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Abstract

This paper suggests a two step estimation procedure for a spatial model with

different kinds of spatial dependence and heteroscedastic innovations. Since

maximum likelihood estimation is cumbersome due to the large number of

parameters, we use a generalized method of moments approach to estimate

the parameters of spatial correlation which does not need the large number

of variance parameters to be known. For illustration purposes, we apply our

estimation procedure to daily stock returns of the Euro Stoxx 50 members.
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I. Introduction and Summary

Spatial modeling of dependence structures has become very popular over the last

years. In many applications, it seems natural that observations at one location de-

pend on neighboring observations at nearby locations. This phenomenon appears in

different contexts like mining, agriculture, ecology or epidemiology, see e.g. Anselin

(1988), Cressie (1991) and LeSage and Pace (2009) and the references therein. In

some situations, there may be different kinds of spatial dependence in the data. A

typical example are origin-destination flow models. LeSage and Pace (2008) distin-

guish between origin, destination and origin-to-destination dependence. Models of

this kind can be used to analyze e.g. German journey-to-work data (Griffith (2009)),

inter-provincial migration in Poland (Sarra and Signore (2010)) or Dutch museum

visitor behavior (de Graaff et al. (2009)).

In this paper, we consider a model, where three different kinds of dependence may

arise. In addition, we allow for heteroscedasticity. Thus, the number of unknown

parameters to be estimated is large so that maximum likelihood estimation may

be challenging. We suggest a two stage estimation procedure which can be easily

implemented. First, we estimate the three parameters of spatial dependence by

GMM in a way similar to Kelejian and Prucha (1999) and Kapoor et al. (2007).

Here, we circumvent the large number of variance parameters by constructing the

GMM estimator in such a way that the typically unknown variance parameters are

not needed. In a second step, given the GMM estimates of the spatial dependence

parameters, estimation of the variance parameters is straightforward.

As an illustration we apply our estimation procedure to daily stock returns of

the 50 members of Dow Jones Euro Stoxx 50 for the period 2003-2009. So far,

spatial modeling is not very popular in financial applications like stock returns.

The reason for this might be that spatial models require some kind of distance

measure between different locations in order to determine which locations should be

considered as neighbors. Physical distance between the head offices does not seem to

be a reasonable choice: Why should the stocks of Siemens and Allianz, both located

in Munich, perform more homogenous than the stocks of Bayer and BASF, where
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the physical distance between the head quarters is larger? Consequently, up to now

the literature concentrates on information spillovers where proximity to innovation

clusters or patent activity plays an important role, see e.g. Boasson and MacPherson

(2001) or Boasson et al. (2005). Stock performance is then used as a measure for

economic success.

We suggest a more general form of spatial dependence for stock returns where

we distinguish between three different kinds of spatial dependence. The first one is a

general dependence which affects all stocks in the same way. The second one is global

in nature and applies to firms that belong to the same branch: Since global input

factors like commodity prices should have a similar effect on firms belonging to the

same branch, the corresponding stock returns should display a similar behavior. The

third one is a local form of dependence: Firms that are located in the same country

should display similar behavior because they are exposed to the same surrounding

conditions like regulatory frameworks or the business cycle in that country. In

this model, we can compare the different spatial dependencies to each other. The

innovation terms are allowed to be heteroscedastic. We restrict ourselves to the

Euro Stoxx 50 in order to avoid the effect of exchange rate fluctuations.

II. Two Step Estimation Procedure

For t = 1, . . . , T , let yt be an n-dimensional random vector. We assume independence

over time so that yt is independent of ys for s 6= t. In the cross-sectional dimension,

the components of yt are assumed to be spatially correlated where we allow for three

different kinds of spatial dependence:

yt = ρ1W1yt + ρ2W2yt + ρ3W3yt + εt. (1)

The spatial weight matrices W1, W2 and W3 are known; the elements on the main

diagonals are zero and the matrices are row-standardized. The elements of εt are not

correlated, but they may be heteroscedastic, i.e., Cov(εt) = diag{σ2
1, . . . , , σ

2
n} =: Σ.

We assume that E(yt) = 0 which is suitable for our application; generalizations to

cases where the expectation depends on explanatory variables are straightforward
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since the spatial correlation structure (1) could then be applied to the disturbances

of the corresponding regression model. If the inverse of the matrix (In − ρ1W1 −

ρ2W2 − ρ3W3) exists, our model leads to

Cov(yt) = (In − ρ1W1 − ρ2W2 − ρ3W3)
−1 Σ

(
In − ρ1W

T
1 − ρ2W

T
2 − ρ3W

T
3

)−1

=: V,

where AT denotes the transpose of a matrix A. Of course, the parameters could be

estimated by way of maximum likelihood. Assuming normality and independence

over time, the likelihood function would be

L(ρ1, ρ2, ρ3,Σ) = (2π)−
nT
2 (detV )−

T
2 exp

(
−1

2

T∑
t=1

yTt V
−1yt

)
.

Altogether, our model contains n+3 parameters, the three correlation parameters ρ1,

ρ2 and ρ3 and n parameters of variance, σ2
i . Thus, the calculation of the maximum

likelihood estimates can be computationally expensive, especially if n is large.

As an alternative, we suggest a two step estimation procedure which is easy to

compute. First, we estimate the correlation parameters by generalized method of

moments along the lines of Kelejian and Prucha (1999) or Kapoor et al. (2007). We

will show that this step does not depend on the parameters of variance. Second,

given the estimated correlation parameters it is straightforward to estimate the

variance parameters.

The GMM estimator for the correlation parameters uses the following three

moment conditions:

E
(
εTt W1εt

)
= tr(W1Σ) = 0,

E
(
εTt W2εt

)
= tr(W2Σ) = 0,

E
(
εTt W3εt

)
= tr(W3Σ) = 0.

Replacing εt by

εt = (In − ρ1W1 − ρ2W2 − ρ3W3) yt

and averaging over t gives the theoretical system of equations

Γθ + γ = 0,
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where

θ :=
(
ρ1, ρ2, ρ3, ρ

2
1, ρ

2
2, ρ

2
3, ρ1ρ2, ρ1ρ3, ρ2ρ3

)T
and for i, j ∈ {1, 2, 3}, the elements of Γ ∼ (3× 9) and γ ∼ (3× 1) are defined by

Γ(ij) = E

(
1

T

T∑
t=1

yTt
(
Wi +W T

i

)
Wjyt

)
,

Γ(i, 3 + j) = E

(
1

T

T∑
t=1

yTt W
T
j WiWjyt

)
,

Γ(i, 7) = E

(
1

T

T∑
t=1

yTt W
T
1

(
Wi +W T

i

)
W2yt

)
,

Γ(i, 8) = E

(
1

T

T∑
t=1

yTt W
T
1

(
Wi +W T

i

)
W3yt

)
,

Γ(i, 9) = E

(
1

T

T∑
t=1

yTt W
T
2

(
Wi +W T

i

)
W3yt

)
,

γi = E

(
1

T

T∑
t=1

yTt Wiyt

)
.

Let G and g be the empirical counterparts of Γ and γ, i.e., for i ∈ {1, 2, 3}, j ∈

{1, . . . , 9}, G(ij) and gi are given by Γ(ij) and γi with the expectation operator left

out, respectively. The GMM estimator for ρ1, ρ2 and ρ3 is defined as

(ρ̂1, ρ̂2, ρ̂3)
T
GMM := arg min

ρ1∈[−1,1],ρ2∈[−1,1],ρ3∈[−1,1]
||Gθ + g||.

The theoretical term Γθ + γ is equal to zero for the true parameter values. Our

GMM estimator is calculated by finding the values for ρ1, ρ2 and ρ3 for which the

corresponding empirical system Gθ + g is closest to zero. Compared to the ML

estimator of the model parameters, this GMM estimator is easy to calculate: We

just have to minimize ||Gθ+ g|| with respect to ρ1, ρ2 and ρ3. Even for large n, this

is easy to handle. In particular, the parameters of variance σ2
i are not needed to

calculate the GMM estimators for the correlation parameters. This GMM estimator

is consistent for T →∞ as long as the theoretical system of equations has a unique

solution in ρ1, ρ2, and ρ3. The proof is a straightforward extension of Kelejian and

Prucha’s proof.
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Given the estimates for the correlation parameters, estimation of the parameters

of variance in the second step is straightforward: We just take the averages over the

estimated ε̂2
i,t:

σ̂2
i :=

1

T

T∑
t=1

ε̂2
i,t :=

1

T

T∑
t=1

[(In − ρ̂1W1 − ρ̂2W2 − ρ̂3W3) yt]
2
i .

For T → ∞ and i = 1, . . . , n, the estimator σ̂2
i is consistent for σ2

i by the law of

large numbers as long as the yt have finite absolute (4 + δ)− th moments for some

δ > 0.

III. Monte Carlo Simulation

We investigate the finite sample properties of our estimation procedure by Monte

Carlo simulation studies. We choose n = 50 and construct the adjacency matrices in

the following way. For W1, all off-diagonal elements are equal to 1/49 so that each

observation is affected by every other observation. The second matrix W2 reflects

a dependence between blocks of five observations each so that e.g. observation 17

depends on observations 16, 18, 19 and 20. The corresponding non-zero elements

of W2 are all equal to 1/4. Finally, for W3 the first 25 observations depend on each

other as well as the last 25 observations so that the non-zero elements of W3 are

equal to 1/24. We consider three different sample sizes T = 100, 500, 2000 and

three different settings for the spatial correlations parameters. The first one reflects

small correlations (ρ1 = ρ2 = ρ3 = 0.1), the second one large correlations (ρ1 = ρ2 =

ρ3 = 0.3) and the third one different amounts of correlation (ρ1 = 0.1, ρ2 = 0.3,

ρ3 = 0.5). For the innovation terms εi we consider homoscedasticity (σ2
i = 1) as well

as heteroscedasticity (σ2
i = i). For each combination of T , correlation structure and

variance structure, we generate 10000 replications of the data and compute simulated

biases and MSEs of the correlation parameter estimators as well as the sum of the

biases and the sum of the relative MSEs of the n = 50 variance parameters, e.g. the

MSEs are divided by the true variance parameters before summation.

Table 1 gives the simulated biases. In general, the biases are small. For settings

with different amounts of dependence (ρ1 = 0.1, ρ2 = 0.3, ρ3 = 0.5), ρ̂1 seems to be
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Table 1: Simulated biases of the estimators for n = 50, 10000 repetitions each

T ρ1 ρ2 ρ3 σ2
i ρ̂1 ρ̂2 ρ̂3 σ̂2

i

100 0.1 0.1 0.1 1 -0.00026 -0.00030 -0.00470 -0.03266

100 0.3 0.3 0.3 1 0.00228 -0.00048 -0.00273 -0.01119

100 0.1 0.3 0.5 1 0.01520 -0.00047 -0.00052 0.00189

500 0.1 0.1 0.1 1 0.00042 -0.00018 -0.00010 -0.00954

500 0.3 0.3 0.3 1 0.00030 -0.00014 -0.00029 -0.00576

500 0.1 0.3 0.5 1 0.00610 0.00001 -0.00019 0.01114

2000 0.1 0.1 0.1 1 -0.00013 0.00001 -0.00022 -0.00176

2000 0.3 0.3 0.3 1 0.00026 0.00004 -0.00031 -0.00056

2000 0.1 0.3 0.5 1 0.00050 0.00003 -0.00011 -0.00008

100 0.1 0.1 0.1 i 0.00004 -0.00059 -0.00566 -1.04455

100 0.3 0.3 0.3 i 0.00211 -0.00055 -0.00229 -0.06369

100 0.1 0.3 0.5 i 0.01436 -0.00041 -0.00064 0.25778

500 0.1 0.1 0.1 i 0.00031 -0.00014 -0.00117 -0.17334

500 0.3 0.3 0.3 i 0.00037 -0.00004 -0.00056 0.05469

500 0.1 0.3 0.5 i 0.00670 -0.00000 -0.00019 0.41660

2000 0.1 0.1 0.1 i 0.00001 0.00006 -0.00022 -0.06643

2000 0.3 0.3 0.3 i 0.00021 0.00002 -0.00025 -0.05600

2000 0.1 0.3 0.5 i 0.00066 0.00004 -0.00008 -0.04628
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Table 2: Simulated MSE of the estimators for n = 50, 10000 repetitions each

T ρ1 ρ2 ρ3 σ2
i ρ̂1 ρ̂2 ρ̂3 σ̂2

i

100 0.1 0.1 0.1 1 0.00575 0.00041 0.00362 1.00283

100 0.3 0.3 0.3 1 0.00095 0.00028 0.00116 1.00195

100 0.1 0.3 0.5 1 0.00298 0.00028 0.00054 1.00296

500 0.1 0.1 0.1 1 0.00108 0.00008 0.00069 0.20079

500 0.3 0.3 0.3 1 0.00017 0.00005 0.00021 0.19985

500 0.1 0.3 0.5 1 0.00125 0.00006 0.00010 0.20085

2000 0.1 0.1 0.1 1 0.00028 0.00002 0.00017 0.04997

2000 0.3 0.3 0.3 1 0.00042 0.00001 0.00005 0.04995

2000 0.1 0.3 0.5 1 0.00009 0.00001 0.00002 0.05000

100 0.1 0.1 0.1 i 0.00439 0.00054 0.00366 25.48836

100 0.3 0.3 0.3 i 0.00096 0.00036 0.00130 25.51620

100 0.1 0.3 0.5 i 0.00275 0.00036 0.00056 26.32263

500 0.1 0.1 0.1 i 0.00083 0.00011 0.00071 5.10533

500 0.3 0.3 0.3 i 0.00015 0.00007 0.00022 5.11178

500 0.1 0.3 0.5 i 0.00137 0.00007 0.00011 5.45464

2000 0.1 0.1 0.1 i 0.00021 0.00003 0.00018 1.27290

2000 0.3 0.3 0.3 i 0.00004 0.00002 0.00005 1.27235

2000 0.1 0.3 0.5 i 0.00013 0.00002 0.00003 1.30723

slightly upward biased. For the other settings, the simulated biases do not show a

clear pattern. There are positive as well as negative signs so that the true biases

seem to be close to zero. The variance structure of the innovations does not seem

to influence our results. This fits to the fact that the variance parameters are not

needed to calculate the spatial dependence parameters.

Table 2 shows the results for the MSEs. In general, the MSEs of the correlation

parameters are very small even for moderate T . This is true for homoscedastic as

well as heteroscedastic innovations. In return, the sum of the MSEs of the variance

parameters is clearly robust against different correlation settings. As T increases,
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all MSEs seem to decrease by order 1/T . Comparing the different correlation pa-

rameters to each other we conclude that MSEs decrease when the true parameter

increases. Furthermore, MSEs are smallest for ρ̂2 which captures a dependence of

only 5 observations each.

IV. Application to stock returns

We analyze the spatial dependencies in the daily stock returns of the Euro Stoxx 50

members in the composition of January 2010 for the period from 2003 until 2009.

The data we use are adjusted stock prices from Datastream which we transfer to log

returns. Our basic model for the stock returns on day t, t = 1, . . . , T , is

yt = ρgWgyt + ρbWbyt + ρlWlyt + εt,

where yt is the vector of stock returns on day t, the weight matrices Wg, Wb and Wl

capture general dependencies, dependencies inside branches and local dependencies

and the unknown parameters ρg, ρb and ρl represent the amount of the three kinds of

dependencies, respectively. Our main interest is to distinguish between dependencies

inside branches and local dependence. In addition, we introduce a third kind of

dependence called general dependence to capture impacts which effect all stocks in

a similar way like prior performances of stock markets in the USA or Asia. If we did

not do that, the dependencies of main interest could be superposed by this general

dependence.

Table 3 shows the partitioning of the Euro Stoxx 50 members into branches and

countries. Nokia and CRH are the only representatives of their home countries,

respectively, but in order to avoid singularities, groups must not consist of only

one member. We consider two different groupings. In model 1, we impose a group

called
”
others“ for Finland and Ireland, where only one company is part of the Euro

Stoxx 50, respectively. In model 2, we put Nokia and CRH to the Benelux group

which would then be labeled
”
small countries“. According to these groupings, the

adjacency matrices are constructed in the following way. The off-diagonal elements

of the general adjacency matrix Wg are 1/(n− 1). In Wb and Wl, the element in the
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Table 3: Partitioning of Euro Stoxx 50 members into branches and countries in model

1; groups
”
Benelux“ and

”
others“ are merged to the new group

”
small countries“ in

model 2

Finance Aegon, Allianz, AXA, Banco Bilbao, Banco Santander,

BNP, Crédit Agricole, Deutsche Bank, Deutsche Börse,

Generali, ING, Intesa, Münchener Rück,

Société Générale, Unicredit

Automobil Daimler, Renault, VW

Energy Alstom, E.ON, ENEL, ENI, Iberdrola, Repsol, RWE,

SUEZ, Total

Telecom and Media Deutsche Telekom, France Telecom, Telecom Italia,

Telefonica, Vivendi

Pharma and Chemicals Air Liquide, BASF, Bayer, Sanofi

Construction Vinci, Saint-Gobain

Consumer Electronics Nokia, Philips, SAP, Siemens, Schneider

Consumer retail Anheuser Busch, Carrefour, Danone, L’Oreal, LVMH,

Unilever

Basic Industry Arcelor Mittal, CRH, Saint Gobain, Vinci

Benelux Aegon, Anheuser Busch, Arcelor, ING, Philips,

Unilever

France Air Liquide, Alstom, AXA, BNP, Carrefour, Crédit

Agricole, France Telecom, Danone, L’Oreal, LVMH,

Saint Gobain, Sanofi, Schneider, Société Générale,

SUEZ, Total, Vinci, Vivendi

Germany Allianz, BASF, Bayer, Daimler, Deutsche Bank,

Deutsche Börse, Deutsche Telekom, E.ON, Münchner

Rück, RWE, SAP, Siemens, VW

Italy Generali, ENEL, ENI, Intesa, Telecom Italia,

Unicredito

Spain Banco Bilbao, Banco Santander, Iberdrola, Repsol,

Telefonica

Others CRH, Nokia
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Table 4: Spatial dependencies in Euro Stoxx 50 stock returns

model 1 model 2

period ρ̂g ρ̂b ρ̂l ρ̂g ρ̂b ρ̂l

2003-2009 0.544 0.192 0.101 0.504 0.190 0.143

2003 0.440 0.219 0.170 0.381 0.215 0.233

2004 0.579 0.148 0.058 0.509 0.144 0.132

2005 0.571 0.159 0.066 0.515 0.155 0.126

2006 0.538 0.201 0.092 0.522 0.198 0.111

2007 0.459 0.231 0.143 0.374 0.230 0.231

2008 0.637 0.129 0.081 0.609 0.128 0.112

2009 0.418 0.332 0.095 0.396 0.331 0.118

ith row and jth column is nonzero if the corresponding stocks belong to the same

branch (Wb) or country (Wl). In each row, the nonzero entries are identical. The

matrix Wg is the same in both models as well as Wb, whereas Wl is different between

both models. We estimate the dependence parameters ρg, ρb and ρl on the whole

data set as well as on subsamples which contain the daily returns of only one year,

respectively.

Table 4 shows the results. For each year as well as for the whole data set,

general dependence is the largest in both models. In model 1, where we have the

local group
”
others“, dependence inside branches is about twice as large as local

dependence. In model 2, where all companies of small countries are put together in

one group, local dependence increases by about 0.05, whereas general dependence

decreases correspondingly. Dependence inside branches is practically the same for

both models. We conclude that in model 2, local dependence captures general

dependence to some extent because we invented a new group of small countries

which are not really locally connected. Consequently, we prefer model 1 to model 2

because it seems to capture the different kinds of dependence more accurately. It is

quite interesting to see that for model 1 in 2009, ρ̂b rises to 0.332, whereas ρ̂l is only

0.095. This could mean that recently, dependencies inside branches became more
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important than local dependencies.
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