All analysis was carried out using R version 2.8.1 (R Development Core Team, 2008).
We used the packages arules (Hahsler et al., 2009), LogicReg (Kooperberg and Ruczinski,
2008), rpart (Therneau and Atkinson., 2008) and scrime (Schwender and Fritsch, 2009).

6.1 Clustering

By assessing the desirability index, we compare the performance of the clusterings ob-
tained by employing five different similarity coefficients: simple matching coefficient
(SMC), Jaccard’s coefficient (JC), the flexible matching coefficients FMC1 and FMC2
with

• w+ ′
F = (1, 2, 4),

• m+
F = (m00, m11, m22),

• w− ′F = (1, 1, 1, 1, 1, 1) and

• m−F = (m01, m02, m10, m12, m20, m21)

for FMC1 (stressing mutual variants), and for FMC2 with

• w+ ′
F = (1, 2, 0.5, 0.5, 4),

60
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• m+
F = (m00, m11, m12, m21, m22),

• w− ′F = (1, 1, 1, 1) and

• m−F = (m01, m02, m10, m20)

(allowing pairs with at least one common variant to be considered similar), as well as
Pearson’s corrected contingency coefficient (PCC).

6.1.1 Simulation

The best number of clusters for the different simulation scenarios is unknown. For a
good choice, we divide the ten data sets into two groups of five data sets each. Within
each group, we optimise the desirability index by generating a candidate best number
of clusters from each data set, taking the average desirability index for this number over
all five data sets and choosing the number which yields the highes average value. The
optimal numbers of clusters are used for clustering the data sets from the other group
(cf. Table 6.1). The minimum number of clusters is 5 (5% of all variables), while 50 (50

number of clusters computed on data sets 1 - 5 data sets 6 - 10

number of clusters used for data sets 6 - 10 data sets 1 - 5

lalala
Table 6.1: The number of clusters is determined in two different parts of the data sets.

The result is used for the clustering of data sets in the other group.

% of the variables) is the maximal number of clusters. If more clusters were allowed,
we would encourage the existence of clusters with one element only, a characteristic
that should be avoided.
The maximum desirability index is obtained by the number of clusters shown in Tables
B.1 - B.6 in the Appendix. PCC requires a smaller number of clusters (mostly between
12 and 16 clusters) than the other similarity measures (SMC mostly between 30 and
49, JC mostly between 29 and 50, FMC1 mostly between 39 and 50 and FMC2 mostly
between 33 and 44).
All final results were achieved by employing these optimal numbers of clusters in each



6.1 Clustering 62

case.
The ranking of similarity measures according to their desirability index is the same for
all scenarios and all θ. PCC yields the highest desirability values, followed by JC. The
two flexible matching coefficients perform slightly worse than JC, with FMC1 giving
better desirability index values than FMC2. SMC gives the worst results. The respective
results for the ten data sets (with θ = 1.1 as an exemplary value as all plots look similar)
of a scenario are displayed in Figure 6.1.
Desirability indices increase with increasing θ. This is not strictly true from each level
of θ to the next as the risk change in the data for small steps (0.2) in θ is not always
reflected in the desirability index, but the tendency is visible.
The phenomenon of equal ranking over all levels of θ and all scenarios is also true for
the values of the single measures f1 and f2. Recall that they give information about
the existence of a blocking structure and about the fraction of clusters with just one
element, respectively. Their values do not increase or decrease with changing θ as they
evaluate the partition in general and do not take the characteristics of the causative
SNPs into account. For the exemplary data sets in all scenarios with θ = 1.1, results
are given in the top left and top right part of Figure 6.2 (and Figures B.1 and B.2 in
the Appendix). The variance across data sets in one scenario is very small, thus, the
boxes in the plots are narrow. The gap between the desirability index of PCC and the
other measures for f2 is remarkable. While values of PCC are close to the optimum 1,
no other measure reaches values above 0.5. Thus, PCC is especially useful if clusters
with one element should be avoided by all means. It can be concluded that the overall
best performance of PCC regarding the desirability index is mainly due to its excellent
performance for f1 and f2.
Measure f3 reflecting the difference of clusters containing the causative SNPs between
the case and in the control collective increases with θ as expected. PCC is not the best for
f3: JC yields higher values (i.e., more differences between cases and controls). For the
scenario with one two-way interaction, FMC1 comes second best (cf. bottom left part
of Figure 6.2). For two two-way interactions, the ranking is JC, PCC, FMC1, FMC2 and
SMC (cf. bottom left part of Figure B.1), while FMC2 performs better than FMC1 with
respect to f3 for three two-way interactions (cf. bottom left part of Figure B.2). In some
cases, the variances are high yielding broad boxes or long whiskers. The inconsistency
shows that the allocation of causative SNPs into clusters is unstable across data sets,
and that small changes in the data structure seem to be responsible for completely
different values of f3. Thus, the measure is not robust.
For f4 (giving information about the similarity of clusters without causative SNPs in
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cluster number SMC JC FMC1 FMC2 PCC

10 0.1203 0.1461 0.1203 0.1203 0.5879

27 0.0660 0.0671 0.0000 0.0434 0.5006

lalala
Table 6.2: Desirability index achieved by clusterings based on the different similarity

measures for two different cluster numbers.

cases and controls), all similarity measures give satisfactory results. The variance is
small (except for three two-way interactions and the flexible matching coefficients with
moderate variances), and, again, SMC gives the lowest desirability index values.
FMC1 and FMC2 are not the best similarity measures according to all quality measures,
but they still perform better than SMC. Thus, the generalisation of SMC improves the
cluster results.

6.1.2 GENICA

The GENICA data have been analysed previously by means of cluster analysis (Selinski
and Ickstadt (2008), Justenhoven et al. (2008), Ickstadt et al. (2006)), but without the aid
of objective functions to assess the quality of the resulting clustering. Thus, we analyse
the GENICA data again in this thesis. Even though the causative SNPs are not known,
we assume from previous results (Justenhoven et al., 2004) that SNPs ERCC2.6540 and
ERCC2.18880 are associated with the disease risk and serve as causative SNPs for mea-
sures f3 and f4. We do not have reliable information about an underlying blocking
structure either, but we assume that SNPs from the same gene form a block. Thus, we
have 41 blocks, most consisting of one or two SNPs only.
Due to the small size of the data set, we omit the search for optimal cluster numbers
and use the information from the simulated data. Thus, we choose 10 and 27 clus-
ters. The first number is close to a good fraction of clusters compared to the number of
variables for PCC clustering, while the higher number matches a good cluster number
proportion for all other coefficients. The results are displayed in Table 6.2.

Interestingly, for the GENICA data, small cluster numbers give better results for SMC,
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Figure 6.1: Desirability index for clusterings based on the different similarity measures
for ten data sets and θ = 1.1; top left: one two-way interaction, top right:
two two-way interactions, bottom: three two-way interactions.
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Figure 6.2: Quality measures for the different similarity measures for data sets with
one two-way interaction and θ = 1.1.
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JC and the FMCs, while PCC gives stable results for both numbers of clusters. All
similarity measures except PCC yield unacceptable results. In order to check how the
different measures react to the different number of clusters, Figure 6.3 shows the val-
ues of f1- f4 on cluster numbers between 2 (3% of all variables) and 31 (∼ 50% of all
variables). The respective desirability index can be found in Figure 6.4.

As we assess f1 and f2 separately for cases and controls, the two plots in the top row
of Figure 6.3 contain twice as many points than the plots in the bottom row. Some
points are not displayed as they lie on top of each other. It can be seen that PCC gives
higher results for f1, f2 and f3 measures over the whole range of number of clusters.
The other measures (with JC giving slightly higher values than SMC and the FMCs)
yield decreasing values for an increasing number of clusters. However, there seem
to be break points where a monotonous decrease is interrupted and picked up at a
higher level of the measure again, e.g. in the top left plot of Figure 6.3 at 28 clusters:
JC showed decreasing values before, but at 28 clusters, the values rise spontaneously
to start another decrease. A similar behaviour can be seen for the desirability index
(Figure 6.4). It seems that some changes in the clustering cause abrupt changes in
quality (e.g., if two cluster with one element are fused).
For the GENICA data, only PCC makes an adequate choice to achieve a good clustering
according to f1- f3. However, FMC2 and JC outperform it for f4. The statements on
clustering quality concerning blocking structure and causative SNPs are doubtful.
For the HapMap data, we do not carry out a cluster analysis as quality assessment of
clusterings as we do not have information about causative SNPs.

6.1.3 Supervised Clustering

As PCC gave the most satisfying results for clustering SNPs, it is also employed for
clustering patients. The number of clusters is set to 18. It allows for different clusters
for cases belonging to the different interactions.
Variable selection for the simulation did not improve the purity essentially. For most
data sets, only between two and four variables were deleted before the average purity
could not be improved. The effect size did not influence the purity within the differ-
ent scenarios, thus, we display mean results in Table 6.3. More interactions slightly
increased purity values. Still, on average, all clusters contain both cases and controls,
and a discrimination on bases of the different clusters is not sensible. This is due to the
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Figure 6.3: Comparison of clusterings based on different similarity measures for f1 (top
left), f2 (top right) , f3 (bottom left) and f4 (bottom right) for different num-
bers of clusters. Note the different limits of the y axis for the different plots.



6.1 Clustering 68

●
●

●

● ●

●
●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

● ● ●

● ●

●

●

● ●

●

●

●

●

●

●
●

● ●

●
●

●
●

●
●

● ● ●

●

●

● ● ● ● ●

●

●

●

● ●

●

●

●
●

●

● ●

●
●

●
● ●

●

● ●

● ● ● ●

●

●

●

● ● ● ● ●

●

●

●

● ●

●

●
●

●

● ●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●
● ●

●

●

●

● ●
●

●
●

●
●

● ● ●
● ●

● ●
●

● ● ● ●

●

● ●

●
●

●
●

●
●

●

5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

desirability index

number of clusters

de
si

ra
bi

lit
y 

in
de

x

●

●

●

●

●

SMC
JC
FMC1
FMC2
PCC

Figure 6.4: Comparison of clusterings based on different similarity measures the desir-
ability index for different numbers of clusters.

scenario mean purity sd.dev purity # variables removed c-SNPs removed

one two-way 0.5455 0.0091 2-4 yes (1,1)

two two-way 0.5648 0.0093 2-4 yes (1,1,0,0)

three two-way 0.5660 0.0085 2-4 yes (0, 2, 3, 2, 5, 1)
Table 6.3: Characteristics of supervised clusterings. The abbreviation sd.dev denotes

standard deviation.
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weighting regime of the overall purity: There are several smaller clusters with a higher
purity value, but the bigger clusters with more weight contain mostly even proportions
of cases and controls. This reflects the idea that the association of the disease and the
genetic profile contains a local component.
We set the cluster number to 18 due to background considerations. Subsequent anal-
ysis of different cluster numbers showed that the results do not change substantially
over different cluster numbers.
The GENICA data set is not well separable. With 61 variables, an average purity of
0.5699 can be achieved.

The Hapmap data can easily be divided into pure clusters with an overall purity of 1,
a result constant for several numbers of clusters (tested for 10 - 20 clusters). The only
two variables that are deleted in every run are SNP_A-1859383 and SNP_A-1854291.

6.2 Classification

The simulated data sets are used to find suitable threshold values for all methods that
require a parameter specification. To guarantee that the results will be generalisable, we
split each data set of a simulation setting into training and test data (ratio 2:1). Via grid
search, different combinations of parameters are chosen to fit models on the training
data. Afterwards, the results are evaluated on the test data. As this is performed on
ten data sets per setting, the results have to be averages over all data sets. Detailed
results can be found in Subsection C.2.2 in the Appendix. With the chosen parameters,
models are now build on the complete data set and evaluated on a different data set
of the same setting, so that each complete data set serves as training and as test data
once. The results gained from the simulated data will be used to choose thresholds and
parameters for the real world data sets.
In the remaining chapters, we will use the following abbreviations:

• FC = feature construction

• LC = local class

• NC = naive associative classification

• ACV = AC vote (constant weights)
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• ACSC = AC vote (weights = supp · con f )

• LR = logic regression

• LLR = local logic regression

• CART = CART

• RF = Random Forest

• MCR = misclassification rate

6.2.1 Simulation

Each of the ten equally designed studies ((y, X)1, . . . , (y, X)10) per simulation scenario
reflects the same properties. Thus, we can use them for parameter specification as well
as for prediction if we follow certain principles: We do not test a model on the same
data that it is built on and we search for optimal parameters on data sets we do not use
the parameters for. An overview over the structure is given in the following tables.

parameter specification computed on (y, X)1 − (y, X)5 (y, X)6 − (y, X)10

parameter specification used for (y, X)6 − (y, X)10 (y, X)1 − (y, X)5

With the optimal parameter combination (if necessary) obtained on one half of the data
sets, its setting is used on the other half. The division into test and training sets can be
found here:

training (y, X)1 (y, X)2 (y, X)3 (y, X)4 (y, X)5

test (y, X)5 (y, X)1 (y, X)2 (y, X)3 (y, X)4

training (y, X)6 (y, X)7 (y, X)8 (y, X)9 (y, X)10

test (y, X)10 (y, X)6 (y, X)7 (y, X)8 (y, X)9

The analysis of the simulated data has two main focuses: We want to compare differ-
ent classification approaches according to their MCR and, implicity, give information
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about how large an effect size has to be in order to leave detectable differences in the
simulated data sets.

With one causative two-way interaction and an effect size of 0.5, a meaningful classifi-
cation into cases and controls is not possible with the employed classification methods.
As can be seen in Figure 6.5, all boxplots either cross or touch the dashed line indicating
an MCR of 0.5 (equal to random guessing in the balanced case control design).
FC yields unacceptable results on the simulated data. Even with increasing effect size,
the classification results do not improve, and MCRs remain constantly around 0.5 with
very small variance. LC gives median MCRs below 0.5 for all effect sizes, but the de-
crease in MCR with increasing θ is not pronounced. In seven out of eight scenarios, at
least one MCR for one data set lies above 0.5. In contrast to this result, CART, RF and
LR yield satisfactory results for the given circumstances. The achieved median MCRs
decrease monotonously with increasing θ, while the variance of MCRs of different data
sets is small. LR gives the best performance as expected. The LLR as implemented is
not suitable for the analysis of the simulated data as it achieves MCRs around 0.5.
The NC approach works surprisingly well, especially compared to ACV. Its MCRs do
decrease with increasing θ, and the overall performance over the 10 data sets is stable.
The only drawback is that for three data sets, MCRs are very high (0.601, 0.739, 0.691),
even worse than random guessing. The ACV approach shows the most unstable results
of all methods. The achieved MCRs are higher than for NC and ACSC, with maximal
MCRs close to 0.5 in all settings. Still, the minimal MCR is similar to CART and LR.
The analysis of the simulated data shows that even with a substantial effect size in
the population, in an association study the effect is hard to detect, a finding which is
consistent with results from real-world SNP studies. With an increasing number of
causative interactions (cf. Figure 6.6 for two and Figure C.1 for three two-way inter-
actions), the MCRs rise for all methods. The minimum mean MCR (on highest effect
sizes) is 0.3342 for two causative two-way interactions and 0.3752 for three causative
two-way interactions (both achieved by LR). FC, LLR and ACV yield stable uninforma-
tive classification results for both interaction scenarios. LC gives median results around
0.5, too, but with considerable variation into both directions, a characteristic which gets
more pronounced in the case of three two-way interactions. It results into LC yielding
the lowest MCRs for the small effect sizes for specific data sets.
NC shows good performance for higher effect sizes, and ACSC gives good results with
decreasing MCRs with increasing effect sizes with only one exception in each scenario.
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Figure 6.5: Misclassification rates for the simulated data achieved by the different clas-
sification methods for one causative two-way interaction.
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Figure 6.6: Misclassification rates for the simulated data achieved by the different clas-
sification methods for two causative two-way interactions.
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LR and CART give the lowest MCRs, while the MCRs achieved by RF are slightly
higher, but less variable.

6.2.2 HapMap

The choice of parameters for the methods for the HapMap data is not resulting from an
optimisation process as the data set consists only of 90 observations. Instead, we choose
parameters based on the results from the simulation with two causative two-way inter-
actions, on the size of the set of itemsets or rules and on the fact that the HapMap data
can be divided into the two classes more easily than in the case of association study
data. Parameter choices can be found in (cf. Table 6.4). For LC, the simulation suggests
0.6 for the frequent itemsets of all lengths. For FC, we lower the support as we assume
that more features based on informative frequent itemsets can improve prediction. For
all association rules, the high thresholds for confidence account for the relevant infor-
mation contained in the data. However, as the number of observations is smaller than
in the simulation, minimum support values are kept as low as possible to still yield a
sufficiently small set of association rules (in this case, ∼ 500 rules). The threshold spec-
ifications for ACSC are less strict because the method is the one amongst the three that
can build best on more rules.
For logic regression, we choose 8 leaves (more than in the simulation) to account for
the separability of the data without assuming a structure that is too simple. In LLR, λ

is very small because the observations are supposed to show high similarities. Thus,
with a small λ we ensure the locality of the local approach.

Figure 6.7 shows the misclassification rates, obtained by nine-fold cross validation.
ACSC and RF classify only one (two, respectively) observations to the wrong class,
thus, their performance is excellent. LR is second best and superior to LLR. CART and
LC give a similar performance, both reveal problems to separate the two classes. FC
gives MCRs around 0.2 on average with the most symmetric variation across the dif-
ferent parts of the data due to cross validation. The NC and ACV do not give satisfying
results as they fail to distinguish between the two classes.



6.2 Classification 75

● ●●

FC LC NC ACV ACSC LR LLR CART RF

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Classification methods

M
C

R

Figure 6.7: Misclassification rates for the subset of HapMap data achieved by the dif-
ferent classification methods.
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Method parameter(s)

FC supp( f k
i )= 0.55, i = 1, 2, 3

LC supp( f k
i )= 0.6, i = 1, 2, 3

NC supp = 0.3, con f =0.9 (both)

ACV supp = 0.3, con f =0.9 (both), γ = 0.5

ACSC supp = 0.1, con f =0.7 (both)

LR leaves = 8

LLR leaves = 10, λ = 0.1

RF trees = 500, sample size = n, variables at split =
√

157
Table 6.4: Parameter specification of the different classification methods for the analy-

sis of the HapMap data.

6.2.3 GENICA

The GENICA data have been analysed before (Justenhoven et al. (2008), Ickstadt et al.
(2006), Müller et al. (2008)), thus, the parameter chosen are based on this experience.
They can be found in Table 6.5. It was established before that the observations in this
data set are hard to classify (Justenhoven et al. (2004), Ickstadt et al. (2006), Schiffner
et al. (2009), Nunkesser et al. (2007)). It can be seen in Figure 6.8 that the methods pre-
sented in this thesis reveal similar results.

NC gives completely unacceptable MCRs (over 0.8). The specificity is 0 for all cross
validation runs, i.e., no control is correctly classified. Thus, the best rule for controls
is always a case rule, while the only times when the best rule is a control rule occurs
for case observations, leading to an even worse classification result. LLR, with λ = 0.5
gives results close to random guessing and is thus not sensible for the data. LC and
CART give similar results and seem to be best suited for the data set, even though
their MCRs are still above 0.4. Logic regression as the standard classification method
for SNP data gives slightly higher MCRs. It is interesting to know if the difference is
significant, therefore, we apply the test to compare MCRs (Dietterich, 1998). The null
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Figure 6.8: Misclassification rates for the subset of GENICA data achieved by the dif-
ferent classification methods.
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Method parameter(s)

FC supp( f k
1 )= 0.6, supp( f k

i )=0.85 i = 2, 3

LC supp( f k
i )= 0.6, i = 1, 2, 3

NC supp = 0.07, con f =0.6 (both)

ACV suppca = 0.04, con fca=0.65 , suppco = 0.15, con fca=0.6, γ = 0.2

ACSC suppca = 0.04, con fca=0.65 , suppco = 0.15, con fco=0.6

LR leaves = 8

LLR leaves= 10, λ = 0.5

RF trees = 500, sample size = n, variables at split =
√

63

lalalala
Table 6.5: Parameter specification of the different classification methods for the analy-

sis of the GENICA data.

and alternative hypotheses are

H0 : MCRLC = MCRLR vs. H1 : MCRLC 6= MCRLR,

saying that both MCRs are equal versus there is a difference between them. The divi-
sion of the GENICA data used for cross validation is now neglected, and new subsets
are formed for the test. The test statistics yields a value of 1.5801 and is smaller than
the respective 0.05/2 - quantile of a t distribution with 5 degrees of freedom (2.5706).
The p-value of 0.9125 additionally indicates that the classification results do not differ
significantly between LR and LC.

6.3 10000-SNPs Simulation

The largest data set we analyse in this thesis is the 10000-SNPs data set. Logic regres-
sion and local logic regression are not applicable anymore. We omit the methods that
rely on frequent itemsets as they require many parameter settings and did not achieve
good results on the smaller simulation. Thus, we concentrate on the methods based on
association rules. The implementation of association rule search in R is not able to cope
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Method MCR Sensitivity Specificity

NC 0.3343 0.6325 0.6990

ACV (γ = 0.2) 0.4910 1.0000 0.0181

ACSC 0.1837 0.9217 0.7108

CART 0.4548 0.5542 0.5361

lalalala
Table 6.6: Based on 392 rules that satisfied support = 0.4 and confidence = 0.6.

with bigger data sets, thus, we implemented a manually programmed version of asso-
ciation rules search that is able to cope with the amount of data. Once the mined rule
set reached a reasonable size, the subsequent analysis steps run quickly. According to
the analysis from the smaller data sets and feasibility, we chose a minimum support of
0.4, a minimum confidence of 0.6 and, for the ACV approach, a voting fraction of γ=0.2.
The data were divided into a test and a training data set. In total, 392 rules of one or two
items in the antecedent were mined from the training data. The classification results on
the test data can be found in Table 6.6.

ACSC gives the best misclassification rate which is even below the MCR achieved in
the same scenario with less SNPs.



CHAPTER 7

Summary and Discussion

The risk to develop a disease is not only due to environmental circumstances, but sup-
posedly to a high degree related to one’s genetic predisposition. Based on the genetic
information, an improved understanding of the disease mechanisms can lead to timely
preventive action and better suited treatment.
Single nucleotide polymorphisms (SNPs) that are a special type of genetic data can be
found in abundance in the human genome. They are part of the genetically triggered
process and are comparatively easy to assess. Thus, they have been the target for asso-
ciation studies for a couple of years by now.
However, the analysis of SNP data is still a hard task, e.g., due to their high numbers
and their likely small influence when regarded in univariate analysis. In this thesis,
we have introduced methods that can cope with the high dimensionality of SNP data,
with interactions that affect disease risk, and with the possibility that there are several
genetic ways that alter the disease risk. These procedures are applied to real world
data sets and to a simulation study that we designed to contain all characteristics that
are assumed for SNP data.
Two types of the analysis are employed: Cluster and discrimination analysis. We have
performed cluster analysis to find suitable partitions of all SNPs in a study. As a first
step, we have defined "suitability": A good partition should allow for the possible de-
tection of linkage disequilibrium (or the underlying blocking structure) of the vari-
ables, it should avoid clusters with only one element, and help to distinguish between
causative and non-causative SNPs in the case, but not in the control collective. We
developed one measure for each of the first two goals and two for the third goal. All
measures are combined in a desirability index to allow for an overall comparison be-
tween clusterings. As we need information about possible linkage disequilibrium and
causative SNPs for the desirability index, only the simulated data and the GENICA

80
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data set have been taken into account.
We showed that clusterings based on Pearson’s corrected contingency coefficient (PCC)
yields better results according to the desirability index than partitions by matching co-
efficient for all settings of the simulated data as well as for the GENICA data. Still, the
result is mainly due to the good performance of PCC for the first two goals (detecting
blocking structure and avoiding clusters with one element). For the different grouping
of causative SNPs between cases and controls, the partitions based on Jaccard’s coeffi-
cient and the Flexible Matching coefficient showed equal or better results than PCC.
A different cluster approach has been applied that utilises the clustering of observa-
tions for a classification into cases and controls. It has shown no advantages over the
classification methods.
A classical classification method for SNP data is logic regression that specifically searches
for combinations of SNP interactions as classifier. We developed a local version of logic
regression (LLR) that takes the similarity of new observations to given observations
within the training data into account and builds individual classification models for
each new observation. This structure allows to include different causative genotypes
that represent alternative ways of affecting disease risk in one model. In addition, we
developed and adapted several classification methods based on frequent itemsets and
association rules, two related concepts from the field of data mining (originally de-
signed to handle huge amounts of data). Frequent itemsets, translated into the genetic
data world, can be interpreted as genetic profiles. Association rules as we use them
can be considered as descriptive predictions of the disease status given a certain ge-
netic profile. If classification and association rules are combined into one method, this
is called associative classification.
The most promising of our approaches, ACSC (associative classification with associa-
tion rules weighted according to their quality), classifies a new observation as case or
control according to a weighted voting of all applicable association rules found in a
training data set. Other methods derived from association rules that we adapted to the
usage for SNP data are naive classification (NC, classifying a new observation accord-
ing to the best association rule only, also known as CBA) as well as a newly developed
voting of rules (ACV) that is based on the optimal proportion of case and control rules.
Local class (LC) and feature construction (FC) are both based on frequent itemsets: LC
divides a data set into subgroups of certain genetic profiles first and builds a separate
classifier in each subgroup afterwards. FC searches frequent itemsets in an initial step
and uses these interactions as new input variables in a new data set to built the final
classifier. Subsequently, the classifier is built on this newly created data set. For com-
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parisons with well established methods, we also employ CART, Random Forests based
on CART trees (RF), and logic regression in all classification scenarios.
All methods for classification of the patients were first applied to the simulated data.
Even for the largest effect size of 1.9 and the easiest interaction scenario of one two-way
interaction, the best result was a misclassification rate of 0.307 (achieved by ACV, logic
regression and CART). This exemplifies that population-based association studies al-
ready limit the ability to detect the differences between cases and controls. In reality,
this effect is still harder to detect as external factors as lifestyle and environment might
affect the disease risk and act different for different genetic susceptibilities. For the
GENICA data, another problem is that the choice of SNPs reflects only a fraction of all
possible SNPs, thus, important genetic factors might be missing as well. Both reasons
give explanations for the classification results than were worse than for the simulated
data. A satisfying discrimination according to disease status was not possible on basis
of the given data.
In contrast to these data sets, the HapMap data can be classified almost perfectly. Note
that due to the change of outcome (ethnicity instead of disease status), the circum-
stances are quite different than for the other data sets, and only 90 observations and
157 variables are analysed. Nonetheless, the data structure is still the same. ACSC per-
forms best and yields a misclassification rate of 0.01.
The simulation study revealed that some of the newly developed methods can still be
improved. FC and LC did not perform better than random guessing and yield mis-
classification rates around 0.5. Both make use of frequent itemsets corresponding to
frequent genetic profiles or SNP interactions. For FC, this results in a number of in-
teractions (used as new input variables for a subsequent classification) that are not
specific enough to yield a good classification. LC which formed subclasses in each of
which CART was used as a classifier never performed substantially better than CART
itself. Apparently, CART already allows for a sufficient amount of locality, and several
splits can be interpreted as reflecting interactions. Still, for the HapMap data, the per-
formance of both LC and FC was similar to the overall performance of all methods.
The local logic regression (LLR) is not completely comparable to logic regression. More
variability is introduced due to optimising a further parameter which leads to less sta-
ble results. We assume that with an additional concept like boosting, the classifier could
be stablised. As LLR is much more computer intensive, we used a greedy approach for
the model building, while logic regression was itself performed using simulated an-
nealing. The influence of the mechanism on the classification result is supposed to be
substantial and should be kept in mind when reporting classification results. Logic
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regression, nevertheless, proved to be the best suited method over all data sets for
analysing SNPs. Its only drawback is that it is not applicable to genome-wide data.
As a step towards the analysis of genome-wide data, we also analysed a simulated data
set with 10 000 SNPs. The methods based on association rules were still applicable, and
ACSC gave even better classification results than on the data sets with the same genetic
model with less SNPs. This might be due to the fact that we retained the dependency
structure of the SNP blocks, which results in a higher number of association rules of
similar prediction power. It can be concluded that ACSC can not only handle corre-
lated variables (e.g., SNPs in linkage disequilibrium), but also uses the information to
achieve better classification results. The other two methods based on frequent itemsets,
NC and ACV, did not yield better results than before. Logic regression and LLR were
no longer applicable, and CART does not yield satisfactory results.
An often quoted phrase is thus also true for the application of classification methods to
genotype data: There is no free lunch (Wolpert, 1996). Still, we find that especially the
methods based on association rules contain potential for the future analysis of high-
dimensional genetic data. As they are sensitive to the choice of parameters, though,
either prior knowledge about the SNP data at hand or a thorough optimisation of pa-
rameters is necessary to yield reliable results. ACSC, the best associative classification
method in most settings, could be refined by changing the weighting scheme of the
individual rules. Moreover, other interest measures than support and confidence could
be used.
Our implementation of the algorithm for finding association rules in the 10 000 SNPs is
rudimentary. Sophisticated programming could be used to improve its speed and stor-
ing capacities, thus, make it suitable for genome-wide SNP data which is the ultimate
goal of SNP analysis.
An important idea has to be kept in mind: The analysis of genetic predisposition gains
immensely by additional environmental information, e.g. about one’s lifestyle (a sus-
ceptibility towards a certain substance does not come into play as long as one is not
exposed to the substance). If clinical, environmental or epidemiological variables can
be split into meaningful categories, the introduced methods based on frequent itemsets
and association rules are flexible enough to incorporate the new kind of information as
well, adding to their importance for future SNP research.



APPENDIX A

Simulation

A.1 Settings

The software package SNaP allows for different simulations, e.g. family data, but we
concentrate on association data only. In the following, we show an exemplary jobfile
containing all settings and an exemplified penetrance matrix. The blocks and their
frequencies were generated at random.

# ========================== #

# Job and parameter settings #

# ========================== #

# General job specifications #

[General]

DataFilename = 'TestCarolin.out'

SettingsFilename = 'TestCarolin.set'

OutputType = 'genotypes'

OutputFormat = 'Compact'

# Study and sampling design specifications #

[Design]
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TypeOfPhenoExpression = 'qualitative'

StudyDesign = 'individuals'

SamplingDesign = 'separate'

NumberOfCases = 500

NumberOfControls = 500

# Genotype-phenotype model specifications #

[Model]

NumberOfLoci = 2

NumberOfStates = 9

Penetrances =

0.36000 0.20000 0.10000

0.20000 0.14286 0.10000

0.10000 0.10000 0.10000

BiallelicCheck = 'n'

RemoveCausalSNPs = 'n'

GenotypingError = 0.00000

GenotypingErrorVisible = 'n'

RandomSeed = 500

# Separator characters #

[Separators]

BehindStatus = ','

BetweenHaplotypes = ' '

BetweenBlocks = ','

BetweenSNPs = ','

# Specification of block structures and pre-settings #

[Blocks]

NumberOfBlocks = 20

(Block) (Block)

Number = 1 Number = 2
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Size = 4 Size = 6

SuscLocusPosition = 0 SuscLocusPosition = 0

{NoSuscHaplotypes} {NoSuscHaplotypes}

HtNumber = 5 HtNumber = 7

HtBlock = 1111 HtBlock = 111111

HtBlock = 2112 HtBlock = 211112

HtBlock = 2121 HtBlock = 111122

HtBlock = 1211 HtBlock = 111211

HtBlock = 1222 HtBlock = 212111

HtFrequ = 0.80000 HtBlock = 112112

HtFrequ = 0.16000 HtBlock = 122221

HtFrequ = 0.02000 HtFrequ = 0.25000

HtFrequ = 0.01000 HtFrequ = 0.38000

HtFrequ = 0.01000 HtFrequ = 0.05000

HtFrequ = 0.05000

HtFrequ = 0.11000

HtFrequ = 0.07000

HtFrequ = 0.09000

(Block) (Block)

Number = 3 Number = 4

Size = 4 Size = 6

SuscLocusPosition = 2 SuscLocusPosition = 0

SuscAlleleFrequ = 0.35000

{NoSuscHaplotypes}

{NoSuscHaplotypes} HtNumber = 6

HtNumber = 5 HtBlock = 111111

HtBlock = 1111 HtBlock = 111212

HtBlock = 2112 HtBlock = 211122

HtBlock = 1121 HtBlock = 112111

HtBlock = 1122 HtBlock = 221212

HtBlock = 2112 HtBlock = 222112

HtFrequ = 0.62000 HtFrequ = 0.49000

HtFrequ = 0.31000 HtFrequ = 0.23000

HtFrequ = 0.05000 HtFrequ = 0.20000
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HtFrequ = 0.01000 HtFrequ = 0.04000

HtFrequ = 0.01000 HtFrequ = 0.02000

HtFrequ = 0.02000

{SuscHaplotypes}

HtNumber = 4

HtBlock = 1211

HtBlock = 1212

HtBlock = 1222

HtBlock = 2221

HtFrequ = 0.49000

HtFrequ = 0.34000

HtFrequ = 0.02000

HtFrequ = 0.15000

(Block) (Block)

Number = 5 Number = 6

Size = 7 Size = 4

SuscLocusPosition = 0 SuscLocusPosition = 0

{NoSuscHaplotypes} {NoSuscHaplotypes}

HtNumber = 6 HtNumber = 3

HtBlock = 1111112 HtBlock = 1111

HtBlock = 1111121 HtBlock = 2212

HtBlock = 2111221 HtBlock = 2121

HtBlock = 2122111 HtFrequ = 0.48000

HtBlock = 2211122 HtFrequ = 0.44000

HtBlock = 1222122 HtFrequ = 0.08000

HtFrequ = 0.29000

HtFrequ = 0.15000

HtFrequ = 0.29000

HtFrequ = 0.25000

HtFrequ = 0.01000

HtFrequ = 0.01000
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(Block) (Block)

Number = 7 Number = 8

Size = 4 Size = 5

SuscLocusPosition = 0 SuscLocusPosition = 0

{NoSuscHaplotypes} {NoSuscHaplotypes}

HtNumber = 4 HtNumber = 6

HtBlock = 1111 HtBlock = 11111

HtBlock = 2111 HtBlock = 21121

HtBlock = 1222 HtBlock = 11222

HtBlock = 2121 HtBlock = 22211

HtFrequ = 0.59000 HtBlock = 12112

HtFrequ = 0.24000 HtBlock = 12121

HtFrequ = 0.15000 HtFrequ = 0.52000

HtFrequ = 0.02000 HtFrequ = 0.32000

HtFrequ = 0.06000

HtFrequ = 0.08000

HtFrequ = 0.01000

HtFrequ = 0.01000

(Block)

Number = 9 (Block)

Size = 4 Number = 10

SuscLocusPosition = 0 Size = 6

SuscLocusPosition = 4

{NoSuscHaplotypes} SuscAlleleFrequ = 0.29000

HtNumber = 3

HtBlock = 1111 {NoSuscHaplotypes}

HtBlock = 1121 HtNumber = 7

HtBlock = 2212 HtBlock = 111111

HtFrequ = 0.24000 HtBlock = 111112

HtFrequ = 0.55000 HtBlock = 121112

HtFrequ = 0.21000 HtBlock = 122112

HtBlock = 211111

HtBlock = 211121
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HtBlock = 221111

HtFrequ = 0.24000

HtFrequ = 0.11000

HtFrequ = 0.25000

HtFrequ = 0.11000

HtFrequ = 0.09000

HtFrequ = 0.10000

HtFrequ = 0.10000

{SuscHaplotypes}

HtNumber = 6

HtBlock = 111211

HtBlock = 121212

HtBlock = 111221

HtBlock = 212211

HtBlock = 212212

HtBlock = 121221

HtFrequ = 0.29000

HtFrequ = 0.22000

HtFrequ = 0.32000

HtFrequ = 0.14000

HtFrequ = 0.02000

HtFrequ = 0.01000

(Block) (Block)

Number = 11 Number = 12

Size = 3 Size = 8

SuscLocusPosition = 0 SuscLocusPosition = 0

{NoSuscHaplotypes} {NoSuscHaplotypes}

HtNumber = 4 HtNumber = 8

HtBlock = 211 HtBlock = 21111111

HtBlock = 112 HtBlock = 11121211

HtBlock = 121 HtBlock = 22212222

HtBlock = 222 HtBlock = 11112211



A.1 Settings 90

HtFrequ = 0.42000 HtBlock = 11211121

HtFrequ = 0.16000 HtBlock = 21211111

HtFrequ = 0.31000 HtBlock = 22112121

HtFrequ = 0.11000 HtBlock = 12212111

HtFrequ = 0.46000

HtFrequ = 0.34000

HtFrequ = 0.13000

HtFrequ = 0.03000

HtFrequ = 0.01000

HtFrequ = 0.01000

HtFrequ = 0.01000

HtFrequ = 0.01000

(Block) (Block)

Number = 13 Number = 14

Size = 4 Size = 5

SuscLocusPosition = 0 SuscLocusPosition = 0

{NoSuscHaplotypes} {NoSuscHaplotypes}

HtNumber = 4 HtNumber = 4

HtBlock = 1112 HtBlock = 11211

HtBlock = 1121 HtBlock = 21112

HtBlock = 2211 HtBlock = 12121

HtBlock = 2212 HtBlock = 12112

HtFrequ = 0.29000 HtFrequ = 0.36000

HtFrequ = 0.50000 HtFrequ = 0.18000

HtFrequ = 0.17000 HtFrequ = 0.27000

HtFrequ = 0.04000 HtFrequ = 0.19000

(Block) (Block)

Number = 15 Number = 16

Size = 3 Size = 7

SuscLocusPosition = 0 SuscLocusPosition = 0

{NoSuscHaplotypes} {NoSuscHaplotypes}
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HtNumber = 3 HtNumber = 8

HtBlock = 211 HtBlock = 1121111

HtBlock = 112 HtBlock = 1111112

HtBlock = 121 HtBlock = 2111221

HtFrequ = 0.31000 HtBlock = 1111212

HtFrequ = 0.23000 HtBlock = 1212111

HtFrequ = 0.46000 HtBlock = 1112212

HtBlock = 2211211

HtBlock = 1211222

HtFrequ = 0.39000

HtFrequ = 0.40000

HtFrequ = 0.11000

HtFrequ = 0.02000

HtFrequ = 0.02000

HtFrequ = 0.01000

HtFrequ = 0.04000

HtFrequ = 0.01000

(Block) (Block)

Number = 17 Number = 18

Size = 5 Size = 5

SuscLocusPosition = 0 SuscLocusPosition = 0

{NoSuscHaplotypes} {NoSuscHaplotypes}

HtNumber = 4 HtNumber = 5

HtBlock = 11111 HtBlock = 11111

HtBlock = 21112 HtBlock = 22112

HtBlock = 21222 HtBlock = 11221

HtBlock = 12221 HtBlock = 11212

HtFrequ = 0.52000 HtBlock = 22221

HtFrequ = 0.23000 HtFrequ = 0.52000

HtFrequ = 0.17000 HtFrequ = 0.35000

HtFrequ = 0.08000 HtFrequ = 0.03000

HtFrequ = 0.07000

HtFrequ = 0.03000
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(Block) (Block)

Number = 19 Number = 20

Size = 4 Size = 6

SuscLocusPosition = 0 SuscLocusPosition = 0

{NoSuscHaplotypes} {NoSuscHaplotypes}

HtNumber = 4 HtNumber = 7

HtBlock = 2111 HtBlock = 111121

HtBlock = 1112 HtBlock = 111112

HtBlock = 1121 HtBlock = 111211

HtBlock = 2222 HtBlock = 112111

HtFrequ = 0.58000 HtBlock = 212122

HtFrequ = 0.14000 HtBlock = 212212

HtFrequ = 0.05000 HtBlock = 121112

HtFrequ = 0.23000 HtFrequ = 0.35000

HtFrequ = 0.10000

HtFrequ = 0.05000

HtFrequ = 0.13000

HtFrequ = 0.16000

HtFrequ = 0.04000

HtFrequ = 0.17000

A.2 Results of Simulation

The different empirical distributions between cases and controls can be seen in Figure
A.1 for the scenario containing three causative two-way interactions.
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Figure A.1: Different genotype distributions for causative SNPs between cases (red)
and controls (blue) for different effect sizes, given three causative SNP in-
teractions.



APPENDIX B

Clustering

The simulated data was used to find the best number of clusters according to the de-
sirability index. To achieve a generalisable result, we split the ten data sets from the
same scenario that share the same effect size into two groups and obtained best cluster
numbers in both groups separately. The results can be found in Tables B.1 - B.6.

The results for the quality measures and the desirability index were similar for all sim-
ulation scenarios. Figure 6.2 is displayed in Chapter 6. Figures B.1 and B.2 are given in
the following.
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effect size SMC JC FMC1 FMC2 PCC

effect size 0.5 32 34 44 47 25

effect size 0.7 42 44 48 46 13

effect size 0.9 49 50 49 45 13

effect size 1.1 20 46 47 43 26

effect size 1.3 46 45 47 40 19

effect size 1.5 35 45 47 41 20

effect size 1.7 35 50 50 41 19

effect size 1.9 39 44 50 41 24
Table B.1: Optimal number of clusters for the different similarity measures obtained

on the first five data sets with effect size θ and one causative two-way-
interaction.

effect size SMC JC FMC1 FMC2 PCC

effect size 0.5 39 39 50 41 24

effect size 0.7 39 44 50 45 25

effect size 0.9 39 44 50 45 24

effect size 1.1 39 50 50 41 24

effect size 1.3 39 44 50 41 24

effect size 1.5 39 49 50 41 24

effect size 1.7 39 48 50 41 24

effect size 1.9 39 50 48 41 24
Table B.2: Optimal number of clusters for the different similarity measures obtained

on the second five data sets with effect size θ and one causative two-way-
interaction.
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effect size SMC JC FMC1 FMC2 PCC

effect size 0.5 42 37 42 39 14

effect size 0.7 40 37 43 39 12

effect size 0.9 40 34 41 39 15

effect size 1.1 39 33 41 39 15

effect size 1.3 39 35 44 41 15

effect size 1.5 37 38 43 41 14

effect size 1.7 36 38 44 41 14

effect size 1.9 36 34 43 41 14
Table B.3: Optimal number of clusters for the different similarity measures obtained

on the first five data sets with effect size θ and two causative two-way-
interaction.

effect size SMC JC FMC1 FMC2 PCC

effect size 0.5 39 38 43 39 13

effect size 0.7 37 36 43 41 13

effect size 0.9 36 37 43 41 14

effect size 1.1 36 37 43 39 12

effect size 1.3 36 37 43 41 13

effect size 1.5 36 38 43 39 13

effect size 1.7 36 38 43 41 13

effect size 1.9 36 35 43 41 13
Table B.4: Optimal number of clusters for the different similarity measures obtained

on the second five data sets with effect size θ and two causative two-way-
interaction.
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effect size SMC JC FMC1 FMC2 PCC

effect size 0.5 32 29 42 38 15

effect size 0.7 31 29 36 35 13

effect size 0.9 30 35 42 38 12

effect size 1.1 30 33 41 35 12

effect size 1.3 31 32 42 36 13

effect size 1.5 32 35 42 33 13

effect size 1.7 32 34 39 33 12

effect size 1.9 31 35 43 35 16
Table B.5: Optimal number of clusters for the different similarity measures obtained

on the first five data sets with effect size θ and three causative two-way-
interaction.

effect size SMC JC FMC1 FMC2 PCC

effect size 0.5 31 29 34 35 13

effect size 0.7 32 28 32 35 13

effect size 0.9 35 29 34 35 14

effect size 1.1 31 28 44 35 14

effect size 1.3 32 30 36 35 16

effect size 1.5 35 30 37 36 15

effect size 1.7 35 32 39 35 15

effect size 1.9 35 34 39 36 16
Table B.6: Optimal number of clusters for the different similarity measures obtained

on the second five data sets with effect size θ and three causative two-way-
interaction.
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Figure B.1: Quality measure values for the different similarity measures for data set
with two two-way interactions and θ = 1.1.
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Figure B.2: Quality measure values for the different similarity measures for data set
with three two-way interactions and θ = 1.1.



APPENDIX C

Classification

C.1 Interest Measures

We want to show that the ranking of association rules does not differ between rankings
according to confidence, lift and conviction of the study design is balances.
Proofs (see also Bayardo and Agrawal (1999)) :
Let B be the rule’s body and H the rule’s head. The necessary notation for confidence
and support is given in terms of probabilities: = con(B→ H) = P(H|B) = P(H∪B)

P(B) and
supp(H) = P(H).

Lift:

li f t(B→ H) =
con(B→ H)

P(H)
= c · con(B→ H),

for P(H) = constant for all rules.

Conviction:

conviction(B→ H) =
P(B)P(H̄)
P(B ∪ H̄)

=
P(B)P(H̄)

P(H̄|B)P(B)
=

P(H̄)
P(H̄|B)

= P(H̄)(
P(B ∪ H̄)

P(B)
)−1 = P(H̄)(1− P(B ∪ H)

P(B)
)−1

= c · (1− con)−1

This term is monotonously increasing in con for con ∈ [0, 1), but it is undefined for
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con = 1.

The equivalences derived above holds if we deal with association rules for which we
allow for two different items in the consequent, but the proportion of cases in the study
equals the proportion of controls, i.e. P(H) = P(status = case) = P(H̄) = P(status =
control) = 0.5. For studies that show large differences in sample sizes between the two
collectives, the analysis would have to be adapted.

C.2 Classification Methods

C.2.1 Local class

The complete algorithm of Local Class is given in the following.
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Algorithm 4 local class

The data baseD is divided into training and test data basesDTr andDTe, respectively.

for k ∈ {1, 2, 3} do

Set a minimum support suppmink for k-itemsets in DTr

Find set of frequent k-itemsets Fk with nk = |Fk| elements

Order all f k ∈ Fk, k = 1, . . . , nk according to support:
supp( f k

1 ) ≥ supp( f k
2 ) · · · ≥ supp( f k

nk
)

end for

F = F3 ∪ F2 ∪ F1, regarding the existing order.

Label all f ∈ F with increasing index g = 1, . . . , nF(= n1 + n2 + n3) .

Each fg, g = 1, . . . , nF corresponds to a future group Gg

Let GTTr
i

be class label of TTr
i ∈ DTr and GTTe

l
be class label of TTe

l ∈ DTe.

Initially, GTTr
i

= GTTe
l

= 0

for all TTr
i ∈ DTr do

g = 1

while g ≤ nF do

if fg * TTr
i then

GTTr
i

= 0, g = g + 1

else

GTTr
g

= g, stop

end if

end while

end for

Redo for-loop for test data to determine GTTe
l

if GTTr
i

= 0 or GTTe
i

= 0 or GTTr
i

= g with |Gg| < 20 or GTTe
i

= g with |Gg| < 20 then
GTTr

i
= GTTe

i
= misc (miscellaneous group).

end if
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C.2.2 Classification results

We presented the results of the classification methods on the simulated data as boxplots
in Chapter 6. All results in detail are given in the following Tables C.1 - C.3.

effect size = 0.5

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4750 0.5000 0.0157 0.4436 0.3243 0.5564 0.3243

LC 0.4427 0.4809 0.0341 0.0574 0.0275 0.5016 0.0450

NC 0.4580 0.4902 0.0170 0.0570 0.0609 0.9626 0.0359

ACV 0.4690 0.4871 0.0155 0.5272 0.4116 0.4986 0.4157

ACSC 0.4460 0.4763 0.0218 0.3566 0.2452 0.6908 0.2367

LR 0.4500 0.4751 0.0235 0.5106 0.0691 0.5392 0.0601

LLR 0.4840 0.4958 0.0092 0.4966 0.0412 0.5112 0.0414

CART 0.4540 0.4797 0.0210 0.5030 0.0745 0.5376 0.0790

RF 0.4560 0.4779 0.0163 0.5220 0.0268 0.5222 0.0173

effect size = 0.7

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4860 0.5020 0.0116 0.3984 0.3837 0.5976 0.3886

LC 0.4238 0.4658 0.0197 0.0623 0.0228 0.5228 0.0545

NC 0.4160 0.4677 0.0500 0.3770 0.1289 0.6876 0.1205

ACV 0.4300 0.4843 0.0231 0.1340 0.2233 0.8974 0.1809

ACSC 0.4120 0.4376 0.0192 0.4528 0.0858 0.6720 0.1083

LR 0.3830 0.4170 0.0228 0.4826 0.0791 0.6834 0.1080

LLR 0.4640 0.4891 0.0165 0.4994 0.0547 0.5210 0.0401
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CART 0.4060 0.4339 0.0182 0.5560 0.0502 0.5762 0.0724

RF 0.4390 0.4534 0.0103 0.5530 0.0204 0.5402 0.0173

effect size = 0.9

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4790 0.4996 0.0136 0.4066 0.3275 0.5942 0.3369

LC 0.4299 0.4686 0.0329 0.0650 0.0254 0.5165 0.0500

NC 0.4030 0.4400 0.0169 0.3274 0.0916 0.7926 0.0851

ACV 0.4000 0.4509 0.0291 0.1900 0.1666 0.9082 0.1155

ACSC 0.3950 0.4215 0.0227 0.4980 0.1635 0.6590 0.1946

LR 0.3680 0.3866 0.0162 0.4834 0.0150 0.7434 0.0243

LLR 0.4800 0.5029 0.0133 0.3664 0.0261 0.6278 0.0209

CART 0.3870 0.4099 0.0234 0.5474 0.0509 0.6328 0.0492

RF 0.4100 0.4342 0.0158 0.5598 0.0247 0.5718 0.0316

effect size = 1.1

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4930 0.5078 0.0113 0.5380 0.2476 0.4464 0.2457

LC 0.4188 0.4724 0.0398 0.0825 0.0283 0.5215 0.0695

NC 0.3910 0.4201 0.0188 0.3614 0.1068 0.7984 0.0821

ACV 0.3710 0.4515 0.0350 0.1438 0.1423 0.9532 0.0760

ACSC 0.3780 0.3951 0.0108 0.4842 0.0934 0.7256 0.1043

LR 0.3570 0.3716 0.0138 0.5074 0.0121 0.7494 0.0228

LLR 0.4830 0.4994 0.0132 0.4856 0.0362 0.5136 0.0305

CART 0.3570 0.3953 0.0298 0.5556 0.0506 0.6538 0.0748
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RF 0.4050 0.4205 0.0101 0.5608 0.0269 0.5982 0.0234

effect size = 1.3

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4870 0.5052 0.0113 0.4150 0.4065 0.5746 0.4062

LC 0.4115 0.4679 0.0441 0.0889 0.0341 0.5263 0.0627

NC 0.3860 0.4364 0.1067 0.4298 0.0860 0.6974 0.2576

ACV 0.3450 0.4084 0.0617 0.3188 0.2457 0.8644 0.1234

ACSC 0.3450 0.3707 0.0133 0.5074 0.0622 0.7512 0.0759

LR 0.3430 0.3558 0.0139 0.5326 0.0158 0.7558 0.0213

LLR 0.4700 0.4913 0.0123 0.4904 0.0342 0.5230 0.0415

CART 0.3430 0.3713 0.0186 0.5840 0.0457 0.6734 0.0672

RF 0.3830 0.4006 0.0114 0.5812 0.0283 0.6176 0.0280

effect size = 1.5

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4690 0.4970 0.0182 0.5302 0.2968 0.4758 0.2927

LC 0.4066 0.4540 0.0310 0.0876 0.0337 0.5424 0.0646

NC 0.3750 0.3993 0.0194 0.4108 0.0723 0.7906 0.0466

ACV 0.3500 0.4419 0.0503 0.1564 0.1661 0.9598 0.0721

ACSC 0.3290 0.3493 0.0150 0.5472 0.0516 0.7542 0.0666

LR 0.3290 0.3423 0.0118 0.5522 0.0185 0.7632 0.0183

LLR 0.4620 0.4845 0.0174 0.4858 0.0332 0.5416 0.0313

CART 0.3360 0.3626 0.0178 0.5872 0.0512 0.6876 0.0508

RF 0.3760 0.3905 0.0135 0.5820 0.0278 0.6370 0.0354
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effect size = 1.7

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4750 0.4933 0.0160 0.5346 0.1734 0.4788 0.1815

LC 0.4209 0.4638 0.0361 0.1053 0.0330 0.5350 0.0690

NC 0.3300 0.4014 0.1036 0.5466 0.0600 0.6506 0.2302

ACV 0.3240 0.4101 0.0616 0.3056 0.2499 0.8742 0.1310

ACSC 0.3280 0.3692 0.0433 0.5248 0.1326 0.7368 0.1146

LR 0.3160 0.3314 0.0128 0.5682 0.0188 0.7690 0.0179

LLR 0.4750 0.4970 0.0144 0.3732 0.0156 0.6328 0.0221

CART 0.3160 0.3455 0.0191 0.5906 0.0498 0.7184 0.0654

RF 0.3490 0.3713 0.0144 0.5990 0.0331 0.6584 0.0298

effect size = 1.9

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4780 0.4985 0.0145 0.5544 0.3045 0.4486 0.2950

LC 0.3473 0.4380 0.0534 0.1176 0.0381 0.5608 0.0765

NC 0.3210 0.3603 0.0232 0.5668 0.0472 0.7126 0.0356

ACV 0.3070 0.4159 0.0659 0.2266 0.2103 0.9416 0.0810

ACSC 0.3240 0.3610 0.0218 0.4596 0.1223 0.8184 0.1101

LR 0.3070 0.3210 0.0125 0.5826 0.0178 0.7754 0.0185

LLR 0.3390 0.3843 0.0235 0.5596 0.0420 0.6716 0.0380

CART 0.3070 0.3341 0.0137 0.5876 0.0586 0.7442 0.0622

RF 0.3420 0.3603 0.0136 0.6092 0.0307 0.6702 0.0242
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Table C.1: Classification results on simulated data set with one causative two-way in-
teraction. For each classification methods (rows), the minimum of the ob-
served MCR is given. Mean values for MCR, sensitivity (Sens) and speci-
ficity (specs) are given with the respective standard deviations.

effect size = 0.5

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4800 0.5078 0.0148 0.5934 0.2951 0.3910 0.2841

LC 0.4262 0.5080 0.0592 0.0909 0.0486 0.4782 0.0905

NC 0.4900 0.4981 0.0034 0.0266 0.0455 0.9772 0.0399

ACV 0.4830 0.4977 0.0084 0.8036 0.1303 0.2010 0.1407

ACSC 0.4490 0.4860 0.0199 0.5592 0.1688 0.4688 0.1918

LR 0.4320 0.4833 0.0305 0.5058 0.0556 0.5276 0.0638

LLR 0.4630 0.4957 0.0170 0.4624 0.0302 0.5462 0.0389

CART 0.4450 0.4828 0.0170 0.5114 0.0819 0.5230 0.0769

RF 0.4620 0.4935 0.0182 0.4958 0.0214 0.5172 0.0331

effect size = 0.7

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4660 0.5012 0.0164 0.5090 0.1475 0.4886 0.1480

LC 0.4595 0.5126 0.0533 0.0819 0.0573 0.4527 0.0997

NC 0.4750 0.4962 0.0093 0.0608 0.0804 0.9468 0.0735

ACV 0.4470 0.4868 0.0163 0.1150 0.1684 0.9114 0.1430

ACSC 0.4290 0.4573 0.0122 0.4926 0.1607 0.5928 0.1532

LR 0.4270 0.4607 0.0168 0.5556 0.0395 0.5230 0.0332

LLR 0.4630 0.4938 0.0154 0.4896 0.0567 0.5218 0.0513
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CART 0.4460 0.4743 0.0157 0.5272 0.0357 0.5242 0.0423

RF 0.4400 0.4783 0.0174 0.5168 0.0184 0.5266 0.0342

effect size = 0.9

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4800 0.5023 0.0152 0.5082 0.0800 0.4872 0.0788

LC 0.4498 0.4838 0.0265 0.0623 0.0426 0.4963 0.0503

NC 0.4420 0.6098 0.1677 0.4738 0.1233 0.3066 0.3276

ACV 0.4540 0.4867 0.0160 0.1938 0.2907 0.8328 0.2709

ACSC 0.4240 0.4389 0.0130 0.4618 0.1215 0.6604 0.1055

LR 0.4220 0.4495 0.0146 0.5746 0.0329 0.5264 0.0350

LLR 0.4910 0.5004 0.0117 0.4608 0.0339 0.5378 0.0458

CART 0.3960 0.4435 0.0244 0.5426 0.0700 0.5704 0.0767

RF 0.4420 0.4641 0.0113 0.5334 0.0197 0.5384 0.0238

effect size = 1.1

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4740 0.5031 0.0186 0.4972 0.1258 0.4966 0.1316

LC 0.4255 0.4962 0.0447 0.1043 0.0616 0.4776 0.0569

NC 0.4210 0.4411 0.0170 0.3196 0.1315 0.7982 0.1062

ACV 0.4880 0.4976 0.0039 0.0078 0.0125 0.9970 0.0058

ACSC 0.4140 0.4220 0.0095 0.4346 0.0643 0.7214 0.0670

LR 0.3520 0.3945 0.0309 0.5666 0.0818 0.6444 0.0477

LLR 0.4660 0.4955 0.0163 0.4738 0.0721 0.5338 0.0585

CART 0.3670 0.4161 0.0269 0.5868 0.0475 0.5810 0.0645
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RF 0.4170 0.4450 0.0170 0.5500 0.0233 0.5600 0.0291

effect size = 1.3

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4700 0.5004 0.0204 0.5654 0.2109 0.4338 0.1968

LC 0.3748 0.4573 0.0420 0.0862 0.0344 0.5130 0.0415

NC 0.4040 0.4766 0.1258 0.5170 0.0695 0.5298 0.2817

ACV 0.4600 0.4883 0.0108 0.0334 0.0332 0.9900 0.0133

ACSC 0.3850 0.4456 0.0461 0.2666 0.2289 0.8422 0.1388

LR 0.3430 0.3665 0.0186 0.6364 0.0585 0.6306 0.0308

LLR 0.4610 0.4920 0.0203 0.4762 0.0529 0.5388 0.0604

CART 0.3570 0.3991 0.0249 0.6004 0.0670 0.6014 0.0613

RF 0.4040 0.4263 0.0142 0.5694 0.0217 0.5780 0.0261

effect size = 1.5

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4560 0.4958 0.0148 0.5236 0.3258 0.4848 0.3254

LC 0.4138 0.4672 0.0325 0.0813 0.0240 0.5126 0.0754

NC 0.3840 0.4191 0.0208 0.4542 0.1936 0.7076 0.1710

ACV 0.4120 0.4754 0.0283 0.0980 0.1617 0.9512 0.1104

ACSC 0.3990 0.4209 0.0131 0.4744 0.2048 0.6838 0.2061

LR 0.3220 0.3623 0.0302 0.6526 0.0799 0.6228 0.0587

LLR 0.4190 0.4573 0.0207 0.4542 0.0471 0.6312 0.0630

CART 0.3420 0.3783 0.0287 0.6262 0.0815 0.6172 0.0553

RF 0.3910 0.4143 0.0151 0.5902 0.0288 0.5812 0.0254
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effect size = 1.7

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.475 0.4967 0.0169 0.5182 0.0593 0.4884 0.0759

LC 0.413 0.4667 0.0476 0.1065 0.0377 0.4816 0.1139

NC 0.380 0.3948 0.0154 0.4648 0.0715 0.7456 0.0511

ACV 0.482 0.4937 0.0067 0.0160 0.0179 0.9966 0.0071

ACSC 0.371 0.3881 0.0130 0.4766 0.0665 0.7472 0.0583

LR 0.320 0.3509 0.0221 0.6528 0.0740 0.6454 0.0363

LLR 0.474 0.4995 0.0138 0.4686 0.0567 0.5310 0.0492

CART 0.317 0.3569 0.0230 0.6504 0.0560 0.6358 0.0388

RF 0.381 0.3960 0.0135 0.5998 0.0278 0.6082 0.0269

effect size = 1.9

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4490 0.4893 0.0220 0.4918 0.0885 0.5296 0.0791

LC 0.3876 0.4554 0.0470 0.1135 0.0323 0.4736 0.1122

NC 0.3500 0.3733 0.0158 0.5688 0.0452 0.6846 0.0456

ACV 0.4890 0.4971 0.0038 0.0074 0.0094 0.9984 0.0025

ACSC 0.3500 0.3772 0.0162 0.4682 0.0660 0.7774 0.0591

LR 0.3000 0.3342 0.0213 0.6744 0.0925 0.6572 0.0675

LLR 0.4650 0.4914 0.0184 0.4594 0.0597 0.5578 0.0445

CART 0.3160 0.3455 0.0256 0.6652 0.0533 0.6438 0.0551

RF 0.3660 0.3870 0.0151 0.6148 0.0282 0.6112 0.0241
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Table C.2: Classification results on simulated data set with two causative two-way in-
teractions. For each classification methods (rows), the minimum of the ob-
served MCR is given. Mean values for MCR, sensitivity (Sens) and speci-
ficity (specs) are given with the respective standard deviations.

effect size = 0.5

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4740 0.4968 0.0132 0.5592 0.3655 0.4472 0.3694

LC 0.2956 0.4621 0.1043 0.1370 0.1085 0.4290 0.1136

NC 0.5000 0.5555 0.1050 0.2830 0.3134 0.6060 0.4279

ACV 0.4900 0.5035 0.0119 0.8916 0.2209 0.1014 0.2000

ACSC 0.4640 0.4943 0.0159 0.4804 0.1492 0.5310 0.1473

LR 0.4540 0.4861 0.0163 0.5352 0.1039 0.4926 0.1135

LLR 0.4700 0.4988 0.0143 0.4836 0.0169 0.5184 0.0335

CART 0.4660 0.4917 0.0125 0.5440 0.0701 0.4726 0.0669

RF 0.4730 0.4887 0.0137 0.5124 0.0202 0.5102 0.0256

effect size = 0.7

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4790 0.5021 0.0127 0.4424 0.3339 0.5534 0.3346

LC 0.3163 0.4823 0.1162 0.1303 0.1022 0.4573 0.1335

NC 0.4720 0.5833 0.1431 0.2352 0.2392 0.5982 0.4129

ACV 0.4370 0.4825 0.0218 0.3214 0.2910 0.7136 0.2722

ACSC 0.4560 0.4921 0.0225 0.5556 0.1756 0.4602 0.1944

LR 0.4440 0.4754 0.0308 0.5292 0.0841 0.5200 0.0862

LLR 0.4610 0.4978 0.0196 0.5090 0.0569 0.4944 0.0630
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CART 0.4280 0.4859 0.0278 0.4916 0.0480 0.5366 0.0606

RF 0.4370 0.4786 0.0210 0.5236 0.0193 0.5192 0.0266

effect size = 0.9

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4940 0.5026 0.0059 0.3944 0.4286 0.6004 0.4270

LC 0.4642 0.5063 0.0366 0.0766 0.0298 0.4822 0.0432

NC 0.4700 0.4940 0.0110 0.0414 0.0556 0.9706 0.0416

ACV 0.4260 0.4869 0.0246 0.2578 0.3462 0.7684 0.3355

ACSC 0.4390 0.4652 0.0203 0.5470 0.1615 0.5226 0.1927

LR 0.4420 0.4735 0.0279 0.5510 0.0806 0.5020 0.1031

LLR 0.4770 0.5037 0.0156 0.4980 0.0589 0.4930 0.0539

CART 0.4090 0.4792 0.0313 0.4832 0.0688 0.5584 0.0494

RF 0.4300 0.4733 0.0179 0.5236 0.0246 0.5298 0.0292

effect size = 1.1

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4790 0.4972 0.0110 0.4600 0.3123 0.5456 0.3117

LC 0.4028 0.5030 0.0576 0.0669 0.0392 0.4270 0.0720

NC 0.4110 0.4660 0.0293 0.2516 0.1734 0.8164 0.1231

ACV 0.4500 0.4947 0.0157 0.0396 0.1231 0.9710 0.0917

ACSC 0.4160 0.4516 0.0248 0.5594 0.1575 0.5374 0.1751

LR 0.3980 0.4560 0.0346 0.5312 0.0858 0.5568 0.0810

LLR 0.4780 0.4986 0.0123 0.4878 0.0656 0.5146 0.0563

CART 0.4370 0.4607 0.0197 0.5306 0.0596 0.5480 0.0555
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RF 0.4360 0.4610 0.0209 0.5354 0.0281 0.5426 0.0249

effect size = 1.3

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4850 0.5006 0.0068 0.2952 0.4178 0.7036 0.4184

LC 0.3764 0.4840 0.0484 0.0753 0.0341 0.5226 0.0607

NC 0.4470 0.4743 0.0171 0.1446 0.0706 0.9068 0.0522

ACV 0.4360 0.4797 0.0222 0.2110 0.2689 0.8296 0.2551

ACSC 0.3940 0.4464 0.0346 0.5088 0.0985 0.5984 0.1182

LR 0.4220 0.4470 0.0272 0.5344 0.1068 0.5716 0.1233

LLR 0.4670 0.4996 0.0152 0.5038 0.0596 0.4952 0.0555

CART 0.3970 0.4416 0.0349 0.5280 0.0823 0.5888 0.0792

RF 0.4170 0.4481 0.0148 0.5532 0.0201 0.5506 0.0275

effect size = 1.5

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4910 0.4972 0.0049 0.5022 0.3834 0.5034 0.3792

LC 0.3852 0.4603 0.0382 0.0704 0.0380 0.5447 0.0405

NC 0.4040 0.4312 0.0264 0.4890 0.0722 0.6486 0.1091

ACV 0.4240 0.4922 0.0240 0.0462 0.1440 0.9694 0.0961

ACSC 0.4000 0.4280 0.0234 0.4946 0.1283 0.6494 0.1426

LR 0.3410 0.3970 0.0356 0.6128 0.0986 0.5932 0.0536

LLR 0.4890 0.5031 0.0136 0.4884 0.0383 0.5026 0.0340

CART 0.3830 0.4268 0.0251 0.5092 0.0473 0.6372 0.0375

RF 0.4210 0.4359 0.0136 0.5678 0.0259 0.5604 0.0291
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effect size = 1.7

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4580 0.4986 0.0226 0.4828 0.1002 0.5200 0.1121

LC 0.4184 0.4785 0.0496 0.0821 0.0236 0.4799 0.0790

NC 0.4060 0.4387 0.0307 0.3614 0.1714 0.7612 0.1208

ACV 0.4890 0.4988 0.0035 0.0040 0.0120 0.9984 0.0051

ACSC 0.4030 0.4202 0.0206 0.5046 0.1146 0.6550 0.1450

LR 0.3370 0.3752 0.0328 0.6236 0.0797 0.6260 0.0317

LLR 0.4850 0.4978 0.0079 0.5068 0.0377 0.4966 0.0330

CART 0.3880 0.4104 0.0248 0.5650 0.0390 0.6142 0.0368

RF 0.4010 0.4293 0.0161 0.5638 0.0172 0.5776 0.0285

effect size = 1.9

minMCR meanMCR sdMCR meanSens sdSens meanSpecs sdSpecs

FC 0.4650 0.4989 0.0162 0.4978 0.2118 0.5044 0.1996

LC 0.3076 0.4767 0.0972 0.1556 0.0903 0.4882 0.1080

NC 0.3920 0.4355 0.0244 0.2750 0.0685 0.8540 0.0424

ACV 0.4650 0.4944 0.0116 0.0182 0.0386 0.9930 0.0155

ACSC 0.3950 0.4590 0.0422 0.7510 0.2599 0.3310 0.3383

LR 0.3450 0.3863 0.0325 0.5900 0.0986 0.6374 0.0694

LLR 0.4790 0.4923 0.0122 0.4908 0.0643 0.5232 0.0622

CART 0.3740 0.3993 0.0275 0.5872 0.0665 0.6142 0.0793

RF 0.3970 0.4185 0.0167 0.5746 0.0202 0.5884 0.0267
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Table C.3: Classification results on simulated data set with three causative two-way
interactions. For each classification methods (rows), the minimum of the
observed MCR is given. Mean values for MCR, sensitivity (Sens) and speci-
ficity (specs) are given with the respective standard deviations.

The classification result for three two-way interactions was not displayed in Chapter 6.
It can be found in Figure C.1.
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Figure C.1: Misclassification rates for the simulated data data achieved by the different
classification methods for three causative two-way interactions.
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