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0 Introduction

The dynamics of gases and multicomponent mixtures plays an important role in human
life. Numerous applications in natural sciences and engineering deal with gas flows
and mixtures of gases with solid particles or liquid droplets. Such flows are subjects of
active research since the knowledge of the flow properties is beneficial for the progress
in natural science and engineering. Traditionally, physical phenomena like flow dy-
namics are investigated by means of experiments and measurements. This approach
is time consuming, particularly if a certain optimization process requires multiple and
expensive experiments. During the last decades there has been an increasing interest in
computational fluid dynamics (CFD), which is nowadays a competitive and quite often
a preferable approach to investigating fluid flows and related transport phenomena.
Simulation of physical processes usually involves three basic steps:

1. Mathematical modeling of the phenomenon.

2. Numerical solution of the governing equations.

3. Visualization and analysis of the computed results.

The quality of numerical simulations strongly depends on the computational resources,
the theoretical understanding of physical processes, and the design of suitable mathe-
matical models governing the flow.

In the present thesis compressible flows are of interest. Compressible gas flows oc-
cur for example in aerospace engineering applications, like flows around planes, space
shuttles, or rockets. Furthermore, explosions generate waves at large pressure and den-
sity gradients and compressible flow is also present in power plants. The examples
above are merely a small number of applications involving compressible flow. Quite
often the flow is polluted by solid or liquid material, which may be the result of chem-
ical reactions. Some examples are volcanic eruptions, dust explosions (in coal mines),
the outlet of solid rocket motors, or condensation in a (nuclear) power plant. Other im-
portant industrial applications of compressible particle-laden gas flows are the variety
of spraying technologies which have been developed in recent years to create coatings.
In particular, the possibility to model and predict arc spraying and high velocity flame
spraying (HVOF) processes are challenging long term goals of the research presented
in this study.

The compressible Navier-Stokes equations and the Euler equations as a simplified coun-
terpart are widely accepted in the CFD community. They have proven to be rather
accurate models of compressible flows. In contrast, the modeling of gas-solid or gas-
liquid mixtures is much more complicated and the proper treatment has sometimes
been controversially discussed in the literature. In principle, there are two approaches
to modeling the dynamics of the particulate phase in a compressible gas-solid mixture.
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These approaches differ in the description of the disperse phase. In a so-called Euler-
Lagrange model, the particles are treated as moving objects immersed in a continuous
gas phase. The trajectory of each particle is computed separately. If the number of par-
ticles is too large, the simulation process becomes very expensive in terms of memory
and CPU time requirements. Moreover, it is difficult to incorporate collisions of parti-
cles and turbulence effects in such a model. Hence, the Lagrangian tracking of particles
is only feasible for very dilute flows. In a so-called Euler-Euler model, both phases are
treated as interpenetrating continua sharing each control volume. The hydrodynamic
behavior of the particulate phase is governed by macroscopic conservation laws for
the mass, momentum, and energy. This formulation is preferable for a large number of
particles. Moreover, a nonzero pressure term can be incorporated to model collisions of
particles in the case of a dense suspension. The Euler-Euler approach is adopted in the
present thesis.

0.1 Research Goals

The primary goal of this thesis is to develop new implicit and Newton-like finite el-
ement solvers for inviscid pure gas and particle-laden gas flows. We focus our atten-
tion on stationary solutions. Both topics are related in some sense since a single-phase
gas flow arises as a special case for a vanishing particulate phase. Although this study
mainly focuses on numerical methods, the specification of an appropriate mathemati-
cal model for particle-laden gas flows is also an important aim. Macroscopic multiphase
flow models can be postulated or derived from the single-phase equations by a suitable
averaging procedure. The result is a system of balance equations for both phases, which
is called two-fluid model. Special emphasis is laid on the analysis and critical evalua-
tion of the involved interface exchange terms and their adjustment to particle-laden gas
flows.

Macroscopic two-fluid models consist of an inhomogeneous hyperbolic set of equa-
tions. Typical standard discretizations, including those based on finite element meth-
ods, tend to produce numerical oscillations if they are applied to hyperbolic equations
(or systems). This is unacceptable if the compressible Euler equations or the two-fluid
model governing particle-laden gas flows are considered. From the physical point of
view quantities like pressure and density have to be positive. This property can how-
ever be violated by the presence of undershoots and overshoots. To prevent the birth
and growth of wiggles and preserve the physical properties of the solution, a suitable
stabilization term should be added to the discretized equations.

Modern high-resolution schemes combine the advantages of low-order and high-order
approximations. Roughly speaking, a diffusive low-order method is applied at steep
fronts and local extrema, where linear high-order schemes produce spurious wiggles.
On the other hand, a high-order method is employed in smooth regions, where a low-
order approximation would be less accurate. The result is a nonlinear convex combina-
tion of the two methods. The share of each scheme is fitted to the local smoothness of
the solution using limiters. This approach was introduced by Boris and Book in their
pioneering work [9] on the flux-corrected-transport algorithm (FCT). Originally, this
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algorithm was also based on finite difference and finite volume discretizations. It was
generalized to the finite element framework by the group of Löhner [53, 54, 55].

The FCT algorithm is known to be very accurate for highly time-dependent transport
equations [38, 46]. On the other hand, it is not to be recommended for steady-state com-
putations because the amount of numerical diffusion is proportional to the time step.
Moreover, severe convergence problems are observed in the steady-state limit. There-
fore, flux correction schemes of FCT type are of little value for the numerical study to be
performed in this thesis. Nonlinear high-resolution schemes based on the total variation
diminishing (TVD) criterion are also designed by blending high- and low-order approx-
imations. Such schemes are independent of the time step and ideally suited for solving
stationary problems. However, standard TVD limiters are not applicable to finite ele-
ment discretizations and they are practically restricted to 1D. Using a slightly weaker
constraint, known as the local extremum diminishing (LED) property, Kuzmin et al.
extended the essentially 1D TVD schemes to multidimensional finite element methods
in the framework of so-called algebraic flux correction methods [46, 47, 43, 44]. Alge-
braic flux correction schemes of TVD type are parameter-free and non-oscillatory by
construction, at least for scalar transport equations. Based on the standard Galerkin fi-
nite element discretization a low-order method is derived by adding a suitably defined
diffusion operator, which reduces the order of approximation to one. In a third step the
order of approximation is increased by insertion of a limited amount of antidiffusion,
which is controlled by TVD-like flux limiters. The result is a nonlinear high-resolution
scheme. At its birth the methodology was designed for scalar hyperbolic equations and
later extended to the Euler equations [47]. The limiters developed by Kuzmin et al. be-
long to the most accurate stabilization techniques for continuous finite elements [38].
Hence, they are adopted in this thesis. In the present work we focus on the algebraic
flux correction technique and its extension to the two-fluid model.

Most numerical studies of multicomponent/multiphase flows are concerned with in-
compressible gas-liquid mixtures. A very popular class of this family are incompress-
ible bubbly flows [42, 89]. In contrast to the significant advance in numerical methods
for dispersed gas-liquid flows, publications on macroscopic multiphase flow FEM mod-
els for compressible gas-solid mixtures are relatively scarce. The governing equations
of compressible multiphase flows can for example be solved by a pressure correction
scheme like SIMPLE (semi-implicit method for pressure-linked equations) with strong
coupling by the interphase slip/partial elimination algorithm (IPSA/PEA). Pressure
correction schemes are more related to incompressible or weakly compressible tran-
sient flows, while their applicability to highly compressible problems is questionable.
Most publications addressing compressible multiphase flows deal with one-dimensio-
nal (explicit) finite volume approximations, although there are a few publications con-
taining 2D results [78, 79, 33, 10, 39, 67, 34, 70, 66]. The author is aware of just one
numerical study involving finite elements [88]. In this publication, a FEM-based flux
FCT algorithm was applied to a dusty shock tube problem. The present study focuses
on the development of fully coupled finite element schemes, which do not rely on de-
coupling strategies like SIMPLE. There is strong numerical evidence that the schemes
presented here are unconditionally stable. This is an important advantage in stationary
computations on unstructured meshes due to the varying mesh sizes throughout the
domain. Due to that fact, there is a high demand for implicit compressible flow solvers.
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At the current stage, they are restricted to (semi-) implicit discretizations [15, 60, 18]
or Newton-like methods [60, 93, 62, 7] for single-phase gas flows. A particularly chal-
lenging task is to overcome severe convergence problems associated with the use of
non-differentiable limiters in steady-state computations. It is not unusual that the non-
linear residual decreases merely by a few orders of magnitude, after which convergence
stalls [95]. In light of the above, discontinuous Galerkin (DG) methods or finite volume
schemes with semi-differentiable limiters are commonly employed.

It is a major goal of the present study to design a semi-implicit or Newton-like finite el-
ement solver for the Euler equations and the two-fluid model. Special emphasis is laid
on the computation of stationary solutions in a wide range of Mach numbers since the
low Mach number regime is another cause for the lack of convergence in compressible
flow simulations. The proposed algorithm converges even in the case of non-smooth
limiters and oscillatory correction factors, which are usually blamed for convergence
problems. We primarily focus our attention on the nonlinear solver and employ glob-
ally refined grids instead of adaptive ones for that reason.

The choice of boundary conditions is a very important topic in compressible CFD. Since
waves may move in different directions, the same boundary part may represent an inlet
for some waves and an outlet for other waves. An inappropriate choice of numerical
boundary conditions may result in artificial reflections of waves at the boundaries and
hamper convergence. To maintain unconditional stability and convergence of implicit
solvers, boundary conditions must be integrated into the preconditioner. An explicit
treatment of boundary conditions would degrade the overall performance of the algo-
rithm [15] and render the implicit approach useless. In spite of their utmost importance,
issues related to the numerical implementation of boundary conditions for hyperbolic
systems are rarely discussed in the literature. Typically, they rely on a diagonalization of
the Jacobian, which is impossible for the two-fluid equations. Implicit boundary condi-
tions in the finite volume framework were implemented either in the strong sense [93]
in terms of additional algebraic equations or alternatively the boundary fluxes were
directly overwritten by the imposed boundary conditions [62]. In continuous finite el-
ement schemes [87] or DG methods [18, 15] Neumann-type flux boundary conditions
were implemented by directly changing the boundary integrals without use of bound-
ary Riemann solvers. An important goal of this thesis is to develop Neumann-type
boundary conditions in an implicit way incorporating the solution of the boundary
Riemann problem to increase robustness. The proposed algorithm is applicable to large
and infinite CFL numbers and does not inhibit convergence to steady-state.

Another objective of this thesis is to generalize the developed implicit techniques to
compressible particle-laden gas flows and to be able to achieve stationary solutions.
These tasks are very challenging since additional nonlinearities due to large and stiff al-
gebraic coupling terms arise and must be discretized in a proper way. Algebraic source
terms are typically incorporated into the computational model making use of opera-
tor splitting [78, 79, 70, 82]. Numerical results show that operator splitting is inappro-
priate for steady-state simulations and subject to restrictive time step constraints or
even does not allow the solution to approach steady-state. In the presented research
thesis operator splitting is avoided by using a fully coupled Newton-like approach.
The algorithm developed in this thesis features most properties of the single-phase gas
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solver, although it does not converge at the same rate, due to the additional and non-
differentiable interfacial coupling. To the author’s best knowledge, there is no publica-
tion on implicit schemes or boundary conditions for particle-laden gas flows in multi-
dimensions. These concepts are developed in this thesis and shown to be crucial for a
satisfactory convergence to steady-state.

0.2 Outline of the Thesis

The present study is mainly concerned with the design of implicit methods for com-
pressible gas as well as particle-laden gas flows. Practical algorithms and remarks on
implementation of the proposed methods are given. The thesis is subdivided into three
parts.

First of all, the computational models to be examined in this thesis are presented. The
compressible Navier-Stokes equations are formulated and simplified to the compress-
ible Euler equations under the assumption of inviscid flows. The Euler equations serve
as the computational model of pure gas flows. In the second chapter of the first part,
the single-phase equations are averaged over a spatial control volume to derive the
equations of motion governing multiphase flows. Moreover, constitutive laws, some
simplifications valid for particle-laden gas flows, and the analysis of relevant interfa-
cial forces are presented.

The second part of this study is the most important one since it contains the mathe-
matical details and computational algorithms. In chapter three, a self-contained intro-
duction to the algebraic flux correction procedure and TVD-like high-resolution finite
element schemes is given. The presentation of this material is largely based on [45, 46].
Furthermore, a fully multidimensional node-based flux limiting strategy [44] is pre-
sented in the context of a scalar hyperbolic equation.

In chapter four, the concepts reported in chapter three are generalized to hyperbolic
systems of equations and fitted to the set of conservation laws governing the particu-
late phase. These equations exhibit the same structure as the Euler system for the gas
phase but there is no pressure, and the interphase transfer terms have opposite signs.

The presence of a nonzero pressure gradient in the gas phase equations is respon-
sible for the hyperbolicity and occurance of distinct wave speeds. The mathematical
properties of the gas phase equations are fundamentally different from those of the
pressureless transport model for the particles. Therefore, the two PDE systems require
completely different stabilization mechanisms, as illustrated in the fifth chapter.

Chapter six deals with the discretization of source terms and the interfacial coupling in-
duced by the source terms of drag force and heat exchange. A robust and simple finite
element discretization of source terms is proposed and operator splitting techniques to
deal with the two-way coupling via the drag force and heat exchange are reported.

In chapter seven, a Neumann-type weak form of flux boundary conditions is proposed
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to maintain unconditional stability of the numerical algorithm. Special attention is paid
to the numerical treatment of solid wall boundaries.

The last chapter of the second part is devoted to the solution of the arising nonlinear
systems. Pseudo time stepping and Newton-like techniques based on the backward Eu-
ler scheme are presented and combined with a linearization of the nonlinear fluxes and
source terms. A semi-implicit linearized pseudo time stepping scheme is employed.
Our numerical results indicate that the scheme is unconditionally stable and convergent
for arbitrary CFL numbers. The semi-implicit pseudo time stepping scheme transforms
to a Newton-like method for CFL = ∞ and incorporates a low-order preconditioner,
which also is proposed in this section.

Numerical results are presented in the third part. In chapter nine the convergence and
performance of the developed implicit algorithm and boundary conditions are estab-
lished for the Euler equations for several test cases. In chapter ten, benchmark compu-
tations with the inviscid two-fluid model are presented to give evidence for the perfor-
mance of the nonlinear solver and boundary conditions at large or even infinite CFL
numbers. Moreover, the results are analyzed for validation purposes.

Finally, conclusions are drawn and an outlook is given in chapter 11.



Part I

Modeling of Compressible Gas and
Particle-Laden Gas Flows





1 The Euler Equations: Modeling of a
Pure Compressible Gas

Compressible gas flows are usually modeled by the physical principles of conserva-
tion of mass, momentum, and energy, where the last two conserved quantities satisfy
Newton’s second law and the first law of thermodynamics, respectively. Based on these
assumptions, one can derive the compressible Navier-Stokes equations

∂tρ +∇ · (ρv) = 0
∂t(ρv) +∇ · (ρv⊗ v + T) = Fb

∂t(ρE) +∇ · (ρvE + v · T + q) = v · Fb + Q,
(1.1)

where ρ, v = (u, v)T, E denote the density, velocity, and total energy of the gas. For
Newtonian fluids, the stress tensor T is given by

T = IP− µ(∇v + (∇v)T) +
2
3

µI∇ · v (1.2)

where P is the thermodynamic pressure and µ is the dynamic viscosity. The heat flux q
is related to the gradient of the temperature T by Fourier’s law of heat conduction

q = −κ∇T. (1.3)

Furthermore, Q is an external heat source, and the body forces are represented by Fb.

Neglecting all viscous terms, heat conduction, heat sources, and body forces the Navier-
Stokes equations simplify to the Euler equations

∂tρ +∇ · (ρv) = 0
∂t(ρv) +∇ · (ρv⊗ v + IP) = 0

∂t(ρE) +∇ · (v(ρE + P)) = 0.
(1.4)

At high speeds the Euler equations are a suitable approximation of the Navier-Stokes
equations. Equations (1.4) are the governing equations which will be used in this thesis
to investigate single-phase gas flows.
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1.1 Mathematical Properties

The Euler equations (1.4) can be rewritten in vectorial form as

∂t

 ρ
ρv
ρE


︸ ︷︷ ︸

=U

+∂x


ρu

ρu2 + P
ρuv

u(ρE + P)


︸ ︷︷ ︸

=F(x)

+∂y


ρv

ρuv
ρv2 + P

v(ρE + P)


︸ ︷︷ ︸

=F(y)

= 0. (1.5)

The vector of conservative variables is abbreviated by U, and the flux vectors F(x) and
F(y) are associated with the coordinate directions. These equations may also be written
in a more compact form

∂t

 ρ
ρv
ρE


︸ ︷︷ ︸

=U

+∇ ·

 ρv
ρv⊗ v + IP
v(ρE + P)


︸ ︷︷ ︸

=F

= 0, (1.6)

where
F =

(
F(x), F(y)

)
(1.7)

is the flux tensor used to simplify notation. Moreover, the velocity vector is given by
v = (u, v)T.

1.1.1 Definitions and Equations of State

To close the system of governing equations an equation of state is required. In this study
we assume the ideal gas law

P = ρRT (1.8)

with the specific gas constant R. This yields the constitutive pressure law [32]

P = (γ− 1)ρ

(
E− |v|

2

2

)
(1.9)

with a constant ratio of specific heats γ. For all computations reported later γ = 1.4 is
prescribed. The Mach number

M =
|v|
c

(1.10)

is the ratio of the norm of the gas velocity and the speed of sound

c =

√
γP
ρ

(1.11)

in the gas. In accordance with the definition of the Mach number, the flow regime can
be characterized as subsonic (M < 1), transonic (M ≈ 1), supersonic (M > 1), and
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hypersonic (M� 1). The total energy E is linked to the internal energy e by

E = e +
|v|2

2
. (1.12)

Moreover, the specific enthalpy h and the total enthalpy H are defined by

h = e +
P
ρ

, H = E +
P
ρ

. (1.13)

1.1.2 Hyperbolicity

Equations (1.6) are given in conservative form. For our purposes, the quasi-linear form
is also of interest. One can apply the chain rule to (1.6) and derive

∂tU +
∂F(x)

∂U
∂xU +

∂F(y)

∂U
∂yU = 0 ⇔ ∂tU +

(
∂F(x)

∂U
,

∂F(y)

∂U

)
· ∇U = 0. (1.14)

To simplify notation the Jacobian tensor

A =

(
∂F(x)

∂U
,

∂F(y)

∂U

)
(1.15)

is defined, which transforms the quasi-linear form of the Euler equations to

∂tU + A · ∇U = 0. (1.16)

The governing equations are hyperbolic if the Jacobians ∂F(x)

∂U and ∂F(y)

∂U for both coor-
dinate directions x and y are diagonalizable with real eigenvalues. The Jacobians are
given by

∂F(x)

∂U
=


0 1 0 0

b2u2 + b1v2 (3− γ)u (1− γ)v γ− 1
−uv v u 0

b1(u3 + v2u)− Hu H − (γ− 1)u2 (1− γ)uv γu

 (1.17)

and

∂F(y)

∂U
=


0 0 1 0
−uv v u 0

b2v2 + b1u2 (1− γ)u (3− γ)v γ− 1
b1(u2v + v3)− Hv (1− γ)uv H − (γ− 1)v2 γv

 (1.18)

with
b1 =

γ− 1
2

, b2 =
γ− 3

2
. (1.19)

A spectral analysis shows that the eigenvalues of both matrices are

λ(x) = {u− c, u, u, u + c} and λ(y) = {v− c, v, v, v + c}, (1.20)
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respectively. A complete set of eigenvectors exists. Eigenvectors, eigenvalues and Jaco-
bians are reported in [76]. Therefore, the Euler equations are a hyperbolic set of coupled
conservation laws, which enables the application of hyperbolic solvers based on char-
acteristic variables.

1.1.3 Homogeneity Property

It is easy to verify [22] that the homogeneity relation

F(d)(θU) = θF(d)(U), d = x, y (1.21)

holds for the Euler equations with any constant θ. By the chain rule, it implies

F(d) =
∂F(d)

∂U
U. (1.22)

This latter form of the homogeneity property is a useful tool for discretization purposes.

1.2 Nondimensionalization

In a numerical simulation it may be more convenient to rewrite the equations in dimen-
sionless form to reduce round-off errors, equalize the scales and compute a solution
independent of a particular system of units. A compressible flow satisfying the Euler
equations can be characterized by the Mach number M and the ratio of specific heats
γ up to some scaling factors. To obtain a dimensionless form we define the following
dimensionless quantities

ρ∗ =
ρ

ρ∞
v∗ =

v
c∞

P∗ =
P

ρ∞c2
∞

E∗ =
E

c2
∞

x∗ =
x
L

t∗ =
tc∞

L
.

In the expressions above, ρ∞, c∞, c2
∞, and ρ∞c2

∞ are scaling factors, while L, L
c∞

are the
length and time scale of the underlying flow problem.

Substitution into (1.6) yields the desired dimensionless form of the Euler equations

∂t∗ρ
∗ +∇∗ · (ρ∗v∗) = 0

∂t∗(ρ∗v∗) +∇∗ · (ρ∗v∗ ⊗ v∗ + IP∗) = 0
∂t∗(ρ∗E∗) +∇∗ · (v∗(ρ∗E∗ + P∗)) = 0.

(1.23)

In the remainder of this thesis, we will drop the asterisks. For the pure gas simulations
we assign the free stream values given in table 1.1 unless mentioned otherwise.
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Variable Free Stream Value
ρ∗ 1
u∗ M∞
v∗ 0
P∗ 1

γ

E∗ M2
∞

2 + 1
γ(γ−1)

Table 1.1: Free stream values for single-phase gas flow
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2 The Two-Fluid Model: Modeling of a
Particle-Laden Gas

In this section, we briefly examine the modeling of a compressible gas flow containing
very small (solid) particles. We focus our attention on the development of a macroscopic
model (Euler-Euler approach). It is generally accepted that single-phase gas flows can
be modeled by macroscopic equations of mass, momentum and energy conservation.
The particulate (or dispersed) phase is also supposed to admit a continuous descrip-
tion. As a natural assumption, the single-phase equations are also valid for multi-phase
flows except at the interfaces separating the different components. A mixture of two or
more different materials can be interpreted as a flow, which is subdivided into single-
phase regions by infinitesimal thin interfaces. Each of these subdomains is governed
by the single-phase conservation laws. The interfaces are moving boundaries in math-
ematical sense. Several physical and mathematical difficulties arise due to the presence
of interfaces. In particular, interface exchange between different materials is up to now
not completely understood. The existing models are based on empirical correlations
that are not universally applicable. Due to limited computing resources it is impossi-
ble to locate the interfaces at the microscopic scale if the dispersed phase is distributed
over the whole domain. It is necessary to transform the microscopic equations into
their macroscopic counterparts. In this case, macroscopic equations are derived by us-
ing suitable averaging procedures so that they are related to the microscopic ones in a
mathematical sense. They can therefore be interpreted as some kind of generalization.

Various techniques are reported in the literature and typical candidates are volume,
time, statistical, and ensemble averagings, or combinations of the former families. A
survey can be found in the textbooks of Drew and Passmann [16] and Ishii and Hi-
biki [35], where the latter text mainly focuses on time averaging. The different tech-
niques typically yield similar results. The averaged equations are widely accepted and
applied in a large number of publications. Saurel and Abgrall [82] derive a quite gen-
eral hyperbolic non-conservative model, which is applicable to dense and dilute flows
alike. Städke [91] used averaged hyperbolic equations for the numerical simulation of
the interaction of water and steam. Such macroscopic so-called two-fluid models were
successfully applied to incompressible bubbly flows [42, 89]. Computational models
related to particle-laden gas flows can be found in [70, 66, 88, 79, 34, 78, 67, 39, 10, 33].
The models employed for the different flow regimes widely agree in modeling aspects,
except in the treatment of interface exchange. Although the interaction between the in-
volved materials at the interfaces has a strong influence on the flow behavior and the
simulation results, it remains controversial in the literature (e. g. lift forces) and depends
on the materials under consideration. Consequently, the interface exchange should be
modeled carefully. Modeling of compressible particle-laden gas flows requires several
assumptions and simplifications. In this work we use the following assumptions:
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• No chemical reactions and no change of aggregate states appear.

• Both particles and gas are distributed over the whole domain.

• The inviscid equations of mass, momentum, and energy conservation are valid in
the interior of each phase.

• The gas pressure satisfies the ideal gas equation of state (1.9).

• There is no considerable amount of particle collisions and the particles do not
interact with each other.

• The material density of the particles is constant. That means, the particulate phase
is incompressible.

• Dilute flow conditions, i. e. the volume occupied by the particles is small.

• The material density ratio ρg
ρp
� 1 is small.

• The particles are solid, spherical, of uniform size and their diameter is small com-
pared to the length scale.

• The influences of curvature is negligible and surface tension does not play a role
for solid particles.

• There are interfacial momentum and heat transfer, but no external momentum
and energy sources.

The present section summarizes the application of the volume averaging process to in-
dicate the origin of the different terms. Additionally, the modeling of interfacial prop-
erties of particle-laden gas flows is discussed under the assumptions given above.

In the following the index k refers to either the gas phase g or the particulate phase
p. The interface quantities are denoted by the index int. Hence, each phase satisfies a
system of microscopic conservation laws that can be written as

∂tρk +∇ · (ρkvk) = 0
∂t(ρkvk) +∇ · (ρkvk ⊗ vk + Tk) = 0

∂t(ρkEk) +∇ · (vkρkEk + vk · Tk + qk) = 0,
(2.1)

where external body forces (like gravity) and heat sources are neglected. The stress
tensor is denoted by Tk. Equations (2.1) are valid for both phases exclusively in their
interior. At the interfaces density, velocity, and energy are discontinuous and the jumps
are constrained by [35, 16]

∑
k=g,p

 ρk(vk − vint)
ρkvk ⊗ (vk − vint) + Tk

ρkEk(vk − vint) + vk · Tk + qk

 · nk =

 0
0

− diesur f
dt − esur f∇ · vint

 (2.2)

since surface tension and the influence of curvature are neglected. Surface tension is
only important if the particles are deformable. This is not the case for solid particles
considered in this thesis. The vector nk denotes the unit normal to the interface directed
to the interior of phase k, vint is the velocity of the interface, and esur f is the surface
internal energy density. The material derivative associated with the interface is referred
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Xg = 0

Xp = 1
Xg = 0

Xp = 1

Xp = 0

Xp = 1
Xg = 0 Xp = 1

Xg = 0

Xp = 1
Xg = 0

Xg = 1

Figure 2.1: Distribution of the indicator functions Xg and Xp in a typical control volume
V

to as di
dt . It is easy to verify that

ng = −np (2.3)

holds. To derive macroscopic equations, which are valid in the whole domain, we will
multiply equations (2.1) by the phase indicator function

Xk(x, t) =

{
1 if x is in phase k at time t
0 otherwise

(2.4)

and average the microscopic equations. The distribution of the indicator functions is
sketched in figure 2.1.

The volume average of the function f over a small control volume V is defined by

〈 f 〉 =
1
V

∫
V

f dV. (2.5)

It follows that
αk = 〈Xk〉 =

Vk
V

(2.6)

is the fraction of the control volume V occupied by the phase k. Furthermore, we define
the phasic average of a quantity φ by [16]

φ̃k =
〈Xkφ〉

αk
. (2.7)

In the following sections the generalization of the microscopic conservation laws (2.1)
by volume averaging is discussed.
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2.1 Averaging of the Continuity Equation

A multiplication of the first equation in (2.1) by the indicator function and integration
over V yields

0 =
1
V

∫
V

Xk(∂tρk +∇ · (ρkvk)) dV

=
1
V

∫
V

∂t(Xkρk) +∇ · (Xkρkvk)− ρk(∂tXk + vk · ∇Xk) dV.
(2.8)

In [16] Drew and Passman have proved

∂tXk + vint · ∇Xk = 0. (2.9)

This enables us to rearrange equation (2.8) to

0 =
1
V

∫
V

∂t(Xkρk) +∇ · (Xkρkvk)− ρk(∂tXk + vk∇ · XK)

+ ρk(∂tXk + vint · ∇Xk) dV

=
1
V

∫
V

∂t(Xkρk) +∇ · (Xkρkvk)− ρk(vk − vint) · ∇Xk dV

(2.10)

or equivalently

1
V

∫
V

∂t(Xkρk) +∇ · (Xkρkvk) dV =
1
V

∫
V

ρk(vk − vint) · ∇Xk dV. (2.11)

The gradient ∇Xk (defined in a weak sense) is equal to zero everywhere except at the
interface, where ∇Xk is parallel to the inner normal pointing into the interior of phase
k

nk =
∇Xk
|∇Xk|

. (2.12)

Hence,

Γk =
1
V

∫
V

ρk(vk − vint) · ∇Xk dV (2.13)

is the rate of interphase mass transfer. Since chemical reactions are beyond the scope of
this work, we assume Γk = 0. The control volume V is fixed in space and time and we
can therefore move the derivative operators in front of the integrals and substitute (2.7)
into (2.11) to obtain [16]

∂t(αkρ̃k) +∇ · (αkρ̃kṽk) = Γk = 0. (2.14)

In the equation above ṽk is defined by

ṽk =
ρ̃kvk
ρ̃k

. (2.15)

The averaged momentum and energy equations are derived in a very similar way.
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2.2 Averaging of the Momentum Equations

We multiply the single-phase momentum equations (second equation in (2.1)) by Xk
and average over a small control volume V. A transformation similar to (2.8)-(2.11)
yields

1
V

∫
V

∂t(Xkρkvk) +∇ · (Xk(ρkvk ⊗ vk + Tk)) dV =
1
V

∫
V

Tk · ∇Xk dV

+
1
V

∫
V

ρkvk ⊗ (vk − vint) · ∇Xk dV.
(2.16)

The second term on the right hand side of equation (2.16) represents the momentum
flux due to convection of mass across the interface with an exchange velocity vex

k . The
rate of mass transfer Γk is given by (2.13). Since Γk = 0, we deduce that

Γkvex
k =

1
V

∫
V

ρkvk ⊗ (vk − vint) · ∇Xk dV = 0. (2.17)

The contribution of the first term to the right hand side of (2.16) is modeled by ([16], p.
128)

1
V

∫
V

Tk · ∇Xk dV = Tint
k ·

1
V

∫
V
∇Xk dV + Fint

k

= Tint
k · ∇αk + Fint

k ,
(2.18)

where Fint
k and Tint

k are the interfacial forces and stresses, respectively. The main mech-
anisms of interphase momentum transfer are viscous drag, lift, and virtual mass ef-
fects (see below). Taking equations (2.7) and (2.18) into consideration, we can transform
(2.16) into

∂t(αkρ̃kṽk) +∇ · (αkρ̃kṽk ⊗ ṽk + αkT̃k) = Tint
k · ∇αk + Fint

k . (2.19)

2.3 Averaging of the Energy Equation

Again, the derivation process starts with the application of the above averaging proce-
dure to the single-phase energy equation (third equation in (2.1)) to obtain

1
V

∫
V

∂t(XkρkEk) +∇ · (Xk(ρkEkvk + vk · Tk + qk)) dV =
1
V

∫
V
(vk · Tk) · ∇Xk dV

+
1
V

∫
V

ρkEk(vk − vint) · ∇Xk dV +
1
V

∫
V

qk · ∇Xk dV.

(2.20)

The first term on the right hand side of equation (2.20) corresponds to the work of in-
terfacial stress. This integral is commonly expressed in terms of vint and Tint

k as follows
(compare to (2.18)):

1
V

∫
V
(vk · Tk) · ∇Xk dV = (vint · Tint

k ) · ∇αk + vint · Fint
k . (2.21)
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The second term represents the energy flux associated with the convective mass transfer
across the interface. Since Γk = 0, this term vanishes

ΓkEex
k =

1
V

∫
V

ρkEk(vk − vint) · ∇Xk dV = 0, (2.22)

where Eex
k represents the exchange energy. The third term on the right hand side of

(2.20) describes the interphase heat transfer due to other mechanisms. It is modeled by

αkqint
k =

1
V

∫
V

qk · ∇Xk, (2.23)

where qint
k is the rate of interphase heat transfer. Hence, the volume-averaged energy

equation reduces to

∂t(αkρ̃kẼk) +∇ · (αk(ρ̃kṽkẼk + ṽk · T̃k)) = (vint · Tint
k ) · ∇αk + vint · Fint

k + αkqint
k . (2.24)

In the remainder of this thesis, the tilde, which indicates the averaging process, is
dropped to simplify notation. Taking the transformations described above in this chap-
ter into consideration the averaged equations can be summarized by

∂t(αkρk) +∇ · (αkρkvk) = 0

∂t(αkρkvk) +∇ · (αkρkvk ⊗ vk + αkTk) = Tint
k · ∇αk + Fint

k

∂t(αkρkEk) +∇ · (αk(ρkvkEk + vk · Tk)) = (vint · Tint
k ) · ∇αk + vint · Fint

k + αkqint
k .

(2.25)

2.4 The Computational Model

Equations (2.25) constitute a coupled set of eight nonlinear conservation laws in 2D.
The left hand side of this system contains convective terms for both phases, while the
interface exchange terms are located on the right hand side. Both phases are coupled
at the interface by the interfacial stress and velocity, heat exchange, interfacial forces,
and the volume fractions. Equations (2.25) are widely accepted as the general form
of governing equations of two-phase flows if external heat sources, viscosity, and body
forces are neglected. Primarily the interface terms vint, Tint

k , qint
k , and Fint

k require further
modeling. Furthermore, there is a considerable debate on the modeling of the pressure
related to the particulate phase. In this thesis only terms, which are clearly understood
from the modeling point of view and which significantly influence simulation results,
are incorporated into the computational model. The following sections are concerned
with the modeling of important material interactions.
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2.4.1 Remarks on Conservation

In a single-phase flow, no mass, momentum, or energy is either generated or destroyed
in the interior of the domain. This physical fact carries over to mixtures of two or more
different materials and should be accounted for by the computational model. We add
the continuity equations of both phases to derive a corresponding conservation equa-
tion for the mixture density

∂t ∑
k

(αkρk) +∇ ·∑
k

(αkρkvk) = 0. (2.26)

Since the left hand sides of all equations are in conservative form and there are no
external sources of momentum and energy, all non-conservative effects are due to the
interfacial momentum and energy exchange corresponding to the right hand sides or
the boundary fluxes. Assuming that the interfacial forces, heat exchanges, and stresses
satisfy

∑
k

Fint
k = 0, ∑

k
qint

k = 0, ∑
k

Tint
k · ∇αk = 0, ∑

k
(vint · Tint

k ) · ∇αk = 0, (2.27)

an addition of the momentum and energy equations yields conservation laws for the
mixture momentum

∂t ∑
k

(αkρkvk) +∇ ·∑
k

(αkρkvk ⊗ vk + αkTk) = 0 (2.28)

and energy
∂t ∑

k
(αkρkEk) +∇ ·∑

k
(αk(ρkvkEk + vk · Tk)) = 0. (2.29)

Due to this fact, the mixture momentum and energy (and also mass in the same manner)
are conserved, although each phase may lose or gain momentum and energy by the
interfacial exchange. Moreover, the saturation condition

∑
k

αk = ∑
k

Vk
V

= 1 (2.30)

holds.

To close the computational model the terms Tk,Tint
k , vint, qint

k , and Fint
k must be spec-

ified.

2.4.2 Stress Tensor

We suppose that the single-phase stress tensor consists of a pressure part and a viscous
part (compare to 1.2). Similar to the modeling of a pure gas flow, we neglect the visous
contribution and define the pressure tensor as

Tk = IPk, (2.31)
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where Pk denotes the pressure of phase k.

In the present work the gas pressure Pg is given by the ideal gas equation of state (1.9),
while the pressure of the particulate phase requires further modeling. It is much more
difficult to interpret the pressure of a solid. In a gas-solid mixture, the pressure (or
stress) describes the forces acting between particles due to collisions, or shear stress
([16], p.223). We assume spherical particles and a dilute flow satisfying

αp < αcrit < 1, (2.32)

or rather
αp ∼

ρg

ρp
. (2.33)

Yang [96] proposes a simple model for the pressure of the particulate phase

Pp =

{
0 if αp < αcrit

Psolid(αp) if αp ≥ αcrit
. (2.34)

If relation (2.32) is valid, particle collisions can be neglected. Only if the volumetric
concentration of the particles is close to the packing limit (the particles form a solid) a
considerable amount of collisions appears and a pressure Psolid must be defined. The
positive pressure bounds the effective particle density αpρp from above and prevents
delta shocks. Usually Psolid is a function that grows to infinity if the effective density of
the particles approaches the packing limit [68]. Since in the present work (2.32) is valid,
the results are independent of Psolid and

Pp ≡ 0 (2.35)

holds. This zero-pressure model is generally applied to dilute gas-particle flows [70, 88,
10, 79, 34, 67, 39, 66, 33]. It is better suited than the assumption of

Pp = Pg, (2.36)

which is also a valid choice for the two-fluid model since surface tension does not paly
a role [16].

Due to the lack of pressure, delta shocks may in principle appear in the particulate
phase. They are excluded by the assumption of dilute conditions. In addition, the in-
terface exchange terms also play an important role in preventing such unphysical phe-
nomena. The gas pressure is linked to the velocity in such a way that the gas density
remains bounded. Since the velocity of particles is also related to the gas velocity by the
magnitude of interfacial drag, the gas pressure influences the velocity of the particles in
some sense. This may be a reason why delta shocks are not observed in the particulate
phase.



2.4 The Computational Model 23

2.4.3 Interfacial Stress

The interfacial stress tensors are defined as the sums of viscous and pressure contri-
butions (compare 2.4.2), while the viscosity is neglected. Hence, the interfacial stress
tensors reduce to interfacial pressure contributions

Tint
k = IPint

k . (2.37)

Since conservation is a basic requirement, the third equation of (2.27) must be satisfied.
This is equivalent to (

Tint
g − Tint

p

)
· ∇αk = 0 (2.38)

and obviously satisfied by
Tint

g = Tint = Tint
p . (2.39)

Hence, we define
Pint

g = Pint = Pint
p . (2.40)

This choice is also used by Drew and Passmann [16]. The interfacial pressure is mod-
eled by several authors in different ways. A natural definition of the interfacial pressure
contribution is proposed by Saurel and Abgrall [82]. They postulate the interfacial pres-
sure as the mixture pressure

Pint = ∑
k

αkPk. (2.41)

Most authors who deal with dilute flows, treat the dispersed phase as incompressible
and assume pressure equilibrium. Consequently, they associate all pressures with the
gas pressure

Pp = Pint = Pg. (2.42)

This choice is sensible if the curvature can be neglected [16]. On the other hand, it may
give rise to mathematical difficulties related to the lack of hyperbolicity of the resulting
model. Other authors, like Powers [72], state that

Pint = 0 (2.43)

or add a correction term to the gas pressure and define the interfacial pressure, e.g., by
[78]

Pint = Pg + δ(αg). (2.44)

This correction is usually chosen to render the model hyperbolic, although there is still
some physical background. The correction term models the influence of the particles on
the gas pressure. In contrast, there are other definitions reported in the literature [64],
which are primarily designed to enforce hyperbolicity. Such unjustifiable choices are
beyond the scope of this work and will not be considered further.

Obviously, there is a large discrepancy in the treatment of the interfacial stresses. In
the present work we examine compressible flows, which may contain shocks and give
rise to weak solutions. Consequently, the non-conservative terms Tint

k · ∇αk and (vint ·
Tint

k ) · ∇αk on the right hand sides of the second and third equation of (2.25) must be
dropped since the non-conservative gradient is not defined in the weak sense. This can
also be justified by physical arguments. If one phase is finely dispersed throughout the
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other, the pressure of the dispersed component does not differ much from its value at
the interface [16]. Hence, one can state

Pint
p = Pp = 0 (2.45)

due to the assumption of a dilute flow and we define

Pint = 0. (2.46)

It has become common practice in the CFD community to neglect the interfacial pres-
sure in simulations of dilute particle-laden gas flows. Pressureless equations for the
particulate phase [70, 88, 79, 34, 67, 39, 10, 66, 33] are usually formulated instead.

2.4.4 Interfacial Velocity

The determination of the averaged velocity vint of the interface requires additional
modeling. In [82] Saurel and Abgrall define the interfacial velocity using the center
of mass velocity as

vint = ∑k αkρkvk

∑k αkρk
, (2.47)

while Delhaye and Bouré [12] postulate the center of volume velocity

vint = ∑
k

αkvk. (2.48)

Although there is no rigorous theoretical justification they are both natural assumptions
for flows with deformable interfaces. In the special case of particle-laden gas flows the
modeling of the interfacial velocity is less complicated. It can simply be interpreted as
the velocity of the particulate phase

vint = vp. (2.49)

In most references regarding particle laden flows, the velocity of the particulate phase
is recommended as the interfacial velocity [70, 88, 78, 81, 79, 66, 67]. This choice is justi-
fied by physical arguments for the particle-laden gas flows under consideration. Let us
switch to the microscopic point of view and consider a spherical particle in a surround-
ing gas flow. We associate the interface with the surface of the particle, which does not
change its shape. Hence, the gas velocity does not directly influence the shape of the
particle and the position of its surface. Furthermore, the velocity of the surface is equal
to the velocity of the particle and the interface mimics the same behavior. Consequently,
(2.49) is a sensible assumption based on the physics of both materials.

We derive a different justification for (2.49) by the first component of the jump condi-
tion (2.2). The particle does not change its shape and the gas cannot penetrate through
the surface of the particle. Hence, a no-penetration condition

vg · np = 0 (2.50)
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holds. This reduces the above mentioned jump condition to(
vp − (1−

ρg

ρp
)vint

)
· np = 0. (2.51)

Since ρg
ρp
� 1, we approximate (

vp − vint
)
· np = 0. (2.52)

This equation is satisfied by (2.49) or if vp − vint is tangential to the surface. The lat-
ter case is less sensible and therefore not considered further. It turns out that equation
(2.49) is a meaningful definition satisfying the jump condition (2.2) under the current
assumptions.

The most important interface coupling terms in compressible particle-laden gas flows
are the algebraic source terms due to the interfacial forces and heat exchange. Consti-
tutive laws for these terms are given in the next sections.

2.4.5 Interfacial Forces

Using Newton’s law, the momentum equation for a single particle p with mass mp reads

mp
dvp

dt
= FD + FVM + FBAS + FL + FOTHER. (2.53)

In other words, the change of momentum equals the sum of all forces acting on the par-
ticle. These are in particular the interfacial forces of drag FD, virtual mass FVM, Basset
FBAS, and lift FL. The remaining forces are represented by FOTHER (e. g. gravity) but are
not considered further. It is impossible to account for all forces in the computational
model and they are of different importance in a particular flow regime. Consequently,
physically important ones should be included into the computational model, while the
forces with small or negligible magnitude should be excluded. In the next sections the
modeling of forces experienced by the particles is addressed.

2.4.5.1 Drag Force

The drag force [16, 68]

FD =
3
4

ρg

dρp
mpCD|vg − vp|(vg − vp) (2.54)

determines the drag on the particle due to the slip velocity based on the drag coefficient
CD. A particle of diameter d moving with a velocity higher than that of the surround-
ing fluid will be decelerated by the slower fluid and vice versa. This force, acting on
the particle is modeled by the drag force and it is important in any dispersed flow with
significant slip velocities. Hence, it is included into our model and turns out to be the
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most important interfacial force. The amount of drag depends on the drag coefficient
CD. This dimensionless quantity is defined in this thesis by the (widely accepted) stan-
dard equation

CD =

{
24
Re (1 + 0.15Re0.687) if Re < 1000
0.44 if Re ≥ 1000

. (2.55)

It is valid for spherical particles and given as a function of the particle Reynolds number
Re [8]

Re =
ρgd|vg − vp|

µ
. (2.56)

Here µ denotes the microscopic dynamic viscosity of the gas and d is the particle diam-
eter. Both µ and d are assumed to be constant. Sommerfeld [90] argues that the standard
drag coefficient is a valid choice only for steady flow problems and proposes a different
definition

CD = 112Re−0.98 (2.57)

for time-dependent situations. Note that both configurations are based on empirical
correlations and alternative choices exist. The interested reader is referred to the ha-
bilitation thesis of Sokolichin [89], where the author examines different configurations
for incompressible bubbly flows. Since the present study is primarily concerned with
steady-state computations, we adopt formula (2.55).

2.4.5.2 Virtual Mass Force

The correlations of the drag force are based on a constant slip velocity. If the particle
accelerates or decelerates relatively to the gas motion, then a wake of the surrounding
gas is also accelerated or decelerated by an additional force. This force is called virtual
mass force and is modeled by [68]

FVM = CVM
ρg

ρp
mp
((

∂tvg + vg · ∇vg
)
−
(
∂tvp + vp · ∇vp

))
. (2.58)

The influence on the numerical results is sometimes controversial at least for bubbly
flows, although the existence of a virtual mass force is physically justified. It is in par-
ticular difficult to determine the dimensionless coefficient CVM. For bubbly flows, most
authors assume

CVM = 0.5, (2.59)

although there are many other choices reported in the literature, cf. [89] and the refer-
ences therein. Crowe et al. [11] propose to define CVM in terms of an acceleration pa-
rameter, which approaches CVM = 1 in the limit of constant relative velocity. The choice
of the dimensionless coefficient can be postulated, derived from analytical solutions to
simplified configurations, or deduced from experimental data. Since the measurement
of virtual mass effects is up to now a difficult task or even impossible at high speeds,
the configurations originating from measurements and their application to compress-
ible flows are doubtful due to the difficult choice of CVM. Nevertheless, the virtual mass
force makes the numerical solution of the governing equations much more challenging.
In our case the virtual mass force can be neglected due to the small material density ra-
tio ρg

ρp
. On the other hand, some authors employ the virtual mass force to render their



2.4 The Computational Model 27

two-fluid models hyperbolic for numerical reasons. We will see below that this is not
necessary.

2.4.5.3 Basset Force

The Basset force is given by [11]

FBAS =
3
2

d2√πρgµ
∫ t

0

d
dτ (vg − vp)√

t− τ
dτ. (2.60)

It takes into account the acceleration history up to the current time level t. Obviously,
this force incorporates unsteady effects and it is therefore restricted to transient flows.
The Basset force is excluded from our computational model for that reason. In a time-
dependent simulation of particle-laden gas flows, the magnitude of the Basset force is
also insignificant due to the small particle diameter and gas viscosity. In this case, the
convective terms are much larger than the Basset term, which is scaled by d2√πρgµ.

2.4.5.4 Lift Force

The lift force accounts for effects transversal to the flow direction and arises from the ro-
tation of a spherical particle. It can be subdivided into two parts. At first there is a force
originating by particle rotation (Saffmann force) due to a surrounding fluid in shearing
motion. At the same time the effects arising by a non-uniform pressure distribution on
the surface of the rotating particle are a consequence of the Magnus force. The sum of
Saffmann and Magnus force is modeled by the lift force [16]

FL = CLmp
ρg

ρp
(vp − vg)× (∇× vg). (2.61)

Up to now the modeling of the lift force is not completely understood. Although the
influence on the numerical results may be large [89] (depending on the flow regime
and material properties) the existing models are highly controversial. Moreover, the lift
force is sometimes included into computational models to fit the numerical solutions
to experimental data. Hence, simulations computed without taking the lift force into
account are typically more reliable than their counterparts incorporating transversal
effects.

2.4.5.5 Pertinence of Interfacial Forces

The relevance of a force under consideration is determined by three basic requirements:

• The existence is physically and experimentally justified.

• The modeling is clearly understood and there are universal correlations for the
involved coefficients.
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• The force influences the computational results significantly.

Otherwise, the force should be excluded from the computational model. To assess the
significance of the forces above we consider equation (2.53) and divide it by mp

dvp

dt
=

3
4

ρg

dρp
CD|vg − vp|(vg − vp) + CL

ρg

ρp
(vp − vg)× (∇× vg)

+ CVM
ρg

ρp

((
∂tvg + vg · ∇vg

)
−
(
∂tvp + vp · ∇vp

))
.

(2.62)

In the equation above, FBAS and FOTHER are neglected. It becomes obvious that the con-
tributions originating by lift force and virtual mass force are scaled by ρg

ρp
. In a gas flow,

laden with solid particles (e. g. iron or glass), the mass densities usually differ by sev-
eral orders of magnitude. Due to the very small material density ratio ρg

ρp
neither lift nor

virtual mass force significantly contribute to the velocity of the particle. And since they
violate the basic requirements,we remove them from the computational model.

The insignificance of lift effects can also be justified by a more physical argumentation.
The Magnus force is related to rotation, which is primarily caused by particle collisions
or collisions with a wall. Since particle collisions are neglected and frictionless con-
ditions are assumed, there is no significant rotation. Furthermore, effects of shearing
motion at the surface of a particle are primarily important for relatively large particles.
Hence, the Saffmann force is unimportant in the case of very small particles. Conse-
quently, the lift force is also of small magnitude.

In contrast, the contribution of the drag force depends on ρg
dρp
� 1. This makes the

contribution of viscous drag important for particle-laden gas flows. Considering the
arguments above, the drag force is the most important force that belongs to the compu-
tational model, while the others are negligible in our situation. Consequently, we only
incorporate the drag force into our computational model. Note that the three basic re-
quirements are satisfied.

The insignificance of the virtual mass force compared to viscous drag can be further
evidenced by a model problem with parameters closely related to the computations to
be reported in part III. Consider a single particle, which is injected into a gas flow of
constant velocity vg = (100, 0, 0)T m

s . The mass densities are ρp = 4000 kg
m3 and ρg = 1 kg

m3

and the dynamic viscosity of the gas is set to µ = 10−5 kg
m·s . At time T = 0 the velocity

of the particle is vp(0) = 0 m
s and it starts its motion due to the interaction with the gas.

We assume that the particle does not influence the gas velocity and suppose a one-way
coupling. This problem can be approximated by a 1D configuration. If we neglect lift
effects, the momentum equation (2.62) transforms into

dvp

dt
=

3

4
(

1 + CVM
ρg
ρp

) ρg

dρp
CD
∣∣vg − vp

∣∣ (vg − vp
)

. (2.63)

The first term on the right hand side indicates that the virtual mass force will only
slightly reduce the acceleration of the particle by the gas due to the drag force. Nu-



2.4 The Computational Model 29

merical solutions to this ordinary differential equation for two particle diameters d =
0.1mm, 1mm and virtual mass coefficients CVM = 0, 1, 10 were computed. Since the re-
sults for the different CVM are almost equal, figure 2.2 (a) shows the particle velocities
for CVM = 0. The particle is quite large and the magnitude of the drag force is under-
estimated for that reason. On the other hand, the virtual mass coefficient CVM = 10 is
relatively large compared with data reported in the literature, which overestimates the
influence of virtual mass effects. In spite of this discrepancy we can deduce from figure
2.2(b) and (c) that the relative velocity differences of the solutions with and without
virtual mass effects are below 0.3% even in the case of CVM = 10. In other words, the
velocity is hardly affected by the virtual mass force. On the other hand, we observe in
figure 2.2 (a) that the velocity is significantly influenced by the particle diameter, which
proves the importance of viscous drag.

In macroscopic conservation laws, the interfacial forces acting on a single particle are
replaced by their averaged counterparts defined as body forces in a control volume
sense. We will use the same notation for the volume-averaged counterpart of each force.
Since FD is the force of primary importance, the rate of interfacial momentum transfer
is given by

Fint
p = FD =

3
4

αp
ρg

d
CD|vg − vp|(vg − vp), Fint

g = −Fint
p . (2.64)

Last but not least the closure of the governing equations requires a constitutive equation
for the interfacial heat transfer.

2.4.6 Interfacial Heat Transfer

The rate of interfacial heat transfer is proportional to the temperature difference [40]

qint
p = QT =

Nu6κ

d2 αp(Tg − Tp), qint
g = −qint

p (2.65)

where the Nusselt number Nu is a function of the Prandtl number Pr

Nu = 2 + 0.65Re
1
2 Pr

1
3 , Pr =

cpgµ

κ
. (2.66)

The thermal conductivity κ, heat capacity at constant pressure cpg, and (microscopic)
dynamic viscosity µ of the gas are assumed to be constant. Furthermore, the tempera-
ture

Tk =
1

cvk

(
Ek −

1
2
|vk|2

)
(2.67)

of the phase k is defined as a function of the total energy and the velocity, while the heat
capacity at constant volume cvk is supposed to be a constant.
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(a) Particle velocity d = 0.1 mm, 1 mm
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(b) Relative velocity differences
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(c) Relative velocity differences
d = 1 mm
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Figure 2.2: Sensitivity analysis of drag and virtual mass
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2.4.7 Summary of the Equations

In the present chapter, we have derived an inviscid two-fluid model that describes the
macroscopic behavior of compressible particle-laden gas flows under certain assump-
tions. In summary, the system of equations to be dealt with in this thesis reads

∂t(αgρg) +∇ · (αgρgvg) = 0
∂t(αgρgvg) +∇ · (αgρgvg ⊗ vg + αgIP) = −FD

∂t(αgρgEg) +∇ ·
(
αgvg

(
ρgEg + P

))
= −vp · FD −QT

∂t(αpρp) +∇ · (αpρpvp) = 0
∂t(αpρpvp) +∇ · (αpρpvp ⊗ vp) = FD

∂t(αpρpEp) +∇ · (αpρpvpEp) = vp · FD + QT,

(2.68)

where
FD =

3
4

αp
ρg

d
CD|vg − vp|(vg − vp) (2.69)

is the drag force and

QT =
Nu6κ

d2 αp(Tg − Tp) (2.70)

is the rate of interfacial heat transfer. Moreover, the pressure is modeled by the gas
pressure in terms of the ideal gas equation of state

P = (γ− 1)ρg

(
Eg −

|vg|2

2

)
. (2.71)

The pressure of the particulate phase is neglected due to the arguments above. Consti-
tutive equations

Tk =
1

cvk

(
Ek −

1
2
|vk|2

)
(2.72)

link the temperature of both phases to the velocity and total energy. Note that the ef-
fective density αpρp is variable, although the particulate phase is incompressible with a
constant material density ρp.
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Part II

Numerical Methods for Compressible
Gas and Particle-Laden Gas Flows





3 Scalar Conservation Laws

This chapter is devoted to the numerical solution of scalar hyperbolic equations of the
form

∂tu +∇ · f(u) = 0, (3.1)

where u : R2 ×R → R is a conserved quantity and f : R2 → R2 denotes a nonlinear
flux function. The above equation must be supplied with suitable initial and boundary
conditions. Numerical methods are firstly designed for the 1D counterpart of (3.1)

∂tu + ∂x f (u) = 0 (3.2)

and then generalized to systems of hyperbolic equations and multidimensions. For the
sake of simplicity, suppose that equation (3.2) holds in an unbounded space-time do-
main, where the initial data has compact support. Due to the finite wave speed of hy-
perbolic equations the solution keeps the compact support at every finite time level.

The solution u to equation (3.1) is supposed to be smooth (differentiable). It is pos-
sible to multiply this hyperbolic equation by a smooth test function ω with compact
support and integrate it in space and time. This results in a weak formulation∫ ∞

0

∫
R2

u∂tω + f(u) · ∇ω dx dt = 0, (3.3)

where the derivative operators are shifted to the (smooth) test function. In contrast to
(3.1), the weak formulation does not require the functions u and f to be smooth.

A measurable function u is called a weak solution of equation (3.1) if it satisfies (3.3).
A smooth solution that satisfies (3.1) in the strong sense is also a solution of (3.3) and,
therefore, a weak solution. Interestingly enough, a smooth initial solution may lose this
property during the time evolution and become a weak solution. For example, the so-
lution to the inviscid Burgers equation exhibits this behavior [51].

Nonlinear hyperbolic equations may admit an infinite number of weak solutions of
which the majority is non-physical. A physically correct solution can be characterized
by an entropy condition [51] or defined as the solution of the parabolic perturbed prob-
lem

∂tuε +∇ · f(uε) = ε4uε (3.4)

in the limit of ’vanishing viscosity’ ε→ 0.

It is a well known fact that discretizations of hyperbolic equations tend to produce
spurious undershoots and overshoots if insufficient care is taken. The following sec-
tion provides guidelines for the construction of non-oscillatory numerical schemes that
preserve the important physical properties of the solution.
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3.1 Physical and Numerical Criteria

Numerical methods for hyperbolic equations usually consist of a combination of a time
stepping and a space discretization scheme. The spatial discretization yields a system
of ordinary differential equations, which is solved by the time stepping scheme.

The analysis of numerical methods is usually based on the concepts of consistency,
stability and convergence. The famous equivalence theorem of Lax [52] states that

consistency and stability ⇔ convergence

for a linear scheme. This simplifies the convergence analysis to the question of consis-
tency and stability of which the proof of consistency quite often is easier than the proof
of stability. In particular, the proof of stability for nonlinear approximations is a very
challenging and perhaps also impossible task.

Although this thesis primarily is devoted to stationary solutions, time marching meth-
ods are also of interest since the time step ∆t (or pseudo time step) serves as an under-
relaxation parameter and may help a solution to converge to steady-state. Therefore,
consistency and stability on the fully discrete level (for a given combination of time
marching and space discretization schemes) are the main requirements.

Assume that the governing equation is discretized in space and time (fully discrete
level). A numerical scheme is consistent with the governing equation if the local dis-
cretization error tends to zero

τh,∆t = ‖Lh,∆t(u)−L(u)‖ → 0, (3.5)

for time step ∆t → 0 and mesh refinement h → 0. In the equation above L denotes the
continuous derivative operator and Lh,∆t is its numerical approximation. Due to this
definition the local discretization error is the norm of the difference between the gov-
erning equation and its discretized counterpart evaluated with the exact data.

LeVeque [52] showed that stability follows directly if the numerical scheme is a con-
traction and consistent. In the stationary case, the numerical scheme reduces to a fixed
point iteration. The Banach theorem states that it will converge to a unique solution if it
is a contraction. Hence, the order of a possibly employed pseudo time stepping method
is not essential in this case, while consistency with the governing equation is required
for the numerical solution computed in this way to approximate the physical problem.

Space discretizations of hyperbolic equations are prone to spurious undershoots and
overshoots if they are more than first order accurate. The wiggles generated by such
schemes indicate that some small-scale features cannot be resolved properly on a given
mesh. Let us consider equation (3.2) with the flux function f = u, which corresponds
to convection in 1D with velocity one

∂tu + ∂xu = 0. (3.6)
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We examine the finite difference discretization

dui

dt
= −

fi+ 1
2
− fi− 1

2

h
(3.7)

for the equidistant mesh size h, which in 1D is similar to the Galerkin FEM. In the latter
equation, fi± 1

2
denotes the numerical flux evaluated in the center of the left (-) or right

(+) neighboring cell. Two approximations of the numerical flux are investigated. We
employ either

f CDS
i± 1

2
=

ui±1 + ui

2
(3.8)

or
f UDS
i± 1

2
= uI , (3.9)

where I is located upstream to i± 1
2 . The former flux approximation results in the cen-

tral difference scheme
dui

dt
=

ui−1 − ui+1

2h
, (3.10)

which is second order accurate (high-order scheme). Formula (3.9) yields the upwind
difference scheme of first order (low-order scheme)

dui

dt
=

ui−1 − ui

h
. (3.11)

First, we apply both schemes to a continuous initial profile given by

u(x, 0) =

{
0.5 cos (4π(x + 0.2)) + 0.5 if 0.05 < x < 0.55
0 otherwise

. (3.12)

Figure 3.1 displays numerical solutions at the time instant T = 0.7. They are computed
with h = 0.005, ∆t = 0.0001 by the above discretization schemes combined with back-
ward Euler time stepping. The black lines indicate the initial values (dashed-dotted)
and the analytical solutions (dotted), while the numerical ones are marked by red lines.
Obviously, both methods yield sensible results, although the solution computed by the
low-order scheme is smeared. The high-order solution is virtually indistinguishable
from the analytical one and preserves the shape of the initial data, as expected.

In a second test case we analyze both schemes for the discontinuous initial values

u(x, 0) =

{
1 if 0.05 < x < 0.25
0 otherwise

(3.13)

and the same mesh size and time step length. The numerical solutions to this configura-
tion are depicted in figure 3.2. In comparison to the continuous profile the solutions dif-
fer significantly. The high-order solution is polluted by numerical oscillations and the
positivity of the initial values is not preserved. The oscillatory curve has little in com-
mon with the analytical solution. In contrast, the low-order solution is non-negative
and free of non-physical oscillations. It is strongly smeared but physically sensible. In-
deed, the undershoots and overshoots of the high-order method in the second test case



38 3 Scalar Conservation Laws

(a) High-order scheme
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Figure 3.1: Convection of a continuous profile
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Figure 3.2: Convection of a discontinuous profile

are caused by the discontinuity of the solution. They are due to the inability of the nu-
merical discretization scheme to resolve steep gradients, while the physical solution
is free of oscillations. Further important physical properties of the solution like posi-
tivity or monotonicity preservation are violated due to the wiggles. This rules out the
application of the high-order scheme to non-smooth data. It is demonstrated by the
above examples that mathematical criteria are needed to keep the solution free of non-
physical effects.

In the following sections mathematical and physical constraints are presented, which
guarantee the preservation of the physical properties of the solution and prevent the
birth and growth of non-physical oscillations.

3.1.1 Monotonicity

A useful physical property of two solutions v, w of the scalar equation (3.2) is

v0(x) ≥ w0(x) ⇒ v(x, t) ≥ w(x, t) for all x,t, (3.14)
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where v0, w0 are the initial data. If the numerical scheme satisfies such a constraint
everywhere for each time level n, i. e.

vn
i ≥ wn

i ⇒ vn+1
i ≥ wn+1

i , (3.15)

it is called monotone. This implies that minima cannot decrease and maxima cannot
increase [92], or in other words oscillations are prevented. Moreover, the monotonic-
ity property implies that a positive and bounded initial solution remains positive and
bounded [92]. Quite often that is an additional important physical feature, e. g. if the
conserved quantity is the mass density of a gas. Although one can show that a consis-
tent and monotone scheme converges to a physical solution [26, 27] and cannot gen-
erate wiggles, the monotonicity constraint is too restrictive for practical applications
and difficult to verify for nonlinear schemes. A weaker condition to prevent spurious
oscillations is the TVD (total variation diminishing) property.

3.1.2 Total Variation Diminishing Schemes

Total variation diminishing schemes were introduced by Harten in his pioneering work
[26]. The total variation of a function u is defined by

TV(u) =
∫ +∞

−∞
|∂xu| dx. (3.16)

Lax [50] showed for equation (3.2) in 1D

TV(u(·, t2)) ≤ TV(u(·, t1)), ∀ t2 ≥ t1, (3.17)

i. e. the total variation of the function does not increase or in other words, the function
is total variation diminishing (TVD). A discrete counterpart of (3.16) can be defined by

TV(uh) = ∑
i
|ui+1 − ui|. (3.18)

A numerical scheme is said to be TVD if the discrete solution satisfies

TV(un+1) ≤ TV(un) (3.19)

for all time levels. One can show [52] that a consistent numerical scheme is convergent
if it is Lipschitz-continuous and the total variation is uniformly bounded. For TVD
schemes, a uniform upper bound for the total variation is given in terms of the initial
data, which are assumed to have a bounded total variation.

Furthermore, one can generalize the total variation diminishing property to monotonic-
ity preservation of the approximate solution. This criterion guarantees that

un
i ≥ un

i+1 ⇒ un+1
i ≥ un+1

i+1 , ∀i
or

un
i ≤ un

i+1 ⇒ un+1
i ≤ un+1

i+1 , ∀i.
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In other words, an initially monotonic profile remains monotonic. LeVeque showed
[52] that every TVD scheme is monotonicity preserving and therefore non-oscillatory.
In contrast to the monotonicity constraint of a numerical scheme reported in section
3.1.1 the TVD property can be checked in practice using Harten’s theorem [26].

Note that for linear schemes the concepts of total variation diminishing, monotonic-
ity, and monotonicity preservation are equivalent [26, 23, 92]. Due to the famous Go-
dunov theorem [23], a linear monotone scheme is at most first order accurate. This rules
out linear schemes in practical applications since they are insufficient to compute accu-
rate results at reasonable costs. Therefore, nonlinear high-resolution schemes are to be
recommended for the numerical solution of hyperbolic equations, even if they require
additional nonlinear iterations. Moreover, Goodman and LeVeque [24] proved that in
two space dimensions the order of approximation of an arbitrary total variation dimin-
ishing scheme is bounded from above by one. In light of this result, nonlinear TVD
schemes are suitable for 1D computations in contrast to multidimensions, where it is
impossible to design a TVD scheme of higher order. One therefore has to find a weaker
constraint to construct a non-oscillatory discretization scheme of higher than first order.
In addition, such a scheme must be nonlinear to circumvent the Godunov theorem.

3.1.3 Local Extremum Diminishing Schemes

A slightly weaker constraint to be imposed on the numerical discretization is the local
extremum diminishing (LED) property. A numerical method is local extremum dimin-
ishing if local minima do not decrease and local maxima cannot increase. This definition
obviously rules out wiggles. The LED criterion below is defined on the semi-discrete
level and all the necessary information is provided by the coefficients of the spatial
discretization operator.

Theorem 3.1.1 (LED Criterion [36]) A semi-discrete scheme of the form

dui

dt
= ∑

j 6=i
σij(uj − ui) (3.20)

is local extremum diminishing if σij ≥ 0 holds for all j 6= i.

To prove this theorem, suppose that a local maximum is attained at node i. This implies
that the time derivative of the nodal value ui is less than or equal to zero. Hence, a local
maximum cannot increase. Similarly, a local minimum cannot decrease.

Theorem 3.1.1 forms the basis for the construction of the numerical schemes used in
this thesis. The LED criterion can easily be verified in practice by examining the sign of
the corresponding matrix entries. This criterion is also applicable to multidimensional
discretizations and unstructured meshes. Moreover, total variation and local extremum
diminishing schemes are closely related. As shown by Jameson [36], the total variation
for a three-point finite difference can be written as

TVh(uh) =
+∞

∑
i=−∞

|ui+1 − ui| = 2
(
∑ max uh −min uh

)
(3.21)
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and, hence, the LED criterion implies the TVD property in the one-dimensional case.
Note that the LED criterion is satisfied in the case of (3.11), while it is violated by the
central difference approximation (3.10). This explains the oscillations in figure 3.2 (a)
and the non-oscillatory solution in (b).

3.1.4 Positivity Preservation

Sometimes the conserved quantity, such as mass density, is known to be positive by
physical reasons. This property should be respected by the discretization method. Posi-
tivity of the numerical solution on the fully discrete level also relies on the time integra-
tion method. The backward Euler scheme combined with an LED space discretization
scheme turns out to be unconditionally positivity preserving since

un+1
i = un

i + ∆t ∑
j 6=i

σij(un+1
j − un+1

i )︸ ︷︷ ︸
≥0

≥ un
i (3.22)

if un+1
i is the global minimum at the time level n + 1. For other time stepping schemes,

like the Crank-Nicolson method, the admissible time step may be bounded from above
to guarantee positivity [48]. Note that an initially non-positive solution is not forced to
be positive by the numerical scheme, while an initially positive one remains positive
for all times. Furthermore, the combination of an LED scheme and backward Euler
time stepping is stable with respect to the L∞-norm. Suppose that un+1

i is the global
maximum at the time level n + 1 (with uk ≥ 0 ∀k for simplicity) and the solution at the
time level n is bounded by a constant C, that is, maxj un

j ≤ C. Then it follows that

un+1
i = un

i + ∆t ∑
j 6=i

σij(un+1
j − un+1

i )︸ ︷︷ ︸
≤0

≤ un
i ≤ C, (3.23)

and by an inductive argument, the numerical solution is uniformly bounded from
above. Hence, the numerical solution and the numerical errors alike are bounded from
above and from below. The arguments above are restricted to the linear case.

3.1.5 Conservation Property

The governing equation (3.1) is written in a conservative divergence form. It can be
transformed to an integral form

∂t

∫
Ω

u dx +
∫

∂Ω
f · n ds = 0. (3.24)

Therefore, the total amount of u may only change due to fluxes through the boundary,
while there is no loss or gain of mass in the interior of the domain. This physical fact
must be transferred to the numerical discretization. In the absence of inlets and outlets,
the time derivative of the total mass should vanish on the discrete level. Moreover, a



42 3 Scalar Conservation Laws

conservative discretization is also required from the mathematical point of view since
non-conservative methods may yield waves moving at wrong speeds. An example for
the inviscid Burgers equation is presented by LeVeque in [52]. The conservation prop-
erty of the numerical schemes reported in the present thesis, will be investigated below.

3.2 High-Resolution Schemes Based on Algebraic Flux
Correction

In the sections above we specified constraints to be imposed on discretization schemes
for hyperbolic equations. These criteria are needed to design non-oscillatory methods,
which preserve the physical properties of the solution. In practice, the LED criterion
provides a handy tool for the design of non-oscillatory methods. To motivate the idea
of high-resolution schemes and algebraic flux correction let us again focus on one space
dimension and the discretizations (3.11) and (3.10), respectively. First of all, it is impor-
tant to understand the origin of wiggles. Both schemes are related in some sense and
they differ by a discrete diffusion term. The upwind difference scheme can be written
as the sum of the central difference scheme and a first order diffusion term

dui

dt
=

ui−1 − ui

h
=

ui−1 − ui+1

2h
+

h
2

ui−1 − 2ui + ui+1

h2 . (3.25)

The second term on the right hand side is diffusive since it is the discrete form of
h
2 ∂xxu(xi). Obviously, the upwind difference can be interpreted as the central difference
plus a diffusive term. On the other hand, the central difference can be decomposed into
the sum of the upwind difference and an antidiffusive term

ui−1 − ui+1

2h
=

ui−1 − ui

h
− h

2
ui−1 − 2ui + ui+1

h2 . (3.26)

The diffusive term in (3.25) is proportional to the mesh size and reduces the order of ap-
proximation to one. It can be decomposed into a sum of two fluxes into node i satisfying
the LED criterion

h
2

ui−1 − 2ui + ui+1

h2 =
1

2h
(ui−1 − ui) +

1
2h

(ui+1 − ui). (3.27)

This is the reason why fluxes of LED type are called diffusive. If their coefficient is nega-
tive, they are of antidiffusive nature. The central difference scheme can be decomposed
into a sum of increments

dui

dt
=

ui−1 − ui+1

2h
=

1
2h

(ui−1 − ui)−
1

2h
(ui+1 − ui). (3.28)

The first one (first term on the right hand side) satisfies the LED criterion since its coef-
ficient 1

2h > 0 is positive, while the LED criterion is violated by the second one. In fact,
this contribution causes the numerical oscillations and corresponds to antidiffusion due
to the negative sign of its coefficient − 1

2h < 0. It is offset in (3.25) by the diffusive term.
Hence, the numerical troubles in the central difference scheme are caused by increments
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with negative coefficients corresponding to antidiffusion. In contrast, the upwind dif-
ference is obviously of LED type, which explains the non-oscillatory solution in figure
3.2 (b).

As a conclusion from (3.25) the central difference scheme (high-order scheme) can be
stabilized by addition of a discrete diffusion term, which offsets the antidiffusive fluxes
to satisfy the LED criterion (upwind scheme, low-order scheme). On the other hand
some antidiffusion is admissible at least in smooth regions, where it improves the reso-
lution. This can be deduced from figure 3.1. Hence, a limited fraction of the antidiffusive
fluxes can be reinserted into the low-order scheme to achieve high resolution at least
in smooth regions. The amount of admissible antidiffusion is controlled by a nonlinear
TVD limiter function Φ.

A high-resolution scheme can be constructed in terms of a nonlinear convex combi-
nation of the antidiffusive high-order and overdiffusive low-order scheme

f HIGHRES
i± 1

2
= Φ f HIGH

i± 1
2

+ (1−Φ) f LOW
i± 1

2
(3.29)

to take advantage of both approximations and control the amount of antidiffusion. The
limiter function is defined so as to place a greater weight on the high-order scheme
in smooth parts of the solution, where it provides superior accuracy. In the vicinity
of steep gradients the limiter function switches to the low-order scheme to prevent
numerical oscillations. In other words, the limiter function balances the magnitude of
diffusive and antidiffusive fluxes. This is the basic idea of high-resolution schemes. A
solution to the second test case given in section 3.1 is depicted in figure 3.3. Obviously,
it is free of non-physical effects and the discontinuities are much better resolved than
in figure 3.2 (b). It is the main goal of this section to generalize the above formula to
multidimensions and finite elements.

In recent years, Kuzmin et al. [43, 44, 45, 46, 47, 60, 49] developed a general approach
to the construction of high-resolution LED schemes based on the principle of algebraic
flux correction. In particular, this approach leads to a handy generalization of TVD lim-
iters to implicit finite element discretizations of convection-dominated transport equa-
tions and hyperbolic systems. Algebraic flux correction constrains the coefficients of a
numerical scheme so as to enforce the LED property and/or positivity conditions in a
conservative way. This can be done in a black-box fashion since all the necessary in-
formation is inferred from the discrete transport operators. Moreover, the underlying
limiting strategy is fully multidimensional and suitable for arbitrary meshes.

In the present thesis, algebraic flux correction based on a multidimensional nodal lim-
iter of TVD type is employed [44]. This limiter requires row-sum mass lumping, which
results in a loss of accuracy in time-dependent computations. Compared with the FCT
algorithm that can accommodate the consistent mass matrix, this is a drawback. In the
case of stationary computations, the time derivative vanishes in the steady-state limit
and hence mass lumping does not induce an error. Moreover, it has a stabilizing effect
and corresponds to an underrelaxation of the (implicit) solver. Therefore, mass lumping
is undesirable for time-dependent problems but advantageous in steady-state compu-
tations because the matrix properties are improved without affecting the accuracy of
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Figure 3.3: Convection of a discontinuous profile: High-resolution scheme

the converged solution. Algebraic flux correction of TVD type yields a nonlinear LED
discretization which is guaranteed to preserve the physical properties of the solution.

The process of stabilization of convective terms by algebraic flux correction consists
of three basic steps. First, the underlying high-order transport operator is assembled.
In this thesis, the Galerkin finite element discretization serves as the high-order scheme.
In a second step, the antidiffusive part of the discrete transport operator is removed by
adding an artificial diffusion operator. The latter is designed on the algebraic level so
as to enforce the LED constraint for the off-diagonal matrix entries. Finally, a limited
amount of antidiffusion is reinserted into the scheme, to increase the order of approxi-
mation in regions of smoothness. This correction preserves the LED property and yields
a nonlinear high-resolution scheme with solution-dependent coefficients. A roadmap of
algebraic manipulations to be performed is as follows:

1. High-order scheme (Galerkin FEM) (section 3.2.1):

MC
du
dt

= Ku

2. Low-order scheme (section 3.2.3):

ML
du
dt

= Lu, L = K + D

The discrete diffusion operator D is presented in section 3.2.2.

3. High-resolution scheme (section 3.2.4):

ML
du
dt

= Lu + F∗u = K∗u

The operator F∗ contains a limited amount of admissible antidiffusion, which is
reinserted into the low-order scheme.

Each stage of the above roadmap will be described in detail in the following sections.
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3.2.1 High-Order Scheme

The Galerkin finite element method is a powerful and modern tool for the spatial dis-
cretization of partial differential equations and it is in principle applicable to arbitrary
unstructured meshes. It is based on a weak form of the governing equation and delivers
the best approximation of the analytical solution in a finite-dimensional space spanned
by piecewise-polynomial basis functions with compact support.

In this thesis the finite element method based on linear or bilinear elements is em-
ployed. For the sake of simplicity consider the continuity equation

∂tu +∇ · (uv) = 0 (3.30)

where u is a scalar quantity and v is a prescribed velocity field. This hyperbolic PDE
is endowed with suitable initial and boundary conditions. We multiply equation (3.30)
by a test function ω and integrate over the domain Ω∫

Ω
ω∂tu +

∫
Ω

ω∇ · (uv) dx = 0. (3.31)

Let {ϕi, i = 1, ..., NVT} be the basis functions spanning the finite-dimensional sub-
space. Each basis function is associated with a vertex of the mesh and NVT is the total
number of vertices. The approximate solution is defined as

uh(x, t) = ∑
j

ϕj(x)uj(t). (3.32)

It is common practice in finite element codes for hyperbolic conservation laws to inter-
polate the vector of inviscid fluxes in the same way as uh

(uv)h(x, t) = ∑
j

ϕj(x)uj(t)vj(t). (3.33)

This kind of approximation was introduced by Fletcher [20] and examined in detail
for the inviscid Burgers equation. It is called the group finite element formulation. A
substitution of (3.32) and (3.33) into (3.31) and replacing the test function ω with the
basis functions yields a semi-discretized system of ordinary differential equations

∑
j

[∫
Ω

ϕi ϕj dx
]

duj

dt
+ ∑

j

[∫
Ω

ϕi∇ϕj dx
]
· vjuj = 0 ∀i. (3.34)

It can be written in a more compact form

MC
du
dt

= Ku (3.35)

with the consistent mass matrix MC = {mij}, where

mij =
∫

Ω
ϕi ϕj dx. (3.36)
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The matrix K = {kij} represents a discrete transport operator. Its entries are given by

kij = −vj · cij (3.37)

with the Galerkin coefficients
cij =

∫
Ω

ϕi∇ϕj dx. (3.38)

The coefficients cij can be interpreted as the discrete form of the space derivative op-
erator. They have zero row sums due to the fact that the basis functions sum to unity
everywhere. A very efficient computation of the transport operator K is enabled by the
group finite element formulation since the Galerkin coefficients can be computed in a
preprocessing step and stored for later reference. Thus the numerical integration has to
be performed only once.

The model problem (3.30) represents a linear equation. This is sufficient for the pur-
pose of the present chapter and there is no loss of generality. Indeed, the semi-discrete
group finite element formulation of equation (3.1) with a nonlinear flux function f reads

∑
j

[∫
Ω

ϕi ϕj dx
]

duj

dt
+ ∑

j

[∫
Ω

ϕi∇ϕj dx
]
· (fj − fi) = 0 ∀i (3.39)

and can also be written in the form (3.35). In this case, the entries of the discrete trans-
port operator are defined in terms of the (approximate) characteristic speed

vij =


f(uj)−f(ui)

uj−ui
if ui 6= uj

∂f(u)
∂u if ui = uj = u

⇒ kij = −vij · cij. (3.40)

The Galerkin finite element discretization described so far is known to be second order
accurate for linear elements and it is therefore referred to as the high-order scheme. On
the one hand, the finite element method is sufficiently accurate, globally conservative,
and linear. On the other hand, it turns out to be unstable and oscillatory due to the
large amount of built-in antidiffusion. Therefore, a suitable stabilization in terms of
numerical diffusion is required.

3.2.1.1 Discrete Conservation

The Galerkin finite element discretization described in section 3.2.1 is globally conser-
vative. It can be written as a discrete conservation law since the finite element basis
functions satisfy

∑
i

ϕi ≡ 1. (3.41)

Summing up all equations of (3.34) or (3.39) and substituting (3.41) one obtains

∑
j

∫
Ω

ϕj
duj

dt
dx + ∑

j

∫
Ω

fj · ∇ϕj dx = 0. (3.42)
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This can be rewritten as

∑
j

∫
Ω

ϕj
duj

dt
dx + ∑

j

∫
Ω
∇ · (ϕjfj) dx = 0 (3.43)

or equivalently

∂t

∫
Ω

uh dx +
∫

Ω
∇ · fh dx = 0, (3.44)

since the nodal values are independent of x. The latter equation represents a discrete
conservation law, similar to the integral form of (3.1). A change of mass is only possible
due to fluxes through the boundary. Indeed, from the divergence theorem we have that

∂t

∫
Ω

uh dx +
∫

∂Ω
n · fh ds = 0 (3.45)

holds true, which is the discrete analog to (3.24). In other words, when the boundary
integral vanishes, so does the time derivative. Therefore, there is no loss or gain of
mass in a closed system. Note that the conservation property is restricted globally. This
is not a drawback compared with the local, elementwise conservation property of finite
volume schemes. Finite element matrices are sparse due to the small support of finite
element basis functions and therefore, mass exchange occurs only between neighboring
nodes. The global conservation property of the finite element discretization (3.35) can
therefore be interpreted as a somewhat weaker form of the local conservation principle.

3.2.1.2 Conservative Flux Decomposition

In general, the i-th equation in system (3.35) does not possess the LED representation
(3.20). The contribution of the discrete transport operator can be written as a sum of
compressible and incompressible contributions

(Ku)i = ∑
j

kijuj = ∑
j 6=i

kijuj + uikii + ui ∑
j 6=i

kij − ui ∑
j 6=i

kij (3.46)

= ∑
j 6=i

kij(uj − ui)︸ ︷︷ ︸
incompressible part

+ ui ∑
j

kij︸ ︷︷ ︸
compressible part

(3.47)

The compressible part acts as a source term and may generate extrema by physical
reasons. This term should not be affected by the stabilization. On the other hand, the
incompressible part is responsible for the numerical oscillations. The sum of fluxes into
each node can be subdivided into fluxes, which violate the LED criterion (kij < 0) and
have to be limited or canceled and others, which are harmless . The harmless fluxes
are of a diffusive nature and the corresponding off-diagonal coefficients are positive
(kij > 0). The troublesome antidiffusive terms are associated with negative off-diagonal
matrix entries (kij < 0) that must be canceled or limited.
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3.2.2 Discrete Diffusion Operators

As mentioned above, the LED criterion provides a convenient tool to construct non-
oscillatory methods. To suppress numerical oscillations, stabilize the scheme and ren-
der the numerical solution local extremum diminishing, a numerical diffusion operator
is added. It is designed on the algebraic level and is free of parameters since all informa-
tion is derived from the discrete transport operator. Furthermore, the artificial diffusion
operator is constructed based on the semi-discrete equation (3.35).

A quadratic matrix D = {dij} is called a discrete or numerical diffusion operator if
its entries satisfy

1. dij = dji

2. ∑i dij = ∑j dij = 0.

In other words, a discrete diffusion operator is a quadratic and symmetric matrix with
vanishing row and column sums. Its entries corresponding to an edge I connecting
nodes i and j can be written as

D|I =
[
−dij dij
dij −dij

]
. (3.48)

The diffusive/antidiffusive flux from node j into node i is given by (dij > 0/dij < 0)

f di f f
ij = dij(uj − ui). (3.49)

Due to the constraints above the internodal fluxes are antisymmetric

f di f f
ij = dij(uj − ui) = −dji(ui − uj) = − f di f f

ji (3.50)

and cancel out upon summation, as required by conservation. The contribution of the
discrete diffusion operator D to the i-th equation admits the following representation:

(Du)i = ∑
j

dijuj = ∑
j 6=i

dijuj + uidii + ui ∑
j 6=i

dij − ui ∑
j 6=i

dij (3.51)

= ∑
j 6=i

dij(uj − ui) + ui ∑
j

dij (3.52)

= ∑
j 6=i

dij(uj − ui) = ∑
j 6=i

f di f f
ij . (3.53)

Hence, the sum of diffusive fluxes is of LED type (3.20) provided that dij ≥ 0 for j 6= i.
In this case, the application of the discrete diffusion operator causes a flattening or
smearing of solution profiles, while negative off-diagonal entries have a steepening
effect and correspond to antidiffusion. Discrete diffusion operators with non-negative
off-diagonal entries are diagonally dominant. Therefore, they improve the matrix prop-
erties and speed up the convergence of iterative solvers for the fully discrete problem.
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3.2.3 Low-Order Scheme

Since the optimal amount of artificial diffusion depends on the properties of the discrete
transport operator K, the coefficients of the numerical diffusion operator D must be fit-
ted to the underlying high-order discretization. The high-order scheme corresponds
to a linear algebraic system of the form (3.35), where the consistent mass matrix MC
contains positive off-diagonal entries. These entries are due to mass antidiffusion and
violate the LED principle. Therefore, the consistent mass matrix may also generate spu-
rious undershoots and overshoots. To suppress this wiggles, one adds mass diffusion
and replaces the consistent mass matrix by its lumped counterpart

ML = diag{mi}, mi = ∑
j

mij (3.54)

to obtain the lumped mass Galerkin scheme

ML
du
dt

= Ku. (3.55)

The applied mass diffusion operator features the discrete diffusion operator property
and satisfies the requirements of section 3.2.2. Therefore, the lumped mass Galerkin
scheme remains conservative since the Galerkin discretization is globally conservative
as stated in section (3.2.1.1).

A numerical diffusion operator D = {dij} is also used to eliminate all negative off-
diagonal entries of K and to satisfy the LED criterion. This is equivalent to extinguish-
ing all the antidiffusive fluxes in (3.47). By default, the artificial diffusion coefficients
are defined as [46]

dij = max{−kij, 0,−k ji} = dji ∀ j 6= i (3.56)

and
dii = −∑

j 6=i
dij. (3.57)

Obviously, the resulting operator L = K + D is free of negative off-diagonal entries
since lij = kij + dij ≥ 0 ∀j 6= i. Moreover, the modified Galerkin scheme remains con-
servative since the artificial diffusion term can be decomposed into numerical fluxes.
The contribution of the modified transport operator L to the i−th equation reads

(Lu)i = ∑
j 6=i

(kij + dij)(uj − ui) + ui ∑
j 6=i

kij. (3.58)

In summary, a local extremum diminishing low-order scheme of the form

ML
du
dt

= Lu, L = K + D, lij = kij + dij (3.59)

has been constructed from a standard Galerkin discretization by

• replacing the consistent mass matrix MC by its lumped counterpart ML,

• enforcing the LED criterion by means of a discrete diffusion operator D.



50 3 Scalar Conservation Laws

It can be shown that the amount of artificial diffusion is proportional to the mesh size
and therefore vanishes as the mesh is refined. This is also indicated by equation (3.25).
On the one hand, this property implies that the low-order scheme inherits the consis-
tency of the high-order one. On the other hand, the accuracy of approximation degrades
to first order. Moreover, the low-order scheme is linear, unless the governing equation
is nonlinear. Due to the Godunov theorem [23], one must switch to the class of nonlin-
ear schemes, to increase the order of approximation and simultaneously preserve the
monotonicity of numerical solutions.

3.2.4 Upwind-Biased Flux Limiting of TVD Type

The amount of artificial diffusion built into the low-order scheme depends on the mesh
and on the velocity field but not on the local smoothness of the solution. Stabilization by
numerical diffusion is crucial in the vicinity of steep gradients and local extrema, while
it can be removed elsewhere. This can be accomplished by adding a limited amount of
antidiffusion in regions where the solution varies smoothly.

Recall that the incompressible part of the discrete transport operator consists of diffu-
sive and antidiffusive fluxes. The antidiffusive ones are responsible for the oscillations
and must be limited. Due to the construction of the discrete diffusion operator, the low-
order scheme is free of antidiffusive fluxes. To insert a limited amount of antidiffusion,
the antidiffusive fluxes into each node i are multiplied by correction factors αij ∈ [0, 1]
before they are added to the low-order scheme:

fij = dij(ui − uj) −→ f ∗ij = αijdij(ui − uj). (3.60)

The correction factors should satisfy αij = αji to keep the limited antidiffusive fluxes
antisymmetric and hence conservative. Obviously, the high-order scheme is recovered
by αij = 1 and the low-order one by αij = 0, respectively. We define the nonlinear
antidiffusion operator F∗u by its edge-wise contributions

(F∗u)i = ∑
j 6=i

αijdij(ui − uj) = ∑
j 6=i

f ∗ij . (3.61)

To achieve high resolution, as far as possible, the local extremum diminishing antidif-
fusive term F∗u is added to the right-hand side of the low-order scheme

ML
du
dt

= Lu + F∗u = K∗u (3.62)

and results in the high-resolution operator K∗u. It is worth mentioning that the quality
of the resulting high-resolution scheme strongly depends on the features of the low-
order method. The low-order scheme must naturally be free of wiggles, otherwise there
will be no chance to construct a non-oscillatory high-resolution scheme. The low-order
scheme described so far is non-oscillatory and local extremum diminishing by construc-
tion since all negative off-diagonal entries of the discrete transport operator have been
eliminated in a conservative fashion.
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The specification of the correction factors αij is still an open question. To evaluate the
limiter (step three of the algorithm below), the edge {ij} between two nodes i and j
must be oriented in the flow direction. Node i is located upwind and the limiter func-
tion is evaluated at this node if

lji ≥ lij, (3.63)

otherwise j is the upwind node and the limiter is evaluated at node j. The correction
factors and the amount of admissible antidiffusion can be computed by the following
algorithm [43, 45]:

1. Prelimit the unlimited antidiffusive fluxes

fij = dij(ui − uj) −→ fij = min{dij, lji}(ui − uj). (3.64)

2. Compute the sums of positive and negative prelimited antidiffusive fluxes

P+
i = ∑

kij≤kji

max{0, fij}, P−i = ∑
kij≤kji

min{0, fij}. (3.65)

3. Compute the local extremum diminishing upper and lower bounds

Q+
i = ∑

j 6=i
dij max{0, uj − ui}, Q−i = ∑

j 6=i
dij min{0, uj − ui}. (3.66)

4. Evaluate the flux limiter function for each node i

R±i = min{1,
Q±i
P±i
}. (3.67)

5. Compute the correction factors for every edge {ij} with upwind node i

αij =

{
R+

i if fij > 0
R−i if fij ≤ 0

, αji = αij. (3.68)

6. Compute the sums of limited antidiffusive fluxes for each node i

(F∗u)i = ∑
j 6=i

αij fij. (3.69)

Algebraic flux correction can be implemented in terms of a routine, which is called re-
peatedly in every iteration step. Since the finite element basis functions have a small
support, the Galerkin coefficients cij are equal to zero, unless i and j are adjacent nodes
or equivalently, i and j share an edge of the sparsity graph. Edge-based data structures
and matrix/vector assembly algorithms are therefore recommended.

It follows by the definition of the nodal correction factors that [43]

|R±i P±i | ≤ |Q
±
i |. (3.70)
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Therefore, the sum of limited antidiffusive fluxes received by an upwind node i from
its downwind neighbors j 6= i is constrained by the local extremum diminishing upper
and lower bounds

Q−i ≤∑
j 6=i

R−i
∗dij︸ ︷︷ ︸

=q−ij

min{0, uj − ui} ≤∑
j 6=i

αij fij ≤∑
j 6=i

R+
i
∗dij︸ ︷︷ ︸

=q+
ij

max{0, uj − ui} ≤ Q+
i (3.71)

with nonlinear diffusion coefficients q±ij ≥ 0. Remarkably, due to the last estimate the
antidiffusive fluxes can be interpreted as diffusive ones satisfying the LED criterion,
although the coefficient

k∗ij = kij + (1− αij)dij (3.72)

corresponding to the upwind node i may be negative. The prelimiting step [43]

fij = min{dij, lji}(ui − uj) (3.73)

ensures that the contribution of the edge {ij} to the downwind node j is local extremum
diminishing. The off-diagonal coefficient k∗ji is actually non-negative

k∗ji = lji︸︷︷︸
≥0

−min{dij, lji}︸ ︷︷ ︸
≤lji

αij︸︷︷︸
≤1

≥ 0. (3.74)

To summarize, there exists a nonlinear equivalent operator

L∗u = K∗u, l∗ij ≥ 0, (3.75)

which satisfies the LED criterion for a given solution u [49] and this property carries
over to the operator K∗, although it may contain negative off-diagonal entries. Note
that the equivalent operator L∗ is needed for theoretical reasons, while the numerical
scheme is implemented based on K∗.
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To obtain a numerical solution to the computational two-fluid model (2.68) is a chal-
lenging task since many effects must be taken into consideration. In this section the
computational model will be simplified by neglecting the algebraic source terms which
couple both phases. This will allow us to develop solvers for the convective terms sep-
arately. The final model consists of two sets of coupled mass, momentum, and energy
conservation laws for the gas and particles. The pressureless model of the particulate
phase will be considered in this section.

4.1 Mathematical Properties

To avoid confusion and simplify notation, the index p, denoting the particulate phase,
will be dropped in the following. Neglecting the right hand sides of equations four to
six in (2.68), the 2D system of conservation laws that govern the motion of particles can
be written as

∂t

 ρ
ρv
ρE

+∇ ·

 ρv
ρv⊗ v

ρEv

 = 0 (4.1)

or simply
∂tU +∇ · F = ∂tU + ∂xF(x) + ∂yF(y) = 0. (4.2)

In the former equation U = (ρ, ρu, ρv, ρE)T = (U(1), U(2), U(3), U(4)) is the vector of
conservative variables. The effective density is given by ρ = αpρp, and v = (u, v)T

denotes the velocity vector. The inviscid flux vectors

F(x) =


ρu
ρu2

ρuv
ρEu

 =


U(2)

U(2)2

U(1)

U(2)U(3)

U(1)

U(2)U(4)

U(1)

 and F(y) =


ρv

ρuv
ρv2

ρEv

 =


U(3)

U(2)U(3)

U(1)

U(3)2

U(1)

U(3)U(4)

U(1)

 (4.3)

define the rate of convective transport along the corresponding axes of the two-dimen-
sional Cartesian reference frame. The tensor of all convective fluxes is denoted by

F =
(

F(x), F(y)
)

. (4.4)
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The flux Jacobians for both directions are given by

∂F(x)

∂U
=


0 1 0 0

−U(2)2

U(1)2 2U(2)

U(1) 0 0

−U(2)U(3)

U(1)2
U(3)

U(1)
U(2)

U(1) 0

−U(2)U(4)

U(1)2
U(4)

U(1) 0 U(2)

U(1)

 =


0 1 0 0
−u2 2u 0 0
−uv v u 0
−uE E 0 u

 (4.5)

and

∂F(y)

∂U
=


0 0 1 0

−U(2)U(3)

U(1)2
U(3)

U(1)
U(2)

U(1) 0

−U(3)2

U(1)2 0 2U(3)

U(1) 0

−U(3)U(4)

U(1)2 0 U(4)

U(1)
U(3)

U(1)

 =


0 0 1 0
−uv v u 0
−v2 0 2v 0
−vE 0 E v

 (4.6)

which together form the Jacobian tensor

A =

(
∂F(x)

∂U
,

∂F(y)

∂U

)
. (4.7)

The coupled transport equations (4.1) describe the transport of the conserved quantities
U with the velocity v. This system can be written as

∂t


ρ

ρu
ρv
ρE

+∇ ·


ρv

ρuv
ρvv
ρEv

 = 0. (4.8)

A spectral analysis of both Jacobians shows that the eigenvalues are given by

λ(x) = {u, u, u, u} and λ(y) = {v, v, v, v} (4.9)

for the coordinate directions x and y. Moreover, both spaces of eigenvectors are three
dimensional. Hence, the Jacobians are not diagonalizable and the governing equations
lack hyperbolicity. Since the eigenvalues λ(x) and λ(y) represent the characteristic speeds
of wave propagation, information travels as a single wave with velocity v.

Furthermore, the homogeneity property

F(d)(U) =
∂F(d)(U)

∂U
U, d = x, y, (4.10)

which also is a feature of the Euler equations (compare to (1.22)), makes it possible
to rewrite the discretization equivalently as a matrix-vector product, and enables the
derivation of semi-implicit time stepping schemes without loss of conservation.
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4.2 Discretization and Stabilization

The discretization and stabilization of the coupled transport equations are essentially
the same as for scalar equations. In particular, high-resolution finite element schemes
based on algebraic flux correction of TVD type are readily applicable. The reader is
referred to section 3.2 for an informal introduction to such schemes. The differences
compared to the treatment of scalar transport equations are described below.

4.2.1 High-Order Scheme

Given a suitable set of basis functions {ϕi}, let the numerical solution and the convec-
tive fluxes be interpolated using the group finite element formulation [20]

Uh(x, t) = ∑
i

ϕi(x)Ui(t), Fh(x, t) = ∑
i

ϕi(x)Fi(t), (4.11)

where the nodal flux tensor Fj is defined by (4.7) and evaluated using the solution
values at node i. Multiplying the governing equations (4.1) by a test function and inte-
grating over the domain, one obtains the Galerkin finite element discretization

∑
j

[∫
Ω

ϕi ϕj dx
]

dUj

dt
+ ∑

j

[∫
Ω

ϕi∇ϕj dx
]
· Fj = 0 ∀i. (4.12)

The latter equation can be written in a shorter form

∑
j

Mij
dUj

dt
= −∑

j 6=i
cij · Fj (4.13)

or
MC

dU
dt

= KU (4.14)

due to the homogeneity property. In the formula above, the 4 NVT× 4 NVT-matrix MC
(NVT = number of vertices) denotes the block consistent mass matrix

MC = {Mij} = {mij I}, (4.15)

where I is the 4× 4 identity matrix and mij are given by (3.36). Equation (4.13) corre-
sponds to the standard Galerkin discretization. For the purpose of implementing nu-
merical boundary conditions, it is more convenient to consider the weak formulation

∑
j

Mij
dUj

dt
= ∑

j
cji · Fj −∑

j

[∫
∂Ω

ϕi ϕjn ds
]
· Fj, (4.16)

which offers the opportunity to prescribe boundary conditions in a weak sense (cf. sec-
tion 7). In our algorithm, the last weak form of the Galerkin discretization (4.16) serves
as the high-order scheme, while the stabilization is still based on (4.13).
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4.2.2 Low-Order Scheme and Algebraic Flux Correction

As in section 3.2.3, the process of algebraic flux correction begins with row-sum mass
lumping on the left hand side of the semi-discrete Galerkin scheme

ML
dU
dt

= KU. (4.17)

The lumped counterpart of the consistent mass matrix MC is given by

ML = diag{Mi}, Mi = mi I, and mi = ∑
j

mij. (4.18)

We replace the consistent mass matrix by its lumped counterpart to eliminate antidiffu-
sive mass fluxes. Since the row and column sums remain unchanged, this manipulation
is conservative.

The lack of hyperbolicity rules out the usual approach in construction of approximate
Riemann solvers, which is based on edge-by-edge transformations to local characteris-
tic variables (see below). In the case of the pressureless particle equations, such trans-
formations are neither possible nor necessary. Since there exists just one wave moving
with the flow velocity v, stabilization by scalar dissipation defined in terms of the con-
servative variables is feasible. Since the same diffusion coefficient applies to each equa-
tion, the lack of hyperbolicity turns out to be an advantage rather than a drawback as
far as stabilization is concerned. The discrete transport coefficients

kij = −cij · vj (4.19)

are defined as in the case of scalar transport equations, and the artificial diffusion coef-
ficients dij have the same value for all conservative variables. The default setting

dij = max{−kij, 0,−k ji} = dji (4.20)

as stated in equation (3.56), is sufficient to satisfy the scalar LED criterion 3.1.1. How-
ever, the theoretical framework developed so far is invalid for nonlinear coupled sys-
tems. Therefore, a low-order scheme based on (4.20) may produce undershoots and
overshoots that carry over to the flux-limited solution. It turns out that a slightly in-
creased amount of diffusion is sufficient to get rid of non-physical oscillations and com-
pute a physically correct Riemann solution. An algebraic analysis of the Rusanov-type
scheme presented by Banks and Shadid [3] leads to the following revised definition

dij = max{|kij|, |k ji|} = dji. (4.21)

The resulting low-order scheme is more diffusive than that based on (4.20). Indeed,

max{|kij|, |k ji|} ≥ max{−kij, 0,−k ji}. (4.22)

As before, the contribution of the artificial diffusion operator to the modified Galerkin
scheme can be decomposed into a sum of numerical fluxes. In vectorial notation this
looks like

Fdi f f
ij = |Λij|(Uj −Ui), Fdi f f

ji = −Fdi f f
ij , (4.23)
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where
|Λij| = diag{dij, dij, dij, dij} = dij I (4.24)

is a diagonal matrix of diffusion coefficients.

The construction of the low-order scheme is followed by a nonlinear antidiffusive cor-
rection. As in the case of scalar equations, the amount of antidiffusion must be limited,
so as to keep the scheme non-oscillatory. From the algorithm described in section 3.2.4
the correction factors can be computed for each equation separately. The only differ-
ence is the new formula (4.21) for the artificial diffusion coefficient. The pair of limited
antidiffusive fluxes associated with nodes i and j is of the form

F∗ij = |Λ∗ij|(Ui −Uj), F∗ji = −F∗ij , (4.25)

where
|Λ∗ij| = diag{α(1)

ij dij, α
(2)
ij dij, α

(3)
ij dij, α

(4)
ij dij} (4.26)

is a limited counterpart of |Λij|. Since the coupling is rather weak, the solution-depen-
dent correction factors αij are chosen individually for each equation. The orientation of
edges for all equations is the same as in the scalar case (3.63). This is due to the fact that
there is just one wave and, consequently, just one characteristic direction in which the
wave can travel.

Although algebraic flux correction for the equations of the particulate phase is per-
formed in a segregated fashion, the resulting algebraic system should be solved in a
fully coupled way. Decoupled solution strategies may require less memory but give rise
to additional time step restrictions. Moreover, intermediate solutions are more likely to
exhibit numerical oscillations that inhibit convergence to steady-state. Those strategies
typically involve successive solution of a sequence of subproblems and demand the
use of out-dated quantities. The result is an inaccurate stabilization as long as the solu-
tion has not converged. In the steady-state limit this problem vanishes since the solu-
tion will no longer change significantly. Nevertheless, convergence can only be reached
for small time steps since inaccurate stabilization due to large time steps will prevent
convergence. Therefore, the development of strongly coupled iterative solvers for flux-
limited Galerkin discretizations constitutes a major highlight of the present thesis. The
implementation of two-way coupling mechanisms, implicit time integration schemes,
and Newton-like methods for nonlinear algebraic systems is described in the following
chapters.
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5 Euler Equations

Mathematical features of the Euler equations, which are important from the numerical
point of view, were presented in section 1.1. The positive pressure term or more pre-
cisely the pressure gradient makes the governing equations hyperbolic and bounds the
solution from above. This also prevents the appearance of delta shocks.

If we neglect the algebraic source terms, the equations modeling the gas phase degener-
ate to the Euler equations (1.6) for the effective density ρ = αgρg. The ideal gas equation
of state (1.9) is added to close the system. This system of partial differential equations
is similar to (4.1), which is recovered for P ≡ 0. Although both systems of govern-
ing equations are closely related at first glance, the pressure term causes completely
different mathematical properties and results in a much more complicated numerical
solution and algebra.

On the other hand, the existence of a complete set of eigenvectors which is due to the
nonzero pressure term, offers the opportunity to employ strongly coupled hyperbolic
solvers, which are built on the diagonalization of the Jacobian matrices. Such solvers
can be classified as exact or approximate Riemann solvers. Exact Riemann solvers like
Godunov’s method [23] determine the exact solution of a local Riemann problem be-
tween the states of neighboring cells (nodes). The exact solution of a Riemann problem
is quite expensive and far from being trivial to compute. On the other hand approxi-
mate Riemann solvers, which are based on the diagonalization of the matrix are cheaper
and easier to implement. The approximate Riemann solver of Roe, which belongs to
the class of so-called flux difference splitting schemes, produces accurate results and
it is very popular and implemented in many finite volume and finite element solvers
[57, 52, 62, 93, 60, 47, 22, 86]. It is therefore employed in this thesis. Roe’s Riemann
solver takes into account the characteristic directions of the flow and chooses the up-
wind direction for each characteristic field separately. The concept of local extremum
diminishing schemes introduced in section 3 is generalized to hyperbolic systems and
applied to the Euler equations in terms of tensorial diffusion and nonlinear antidiffu-
sion operators, which stabilize the scheme and enforce a vectorial LED criterion.

Flux limiters are designed for scalar equations and they are not directly applicable to
hyperbolic systems of partial differential equations. A transformation to characteristic
variables enables the application of the TVD type flux limiters reported in section 3.2.4.

In this chapter a high-resolution scheme for the discretization of the Euler equations
is presented. It is constructed by a generalization of the framework of algebraic flux
correction and particularly the LED criterion to the vectorial case. This kind of stabi-
lization traces its origin to the work of Kuzmin et al. [47, 44].
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5.1 Vectorial High-Resolution Scheme Based on
Algebraic Flux Correction

The construction of the high-resolution TVD type scheme for the Euler equations is
closely related to the scalar case (compare section 3.2) and follows the same road map
as illustrated in 3.2.4. The Galerkin discretization also serves as the high-order scheme
in the vectorial case, which is stabilized by a numerical diffusion operator D. In an
additional step a limited amount of antidiffusion is added to increase the order of ap-
proximation in smooth regions.

5.1.1 High-Order Scheme

One can derive the Galerkin discretization in the same way as described in section 4.2.1.
The result is therefore again (compare to (4.12))

∑
j

[∫
Ω

ϕi ϕj dx
]

dUj

dt
+ ∑

j

[∫
Ω

ϕi∇ϕj dx
]
· Fj = 0 ∀i (5.1)

with the flux tensor of the Euler equations introduced by (1.7). Since the basis functions
sum to unity at every point one easily verifies

∑
j

cij =
∫

Ω
ϕi∇

(
∑

j
ϕj

)
︸ ︷︷ ︸
≡1

dx = 0. (5.2)

The semi-discretized Euler equations (5.1) equivalently transform to [47]

∑
j

Mij
dUj

dt
= −∑

j 6=i
cij · (Fj − Fi) (5.3)

with the Galerkin coefficients (3.38) and the blocks of the consistent mass matrix (4.15).
Equations (5.1) or equivalently (5.3) are in semi-discrete form. Due to the homogene-
ity property of the Euler equations, the discrete transport operator associated with the
numerical Galerkin fluxes can be rewritten as a matrix vector product

MC
dU
dt

= KU, (5.4)

where
K = {Kij}, Kij = −cij ·Aj = K(x)

ij + K(y)
ij (5.5)

with the Jacobian tensor (1.15).

For the imposition of boundary conditions it is preferable to integrate the Galerkin



5.1 Vectorial High-Resolution Scheme Based on Algebraic Flux Correction 61

discretization (5.1) by parts, which yields the weak formulation

∑
j

Mij
dUj

dt
= ∑

j
cji · Fj −∑

j

[∫
∂Ω

ϕi ϕjn ds
]
· Fj. (5.6)

The boundary integrals allow the application of weak Neumann-type flux boundary
conditions, which are investigated in this thesis. Without taking the boundary con-
ditions into account equation (5.6) is equivalent to (5.3). On the other hand, this for-
mulation is improper for computing the stabilization since it does not allow the de-
composition into suitable flux differences. Consequently, it is preferable to derive the
stabilization operator for (5.3) and apply it to the high-order discretization (5.6).

5.1.2 Characteristic Variables

A vectorial analog to (3.40) is required for the stabilization. One can determine the
eigenvalue with the largest magnitude and add scalar dissipation similar to section
4.2.2. In the case of the Euler equations this results in an overdiffusive scheme due to
the different characteristic speeds associated with the eigenvalues of the Jacobians. The
accuracy can be significantly improved by a stabilization which is fitted to the distinct
wave speeds. This involves a diagonalization of the Jacobian matrices and a transfor-
mation to a suitable set of so-called characteristic variables. The concept of such vari-
ables is at the current state restricted to one space dimension. A dimensional splitting is
therefore performed to compute the diffusion and antidiffusion tensors separately for
each space dimension. Consider a linear hyperbolic system of the quasi-linear form

∂tU + A∂xU = 0 (5.7)

with the constant n× n-matrix A. Since the equations are assumed to be hyperbolic, the
matrix A is diagonalizable with real eigenvalues

A = RΛR−1, (5.8)

where R denotes the matrix of right eigenvectors and Λ = diag{λ1, . . . , λn} is a diago-
nal matrix of the eigenvalues. One defines characteristic variables in terms of

W = R−1U. (5.9)

A diagonalization of A transforms system (5.7) into a set of decoupled transport equa-
tions

0 = ∂tU + RΛR−1∂xU (5.10)
= ∂t(R−1U) + Λ∂x(R−1U) (5.11)
= ∂tW + Λ∂xW, (5.12)

or equivalently
∂tWk + λk∂xWk = 0 for k = 1, . . . , n. (5.13)
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A solution of this set of transport equations is given by

Wk(x, t) = Wk(x− λkt, 0) for k = 1, . . . , n (5.14)

and can be transformed back to a solution of (5.7) by U = RW.

The transformation described above is restricted to the linear case and is not directly ap-
plicable to the nonlinear Euler equations since they are not in quasi-linear form. More-
over, the Jacobians depend on the conservative variables. On the other hand, local char-
acteristic variables can be defined for a locally linearized formulation of (5.3). Roe [75]
introduced mean values, known as Roe averages, which facilitate a natural generaliza-
tion of characteristic variables to nonlinear systems and transform the Euler equations
equivalently into a quasi-linear formulation similar to (5.7). Note that in the multidi-
mensional case, characteristic variables are not unique since there is an infinite number
of directions. The same holds true for one-dimensional nonlinear systems since the def-
inition of characteristic variables depends on the type of linearization. Nevertheless, a
transformation to characteristic variables is the only thing needed to evaluate the flux
limiter function for the scheme presented here.

5.1.3 Roe Linearization

Roe’s scheme belongs to the class of flux difference splitting schemes and represents an
approximate Riemann solver. It was discovered by Roe [75] that the flux differences in
formula (5.3) can be linearized exactly in terms of averaged Jacobians. This transforms
the Euler equations into an equivalent quasi-linear formulation on the semi-discrete
level, which enables the application of a vectorial LED criterion. This will be discussed
below. Roe originally formulated his approach in 1D. The main idea of the Roe solver
is to replace the original conservation laws by their quasi-linear form

∂tU + Ã(U)∂xU = 0. (5.15)

Since the transformation to a set of characteristic variables is only possible for linear
hyperbolic systems, a linearization is required to enable a local transformation. Roe
formulated three conditions in 1D [75], which can be generalized to multidimensions:

1. FR − FL = Ã(UL, UR)(UR −UL) for arbitrary left and right states UL, UR.

2. Ã(UL, UR) is diagonalizable with real eigenvalues.

3. Ã(UL, UR)→ ∂F(Ũ)
∂Ũ for UL, UR → Ũ.

In a finite volume scheme, Roe’s first condition ensures that the scheme is conservative.
Our high-order scheme is constructed by (5.6) and only the diffusion and antidiffusion
tensors are based on the Roe linearization. Since they are assumed to be conservative by
construction, this condition is not essential for conservation purposes. From the view
point of conservation other averages, e. g. the arithmetic average (conditions two and
three are satisfied), would also be admissible. On the other hand, such averages yield
bad stabilizations since they correspond to wrong left and right states of the Riemann
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problem. Therefore, the first condition is important to compute a proper stabilization.
The second condition is required to preserve the hyperbolicity and facilitate the trans-
formation to characteristic variables (see above). Last but not least the third condition
guarantees consistency for smooth solutions.

In his pioneering work [75] Roe shows that the three conditions above can be satisfied
by evaluating the Jacobian matrix (or the uni-directional Jacobians in multidimensions)
at a particular averaged state. The results can be summarized by the following theorem:

Theorem 5.1.1 (Roe Averages) The uni-directional Roe matrices Ã(x)
ij , Ã(y)

ij related to an
edge {ij}, which satisfy the essential conditions (1-3), are defined by the uni-directional Jacobian
matrices evaluated at an averaged state

Ã(x,y)
ij = A(x,y)(Ũ), (5.16)

where

Ũ =

 ρ̃ij
ṽij
H̃ij

 . (5.17)

The averaged state is given by

ρ̃ij =
√

ρiρj ṽij =
√

ρivi +
√

ρjvj√
ρi +
√

ρj
, H̃ij =

√
ρiHi +

√
ρjHj√

ρi +
√

ρj
. (5.18)

Furthermore, the speed of sound

c̃ij =

√√√√(γ− 1)

(
H̃ij −

|ṽij|2
2

)
(5.19)

can be computed.

The proof can be extracted from [75] or verified by algebraic manipulations. Note that
the Jacobians for both coordinate directions are independent of ρ.

5.1.4 Characteristic LED Criterion

The scalar LED criterion of Jameson given in theorem 3.1.1 can be generalized to hyper-
bolic systems of partial differential equations based on the characteristic decomposition
of the Jacobians.

Theorem 5.1.2 (Characteristic LED criterion [47]) The discretization of a linear hyperbolic
system of conservation laws of the form

Mi
dUi

dt
= ∑

j 6=i
Lij(Uj −Ui) (5.20)
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is local extremum diminishing for a suitable set of characteristic variables, provided the off-
diagonal blocks Lij are positive semi-definite.

The LED criterion will therefore be satisfied if the off-diagonal blocks are free of nega-
tive eigenvalues. Kuzmin and Möller [47] applied theorem 5.1.2 to the Euler equations
and enforced the LED criterion by eliminating negative eigenvalues on the algebraic
level by an addition of a suitably defined diffusion tensor. Since this strategy, which
is free of user-defined parameters, is applicable to arbitrary dimensions and unstruc-
tured meshes, it is adopted in the present work. The strategy can be interpreted as a
generalization of the diffusion operator applied to scalar equations (compare to section
3.2.2).

5.1.5 Discrete Diffusion Tensors and Low-Order scheme

As mentioned above, the stabilization and hence the numerical diffusion and antidiffu-
sion tensors are constructed on the algebraic level based on (5.3), while the high-order
scheme (5.6) is obtained by integration by parts to provide a better treatment of bound-
ary conditions. Equation (5.3) is clearly not of the form (5.20). The semi-discretized
Euler equations therefore need to be cast in this form to impose the LED constraint.

First, one replaces the consistent mass matrix by the lumped one (4.18), which corre-
sponds to an addition of mass diffusion as pointed out in sections 3.2.3 and 4.2.1. This
yields the lumped mass Galerkin formulation of the Euler equations

Mi
dUi

dt
= −∑

j 6=i
cij · (Fj − Fi). (5.21)

The transformation to the desired LED type form implies a local linearization of the
semi-discretized equations by employing the Roe linearization. The discrete transport
operator of equation (5.3) applied to node i reads

(KU)i = −∑
j 6=i

cij · (Fj − Fi) (5.22)

= −∑
j 6=i

[
c(x)

ij (F(x)
j − F(x)

i ) + c(y)
ij (F(y)

j − F(y)
i )

]
. (5.23)

Due to theorem 5.1.1 one can rewrite the flux differences by the uni-directional Roe
matrices A(x)

ij and A(y)
ij satisfying

F(x)
j − F(x)

i = A(x)
ij (Uj −Ui) and F(y)

j − F(y)
i = A(y)

ij (Uj −Ui). (5.24)

For simplicity we drop the tilde. The matrix c(x)
ij A(x)

ij + c(y)
ij A(y)

ij is known as the cu-
mulative Roe matrix [47]. A substitution of (5.24) into (5.23) yields the desired locally
linearized formulation

(KU)i = −∑
j 6=i

[
c(x)

ij A(x)
ij + c(y)

ij A(y)
ij

]
(Uj −Ui), (5.25)
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which corresponds to (5.20). This formulation is local extremum diminishing for a set
of local characteristic variables if the matrix −

(
c(x)

ij A(x)
ij + c(y)

ij A(y)
ij

)
does not contain

negative eigenvalues. Since the definition of characteristic variables requires a dimen-
sional splitting, which was introduced by Yee et al. [98], the LED criterion is imposed on
the Roe matrices for both coordinate directions separately, i. e.−c(x)

ij A(x)
ij and−c(y)

ij A(y)
ij .

More precisely, this is essential for the evaluation of the TVD type flux limiter. Other
techniques like slope limiters can be applied without a dimensional splitting. Note that
the discrete transport operator of equation (5.3), which is equivalent to (5.25), is oscilla-
tory and does not feature the LED property. Therefore, it usually contains off-diagonal
blocks with negative eigenvalues, which can be removed by addition of suitably de-
fined diffusion blocks.

The discrete diffusion tensor has to satisfy three requirements. At first it should be
conservative to prevent the solution from generating shocks moving at wrong speeds
[52]. At the same time the diffusion tensor has to provide a sufficient amount of dif-
fusion to enforce the LED criterion. Last but not least, the resulting scheme should be
independent of a particular configuration. Hence, the numerical diffusion tensor has to
be free of user-defined parameters.

The discrete diffusion tensor is conservative if the diffusive internodal fluxes cancel
each other out so that no mass is created or destroyed. In other words a sufficient con-
dition for conservation is

Fdi f f
ij = Dij(Uj −Ui) = −Fdi f f

ji . (5.26)

Due to the hyperbolicity of the governing equations, the uni-directional Roe matrices
of every edge {ij} admit a diagonalization with real eigenvalues

A(d)
ij = R(d)

ij Λ(d)
ij R(d)

ij

−1
, d = x, y, (5.27)

where R(d)
ij

−1
, R(d)

ij are the matrices of left and right eigenvectors and

Λ(d)
ij = diag{λ(d)

1 , . . . , λ
(d)
4 }ij (5.28)

is a diagonal matrix of the eigenvalues.

The Galerkin coefficients (3.38) satisfy

cij = −cji +
∫

∂Ω
ϕi ϕj n ds (5.29)

and can be decomposed into a skew-symmetric and a symmetric part

cij = aij + bij, aij =
cij − cji

2
= −aji, bij =

cij + cji

2
= bji. (5.30)

For the design of the diffusion tensor, the symmetric part corresponding to the bound-
ary integral is neglected. One defines the 4 × 4 diffusion blocks Dij in terms of their
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uni-directional counterparts D(d)
ij

Dij = D(x)
ij + D(y)

ij , D(d)
ij = |a(d)

ij ||A
(d)
ij |, |A(d)

ij | = R(d)
ij |Λ

(d)
ij |R

(d)
ij

−1
(5.31)

for the space dimension d, to eliminate negative eigenvalues from the discrete transport
operator. Due to the conservation property, the diffusion tensor has to feature block-
symmetry, which is enforced by

D(d)
ji = −D(d)

ij ∀j 6= i. (5.32)

This corresponds to (5.26) and the diffusion tensor has vanishing row and column
sums. The application of the discrete diffusion operator to node i results in the low-
order operator

(LU)i = ∑
j 6=i

Lij(Uj −Ui) = ∑
j 6=i

(Kij + Dij)(Uj −Ui), (5.33)

which has positive semi-definite off-diagonal blocks Lij. This is provided by the follow-
ing theorem 5.1.3.

Theorem 5.1.3 The off-diagonal blocks for each space dimension d

L(d)
ij = K(d)

ij + D(d)
ij ∀j 6= i (5.34)

of the low-order operator are free of negative eigenvalues.

Proof: For simplicity we drop the index denoting the space dimension. Let λm for m ∈
{1, . . . , 4} be an eigenvalue of Kij and I be the 4× 4 identity matrix. We will show that
λm + |λm| ≥ 0 is an eigenvalue of Kij + Dij. The eigenvalues are characterized by the
roots x of the characteristic polynomial satisfying

det(Lij − xI) = 0. (5.35)

Substituting λm + |λm| into (5.35) and multiplying with

det(R−1
ij ) det(Rij) = 1 (5.36)
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we reveal that

det(Lij − (λm + |λm|)I) = det(R−1
ij ) det

(
Kij + Dij − (λm + |λm|)I) det(Rij

)
= det(R−1

ij KijRij + R−1
ij DijRij − (λm + |λm|)I)

= det{

λ1 + |λ1|
. . .

λ4 + |λ4|


−

λm + |λm|
. . .

λm + |λm|

}
= 0

(5.37)

holds true since the matrix has at least one zero row/column. Hence, the four roots of
(5.35) are given by

λk + |λk| ≥ 0 k = 1, . . . , 4. (5.38)

These are the eigenvalues of Lij, which completes the proof. 2

In summary, the low-order scheme reads

ML
dU
dt

= LU, L = K + D. (5.39)

In a practical application the interior part of the low-order operator corresponding to
the weak Galerkin discretization (5.6) can be assembled from the following algorithm:

• In a loop over all nodes assemble the diagonal part of the discrete transport oper-
ator

(LU)i = (LU)i + cii · Fi. (5.40)

• In a loop over all edges construct the low-order operator and initialize:

1. Add Galerkin fluxes

(LU)i = (LU)i + cji · Fj, (LU)j = (LU)j + cij · Fi. (5.41)

2. Determine Roe averages and add diffusive fluxes for d = x, y

(LU)i = (LU)i + D(d)
ij (Uj −Ui), (LU)j = (LU)j + D(d)

ji (Ui −Uj). (5.42)

Note that the assembly of the boundary terms of (5.6) is not included in the algorithm
above. It is illustrated in chapter 7 and updates the Galerkin discretization.

5.1.6 Characteristic TVD Type Flux Limiting for the Euler Equations

After application of the discrete diffusion tensor defined in section 5.1.5 it is worthwhile
to improve the accuracy by addition of a limited amount of antidiffusion. Characteris-
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tic flux limiters were first applied to the Euler equations in the 1980’s [97, 98]. Unfor-
tunately, flux limiters as described in section 3.2.4 are based on scalar equations and
are not directly applicable to hyperbolic systems due to different characteristic speeds.
In contrast to the coupled transport equations in section 4, the nonzero pressure term
of the Euler equations is responsible for the hyperbolicity and different waves, which
should be limited separately. In one space dimension this problem can easily be circum-
vented via a transformation to characteristic variables, which enables the application
of the limiter function since there is only one unique characteristic direction. On the
other hand, in multiple dimensions, waves move in arbitrary directions, which makes
the definition of characteristic variables more challenging. The correction factors and
the numerical solution will therefore depend on the underlying set of characteristic
variables. During the last decades several multidimensional generalizations of the one-
dimensional techniques have been applied in finite element codes [85, 58].

In the present thesis equations (5.3) with equivalent linearization (5.25) are transformed
to a set of characteristic variables (5.43) on every edge and for every space dimen-
sion separately as suggested in [47]. In the case of the multidimensional nonlinear Eu-
ler equations, characteristic variables are defined in terms of characteristic differences.
They are determined on the individual edges and for every space dimension separately
based on the locally linearized equations (5.25) [47]

∆W(d)
ij = R(d)

ij

−1
A(d)

ij (Ui −Uj). (5.43)

The uni-directional Roe matrix is denoted by A(d)
ij corresponding to (5.24) and R(d)

ij

−1
is

the matrix of left eigenvectors due to (5.27). Note that the characteristic variables may
be discontinuous in every node i and, although theorem 5.1.3 holds, small numerical
extrema may occur. The goal of this section is to define an artificial antidiffusion oper-
ator F∗ on the algebraic level by a nodal TVD type flux limiter. The application of the
operator F∗ results in the high-resolution scheme

ML
dU
dt

= K∗U = LU + F∗U. (5.44)

The algorithmic steps are similar to the scalar case 3.2.4:

1. Remove all antidiffusive fluxes from the high-order Galerkin discretization by
applying the numerical diffusion tensor.

2. Compute the sums of positive/negative antidiffusive/diffusive fluxes to individ-
ual nodes in terms of characteristic variables.

3. Compute correction factors in characteristic variables.

4. Add the limited antidiffusion in conservative variables.

Since the construction of the low-order operator was described in section 5.1.5, it re-
mains to derive the computation of the nodal correction factors, which control the lim-
ited antidiffusive fluxes applied to the low-order scheme. We may initialize the high-
resolution operator by the low-order one. The transformation to characteristic variables
is primarily performed to compute the sums of upwind and downwind contributions,
while the artificial limited antidiffusion is inserted into the residual in conservative
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variables.The proposed algorithm for the computation of the antidiffusive correction is
based on [47, 44] and has to be applied for each space dimension d:

• In a loop over edges {ij}:
1. Compute the Roe averaged eigenvalues and matrices of left and right eigen-

vectors of the uni-directional Roe matrices.
2. Transform the solution differences on the edge to the characteristic variables

∆W(d)
ij = R(d)

ij

−1
(Ui −Uj). (5.45)

3. Determine the upwind node I and the downwind node J for each character-
istic field k:

– If a(d)
ij λ

(d)
k ≥ 0:

I = i, J = j, ∆W(k)
I J = ∆W(k)

ij . (5.46)

– If a(d)
ij λ

(d)
k < 0:

I = j, J = i, ∆W(k)
I J = −∆W(k)

ij . (5.47)

4. Compute the raw diffusive/antidiffusive fluxes on the current edge

F(k)
I J = |a(d)

ij λ
(d)
k |∆W(k)

I J . (5.48)

5. For each characteristic field k update the sums of upwind and downwind
edge contributions

P+
I,k = P+

I,k + max{0, F(k)
I J } P−I,k = P−I,k + min{0, F(k)

I J }.

Compute upper and lower bounds

Q+
I,k = Q+

I,k + max{0,−F(k)
I J } Q+

J,k = Q+
J,k + max{0, F(k)

I J }

Q−I,k = Q−I,k + min{0,−F(k)
I J } Q−J,k = Q−J,k + min{0, F(k)

I J }.

• In a loop over nodes:

1. Evaluate the nodal correction factors

R±i,k = min{1,
Q±i,k
P±i,k
}. (5.49)

• In a loop over edges {ij}:
1. Repeat the first three steps of the first loop over edges.
2. Compute the limited amount of antidiffusion for each characteristic direction

k:
– Compute the raw antidiffusive/diffusive fluxes

F(k)
I J = |a(k)

ij λ
(d)
k |∆W(k)

I J . (5.50)
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Determine the correction factors

α
(k)
ij =

{
R+

I,k if F(k)
I J ≥ 0

R−I,k if F(k)
I J < 0

. (5.51)

– Apply the correction factors

F(k)
I J = α

(k)
ij F(k)

I J . (5.52)

3. Transform back to conservative variables

FI J = RijFI J . (5.53)

4. Add the antidiffusive fluxes into the upwind and downwind nodes

(K∗U)I = (K∗U)I + FI J , (K∗U)J = (K∗U)J − FI J . (5.54)

Obviously, the whole stabilization is free of parameters and can be generalized to ar-
bitrary hyperbolic systems of conservation laws which allow for the determination of
Roe averages. If this is not the case, the Roe matrices can be replaced by other types of
averages, e. g. arithmetic averages. One also obtains a conservative scheme due to the
construction of the diffusion and antidiffusion tensors. The high-resolution scheme in-
vestigated in the present thesis incorporates the flux function of Roe for the evaluation
of the boundary integrals and the construction of the numerical diffusion and antidif-
fusion tensors, while the high-order space discretization in the interior of the domain
remains independent of the Roe linearization.

In the following section we investigate the discretization of the interfacial source terms.
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While the discretization of hyperbolic terms is described in the chapters above, the dis-
cretization of source terms is still an open question. The source terms introduce a two-
way coupling and give rise to an additional nonlinearity in the model. The presence
of small particles causes the source terms relating to the drag force and heat exchange
to dominate. This in turn leads to slow convergence when using implicit solvers and
aggravates the already very restrictive stability constraints in explicit computations. To
circumvent this problem, source terms are usually included into the two-fluid model
by way of operator splitting, see among others [70, 82, 79]. The operator splitting ap-
proach makes it possible to develop independent solvers for both the hyperbolic terms
and the source terms. In such an approach, the hyperbolic terms are usually discretized
using explicit methods developed in the framework of single-phase equations. On the
other hand the source terms call for an implicit solver due to their stiffness. At the same
time, they can be integrated by a semi-analytical way [82, 51].

In the references cited above the Yanenko splitting of first order accuracy is employed
since it removes the source terms and therefore the associated stability constraints com-
pletely from the equations accounting for the hyperbolic terms. The computation of the
transport terms is the most time and memory consuming part of the simulation of these
types of multiphase flows. Operator splitting techniques seem to be promising meth-
ods since they even for implicit approaches make it possible to solve for the hyperbolic
terms of both phases separately. In transient computations this completely holds true,
while operator splitting techniques are less efficient or even less accurate in steady-state
computations. Although there are splitting techniques, which are unconditionally sta-
ble, they do not allow the solution to approach steady-state for moderate and large CFL
numbers.

For the space discretization of hyperbolic equations with source terms an upwind ap-
proximation of source terms is sometimes proposed, similar to the upwind approxima-
tion of hyperbolic terms [6]. A much simpler approach has been successfully used in the
references cited above, where the source terms are discretized in a pointwise way. The
accuracy of a pointwise approximation is emphasized in [78]. A similar finite-element-
like approximation is proposed in this thesis.

6.1 Operator Splitting

For the time integration of (6.15) one may apply operator splitting to circumvent the
convergence and stability problems associated with the nonlinearity induced by the
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source terms. As a starting point, we recall the operator splitting that was applied to
the two-fluid model in [25]. In transient computations a time integration scheme of
second or higher order is usually applied. To preserve the overall accuracy in time-
dependent computations, the use of second- or higher-order operator splitting schemes
is required. Since this study focuses on stationary solutions, first order splitting tech-
niques combined with backward Euler time stepping suffice for this purpose. The time
integration of the hyperbolic part is described in detail in chapter 8.

6.1.1 Yanenko Splitting

A popular approach to solving (6.15) is the Yanenko splitting [82, 51, 79]

U∗ −Un

∆t
+∇ · F∗ = 0 (6.1)

Un+1 −U∗

∆t
= Sn+1, (6.2)

where the superscript n denotes the time level. In the first step, the numerical solution
is advanced in time without taking the source terms into account. In the second step,
the nodal values of the resulting solution U∗ are corrected by adding the contribution
of Sn+1.

For an explicit solver fitted to transient simulations, the Yanenko splitting is a good
choice, although it is only first-order accurate. It turns out to be very robust and to
be applicable to nearly arbitrary CFL numbers in practice. After the first step (6.1) the
source term step (6.2) changes the intermediate solution U∗ depending on the length
of the time step, so that the final solution Un+1 does not satisfy the equations of the
first subproblem. The solution will actually not approach steady-state since it depends
on the length of the time step. The Yanenko splitting is therefore restricted to time-
dependent flows and very small time steps.

6.1.2 Douglas-Rachford Splitting

To make sure that the splitting does not disturb solutions approaching a steady-state,
we replace (6.1)–(6.2) by the Douglas-Rachford scheme [14]

U∗ −Un

∆t
+∇ · F∗ = Sn (6.3)

Un+1 −U∗

∆t
= Sn+1 − Sn, (6.4)

which is known to be very robust, at least in the context of alternating direction implicit
(ADI) iterative solvers for multidimensional problems.

The implicit correction in the second step does not change a converged stationary solu-
tion and allows the solution to approach steady-state. Moreover, the Douglas-Rachford
splitting provides a closer link between the density and velocity of the particulate
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phase. This is another reason why it is preferred to the Yanenko splitting. Due to the
above mentioned drawbacks of the Yanenko splitting, the Douglas-Rachford splitting
is employed in this thesis.

6.1.2.1 Source Term Update

Let us focus our attention on the second step (6.4) of the Douglas-Rachford splitting
since the first step (6.3) corresponds to the hyperbolic solver, which is described in chap-
ter 8. It is followed by an implicit correction of the involved interface transfer terms. In
this step, the drag force and heat exchange terms are discretized in a semi-implicit fash-
ion. First, the velocities are updated by solving the linear system

(αpρp)∗
vn+1

p − v∗p
∆t

= γ∗D(vn+1
g − vn+1

p )− Fn
D (6.5)

(αgρg)∗
vn+1

g − v∗g
∆t

= γ∗D(vn+1
p − vn+1

g ) + Fn
D, (6.6)

where the superscript ∗ refers to the solution of system (6.3) and

γ∗D =
3
4

C∗D
ρ∗g
d

α∗p|v∗g − v∗p|. (6.7)

Once the velocities have been updated, the changes in energy due to the interfacial drag
and heat exchange are taken into account as follows:

(αpρp)∗
En+1

p − E∗p
∆t

= γ∗T(Tn+1
g − Tn+1

p )− Q̃n
T (6.8)

(αgρg)∗
En+1

g − E∗g
∆t

= γ∗T(Tn+1
p − Tn+1

g ) + Q̃n
T. (6.9)

The heat transfer coefficient γ∗T and net source/sink Q̃n
T are given by

γ∗T =
Nu∗6κg

d2 α∗p, Q̃n
T = Qn

T + vn+1
p · Fn+1

D − vn
p · Fn

D. (6.10)

Since mass transfer does not take place, there are no source terms in the continuity
equations. Therefore, the effective densities (αρ)n+1

k := (αρ)∗k remain unchanged.

Numerical experiments indicate that steady-state convergence of the Douglas-Rach-
ford splitting can only be achieved for small CFL numbers. It is a well-known fact that
decoupled solution strategies are unfavorable in steady-state computations due to their
time step restrictions. In practice one has to make a decision in the trade-off between
the low computational costs of segregated algorithms in comparison with strongly cou-
pled methods and the much more restrictive time step constraints of the former family
of methods. An implicit time stepping scheme without use of operator splitting, which
offers the potential of unconditional stability and convergence, is preferable in steady-
state simulations and is therefore developed in this thesis. Time integration as well as
the fully coupled solution strategy are presented in chapter 8.
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6.2 Finite Element Discretization

Let us consider system (2.68) and rewrite its weak formulation in the generic form∫
Ω

ω(∂tU +∇ · F) dx =
∫

Ω
ωS dx︸ ︷︷ ︸
=IS

(6.11)

for every admissible test function ω. In the expression above, the source terms are rep-
resented by IS. The goal of this section is to evaluate IS. A direct integration of that term
involves numerical integration in each iteration step, which makes the integration very
time consuming. To discretize the source terms in a finite-element-like way without
numerical integration in each (pseudo) time step, we adopt the group finite element
formulation, which was originally defined for hyperbolic terms [20]. The group finite
element formulation is also employed for the discretization of the hyperbolic terms of
the two-fluid model. Hence, we interpolate the source terms in the space of basis func-
tions

Sh = ∑
i

ϕiSi, (6.12)

where
Si =

(
0, −FDi, −vpi · FDi −QTi, 0, FDi, vpi · FDi + QTi

)
(6.13)

denotes the source terms evaluated at the corresponding node i. Substituting (6.12) into
(6.11) yields semi-discretized equations of the form

MC
dU
dt

= KU + MCS, (6.14)

where MC denotes the consistent mass matrix and the matrix-vector product KU in-
cludes the discretized hyperbolic terms and boundary conditions as explained in sec-
tions 4, 5, and 7. At the same time, one replaces the consistent mass matrix by its lumped
counterpart, which transforms (6.14) to

ML
dU
dt

= KU + MLS. (6.15)

This type of source term discretization is closely related to the finite volume framework,
and the source term integration by schemes which take advantage of operator splitting.
The replacement of the consistent mass matrix with the lumped one enables a pointwise
updating strategy in an operator splitting approach. Moreover, the lumped mass ma-
trix prevents the birth of oscillations due to nonzero off-diagonal source term blocks.
Such treatment of source terms is also feasible in a fully coupled approach, which is
favored in this work since it does not violate the physical properties of the solution. It
is a well known fact that the two-fluid equations do not conserve momentum and en-
ergy of each phase separately, in contrast to the mixture momentum and energy which
are perfectly conserved (compare section 2.4). Equations (6.15) clearly feature this prop-
erty. Furthermore, the positivity constraint is not affected by the source terms nor are
numerical oscillations observed in the computational results.

The next section addresses the implementation of boundary conditions, which is one
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of the most challenging tasks in the development of any implicit hyperbolic solver and
therefore also an important part of this thesis.
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7 Boundary Conditions

A suitable implementation of boundary conditions is crucial for the convergence to
steady-state in the presented framework of hyperbolic equations. The implementation
of boundary conditions is a challenging task since information may travel in different
directions depending on the sign of the corresponding eigenvalues. This may cause
convergence problems if proper care is not taken. A very careful and accurate imple-
mentation is especially important to achieve convergence in steady-state computations.
Waves may be artificially reflected at the boundary due to an improper specification of
boundary values. Furthermore, the arising errors are transported into the interior of
the domain by the incoming waves. This inhibits convergence to steady-state and may
even cause divergence.

The implementation of boundary conditions can be generally divided into the strong
enforcement and its weak counterpart. In a strong implementation, the boundary con-
ditions are prescribed in a nodal sense on the algebraic level. Assume that the dis-
cretization yields a linear algebraic system of the form

Au = b (7.1)

in each nonlinear iteration step. If a node i belongs to the boundary and a Dirichlet
boundary condition ui = gi has to be prescribed, the off-diagonal entries of the i-th
row of the matrix A are deleted and the diagonal one is replaced by one. Finally, one
overwrites the i-th entry of the right hand side bi by gi. Obviously, the solution of the
linear system satisfies ui = gi. On the other hand, such ad-hoc changes of matrix en-
tries influence the internodal mass exchange in the vicinity of the boundary and result
in a deterioration of matrix properties and convergence rates or even divergence par-
ticularly in steady-state computations. Moreover, time step restrictions arise due to the
explicit nature of that strategy. The explicitness mainly is caused by the deletion of off-
diagonal matrix entries.

In the case of the Euler equations gi typically depends on the solution, which requires a
predictor-corrector algorithm in an implicit formulation [47, 60]. However, the predictor-
corrector algorithm is semi-explicit as well. Trépanier et al. [93] prescribe fully implicit
boundary conditions in the finite volume framework, where the boundary conditions
are enforced by additional equations superimposed on the algebraic system, and avoid
the explicitness arising by the deletion of matrix entries. The derivation and implemen-
tation of such boundary conditions is complicated and the authors observe a deterio-
ration of convergence rates if the CFL number exceeds some upper bound. This upper
bound may be problem-dependent and need adjusting, which is an unfavorable prop-
erty and may be a consequence of the strong nature of boundary conditions.
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The weak type of boundary conditions turns out to be much more stable and flexible.
When boundary conditions are prescribed in a weak sense, only the boundary integral
of the weak formulation is affected by the boundary conditions, while the volume in-
tegrals remain unchanged. This is similar to the boundary treatment, which is usually
implemented in finite volume schemes. In the finite volume framework the boundary
fluxes are directly overwritten by the imposed boundary conditions [84, 62, 86, 87]. The
Neumann-type of boundary conditions, based on the weak formulation, can be incor-
porated into the matrix in a physical way. It improves the convergence rates and does
not affect the matrix properties or give rise to stability restrictions in contrast to the
strong type of boundary conditions. Unlike its strong counterpart, the weak formula-
tion enforces boundary conditions in an integral sense. Consequently, the boundary
conditions may not be satisfied exactly at each node. On the other hand, the fluxes over
each boundary edge are influenced primarily by the neighboring edges. Hence, there is
a local enforcement in some manner. Note that only the fluxes in the normal direction
can be controlled with this kind of weak implementation. Otherwise, a penalty term
should be added to the weak formulation.

Boundary conditions for hyperbolic systems are rarely discussed in the literature es-
pecially in the framework of finite elements. Selmin et al. overwrite the boundary in-
tegral by a lumped mass approximation [87], while Shapiro [84] and Lyra [57] directly
change the boundary fluxes to incorporate the boundary conditions. A comparative
study of solid wall boundary conditions for the Euler equations is given in [2] and a de-
tailed description of boundary conditions for different hyperbolic systems is reported in
[21]. Neumann-type boundary conditions were also implemented in the discontinuous
Galerkin framework [18, 15]. To the author’s best knowledge, there are no studies on
boundary conditions for the coupled transport equations (4.1) or the two-fluid model
(2.68). In [21] characteristic boundary conditions for a two-fluid model in 1D are briefly
discussed, which take advantage of the hyperbolicity of the governing equations. This
framework does not apply to the non-hyperbolic two-fluid model of particle-laden gas
flows.

In contrast to finite volumes, finite element methods are node-based schemes and fluxes
over the boundaries of the elements are not directly useful. Although it is possible to
modify the boundary fluxes of the strong Galerkin formulation (5.1) by the imposed
boundary conditions, it is more flexible and robust to simply overwrite the boundary
integral of the weak Galerkin formulation (5.6) in the Neumann-sense. Therefore, the
question of the imposition of boundary conditions reduces to the computation of the
boundary flux in the boundary integrals (5.6) and (4.16).

To prescribe boundary conditions in the developed code, a Riemann problem is solved,
either by the approximate Riemann solver of Roe or the exact Riemann solver of Toro
[92], which is applicable to solid wall boundary conditions. For a strong enforcement of
boundary conditions it was observed in [92, 60] that Toro’s exact Riemann solver may
offer the opportunity of convergence at very low CFL numbers and yields accurate
results, even when other methods fail.
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7.1 Ghost Nodes

Since the Euler equations may admit waves leaving and entering the domain in the
normal direction simultaneously it is preferable to solve the Riemann problem on the
boundary instead of simply overwriting the boundary fluxes. In order to define such a
Riemann problem on the boundary a ghost node is added. Note that this ghost node is
only used to solve the boundary Riemann problem, while no additional variables are
introduced to the nonlinear system.

The context of ghost nodes can be interpreted as the finite element counterpart of ghost
cells, which was quite successfully employed in the finite volume framework [52]. Typ-
ically in finite volume schemes a virtual cell is assumed on the outer side of the bound-
ary and its state is defined so as to impose the boundary condition (figure 7.1 (a)). In
this work it is proposed to introduce a virtual node or ghost node corresponding to
each point located at the boundary, where a boundary condition has to be imposed. It
is placed in the normal direction on the outer side of the boundary (figure 7.1 (b)). The
corresponding ghost state is supposed to incorporate the boundary condition and it is
defined in such a way that unphysical wave reflections at the boundary are avoided.
Last but not least, the concept of ghost nodes is independent of the finite element space.
For convenience the ghost node will be denoted by x∞ and the point at the boundary,
which is treated as an interior one, by xi. The corresponding states are referred to as U∞
and Ui, respectively. Note that the framework of ghost nodes applies to arbitrary points
at the boundary including quadrature points or boundary nodes. In this work a ghost
node is typically associated with the quadrature points of the boundary integrals.

7.2 Weak Imposition of Boundary Conditions

The Galerkin discretizations (5.6) and (4.16) make it possible to incorporate the bound-
ary conditions in a natural way by rewriting the boundary integrals. Substituting the
group finite element approximation (4.11) into (5.6) and (4.16) one obtains

∑
j

Mij
dUj

dt
= ∑

j

[∫
Ω

ϕj∇ϕi dx
]
· Fj −

∫
∂Ω

ϕin · Fh ds ∀i. (7.2)

The imposition of weak boundary conditions for the Euler equations as well as the
two-fluid model is based on the weak Galerkin discretization (7.2). We overwrite the
fluxes Fh in the boundary integrals by their counterparts computed by the solution of a
Riemann problem in the normal direction:∫

∂Ω
ϕin · Fh ds −→

∫
∂Ω

ϕin · F̃h ds. (7.3)

The evaluation of the boundary integrals and the definition of the boundary fluxes F̃h
are delicate tasks. Moreover, a sufficiently accurate integration of the boundary terms
is crucial for a satisfactory global accuracy since the errors due to improper boundary
treatments are transported into the interior of the domain along the characteristics.
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(a) Ghost cell

Boundary Cell

Ghost Cell

(b) Ghost node

x∞

xi

I

Figure 7.1: Ghost cell vs. ghost node
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Figure 7.2: Physical vs. numerical domain

7.3 Definition of the Unit Outer Normal and Tangent

Several approaches are published in the literature to approximate the outward normal.
Möller [60] proposes to determine the unit outer normal in each node by a weighted av-
erage of the normal vectors to the adjacent edges. Krivodonova and Berger [41] define
the normal by the so-called curved boundary condition, which enables the approxima-
tion of an arbitrary curved boundary.

The problem of normal approximation is closely related to the definition of the bound-
ary of the computational domain Ωh, which may be different to the boundary of the
physical domain Ω, see figure 7.2. In the present work the boundary is approximated
by a linear polygon in terms of the edges adjacent to the boundary. This provides a unit
outer normal, which is constant along every edge. The normal vector to the edge I with
nodes xi = [xi, yi]

T and xj =
[
xj, yj

]T is determined by

nI =
1√

(yj − yi)2 + (xi − xj)2

[
yj − yi
xi − xj

]
. (7.4)

For an interior/exterior domain j is the neighbor of i in counterclockwise/clockwise
sense. Note that the order of nodes is crucial for the orientation of the normal vector.
See also figure 7.3. The corresponding tangent is defined by

τττ I =

[
−n(y)

I
n(x)

I

]
. (7.5)

An advantage of the weak formulation is that the evaluation of the normal vector is
not required in the boundary nodes, where it is usually undefined. Indeed, for the
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I
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nI Ωh
I
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nI

Figure 7.3: Ordering of boundary nodes for an interior/exterior domain

evaluation of the boundary integrals and boundary fluxes, it is sufficient to define an
edge-wise normal. In this study, it is given by the normal to the current edge directed
out of the domain. This can be easily extended to the more accurate approximation of
Krivodonova and Berger [41].

7.4 Evaluation of the Boundary Integral

The boundary term

Bk =
∫

∂Ω
ϕkn · F̃h ds (7.6)

related to boundary node k contains all the necessary information of the boundary con-
dition in terms of the boundary flux F̃h. The term is equal to zero almost everywhere
unless I is a boundary edge adjacent to node k. It therefore makes sense to compute
the boundary contribution in a loop over all boundary edges by a sufficiently accurate
quadrature rule. One computes the boundary integrals corresponding to nodes k,l of
each boundary edge I = {kl} in terms of

Bk|I =
∫

I
ϕkn · F̃h ds, Bl |I =

∫
I

ϕln · F̃h ds. (7.7)

In this study the two-point Gauss quadrature rule∫ 1

−1
f (x) dx ≈ f

(
− 1√

3

)
+ f

(
− 1√

3

)
(7.8)

is transformed to the current edge and applied to the boundary integrals, although
other choices are also feasible. Gauss quadrature rules are of open type. That is, their
integration points are located in the interior of [−1, 1]. Hence, the normal vector is eval-
uated only in the interior of the boundary edges, where it is uniquely defined in a
natural way. In contrast, node-based implementations or the strong type of boundary
conditions require the unit outer normal at the boundary nodes where it has to be de-
fined by artificial assumptions. On the other hand, the evaluation of the boundary flux
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Figure 7.4: Quadrature points and ghost nodes

in the quadrature points is necessary. The fluxes depend on the given values of the con-
servative variables in a nonlinear way. However, the conservative variables are linear
functions and they can easily be evaluated exactly in the quadrature points. For the
two-point Gauss quadrature rule let the states at quadrature points x̂1 and x̂2 be given
by Û1 and Û2, respectively. The application of (7.8) to the edge I yields

Bk|I =
∫

I
ϕkn · F̃h ds ≈ |I|

2
nI ·

(
ϕk(x̂1)F̃h(x̂1) + ϕk(x̂2)F̃h(x̂2)

)
(7.9)

and

Bl |I =
∫

I
ϕln · F̃h ds ≈ |I|

2
nI ·

(
ϕl(x̂1)F̃h(x̂1) + ϕl(x̂2)F̃h(x̂2)

)
, (7.10)

where F̃(x̂1) and F̃(x̂2) denote the boundary fluxes

nI · F̃(x̂1) = F(Û1, Û1,∞) and nI · F̃(x̂2) = F(Û2, Û2,∞) (7.11)

corresponding to (7.49) and (7.54). This is illustrated in figure 7.4. The solution of the
Riemann problem associated with the quadrature points as well as the flux Jacobians
related to the boundary fluxes are provided below.

7.5 Euler Equations

The Euler equations admit waves moving in different directions if the signs of the eigen-
values differ. Therefore, some waves may enter the domain over the boundary, while
simultaneously others leave the domain. Boundary conditions should only be imposed
on the incoming waves, while the outgoing ones should remain unchanged to leave
the boundary transparent to outgoing waves. Due to this fact, we prescribe characteris-
tic boundary conditions and the ghost state in terms of the Riemann invariants. In the
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following sections we review the concept of Riemann invariants and describe the de-
termination of boundary conditions in a general sense. Later on we turn to the solution
of a boundary Riemann problem, which involves the formerly introduced concept of a
ghost state. The solution of that problem is used to evaluate the boundary integral with
flux (7.11).

7.5.1 Riemann Invariants

In order to derive Riemann invariants, one transforms the Euler equations to a local
coordinate system consisting of the unit normal n and unit tangential τττ direction to
the boundary. Note that without loss of generality the normal is defined by the unit
normal vector directed out of the domain. A diagonalization of the resulting system of
transformed Euler equations yields a system of four scalar transport equations for the
Riemann invariants [84]

W = {W1, W2, W3, W4}. (7.12)

It is governed by

∂tW1 + (vn − c)∂nW1 = 0
∂tW2 + vn∂nW2 = 0
∂tW3 + vn∂nW3 = 0

∂tW4 + (vn + c)∂nW4 = 0

(7.13)

under the assumption a of local isentropic flow. The Riemann invariants are given by

W1 = vn −
2c

γ− 1
, W2 = cv log

(
P
ργ

)
, W3 = vτ, W4 = vn +

2c
γ− 1

, (7.14)

for the corresponding eigenvalues

λ1 = vn − c, λ2 = λ3 = vn, λ4 = vn + c (7.15)

of the projected Jacobian tensor n ·A. The tangential and normal velocities are

vn = n · v, and vτ = τ · v, (7.16)

respectively. For the sake of simplicity and without loss of generality W2 is replaced by
[84]

W2 =
P
ργ

(7.17)

in the context of boundary conditions. A decision based on the sign of the correspond-
ing eigenvalue of each characteristic variable is made to prescribe boundary conditions.
If the eigenvalue is positive, then the wave leaves the domain and the Riemann invari-
ant remains unchanged. Otherwise, in the case of a negative eigenvalue, a boundary
condition has to be imposed on the wave.
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7.5.2 Inflow and Outflow Boundary conditions

Inlet and outlet boundary conditions are usually prescribed based on the free stream
conditions. It is also possible to fix other variables, like the pressure at a subsonic outlet
or density, tangential velocity, and pressure at a subsonic inlet. The reader is referred to
[32] for a detailed analysis.

7.5.3 Supersonic Inflow and Outflow Boundary Conditions

A supersonic inflow/outflow is characterized by |vn| > c. If additionally vn > 0, all
eigenvalues are positive, or in other words all waves leave the domain. Therefore, no
boundary condition is needed. This corresponds to a supersonic outlet and is the sim-
plest case of boundary condition. Otherwise, in the case of vn < 0, all eigenvalues have
negative sign and all waves enter the domain, which characterizes a supersonic inlet.
Hence, boundary conditions have to be imposed on all waves. Alternatively in this case
one may prescribe boundary conditions in terms of conservative variables.

7.5.4 Subsonic Inflow and Outflow Boundary Conditions

If |vn| < c, the flow is of subsonic nature. Consequently, either the first three eigen-
values are negative (−c < vn < 0) and the fourth is positive, which corresponds to
a subsonic inlet, or the first eigenvalue (0 < vn < c) is the only one that has a nega-
tive sign. The latter case is related to a subsonic outlet and the former corresponds to
a subsonic inlet. In the case of a subsonic inlet the first three Riemann invariants must
be prescribed, while at a subsonic outlet only the first Riemann invariant has to be im-
posed due to the negative sign of the corresponding eigenvalue. Nevertheless, in both
cases the flow behavior depends on both the incoming and outgoing characteristics
and it is therefore impossible to prescribe boundary conditions in terms of conserva-
tive variables.

7.5.5 Free Stream Boundary Conditions

Subsonic boundary conditions are much more complicated then their supersonic coun-
terparts since one has to compute the boundary flux that depends on four variables.
However, there are less than four Riemann invariants defined by the boundary condi-
tions. The remaining Riemann invariants correspond to outgoing waves and must be
extracted from the solution.

Free stream boundary conditions can be implemented as follows [84]. Assume, that
a set of free stream invariants

W∞ = {W∞,1, W∞,2, W∞,3, W∞,4} (7.18)

is specified. In the case of subsonic normal flow conditions, the boundary values de-
pend on the free stream invariants as well as the outgoing Riemann invariants given
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by the current solution. Let the superscript * denote the state taken from the solver that
is the current solution without taking into account the boundary conditions. The su-
perscript ** refers to the final state. The algorithm below can be generally applied to
determine free stream boundary values. It will be applied in section 7.5.9 to compute
the ghost state required by (7.11). In this case, U∞ = U∗∗ corresponds to the ghost state.
Free stream boundary conditions can be computed from the following steps:

1. Compute the Riemann invariants of the current solution

W∗ = {W∗1 , W∗2 , W∗3 , W∗4 }. (7.19)

2. Define the final set of invariants W∗∗ either by the predicted invariants or the free
stream ones, depending on the signs of the corresponding eigenvalues λk

W∗∗k =

{
W∗k if λk ≥ 0
W∞,k if λk < 0

(7.20)

for each characteristic field k.

3. Transform W∗∗ back to conservative variables:
The speed of sound

c∗∗ =
γ− 1

4
(W∗∗4 −W∗∗1 ) (7.21)

is given in terms of the difference of the first and the fourth Riemann invariant,
and hence the primitive variables pressure, density, and velocity are determined
by

ρ∗∗ =

(
c∗∗2

γW∗∗2

) 1
γ−1

(7.22)

P∗∗ =
c∗∗2ρ∗∗

γ
(7.23)

v∗∗ =
W∗∗1 + W∗∗4

2
n + W∗∗3 τ. (7.24)

A few algebraic manipulations transform the boundary state to the final conser-
vative variables

ρ∗∗ =

(
c∗∗2

γW∗∗2

) 1
γ−1

(7.25)

(ρv)∗∗ = ρ∗∗
[

W∗∗1 + W∗∗4
2

n + W∗∗3 τ

]
(7.26)

(ρE)∗∗ =
P∗∗

γ− 1
+ ρ
|v∗∗|2

2
. (7.27)

4. Prescribe boundary conditions.
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In a practical implementation one may prescribe free stream invariants at each quadra-
ture point of the inlets and outlets a priory in a preprocessing step. Then the algo-
rithm computes the characteristic direction and determines the desired state automat-
ically during the simulation for the subsonic and supersonic inlets/outlets. Such kind
of boundary conditions is transparent to outgoing waves since the algorithm uses the
solution-dependent invariants for outgoing waves instead of the a priory defined ones,
which are taken to specify incoming waves. Free stream boundary conditions as de-
fined in table 1.1 are employed in the computations reported in this thesis if not stated
otherwise.

Note that it is also possible and sometimes more physical to prescribe primitive vari-
ables at subsonic boundaries [32] instead of free stream values.

7.5.6 Pressure Outlet

Due to physical reasons, it may be preferable to prescribe the pressure Pout at a subsonic
outlet instead of the first Riemann invariant. In this case boundary conditions have to
be imposed on the first Riemann invariant only. The exit pressure Pout can be fixed by
replacing the first Riemann invariant by [84]

W∞,1 = − 4
γ− 1

√√√√γPout

ρ∗

(
P∗

Pout

) 1
γ

+ W∗4 (7.28)

in step two of the algorithm in section 7.5.5.

7.5.7 Pressure-Density Inlet

In the case of a subsonic inlet, density, pressure and tangential velocity may be pre-
scribed and other choices are also possible [32]. Let the boundary conditions be given
in terms of Pin, ρin, and vτ

in. The first Riemann invariant can be determined by sub-
tracting it from the fourth one

W∗∗1 = W∗∗4 −
4c∗∗

γ− 1
= W∗4 −

4c∗∗

γ− 1
, (7.29)

where the speed of sound

c∗∗ =

√
γPin

ρin
(7.30)

is given in terms of the imposed boundary condition. An addition of the first and the
fourth Riemann invariant yields an equation for the normal velocity

v∗∗n =
W∗∗1 + W∗∗4

2
=

W∗∗1 + W∗4
2

. (7.31)



88 7 Boundary Conditions

Therefore, the first three Riemann invariants are defined as

W∗∗1 = W∗4 −
4c∗∗

γ− 1
(7.32)

W∗∗2 =
Pin

ρ
γ
in

(7.33)

W∗∗3 = vτ
in (7.34)

and the boundary state in conservative variables is consequently determined by

ρ∗∗ = ρin (7.35)

(ρv)∗∗ = ρin

[
W∗∗1 + W∗4

2
n + vτ

in τ

]
(7.36)

(ρE)∗∗ =
Pin

γ− 1
+ ρin

|v∗∗|2
2

. (7.37)

Hence, it suffices to overwrite the first three Riemann invariants in the second step of
the algorithm in section 7.5.5 by

W∞,1 = W∗4 −
4c∗∗

γ− 1
(7.38)

W∞,2 =
Pin

ρ
γ
in

(7.39)

W∞,3 = vτ
in. (7.40)

7.5.8 Wall Boundary Conditions

In an inviscid flow mass and energy fluxes through the boundary are zero, while the
fluxes parallel to the wall are not affected. In other words, the normal velocity vanishes

n · v = 0. (7.41)

Since the solid wall boundary condition prevents the flow from penetrating through
the wall, it is called free-slip or no-penetration condition. This is different from viscous
flow dynamics, where a no-slip condition with v = 0 is satisfied due to the viscous
stresses. The implementation of solid wall boundary conditions is a challenging task
in computational fluid dynamics and carried out in a weak sense in this thesis. In [2]
Balakrishnan and Fernandez compare different types of solid wall boundary imple-
mentations. It turns out that strong, weak and mixed implementations yield almost the
same results.

The easiest way to constrain the normal velocity to zero, is to overwrite the flux in
the boundary integral by

n · F̃h
∣∣∣

wall

=


0

n(x)P
n(y)P

0

 , (7.42)
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where the pressure serves as a kind of source term to enforce the free-slip condition.
This treatment does not involve the solution of a Riemann problem and is refered to as
zero-flux condition. Moreover, in some cases it provides increased robustness in com-
parison with the wall boundary type to be described below. Nevertheless, this bound-
ary treatment was successfully applied e. g. in [87, 15, 2]. Note that other implementa-
tions of the wall boundary condition are possible , see e. g. [2, 47].

A more physical constraint is the so-called mirror or reflection condition since it mim-
ics a continuous model of the ideal collision of a spherical particle with a solid wall.
Moreover, this condition requires an additional ghost node (compare section 7.1) and
enables the application of a Riemann solver at the boundary, which takes into account
the characteristic direction of the flow. It yields very accurate results [92, 60] and is
consistent with the interior discretization and the inlet/outlet boundary conditions. To
implement the mirror condition the normal velocity is reflected at the boundary, while
the tangential velocity, density and pressure or total energy remain unchanged. Adopt-
ing the notation introduced in section 7.1 the ghost state is defined by

ρ∞ = ρi, vn∞ = −vni, vτ∞ = vτ i, E∞ = Ei. (7.43)

This can be transformed to conservative variables

ρ∞ = ρi

(ρv)∞ = ρ∞(−vnin + vτ iτ)
(ρE)∞ = (ρE)i.

(7.44)

Note that the ghost state can also be defined in terms of the primitive varibles

ρ∞ = ρi, vn∞ = −vni, vτ∞ = vτ i, P∞ = Pi, (7.45)

which yields almost the same solution. The results computed by the mirror condition
and (7.42) are similar. It is shown by the numerical results that (7.42) sometimes pro-
vides increased robustness, while the mirror condition represents a slightly more phys-
ical boundary condition. The mirror condition is applied in this thesis unless otherwise
stated and both possibilities are compared in a numerical study in section 9.6.

7.5.9 Solution of the Boundary Riemann Problem

In order to solve the Riemann problem associated with a projection of the Euler equa-
tions onto the unit outer normal either an approximate or exact Riemann solver is nec-
essary to compute the boundary state. To avoid artificial reflections of waves at the
boundary, the interior state Ui in the sense of section 7.1 is taken from the hyperbolic
solver without any changes, while the ghost state U∞ is computed based on both the
Riemann invariants of the interior one and the boundary condition. If an eigenvalue is
positive, that is a wave leaves the domain, the related Riemann invariant is taken from
the interior node. Otherwise, in the case of a negative eigenvalue, a boundary condition
has to be imposed on the wave and the free stream Riemann invariant is taken. Once
the ghost state is fixed, the Riemann problem between the inner node and the ghost
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node in normal direction can be solved. One may use the algorithm reported in section
7.5.5 to determine the ghost state as follows:

• Compute the invariants at the interior node i of the current solution

W∗ = W∗(Ui). (7.46)

• Determine the final Riemann invariants for each characteristic field

W∗∗k =

{
W∗k if λ∗k ≥ 0
W∞,k if λ∗k < 0

(7.47)

• Transform back to conservative variables (see step 3 of the algorithm in section
7.5.5) and define the ghost state by

U∞ = U∗∗. (7.48)

• Solve the Riemann problem by Roe’s flux formula (7.49) and compute the bound-
ary flux n · F̃h = F(Ui, U∞) at the intermediate state.

• Insert n · F̃h into the boundary integral.

In this study the Riemann problem is solved approximately by means of Roe’s Rie-
mann solver although other choices are also possible. This treatment of the boundary
flux is consistent with the inner discretization and makes it possible to compute a Jaco-
bian matrix, which is important for the computation of stationary solutions by implicit
schemes. This issue is addressed later. For the wall boundary conditions an exact Rie-
mann solver presented by Toro [92] will be employed for comparison. The Riemann
solver takes into account the direction of information propagation and avoids artificial
non-physical effects like negative pressures or densities in the vicinity of the boundary
particularly at high CFL numbers. This sometimes prevents the algorithm from diver-
gence in comparison with an ad-hoc specification of boundary conditions, where the
flux associated with the ghost node is directly substituted into the boundary term. In
other words, the Riemann solver automatically chooses the upwind direction. To em-
ploy the approximate Riemann solver, the flux formula of Roe

n · F̃h = F(Ui, U∞) =
1
2

n · (F(Ui) + F(U∞))− 1
2
|An

i∞|(U∞ −Ui) (7.49)

is simply substituted into the boundary integral. In the equation above,

An
i∞ = n ·Ai∞ (7.50)

is the Jacobian tensor evaluated in the normal direction and

|An
i∞| = Rn

i∞|Λn
i∞| [Rn

i∞]−1 (7.51)

corresponds to (5.31). Obviously, (7.49) is Roe’s 1D flux formula projected onto the outer
normal.
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7.6 Two-Fluid Model

The two-fluid model consists of the Euler equations written in terms of the effective
density and the pressureless transport equations, which are linked by algebraic source
terms. The flux Jacobians of the coupled system lack diagonalizability since an incom-
plete set of seven independent eigenvectors exists. Therefore, it is neither possible nor
necessary to prescribe characteristic boundary conditions for the coupled two-fluid
equations. As a matter of fact, it suffices to implement boundary conditions for the
equations governing each phase separately.

Both phases involve similar boundary integrals. Therefore, the computation of the bound-
ary integral is exactly the same for both phases, but the treatment of the boundary fluxes
differs. The Euler equations admit three waves moving at different speeds and in dif-
ferent directions, which necessitates the specification of characteristic boundary values
in terms of the Riemann invariants. In contrast, the equations modeling the particulate
phase only admit one wave moving with the fluid velocity. Hence, the whole informa-
tion propagates with the particle velocity. This enables the specification of boundary
values in terms of conservative variables rather than Riemann invariants.

7.6.1 Inlet and Outlet Boundary Conditions

Without loss of generality we assume that

vp,n vg,n > 0, (7.52)

where vp,n = n · vp and vg,n = n · vg are the normal velocities of the particles and gas,
respectively. In other words, the case that one phase enters the domain while the other
phase leaves the domain simultaneously is excluded from the scope of this thesis. Note
that this simplifies notation, but does not limit the computational scheme.

A part of the boundary is called inlet if the normal velocities of both phases satisfy

vp,n < 0 and vg,n < 0, (7.53)

otherwise it is referred to as an outlet. Inlet and outlet boundary conditions for the gas
phase are the same as described in section 7.5 for the effective density ρ = αgρg and it
suffices to discuss boundary conditions for the particulate phase in the present section.
Consequently, the inflow and outflow can be subsonic or supersonic depending on the
Mach number. In contrast, the wave of the particulate phase enters the domain at an
inlet, which requires the specification of the complete vector of conservative variables.
At an outlet, the wave leaves the domain and no information has to be prescribed. To
simplify notation, the index denoting the particulate phase is neglected in the following
formulas.

The restriction to one wave simplifies the solution of the boundary Riemann problem
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of the particulate phase. Similar to section 7.5.9 the flux formula of Roe is given by

n · F̃h = F(Ui, U∞) =
1
2

n · (F(Ui) + F(U∞))− 1
2
|An

i∞|(U∞ −Ui) (7.54)

with the flux tensor F defined by (4.4). Due to scalar dissipation the matrix |An
i∞| ex-

hibits a diagonal structure

|An
i∞| = diag{di∞, di∞, di∞, di∞}, di∞ = max{|n · vi|, |n · v∞|} (7.55)

in contrast to its counterpart corresponding to the Euler equations. This is similar to the
scalar upwind-formulation of each equation. In order to clarify the last statement, let
us consider a local linearization of the characteristic speed

v̂ =

{
vi · n if vi · n ≥ 0
v∞ · n if vi · n < 0

(7.56)

of the particulate phase. Due to this assumption, the boundary flux (compare to (7.49))
is given by (the non-conservative formulation)

Flin(Ui, U∞) =
v̂
2
(Ui + U∞)− v̂

2
(U∞ −Ui)

=
v̂ + |v̂|

2
Ui +

v̂− |v̂|
2

U∞

=

{
Uiv̂ if v̂ ≥ 0
U∞v̂ if v̂ < 0

(7.57)

and is clearly equivalent to the one-dimensional upwind approximation. The bound-
ary flux (7.54) provides a quite similar treatment, where di∞, given by equation (7.55),
mimics an approximation of the characteristic speed, which is consistent with the inner
discretization. Considering the last arguments it is sufficient to define the ghost state
by the values of the interior state in the case of an outlet or by the imposed boundary
condition at an inflow part of the boundary.

7.6.2 Wall Boundary Conditions

The wall boundary condition
vp,n = 0 (7.58)

should also be imposed on the equations governing the particulate phase. Since they
do not involve a pressure gradient in contrast to the Euler equations, it is insufficient to
apply the concepts reported in section 7.2. The wall boundary condition cannot be en-
forced just by canceling the boundary integral arising from the Galerkin discretization.
Such an implementation does not inhibit fluxes penetrating through the walls. In the
case of the Euler equations the nonzero pressure serves as a kind of source term, which
prevents nonzero normal fluxes. Due to the lack of pressure the volume integrals may
become large in comparison with the boundary integrals, which may also be a reason
for the penetration of particles through the wall.
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A simple way to circumvent this problem is to enforce flow tangency after each iter-
ation by subtracting the normal components of the momentum equations

(K∗U)i = (K∗U)i −

(K∗U)i ·

 0
ni
0

 0
ni
0

 (7.59)

at any wall boundary node i in a strong sense. This conflicts with the boundary con-
ditions imposed on the gas phase and gives rise to spurious boundary layers due to
the inconsistent wall boundary treatment of both phases. On the other hand, the weak
implementation of boundary conditions provides superior robustness, faster conver-
gence, and accuracy in steady-state computations.

We therefore add an additional penalty term to the weak form of the momentum equa-
tions of both phases

penalty := −σ
∫

Γwall

ω|vn|ρ2vnn ds, (7.60)

where σ � 1 is a large positive penalty parameter and ω represents the test function.
The integration is carried out over the wall boundary and the penalty term, which ap-
pears on the right hand sides of the momentum equations, is set to zero elsewhere.
Penalty terms were successfully applied to the incompressible Navier-Stokes equations
[37] and reactive bubbly flows [42]. For the Euler equations a penalty term very similar
to (7.60) was proposed in [13] to enforce the wall boundary condition. A more theo-
retical analysis of penalty techniques can be found in [94, 83]. Moreover, the perfor-
mance of those terms in the framework of (scalar) transport equations as well as the
incompressible Navier-Stokes equations was established in [5]. Although the free-slip
condition can be prescribed much easier for the gaseous phase, the particle equations
require such a penalty term. It is also added to the gas momentum equations to equal-
ize the treatment of both phases and to avoid boundary layers, which may arise due to
different boundary implementations. Nevertheless, the no-penetration condition

v · n = 0 (7.61)

can be substituted into the boundary integrals of each phase. Due to this fact, the
boundary integrals of the particle equations related to solid walls vanish and the cor-
responding terms of the gas equations simplify to (7.42). Obviously, any weak solution
of the governing equations also satisfies the modified equations with the additional
penalty term. On the other hand, a weak solution of the modified equations satisfies
the free-slip condition as well as the governing equations since convergence enforces
the penalty term to vanish and the free-slip condition to be satisfied.

The penalty term turns out to be very large and stiff due to the large penalty param-
eter σ. This gives rise to rather large errors in the early stages of a simulation since
the free-slip condition is usually not yet satisfied initially. Care must therefore be taken
in the design of the preconditioner to achieve convergence. Additionally, the abrupt
change in the normal velocity due to an initial solution violating the free-slip condi-
tion may cause divergence. This is not a drawback of the penalty term, the problem is
caused by physical reasons since such an impulsive start is physically impossible [57].
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The initially large errors decrease significantly by several orders of magnitude during a
few iterations since the normal velocity vanishes after a few iteration steps. However, a
converged solution does not depend on the way it was computed. Therefore, one may
start the simulation with a small penalty parameter and increase it during the first iter-
ations. Such a procedure is closely related to the underrelaxation of the wall boundary
condition proposed by Lyra [57]. Note that the penalty term is also applicable to tran-
sient computations since the initial solution satisfies the wall boundary condition by
the physical reasons pointed out above.



8 Fully Coupled Implicit Time
Integration

It is one of the main goals of this study to design an implicit algorithm for the compu-
tation of stationary solutions to the Euler equations as well as the two-fluid model of
particle-laden gas flows. Implicit schemes were rarely used in compressible CFD algo-
rithms in the past. During recent years, there has been an increasing effort to design im-
plicit schemes for the compressible Euler equations [93, 62, 60, 15, 18, 7]. To the author’s
best knowledge, there is no publication of an implicit discretization of the two-fluid
equations. In spite of their infrequent use implicit methods are favorable compared to
explicit ones because of the CFL restriction of the latter family of methods. Particularly
in real life applications with complicated (or highly anisotropic) unstructured meshes
created by automatic mesh generators and/or adaptivity [60], the spatial length scales
h and CFL numbers

CFL = λmax
∆t
h

, (8.1)

where λmax corresponds to the maximum wave speed, may differ by several orders
of magnitude. Therefore, the stability constraint may be dictated by a few very small
cells, while the remaining part is less restricted. This hampers the performance of ex-
plicit schemes and calls for implicit algorithms, which are more stable or independent
of stability constraints. In practical applications a very restrictive CFL bound is caused
by the usually large stiffness of the source terms of the two-fluid model.

Due to their algorithmic simplicity and low memory requirements, explicit schemes are
often employed in the compressible flow community and there are some approaches to
deal with the stiffness arising at the sonic point and in the low Mach number regime.
The first one is local preconditioning [56]. In this case a preconditioner matrix corre-
sponding to modified degrees of freedom is applied to the governing equations, unfor-
tunately time accuracy is completely lost. Only a fully converged steady-state solution
satisfies the governing equations. There are several types of preconditioners for the dif-
ferent flow regimes. This makes the approach less flexible in practical computations
where both low Mach numbers and sonic points occur (compare the computational
results reported in part III). Moreover, local preconditioning does not circumvent the
stability restriction of explicit schemes. Another approach is local time stepping, where
the same CFL number is applied to each node or perhaps even to each characteristic
field. This can easily be implemented and it is also a handy tool, particularly in the
start-up process of an implicit algorithm, where the CFL number may be increased step
by step. Last but not least there are acceleration techniques like multigrid [30, 56] and
residual smoothing [86].

Implicit schemes have the potential of being unconditionally stable without CFL restric-
tions if they are designed in a proper way. In particular, a suitable implicit treatment of
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boundary conditions is required. Since the convergence to steady-state depends on the
propagation speed of the error waves, large CFL numbers accelerate the convergence
to steady-state. This is primarily important at the sonic point and in low Mach number
regions, where wave speeds are close to zero. Moreover, the implicit Euler approach
corresponds to upwinding in time and therefore enjoys very useful numerical proper-
ties. This makes the backward Euler scheme a favorable choice in steady-state compu-
tations and it is therefore applied in this study. On the other hand, nonlinear systems
must be solved and the computation of the nonlinear preconditioner is a challenging
task. Therefore, the implementation of implicit schemes is far from being trivial. In this
work a semi-implicit approach is employed to circumvent the computationally expen-
sive nonlinear iterations. Implicit and semi-implicit schemes require a very powerful
linear solver since the Jacobians usually lack diagonal dominance at least at high CFL
numbers. This has an adverse effect on the convergence of many iterative solvers.

It is common practice to solve the arising nonlinear systems by a (pseudo-) time step-
ping scheme and march the solution to steady-state. In this case, the time step can be
interpreted as an underrelaxation, where an infinite time step corresponds to a direct
solution of the stationary problem without underrelaxation.

Boundary conditions are an important part of the implicit solver. The deletion of off-
diagonal matrix blocks cancels mass fluxes between the boundary and adjacent nodes.
This makes the commonly used strong enforcement of boundary conditions explicit
and introduces a CFL restriction, which turns out to be very restrictive. Dolejšı́ and
Feistauer [15] observe a stability restriction of CFL . 6 for an explicit implementation
of weak wall boundary conditions, while the stability is significantly improved for a
semi-implicit version up to CFL ≈ 100. Hence, an implicit treatment of boundary con-
ditions, which is built into the preconditioner, is crucial for the stability of the implicit
algorithm. This requirement is matched by the weak implementation of boundary con-
ditions examined in this thesis.

8.1 Linearized Backward Euler Scheme

The spatially discretized Euler equations and the two-fluid model can be expressed in
the condensed form

ML
dU
dt

= F + S, (8.2)

where U is the vector of conservative variables, F is the flux vector, and S is the source
term of the two-fluid model. The case of the Euler equations is included by S = 0. This
system of ordinary differential equations can be integrated in time by the backward
Euler scheme

ML
Un+1 −Un

∆t
= Fn+1 + Sn+1 (8.3)

with a time step of length ∆t. The superscript n refers to time level n and the result is
a nonlinear system of algebraic equations, which calls for nonlinear iterations in each
(pseudo-) time step. Nonlinear iterations are computationally very expensive. To cir-
cumvent this problem, one assumes sufficient smoothness and linearizes the equations
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around the current solution Un by a Taylor series expansion of the fluxes

Fn+1 = Fn +
(

∂F
∂U

)n
(Un+1 −Un) +O(‖Un+1 −Un‖2) (8.4)

and the source terms

Sn+1 = Sn +
(

∂S
∂U

)n
(Un+1 −Un) +O(‖Un+1 −Un‖2). (8.5)

A substitution of equations (8.4) and (8.5) into the nonlinear equations (8.3) leads to a
linear algebraic system[

ML

∆t
−
(

∂F
∂U

+
∂S
∂U

)n]
(Un+1 −Un) = Fn + Sn. (8.6)

Due to the linearizations (8.4) and (8.5) the latter scheme is time accurate of first or-
der and applicable to stationary as well as transient flows, although a time integration
scheme for transient flows should be at least second order accurate. Furthermore, non-
linear iterations are avoided and merely a linear system of algebraic equations has to be
solved at each time level. Note that due to the homogeneity property the semi-implicit
time marching scheme remains conservative, even if it is applied to transient problems.

At first glance, this scheme seems to be conditionally stable since it is semi-implicit.
On the other hand, there is strong numerical evidence that the semi-implicit scheme
based on the backward Euler method is unconditionally stable if the initial values are
sufficiently accurate.

8.2 Newton’s Method

Suppose, that both the fluxes and the source terms are differentiable with respect to the
conservative variables. Setting the time step (or the CFL number) of the semi-implicit
time stepping scheme to infinity, one recovers Newton’s method

−
(

∂F
∂U

+
∂S
∂U

)n
(Un+1 −Un) = Fn + Sn, (8.7)

which is known to have second order of convergence (quadratic convergence) under
these conditions. Corresponding to the notation used in this thesis, Newton’s scheme
is also denoted by CFL = ∞, which is related to a time step of infinite length in (8.6).

It is a well known fact that the convergence of Newton’s method depends on a suf-
ficiently accurate initial state. The Taylor linearization is only valid in a vicinity of the
current solution Un. This is the reason, why a suitable initial guess is essential. Note that
this requirement is not a stability restriction and the time step can actually be arbitrarily
large. The only condition is that the solution does not change rapidly at each time level.
To satisfy this constraint and make the linearization valid, either small time steps or a
suitable initial guess are crucial. After the algorithm starts converging one can increase
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the CFL number to an arbitrarily large or infinite value. Since the computation of the
original Jacobian matrix is a complicated task and may worsen the matrix properties, a
low-order approximation of the Jacobian will serve as a preconditioner. Its computation
is described in section 8.4. To indicate this fact, the scheme will be called Newton-like.
The approximation does not provide second order convergence, but yields a robust and
parameter-free scheme. There is no significant loss of efficiency since second order con-
vergence is related to differentiability of the residual, which is not available for the flux
function of Roe and the limiter function applied in this study.

8.3 Iterative Solution of Stationary Equations

The spatial discretization of the stationary Euler or two-fluid equations results in a
nonlinear algebraic system of equations

R(U) = 0, (8.8)

due to the nonlinearities induced by the physical nature of the equations as well as the
spatial discretization. Therefore, a solution of large nonlinear systems is required. It is
common practice to solve nonlinear equations by fixed point iterations of the form

Un+1 = Un + [An]−1 Rn, n = 0, 1, 2, ... (8.9)

where A is suitably defined preconditioner and R is the nonlinear residual of the steady-
state problem

R(U) = F(U) + S(U). (8.10)

It results from the spatial discretization of the flux vector F(U) and the source terms
S(U) (S(U) = 0 in the case of the single-phase Euler equations). The superscript n de-
notes either the index of the nonlinear iteration or, if a (pseudo-) time stepping method
is applied, the time level. Feasible choices for the preconditioner are

An = −
(

∂R
∂U

)n
= −

(
∂F
∂U

+
∂S
∂U

)n
(8.11)

or

An =
[

ML

∆t
−
(

∂R
∂U

)n]
=
[

ML

∆t
−
(

∂F
∂U

+
∂S
∂U

)n]
. (8.12)

This results in Newton’s method or the semi-implicit time stepping scheme (8.6), which
offers the potential of up to second order convergence in the Newton case. Note that
other choices are possible and may be preferable since the Jacobian computation is far
from being trivial or even impossible due to the lack of smoothness of the flux lim-
iter function investigated in this thesis. A generalization of the operator L∗ (3.75) as
introduced for scalar equations may be useful as a linearization in steady-state com-
putations if a low-order preconditioner inhibits convergence or introduces time step
restrictions. In fact, Yee et al. [98] used this sort of preconditioning in their linearized
non-conservative implicit (LNI) scheme for stationary computations. In this case, the
linearized operator is an M-matrix and preserves the positivity of each iterate but only
the fully converged solution is guaranteed to be conservative. The computation of the
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preconditioner is described in detail in section 8.4.

In a practical implementation the inversion of the preconditioner A is avoided by solv-
ing the linear system

An∆Un+1 = Rn (8.13)

and updating the solution
Un+1 = Un + ∆Un+1. (8.14)

8.3.1 Underrelaxation

At an early stage of a simulation, where the linearization is rather inaccurate, it is prefer-
able to update the solution by adding a rather small fraction of the computed increment
instead of the whole. Let the linear system (8.13) represent (8.6) or (8.7) at the time level
n. Its solution is given by ∆Un+1, which updates the solution of the discretized govern-
ing equations

Un+1 = Un + ∆Un+1. (8.15)

In an explicit underrelaxation procedure this equation is replaced by

Un+1 = Un + π∆Un+1, (8.16)

where a parameter 0 < π < 1 controls the solution increment [69, 19].

Underrelaxation may also be applied in a more implicit way. In this approach, the diag-
onal entries of the matrix are modified by addition of a positive number δi > 0 [69, 19]

An
ii = An

ii + δi. (8.17)

This improves the matrix properties by enhancing diagonal dominance. Large diagonal
entries inhibit a rapid mass exchange between adjacent nodes. This is closely related to
the explicit way of underrelaxation.

Obviously, the semi-implicit scheme (8.6) can be interpreted as an implicit underre-
laxation of the Newton (or Newton-like) scheme with

δi =
MLi
∆t

and An =
[

ML

∆t
−
(

∂F
∂U

+
∂S
∂U

)n]
. (8.18)

Hence, a small time step or CFL number corresponds to large underrelaxation and vice
versa. In implicit codes the implicit underrelaxation technique is advantageous since
explicit underrelaxation does not improve the matrix properties. This is sometimes im-
portant to achieve convergence of linear solvers or prevent divergence of the nonlinear
iteration at an early stage of a simulation. Therefore, implicit underrelaxation in terms
of local (pseudo-) time stepping is applied to compute an initial guess and to evaluate
the performance of the developed methods at large CFL numbers.
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8.3.2 The Linear Solver

The solution of the linear systems arising from the discretization of the governing equa-
tions of compressible flows is a challenging task since the Jacobian matrices are not
diagonally dominant. This deteriorates the linear convergence rates and calls for pow-
erful iterative or direct solvers. On the other hand, the involved matrices are sparse
due to the small support of finite element basis functions, which makes the application
of iterative solvers competitive. The numerical linear algebra in the field of sparse it-
erative solves has significantly advanced during the recent years. In particular, Krylov
subspace techniques were found to be reliable and efficient enough for many practi-
cal purposes. They take advantage of a projection of large sparse systems into smaller
subspaces [77]. The most famous algorithm of this family is the generalized minimal
residual method (GMRES). The GMRES algorithm combined with an incomplete lower
upper factorization (ILU) preconditioner was quite successfully applied to compress-
ible flows (see, e. g., [73, 62, 7]) and integrated into many software packages.

As a matter of fact, the performance of iterative solvers depends heavily on the avail-
ability of a suitable preconditioner. This study focuses primarily on the development
of the nonlinear solver and details of the linear solver are beyond the scope. There-
fore, either a direct LU decomposition by UMFPACK or the BiCGSTAB algorithm with
ILU preconditioning are applied as black box solvers. A detailed explanation of the
BiCGSTAB solver and its application to compressible flows is reported in [71]. Note
that by a clever renumbering of nodes, for example by the Cuthill-McKee algorithm
[77], the band width of the sparse matrix can be reduced, which improves the perfor-
mance of the ILU decomposition.

8.3.3 Computation of the Initial Guess

In steady-state computations the solution is usually initialized by the inlet boundary
condition, which is extended into the whole domain. This is an efficient initialization
technique since it operates automatically without knowledge of flow details. On the
other hand it yields a very inaccurate estimate of the solution and consequently the
linearization may fail. Therefore, as a kind of start-up phase, the semi-implicit scheme
(8.6) with small CFL numbers can be employed and the CFL number may be increased
step by step. This strategy combines implicit underrelaxation (compare section 8.3.1)
and local time stepping, where the same CFL number is assigned to each node in terms
of

∆t =
CFL
λmax

h =⇒ δi =
MLi

h
λmax

CFL
. (8.19)

After the nonlinear residual falls below some error bound, one may set the CFL number
to infinity and switch to the Newton-like scheme (8.7).

A second option, which is employed for all computations investigated in this thesis,
is to prescribe the initial value in terms of the stationary low-order solution. This solu-
tion can be computed in a few iteration steps, possibly starting with low CFL numbers,
and exhibits the main flow features. It is usually sufficient to satisfy the requirements of
the Taylor linearization. On very fine meshes or extremely difficult problems, one may
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additionally start with a moderate CFL number, which is increased during the simu-
lation. Underrelaxation plays an important role in the early stage of the computation
of the low-order solution to the two-fluid equations. It may also be applied in the first
steps of the main iteration phase on very fine meshes or for difficult problems. Last but
not least, a coarse grid solution may serve as an initial guess for the simulation on finer
grids. This can be implemented within the framework of nested iteration [56].

8.4 The Approximate Jacobian

The solution of the nonlinear algebraic system resulting from schemes (8.6) or (8.7) in-
volves the computation of the Jacobian of the nonlinear numerical fluxes F(U) and the
source terms S(U) with respect to the conservative variables U. Both functions lack
differentiability, which prevents Newton’s scheme from achieving second order con-
vergence. There are some approaches to compute an approximation of the numerical
flux Jacobian reported in the literature. The easiest option to compute such an approxi-
mation is finite differencing of first or second order [62, 73]

∂R
∂U
≈ R(U + ε)− R(U)

|ε| or
∂R
∂U
≈ R(U + ε)− R(U − ε)

2|ε| . (8.20)

The approximation can be further improved by extrapolation [60]. Finite differencing
is a convenient way to differentiate the fluxes and source terms and can also be ap-
plied directly to the nonlinear residual. On the other hand, the convergence behavior
depends heavily on the choice of the vector ε. There is an optimal value of ε, which dif-
fers for each problem and needs tuning to be determined by trial and error. This rules
out the use of finite differencing in a general purpose code, which should be applicable
more or less as a black box tool to a wide range of real life problems.

A more appropriate approach is to replace the non-differentiable functions of maxi-
mum, minimum and the absolute value by smooth approximations [59]. Note that ap-
proximations should be used for the Jacobian computation, while the residual should
be computed by the original functions for accuracy reasons. This leads to another promis-
ing way to compute an approximation of the Jacobian matrix. If the non-differentiable
functions in the residual are replaced by smooth approximations, the analytic deriva-
tive can be determined. This way of computing the Jacobian is very accurate and does
not require the specification of additional parameters, except for the definition of the
smooth approximations. The convergence behavior will be stable with respect to per-
turbations of these parameters. On the other hand, the analytical determination of the
Jacobian of Roe’s flux formula is subject to a rather complicated algebra and program-
ming. It can be found in [4].

Another approach to Jacobian approximation, which has been applied quite success-
fully, is automatic differentiation. It is available as commercial software and it is able to
compute the derivative of arithmetic operations using the chain rule. However, it relies
on a differentiable residual function. Therefore, the non-differentiable maximum and
minimum as well as the absolute value have to be replaced by smooth approximations.
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The use of a limiter increases the stencil of the scheme and results in a considerable
amount of additional fill-in compared to the Galerkin flux Jacobian. Since the limiter
function is evaluated at the upwind node of an edge, the correction factors, may de-
pend on the direct neighbors of the considered node as well as their neighbors, which
are responsible for the additional matrix entries [60]. Furthermore, the computation
of approximate Jacobians of the correction factors results in a deterioration of matrix
properties and decreased robustness. In particular for the discretization of the two-fluid
model, robustness is more important than efficiency up to a certain level.

8.4.1 Edge-Based Approximate Interior Flux Jacobian

In this thesis a different approach compared to the ones reported above is used to ap-
proximate the Jacobian. The original Jacobian in (8.7) and (8.6) is replaced by an edge-
based approximation of the low-order Jacobian, where the correction factors are ne-
glected. The approximate Jacobian (or preconditioner) constructed in this way is free of
additional problem-dependent parameters and enjoys several advantages in compari-
son with the previously discussed approximations. No additional fill-in is created since
the low-order fluxes only depend on the direct neighbors of a current node. For scheme
(8.6) the resultant matrix is of M-matrix type, which is related to positivity preservation
of each iterate subject to a suitable time step (at least on the characteristic level). This is
an important fact since it rules out unphysical effects, which may cause divergence (e.
g. zero density). The low-order approximation therefore provides increased robustness
and is subject to lower memory requirements. Moreover, its computation is much less
expensive than that of the approximation of the full Jacobian.

The kind of Jacobian approximation proposed here, can be determined analytically by
a derivation of the low-order fluxes under certain simplifying assumptions. The sum of
fluxes to a node i, which is related to the i-th row of the residual vector, is given by

Flow
i = ∑

j
cji · Fj −

∫
∂Ω

ϕin · Fh ds︸ ︷︷ ︸
=Bi

+ ∑
j 6=i

Dij(Uj −Ui). (8.21)

On the right hand side the first two terms represent the Galerkin discretization (7.2)
corresponding to (5.6) or (4.16). For the Euler equations or the gaseous phase of the
two-fluid model Dij are the diffusion blocks defined by equation (5.31). In the case of
the particulate phase Dij can be written as

Dij = diag{dij, dij, dij, dij}, (8.22)

where dij are given by (4.21). For the sake of simplicity one assumes that the diffusion
blocks are constant with respect to the conservative variables. The first term of equation
(8.21) involves the Galerkin coefficients cji defined by (3.38). They are independent of
the conservative variables. Under the above simplification, the derivatives of the low-
order nodal flux Flow

i with respect to the conservative variables at nodes i and j are
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given by

∂Flow
i

∂Uj
= cji ·Aj −

∂Bi

∂Uj
+ Dij,

∂Flow
i

∂Ui
= cii ·Ai −

∂Bi

∂Ui
− Dij (8.23)

where Aj and Ai are the Jacobian tensors (1.15) or (4.7) evaluated at nodes j and i, re-
spectively. The derivation of the boundary part Bi, which takes into account the bound-
ary condition, is addressed in section (8.4.2). The approximate Jacobian proposed so far
is exact with respect to the Galerkin discretization if the derivative of the boundary part
can be determined exactly.

8.4.2 Approximate Boundary Flux Jacobian

This section concerns the derivation of an approximate Jacobian of the boundary inte-
grals in the weak form of the Galerkin discretization (8.21). Discrete counterparts of ∂Bi

∂Ui

and ∂Bi
∂Ui

in (8.23) need to be specified. Note that the discretization of the Euler equations
is included. The derivation is complicated since the boundary flux usually consists of
the solution of the boundary Riemann problem (7.49) or (7.54). The boundary state may
depend on both the prescribed boundary condition and information extracted from the
interior of the domain. Recall that the boundary integral associated with node k is over-
written by the imposed boundary condition in terms of∫

∂Ω
ϕkn · Fh ds −→

∫
∂Ω

ϕkn · F̃h ds, (8.24)

where F̃h contains the information due to the boundary condition. It is necessary to
derive the Jacobian of n · F̃h since it is the only function in the boundary integral de-
pending on the conservative variables.

It is worth mentioning that the final Jacobian of the boundary term depends on the
boundary flux Jacobian as well as the quadrature rule, see (7.9) and (7.10). Only the
former topic is dealt with in the present thesis. It is convenient to assemble the Jacobian
in a loop over edges. In the case of the Euler equations, the derivation of the Jacobian
can be significantly simplified by multiple applications of the chain rule. We refer to
Appendix A for a detailed description of the procedure that was used to determine the
boundary flux Jacobian.

8.4.3 Approximate Source Term Jacobian

Last but not least, the source term Jacobian must be defined. Like the fluxes the source
terms of the two-fluid model lack differentiability. A suitable approximation of the cor-
responding Jacobian is presented in Appendix B. It is employed as a preconditioner in
stationary computations.
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8.4.4 Flux Jacobian Structure and Assembly

The approximate flux Jacobians of the Euler equations as well as the equations of the
particulate phase can be assembled in a loop over edges in terms of edge-wise contri-
butions. Due to the small support of the finite element basis functions, the approximate
flux Jacobians are very sparse and exhibit a 4× 4-block structure:

DF =



DF11 DF1i DF1n

DF22 DF2k

DFi1
. . .

DFjj DFjn

DFk2
. . .

DFn1 DFnj DFnn


, n = NVT. (8.25)

In (8.25) the blocks are defined by equation (8.23)

DFij =
∂Flow

i
∂Uj

. (8.26)

In a practical implementation the flux Jacobian DF can be assembled as follows:

1. Initialize DF = 0.

2. In a loop over edges I = {ij}, i 6= j:

• Add the off-diagonal blocks of the interior part of the discrete transport op-
erator:

DFij = DFij + cji ·Aj DFji = DFji + cij ·Ai.

• Insert the stabilization:

DFii = DFii − Dij DFij = DFij + Dij

DFji = DFji + Dij DFjj = DFjj − Dij

3. In a loop over nodes assemble the diagonal blocks:

DFii = DFii + cii ·Ai.

4. In a loop over all boundary edges insert the boundary flux Jacobians DBkl = ∂Bk
∂Ul

:

DFii = DFii − DBii DFij = DFij − DBij

DFji = DFji − DBji DFjj = DFjj − DBjj
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8.4.5 The Two-Fluid Model Approximate Jacobian

The two-fluid model (2.68) consists of eight equations, where the first four govern the
gas phase and the last four equations are associated with the particulate phase. The
fluxes in conservative variables are independent of each other, while the source terms
depend on all conservative variables of the gas as well as the particulate phase. The
flux Jacobian of the i-th row of the flux vector with respect to the j-th state is therefore
an 8× 8-block-diagonal matrix of the form

DFij =

[
DFgij 0

0 DFpij

]
. (8.27)

In the equation above DFgij approximates the flux Jacobian of the gas phase corre-
sponding to (8.23) for the effective density. Moreover, DFpij refers to the flux Jacobian of
the particulate phase. The interfacial coupling is due to the source terms. Therefore, the
source term Jacobian does not exhibit the block-diagonal structure and introduces the
interfacial coupling into the matrix. Let the discretized form of the source term contain
the nodal values

Spi = MLi

 0
FDi

vpi · FDi + QTi

 , Sgi = −Spi. (8.28)

The source term Jacobian of the i-th row with respect to the i-th state admits the follow-
ing representation (compare (2.68)):

DSii =

 ∂Sgi
∂Ugi

∂Sgi
∂Upi

∂Spi
∂Ugi

∂Spi
∂Upi

 . (8.29)

Due to mass lumping, the derivatives of the i-th row of the source term vector with re-
spect to the state j are zero unless i = j. Hence, the source term Jacobians of each node
are 8× 8-blocks, which are located on the diagonal of the two-fluid Jacobian.

For the sake of simplicity and to avoid confusion with the notation, the Jacobian as well
as the state vector may be reordered. Let Ug denote the vector of nodal values of the gas
phase, while its analog of the particulate phase is represented by Up. Both vectors can
be fitted together and form the reordered vector of nodal values of the two-fluid model

U =
[

Ug
Up

]
. (8.30)

The source term vector as well as the flux vector are reordered in the same way

F =
[

Fg
Fp

]
, S =

[
Sg
Sp

]
, Sg = −Sp. (8.31)

In terms of the latter definitions, one may rewrite the discretized two-fluid model by

∂tU = F + S. (8.32)
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Consequently, the flux Jacobian exhibits the following structure:

DF =
[

DFg 0
0 DFp

]
. (8.33)

Both DFg and DFp are 4 NVT× 4 NVT-blocks of the form (8.25). The source term Jaco-
bian transforms to

DS =

 ∂Sg
∂Ug

∂Sg
∂Up

∂Sp
∂Ug

∂Sp
∂Up

 . (8.34)

The off-diagonal blocks are obviously nonzero due to the interfacial coupling. On the
other hand, the i-th row of the source term vector depends only on the conservative
variables corresponding to the state i. Therefore, the 4 NVT × 4 NVT-blocks of the
source term Jacobian (8.34) are block-diagonal matrices consisting of 4× 4-blocks. They
are related to the source term derivatives of each node

∂Sk
∂Ul

= ML diag{ ∂Sk1
∂Ul1

, . . . ,
∂SkNVT
∂Ul NVT

}, (8.35)

where k, l denote either index g or p.
In summary, the Jacobian of the two-fluid model reads

∂F
∂U

+
∂S
∂U

= DF + DS. (8.36)

It is constituted by the flux Jacobians and the source term Jacobians of both phases and
has nonzero off-diagonal blocks due to the interfacial source term coupling. Therefore,
the equations of both phases must be solved simultaneously. This requires the solution
of a linear system of size 8 NVT × 8 NVT. To decompose it into two systems of size
4 NVT × 4 NVT one may delete the off-diagonal blocks of the source term Jacobian,
which contain just a few nonzero entries. On the one hand, this reduces the memory
requirements and the computational costs significantly. On the other hand, the result-
ing preconditioner is a bad approximation of the original Jacobian and introduces a
restrictive step size constraint. This behavior corresponds to the physical properties of
the equations. The source terms are usually large and dominating in comparison with
the fluxes and the deletion of off-diagonal matrix blocks introduces some explicitness.

Finally, the Jacobian of the two-fluid model consists of the flux Jacobians of both phases
and the source term Jacobian. Consequently, the Jacobian matrix is given by equation
(8.36).



Part III

Numerical Results





9 Euler Equations

The last part of the thesis is concerned with numerical studies of the presented meth-
ods. The accuracy is examined by grid convergence studies for several test cases and
the numerical performance at large and infinite CFL numbers is analyzed.

In this chapter, the compressible Euler equations are investigated for some well known
test cases, as well as much more difficult computations. The numerical study illustrates
the convergence of the proposed Newton-like method at practically arbitrary Mach
numbers and in domains with curved boundaries. Numerical evidence of uncondi-
tional stability is presented for both the high-resolution and the low-order scheme. The
numerical results computed by the low-order scheme show that the weak imposition
and implicit treatment of boundary conditions bring about a marked improvement
of the nonlinear convergence rates. A similar behavior can be observed for the high-
resolution scheme. The results indicate that the nonlinear convergence rates improve
with increasing CFL number and stagnate for large CFL numbers above CFL = 100.
Since this is not the case in the low-order computations, the phenomenon is caused by
the limiter and the performance of the boundary conditions should be judged for the
low-order computations. Nevertheless, convergence is always reached without freez-
ing the correction factors, although limiters of the employed type are often assumed
to inhibit convergence to steady-state. The fact that the presented scheme converges,
despite oscillatory correction factors, may also be associated with improved boundary
conditions.

Moreover, the grid convergence of both the low-order and the high-resolution scheme
based on algebraic flux correction are examined for several test cases. Remarkably, it is
shown by numerical results that the proposed scheme does not exhibit the carbuncle
phenomenon, which is known to be a weakness of approximate Riemann solvers. The
goal is to show the performance of the methods on unstructured as well as structured
meshes. Linear or bilinear elements are employed and the involved grids consist of ei-
ther triangles or quadrilaterals.

For the purpose of accuracy assessment we measure the relative L2-error. The ana-
lytical solution to the test cases to be presented in this thesis is typically unknown.
Consequently, the error analysis is based on a sufficiently accurate numerical reference
solution. For the results below, the solutions computed on the finest grid serve as the
reference solutions. This enables us to determine the empirical order of convergence
[89]. Let the numerical solutions of either the low-order or the high-resolution scheme,
associated with the mesh sizes h and h

2 , be given by Uh respectively U h
2
. Assume that
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the error satisfies approximately

‖Uh −Ure f ‖2 ≈ Chp, ‖U h
2
−Ure f ‖2 ≈ C

(
h
2

)p
, (9.1)

where Ure f is the reference solution and p indicates the order of convergence. Under
these conditions the order of approximation can be determined by

p ≈
log

(
‖Uh−Ure f ‖2

‖U h
2
−Ure f ‖2

)
log(2)

. (9.2)

In what follows the relative L2-error is calculated by

E2 =
‖Uh −Ure f ‖2

‖Ure f ‖2
. (9.3)

Let us at first focus our attention on the GAMM channel and NACA airfoil benchmarks,
which are well documented in the literature and usually employed for the validation of
compressible flow solvers. The above problems incorporate the most important features
of compressible flow, like shocks and reflections of waves as well as subsonic and wall
boundaries at various Mach numbers.

9.1 10% GAMM Channel

In this section the well known GAMM channel is investigated. Transonic flow at free
stream Mach number M∞ = 0.67 impinges on a 10% circular bump in a channel. The
flow is reflected on the bump, accelerated, and a shock arises on the bump. In this test,
the Mach number varies between approximately 0.22 and 1.41. Subsonic, transonic, and
supersonic regions as well as the sonic point at Mach number M = 1 occur. Character-
istic stiffness associated with the sonic point, the curved boundary of the bump, and
the relatively wide range of Mach numbers make this test case a challenging task for
the numerical scheme. Additionally, the subsonic nature of the inlet and outlet requires
a suitable boundary treatment to achieve convergence to steady-state.

The unstructured triangular coarse mesh is illustrated in figure 9.1 (b). To derive higher
mesh levels, the grid is globally refined by subdividing each edge into two equal parts.
Mesh data for the different refinement levels is listed in table 9.1, where NVT denotes
the number of vertices and NEL refers to the number of elements involved. A numer-
ical solution on mesh level six computed by the high-resolution scheme is presented
in figure 9.1 (a), where the Mach number is illustrated. This serves as the reference so-
lution for the grid convergence analysis reported below. It can be observed that the
solution computed by the high-resolution scheme is well resolved and free of unphys-
ical effects like numerical oscillations. All simulations by the high-resolution scheme
are initialized by the solutions of the low-order problem, which provide sufficiently ac-
curate linearizations to employ infinite CFL numbers. The free stream values serve as
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Level NVT NEL ELow
2 pLow ELim

2 pLim

1 176 292 5.47 · 10−2 0.59 3.05 · 10−2 0.56
2 643 1168 3.64 · 10−2 0.64 2.07 · 10−2 1.04
3 2453 4672 2.34 · 10−2 0.59 1.01 · 10−2 0.99
4 9577 18688 1.55 · 10−2 0.61 5.07 · 10−3 1.45
5 37841 18688 1.01 · 10−2 1.85 · 10−3

6 150433 299008

Table 9.1: GAMM channel: Mesh properties and error analysis

initial values for the low-order computations. During the low-order startup phase one
employs a moderate CFL number of 100. After the relative residual falls to 10−2 the lin-
earization is sufficiently accurate and the CFL number is increased to the desired level.
Note that even CFL = ∞ is possible and divergence was never observed. In figure 9.2
nonlinear convergence histories for both the high-resolution scheme and the low-order
scheme are depicted in logarithmic scale. The relative error is measured in the L2-norm.

It follows from the numerical results that the nonlinear convergence rates of the semi-
implicit pseudo time stepping scheme improve as the CFL number increases. In partic-
ular for the low-order scheme, an infinite CFL number results in the best convergence
rates. This illustrates the performance of the proposed weak Neumann-type boundary
conditions. After ten iterations the residual falls below 10−12, while the solution ap-
proaches steady-state very slowly in the case of small CFL numbers. Small CFL num-
bers correspond to large underrelaxation, which is unnecessary for the linear low-order
scheme. Moreover, an almost monotone decreasing error can be observed for suffi-
ciently large CFL numbers.

A similar behavior of the high-resolution scheme is indicated by the convergence his-
tory, although more nonlinear iterations are required for convergence. When the CFL
number is increased, the convergence rates improve until the threshold CFL = 100 is
reached. At higher values of the CFL number, the convergence rates remain approx-
imately the same. In contrast to [93] the rate of convergence does not deteriorate if
the CFL number is too large. The high-resolution scheme is highly nonlinear and the
correction factors lack differentiability. In fact, the correction factors oscillate. The lack
of smothness of correction factors is a reason for the slower convergence as reported
in [59]. Moreover, the employed preconditioner does not incorporate the correction fac-
tors. Convergence is nevertheless reached. Therefore, the performance of the developed
boundary techniques can be better illustrated by the low-order computations. On the
other hand, the additional computational effort is the price to pay for a superior solu-
tion. A preconditioner equipped with a differentiable limiter is likely to deliver better
convergence rates [62, 59].

Last but not least let us focus our attention on the grid convergence analysis. Since,
no analytical solution is known, a numerical counterpart is computed on mesh level
six and serves as the reference solution. The relative L2-error is shown in table 9.1.
The empirical order of convergence can be determined, if one assumes that the refer-
ence solution is exact. For the low-order scheme the empirical order of convergence
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(a) High-resolution scheme (blue=0.22, red=1.41)

(b) Coarse mesh

Figure 9.1: GAMM channel: Mach number (30 contours) and coarse grid

(a) High-resolution scheme
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(b) Low-order Scheme
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Figure 9.2: GAMM channel: Nonlinear convergence history in logarithmic scale for dif-
ferent CFL numbers on mesh level four
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Figure 9.3: GAMM channel: Correction factors for negative fluxes in terms of 1− R−

(blue= 0, red= 1)

is approximately 0.6. As expected, the high-resolution scheme converges faster. In this
example, the order of approximation is about one. Note that the correction factors de-
pend on the solution. Hence, the order of convergence of the high-resolution scheme
is problem-dependent. For this particular problem a higher order of convergence is
impossible due to the lack of smoothness. The discontinuous solution at the shock is
approximated by the continuous numerical one. Therefore, the largest errors are to be
expected at the shock. This is the main reason for an order of convergence much less
than two as expected for a smooth solution.

At the same time the correction factors are not equal to one in smooth parts of the
flow, which is a second reason for less than second order accuracy. This phenomenon is
illustrated in figure 9.3, where the correction factors for negative antidiffusive fluxes R−

of the first characteristic field associated with the x-direction are presented. For visual-
ization purpose 1− R− is plotted. Sokolichin compared several limiters for the linear
1D continuity equation discretized using finite volumes on a uniform mesh. He found
out [89] that the order of convergence is less than or equal to one when the solution is
discontinuous. In fact, in our results the numerical error of the reference solution may
also play a role and the rate of convergence to the exact solution may be slightly worse.
Nevertheless, grid convergence takes place, as shown by the results above.

9.2 NACA 0012 Airfoil

The second test case is the flow around an airfoil at free stream Mach number M∞ = 0.8.
The symmetric profile of the airfoil surface is given by the function [47]

f±(x) = ±0.6
(

0.2969
√

x− 0.126x− 0.3516x2 − 0.1015x4
)

(9.4)

with x ∈ [0, 1.00893]. The computational domain consists of a circle with radius 10,
which is centered at the tip of the airfoil and covered by an unstructured triangular
grid. The coarse grid is illustrated in figure 9.4 (b). For the numerical solution an incli-
nation angle of α = 1.25◦ is prescribed and a hierarchy of four meshes is investigated.
The flow takes place at Mach numbers ranging between about M = 0.02 at the tip and
M = 1.36 on the top of the airfoil. This indicates a characteristic stiffness related to the
low Mach number regime as well as the sonic point. Moreover, the solution contains
a shock and there are curved boundaries. The mesh data is summarized in table 9.2.
Steady-state low-order solutions act as initial values for the high-order computations.
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Level NVT NEL ELow
2 pLow ELim

2 pLim

1 2577 4963 4.08 · 10−2 0.51 1.68 · 10−3 1.02
2 10117 19852 2.86 · 10−2 0.46 8.27 · 10−4 1.02
3 40086 79408 2.08 · 10−2 2.68 · 10−4

4 159580 317632

Table 9.2: NACA airfoil: Mesh properties and error analysis

We initialized the low-order solutions by the free-stream values and a few pre-iterations
with CFL = 10 are performed before the simulation is switched to a higher CFL num-
ber. Divergence was never observed.

Similar to the GAMM channel test case we examine the grid convergence and the re-
lated empirical order of convergence based on a reference solution, which is computed
on mesh level four. A zoom of the reference solution computed by the high-resolution
scheme is depicted in figure 9.4 (a). One observes that the Mach number contours com-
pare well with the results reported in [17, 47, 62, 29]. Table 9.2 lists the grid conver-
gence study for the current test case. We obtain comparable convergence rates as for
the GAMM channel test case. Convergence is of order 0.5 in the case of the low-order
scheme. At the same time the high-resolution scheme exhibits faster convergence of or-
der one.

The convergence behavior of the nonlinear iteration is also comparable to the GAMM
channel test case (compare figure 9.5). The error of the low-order scheme falls below
10−15 in 20 iterations for an infinite CFL number and the rate of convergence deteri-
orates with decreasing CFL numbers. On the other hand, the relative error hardly de-
creases for small CFL numbers. The high-resolution scheme exhibits a qualitatively sim-
ilar convergence history, although the number of iterations required for convergence is
much larger due to the reasons pointed out above. After about 200 iterations the rel-
ative error falls below 10−8 and the solution can be considered to be stationary. There
is an upper bound for the convergence rate. In other words, an increase of CFL num-
bers in the range above CFL = 100 yields only slightly better convergence rates. The
convergence histories corresponding to CFL = 100, CFL = 1000, and CFL = ∞ are
almost equal. In fact the relative error does not decrease significantly for CFL = 1 and
CFL = 10. The error curves of both simulations are similar.

However, the very fast convergence of the low-order scheme gives evidence for the
performance and robustness of the proposed boundary treatment for the semi-implicit
FEM discretization. In spite of the characteristic stiffness associated with the low Mach
numbers at the tip of the airfoil and the sonic point, the low-order residual decreases
quickly. It is shown by the numerical results that a satisfactory error decay by several
orders of magnitude can be achieved despite oscillating correction factors, provided
sufficient care is taken in the implementation of the boundary conditions and of the im-
plicit time stepping scheme. Moreover, it turns out that large CFL numbers are required
for a satisfactory convergence to steady-state.
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(a) High-resolution scheme (blue= 0.02, red= 1.36)

(b) Coarse mesh

Figure 9.4: NACA airfoil: Mach number zoom (40 contours) and coarse mesh
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(a) High-resolution scheme
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(b) Low-order scheme
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Figure 9.5: NACA airfoil: Nonlinear convergence history in logarithmic scale for differ-
ent CFL numbers on mesh level two

Upper wall Upper Obstacle
xi 0.0 0.4 4.9 12.6 14.25 16.9 4.9 8.9 9.4 14.25 12.6
yi 3.5 3.5 2.9 2.12 1.92 1.7 1.4 0.5 0.5 1.2 1.4

Table 9.3: Scramjet Geometry

9.3 Scramjet Inlet

In this section we study a flow that is supersonic almost everywhere and exhibits mul-
tiple shock reflections at the boundaries. The flow enters the domain at free stream
Mach number M∞ = 3 and impinges on two internal obstacles, where it is reflected
in multiple directions. A small subsonic area arises at the throat, while the remaining
part of the flow including the outlet is supersonic. The computational domain consists
of three piecewise linear boundary components and it is symmetric with respect to
the x-axis. The upper part of the geometry is spanned by the points depicted in table
9.3 [47]. An unstructured triangular coarse gird, illustrated in figure 9.6 (c), is utilized
and refined up to three times for the numerical simulations. Its properties are listed
in table 9.4. The wall boundary conditions require special treatment and the approx-
imate/exact Riemann solver applied to the mirror condition fails to converge. This
problem is closely related to the grid singularities at the obstacles and can be cured
as suggested by Shapiro [84] who has developed a technique for handling grid singu-
larities as interior nodes. In our case it suffices to treat just one edge at the tip of the

Level NVT NEL ELow
2 pLow ELim

2 pLim

1 2266 4132 1.70 · 10−1 0.45 1.01 · 10−1 0.74
2 8665 16528 1.25 · 10−1 0.44 6.06 · 10−2 1.11
3 33859 66112 9.18 · 10−2 2.81 · 10−2

4 133831 264448

Table 9.4: Scramjet: Mesh properties and error analysis
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obstacles as a supersonic outlet. Nevertheless, this artificial outlet may give rise to non-
physical solutions and restricts the generality of the algorithm. Hence, we propose a
different treatment. The free-slip boundary conditions should be implemented in terms
of the zero-flux condition (7.42), which does not require the solution of a Riemann prob-
lem and facilitates convergence, without artificial outlets.

We initialize the high-resolution scheme by the corresponding low-order solution for all
CFL numbers. A few preiterations at lower CFL numbers are required for the startup
phase of the low-order scheme. We choose CFL = 10 for the computations reported
here. The reference solution, associated with mesh level four, is depicted in figures 9.6
(a) and (b). Strong as well as weak shocks are resolved rather well, although the small
subsonic region at the throat is unresolved due to the globally refined grid. Mesh adap-
tivity should be employed to achieve a higher resolution of the weak shocks and of the
subsonic region [60]. However, the contour lines compare well with the simulations of
Möller [60] and Shapiro [84].

A grid convergence study is given in table 9.4. For the low-order scheme one observes
an empirical rate of grid convergence of about 0.45, which is slightly less than the results
for the NACA 0012 airfoil and the GAMM channel test case. The difference arises due
to the multiple shock reflections in the current test case, while the solutions to the first
two test problems are relatively smooth almost everywhere. Typically shocks degrade
the rate of convergence since they necessitate a larger amount of numerical diffusion.
For the high-resolution scheme the empirical rate of convergence varies between about
0.75 and 1.11. The reference solution also approximations shocks in a continuous way
and contains a considerable amount of numerical diffusion. For that reason the rate of
convergence may be slightly overestimated by the latter result.

Finally, the convergence history of the nonlinear iteration is examined for the scramjet
inlet. Due to the multiple shocks, the correction factors vary over the whole domain and
the induced nonlinearity is very strong. Hence one expects a very slow convergence to
steady-state particularly of the high-resolution scheme. Nevertheless, convergence of
the high-resolution scheme is reached in about 500 iterations since the relative error
falls below 10−8 and the error of the low-order simulation approaches 10−14 in about
11 nonlinear iterations. The total number of low-order iterations is comparable to the
previous test cases since the low-order scheme is linear and the preconditioner is close
enough to the exact Jacobian. At the same time, the high-resolution scheme approaches
steady-state slower compared to the NACA 0012 airfoil and GAMM channel simula-
tions. The main reason is the stronger nonlinearity of the correction factors due to the
multiple shock reflections. However, this test case indicates that the proposed treat-
ment of boundary conditions is feasible also for highly non-smooth flows with shock
reflections at the boundary. Moreover, a more physical treatment of mesh singularities
is enabled by the weak form of the free-slip condition.
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(a) Mach number (blue= 1.17, red= 3)

(b) Density (blue= 1, red= 6.24)

(c) Coarse mesh

Figure 9.6: Scramjet: Numerical solution (50 contours) and coarse mesh
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(a) High-resolution scheme
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(b) Low-order scheme

0 10 20 30 40 50
−15

−10

−5

0

Iterations

R
es

id
ua

l

Figure 9.7: Scramjet: Nonlinear convergence history in logarithmic scale for different
CFL numbers on mesh level three

9.4 Converging-Diverging Nozzle Flow

Let us focus our attention on a converging-diverging nozzle. The upper and lower walls
are defined by the function

g±(x) =


±1 if − 2 ≤ x ≤ 0

± cos(πx
2 )+3
4 if 0 < x ≤ 4

±1 if 4 < x ≤ 8

, (9.5)

which is adopted from [29]. Three different flow regimes are prescribed in terms of the
inlet and outlet boundary conditions. The lower and upper boundaries are solid walls.
First we consider a purely subsonic flow at free stream Mach number M∞ = 0.2, which
is prescribed as inlet and outlet boundary condition. The flow is accelerated up to Mach
number M = 0.48 at the throat and decelerated in the diverging part of the nozzle by
the outlet boundary condition. Due to the low Mach number, which varies between
M = 0.17 and M = 0.48 the solution is smooth and the flow weakly compressible
since the density variations are below 10%. Therefore, it is a challenging test case for
the implicit flow solver since convergence problems of the nonlinear iteration are often
associated with low Mach numbers, even though the solution is smooth. The properties
of the employed structured quadrilateral mesh are given in table 9.5 and the numerical
solution computed by the high-resolution scheme on mesh level seven is depicted in
figure 9.8.

The convergence history reported in figure 9.9 reveals that the solution becomes sta-
tionary. The relative residual approaches nearly 10−10 for the high-resolution scheme
and about 10−15 for the low-order scheme. The convergence history of the low-order
scheme, illustrated in figure 9.9 in logarithmic scale, is qualitatively similar to the GAMM
channel and NACA 0012 airfoil test cases. It turns out that the rate of convergence im-
proves if the CFL number is increased. Moreover, the computations with small CFL
numbers do not decrease the residual significantly for a considerable number of itera-
tions. For an infinite CFL number, which corresponds to the Newton-like scheme, the



120 9 Euler Equations

(a) Mach number (blue= 0.17, red= 0.48)

(b) Density (blue= 0.91, red= 1)

(c) Pressure (blue= 0.63, red= 0.72)

Figure 9.8: Subsonic nozzle flow (30 contours)
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Level NVT NEL
1 33 20
2 105 80
3 369 320
4 1377 1280
5 5313 5120
6 20865 20480
7 82689 81920

Table 9.5: Nozzle: Mesh data

(a) High-resolution scheme
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Figure 9.9: Subsonic nozzle flow: Nonlinear convergence history for different CFL num-
bers on mesh level five in logarithmic scale
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relative error falls below 10−15 after ten iterations. At the same time, 20 iterations are
required to approach steady-state if CFL = 1000 is prescribed.

The high-resolution scheme exhibits a slightly different behavior. In the first 300 it-
erations the computations at CFL ≥ 100 exhibit the best but almost invariable conver-
gence rates. After the residual falls below 10−8 (350 iterations), that is the solution can
be considered to be stationary, the error evolution is comparable to the simulation with
CFL = 10. Hence, in this low Mach number test case also moderate CFL numbers yield
a satisfactory convergence to steady-state. Note that in a practical application the con-
vergence history is typically unknown. Therefore, the choice of large or even infinite
CFL numbers is still preferable since it yields better results for most test cases and com-
parable results in this low Mach number computation.

The second computation deals with a transonic inlet at free stream Mach number M∞ =
0.8 and a supersonic outlet. The flow is accelerated in the diverging part of the nozzle
up to Mach number M = 2.8 and shocks occur downstream the nozzle, which are re-
flected at the upper and lower walls. A numerical solution computed on mesh level
seven can be found in figure 9.10. Results of both the first and the second computation
compare well to the results of Hartmann [28].

Last but not least a subsonic/supersonic flow with a shock is investigated. At the in-
flow boundary subsonic flow at free stream Mach number M∞ = 0.3 is prescribed. For
the purpose of comparison we prescribe the same free stream conditions as Hartmann.
That is, we impose a free stream pressure P∞ = 1 instead of P∞ = 1

γ . At the outlet the
free stream boundary conditions are replaced by a pressure outlet, which is presented
in section 7.5.6. The prescribed pressure is Pout = 2

3 . This definition of boundary con-
ditions yields subsonic flow of Mach number M = 0.27, which is accelerated in the
diverging part of the nozzle up to Mach number M = 2. The flow suddenly decelerates
at the end of the diverging part of the nozzle as it passes through a shock. The shock
arises due to the pressure outlet boundary condition. Computational results obtained
on mesh level seven are depicted in figure 9.11. They are almost indistinguishable from
those obtained in [28]. A more detailed analysis of the boundary conditions concerning
this test case can be found in section 9.6.

9.5 Circular Cylinder

The last test case for the Euler equations consists of a circular half cylinder, which is
placed in a gas flow of free stream Mach number M∞ = 10. This problem turns out to
be a very challenging task for the nonlinear solver. The hypersonic flow, impinging on
the surface of the cylinder, creates a bow shock. In front of the cylinder the Mach num-
ber is about zero. Hence, the flow regime switches from hypersonic to the low Mach
number (stagnation) regime, which is responsible for nearly infinite stiffness. It makes
the stationary problem very challenging and requires a powerful solver equipped with
strong underrelaxation to prevent divergence of the nonlinear iteration.

Many approximate Riemann solvers, in particular the Roe solver, are known to exhibit
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(a) Mach number (blue= 0.27, red= 2.79)

(b) Density (blue= 0.16, red= 1.58)

(c) Pressure (blue= 0.05, red= 1.35)

Figure 9.10: Transonic nozzle flow (30 contours)
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(a) Mach number (blue= 0.27, red= 2.03)

(b) Density (blue= 0.23, red= 1.01)

(c) Pressure (blue= 0.13, red= 1.01)

Figure 9.11: Nozzle flow with pressure outlet (30 contours)



9.5 Circular Cylinder 125

(a) Density (50 contours)
(blue= 1, red= 6.05)

(b) Mach number (100 contours)
(blue= 0.007, red= 10)

Figure 9.12: Circular cylinder: Flux-corrected solution

the so-called carbuncle phenomenon if they are applied to this test case. The carbun-
cle phenomenon manifests itself in spurious oscillations ahead of the circle. It is a well
known fact that the oscillations become more pronounced when the grid is aligned with
the bow shock. The simulations are performed on the coarse mesh illustrated in figure
9.14 (b), which is a copy of the mesh used in [74] and consists of 2,418 vertices and
2,300 quadrilateral elements. Ahead of the circle the mesh is almost perfectly aligned
with the bow shock causing spurious oscillations which have been observed in [74] and
the references therein.

It follows from the numerical results that both the high-resolution scheme (compare fig-
ure 9.12) and the low-order scheme (compare figure 9.13) reported in this thesis exhibit
convergence to steady-state despite the nearly infinite characteristic stiffness. Moreover,
both schemes are immune to the carbuncle phenomenon without any ad-hoc tuning. To
get a better resolved solution, the coarse mesh is refined two times. The solution com-
puted by the high-resolution scheme on this mesh consisting of 37,269 vertices and
36,800 quadrilateral elements is plotted in figure 9.14 (a). This solution additionally in-
dicates the performance of the scheme on fine meshes since the convergence rates are
known to be mesh-dependent. This is a reason, why a multigrid procedure is employed
by some authors. The interested reader is refered to [30] among others.
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(a) Density (50 contours)
(blue= 1, red= 5.9)

(b) Mach number (100 contours)
(blue= 0.007, red= 10)

Figure 9.13: Circular cylinder: Low-order solution
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(a) Density (30 contours)
(blue= 0.97, red= 6.13) (b) Coarse mesh

Figure 9.14: Circular cylinder: Solution on grid level 3 and coarse mesh
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(a) Outlet pressure
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(b) Pressure at the centerline
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Figure 9.15: Investigation of the pressure outlet boundary condition

9.6 Numerical Verification of Weak Boundary Conditions

A numerical treatment of boundary conditions that provides enhanced stability and
robustness is one of the main goals of this thesis. Proper implementation of bound-
ary conditions is crucial for the overall accuracy of the scheme since the errors arising
from an inaccurate boundary discretization propagate into the interior of the domain.
This section is therefore concerned with the numerical analysis of the proposed bound-
ary techniques. The accuracy and competitiveness of the weak treatment of solid wall
boundary conditions as compared to its strong counterpart was already analyzed in
the finite volume framework [2]. Our numerical results reported in the sections above
indicate that the proposed weak treatment of boundary conditions is unconditionally
stable. A comparison of the weak wall boundary conditions, proposed in section 7.5.8,
is drawn in the sections below. Weakly imposed boundary conditions are satisfied in
an integral and possibly not pointwise sense. Recall that finite element basis functions
have small support. Therefore, a weak treatment enforces boundary conditions locally.
Last but not least, a comparison of weak and strong boundary conditions is performed
below.

9.6.1 Inlet and Outlet Boundary Conditions

The accuracy of inlet and outlet boundary conditions is verified in this section. It is pos-
sible to examine the pressure outlet of the third simulation for the converging-diverging
nozzle flow (compare section 9.4) as well as the scramjet inlet (compare section 9.3) as
representative test cases of subsonic and supersonic boundary conditions. For the for-
mer test case, the prescribed outlet pressure is Pout = 2

3 . To verify the convergence of the
outlet boundary condition, three mesh levels of bilinear elements are involved. Snap-
shots of the pressure at the outlet boundary for mesh levels five, six, and seven are
reported in figure 9.15 (a). The relative error in the L2-norm

Eout
2 =

‖P− Pout‖2,Γout

‖Pout‖2,Γout

(9.6)
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Level NVT NEL NVTout Eout
2 pout

5 5313 5120 33 2.50 · 10−3 1.32
6 20865 20480 65 1.00 · 10−3 1.12
7 82689 81920 129 4.62 · 10−4

Table 9.6: Mesh properties and outlet boundary error analysis

as well as the empirical rate of convergence pout are listed in table 9.6, where NVTout
denotes the number of nodes at the outlet. Obviously, the boundary discretization error
is very small, even on a relatively coarse grid. Similarly to the discretization error of the
whole domain, the boundary discretization error vanishes with vanishing mesh size,
which is important for grid convergence. To indicate the importance and influence of
the outlet boundary condition on the whole flow, the pressure at the centerline of the
nozzle is displayed in figure 9.15 (b).
For the scramjet inlet the supersonic inlet boundary condition is perfectly reproduced.
The errors of the boundary Mach number, pressure, and first velocity components are
zero, while the error in the second velocity component does not exceed 1.33 · 10−11.
Hence, no detailed analysis is required in this supersonic test case.

9.6.2 Wall Boundary Conditions

In section 7.5.8 two different weak treatments of solid walls are mentioned. On the one
hand, one may enforce the free-slip condition by cancelling the normal velocity compo-
nents (compare equation (7.42)), which turns out to be an easy but robust and accurate
way. On the other hand, a more physical constraint in terms of the reflection or mirror
condition may be imposed (compare equation (7.44)) and the related Riemann problem
should be solved by either an approximate Riemann solver or its exact counterpart.
These two basic approaches are compared for the GAMM channel test case already
considered in section 9.1.

It is difficult to verify the free-slip condition on a curved boundary since the computa-
tional domain is an approximation of the physical one and the normal vector does not
exist at the nodes. To circumvent this trouble it is possible to consider a wall boundary
formed by a straight line. Therefore, the normal vector is defined at every point of the
boundary. This simplifies the evaluation significantly. For the analysis we choose the
upper wall boundary of the GAMM channel domain. Obviously, the normal velocity
corresponding to the upper wall is simply the second velocity component. The char-
acteristics of the involved mesh are reported in table 9.1. The mesh levels four, five,
and six are used. First of all, we compare the zero-flux condition (7.42) with the mirror
condition. Snapshots of the normal velocity computed by both schemes are depicted
in figure 9.16 (a). The mirror condition is embedded either into the approximate Rie-
mann solver of Roe or the exact one of Toro [92]. It turns out that the mirror as well as
the zero-flux solid wall boundary condition yield comparable results with very small
errors, while the mirror condition gives rise to slightly better approximations. More-
over, the solutions computed by the approximate Riemann solver and the exact solver
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(a) Comparison of different wall boundary
conditions (mesh level five)
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Figure 9.16: Analysis of wall boundary conditions at the upper wall boundary

of Toro are almost the same. The difference between the exact and the approximate Rie-
mann solvers are illustrated in figure 9.16 (b) in terms of |vToro

n − vRoe
n |. In the following

it remains to consider the mirror condition. A grid convergence analysis of the above
configuration can be found in figure 9.16 (c) and the relative errors are listed in table
9.7. Obviously, the error in the normal velocity decreases with decreasing mesh size
and the empirical order of convergence is about 1.0. This result is almost the same as
the empirical rate of convergence associated with the whole domain, compare table 9.1.

Summarizing the results, we conclude that the accuracy of the wall boundary treatment
is comparable to the interior discretization, which is essential for the overall accuracy.
The wall boundary discretizations, proposed in this thesis, yield comparable results,
while the mirror condition turns out to be slightly more accurate. At the same time it
is much more complicated and sometimes slightly less robust than the zero-flux condi-
tion. Moreover, there are practically no differences between the approximate Riemann
solver of Roe and the exact Riemann solver of Toro applied to the mirror condition. Of
course one can identify and analyze the small errors and differences in the solutions
computed by the different wall boundary conditions. In a practical application they are
negligible.



9.6 Numerical Verification of Weak Boundary Conditions 131

Level NVTout ELim
2 pLim

4 145 3.95 · 10−4 0.99
5 289 1.99 · 10−4 1.00
6 577 9.94 · 10−5

Table 9.7: Wall boundary error analysis

9.6.3 Strong vs. Weak Boundary Conditions

Alternatively to the proposed weak Neumann-type boundary treatment, boundary con-
ditions may be implemented in a strong sense. For the comparison to be drawn in this
section the predictor-corrector algorithm described in [47, 60], which has proven to be
an accurate and reliable technique in implicit schemes, is implemented in the semi-
implicit time stepping scheme developed so far. The solid wall boundary condition is
replaced by the Riemann solver of Toro to equalize the wall boundary treatment. Both
codes are applied to the GAMM channel test case reported in section 9.1 and the com-
putations are performed on mesh level four.

In figure 9.17 the convergence histories of both the weak and the strong type of bound-
ary conditions are reported. The CFL number of the simulation, where weak boundary
conditions are used, is CFL = ∞ since it was already shown that there are no time step
restrictions. In contrast, the strong treatment of boundary conditions hampers conver-
gence to steady-state. In fact, the scheme diverges for CFL ≥ 1. In the reported compu-
tation, the CFL number is set to CFL = 0.8. It follows from the convergence histories of
both boundary treatments depicted in figure 9.17 that the strong version is less compet-
itive since the CFL number is bounded from above by one. Therefore, several thousand
iterations are required to achieve convergence if there is any. The comparison of both
types of boundary conditions is best suited for the low-order schemes (compare figure
9.17 (b)) since the nonlinearity of the limiter, which degrades the rate of convergence,
is not involved in the solutions.

The computational observations can also be justified in a more mathematical way. While
the weak type of boundary conditions can be incorporated into the matrix in a natural
way, the strong enforcement of boundary conditions requires that off-diagonal matrix
entries be eliminated. This is similar (but not completely equivalent) to dropping the Ja-
cobian in (8.6) at boundary nodes. It makes the scheme explicit at boundary nodes and
therefore gives rise to the well known stability restrictions. In a fully implicit code this
does not completely hold true and the stability bound may be slightly larger since the
solution is updated in an outer fixed point iteration loop. Nevertheless, the predictor-
corrector algorithm remains semi-explicit. On the other hand, off-diagonal matrix en-
tries also have to be deleted. The elimination of off-diagonal matrix entries as well as
solution estimates, involved in the predictor-corrector algorithm, introduce some ex-
plicitness. Moreover, many iterations are required in each pseudo time step to compute
the solution update, which makes the fully implicit approach computationally expen-
sive. In summary, it is shown in this section that the weak Neumann-type of boundary
conditions yields accurate results and far superior stability and convergence compared
to its strong counterpart.
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(a) High-resolution scheme
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Figure 9.17: Nonlinear convergence history for weak and strong boundary conditions
in logarithmic scale
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Now that the performance of the developed numerical scheme has been verified for the
Euler equations, we can focus on the analysis of the two-fluid model featuring a two-
way coupling. The first goal of this chapter is to validate the code and compare with
benchmark computations from the literature. At the same time it is shown that the dis-
cretization of the two-fluid model features most of the properties of the single-phase
gas code. The nonlinear convergence analysis is therefore another important goal. It
follows from the numerical results that the nonlinear convergence behavior is qualita-
tively comparable to the single-phase gas computations. The rate of nonlinear conver-
gence improves with increasing CFL number. In spite of two conflicting non-differen-
tiable nonlinearities, which act together in the case of the high-resolution scheme, the
solution approaches steady-state in all computations. One can observe both a genuine
unconditional stability and a high and stable convergence rate for very large or even
infinite CFL numbers. The performance is highlighted for low Mach numbers and com-
plex flow situations.

In the present chapter two test cases are studied. First the flow in a jet propulsion noz-
zle (JPL nozzle) is investigated. This test case is characterized by subsonic flow at low
Mach numbers in the converging part of the nozzle, which is accelerated up to the su-
personic regime. We analyze the nonlinear convergence for both the low-order and the
high-resolution scheme. Special attention is also paid to the influence of different mass
fractions on the physics of both phases. The second computation deals with the reflec-
tion of a stationary shock wave at a ramp under purely supersonic conditions. Based
on these computations, we study the effect of different particle sizes and mass fractions.

Both test cases involve the flow of nitrogen laden with small ceramic Al2O3 particles.
The constants associated with such flow conditions are listed in table 10.1. At the inlet
a chamber with a homogeneous mixture of uniformly distributed gas and particles is

Constant Value Unit
γ 1.4
Pr 0.75
µ 2.76 · 10−5 kg

m·s
ρp 4000 kg

m3

cpg 1040 J
kg·K

cvg 743 J
kg·K

cvp 1380 J
kg·K

Table 10.1: Physical constants
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Level NVT NEL
1 182 277
2 640 1108
3 2387 4432
4 9205 17728

Table 10.2: Mesh properties JPL nozzle

assumed. The temperatures and velocities are in equilibrium. Let us characterize the
flow further by the mass fraction

φ =
αpρp

αpρp + αgρg
(10.1)

to measure the amount of particles in the chamber. In all computations reported below,
the penalty parameter is set to σ = 108. Moreover, the high-resolution scheme is always
initialized by the low-order solution, which is a sufficiently accurate estimate to render
the linearization adequate.

10.1 Jet Propulsion Nozzle Flow

The converging diverging nozzle is characterized by the presence of curved bound-
aries, a quite steep entrance of 45◦ degrees, and a relatively thin throat, which results
in the large acceleration from Mach number M = 0.1 at the inlet up to Mach num-
ber M = 2 (depending on the mass fraction). Therefore, a large characteristic stiffness
arises.

The geometry of the nozzle is adopted from [34], where the upper and lower bound-
aries serve as solid walls. The left and right boundaries correspond to the inlet and
outlet of the domain, respectively. At the subsonic inlet, the free stream conditions
from table 10.3 are prescribed in contrast to the supersonic outlet, where no bound-
ary condition is needed. The domain is covered by an unstructured triangular coarse
grid (compare figure 10.2), which is refined several times for the simulations. The mesh
properties at different levels are depicted in table 10.2. Computations for various mass
fractions are performed to assess the influence on the gas phase and to compare the re-
sults with data reported in the literature. First we compute five solutions with φ = 0.0
(pure gas), 0.1, 0.5 and d = 1µm, 20µm on mesh level four. For comparison figure 10.1
displays the properties of a pure gas flow. Figure 10.3 illustrates the Mach number dis-
tribution for the different mass fractions and particle diameters.

We observe that the influence of the particles on the gas Mach number increases with
increasing mass fraction. The interfacial area and the amount of drag increase due to
larger volume fractions at higher mass fractions, which decelerates the gas and de-
creases the Mach number. This physical argumentation is clearly confirmed by the
numerical solutions, see figures 10.3 and 10.1 (a). Effective gas density, pressure, and
temperature slightly increase with increasing mass fraction. Snapshots of the quantities
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Quantity Value Unit
M∞ 0.2
ρ∞ 6.0708 kg

m3

P∞ 106 Pa

v∞

√
γP∞
ρ∞

(
M∞

0

)
m
s

φ 0.1, 0.5

Table 10.3: Free stream conditions of
the JPL nozzle flow

Quantity Value Unit
M∞ 2
ρ∞ 6.0708 kg

m3

P∞ 106 Pa

v∞

√
γP∞
ρ∞

(
M∞

0

)
m
s

φ 0.1, 0.3

Table 10.4: Free stream conditions of
the oblique shock wave

(a) Mach number (blue= 0.1, red= 2.22) (b) Density (blue= 1.1, red= 6.27)

(c) Temperature (blue= 283, red= 562)

Figure 10.1: JPL nozzle: Pure gas flow physics (30 contours). Density in kg
m3 , temperature

in K
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Figure 10.2: JPL nozzle: Coarse mesh

of interest at the centerline are depicted in figure 10.4. The results are in a good quali-
tative agreement with the observations of Nishida and Ishimaru [66] and Chang [10],
although the configurations are not exactly equivalent.

Figures 10.3 (c) and (d) also illustrate the influence of the particle diameter on the gas
Mach number contours. It is shown by the contour lines that small particles mimic the
gas behavior. Despite a much higher volume fraction of the larger particles downstream
and in the throat, compare figure 10.5 (b), the gas Mach number is approximately the
same or even slightly higher (at the throat) than in the flow laden with smaller par-
ticles (see figure 10.5(a)). At first glance this looks surprising. The interfacial area of
the flow with d = 20µm is indeed smaller than the corresponding interfacial area of
the flow laden with particles of diameter d = 1µm (for the same volume fraction).
Therefore, the magnitude of interfacial drag increases with decreasing particle diame-
ter. Hence, smaller particles are more capable of decelerating the gas than their larger
counterparts, which compensates the different magnitude of the volume fractions of
both flows. A Mach number increase for larger particles was also observed in [10].

The particle distributions for the mass fraction under consideration, and particle di-
ameters of d = 1µm, 20µm can be compared in figure 10.6. A comparison of the two
different particle diameters indicates a particle clustering at the walls in the converging
part of the nozzle for d = 20µm. In contrast to the gas phase, the particle velocity is not
linked to a pressure term by a constitutive equation, which inhibits such a clustering.
The particulate phase is only coupled to the gas pressure by the interfacial forces. A
larger particle diameter results in less drag and temperature exchange (for the same
volume fraction) due to the smaller interfacial area. Therefore, larger particles are less
influenced by the gas than smaller ones, which more or less mimic the gas behavior. The
larger particles are therefore less deflected to the centerline by the gas flow, or more pre-
cisely due to the pressure gradient, and a larger amount of particles hit the wall. At the
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(a) φ = 0.1, d = 1µm
(blue= 0.1, red= 1.97)

(b) φ = 0.1 d = 20µm
(blue= 0.1, red= 1.93)

(c) φ = 0.5 d = 1µm
(blue= 0.07, red= 1.43)

(d) φ = 0.5 d = 20µm
(blue= 0.07, red= 1.43)

Figure 10.3: JPL nozzle: Mach numbers for φ = 0.1, 0.5 and d = 1µm, 20µm (30 con-
tours)
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(a) Mach number
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(b) Gas temperature in K
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(c) Effective gas density in kg/m3

−1 0 1 2 3 4 5 6
1

2

3

4

5

6

7

y=0

α g ρ
g

 

 
Pure gas
φ=0.1
φ=0.5

(d) Pressure in Pa
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Figure 10.4: JPL nozzle: Gas properties at centerline for d = 20 and various mass frac-
tions
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Figure 10.5: JPL nozzle: Effective particle density in kg
m3 and Mach number at φ = 0.5
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(a) φ = 0.1, d = 1µm
(blue= 0.13, red= 0.73)

(b) φ = 0.1 d = 20µm
(blue= 0.02, red= 1.65)

(c) φ = 0.5 d = 1µm
(blue= 1.18, red= 6.89)

(d) φ = 0.5 d = 20µm
(blue= 0.29, red= 14.1)

Figure 10.6: JPL nozzle: Effective particle densities in kg
m3 for φ = 0.1, 0.5 and d = 1µm,

20µm (30 contours)
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(a) Reynolds number (blue= 0, red= 190)

(b) Drag curve
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Figure 10.7: Reynolds number for φ = 0.5, d = 20µm (15 contours) and drag curve

wall, the particles are deflected to the center of the nozzle by the boundary condition.

In contrast, the amount of particles in the vicinity of the walls in the diverging part of
the nozzle decreases with increasing particle diameter, see figure 10.6. This can be ex-
plained from physical reasons in the same way as above. Moreover, the large Reynolds
numbers at the throat (see figure 10.7 (a)) cause less drag due to the drag curve in fig-
ure 10.7 (b). Therefore, the larger particles are not able to follow the gas streamlines
parallel to the walls. Nishida and Ishimaru [66], Chang [10], and Ishii and Umeda [34]
claim that there are particle free layers in the vicinity of the walls, which increase with
increasing particle size. In the present study, a small amount of particles is still present
in the vicinity of the walls in the diverging part. Note that these particles vanish with
decreasing mesh size, so that the added numerical diffusion can be seen as responsible
for that phenomenon. The temperatures of both phases are almost equal, while the gas
temperature is more affected by the particles, when the particle diameter or the mass
fraction increases as indicated by figure 10.8. To summarize the observations reported
above, we state that the illustrated effects are physically sensible and compare well with
the results reported in the literature.

Last but not least, we examine the convergence behavior of the nonlinear iteration
for φ = 0.1 and d = 1µm to rate on the implicit scheme and particularly the bound-
ary conditions. Note that in this case the interface momentum and heat exchange are
rather large due to the small particle diameter. The convergence history of the low-
order scheme presented in figure 10.9 is qualitatively comparable to the single-phase
computations already discussed in chapter 9. Once again, the Newton-like scheme with
CFL = ∞ exhibits the best convergence rates, while the convergence rates deteriorate
with decreasing CFL numbers. For CFL = ∞ the residual falls below 10−12 in eleven
iterations, while the residual hardly decreases for CFL = 1. This demonstrates the su-
perior performance of the proposed boundary treatment and of the whole semi-implicit
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(a) φ = 0.1, d = 1µm
(blue= 324, red= 564)

(b) φ = 0.1 d = 20µm
(blue= 321, red= 564)

(c) φ = 0.5 d = 1µm
(blue= 414, red= 574)

(d) φ = 0.5 d = 20µm
(blue= 409, red= 574)

Figure 10.8: JPL nozzle: Gas temperature in K for φ = 0.1, 0.5 and d = 1µm, 20µm (30
contours)
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(a) High-resolution scheme
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(b) Low-order scheme
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Figure 10.9: JPL nozzle: Nonlinear convergence history in logarithmic scale for different
CFL numbers on mesh level three

scheme in spite of the strong nonlinearity of the interfacial transfer terms. The excellent
convergence behavior clearly justifies the use of implicit schemes.

In the computations with the high-resolution scheme convergence is also reached and
unconditional stability can be observed. The results of the computations with CFL = ∞
and CFL = 100 are almost the same, while the former case exhibits slightly faster con-
vergence. Obviously, the convergence rates deteriorate with decreasing CFL numbers
as in the single-phase case. The convergence histories are qualitatively comparable with
the single-phase computations. In agreement with figure 9.9 moderate CFL numbers
also yield satisfactory convergence rates and the performance improvement with in-
creasing CFL numbers stagnates at CFL = 100. Moreover, it is slightly less pronounced
than in the single-phase gas computations. Two conflicting nonlinearities due to the in-
terfacial exchange terms and the correction factors are present, which decelerates con-
vergence. On the other hand, the deterioration of convergence rates due to the inter-
facial coupling remains relatively small. Nevertheless, the rate of convergence and the
performance of the scheme are not affected if the CFL number exceeds some upper
bound, as observed in [93] for the Euler equations.

10.2 Oblique Shock Reflection

The second test case in this chapter is a purely supersonic wave reflection at a ramp
of angle 10◦. In contrast to the JPL nozzle flow, a shock arises in the solution and is
reflected at the ramp. At the supersonic inlet boundary (left side) the free stream con-
ditions from table 10.4 are prescribed, while no boundary condition is involved at the
supersonic outlet boundary (right side). The upper and lower boundaries consist of
solid walls. The goal of this section is to study the influence of the particle diameter as
well as that of the mass fraction on the wave position. A comparison with a pure gas
flow is performed for the purpose of code validation. Although the already analyzed
JPL nozzle flow is a much more complicated test case, the current benchmark is also
reported in the literature and allows an additional validation of the code in terms of
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the wave position. For a pure nitrogen flow, which is characterized by table 10.1, the
analytical solution downstream the shock can be determined by shock wave theory [1].
It reads

ρR = 8.8538
kg
m3 MR = 1.6405 PR = 1706578.6040 Pa

with wave angle β = 39.3139◦. The particulate phase consists of solid Al2O3 ceramic
particles, which possess the physical properties listed in table 10.1.

We compute numerical solutions of the configuration described so far for mass frac-
tions φ = 0.1, 0.3 and particle diameters d = 1µm, 20µm. Figure 10.10 displays the ef-
fective gas densities, which are computed on an unstructured mesh consisting of 14,105
nodes and 27,904 triangles. The pure gas flow density is depicted in figure 10.11 (a) for
comparison. We observe that the wave angle decreases with increasing mass fraction,
while it increases with increasing particle diameter. The same observations on the wave
position are reported in [80] and the decrease of the wave angle can be clearly observed
by a comparison of figures 10.11 (a), 10.10 (a),(c) and 10.10 (b),(d). At the same time the
increase of the wave angle due to increasing particle diameter is less obvious in figure
10.10 but still present and also observed in [80]. An increasing particle diameter has an
additional effect on the gas phase. Figure 10.10 illustrates a smearing of the shock in
the gas phase for larger particles. At first glance this seems to be due to an additional
amount of diffusion. This behavior can in fact be explained by the physical nature of
the particles. The particulate phase, if it is considered isolated, does not exhibit a shock
at that position due to the lack of pressure. Moreover, it was already pointed out in sec-
tion 10.1 that large particles are less inclined to follow the gas streamlines. The Reynolds
number distribution (see figure 10.11 (b)) exhibits large Reynolds numbers in the vicin-
ity of the shock, which results in less drag (compare figure 10.7 (b)) and clearly justifies
the above explanation. At the same time, interfacial drag is still present and its mag-
nitude and influence on the gas phase increases with increasing particle mass fraction.
Hence, the shock in the gas phase is smeared and smoothed out by the influence of the
particulate phase rather than by additional numerical diffusion.

Finally, we examine the convergence of the nonlinear iteration by a comparison of dif-
ferent CFL numbers for computations on a mesh consisting of 3,565 nodes and 6,976
triangles. The developed scheme turns out to be unconditionally stable for a suitable
initial guess, which is provided by the low-order solution. To initialize the low-order
computations a few pre-iterations with CFL = 10 are performed. Figure 10.12 shows
the convergence histories for both schemes and the convergence behavior is quali-
tatively comparable to the formerly reported test cases. In the case of the low-order
scheme the rate of convergence improves with increasing CFL number, while CFL = ∞
produces the best results since the relative error falls to 10−11 in about 40 iterations.
In a simulation with CFL = 1, it hardly decreases in the first 100 iterations. The high-
resolution scheme exhibits a similar behavior. Also in this case, the choice of CFL = ∞
offers the fastest convergence. The relative error falls to 10−8 in about 600 iterations af-
ter which the solution can be considered stationary, while CFL = 100 results in nearly
the same rate of convergence. However, the rate of convergence deteriorates with de-
creasing CFL numbers.

In summary, the choice of large CFL numbers is usually preferable since the scheme
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(a) φ = 0.1, d = 1µm
(blue= 6.07, red= 9.05)

(b) φ = 0.1 d = 20µm
(blue= 6.07, red= 9)

(c) φ = 0.3 d = 1µm
(blue= 6.07, red= 9.57)

(d) φ = 0.3 d = 20µm
(blue= 6.07, red= 9.47)

Figure 10.10: Oblique shock: Effective gas density in kg
m3 for φ = 0.1, 0.3 and d = 1µm,

20µm
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(a) Pure gas
(blue= 6.07, red= 9.05)

(b) Reynolds number
(blue= 0, red= 974)

Figure 10.11: Oblique shock: Pure gas flow density in kg
m3 and Reynolds number with

φ = 0.3, d = 20µm

proves unconditionally stable in practical computations for a suitable initial condition,
which can be easily obtained in terms of the low-order solution. Note that no parameter
tuning is required. Hence, the developed scheme inherits the convergence behavior of
the single-phase gas code in a qualitative sense.

(a) High-resolution scheme
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(b) Low-order scheme
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Figure 10.12: Oblique shock: Nonlinear convergence histories in logarithmic scale
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10.3 Operator Splitting vs. Fully Coupled Solution
Strategy

There are two basic approaches to an implicit numerical treatment of the interfacial
transfer terms. Either operator splitting techniques as presented in chapter 6 and ap-
plied in [25] to stationary as well as non-stationary problems may be employed, or the
equations may be integrated in time by the fully coupled implicit time integration as
discussed in chapter 8. At first glance, the former approach significantly reduces the
computational costs since the arising algebraic systems can be solved separately. In
comparison with the fully coupled approach, where an 8 NVT × 8 NVT-system must
be solved, operator splitting reduces the computational effort to the solution of two al-
gebraic systems of size 4 NVT × 4 NVT and a source term integration step. Operator
splitting of Yanenko type is rather stable and robust but not suitable for the computa-
tion of stationary solutions. It does not allow the solution to approach steady-state and
the final result depends on the (pseudo) time step. Douglas-Rachford operator splitting
(compare section 6.1) is therefore investigated, while the Yanenko splitting may serve
to compute an initial guess. The Douglas-Rachford splitting is known to be very robust
at least in the framework of alternating direction implicit (ADI) iterative solvers.

It follows from the numerical results that the Douglas-Rachford splitting introduces
an upper bound for the pseudo time step, which hampers the convergence to steady-
state. This turns the promising reduction of computational costs into a drawback due to
the increasing number of nonlinear iterations. Note that in a time-dependent applica-
tion, where rather small time steps are essential for accuracy reasons, operator splitting
is still competitive due to the low costs.

For the comparison of the fully coupled and the operator splitting approach both schemes
were applied to the problem reported in section 10.1 on mesh level three. Mass fractions
of φ = 0.5 and particle diameters of d = 20µm are prescribed for the numerical tests.
The logarithmic plots of nonlinear convergence histories produced by both the fully
coupled and the operator splitting approach are presented in figure 10.13. All computa-
tions are based on the low-order scheme, which is sufficient to examine the treatment of
source terms. Obviously, the convergence of the fully coupled approach is far superior
since it enables the use of large CFL numbers. On the contrary, the Douglas-Rachford
splitting exhibits convergence only for small pseudo time steps. The scheme remains
stable and does not converge for moderate CFL numbers, which can be explained by the
large stiffness of the interfacial forces and the explicit treatment in the hyperbolic step.
Since it is a well known fact that decoupled methods are subject to time step restric-
tions, the observations are as expected. The fully coupled implicit scheme converges
in about 15 iterations for CFL = ∞ and exhibits convergence for all applied pseudo
time steps. In contrast, Douglas-Rachford splitting does not converge for ∆t > 3 · 10−4,
which corresponds to a maximal CFL number of about CFL = 9. However, it converges
for ∆t = 3 · 10−4 in approximately 1500 iterations, which corresponds to 75 times more
iterations.

Summarizing the results of the presented numerical study, we conclude that the uncon-
ditional stability of the fully coupled implicit time integration proposed in this thesis
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(a) Fully coupled scheme
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(b) Douglas-Rachford splitting
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Figure 10.13: Nonlinear convergence history in logarithmic scale of the low-order
schemes for different pseudo time steps on mesh level three

makes it a highly promising solution strategy for the two-fluid model.
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11 Conclusions and Outlook

11.1 Conclusions

The topic of this thesis has been the development of (semi-) implicit and Newton-like fi-
nite element solvers for the compressible Euler equations and the two-fluid model gov-
erning compressible particle-laden gas flows. Particular emphasis has been laid on sta-
tionary solutions. The spatial discretization of hyperbolic systems is a challenging task
since standard discretization techniques like the finite volume method or the Galerkin
finite element method have very unfavorable properties. These methods violate impor-
tant physical properties of the solution due to the large amount of built-in antidiffusion.
A typical side effect is the birth and growth of numerical oscillations.

To suppress these oscillations, preserve the physical properties of the solution, and
keep the scheme stable the amount of antidiffusion was constrained by a nodal TVD
type flux limiter developed by Kuzmin et al. [44, 49]. The two-fluid model lacks hyper-
bolicity, which makes it impossible to control the amount of antidiffusion for a set of
characteristic variables. This difficulty was circumvented by a separate stabilization of
the gas and the particle equations. Due to their hyperbolicity, the equations governing
the gas phase enable the limiter to be applied in a characteristic sense [47]. The particle
equations only permit a single wave. Consequently, the use of scalar dissipation is in
order. Since the scalar LED criterion is invalid for the nonlinear system, the minimal
diffusion coefficient of scalar algebraic flux correction schemes [46] may produce un-
dershoots and overshoots. It was replaced by a slightly larger one proposed by Banks
and Shadid [3]. This revised definition was shown to be a suitable choice to compute a
physically sensible Riemann solution and suppress numerical oscillations.

On the one hand, the employed limiter increases the order of approximation of the
underlying low-order scheme in smooth parts of the flow and it is one of the most ac-
curate limiter functions available at present. On the other hand, the limiter slows down
convergence to steady-state due to oscillatory correction factors. In some publications
[95] convergence is not achieved if a limiter is applied, unless the correction factors are
frozen. In contrast to the present study, Trépanier et al. [93] observed that the rate of
convergence at large CFL numbers deteriorates if the CFL number exceeds some upper
bound. The deterioration of convergence rates in their study might be related to the
strong nature of boundary conditions and the absence of a boundary Riemann solver.
In the present study convergence and a decrease of the stationary residual by several
orders of magnitude has always been achieved without freezing the oscillatory correc-
tion factors. Steady-state solutions were obtained by pseudo time marching combined
with local time stepping or a Newton-like method. Remarkably, the rate of convergence
did not deteriorate for arbitrarily large CFL numbers.
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Since the stabilization term lacks smoothness, the original Jacobian was replaced by
its low-order counterpart. This results in improved matrix properties and less demand-
ing memory requirements. It was shown by the numerical results that convergence was
achieved by the proposed scheme in a wide range of Mach numbers for both the Euler
equations and the fully coupled two-fluid model. The author is not aware of any pub-
lication, where steady-state solutions to the two-fluid model are obtained in the sense
that the nonlinear residual of the equations approaches zero.

Boundary conditions for the Euler equations and other hyperbolic systems are rarely
discussed in the literature, particularly not in the context of implicit solvers and un-
structured meshes. To the author’s best knowledge there is no publication on uncon-
ditionally stable boundary conditions for the Euler equations discretized by finite el-
ements. It was an important goal of the present thesis to develop a boundary treat-
ment, which is unconditionally stable, allows fast convergence to steady-state at large
CFL numbers, and is of finite element nature. Weak Neumann-type boundary condi-
tions, which were proposed in this thesis, combined with a boundary Riemann solver
were shown to be practically unconditionally stable and convergent for arbitrary CFL
numbers. Moreover, they do not rely on finite volume features. As a matter of fact the
boundary fluxes in the surface integral arising in the weak formulation are affected by
the boundary conditions, rather than the volume integrals.

The potential of the developed boundary techniques is illustrated by the presented
numerical study for the low-order scheme which is not influenced by the additional
nonlinearity arising from the application of the flux limiter function. It was shown
in each of the reported test cases that in the case of the low-order scheme the con-
vergence rates improve with increasing CFL numbers. At the same time, the rate of
convergence of the high-resolution scheme does not deteriorate appreciably if the CFL
number exceeds some upper bound. This convergence behavior is in striking contrast
to numerical studies in other publications [93]. In light of the above, the weak impo-
sition of boundary conditions in the framework of a Newton-like scheme appears to
be very promising. Numerical investigations have demonstrated that the new type of
boundary treatment offers far superior robustness and convergence compared to its
strong counterpart. Moreover, it was shown that the weak type of boundary conditions
maintains accuracy and convergence of the spatial discretization, although it enforces
boundary conditions in an integral rather than a pointwise sense.

Last but not least the developed techniques were tailored to the two-fluid equations.
In spite of the interfacial two-way coupling, it was shown by the numerical results that
unconditional stability and convergence can be achieved for arbitrary CFL numbers,
provided that the source terms are incorporated in the solver by a fully coupled strat-
egy and operator splitting is avoided. It can be inferred from a comparison with the
single-phase computations that the two-fluid model solver features most properties of
its single-phase counterpart. Moreover, the proposed fully coupled implicit time inte-
gration was compared to the usually employed operator splitting techniques. We have
found that the new technique is far superior concerning robustness as well as efficiency
since it is applicable to arbitrary CFL numbers. The lack of pressure in the particle equa-
tions requires a modification of the weak wall boundary conditions. A straightforward
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generalization of the concepts developed for the Euler equations turned out to be in-
sufficient. A penalty term was introduced and added to the momentum equations of
both phases to enforce the free-slip condition.

In summary, the essential novel contributions of this work are:

• Unconditionally stable finite element solver for the Euler equations and the two-
fluid model.

• Unconditionally stable weak Neumann-type boundary conditions for both sys-
tems.

• The penalty term for reinforcing the weakly imposed no-penetration condition.

• The ghost state Riemann solver for the weak boundary treatment.

• Newton-like solver for the two-fluid equations.

• Inclusion of interfacial transfer terms without use of operator splitting.

• Success in computing steady-state solutions to the two-fluid model.

11.2 Outlook

Since we have developed an unconditionally stable nonlinear solver for compressible
single-phase gas as well as particle-laden gas flows, a future goal of primary impor-
tance is to increase the efficiency and to accelerate convergence to steady-state. A better
approximation of the original flux Jacobian may be derived to improve the precondi-
tioner. The resulting Newton scheme combined with a matrix-free version of the Krylov
subspace linear solvers could significantly reduce CPU time and memory requirements.
On the other hand an approximation of the original Jacobian is difficult to derive since
the stabilization term lacks smoothness. Moreover, the matrix properties of the original
Jacobian are far less attractive than those of its low-order counterpart.

At the same time, the investigated fixed point iteration seems to be a suitable smoother
in a multigrid procedure. It was pointed out by Hemker and Koren [31] that the depen-
dence of convergence rates on the spatial length scales can almost be removed by non-
linear multigrid. Therefore, nonlinear multigrid, where the fixed point iteration scheme
proposed in this thesis serves as smoother, is a highly promising way to accelerate con-
vergence to steady-state. Moreover, a strongly coupled smoother of Vanka type can be
employed as an alternative to the solution of very large linear algebraic systems arising
in two-fluid models with source term coupling.

The developed methods are currently implemented in 2D, although they do not rely
on 2D features. The whole algorithm is directly applicable to 3D. Real life applications,
in particular in the field of thermal spraying processes, require 3D simulations. Hence,
the 3D implementation will be another important topic in the future. Due to the signif-
icant increase of problem size in 3D simulations, a very efficient solution strategy, like
the one based on nonlinear multigrid, is crucial for the extension to 3D.

Mesh adaptivity is another way to reduce the computational costs. In 3D applications it
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is particularly important to compute sufficiently accurate solutions at reasonable costs.
The extension of the adaptivity techniques developed in [60] to the two-fluid model
will therefore be addressed in future work.

This thesis was concerned with stationary solutions. Some physical phenomena like
dust explosions or volcanic eruptions are time-dependent. For the simulation of such
transient particle-laden gas flows, the FCT algorithm is better suited than TVD-like
limiters. The development of implicit high-resolution FEM-FCT schemes for fully time-
dependent two-phase flows is another challenging long term goal.



A Approximate Boundary Flux
Jacobians

A.1 Euler Equations

Consider a boundary edge I with adjacent nodes k, l and state vectors Uk, Ul. The
Jacobians of (7.9) and (7.10) are required. Let Ui be the interior state in the sense of
section 7.1 at a quadrature point related to the edge (compare figure 7.4). In section
7.4 the quadrature points are x̂1 and x̂2. The Jacobians with respect to Uk and Ul can
be derived for each quadrature point separately, and the interior state corresponds to
either Ui = U(x̂1) or Ui = U(x̂2). It is obtained by interpolation. The result depends on
the location of the quadrature points as well as both states Uk and Ul. Note that linear
interpolation on the boundary edges is exact for linear and bilinear finite elements. We
focus our attention to the determination of the Jacobian with respect to Uk since the
procedure is the same for Ul. For convenience one drops the index of the quadrature
point and denotes the corresponding ghost state by U∞. The most complicated part is
the derivation of the flux n · F(U∞) = n · F̃h ∞ related to the ghost state in formula (7.49).
Recall that

U∞ = U∞ (W (Ui (Uk, Ul))) (A.1)

is defined by the Riemann invariants W, which are determined by the interior state Ui
as well as the prescribed boundary condition. Hence, the chain rule yields

n · ∂F̃h ∞

∂Uk
= n · ∂F̃h ∞

∂U∞

∂U∞

∂Uk

= n ·A∞
∂U∞

∂Uk

(A.2)

in the normal direction, where A∞ is the Jacobian tensor (1.15) evaluated at the ghost
state. According to (A.1) the latter equation can be further decomposed into

n · ∂F̃h ∞

∂Uk
= n ·A∞

∂U∞

∂Ui

∂Ui

∂Uk
. (A.3)

The Jacobian of (7.49) with respect to the conservative variables is given by

n · ∂F̃h
∂Uk

= n · ∂F̃h
∂Ui

∂Ui

∂Uk
(A.4)

and

n · ∂F̃h
∂Ui

=
1
2

(n ·Ai + |An
i∞|) +

1
2

(n ·A∞ − |An
i∞|)

∂U∞

∂Ui
, (A.5)
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where |An
i∞| is assumed to be independent of the conservative variables. This is consis-

tent with the interior discretization. To evaluate formulas (A.4) and (A.5) it remains to
specify ∂U∞

∂Ui
and ∂Ui

∂Uk
. The latter matrix depends on the location of the quadrature points

dictated by the quadrature rule. It can be derived easily. If both matrices are known,
we take advantage of (A.4) to obtain the final Jacobian of the discretized boundary in-
tegrals (7.9) and (7.10) corresponding to the edge I. In the following sections ∂U∞

∂Ui
will

be determined.

A.1.1 Supersonic Inlet and Outlet Boundaries

The case of supersonic boundary conditions is the easiest one regarding Jacobian de-
termination. At a supersonic inlet, all conservative variables are determined by the
imposed boundary condition and they do not depend on the conservative variables.
Hence,

∂U∞

∂Ui
∣∣∣

superin

= 0 (A.6)

is a matrix of zero entries. Thus the boundary flux Jacobian (A.5) degenerates to

n · ∂F̃h
∂Ui

∣∣∣
superin

=
1
2

(n ·Ai + |An
i∞|) . (A.7)

Otherwise, if the boundary corresponds to a supersonic outlet, the ghost state is equal
to the interior state and (A.5) simplifies to

n · ∂F̃h
∂Ui

∣∣∣
superout

= n ·Ai. (A.8)

A.1.2 Subsonic Inlet and Outlet Boundaries

In this section the derivation of U∞ with respect to the interior state Ui is discussed.
It can be substituted into (A.5) and completes the boundary flux Jacobian. We focus
our attention on subsonic free stream boundary conditions since the derived Jacobians
are also used to construct the preconditioner at other types of subsonic boundaries. A
multiple application of the chain rule to equation (A.1) leads to the formula

∂U∞

∂Ui
=

∂U∞

∂W
∂W
∂Ui

∂Ui

∂Uk
. (A.9)

The following sections are concerned with the determination of the derivatives ∂U∞
∂W and

∂W
∂Ui

.
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A.1.2.1 Free Stream Inlet Ghost State Jacobian

Subsonic inlets and outlets involve the most complicated types of boundary conditions
since the ghost state is determined by the Riemann invariants, which also depend on
the conservative variables. At a subsonic inlet the first three eigenvalues are negative,
while the last is positive. To prescribe characteristic boundary conditions, the first three
Riemann invariants are overwritten by their imposed free stream counterparts (com-
pare section 7.5.5). The case of a pressure-density inlet as described in section 7.5.7 is
quite similar, although it requires some additional effort. On the other hand, the bound-
ary flux Jacobian is merely needed for the preconditioner of the nonlinear iteration and
does not affect the residual. It is therefore acceptable to neglect the latter dependency
and use the Jacobian described in the present section.

The ghost state is uniquely defined by

ρ∞ =
(

c2
∞

γW∞,2

) 1
γ−1

v∞ =
1
2

n(W∞,1 + W∗4 ) + τττ W∞,3

P∞ =
ρ∞c2

∞
γ

c∞ =
γ− 1

4
(W∗4 −W∞,1) ,

(A.10)

where v∞ = (u∞, v∞)T and the Riemann invariants are given by (7.14). It remains to de-
termine the derivatives of the boundary state U∞, which is subject to (A.10). One easily
verifies

∂U(1)
∞

∂U(j)
i
∣∣∣

subin

=
∂ρ∞

∂U(j)
i

=
∂ρ∞

∂c∞

∂c∞

∂W∗4

∂W∗4
∂U(j)

i

=
ρ∞

2c∞

∂W∗4
∂U(j)

i

(A.11)

by an application of the chain rule, where j ∈ {1, . . . , 4} denotes the j-th component of
Ui. By similar arguments the corresponding derivatives of the ghost state with respect
to the conservative variables

∂U(2)
∞

∂U(j)
i
∣∣∣

subin

= u∞
∂ρ∞

∂U(j)
i

+
1
2

n(x)ρ∞
∂W∗4
∂U(j)

i

(A.12)

∂U(3)
∞

∂U(j)
i
∣∣∣

subin

= v∞
∂ρ∞

∂U(j)
i

+
1
2

n(y)ρ∞
∂W∗4
∂U(j)

i

(A.13)

∂U(4)
∞

∂U(j)
i
∣∣∣

subin

=
1

γ− 1
∂P∞

∂U(j)
i

+
|v∞|2

2
∂ρ∞

∂U(j)
i

+
1
4

ρ∞(W∞,1 + W∗4 )
∂W∗4
∂U(j)

i

(A.14)
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can be determined, where

∂P∞

∂U(j)
i

=
γ− 1

2
ρ∞c∞

∂W∗4
∂U(j)

i

+
c2

∞
γ

∂ρ∞

∂U(j)
i

. (A.15)

Last but not least, the derivatives of the fourth Riemann invariant are required to com-
pute the desired Jacobian. They are given by

∂W∗4
∂U(1)

i

= − 1
ρi

vi · n +
γ

ci

(
−Ei

ρi
+
|vi|2

ρi

)
∂W∗4
∂U(2)

i

=
n(x)

ρi
− γ

ci

ui

ρi

∂W∗4
∂U(3)

i

=
n(y)

ρi
− γ

ci

vi

ρi

∂W∗4
∂U(4)

i

=
γ

ci

1
ρi

(A.16)

with vi = (ui, vi)
T.

A.1.2.2 Free Stream Outlet Ghost State Jacobian

The subsonic outlet ghost state Jacobian can be derived in a very similar way. The dif-
ferences are due to the different characteristic directions. In the case of a subsonic outlet
the last three eigenvalues are positive and only the first has negative sign. Hence, the
last three Riemann invariants of (7.14) are taken from the interior, while the first one
is overwritten by the imposed boundary condition. In this section the first Riemann
invariant is assumed to be independent of the conservative variables. This assumption
is satisfied for free stream boundary conditions, while it does not hold in the case of
a pressure outlet (compare to section 7.5.6) since the first Riemann invariant depends
on its second and fourth counterparts. For the sake of simplicity, this dependency is
neglected in this study.

With respect to the characteristic direction the ghost state is given in terms of

ρ∞ =
(

c2
∞

γW∗2

) 1
γ−1

v∞ =
1
2

n(W∞,1 + W∗4 ) + τττ W∗3

P∞ =
ρ∞c2

∞
γ

c∞ =
γ− 1

4
(W∗4 −W∞,1) .

(A.17)

Corresponding to (A.17) one determines the derivatives of the ghost state with respect
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to the conservative variables by a multiple application of the chain rule similar to the
section above. Let once again i denote the index of a boundary node and j its compo-
nents. Due to these abbreviations the first row of the Jacobian reads

∂U(1)
∞

∂U(j)
i
∣∣∣

subout

=
∂ρ∞

∂U(j)
i

=
∂ρ∞

∂c∞

∂c∞

∂W∗4

∂W∗4
∂U(j)

i

+
∂ρ∞

∂W∗2

∂W∗2
∂U(j)

i

(A.18)

and can be simplified to

∂U(1)
∞

∂U(j)
i
∣∣∣

subout

=
ρ∞

2c∞

∂W∗4
∂U(j)

i

+
ρ∞

(1− γ)W∗2

∂W∗2
∂U(j)

i

. (A.19)

The second and third rows involve derivatives of the velocity associated with the ghost
state

∂u∞

∂U(j)
i

=
1
2

n(x) ∂W∗4
∂U(j)

i

− n(y) ∂W∗3
∂U(j)

i

(A.20)

∂v∞

∂U(j)
i

=
1
2

n(y) ∂W∗4
∂U(j)

i

+ n(x) ∂W∗3
∂U(j)

i

, (A.21)

where the tangent is given by (7.5). The remaining three rows of the desired Jacobian
are

∂U(2)
∞

∂U(j)
i
∣∣∣

subout

= ρ∞
∂u∞

∂U(j)
i

+ u∞
∂ρ∞

∂U(j)
i

(A.22)

∂U(3)
∞

∂U(j)
i
∣∣∣

subout

= ρ∞
∂v∞

∂U(j)
i

+ v∞
∂ρ∞

∂U(j)
i

(A.23)

∂U(4)
∞

∂U(j)
i
∣∣∣

subout

=
1

γ− 1
∂P∞

∂U(j)
i

+
ρ∞

2
∂|v∞|2

∂U(j)
i

+
|v∞|2

2
∂ρ∞

∂U(j)
i

, (A.24)

where
∂|v∞|2

∂U(j)
i

= 2W∗3
∂W∗3
∂U(j)

i

+
1
2

(W1,∞ + W∗4 )
∂W∗4
∂U(j)

i

(A.25)

and
∂P∞

∂U(j)
i

=
γ− 1

2γ
ρ∞c∞

∂W∗4
∂U(j)

i

+
1
γ

c2
∞

∂ρ∞

∂U(j)
i

. (A.26)

Note that the derivatives of the fourth Riemann invariant are adopted from (A.16),
while the corresponding derivatives related to the second and third Riemann invariant
are given by
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∂W∗2
∂U(1)

i

=
γ− 1
2ρ

γ
i
|vi|2 −

γ

ρi
W∗2

∂W∗2
∂U(2)

i

=
1− γ

ρ
γ
i

ui

∂W∗2
∂U(3)

i

=
1− γ

ρ
γ
i

vi

∂W∗2
∂U(4)

i

=
γ− 1

ρ
γ
i

∂W∗3
∂U(1)

i

=
1
ρi

(
uin(y) − vin(x)

)
∂W∗3
∂U(2)

i

= −n(y)

ρi

∂W∗3
∂U(3)

i

=
n(x)

ρi

∂W∗3
∂U(4)

i

= 0.

(A.27)

A.1.3 Solid Walls

In the single-phase gas flow simulations the mirror condition or the zero-flux condition
(7.42) is prescribed. To apply the mirror condition a boundary Riemann problem is
solved either by the approximate Riemann solver of Roe or the exact one of Toro [92].
Since it is difficult to compute the original Jacobian of Toro’s solver, it is replaced by
the Jacobian of the flux formula of Roe. The ghost state of a node located on a solid
wall is not determined by the Riemann invariants. We prescribe the mirror condition
by reflecting the normal velocity on the tangent and the ghost state of a node located at
a solid wall boundary is determined by the reflection rather than Riemann invariants.
This significantly simplifies the process of Jacobian derivation. Hence, ∂U∞

∂Ui
is given by

∂U∞

∂Ui
∣∣∣

wall

=


1 0 0 0

0 n(y)2 − n(x)2 −2n(x)n(y) 0

0 −2n(x)n(y) n(x)2 − n(y)2
0

0 0 0 1

 . (A.28)

In the case of the zero-flux condition (7.42), the flux Jacobian simplifies to

n · ∂F̃h
∂Ui

∣∣∣
wall

= (γ− 1)


0 0 0 0

|vi|2
2 n(x) −uin(x) −vin(x) n(x)

|vi|2
2 n(y) −uin(y) −vin(y) n(y)

0 0 0 0

 . (A.29)

A.2 Two-Fluid Model

The two-fluid model of interest consists of conservation laws for the gas as well as the
particulate phase and the fluxes of both phases in conservative variables are indepen-
dent of each other. Hence, the boundary flux Jacobians of both phases can be derived
individually. The flux Jacobians of the gas phase, except at solid walls, are the same as
reported in section A.1 since the equations governing the gas phase of the two-fluid
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model are exactly the Euler equations for the effective density ρ = αgρg. The solid wall
boundary condition for the two-fluid model is implemented by the penalty term and
elimination of fluxes in normal direction from the boundary integrals, see section 7.6.
Hence, it remains to specify the boundary flux Jacobians associated with the particu-
late phase and the solid wall boundary flux Jacobians. The boundary flux Jacobians of
the particulate phase take the form (A.5) as in the case of the gas phase and the final
Jacobians of the boundary integral can be computed analogously.

A.2.1 Particulate Phase Inlet and Outlet Boundary Flux Jacobians

Let us at first consider inlet boundaries. At an inlet all conservative variables of the par-
ticulate phase have to be imposed corresponding to section 7.6.1. Hence, the ghost state
depends on the imposed boundary condition rather than the conservative variables of
the interior state. Let us again assume that |An

i∞| in (7.55) is independent of the conser-
vative variables. Then the inlet flux Jacobian of the particulate phase with respect to the
interior state corresponding to (A.5) simplifies to

n ·
∂F̃h,p

∂Up,i
∣∣∣

in

=
1
2

(n ·Ai + |An
i∞|) . (A.30)

The Jacobian tensor, defined in equation (4.7) and evaluated at the interior state, is
denoted by Ai. On the other hand at an outlet, all conservative variables are taken from
the interior state and consequently the outlet boundary flux Jacobian is

n ·
∂F̃h,p

∂Up,i
∣∣∣

out

= n ·Ai. (A.31)

A.2.2 Wall Boundary Flux Jacobian

The solid wall boundary conditions are imposed by the addition of the penalty term as
well as the elimination of normal fluxes from the boundary integrals. For the gas phase
the boundary flux simplifies to

n · F̃h,g
∣∣∣

wall

=


0

n(x)P
n(y)P

0

 , (A.32)

while it vanishes for the particulate phase due to the lack of pressure

n · F̃h,p
∣∣∣

wall

= 0. (A.33)
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Hence, the solid wall boundary flux Jacobian associated with the gas phase is (A.29)
and its analogous counterpart of the particulate phase is just a block of zero

n ·
∂F̃h,p

∂Up,i
∣∣∣

wall

= 0. (A.34)

Last but not least, the Jacobian of the penalty term (7.60) is needed. Due to the large
penalty parameter σ the penalty term is rather large and stiff, which rules out ad-hoc
approximations of the Jacobian. To circumvent the problem of non-differentiability one
substitutes the absolute value by a smooth approximation [59]

so f tabs(x) =
√

x2 + ε (A.35)

with the very small constant ε > 0. Note that this parameter does not affect the conver-
gence behavior significantly and does not call for any tuning in contrast to the parame-
ters associated with finite difference approximations like (8.20). It is just a small pertur-
bation of the absolute value. All the computations reported later were performed with
the same value of ε = 10−8. The smooth approximation of the absolute value enables
us to derive the flux Jacobian of the penalty term

n · ∂F̃h
∂U
∣∣∣

penalty

= −σ
2v2

n + ε√
v2

n + ε


0 0 0 0

0 n(x)2
n(x)n(y) 0

0 n(x)n(y) n(y)2
0

0 0 0 0

 . (A.36)

The Jacobian is the same for both phases and the indices distinguishing both phases
are dropped for that reason. Note that the sign of the penalty term (7.60) is chosen to
restrict the contribution to the preconditioner positive semi-definite so as to increase its
matrix properties [13]. Indeed the eigenvalues of (A.36) are

λ1,2,3 = 0, and λ4 = −σ
2v2

n + ε√
v2

n + ε
< 0 (A.37)

so that the contribution to the preconditioners (8.11) and (8.12) is positive semi-definite.



B Approximate Drag Force and Heat
Exchange Jacobians

B.1 Drag Force Jacobian

The application of the drag force (2.64) can be written in vectorial form

F̃D =

 0
FD

vp · FD

 = QdragU(1)
g U(1)

p



0
U(2)

g

U(1)
g
− U(2)

p

U(1)
p

U(3)
g

U(1)
g
− U(3)

p

U(1)
p

1
U(1)

p

[
U(2)

p

U(3)
p

]
·


U(2)

g

U(1)
g
− U(2)

p

U(1)
p

U(3)
g

U(1)
g
− U(3)

p

U(1)
p





= Qdrag


0

U(2)
g U(1)

p −U(2)
p U(1)

g

U(3)
g U(1)

p −U(3)
p U(1)

g

U(2)
g U(2)

p + U(3)
g U(3)

p −
U(1)

g

U(1)
p

(
U(2)

p
2
+ U(3)

p
2
)
 ,

(B.1)

where Qdrag is an abbreviation of

Qdrag =
3

4ρpdαg
|vp − vg|CD. (B.2)

In the definition above, Qdrag depends on the drag coefficient CD and consists of the
non-smooth part of F̃D. Consequently, Qdrag is assumed to be constant with respect
to the conservative variables, instead of replacing the non-differentiable functions by
smooth approximations. The advantages of this approach are twofold. First, it yields a
more robust scheme compared to the former mentioned opportunity. Second, it is pos-
sible to define a user-defined drag curve very easily.

Due to the assumptions above, the approximate Jacobians of the drag force with re-
spect to the conservative variables of both the gas and the particulate phase are given
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by

∂F̃D

∂Ug
= Qdrag


0 0 0 0

−U(2)
p U(1)

p 0 0
−U(3)

p 0 U(1)
p 0

−U(2)
p

2
+U(3)

p
2

U(1)
p

U(2)
p U(3)

p 0

 (B.3)

and

∂F̃D

∂Up
= Qdrag



0 0 0 0
U(2)

g −U(1)
g 0 0

U(3)
g 0 −U(1)

g 0
U(1)

g

(
U(2)

p
2
+U(3)

p
2
)

U(1)
p

2
U(2)

g U(1)
p −2U(1)

g U(2)
p

U(1)
p

U(3)
g U(1)

p −2U(1)
g U(3)

p

U(1)
p

0

 . (B.4)

B.2 Temperature Exchange Jacobian

An approximate Jacobian of the interfacial temperature exchange can be derived in a
similar way. The interfacial heat exchange is modeled by (2.65)

QT =
Nu6κ

d2 αp(Tg − Tp). (B.5)

One can rewrite it in a more compact form

QT = QtemU(1)
p (Tg − Tp), (B.6)

where Qtem is defined by

Qtem =
Nu6κ

ρpd2 . (B.7)

Like the approximate derivation of the drag force contributions, Qtem is assumed to be
independent of the conservative variables. This eliminates the need for differentiating
the non-smooth Nusselt number Nu. In addition, it is possible to specify a user-defined
Nusselt number in an external subroutine without changing the source code, which
makes it more flexible. Taking the latter assumption into consideration the approximate
Jacobians with respect to the conservative variables are

∂QT

∂Ug
= Qtem

U(1)
p

cvg


0 0 0 0
0 0 0 0
0 0 0 0

− U(4)
g

U(1)
g

2 + U(2)
g

2
+U(3)

g
2

U(1)
g

3 − U(2)
g

U(1)
g

2 −
U(3)

g

U(1)
g

2
1

U(1)
g

 (B.8)
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and

∂QT

∂Up
= Qtem


0 0 0 0
0 0 0 0
0 0 0 0

Tg − Tp + U(4)
p

U(1)
p
− 1

cvp

(
U(2)

p
2
+U(3)

p
2

U(1)
p

2

)
U(2)

p

cvpU(1)
p

U(3)
p

cvpU(1)
p
− 1

cvp

 . (B.9)

Hence the approximate source term Jacobian (8.34) of the two-fluid model is defined in
terms of

∂Sp

∂Ug
= ML diag{∂F̃D 1

∂Ug 1
+

∂QT 1

∂Ug 1
, . . . ,

∂F̃D NVT

∂Ug NVT
+

∂QT NVT

∂Ug NVT
} = −

∂Sg

∂Ug
(B.10)

and

∂Sp

∂Up
= ML diag{∂F̃D 1

∂Up 1
+

∂QT 1

∂Up 1
, . . . ,

∂F̃D NVT

∂Up NVT
+

∂QT NVT

∂Up NVT
} = −

∂Sg

∂Up
(B.11)

corresponding to (8.35).
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[17] M. Feistauer, J. Felcman, I. Straškraba: Mathematical and computational methods for
compressible flow, Clarendon Press, Oxford, 2003.
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