Fachbereich Informatik
Lehrstuhl fiir Software-Technologie

MEMO Nr.136

Vitruv: Specifying Temporal Aspects of Multimedia Presentations

A Transformational Appr_oach based on Intervals

Klaus Alfert

April 2003

Internes Memorandum des
Lehrstuhls fiir Software-Technologie
Prof. Dr. Ernst-Erich Doberkat
Fachbereich Informatik

Universitat Dortmund

Baroper Strafie 301

D-44227 Dortmund

ISSN 0933-7725

Vitruv: Specifying Temporal Aspects of
Multimedia Presentations —
A Transformational Approach based on
Intervals

Dissertation
zur Erlangung des Grades eines
DOKTORS DER NATURWISSENSCHAFTEN
der Universitat Dortmund
am Fachbereich Informatik
von
Klaus Alfert

Dortmund

10. Oktober 2002

Tag der mundlichen Prafung: 14.02.2003

Dekan: Prof. Dr. Bernhard Steffen

Gutachter: Prof. Dr. Ernst-Erich Doberkat
Prof. Dr. Volker Gruhn

Contents

1.

Introduction
1.1. The Altenberg Cathedral Project
1.1.1. OverviewoftheProject
1.1.2. The Software Engineering Dimension
1.1.3. Our Approach in the Altenberg Cathedral Project and its Prob-
lems
1.1.4. Summary and Problem Statement,
1.2. Our Solution Proposal: Vitruv
1.3. HowVitruvworks
1.4. Discussion and Related Work,
1.4.1. Using Natural Language
1.4.2. Prototyping and Participative Design
1.4.3. Modeling Vague or Imprecise Requirements
1.4.4. Conclusion
15, OVeIVIEW o o
1.6. Acknowledgements

Setting
Basic Terms

Related Work

3.1 FormalModels
3.1.1. ConceptualModels
3.1.2. LogicalModels
3.1.3. Operational and other Models

3.2. Specification Techniques
3.21. PetriNets
3.2.2. Statecharts
3.23. UML e

3.3. Software Engineering Approaches

L R N

11
12
14
15
17
18
19
19
20

21
23

27
27
28
29
33
35
36
37
37
38

Contents

4.

3.3.1. Requirements Engineering
3.3.2. Software Engineering based Hypermedia and Multimedia De-
signMethods

3.4. Assessmentand Conclusion
3.4.1. FormalModels
3.4.2. Specification Techniques
3.4.3. Software Engineering based Approaches
344. Conclusion

Defining Vitruv

An Introduction to the Vitruv Approach

4.1. Basic Conceptsof Vitruv

42, VItTUVL ..o
4.2.1. Language Features
4.2.2. Conceptual Modeling and its Realization

4.3. The Semanticsof Vitruv|
431 StaticSemantics
4.3.2. Dynamic Semantics for Event-Free Behavior
4.3.3. Dynamic Semantics for Event-Based Behavior

A4, VITUVN « - o
4.4.1. Language Features
442, Example

4.5. Sketching a Process Model for Vitruv

The specification language Vitruv

51. OVEIVIEW o e

5.2. Intervals and their Relationships
521. Intervals
5.2.2. Interval Relationships

5.3. Classes Structuring the Specification
531. Classes
53.2. Inheritance.

9.4. Fuzzy Types o e
5.4.1. Structure and Properties of Fuzzy Types.
5.4.2. The Standard Type DURATION

55. Events, LoopsandBranching
551, Events
552, LOOPS. . . . o e
55.3. Branching
5.5.4. Multiple Events and Multiple Reactions

Contents

5.6. PresentationsandScenes 78
57. ThePrelude 79
58. TheBinding 81
581. L-Values 81
5.8.2. DefiningFuzzy Sets 81
5.8.3. Defining Modifiers 82
5.84. Contexts 83
5.8.5. Compound Interval Relations 84
5.8.6. Fuzzy Types e 84
5.8.7. BindingofClasses 86
5.8.8. BindingofthePrelude 91
5.8.9. Scenes 93
5.8.10. The Main Entry Point 93

6. Static Semantics of Vitruv 95
6.1. Introduction 95
6.2. Preliminaries. 97
6.2.1. ldentifiersand Numerals 97
6.2.2. Type Attributes 97
6.2.3. General BuildingBlocks 99

6.3. The Entire Specification 102
6.4. FUuzzy TYPeS o e 103
6.5. Example of a Type Derivation 105
6.6. Compound Interval Relationships 107
6.7. Classes 109
6.7.1. RepresentingofaClass 110
6.7.2. Sub-Classing and Inheritance 111
6.7.3. EXports. e 111
6.7.4. Local Declarations 112
6.7.5. The Class Definition 113

6.8. TheBinding Section 119
6.8.1. RepresentingtheBinding 119
6.8.2. TheEntireBinding 121
6.8.3. Objects, Classesand Types 122
6.8.4. AssignmentofValues 125

6.9. Remarks 128
7. Vitruv|, the Intermediate Language for Vitruv 131
7.1. Event-FreeBehavior 131
7.2. Language Description 132
7.3. Semanticsof Vitruvpo 135
7.3.1. Abstract Syntax of Vitruy; 0L 135

Contents

Vi

7.4.

7.3.2.
7.3.3.

Semantical Objects
Operational Semantics

Linearizing Vitruv|

7.4.1.
7.4.2.
7.4.3.
7.4.4.
7.4.5.

Fuzzy Types e
CompoundRelations
Classes e
ThePrelude
Blocks: Dealing with Loops, Selectors and Scenes

Vitruvian Nets
8.1. Prelimaries: Abstract Vitruvian Nets
8.2. Vitruvian Nets with Fuzzy Timing

8.3.

8.4.

8.5.

8.6.

8.2.1.
8.2.2.

Formal Definition
Translating Interval Relationships of Vitruv| to FTVN

Vitruvian Nets with Fuzzy Markings

8.3.1.
8.3.2.

Translating Selections in Vitruv| to Fuzzy Vitruvian Nets
Formal Definition,

Nets for Events, Selectorsand Loops

8.4.1.
8.4.2.
8.4.3.
8.4.4.

Basic VitruvianNets
EventSubnets
SelectorSubnets.
LoopSubnets

Nets for Scenes e

8.5.1.
8.5.2.

Vitruvian Nets
Scenes and LeavingThem

Composition of Scenes: Translating Vitruv|

8.6.1.
8.6.2.
8.6.3.
8.6.4.
8.6.5.
8.6.6.

Auxiliary Functions L
ConnectingScenes
ExpandingEvents,
ExpandingLoops
Expanding Selectors L
Net Construction

Specifying with Natural Language
9.1. BasicConsiderations
9.2. LanguageElements

9.2.1.
9.2.2.
9.2.3.
9.24.
9.2.5.

Preliminaries
Presentationand Scenes,
Media Definition
Media Composition
Omitted Elementsof Vitruv)

9.3. Mapping Vitruvyyto Vitruvo

Contents

9.3.1. Preliminaries
9.3.2. Presentationsand Scenes
9.3.3. MediaDefinitions.
9.3.4. MediaComposition
9.4. AssessmentofVitruvy

lll. Applying Vitruv

10. The Multimedia Cathedral

10.1. Scene Collection
10.2. Specifying with Vitruvyo oL
10.2.1. Thelintro
10.2.2. MainMenu
10.2.3. Various Cathedrals
10.3. Cathedralsin Vitruv
10.3.1. The Introduction Scene
10.3.2. TheMainMenu
10.3.3. The Various Cathedrals
10.4. The Cathedrals as Vitruvian Net

10.4.1. The Presentation Structure

10.4.2. SceneMainMenu
105.Summary

IV. Summary and Future Work
11. Summary

12. Directions of Future Research

12.1. Usabilityand Tools
12.2. Language Extensions
12.2.1. Fuzzy Types o o

12.2.2. Connections between Scenes

12.3. Generalizations
12.3.1. Multimedia Complete
12.3.2. Beyond Multimedia

13. Final Remarks

V. Appendices

Vii

Contents

A. Definition of Vitruv
A.l. Concrete Syntax e

A.1.l. Preliminaries e
A.1.2. TheStructureinGeneral
A.l3. Fuzzy Types e
A.1.4. Compound Interval Relationships
AlLS. Events e
A.16. Classes e
A.l7. TheBinding

A.2. Standard Modifiers
A.3. The Standard Prelude of Vitruvp .o

B.2.

. Some Definitions and Results from Fuzzy Set Theory and Petri Nets
B.1.

Fuzzy Set Theory
B.1.1. Fuzzysets
B.1.2. FuzzyLogiC e
B.1.3. FuzzyRelations
B.1.4. The ExtensionPrinciple
B.1.5. Fuzzy NumbersandIntervals.
B.1.6. Possibility Theory
PetriNets
B.2.1. Multi-Sets
B.2.2. PetriNets

Bibliography

viii

265
265
265
267
267
268
268
268
270
273
273

279
279
279
284
284
285
286
287
288
289
290

293

List of Figures

1.1.
1.2.
1.3.

3.1.

5.1.
5.2.

6.1.

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.
8.10.

10.1.
10.2.
10.3.
10.4.
10.5.
10.6.
10.7.
10.8.
10.9.

B.1.

Exploring the Altenberg Cathedral 2
Altenberg Cathedral: Discussing the Clerestory. 4
The modelsof Vitruv 15
The seven interval relations of Allen (1983). 31
The temporal arrangement of a, b,c,d,eandi. 72
The terms of fuzzy type Brightness (spec.5.12) 85
Syntax of type attributes L 98
The Hierarchy of VitruvianNets 150
Simple P/T-net with arc-weights as abstract VN. 153
Allen’s Relations as Fuzzy Timing Vitruvian Nets 160
The body of class Exampleas FTVN 162
Comparison of a value with two alternatives. 164
BVN forEvents. 174
Thenetforselectors. 175
Thenetforloops. 177
Two scenes with the connection place. 182
The Algorithm for ConnectingNets 193
UML Class Diagram for the Scene “Intro” 226
UML Class Diagram for the Scene “Main Menu” 230
UML Class Diagram for the Scene “Various Cathedral” 233
The basic structure of the presentation 239
The unexpanded body of scene MainMenu 245
The unexpanded body of loop waitingForTheEnd 245
The unexpanded path selTCS_body of selectorselTCS 246
ThesceneMainMenu 247
The Loop-Body of waitingForTheEnd 249
The s-, z-and -functions 282

List of Figures

List of Short Specifications

4.1.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9

5.10.
5.11.
5.12.
5.13.
5.14.
5.15.
5.16.
5.17.
5.18.
5.19.
5.20.
5.21.

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.

9.1.
9.2.

Asimpleexamplescene 57
Definition of the compound relation shortly after. 61
Asimpleclass. 65
The definition of theclass Interval. 67
The fuzzy type Brightness., 69
The fuzzy type DURATION. 69
Declaration of event pressed inclass Button. 71
Loop until the buttonispressed. 73
Select between additional video and audio depending on button event. 75
Multiple reactions to the buttonevent. 77
Scenes and moving betweenthem. 80
A small part of the standard prelude. 80
Binding of fuzzy type Brightness. 84
ThedemoclassesA,B,CandD. 87
Assigning the value of large from DURATION. 88
Assigning an explicite fuzzy set expression. 88
Re-binding DURATION. ittt 89
Binding a hierarchy of objects 89
Binding of an object with inheritance 90
Polymorphic Bindingofan Object 91
Binding of Loops and Selectors 92
Binding with main entry pointand scenes. 94
Asimple Vitruvjexampleo o000 134
Fuzzy Type Brightness in Vitruv, 143
Re-binding term black inVitruv)00 144
Allocation phase for assigning large to the lengthofa. 145
Application phase for assigning large to the lengthofa. 147
Declaring blocks inVitruvp oL 148
Scene Definitions 199
Mediadefinition 200

Xi

List of Short Specifications

xii

9.3. ContentElements 200
9.4. Media composition withoutevents 202
9.5. Branchingtoanotherscene 205
9.6. LoopsinVitruvyo 206
9.7. ThefirstsceneinVitruv), 209
9.8. MediadefinitionsinVitruv 210
9.9. Media definitions with elements in Vitruv| 211
9.10. Media composition without eventsin Vitruv, 213
9.11. Branching to another scene in Vitruv| 214

List of Long Specifications

10.1. The Code-Frame for the Cathedrals Presentation 224
10.2. The Introduction Scene 227
10.3. The Main-Menu Scene i i e 231
10.4. Scene Various Cathedral 234
10.5. Scene MainMenuin Vitruvy oo 241
A.l. The Standard Prelude of Vitruv| 274

Xiii

List of Long Specifications

Xiv

1. Introduction

The development of large multimedia applications reveals similar problems to those
of developing large software systems. This is not surprising, as multimedia appli-
cations are a special kind of software systems. Our experience within the Altenberg
Cathedral Project showed, however, that during developing multimedia applications
particular problems arise, which do not appear during traditional software develop-
ment. This is the starting point of the research reported in this thesis.

In this introduction, we start with a report on the Altenberg Cathedral Project
(sec. 1.1), resulting in a problem statement and a list of requirements for possible
solutions. After that we propose our solution named Vitruv (sec. 1.2 on page 11) and
explain how it works in general (sec. 1.3 on page 12). It is followed by a discussion
of key aspects of Vitruv and relations to other approaches (sec. 1.4 on page 14). The
introduction closes with a brief outline of the thesis.

1.1. The Altenberg Cathedral Project

In the Altenberg Cathedral Project, the Chair for Software Engineering and the Chair
for History of Architecture, both at the University of Dortmund, have worked to-
gether since 1996, aiming at a multimedia teaching system presenting an example for
Gothic architecture. As the building of interest we chose the Altenberg Cathedral, a
well-known Cistercian monastery in the Rhineland, containing all features needed
for the intended system.

In the next section we present the project and its scope in greater detail. This is
followed by a discussion of software engineering aspects.

1.1.1. Overview of the Project

Teaching the history of art is traditionally done without computers, especially with-
out multimedia technology. Despite its centuries-old traditions, one might consider
the history of art to be a promising candidate for a multimedia approach, since it
consists of a large body of objects needing visual presentation. But this point of view
neglects the discipline’s scholarly aspects which are quite similar to those of other
humanities. A multimedia system supporting teaching of the history of art has to
combine both, visual presentation and scholarly aspects, to offer a real benefit com-
pared to traditional text books or lectures.

1. Introduction

The approach taken in the Altenberg Cathedral Project is twofold, consisting of a
rich media environment and of scholarly discussions.

In the first part, we benefit from a multimedia environment, because we use many
more media objects, with smaller cost, than in a traditional setting. This additional set
of media objects makes it possible to visualize the topics discussed in greater detail,
making the didactical point clearer. The potential to use different kinds of media,
including video and audio, further enriches the learning environment. A particular
set of media objects deals with a virtual reality-like model of the building. The virtual
model of the cathedral allows users to explore the building freely and gives them
more insight into the forms and views of the building, as compared to those few
pictures usually presented in textbooks. Additionally, the virtuality of the building
allows the observer to visit areas and viewpoints usually not accessible in reality. This
makes it even possible to explore the building in its different stages of construction
during the previous centuries. The observer can compare modifications made to the
building throughout its development.

#{ Start-Seite - Netscape

r Dom multmedial: Struktur

Anwendung schliefen

Figure 1.1.: Exploring the Altenberg Cathedral

In the second part of our approach, traditional scholarly discussions are presented
in addition to the extended use of media objects. Many references in these discussions
are linked directly to other ideas or media objects which further explain the topic. The

1.1. The Altenberg Cathedral Project

transfer of knowledge is obviously the primary system task subordinating the use of
media: we have no interest in using media merely for the visual effect.

We have two ways of using the system: exploration and guidance. Our system
starts with the presentation of the virtual cathedral. Users can freely explore the
church from a set of different viewpoints familiarizing themselves with the build-
ing. “Exploring” means here that the user can turn around, choose between different
viewpoints, zoom in and out on different details. In fig. 1.1 on the facing page we
show the virtual cathedral. The user is positioned in the crossing! and looks to the
west window, exploring the nave and the aisles. Some parts of the nave (and also of
other areas of the virtual church) are sensitive to mouse clicks and are anchors of links
leading to pages discussing the chosen topic in greater detail.

These pages complement the primary visual exploration of the church with schol-
arly discussions enhanced with media objects visualizing the discussed aspects. Ap-
proximately forty different topics are presented with support of a few thousand me-
dia objects ranging from simple pictures to video and audio clips, including also vir-
tual reality scenes. In fig. 1.2 on the next page we show a discussion part of the struc-
ture of nave wall, here, in particular, the clerestory of predecessors of the Gothic style.
In the picture on the left we see the interior of St. Appolinaris in Ravenna. Highlighted
is the mosaic band above the arcades, an early form of the triforium.

This first way of using the system, the exploration, is supplemented by a second,
arranging the topics and subtopics in a way independent of a specific part of the
church, giving broader and more abstract topics a chance. It is essentially a set of
guided tours through the material.

1.1.2. The Software Engineering Dimension

The Altenberg Cathedral Project is a large application developed and in use for teach-
ing history of architecture for years. As such, it badly needs software engineering
support during development and maintenance because of its size and complexity. In
the following, we show that the development situation is different from other more
ordinary software projects, and thus requires particular care.

1.1.2.1. Document-centric Multimedia Systems

Similar to ordinary text books, novels, movies, etc., multimedia applications aim at
teaching or entertaining the user. Because of this, multimedia applications need the
same careful construction as the classical media mentioned. Careful selection and ar-
rangement of arguments, examples, presentation styles, etc. are very important and
also very content-specific. From this perspective, multimedia applications have the

For a good introduction to the architectural terms used we refer to the glossary on the web-site of
Stones (1997).

1. Introduction

B - Hetscapa: Die dlteren Konzepte der Mittelschiffswand vor der Gotik

ollinaris in «

Mittelzchiffwand: Die alteren
Konzepte vor der Gotik

Baugeschichte. Dieser Wandel 1st ein wichtiger
Indikator fir die jeweils stilspezifische Auffassung
der Architektur als umgrenzter Raum,

In der frihchristlichen Basilika bildet die
Mittelschiffwand eine nahezu ungegliederte
Scheibe, die war allern als Flache for ein
Bildprograrmm dient. Den vollsténdigsten Eindruck
eines solchen wandaufbaus gewdhrt heute
S.Apollinare in Classe in Ravenna (549 n.Chr,
geweiht) mit ihrem streifenformigen Wandaufbau.
Uber eng gestellten Saulen - zwdlf in einer Reihe
wie die Zahl der dposteln - erstreckt sich ein
Mozaikband mit Brustbildern von Kirchenhziligen,
darliber der Obergaden mit seinen schriucklos in
die Wand geschnitkenen Rundbogenfenstern, Mach
oben geht der Blick in einen offenen Dachstuhl,
Dieser Wandaufbau kennt kaurn Vertikalelemente,
Alles vollzieht sich in gleichfarmiger horizontaler
Reihung, Die Wand bleibt als Bildtréger s0 weit wie
réglich unangetastet,

In der romanischen Architektur war vor allem an
Bauten des Kaisers und der Hocharistokratie eine

monumentale Wirkung der Mittelschiffwand

L

Figure 1.2.: Altenberg Cathedral: Discussing the Clerestory.

1.1. The Altenberg Cathedral Project

same requirements and characteristics as traditional documents. We call this per-
spective of multimedia applications document-centric. The physical manifestation of
the document-centric perspective are the media objects used, such as images, texts,
videos, etc., and their arrangement. We call this manifestation the document part of a
multimedia application.

In addition to the document-centric perspective there also exists a strong program
perspective in multimedia applications from which one part realizes technology it-
self, i.e., driver programs etc., whereas the second more interesting part supports the
presentation logic. As such, the latter is tightly coupled with the document part and
is called the program part of the multimedia application. Normally, programs or rather
algorithms abstract from the processed data instances, they work on classes of these
instances. Data instances in our context are the document parts mentioned previously.
As these are very specific and also unique, they are often the only instance of their
corresponding class. These singleton data sets couple the program part directly with
the one and only document instance, intertwining program structure with document
aspects. This makes it difficult to reuse one of both parts without the corresponding
other part of the multimedia systems.

In general it is not desirable to have such a tangle consisting of one program and
one document. Data-driven programs are one approach of generalizing such pro-
grams towards a greater class of possible data instances they can work on. Markup
languages like HTML or IATEX show the power of this approach for more ordinary
documents. But analyzed carefully, a dependency between these markup languages
and their application domain is observed. As an example, IATEX is excellent for writ-
ing scientific papers but it is poor for poster work. Another working example is the
visualization of database contents such as electronic product catalogs. The structure
of the database classifies the objects presented and their visualization. Whereas a cat-
alog is primarily a simple list of items, other presentations are more complex with a
corresponding complexity of their data structure. Ultimately, such presentation sys-
tems lead to data structures interpreted as algorithms and programs itself. This ap-
proach is a well-known technique in artificial intelligence and is usually found in
LISP programs (Norvig, 1992). A LISP function is a special kind of a list, the only (na-
tive) data structure in LISP. The interpreter approach of LISP allows the construction
of programs creating lists (i.e., data), which in turn can be interpreted as functions
by the apply-function. This construction shows prominently that data structures can
evolve to algorithms and programs.

Currently, we find a similar development in the WWW consisting of HTML files
enriched with JavaScript. These documents have to be interpreted and executed by
the browser to reveal their information. This situation leads the data-driven program
approach ad absurdum. The genericity of these programs is complemented by the com-
plexity of the used data which is specific to the presented document. It makes no
difference whether we have a specific presentation program for each document, or
a specific complex data-set for each document encoding presentation program parts.

document part

program part

technical
developer

non-technical
developer

1. Introduction

The situation becomes awkward when changes in the document part also demand
changes in the program and vice versa. The interconnection between both parts is
complex, it is hard to assess the amount of changes in one part required by changes
in the other part.

1.1.2.2. The New Developer Roles

As the two different parts of multimedia applications suggest, we have also two dif-
ferent groups of developers. On the one hand we have the usual technical developer for
program development, which is often an academic, well educated in computer sci-
ence, mathematics, engineering or natural sciences. On the other hand, we have the
non-technical developer working on the document part. The group of non-technical de-
velopers includes writers, composers and musicians, artists, illustrators, movie peo-
ple and others, often complementing the group of technical developers with respect
to their primary education. In general, the group of non-technical developers is di-
vided into the two subgroups of content and of media specialists.

In the Altenberg Cathedral Project we observed many misunderstandings between
the project partners during requirements elicitation based on different knowledge
and culture backgrounds. It was quite surprising to experience how substantial the
differences between computer science and humanities really are regarding knowl-
edge acquisition, intellectual tools, objects of research, etc. Therefore, we required a
mutual understanding of our working fields and a common language. It is clear that
the different backgrounds emphasize the need for such common languages - in a
more homogenous setting it is not that obvious.

During traditional software development, e.g. for information systems, technical
and non-technical people cooperate only at a few distinct time-points: during anal-
ysis and requirements elicitation, and during the final test stages. In our project, we
observed that technical and non-technical developers work together throughout the
entire development process. This was in part due to an iterative process with pro-
totyping where analyzing, developing and testing were repeated many times, hence
the aforementioned time-points occur repeatedly, too. But more important than that
was what happened during each iteration. The dualistic nature of multimedia appli-
cations with its document and programs parts couples both developer groups more
tightly. In multimedia applications similar to the Altenberg Cathedral Project the doc-
ument part is nearly completely fixed after the delivery, hence the document part is
created parallel to system development. The effect is that structural changes of pro-
gram parts often require also changes in the documents parts and vice versa. This
situation is quite contrary to ordinary information systems, where usually merely the
structure of the database is fixed during development and only users create docu-
ments after system installation.

Additionally, we also had some elements of participative design, where the non-
technical developers prototyped new user interaction mechanisms. Hence, computer

1.1. The Altenberg Cathedral Project

science technologies needed to be applicable for non-technical developers, which was
only in part feasible. The lack of technical training of the arts scholars made it very
difficult for them to use programming environments including advanced HTML ed-
itors with scripting facilities. We also observed difficulties in discussing the require-
ments after prototyping: without a commonly understood language for describing
the dynamic behavior it is arduous to validate such requirements.

The added document part of multimedia applications makes the difference com-
pared to ordinary software products. The document production should be considered
explicitly in development processes. Thereby, the new non-technical roles become
more important and a smooth integration of their creative work into the process is
favored including the possibility to communicate easily between the heterogenous
developer groups.

1.1.2.3. The Technical Side

On the technical side, we observe very rapid technological changes in the field of
multimedia technology. The pace of hardware development influences directly the
software’s potential to manage more data in less amount of time and hardware con-
sumption. The commercially available development tools are eager to support these
new possibilities and do this by neglecting backward compatibility to some extent.
In this way the rapid appearance of technology generations results in an ongoing de-
velopment effort, reconstructing the entire application within in each new generation
of development tools. Apparently the loss of maintainability seems to be no problem
to the producers of such tools. The document character of multimedia applications
seems to justify their opinion, as documents are quite seldom modified after their fi-
nal production and publication. Traditionally, different editions of documents exist
only for textbooks and encyclopedias.

In the Altenberg Cathedral Project, we have just such a combination of textbook
and encyclopedia, together with a timeless topic, since the Gothic architecture will
also most likely be taught in the future. Thus, we need here to abstract as far as possi-
ble from both current technologies and development tools to achieve maintainability
and thus improve our investment in intellectual work.

1.1.3. Our Approach in the Altenberg Cathedral Project and its
Problems

As related above, the Altenberg Cathedral Project consists of a collection of scholarly
discussions. We were able to model the historian’s didactical concept in a static struc-
ture as one of our main results during the requirements engineering phase. This static
structure gave birth to ADML, the “Altenberger Dom Markup Language”, a specifi-
cation language and an instance of XML (Bray et al., 1998). By the way, the Altenberg

1. Introduction

Cathedral is the only church we know which has a specification language named after
it.

Our art historians, the authors, write their texts in ADML and specify the use of
media objects and the linkage between different parts of the document. Afterwards,
a compiler is used to generate code for a set of different multimedia platforms, thus
building the target multimedia system (Alfert et al., 1999). Currently, we support ver-
sions for Macromedia Director and HTML. All knowledge of the different technology
platforms is hidden within the compiler and is not visible to the authors. As only the
compiler has to be modified to support the technology changes mentioned above, the
authors are not required to revise their original work.

Our authors, the art historians, dislike ADML in its raw form because of its formal
syntax (and thus technical nature). This is the reason for us to search for better so-
lutions. A conceptually simple approach is to construct an editing environment for
ADML hiding the formal syntax. Another, more challenging problem with ADML
is its focus on static structure and on scholarly discussion enriched with media ob-
jects. This works for the current state of the project, but ADML fails, when it comes to
complex visualizations including user interaction. In this situation the smooth combi-
nation of document and program aspects becomes more and more important, as the
tight integration of media objects, rendering control and user interaction handling is
needed to get a working visualization.

The technical challenge of such multimedia presentations is the synchronization of
media in time (and space) with user interaction, since many media objects occupy time
and space (we come back to this issue in greater detail in chapter 2, Basic Terms).
Specifying the behavior of media objects in time and space introduces the area of
concurrent and real-time systems. It is well known that constructing concurrent and
real-time systems is tricky and error-prone, and usually avoided if possible. Fortu-
nately, in the multimedia domain hard real-time constraints are often not needed and
we are in a more relaxed situation: following Little (1994) it is not harmful e.g. if we
have to drop a few frames in a video. Nevertheless, the complexity of describing the
synchronization of media objects is reflected by the large amount of proposals in the
literature for specifying temporal behaviors (e.g. those discussed in chapter 3: Little
and Ghafoor (1990); Diaz and Sénac (1994); Hardman et al. (1994); Khalfallah and
Karmouch (1995); Vazirgiannis et al. (1996); Al-Salgan and Chang (1996); Zhou and
Murata (1998); Paulo et al. (1999)).

Thus, we need specifications and abstract descriptions for media objects, rendering
control and user interaction, i.e. these descriptions have to deal with the synchro-
nization of media objects. We require these specifications and abstract descriptions
in the case of such complex visualizations to gain both, well understood and com-
plete requirements. A pragmatic solution in the spirit of ADML would also demand
independence from current technology.

Let us consider as an example a presentation showing different French Gothic
cathedrals, e.g. only those of Chartres and Amiens for the sake of brevity. We can

1.1. The Altenberg Cathedral Project

consider the following situation:

Example 1.1 (French Cathedrals)

The presentation starts with Chartres, followed by Amiens. During the
presentation of the cathedral of Chartres we hear an audio-clip explaining
the cathedral. An information button appears during this presentation, a
click on it links to another scene explaining the cathedral of Chartres in
greater detail.

O

The presentation of Amiens should be structured similar. The example exhibits a set
of implicit and explicit synchronization constraints such as the appearance and dis-
appearance of user interface elements depending on the progress of the video presen-
tation of both churches, i.e. depending on the content of this video. We also recognize
a non-sequential ordering as we may branch to the more detailed presentation. But
this branching is not always possible. As the use of not formalized natural language
increases the risk of ambiguity, it is clear that a non-ambiguous specification of this
example is highly desirable. But it is not clear how and in which formalism we can
express this presentation.

Thus, let us recall the situation discussed earlier. We identified new development
activities and developer roles for the development of multimedia presentations. The
new developers have an educational background different from the usual technical
developers, especially there might be a typical lack of technical and mathematical
knowledge. This differs from the usual development situation where such differently
educated people work together only at distinct phases of development, namely in the
requirements engineering and the final test stages. But now we have to cope with this
heterogenous blend of people throughout the entire development process. Common
understanding is required, but tools and languages used during development make
heavy use of technical and mathematical concepts. So, such language tools cannot
form the basis for such a common understanding between both developer groups.

1.1.4. Summary and Problem Statement

While analyzing the development of the Altenberg Cathedral Project we have ob-
served a new kind of developer, the non-technical developer, also appearing together
with new roles serving the planning and the production of multimedia material. Pro-
ducing this material is the document part of development, which is at least as impor-
tant as the software part. Additionally, we observed a tight coupling between both
parts influencing each other in different ways. Traditional software processes need
to be adapted to support this new situation. It is especially important to establish
a mutual understanding between technical and non-technical developers, because
this is the heart of development processes for multimedia. Furthermore, elaborated

9

1. Introduction

multimedia presentations have complex dynamic behaviors, requiring careful spec-
ification which has to be understandable to all involved developers and technically
precise enough to support system construction.

One could argue that experiences made in the Altenberg Cathedral Project are not
transferable to the development of other multimedia applications, since a project
team consisting of scholars and computer scientists is quite unusual. But as Bailey
et al. (2001b) report, similar problems arise in (commercial) multimedia agencies.
They present a study of multimedia designers and their practices, revealing that there
is a severe communication problem between (graphical) designers, programmers and
customers, in particular with respect to the dynamic behavior of multimedia presen-
tations.

Concluding, we can summarize our analysis and thoughts to the following problem
statement:

We require a specification language for multimedia presentations,
which is simultaneously commonly understood and technically pre-
cise, such that technical and non-technical developers can use the
language.

The approach we are looking for has to satisfy certain requirements discussed
above and found more or less implicitly in the problem statement. To make easier
references to the requirements, we list them here explicitly again. The first three are
important to get the approach to work as a whole. The fourth requirement defines a
weaker condition.

Requirement 1 (Understandability) We need a commonly understood language for
heterogeneous teams of developers. The language should not explicitly make use of
mathematical concepts.

Requirement 2 (Specification) We need a specification language that is technically
concise enough to allow system construction in an unambiguous way.

Requirement 3 (Synchronization) We need to describe the temporal behavior of me-
dia objects related to other media objects. This includes also user interaction insofar
it controls the behavior.

These three requirements are linked together such that the commonly understood
language is a specification language for multimedia presentations with means for
synchronization.

Efficiency during development is an important issue for larger systems. Efficiency
is mainly supported through tools. Such tools may vary widely, from simulation to
prototypes consisting of executable specifications, from theorem proving to model
checking, from (graphical) syntax-oriented editors to compilers. The wide range of

10

1.2. Our Solution Proposal: Vitruv

possible tools makes it difficult to compare the tools and their corresponding ap-
proaches. Nevertheless we prefer approaches where tool support is possible and state
it as a weaker requirement, our fourth.

Requirement 4 (Tool Support) We prefer an approach with tool support to ease large
scale development.

1.2. Our Solution Proposal: Vitruv

To satisfy the aforementioned requirements we propose in this thesis the Vitruv ap-
proach. The central idea of Vitruv is to use natural language (NL) as common notation.
Apparently, NL is commonly understood even for heterogenous developer groups, as
demanded in reg. 1 on the facing page. With NL, we can specify multimedia presen-
tations, as indicated in example 1.1 on page 9, where we described a situation inside
a multimedia presentation. In Vitruv, we focus on specifying temporal and behavioral
aspects of multimedia presentations, according to requirements 2 and 3.

NL is often used in requirements engineering as common base for communication
between developers and clients (Kotonya and Sommerville, 1998, p. 19), but usually
with the well-known unpleasant taste of imprecision, ambiguity, vagueness and in-
completeness, which are considered a remarkable risk. Therefore, we take particular
care of these risks in Vitruv. Additionally, this care is important for satisfying require-
ment 4, because tool support demands a well-defined semantics, and for satisfying
requirement 2, asking for unambiguous and concise information.

In this thesis, we provide the definition of Vitruv, such that development of tools can
start. Empirical studies, answering questions concerning pragmatics and usability for
complex projects, can be undertaken after the advent of appropriate tools and thus
are left to future research (see sec. 12 on page 255).

We named our approach after Vitruv, an antique author on Roman architecture.
He gained importance with his treatise De architectura in the Renaissance as source
towards the antique arts and architecture by giving artists such as Leon Battista Al-
berti or Piero della Francesca the ideal of the proportions of the human body as base
for their own art work (Fleming and Watkin, 1999). In this thesis, we pick up this
idea and try a similar movement from technical-based specifications towards more
human-centered specifications.

We should mention that at Carnegie-Mellon University, Mary Shaw, David Garlan
and others have participated in a project regarding software architecture also named
after Vitruv since at least 1995. They refer to Vitruv because of his influence in archi-
tecture and civil engineering in general, which is a different point of view towards
Vitruv’s work and its reception.

11

Vitruv

Vitrqu

1. Introduction

1.3. How Vitruv works

For Vitruv, we decided to use NL as common base for the communication between the
heterogenous developer groups. We name this part of the Vitruv approach Vitruvy.

To be more precise, we use only a restricted subset of NL for Vitruvy. This has sev-
eral advantages as we explain in the next paragraphs. Nevertheless, we preserve core
features of NL, in particular good readability and understandability for both devel-
oper groups is important here. One could argue that we reinvent a language feature
as existing for forty years in COBOL, since COBOL is somewhat talkative (or noisy)
to support non-technical readers (Horowitz, 1984, p. 15). However, COBOL-like lan-
guages — and even more conventional languages such as Java — have a (grammatical)
structure, which is not similar to longer NL texts at all: these languages mimic only
simple sentences. In contrast to that, in Vitruvy we focus on preserving the look and
feel of NL. Therefore, we stick to the notion of a NL-based language for Vitruvy al-
though Vitruvy uses only a subset of NL.

The decision to use NL as basis of a specification language demands that we deal
with the inherent problems of NL, namely with ambiguity, imprecision, vagueness
and incompleteness. In the following, we present how we tackle these problems.

Ambiguity is hard to resolve completely. This is due to its various sources in NL
such as multiple meaning of words or unclear references of pronouns. We diminish
ambiguity in Vitruvy by providing a careful selected subset of NL, where both, gram-
mar and vocabulary are restricted. Of course, this reduces the generality, which NL
otherwise would provide, but since we focus on specifying multimedia presentations,
we do not consider the loss of generality as harmful. Difficulties in writing specifica-
tions in Vitruvy;, which arise from the lesser degree of freedom, are outweighed by the
better understandability due to reduced possibilities for ambiguities. Compared to an
unrestricted use of NL, these restrictions ease the construction of supporting tools, be-
cause for instance the restricted grammar allows to use standard parsing techniques
from compilers instead of general rewrite systems.

Detecting incompleteness of a NL specification is often tedious. It is more conve-
nient to check for incompleteness in a formal setting. There, we have the need to be
explicit and can not rely on implicit assumptions, and we gain the possibility to check
formally whether the specification is consistent or complete. Of course, it depends on
the formal calculus used how much a formal analysis can reveal.

To achieve a precise technical description we have to deal with the inherent impre-
ciseness and vagueness in NL. With fuzzy set theory, introduced by Zadeh (1965) as a
precise formal model of imprecision, we can adequately model imprecise and vague
statements in the specification. But as for the problem of incompleteness, we are in
need of a formal model. Nevertheless, of importance is that the imprecision is trans-
fered into the formal model without the need to give up the imprecision and thus
becoming overly (and easily arbitrarily) precise. Hence, the imprecision and vague-
ness in the NL specification is reflected also into the formal model.

12

1.3. How Vitruv works

These considerations suggest to introduce a formal counterpart to Vitruvy, which
shall make it possible to apply effectively fuzzy set theory and formal analysis to
Vitruvy specifications of multimedia presentations, i.e. we are in need for a formal
semantics of Vitruvy. Formal semantics are also required for tool support. But since
the step from natural language to formal semantics is quite large and hence the map-
ping between these two concepts is complicated, we take an intermediate step and
introduce the formal specification language Vitruv| . We regard Vitruv| as a media-
tor between Vitruvy and its proper formal semantics. This is similar to the use of
the programming language C as an abstraction of machine language, found in some
compilers for high-level languages, where as first step the program in the high-level
language is compiled down to a C program. Examples for such compilers are the
PROSET compiler or the first compiler for C++ (Stroustrup, 1991, p. 6). To achieve
native executables, in a second step the C code has to be compiled by a standard C
compiler. Analogously, in our case, Vitruv| connects specifications in Vitruvy to their
formal semantics and we first map Vitruvy to Vitruv| and in a second step Vitruv| to
its formal semantics. Because of the restricted subset of Vitruvy and its anticipation
of fuzzy set theory, it is possible to translate systematically a Vitruvy, specification
to Vitruv ; this is an important characteristic of Vitruv| . Therefore, we are confident
that the corresponding Vitruv| specification stays close to the meaning of the origi-
nal Vitruvy specification. This is also needed for the way back transferring the formal
statements about Vitruv| to the context Vitruvy, such that formal results can be pre-
sented to the non-technical developers in an appropriate form.

Compared to Vitruvy;, we add to Vitruv| more technically required ballast, due to
the need of being explicit as discussed above. This includes algorithmic details, the
provision of a standard library of media types with their capabilites and a rich type
structure with object-oriented concepts and statical typing. Of course, we make use
of fuzzy set theory in Vitruv| as well. The definition of the temporal structure is based
on an extended version of the interval calculus of Allen (1983) (see sec. 3.1.2.2 on
page 30 for details on the interval calculus). The extended interval calculus incor-
porates quantitative statements and nondeterministic events?, for specifying interval
durations and for modeling user input, respectively. We do not assume that non-
technical developers work with Vitruv , but it is intended as a handy tool for technical
developers for technically precise specifications of multimedia presentations, without
loosing the ability to relate the formal specification to the NL specification.

The semantics of Vitruv| is divided into three parts, following the “separation of
concerns” principle of software design (Ghezzi et al., 1991). We distinguish between
static semantics, and dynamic semantics for event-free and event-based behaviors.
These three parts are handled separately, but are themselves not unrelated. If the
static semantics or the dynamic semantics of the event-free behavior of a specification

2Nondeterministic means here that we have no control whether an event occurs or which value it
might have.

13

VitruvL

Vitruv|

Vitruvian Nets

1. Introduction

is inconsistent, then also the dynamic semantics of the event-free or the event-based
behavior are inconsistent, respectively. We present now the three parts in greater de-
tail.

The static semantics of Vitruv| is given as a deduction system in the tradition of
formal type systems (cf. Cardelli, 1997). With the static semantics we can check the
static typing of Vitruv| , thereby preventing many specification errors in advance.

The dynamic semantics of the event-free behavior of Vitruv, is concerned with the
dynamic parts of a Vitruv| specification which do not depend on nondeterministic
events. To make Vitruv, amenable to consistency checks of the event-free semantics,
we have to identify and extract the respective parts of the Vitruv| specification. This is
the reason to introduce a simpler form of Vitruv| , which lacks the rich type structure
and the event handling. This simpler form has a similar task as Vitruv| has for Vitruvy,
since it connects Vitruv| and its semantics. Therefore, we regard this simpler form of
Vitruv as an intermediate language and call it Vitruv;. On basis of the operational
semantics of Vitruv|, we can apply consistency checking algorithms.

Finally, the entire dynamic semantics including the event-based parts are addressed
by Vitruvian Nets, which are a Petri net variant. The use of Petri nets for modeling the
dynamics of multimedia presentations has a long tradition. But more important is
that the interval calculus and the events of Vitruv| translate properly to Petri nets. In
addition to that we enrich Petri nets with fuzzy set theory to model the imprecision
and vagueness of Vitruv| specifications, which themselves reflect these properties of
the respective Vitruvy specification. Thereby, we can model all important characteris-
tics of Vitruv| with Petri nets.

In fig. 1.3 on the facing page we summarize the relationships between the parts of
Vitruv. On top, we have Vitruvy, which is used by both, technical and non-technical
developers. The semantics of Vitruvy are given by Vitruv| , which may also be used
by technical developers for technical specifications. The three different parts of the
semantics of Vitruv; are shown in the dashed rectangle, where we identify the static
semantics as formal type system, and the dynamic semantics based on Vitruv; and
Vitruvian Nets for the event-free and event-based parts, respectively.

1.4. Discussion and Related Work

The central ideas of the Vitruv approach, namely using NL as common notation be-
tween technical and non-technical developers and thereby allowing both developer
groups to work jointly, touch aspects of requirements engineering approaches, since
in the requirements engineering process technical and non-technical people work to-
gether on eliciting and analyzing the customer’s requirements of the system to be
built.

In this section, we discuss how Vitruv is related in general to requirements engi-
neering approaches with respect to the use of NL (sec. 1.4.1 on the next page) and

14

1.4. Discussion and Related Work

W specifies |
VitruvN

Non-Technical Technical
Developer Form@lization Developer

spe&cifies in

VitruvL

Semantic\{or event-based Behavior

Semantics for dvent-free Behavior

|
I

Formal A
| Type System Vitruvl
I
|

I
I
Vitruvian Nets I
I
I

Figure 1.3.: The models of Vitruv

the incorporation of end users (i.e. non-technical people) in the development process
(sec. 1.4.2 on page 17). Finally, in sec. 1.4.3 on page 18 we are concerned with modeling
vague or imprecise requirements.

1.4.1. Using Natural Language

In Vitruv, we use NL as common base for understanding between heterogenous de-
veloper groups. This is similar to the well-established use of NL in requirements en-
gineering (Kotonya and Sommerville, 1998), where the heterogeneity exists between
developers and clients. In requirements engineering, NL is used for requirements
specification documents, development contracts and other documents, which have
to be understandable for both groups. Often, this use of NL appears also when using
a semi-formal language for documenting requirements specifications. A typical situ-
ation is found in the context of UML (OMG, 2001), which provides for the analysis
phase the diagram type for use cases. Methods applying UML (e.g. Fowler and Scott
(1999, sec. 3) or Booch et al. (1999, p. 224)) suggest to specify use cases primarily with
NL texts, which are annotated with UML’s use case diagrams, thereby underlining
the importance of NL for the early phases of software engineering. Summarizing, we
consider the use of NL as a suitable and well-established practice.

15

1. Introduction

However, the difference between Vitruv and other approaches is how we proceed
with the NL specifications. Traditionally, it is the task of the requirements engineer
to transform the NL requirements specification by hand into more formal calculi,
including semi-formal approaches such as UML. The aforementioned disadvantages
of NL (imprecision, ambiguity, vagueness and incompleteness) are remarkable risks
concerning the translation process and make it difficult to ensure that the formalized
specification meets the clients’ expectations. Since clients in general have not enough
knowledge about the calculus used, they cannot validate the formal model. Therefore,
validation has to wait until the product is constructed and product tests begin. In
Vitruv, things are different from that.

For Vitruv, we propose a systematic translation process from the NL specification
in Vitruvy to the formal specification in Vitruv| . The systematic translation is possible
because of the features of Vitruv. Vitruvy uses only a restricted set of NL, where both,
grammar and vocabulary are fixed. This eases the translation process and reduces
the risk of ambiguity in Vitruvy specifications compared to the free use of NL. On
the formal side of Vitruv, we handle vagueness and imprecision with fuzzy set theory.
Thereby, we translate vague or imprecise statements found in Vitruvy immediately to
Vitruv|_ (and its semantics as well). No additional representations for the formaliza-
tion nor inadequate ad-hoc defuzzyfications (cf. sec. 1.4.3) are needed. The immediate
mapping of NL features into the formal world of Vitruv ensures that we stay close to
the intended meaning of the NL specification.

In Vitruv, we focus on the systematic translation of NL specifications into formal
specifications, but we require that the translation is done automatically. There are,
however, other approaches, which try to derive automatically formal models from a
NL specification. Some approaches (e.g. Gervasi and Nuseibeh, 2002) are lightweight
formal methods, which often perform only a partial analysis of the entire specifi-
cation. They elicit only few but important information from the specification and
build a respective formal model. Whether the aforementioned risks occur depends
on the specification documents used. Gervasi and Nuseibeh (2002) operate on techni-
cal specification documents from NASA and are interested in detailed specification of
a system bus. Therefore, risks of ambiguity, vagueness and imprecision are reduced
by the domain’s very nature. Nevertheless, such approaches have the inherent dis-
advantage that it remains unclear whether they can elicit automatically all important
and required information from their partial view at the NL specification. On the other
side of the spectrum of approaches dealing automatically with NL specifications, are
those which try to understand the entire specification by applying NL understanding
technologies. As an example, the approach of Rolland and Proix (1992) derives ER
models from NL specifications by identifying entities and their relationships in the
NL text. As validation of their ER model, they generate a NL text from the ER model,
which is to be checked by the customer. It remains open how these approaches deal
with imprecision and vagueness of NL specifications, except that model and NL spec-
ification do not match in the validation. In sec. 1.4.3 on page 18 we come back to the

16

1.4. Discussion and Related Work

aspect of imprecision and vagueness but in a more general setting.

1.4.2. Prototyping and Participative Design

Beside the use of NL discussed above, prototyping and participative design (PD) offer
other ways for incorporating non-technicians into to the development process.

Prototyping (Budde et al., 1992; Doberkat and Fox, 1989) aims at short development
times between system generations, such that user feedback can easily be integrated
in the next system generation. Evolutionary prototyping and in particular mock-up
prototypes of user interfaces are well suited for studying and presenting the behav-
ior and the look-and-feel of applications, such that non-technicians can validate the
prototype with respect to their (sometimes implicit) requirements. The strong point
of prototyping is that the technical development is parallel to requirements elicitation
and stabilization, which is done jointly by technical and non-technical developers.

Prototyping is, however, very costly and thus seldom used in the commercial mul-
timedia domain, as Bailey et al. (2001b) report. They argue that storyboards are more
appropriate artefacts in early steps of the development process. Storyboards allow
layout and content sketches, and outlines of the story line. They have the disadvan-
tage that they are static, which makes it difficult to communicate behavior properly.
Thus, designers often enhance storyboards with textual annotations describing the
(temporal) behavior. Of course, these annotations use natural language and no for-
mal notation, since designers are not comfortable with formal methods for similar
reasons as the scholars in the Altenberg Cathedral Project. To solve this problem, Bai-
ley et al. (2001a) propose a storyboard tool which allows animated behavior sketches
by a visual language.

Participative design (PD; see e.g. the special issue of CACM, introduced by Kahn
and Muller, 1993) is related to prototyping and aims at incorporating users of soft-
ware products into the design process. Of course, technical aspects and details are
not of concern, but of importance are overall functionality and user-interfaces. Often,
PD is used as part of usability studies and for validating that the system to be built
fits properly into the working place of the users participating in the design. Therefore,
PD uses its own non-technical abstractions for a constructive design.

Both, prototyping and PD, show that detailed cooperation between technical de-
velopers and non-technicians provides benefits for system development with respect
to user satisfaction. However, the situation in the application domain of Vitruv is dif-
ferent from these two approaches, such that we cannot simply adopt their techniques.
This is due to the clear separation between developers and end-users, separating also
the techniques used by these two groups: technical development on the one hand
and evaluation, requirements statements etc. on the other hand. In the domain of
multimedia applications, the separation between the tasks of technicians and non-
technicians is much more blurred and cannot always be separated, resulting in the

17

1. Introduction

distinction between technical and non-technical developers instead of developers and
end-users in traditional settings. Therefore, we are in need for appropriate commu-
nication means, languages and tools for these two developer groups, which neither
prototyping nor PD approaches provide.

1.4.3. Modeling Vague or Imprecise Requirements

Vague or imprecise specifications occur not only in NL specifications or in multime-
dia, but also in traditional specifications for software systems. In this section we take a
look at approaches from the literature and relate them to the approach of using fuzzy
set theory for modeling vague or imprecise requirements proposed here. We focus
on timing considerations, since they are conceptually close to the important aspect of
synchronization in multimedia applications.

Timing considerations are important properties of systems and applications, and
have to be identified during the requirements elicitation phase. Usually, timing con-
siderations are regarded as non-functional requirements (Sommerville, 1990; Ghezzi
et al., 1991; Partsch, 1998; Kotonya and Sommerville, 1998). Whereas functional re-
guirements are mostly subject to tests in the final product, non-functional require-
ments have the drawback that they are mostly not testable. In this situation, non-
functional requirements degrade to wishes and guidelines similar to user interface
guidelines providing opportunities for different interpretations.

Sommerville (1990) argues that sometimes it is possible to reformulate such not
testable requirements by explicitly quantifying them: The specification “the system’s
response should be fast” can be changed to “the system’s response should be in 2 sec-
onds”. Clearly, this is testable and we can build appropriate test scenarios e.g. for the
system under various load levels. While this seems as if the aforementioned problems
are solved, this is not really the case. The quantified requirement is still expressed in
natural language, usually to achieve a better understanding of the requirements by
the customers (Partsch, 1998, p. 21). However, this makes it dangerous to interpret
this as quantification in a strictly mathematical sense. For instance, it is questionable
whether a test case in which the system requires 2.01 seconds to response does not
fulfill the requirement while another one needing only 1.99 seconds does. Often, we
need to coarsen the precise value of 2.0 to some kind of a broader interval, since a
quantification of “fast” resulting in the value of “< 2 seconds” does not mean pre-
cisely 2. One classical approach to deal with this uncertainty is to allow some statisti-
cal error, such as to state that “in 95% of all situations, the system’s response should
be in 2 seconds”. This approach has the advantage that its formal underpinning is
well known by probability theory. It is, however, uncertain whether the introduction
of such statistical errors was the intention of stating the system’s response should be
“fast”.

A different approach to deal with vagueness and imprecision is possibility theory

18

1.5. Overview

(Dubois and Prade, 1999; Biewer, 1997) based on fuzzy set theory, which is only rarely
used in requirements engineering, and particularly in modeling, with the notable ex-
ception of the work of Liu and Yen (1996), discussed later in sec. 3.3.1 on page 39. With
possibility theory, we can model the quantification of “fast” as a set of possible values
together with a grade of the possibility of the values. In some way, possibility theory
is a generalized variant of probability theory (cf. sec. B.1.6 on page 287), since a pos-
sible value is not required to be very probable, however, every probable value has to
be possible. The concept of linguistic variables in fuzzy set theory allows introducing
a type “speed” with predefined imprecise and vague values such as “fast” or “slow”,
which are realized as fuzzy sets. Expressions with linguistic variables are formulated
with these predefined values, hence the vagueness and impreciseness remains and
it is not absorbed by some reduction to a single precise value. In fuzzy control the-
ory (Yager and Filev, 1994) these concepts are applied successfully to model complex
control processes even for which no classical analytical models exist. A particular
interesting point is that expressions with linguistic variables are quite easy to under-
stand independent of their complex non-linear formalization. This is a clear benefit
for maintenance of such systems.

1.4.4. Conclusion

In Vitruv, we emphasize the systematic transformation of the natural language (NL)
specification into a formal one, which takes particular care of imprecision and vague-
ness already existing in the NL specification. Other approaches deriving models from
NL do not focus on that topic specifically. Alternative approaches for getting non-
technicians involved into the development, we discussed participative design and
prototyping, provide no appropriate means for technical precise specifications.

The formal model used in Vitruv uses fuzzy set theory for modeling vagueness and
imprecision. The discussion on modeling vague and imprecise requirements above
suggests that an approach guided by fuzzy set theory allows formal models which
are close to the meaning of the original imprecise and vague requirements of the NL
specification. This is exactly what we are looking for.

1.5. Overview

This thesis is divided into four parts, followed by appendices: In Part I, Setting, we
discuss the setting of this thesis. We start with a definition of basic terms (sec. 2),
followed by an analysis of related work with respect to the requirements of Vitruv
(sec. 3).

In Part 11, Defining Vitruv, we present our approach in detail. We start with a short
outline of the entire approach in sec. 4. We define Vitruv| informally in sec. 5, followed

19

1. Introduction

by the static semantics in sec. 6. In sec. 7 we present the semantics for the event-
free behavior. We linearize Vitruv| by defining Vitruv|, an intermediate language for
Vitruv| . The definition of Vitruvian Nets follows in sec. 8. We close this part with
presenting Vitruvy in sec. 9.

Part 111, Applying Vitruv, presents a larger example, showing how the various parts
of Vitruv interact and how they are related (sec. 10). Part IV, Summary and Future
Work, closes the main part of the thesis. In sec. 11 we give a summary, followed by a
discussion of future research directions (sec. 12).

The final Part V, Appendices, collects two appendices. The concrete syntax, the
standard modifiers and the prelude of Vitruv| are given in app. A. Finally, we present
basic definitions and results of fuzzy set theory and Petri nets (app. B). The thesis
closes with a bibliography and an index.

1.6. Acknowledgements

I would like to thank my supervisor Prof. Dr. Ernst-Erich Doberkat for providing the
environment and the freedom for doing research on Vitruv, as well as his support and
encouragement, constructive discussions and critics throughout the time are appreci-
ated. Prof. Dr. Volker Gruhn provided constructive critics which helped to clarify and
to focus the presentation.

| spent many hours together with Dr. Alexander Fronk, discussing hyper- and mul-
timedia, formal methods and the quest for the meaning of all that. | would like to
thank him also for the practical and moral support needed from time to time. | appre-
ciate the discussions about the Petri nets and the helpful comments on earlier versions
of this thesis by Uschi Wellen. My (former) students, Matthias Heiduck, Christoph Be-
gall and Marc Storzel discussed and developed parts of Vitruv. The Altenberg Cathe-
dral Project Team, Prof. Dr. Ernst-Erich Doberkat, Corina Kopka, Matthias Heiduck,
Jens Schrdder, Jens Scharnow, Prof. Dr. phil. Norbert Nussbaum, Dr. phil. Thorsten
Scheer and Dr. phil. Stephan Hoppe, developed the initial starting point of this the-
sis, thereby also teaching the beauty of Gothic cathedrals. Dr. Malcolm Usher helped
polishing my English, however, all remaining mistakes in this thesis are my very own
and he is not to blame at all.

20

Part .

Setting

21

2. Basic Terms

Before going on, we are in need for definitions of the rather vague terms concerning
multimedia, multimedia presentations and applications, and hypermedia. They are
given in detail in this section. We close the section with a discussion of the differences
of multimedia and software engineering documents.

Multimedia Systems

Multimedia as a general term is used in public discussions as a synonym for any mod-
ern computer technology with direct end-user impact. Examples of these are personal
computers, the Internet, sometimes even telecommunication products such as cellu-
lar phones, personal digital assistants (PDA), and of course digital media types such
as digital video, MP3, DVDs, etc. In Germany, multimedia was the word of the year
1995, underlining the importance and broadness of this term in every-day life.

In a technical setting, multimedia is understood as a combination of different me-
dia types. In contrast to ordinary systems, especially graphical systems, in multimedia
systems at least one of these different media types has to be time-dependent, such as
audio, video or animations (Koegel Buford, 1994b, p. 2). Sometimes, systems handling
only one time-dependent media type are also called multimedia systems. Examples
for the latter are video-on-demand servers. The definition suggested here is more fo-
cused than those in public discussions, but its scope is also very broad: it ranges from
network technology for transporting media to databases storing and querying media,
from device drivers to multimedia presentation software. This interpretation of mul-
timedia is usually applied in technical journals such as ACM Multimedia Systems
or IEEE Transactions on Multimedia focusing on implementing rather than applying
multimedia technology.

It should be mentioned that time-dependency in multimedia systems is different
from those found in, e.g., information systems with temporal data. In such systems
datasets have a time tag indicating the temporal validity of the dataset, e.g. day and
time for share prices in stock tickers or the date of entries in accounting systems.
In contrast to that, time-dependency in multimedia systems means that each time-
dependent atomic information unit has a time dimension and consequently an exten-
sion into time, as found, for instance, in digital video clips. Here, the temporal data is

1Each year selected by the Gesellschaft fiir deutsche Sprache, the list is available online at http: //www.
gfds.de/woerter.html.

23

multimedia
systems

multimedia

multimedia
document
multimedia
presentation

2. Basic Terms

no additional attribute but is rather one of the main characteristics of the information
units.

Multimedia Applications

In the context of the present work, we do not concentrate on technical problems of
implementing multimedia technology but rather on applying multimedia technology.
Thus, our definition of multimedia focuses stronger on human perception, following
the definition given by Newcomb et al. (1991) in their article on HyTime: multimedia
is

“a parcel of information intended for human perception that uses one or more
media in addition to written words and graphics. The presentation of the added
media may occupy time, space, or both”.

The important difference of this definition with respect to the aforementioned defini-
tion of multimedia systems is the explicit focus on human perception. It implies that
e.g., the transportation of a combined set of different media objects including time de-
pendent media by a broadband carrier is not considered as multimedia. Far more, it
is important to prepare carefully the media objects to transmit the intended message,
focusing on human communication. That is why we indicated in the description of
the Altenberg Cathedral Project that multimedia comes with a strong document as-
pect. The preparation of multimedia data together with information about how to
render this data is called a multimedia document.

A multimedia presentation is a piece of software presenting a multimedia document
to the user. Similar to the well-known WWW browsers such as Netscape or Microsoft
Internet Explorer, they allow primarily read-only access to the information and offer
little possibilities to modify the appearance of the presented data or to change the
data itself. Thus, multimedia presentations maintain the document character of mul-
timedia, because the human perception is their main task. Presentation programs can
be divided into two separate groups: generic and individual ones with respect to the
presented material. WWW browsers are apparently generic programs as they are not
specific to a document and can present nearly everything on the WWW. In contrast,
the presentation program in the Altenberg Cathedral Project realizes the requirements
specific to this very application and the documents created in the project.

Currently, we observe substantial additional scripting in HTML documents for
achieving individual user interfaces and user interaction. This emphasizes the combi-
nation of document and program aspects in multimedia documents and blurs the sep-
aration of the two different groups of presentation programs. We focus in the context
of this thesis on these multimedia presentations, that are tightly coupled to the cor-
responding multimedia documents supporting an individual presentation style for
each data instance. This model encompasses also systems presenting large databases

24

(popular examples are web banking applications, digital libraries, or e-commerce por-
tals), albeit these systems only work on classes of data and do not use individual
presentation schemes on data instances.

Beside multimedia presentations there is a broader kind of multimedia systems
called multimedia applications. These applications differ from multimedia presenta-
tions because they do not require that their multimedia material remains constant
and in general users of these applications can modify the multimedia material. Obvi-
ously, development tools such as Macromedia Director (Epstein, 1999) belong to this
category. In this thesis, we do not deal with such applications but concentrate rather
on multimedia presentations.

Hypertext and Hypermedia

Conceptually close to multimedia are the terms hypertext and hypermedia. Some
authors use them as synonyms, such that both, hypertext and hypermedia may mean
the same but also that hypermedia and multimedia are essentially the same. In this
thesis, we differentiate between all three terms, the difference, however, is subtle.

With hypertext we characterize a text enriched with associative references within
the text, where the references link portions of the text. These relationships form a
graph structure and usually provide an easy access to related parts of the text. Usu-
ally, the graph structure is not a simple list or tree-like, but is expected to be more
complex. Since hypertext usually is supported by a computer system, the definitions
for multimedia documents, applications and systems apply analogously for hyper-
text documents, applications and systems.

For the difference between hypermedia and hypertext it is important that for hy-
pertext we only consider pure text together with linking information. If we add media
elements to a hypertext, e.g. images or videos, we talk about hypermedia, i.e. hyperme-
dia extends hypertext by additional media elements. Since these media elements may
in particular occupy time and space, hypermedia may also be called multimedia, and,
indeed, many problems in hypermedia and multimedia are the same. However, we
differentiate between hypermedia and multimedia such that in hypermedia the fo-
cus lies on the linkage structure whereas in multimedia the media arrangement is of
primary concern. This difference is subtle and a unique assignment can only be done
for some extreme examples: multimedia presentations with a strict sequential order
are usually not regarded as hypermedia, since there is no appropriate link structure;
hypertexts with images are not regarded as multimedia, since media elements with
temporal aspects are missing.

Therefore, the assignment of a specific document or presentation to either hyper-
media or multimedia is rather arbitrary. It is possible to consider the same document
or presentation as hypermedia or as multimedia, however, the viewpoint changes: in
the first case, we accentuate the link structure between the various information pieces

25

multimedia
applications

hypertext

hypermedia

2. Basic Terms

presented, in the second case we emphasize the media arrangement presented to the
user.

Multimedia vs. Software Engineering Documents

To complete the picture we should now differentiate between multimedia documents
and classical software engineering documents. At first glance, it seems that the docu-
ment part of a multimedia application is not different from other documents created
during the development process of ordinary software systems, documents such as
requirements and design documents or user documentation.

This observation is true up to a certain point. Obviously, multimedia documents
have to be handled in a similar way as other documents, i.e. configuration man-
agement should be applied to them, reviews are required, etc. For short, all usual
practices of project management should also be applied to the development of mul-
timedia documents. Nevertheless there are important differences. First, multimedia
documents contain always time-dependent media, which are rarely used in current
software engineering documents. The production process of these media artefacts is
different from traditional documentation. Second, multimedia documents are a cen-
tral part of the final product, often they are the main part per se. In contrast to that,
software engineering documents have the flavor of add-on products, the main prod-
uct is the software developed, the documents are needed primarily for efficient (and
effective) development and users’ training. Third, the interconnection between mul-
timedia documents and their software product is more complex than between a soft-
ware product and its software engineering documents, because software engineering
documents describe (or prescribe) facts about the software product, whereas multi-
media documents contain parts of the software product, in particular the aforemen-
tioned rendering information. Finally we should notice that multimedia documents
are primarily created by non-technical developers, while software engineering docu-
ments are primarily created by technical developers.

In summary, we conclude that multimedia documents and their creation process
are significantly different from ordinary software engineering documents.

26

3. Related Work

For selecting techniques for in particular the formal models of Vitruv, we discuss now
related work found in the literature. Much work has be done in the area of multime-
dia in general, but there is only little attention on specializing software engineering
approaches to the multimedia domain. If we do not focus on the software engineering
aspect only, we find several approaches addressing the development of multimedia
applications which will we discuss in the following sections. The focus of these ap-
proaches lies mostly on formal models of the application’s temporal behavior. Only a
minor group of publications regards problems of the development process itself such
as new process models, specific approaches for requirements engineering, specifica-
tion or design languages and others.

We structure the presentation of related work such that each section focuses on of
the first three requirements defined in sec. 1.1.4 on page 9. However, we reverse the
order of the requirements in this presentation for didactical reasons, since we prefer
to discuss foundations before their application. We start in sec. 3.1 with approaches
dealing with synchronization aspects only, i.e. with requirement 3. After that, specifi-
cation languages (requirement 2) are discussed in sec. 3.2 on page 35. These languages
consider synchronization aspects, hence they also satisfy requirement 3. Finally, in
sec. 3.3 on page 38 our discussion is concerned with aspects of understandability (re-
quirement 1), presenting development models supporting the entire range of system
development. Finally, we close the discussion with a conclusion (sec. 3.4 on page 44),
where we evaluate the mentioned approaches and argue why we need a new and
different approach for developing multimedia applications.

3.1. Formal Models

We mentioned earlier that multimedia applications require media delivery of time-
dependent material. In short, this results in two new activities, media production and
temporal media composition. It is clear that the media production process is not for-
malizable and thus not of interest here. But the temporal composition of media is
formalizable similar to the composition of concurrent processes. Therefore, the foun-
dation of temporal media composition is essentially the same as for concurrent pro-
cesses.

We begin this section with an introduction of conceptual models of time. These
models form the basis of formalization carried out in the models presented later. The

27

3. Related Work

first set of these formal models consists of an adoption of formal specification meth-
ods for concurrent systems. The second set of models owes more to multimedia ap-
plications. These models are designed in a more pragmatic way. Finally, we present
fuzzy temporal models.

3.1.1. Conceptual Models

Time is a phenomenon not directly perceptible for humans by sense. Thus, the notion
of time is always bound to some indirect measures which are of course interpretable.
Historically, from the antiquity to the middle-age, measurement of time was based
on events such as high noon or sun rise. The time between such events was divided
into a set of intervals (*“hours”) of which the absolute length depended on the current
day-length: in summer, hours were longer than in winter. In the advent of the modern
age, the development of mechanical clocks led to the independence of the length of
hours from the current day-length.

But modern clocks do not change the two fundamental concepts or manifestations
of time. Firstly, we have point-like structures imposed by the mentioned events. In par-
ticular the rather artificial event of a certain time of the day, e.g., three o’clock, is seen
as a time-point without any extension. This point of view leads to the mathematical
model using the real numbers for representing time as used in physics and engineer-
ing. Secondly, we have temporal intervals as every observable event has an extension.
In natural language it is complicated to deal with time-points directly. Often, a kind
of threshold is used to reduce a very short interval to a time-point. This situation
indicates that time points are an abstract concept not directly observable.

Reasoning about time always deals with these two concepts. In physics and en-
gineering, time is usually a one dimensional variable of real numbers. The use of
calculus allows, e.g., to model the current speed v as the partial derivative of length
x of a trajectory by time t:

t
v(t):g—::X@x:/ov(r)dr

These models were introduced 1687 in Isaac Newton’s Principia Mathematica and have
been successfully applied since them. The success of this model is founded at least on
its decoupling from human every day reasoning and the elegance of its mathematical
formalism. On the other hand, in physical experiments the interval concept is always
visible as part of the measurement exactness of time: there is also a transition from
temporal intervals to time-points without reaching the mathematical definition of a
point without extension.

The interval approach is more appealing in a setting suitable for every day rea-
soning, a domain of Artificial Intelligence often based on logical theories. Reasoning
about time is important for the areas of planning, natural language understanding

28

3.1. Formal Models

and others (Habel et al., 1993). Hajnicz (1996) distinguishes two fundamental con-
cepts: facts and events. A fact is a logical statement describing the state of the modeled
world. A fact is static and cannot be changed by other facts, but its value can change
over time. In contrast to facts, an event models the dynamic view of the world: an
event happens and changes by this the value of (some) facts. Both concepts together
suggest to reason about temporal intervals while certain facts remain immutable. An
example could be:

Peter went by train from Dortmund to Dusseldorf. After that, he took the
plane to Paris. He read a book during the flight.

The different Kinds of travel are the facts which remain constant during their respec-
tive intervals. Other temporal intervals can be related to them, in our example it is
the interval in which Peter is reading the book. In another way, the flight can be seen
as an event changing the fact, that Peter travels with the train. This event clearly has
an extension and is an interval, too. This model allows the division of one event into
several sub-events occurring during its interval giving events an internal structure.
In contrast to the real numbers model of time, the interval model suggests to reason
in a qualitative and not always quantitative way, as we did not mention the amount
of time needed for traveling.

Both models are important and form the basis of different formalizations and ap-
plications. Often they are used jointly since we have knowledge about quantitative
properties of intervals and additionally some qualitative relations between intervals.

3.1.2. Logical Models

In the following we present logical models for time. First, we discuss temporal and
modal logics, then we focus Allen’s interval logic and finally we consider a fuzzy
approach.

3.1.2.1. Temporal and Modal Logics

Modal logic (Hajnicz, 1996; Emerson, 1990) is a branch of non-classic logic and uses
a set of possible worlds in which the formulas hold. The simplest modal system, K,
is an extension of propositional logic consisting of a non-empty countable set P of
propositions, a set of standard logical connectives (-, —), an unary modal operator [
called necessary and another modal operator) = —[J- called possibly. The semantics
for modal logic is based on the possible worlds semantics of Kripke (Emerson, 1990,
p. 1064). A model M = (W, R, m) is a triple consisting of a set W of possible worlds,
an access relation R € W x W and an interpretation m assigning to each proposition
p € P the set of worlds in which p is satisfied. The logical connectives are interpreted
in the usual way. The modal operator L1 is interpreted as follows: Llg is satisfied in a

29

3. Related Work

world w € W if ¢ is satisfied in every world w’ such that wRw’. The main axiom of
modal logic is
O(A — B) — (A — OB).

Together with the inference rule
A
OA
it constitutes the modal system K. More complex modal systems define axioms induc-
ing properties of the access relation R such as reflexivity, transitivity or symmetry.

The main difference between classical and modal logic is the introduction of a set
of possible worlds W and the relation R between them. This pair £ = (W, R) is called
a Kripke-frame. A very usual interpretation of Kripke-frames is that each world de-
scribes a state in a computation. The relationship between the worlds defines a path
through this states. This interpretation allows to specify the behavior of programs.
Historically, Pnueli (1977) was the first to use modal logic for specifying programs.
The temporal logic of action (TLA) of Lamport (1994) is another well-known ap-
proach.

A different interpretation of Kripke-frames considers the sequence of worlds in
the access relation R as sequence of time points, i.e., we interprete the access re-
lation as time precedence relation (Hajnicz, 1996). The model consists of the triple
M = (T, <,v) with T as a non-empty set of time-points, the transitive asymmetric
precedence relation < between time-points, and v as valuation function assigning to
each proposition p the set of time points in T where p is satisfied. The value of for-
mula ¢ at moment t is written as ¢[t]. The semantics are based on time structures
7 = (T, <) requiring transitivity and irreflexivity of the precedence relation <. It is
important to notice that such time structures do enforce that the order of T is either
discrete or continuous. Therefore, it is possible to define time structures isomorphic
to Z, Q and R (Hajnicz, 1996).

Whereas modal and temporal logic are suitable mathematic models for formal rea-
soning about time, they are usually not applied in the multimedia domain. One im-
portant reason might be their abstractness which does certainly not appeal to non-
mathematicians. Tool support is limited to quite simple logics, a prominent example
is CTL (Computational Tree Logic, cf. Emerson (1990)), for which model checkers ex-
ist (Clarke et al., 1999). Without such tools, it is tedious and error-prone to use modal
logics for constructive purposes because all necessary proofs need to be carried out
by hand.

3.1.2.2. Interval Logic

Allen’s seminal work on temporal interval logic (Allen, 1983) uses first-order pred-
icate logic to model intervals and their relations. Allen defines thirteen qualitative
relations between two intervals describing all possible positions. They are shown in

30

3.1. Formal Models

fig. 3.1. Allen’s interval logic considers only intervals; points do not exist. Events and
facts are related to intervals. His relations originate from every day reasoning and
have an intuitive semantics even without formal definitions. For practical use, Allen
presents a constraint solving algorithm with time complexity O(n®) where n is the
number of interval variables. The algorithm checks if a given set of intervals and re-
lations between them is consistent, and calculates relations not explicitly given. This
algorithm is an adoption of the Waltz algorithm for constraint solving (Norvig, 1992).

B/ recss
B metBy A
A before B
B after A
. B e
B startedBy A
IR . finishes B
B finishedBy A
“ A overlaps B
B overlappedBy A
I A during B
B contains A
A equals B

Figure 3.1.: The seven interval relations of Allen (1983).

A common notation is

A {meets, before} B
B {during} C

meaning

((AmeetsB) Vv (AbeforeB))
A (Bduring C)

The constraint solver calculates all missing relations. In our example, no relation is
mentioned between A and C, which means that we have no information and each of
the thirteen relations may hold. The constraint solver narrows this to

A {during, before, meets, overlaps, starts} C.

31

3. Related Work

If the constraint solver calculates that no relation holds between two intervals, we
have an inconsistency: the specification cannot be satisfied. However, Allen’s algo-
rithm considers consistency of three intervals only, for complete consistency between
all n intervals we have a complexity with an exponential blow-up to O(n") (Vilain
and Kautz, 1986).

As we can see, the constraint solver does not determine a unique solution but the
set of possible relations. While this might be a useful situation for the planning do-
main (Allen’s original working area), this is very often a problem for creating a sched-
ule, which we also need in the multimedia domain (cf. sec. 2). A unique solution is
usually required for a schedule.

Allen’s work is not only widely recognized in artificial intelligence (Habel et al.,
1993; Hajnicz, 1996), but also in the multimedia field starting with the work of Little
and Ghafoor (1990) on Object Composition Petri Nets (OCPN). It is a good starting
point for qualitative specifications, but as Goetze (1995) points out, the only relations
that are exact in a way that they can prescribe precisely the temporal order, are the
meets and equals relations. The knowledge of, e.g., A before B does not reveal anything
about the interval between A and B except that its length is strictly positive. The lack
of quantitative knowledge about intervals even decreases the possibility of specifying
the temporal order.

Nevertheless, the work of Allen is important because of possible tool support and
easily comprehensible relations. The problem of integrating quantitative knowledge
is tackled by Dechter et al. (1991), and extended later by Jonsson and Backstrém
(1998). Their work relaxes Goetze’s criticism somewhat.

3.1.2.3. Fuzzy Temporal Models

Fuzzy temporal models deal with the representation of vague or incomplete knowl-
edge about time. In contrast to classical approaches, where truth values are crisp, i.e.
either 0 or 1, here any proposition concerning time may have a graded truth value.

The approach of Dubois and Prade (1989), embedding the former approach of
Dutta (1988), is based on a continuous linear scale T, modeling time. The knowledge
about time-points (or dates) is represented by possibility distributions mapping from
T to [0, 1], restricting the more or less possible values for certain time-point. Let a be
some time-point and 7, be the possibility distribution of a, then Vt € T : m,(t) de-
notes the possibility that a is exactly t. The possibility distribution 7, is identified
with a fuzzy set A with membership function . of the more or less possible values
of a, i.e. the possibility degree of 7,(t) is exactly ua(t). As usual, a possibility degree
for t of 0 means that t is not a possible value at all, a degree of 1 means that t is abso-
lutely possible. If 7z4(ty) > ma(t2), then we prefer t; to tp, because the possibility of t;
is of a higher degree than the possibility of t.

Dubois and Prade call a an ill-known time-point, because we have (usually) no cer-
tain knowledge about a. Their model of fuzzy time-points assumes that a time-point

32

3.1. Formal Models

a has only one value. Therefore, all possible values, i.e. the members of the support
of A (supp(A) = {t € T | ua(t) > 0}), are mutually exclusive candidates for a. They
call the (fuzzy) set A of possible values for a a disjunctive set. Additionally, Dubois
and Prade require that the fuzzy set A for a is convex, all possible values for a are
clustered. If A is also normalized (i.e. its core is not empty), then A denotes a fuzzy
number or interval and we can apply fuzzy arithmetic operations, eg. for calculating
the distance between two fuzzy time-points. In particular, it is possible to define fuzzy
intervals between fuzzy time-points a and b as the intersection of the corresponding
semi-intervals (cf. (B.42)—(B.45)). With fuzzy intervals, we can model fuzzy variants
of Allen’s interval logic, together with modified relations such as A slightly before B,
imposing a length constraint on the interval between A and B.

Yager (1997) applied the approach of Dubois and Prade to multimedia information
systems investigating fuzzy temporal queries on annotation-based video databases.
The queries are of the form “who was the woman appearing on the horse about fifteen
minutes into the video”, where the fuzzy temporal expression of interest is “about
fifteen minutes”. However, there is no specific relation to multimedia at all, video
information systems are only used to serve as an application domain, where temporal
gueries are useful. Nevertheless, Yager shows that fuzzy temporal models can be used
in real world systems.

3.1.2.4. Summary

We presented logic based approaches for temporal behaviors. They all can be used
to define the formal semantics of the temporal behavior, but their reception in the
multimedia literature differs. We find virtually no reference for using temporal or
modal logics. In contrast to that, Allen’s interval logic is a standard model and has
widely influenced multimedia research. An important reason for that is the temporal
extension of time-occupying media for which intervals are an intuitive model. The
fuzzy temporal approach has not reached a deeper impact yet.

3.1.3. Operational and other Models

Besides logical models we find as formal models also operational models, derived
from the formalization of concurrent systems, and formal document models. These
are presented now.

3.1.3.1. Formalization of Concurrent Systems

Research in the area of concurrent systems is focused on synchronization problems
between processes running in parallel. The usual programming concepts for synchro-
nizing parallel programs, such as semaphores, monitors, and message passing, are se-
mantically equivalent (Tanenbaum, 1992). Formal models often reduce this situation

33

3. Related Work

to programs with states and actions modifying the states, and the program’s possibil-
ity to communicate with each other via channels. Prominent examples of such mod-
els, also called process algebras (Baeten and Verhoef, 1995), are CSP (Hoare, 1985)
and Milner’s CCS. There is a direct link between the sequence of states in these mod-
els and the relation of worlds in modal and temporal logics. Lamport (1994) defines
the semantics of TLA via the sequence of states. Broy (1991) presents the sequence of
states as the main elements of the formal model. Winskel and Nielson (1995) present
various approaches in a unifying category theoretical model, including Milner’s CCS,
Hoare’s CSP and even Petri Nets.

Few authors apply process algebras to model their multimedia systems seman-
tically. Khalfallah and Karmouch (1995) designed a multimedia database and for-
malized the concurrent activities during rendering the multimedia information with
CSP. In Goetze’s Ph.D. thesis (1995), a multimedia system using the ET++ Multimedia
Framework on the Unix operating system was developed. Goetze uses CSP for defin-
ing the semantics for rendering in his approach. Vazirgiannis established a similar
system based on the Windows platform. He uses an algebraic approach to define the
temporal behavior (Vazirgiannis, 1999; Vazirgiannis et al., 1996). A different approach
is taken by Santos et al. (1999) using RT-LOTOS for specifying the temporal integrity
of multimedia documents.

3.1.3.2. Document Models

Formal approaches devoted explicitly to multimedia usually regard the coding of
multimedia data. This applies in particular to the development of media coding stan-
dards such as MPEG, JPEG, Quicktime or Video on Demand (eg. Steinmetz, 2000;
Gibbs and Tsichritzis, 1995). Most of the time, aspects of application development
with such media is not discussed.

This seems to be a bit different for hypermedia systems. Following the seminal
Dexter reference model for hypertext (Halasz and Schwartz, 1994) formalized in Z
(Spivey, 1992), some extension exist which deal with time based media. A direct suc-
cessor of the Dexter model is the Amsterdam model (Hardman et al., 1994), a different
approach is proposed by Tochtermann (1994). The task of these models is to formalize
the common understanding of hypertext or hypermedia systems. This includes time
based media for hypermedia systems, but the primary focus always lies on the link
structure between certain information nodes. For instance, in the Amsterdam model
information nodes can be composed of different parallel streams each modeling a
temporal media object. These streams can then be used as link anchors. Despite their
identification of components, abstractions and interfaces, the intention of all these
models is not to define an architecture for the implementation of hypermedia sys-
tems. They deal with a model of hypermedia systems as a foundation of ongoing
discussion: now it should be exactly clear what they are talking about discussing cer-
tain aspects of hypermedia systems.

34

3.2. Specification Techniques

A more constructive way is given by certain well-defined media standards. To men-
tion are HyTime (Newcomb et al., 1991) and SMIL (Hoschka, 1998). HyTime is a
SGML language and allows to define hypertext within a set of user-defined temporal
coordinate systems. The newer SMIL language is based on XML (Bray et al., 1998)
and is intended for streaming media in the WWW. SMIL consists of both, screen lay-
out, using the well-known frame approach of HTML, and the specification of the
temporal behavior of the different media rendered in those frames. The ZyX model
(Boll and Kilas, 2001) is another XML based multimedia document model incorpo-
rating features from HyTime and SMIL. In contrast to aforementioned approaches,
ZyX has a strong focus on presentation reuse and adaption allowing for easy identi-
fying, replacing and modifying of presentation parts. All three languages are useful
and intended for implementing systems using explicit and precise temporal mea-
sures (milliseconds, SMPTE frames, etc.). However, this makes it difficult to use these
languages during the early stages of system development where exact measures of
media are usually not known.

3.1.3.3. Summary

The aforementioned formal operational and document models in the multimedia do-
main are either used for specifying the implementation semantics or for defining ref-
erence models, used as the basis of scientific discussions. In both cases, the appli-
cation of formal models is similar to the use of semantical models for (sequential)
programming languages. The primary use of, for instance, denotational or axiomatic
semantics (Mosses, 1991; Winskel, 1993) is to define the precise meaning and interac-
tion of language constructs. This allows to reason about the correctness of language
constructs and programs, and serves as a formal specification for the implementation.
All these properties hold also for the formal models for multimedia.

3.2. Specification Techniques

In real-time systems problems similar to the synchronization in multimedia appli-
cations have been investigated for several years resulting in a set of formal models
and techniques, some of them already discussed in sec. 3.1.3 on page 33. Some of
the developed techniques are also useful in other domains and so became part of the
standard body of software engineering techniques. Of particular note are Petri nets
and state transition diagrams which also are incorporated in simplified form in UML,
the current lingua franca for object-oriented analysis and design (Fowler and Scott,
1999).

35

3. Related Work

3.2.1. Petri Nets

All different kinds of Petri nets share their common structure as a bipartite directed
graph consisting of transitions and places as different sets of nodes (a more formal
introduction is given in appendix B.2 on page 288). Input and output places are those
places connected with an edge from the place to the transition or from the transition
to the place, respectively. Often places are interpreted as data storage and transitions
as operations reading data from input places and writing to output places. This data
is modeled as tokens, flowing through the net while consumed and produced by
transitions. This is the dynamic behavior of a Petri net. The syntactic structure of the
net defines all possible traces of tokens through the net. The behavior is then refined
by defining the firing behavior of the net which states how and when a transition
fires, i.e., how and when a transition consumes tokens and produces new ones.

Petri nets are organized hierarchically in classes (cf. Baumgarten, 1996; Reisig and
Rozenberg, 1998). In elementary nets (also called event-condition nets), each token
represents a boolean value stating that a certain condition is either fulfilled or not.
Place-Transition nets (P/T-nets) enhance places to contain a set of tokens. Predicate-
Transition nets (Pr/T-nets) allow to depend the firing of transitions on logical pred-
icates. Colored Petri nets (CP-nets) introduce typing of tokens and places, and func-
tions defining values of produced tokens (Jensen, 1997). The concept of hierarchical
nets is applied to P/T- and CP-nets which allows modularization of specifications.
Some variants of Petri nets consider time explicitly. They extend tokens with a times-
tamp. This timestamp effects the firing behavior because not only the sheer existence
of tokens but also their timestamps decide whether a transition fires.

Usage of Petri nets for multimedia originates from Little and Ghafoor’s work on
their Object Composition Petri Nets (OCPN) in the early nineties (Little and Ghafoor,
1990, 1993). They based OCPN on Allen’s interval calculus and strongly restricted
OCPN’s topology. The lack of both, cycles and non-determinism, in OCPN allows
only simple pre-orchestrated multimedia applications where the presentation of the
application is completely predetermined, and thus no user interaction is possible.
Other approaches, e.g. Time Stream Petri Nets (TSPN) from Diaz and Sénac (1994) do
not have this disadvantage. They use timed Petri nets to model complex firing behav-
iors including the ability to model user interaction. A quite different area is tackled
by Al-Salgan and Chang (1996), using timed Petri nets for specifying the behavior of
distributed multimedia systems. The consideration of additional jitter during media
transport in networks is a major problem. But this is a technical problem of multime-
dia systems and multimedia applications as it concerns the enabling of multimedia
technology in distributed environments.

Looney (1988) introduces a combination of Petri nets with fuzzy set theory as a
generalization of elementary nets, where Boolean valued tokens are replaced by to-
kens representing fuzzy values. These Petri nets are called Fuzzy Petri nets and are
used for maintaining knowledge in knowledge based systems. Several variants ex-

36

3.2. Specification Techniques

ists focusing on different aspects of Petri nets, Cardoso et al. (1996) give an overview.
A rather different approach is presented by Murata (1996), where fuzziness is intro-
duces in timed Petri nets. In contrast to the aforementioned approaches, the fuzziness
appears only in the time-dependent parts of the Petri nets, i.e. tokens have a fuzzy
timestamp, transitions fire with a fuzzy delay and the enabling and occurrence time
of transitions is fuzzy. The marking itself — except for the timestamp - is independent
of fuzzy values, in particular Murata uses a colored high-level net. This is, however,
not relevant for the approach a fuzzy timed Petri nets. As an application in multime-
dia, Zhou and Murata (1998) discuss the use of fuzzy timed Petri nets for modeling
distributed multimedia systems with respect to network delays and jitter, similar to
the aforementioned work of Al-Salgan and Chang (1996).

3.2.2. Statecharts

Statecharts (Harel, 1987) are an extension of simple state-based automata such as
Mealy- or Moore-automata. Statecharts allow the modeling of complex specifications
by hierarchies. The states can be refined into a set of further states in which exactly
one state always has to be active if the surrounding state is reached (XOR-state). The
surrounding state is an abstraction of the refinement states. Additionally we have a
decomposition of a state, in which all inner states have to be active in parallel (AND-
state) modeling concurrent behavior. Both kinds of decomposition can be recursively
applied. Transition between states are called events and can be annotated with con-
ditions and actions which must hold or are executed, resp., while moving from one
state to another.

Statecharts can be compiled into programs, their formal semantics are defined by
Harel and Naamad (1996). Also usual analysis techniques such as reachability, dead-
locks detection etc., are applicable to statecharts.

Paulo et al. (1999) present an extended variant of statecharts, called hypercharts,
for modeling hypermedia applications. Their extension covers more complex syn-
chronization behaviors designed after TSPN (cf. the last section) introducing timed
transitions. Similar to high-level Petri nets, the formal semantics of hypercharts are
expressed via ordinary statecharts.

3.2.3. UML

UML (OMG, 2001; Booch et al., 1999; Fowler and Scott, 1999) is currently the lingua
franca for object-oriented analysis and design. It combines a set of static and dynamic
diagram languages linked through a common meta-model (Rumbaugh et al., 1999).
In fact, only the meta-model is standardized by the OMG, everything else is derived
from that. A major problem of UML is the lack of a sound formal basis, as only the
syntax of its meta-model if formally defined. While this gives enough freedom to use

37

3. Related Work

UML as a communication vehicle during development and a suitable language for
brainstorming, it is nearly impossible to apply formal analysis or code generation
based on a common understanding. Certainly, UML tools exist especially for code
generation but these tools apply their own semantics usually only implicitly defined
in the code generators program code. Currently, UML is enriched with OCL, the Ob-
ject Constraint Language, to annotate the diagrams with formally notated constraints
(Warmer and Kleppe, 1999). It is unclear whether this movement leads towards a
formally defined and widely accepted semantics of UML.

The dynamical models for concurrency are statecharts and activity diagrams. Stat-
echarts are used for modeling different states and transition in one object or class,
where activity diagrams model different concurrent threads of control outside of a
class boundary. Activity diagrams are a variant of control flow diagrams with sup-
port for concurrent threads. They resemble Petri nets because of being a bipartite
graph, where one set of nodes models activities and the other set synchronization
points. Both models depend on UML’s class diagrams and therefore do not have a
proper formal semantics. Additionally, both models require a substantial training as
discussed above in the section about statecharts.

The OMMMA approach (Sauer and Engels, 1999) is an extension of UML for mod-
eling multimedia applications. OMMMA adds to UML a new diagram type address-
ing layout considerations and extend several other diagram types, e.g. sequence dia-
grams for concurrent activation of several media objects and state diagrams to react
on spatial events. OMMMA addresses some missing properties of UML for the devel-
opment of multimedia applications. Its technical point of view reveals that OMMMA
focuses on the design phase and less on the analysis phase.

3.3. Software Engineering Approaches for Development
of Multimedia Applications

Software engineering deals with all aspects of developing software with a strong fo-
cus on large systems. Several sub-disciplines have been developed focusing on e.g.
database applications, real-time applications, parallel and distributed systems.

In order to avoid misunderstandings, we have to be very careful when talking
about software engineering for multimedia. Let us distinguish again between mul-
timedia systems in general and multimedia applications (cf. section 2). The latter
deals with applying multimedia technology whereas the former provides multime-
dia technology. Software engineering support for providing multimedia technology
(Mulhauser and Effelsberg, 1996) is quite established and well understood, especially
as the development environment is a purely technical one. We focus here on software
engineering support for multimedia applications.

From the broad range of general software engineering methods and techniques,

38

3.3. Software Engineering Approaches

we turn our attention towards two areas: requirements engineering (sec. 3.3.1), and
hypermedia and multimedia design methods (sec. 3.3.2). We select these two areas
since both are concerned with central aspects in this thesis, other areas of software
engineering are not of our concern. While requirements engineering is not special-
ized towards multimedia, it focuses on building suitable technical models from non-
technical descriptions and requirements, thereby dealing in particular with our Re-
quirements 1 (Understandability) and 2 (Specification) in a more general setting. Hy-
permedia and multimedia design methods are devoted explicitly to the multimedia
domain, thus, by their very definition, they should address our requirements.

3.3.1. Requirements Engineering

Requirements engineering, a sub-discipline of software engineering, is concerned
with requirements elicitation, their negotiation between different stakeholders (e.g.
managers, users or system administrators), their documentation and specification,
and finally their verification and validation (cf. Pohl, 1996). All these activities in-
volve cooperation between customers, users and requirements engineers. That is why
understandability, our Requirement 1 (p. 10), is an important issue for requirements
engineering: we need mutual understandability between all participants throughout
the requirements engineering process, because otherwise customers, users and devel-
opers cannot agree on the same requirements.

Modern requirements engineering approaches apply a set of different models for
the various groups of stakeholders, aiming at achieving a complete set of require-
ments from different viewpoints (Finkelstein et al., 1992; Pohl, 1996). Since these
viewpoints usually reveal only a partial view of the entire system, it is crucial to
unify them to achieve a more complete system description. The range of models used
for specifying and documenting requirements is broad, from natural language docu-
ments via semi-formal languages such as UML to formal specification languages such
as Z (Spivey, 1992); Partsch (1998) gives a good overview. This broad range makes it
less easy to unify the models since they address different areas of interest with a dif-
ferent level of detail and a different vocabulary, resulting easily in a set of inconsistent
specifications. Addressing these inconsistencies is an open research question, vari-
ous approaches are proposed, e.g. using quasi-classical logics (Hunter and Nuseibeh,
1998). However, modeling the users’ requirements into a logical formalism is a dif-
ficult task. For development of information systems, Rolland and Proix (1992) have
done some research on automatically transforming natural language specifications
into conceptual data models by means of linguistic analysis of the sentence structure.
For error checking of the synthesized model they provide a translation back to natural
language, which can be rechecked by domain experts. An alternative to this approach
is to use light-weight formal methods, which do not attempt to formalize the entire
specification but merely check the specification partially. Gervasi and Nuseibeh (2002)

39

3. Related Work

present such a light-weight method, constructing the model from a natural language
specification with domain-based parsing techniques (Gervasi, 2000). In contrast to the
free use of natural language, Fantechi et al. (1994) present an approach for automatic
translation of a restricted subset of natural language to action-based temporal logic
(ACTL).

Requirement statements are often imprecise. A typical reason is that stakeholders
stating the requirement simply do not know any better, but sometimes requirements
cannot be stated precisely due to their very nature, e.g. statements about efficiency.
Classical approaches to the formalization of requirements do not adequately tackle
this imprecision, i.e. even with a formal language such as first-order predicate logic
the imprecision often remains (Pohl, 1996, p. 24). A notable exception is the approach
of Liu and Yen (1996) using fuzzy set theory for modeling vague requirements. Their
approach is also useful for requirements negotiation between different stakeholders,
since requirements have graded levels of satisfaction instead of being either satisfied
or not. This allows to model more accurately competitive requirements.

Participatory Design (PD) is a user-centered technique (cf. the special issue on Par-
ticipatory Design of the CACM (Kahn and Muller, 1993)), interested in an early user
involvement in the development process. In contrast to requirements engineering,
the origins of PD are aspects of social responsibility and studies of consequences of
technology introduction to work places. The central idea is to involve the users in the
development process to ensure that their requirements — which may be competitive
to those of the management — are respected. Of course, ordinary users usually can-
not specify nor implement systems, but they can, for instance, work with mock-up
prototypes of user interfaces and assess them (Madsen and Aiken, 1993). The afore-
mentioned viewpoint approach (Finkelstein et al., 1992) can be used as a framework
to embed PD into a requirements engineering process. Contextual design (Holtzblatt
and Beyer, 1993) is alternative approach, embedding users into the design process.
Prototyping (Budde et al., 1992; Doberkat and Fox, 1989) is another well-known ap-
proach for early feedback of users in the development process which has some com-
mon roots with PD (Budde et al., 1992, p. 3).

The aforementioned approaches and models used in requirements engineering are
in no way specifically tailored for multimedia applications. Some formal methods,
however, are based on the same formal models as discussed in sec. 3.1.2.1 on page 29,
e.g. the use of linear temporal logic by Paun and Chechik (1999). Also the use of
prototypes and early user involvement deal with similar problems we discussed for
multimedia applications. Methods and models explicitly devoted to hypermedia and
multimedia are the topic of the next section.

40

3.3. Software Engineering Approaches

3.3.2. Software Engineering based Hypermedia and Multimedia
Design Methods

In the early 1990s some approaches for the methodical development of hyperme-
dia or multimedia applications were published. The first group extends database
approaches to hypermedia systems. The second deals with multimedia in a rather
different way but interestingly in a similar field as our Altenberg Cathedral project.

3.3.2.1. Hypermedia Design Methods

Garzotto et al. (1993) present the hypertext design method HDM. Their approach
is based on the idea of authoring-in-the-large reminiscent the programming-in-the-
large concept of software engineering. HDM is an adoption of design approaches for
database applications. Its core is a schema modeling all data used by the application.
As the domain of hypertext requires, HDM focuses on different link types and on
views called perspectives organizing the amount of data to be presented. Links are
divided into perspective links, structural links and application link types. The former
two link types connect either different perspectives of an information unit or struc-
ture components of an information unit, resulting e.g. in a hierarchy of components.
The latter are defined by developers to meet the requirements of connecting differ-
ent pieces of information depending on the content of the application domain. The
link types easily allow for differentiation and relationship classification of informa-
tion units. It is possible to derive even more links by applying graph operations such
as closures. This can be done by an interpreter of the HDM schema.

The important contribution of HDM is to base the development of a hypertext ap-
plication on a model, ensuring a more consistent system and resulting in a more struc-
tured and predictable development. As a hypertext method (and not hypermedia!), it
is obvious that HDM does not take multimedia in account. Although it is (certainly)
possible to incorporate still media such as images into HDM, all aspects of timed
media and their specific needs for synchronization are not addressed.

RMM (Isakowitz et al., 1995), the Relationsip Management Methodology, is a hy-
permedia development model and method based on HDM. RMM uses an ER model
similar to those of HDM including navigational aspects. RMM focuses on the method-
ology for developing applications. A four-step process is presented:

1. ER design: representing the application domain.
2. Slice design: defining information packages presented to and accessed by users.
3. Navigational design: designing paths through the information.

4. User-interface design: screen layout and appearance of objects from the data-
model.

41

3. Related Work

Mentioned, but not discussed further, are requirements analysis, conversion of data-
model elements into platform-dependent objects, runtime behavior design, construc-
tion and testing.

As the authors remark, RMM is well suited in application domains which are highly
structured and deal with volatile data. In contrast, in areas such as the Altenberg
Cathedral Project, which is more oriented towards humanities work and thus less
structured, RMM is not useful as the authors argue (see also Lowe and Hall, 1999,
p. 478). Interestingly, although RMM is designed for hypermedia applications, media
aspects are only mentioned but not discussed (Isakowitz et al., 1995, introduction sec-
tion): “multimedia aspects ... raise numerous difficulties”. Isakowitz et al. (1995) do
not address these aspects in the section about future work, so it seems as if in RMM
any such difficulties are simply ignored.

OOHDM (Schwabe and Rossi, 1995; Schwabe et al., 1995), the Object Oriented Hy-
permedia Design Method, extends the concepts of HDM in various directions. Obvi-
ously, the schema is object-oriented based on OMT and is not merely an ER model.
This is a minor change as HDM uses at least an extended ER model. More important
is the developing process of OOHDM. Schwabe and Rossi present a four-step process:

1. Domain analysis: modeling the semantics of the application domain in a con-
ceptual class model.

2. Navigation design: mapping between conceptual and navigational objects, tak-
ing user profiles and tasks into account.

3. Abstract interface design: modeling the user interface.
4. Implementation: constructing the executable application.

OOHDM emphasizes the whole initial development process (maintenance is not con-
sidered) where HDM focuses on the central data model. In particular, the abstract in-
terface design allows the modeling of how different media object are used, and how
the interaction with the user works. This is specified with abstract data views (Cow-
and and Lucena, 1995), which model user interfaces as compositions of primitive
objects, such as buttons, and of media objects. The behavior is defined as the reaction
to user and system events, and as the interaction between interface and navigational
objects.

OOHDM is superior to HDM and RMM, with respect to the more expressive object-
oriented data model and the support of different models for different aspects. For
complex systems, this separation of concerns is important, because otherwise the re-
sulting models are too complex for easy comprehension. But OOHDM also neglects
problems of different media types. The abstract interface design allows the consid-
eration of the media types and their representation more explicitly than the other
approaches, but this involves only the aspects of the reaction to events. More general

42

3.3. Software Engineering Approaches

considerations about media aspects are not available, especially as far as the temporal
arrangement of media objects is concerned.

3.3.2.2. Communication and Multimedia Development

Morris and Finkelstein (1996, 1999) presented an unusual approach for software en-
gineering support for multimedia applications (which is, by the way, independent
of the viewpoint approach). The basic idea of their work is to study the use of me-
dia elements as communication vehicles from the author to the user in multimedia
applications. In contrast to other approaches, the communication task of multimedia
applications is explicitly considered and part of their model.

Morris and Finkelstein model a multimedia application as a combination of a doc-
ument and a software system. Whereas the software always deals with physical me-
dia, during development the document itself also consists of abstract media, later to
be coded in some physical media. These abstract media elements are parts of a sign
system, theoretically described with formal linguistics and semiotics (analyzing doc-
uments with respect to their syntax, semantics and pragmatics, the latter dealing with
structures larger than mere sentences). Thus, the content and structure of a document
is analyzed on the basis of pragmatics. Typical structures in traditional documents
are e.g. rhetorical figures such as the classic thesis-antithesis-synthesis. The discourse
structure of a document is described in a similar way.

As traditional document types do not deal with different media types (e.g. books)
or free positioning in the document by the user (e.g. movies), Morris and Finkel-
stein introduce a new type of discourse structures called navigable discourse structure
(NDS). They define a NDS as an order relationship between abstract media elements
together with a mechanism for the end-user to move between these media elements.
This recalls classical hypertext models such as the Dexter model, but the focus of
NDS is different. While hypertext models analyze existing documents with physical
elements from a technical point of view, a NDS models the content of a document
with its structure and media usage.

The NDS model is accompanied by a process model which is inspired by the cyclic
nature of the well-known spiral model of Boehm (1988) but without applying risk
analysis. The model consists of four stages or components:

1. Discourse structure (classical)

2. Abstract media elements

3. Presentation spreads and operations
4. Navigable discourse structure

In an iterated process, these artefacts are refined by transformation and reconstruc-
tion. The presentation spread is a large table relating characteristic media elements,

43

3. Related Work

operations on these elements, and discourse components. It is similar to story boards
(Harada et al., 1996). The operations are defined with a formal syntax but without
intuitive or formal semantics (Morris and Finkelstein, 1996, sec. 8).

The main contribution of Morris and Finkelstein is their fresh view of document as-
pects during multimedia application development. They do not consider multimedia
applications only as technically complex systems but also focus on the communica-
tion task, the content, of multimedia applications. The intended aid during produc-
tion of multimedia applications is significantly hindered by the operations: their for-
mal and sometimes cryptic syntax does not encourage their use by authors and the
missing formal semantics hinders tool construction which could hide notation and
their problems. The process mentioned is intended “to provide practical guidance for
production”, but remains quite abstract. No technical problems are addressed, ad-
ditional work has to be done there. Related to our situation, this approach has the
disadvantage that it ignores the temporal composition of media artifacts violating
Requirement 3. Therefore, this approach is not suitable for our intention, although
the focus on the discourse structure is very appealing in general.

3.3.2.3. Summary

The hypertext and hypermedia design methods discussed in the literature are well
suited in domains which are highly structured and allow to build a domain model
from which the other models are deduced. Because of their semi-formal notations
they require technical know-how to deal with them.

The NDS approach is a direct counterpart to HDM and successors because NDS fo-
cuses on non-technical aspects by concentrating on the discourse structure of the mul-
timedia document. It makes evident that there exists different kinds of multimedia
applications which have very different requirements: document centric applications
deal more explicitly with communication aspects and are less structured, whereas
database centric applications are highly structured and restrain the communication
aspects of each individual artifact by applying classification.

Interestingly both kinds of approaches neglect the multimedia aspect of synchro-
nizing different media and are therefore not applicable in our context.

3.4. Assessment and Conclusion

In this section we asses the aforementioned approaches of the literature on the basis
of our experience during the Altenberg Cathedral Project and the set of requirements
we stated in sec. 1.1.4 on page 9. After that, we draw our conclusions in sec. 3.4.4 on
page 47.

44

3.4. Assessment and Conclusion

3.4.1. Formal Models

The formal models presented in sec. 3.1 address temporal behavior. All of them re-
guire sound mathematical knowledge and thereby adequately educated and trained
users. However, formal models cannot be used as a common language for devel-
opment, since they violate Requirement 1 (Understandability). They can, however,
be the semantic basis for more user-oriented approaches. The systems from Goetze
(1995) and Vazirgiannis (1999) are prominent examples of this. Both are in fact au-
thoring environments and as such intended for implementing a multimedia system.
In contrast to commercial authoring environments, they have a sound formal basis,
specified with CSP and an algebraic approach, respectively. The underlying formal
models are not visible to users. However, both system focus on implementing multi-
media applications, and consequently they address technical oriented users and are
not well suited for solving our problem of understandability among heterogeneous
developer groups.

The formal document models have similar problems, when the requirement of un-
derstandability is addressed. Approaches such as the Dexter model are not intended
for specification and address computer science researchers. HyTime and SMIL are
well defined implementation languages, but our experience with ADML has shown
that even XML based languages, i.e. languages with formal grammars, are not well
suited for non-technical developers (Alfert et al., 1999).

From the logic-based approaches only Allen’s interval logic is applied to multime-
dia. A reason for this might be that the temporal extension of media artefacts is imme-
diately reflected by Allen’s notion of intervals as primitive elements in his calculus.
In contrast to this, in temporal or modal logics it is rather complicated to model such
intervals (but not impossible as Hajnicz (1996) shows). Additionally, the relations be-
tween intervals in Allen’s calculus are understandable even without a formal logical
background. The constraint solving algorithm allows tool support, and extensions
enable the incorporation of quantitative knowledge. Nevertheless, Allen’s approach
has some shortcomings. First, intervals are described on an instance level only, i.e. if
some action is repeated twice, we have to describe this with two (independent) inter-
vals. This makes it impossible to specify loops within Allen’s calculus. Second, Allen
does not deal with vague information, except for the duration of intervals, which he
assumes to be unknown. Here, fuzzy temporal models are useful for modeling vague
concepts, which we found in natural language settings and everyday reasoning.

Dubois et al. (2001, p. 391) suggested the use of fuzzy sets for giving preferences
to the qualitative interval relations of Allen as a tool for temporal specification of
multimedia applications. This is similar to our proposal (Alfert and Heiduck, 2002)
developed independently.

45

3. Related Work

3.4.2. Specification Techniques

Graphical formalisms (UML, Petri nets, statecharts) have gained some popularity be-
cause of their illustrative yet formal nature. This combination seems to satisfy two of
the requirements mentioned earlier, common understandability (Req. 1) and (possi-
ble) tool support (Reqg. 4). While this is a clear advantage compared to, e.g., temporal
logic, users require also a thorough training in these graphical languages.

Petri nets are currently often used as formal models of multimedia systems and
seldom for specifying multimedia applications. For the latter, we have the familiar
problem discussed also for the formal models: Petri nets require much training and
despite their graphical nature they are not always as intuitive as one would wish.
This especially conflicts with Requirement 1. This also holds for fuzzy timed Petri
nets, since the only change with respect to more ordinary Petri nets is that the timing
annotation is based on fuzzy set theory. Clearly, this helps modeling vague timing
considerations, but the inherent complexity of Petri nets remains.

Statecharts and hypercharts have problems similar to Petri nets. The graphical rep-
resentations give an intuitive feeling of understanding but nevertheless for their ac-
tive use substantial training is required. In spite of the ability to decompose a model
into a hierarchy of sub-models, it is hard to understand a complex model. Especially
hypercharts, with their timing annotations of events, are not easy to read and may
confuse the faint-hearted reader.

Similar problems arise with UML. While the formal underpinning of UML is not
as strong as for Petri nets, its models for temporal behavior rely on statecharts and
Petri net-like notations, and inherit their complexity. The OMMMA approach as an
adaption and extension of UML is of no help here, since UML’s temporal models
comprehension is not improved, although the OMMMA'’s enhanced variants allow a
better modeling of multimedia applications. This is not surprising, since OMMMA
focuses on the traditional design phase of software development and thereby is inter-
ested in technical precision.

3.4.3. Software Engineering based Approaches

The approaches in requirements engineering and also in participative design are not
specific for multimedia. They give, however, useful hints and insights. First, they sup-
port our opinion that including non-technical developers in the development pro-
cess is required, useful and indeed feasible. Second, we should not aim at one single
model, but allow for different models for different developers, as proposed by the
viewpoint approach of Finkelstein et al. (1992), such that each developer can work
with the best suited models. It is necessary, however, that the different models can be
related to each other. Otherwise, (systematic) consistency checks between them are
not possible and we have no real benefits compared to an uncoordinated develop-
ment process.

46

3.4. Assessment and Conclusion

The hypermedia development methods inspired by software engineering have ma-
jor drawbacks in two areas. First, these methods neglect multimedia issues. Although
supporting more media types than only text as in pure hypertext system, these meth-
ods particularly lack the means for specifying the temporal arrangement of media
objects. Second, except for NDS, these methods require a conceptual domain data
model. While this is a clear benefit for the development of all hypermedia applica-
tions based on information systems, it restricts the application of the methods in less
structured domains. For instance, in the Altenberg Cathedral Project we do not have
a domain model, hence the aforementioned methods are not applicable here.

3.4.4. Conclusion

Our review of approaches in the literature shows that no approach satisfies all four
requirements. A particular problem is the requirement for understandability, which
debases the formal methods and models. Additionally, this requirement seems to con-
tradict the specification requirement, which most formal models satisfy. The require-
ment of understandability often triggers the introduction of vague concepts, which
are poorly supported by most approaches, in particular those coming from software
engineering.

To resolve the situation it is in our opinion useful to follow the advice of the view-
points approach (Finkelstein et al., 1992) and to create different yet related models. In
this situation we have found some useful “bits and pieces” in the literature, which,
however, require some adaptation. In our approach, we divide the models in a di-
chotomy, one group with a sound formal basis and the other group without a sound
formal basis. For the latter group we use natural language (NL), which is supported
for the multimedia domain by Bailey et al. (2001b). But we have to be careful when
dealing with the disadvantages of NL when formalizing NL specifications, as dis-
cussed earlier in sec. 1.3 on page 12. For the former group, two approaches provide
first solutions:

e Allen’s interval logic offers tool support, an adequate model for the temporal
extension of media objects, and is easily comprehensible. We require additional
support for loops to use the calculus for specification purposes. Adding fuzzy
set theory helps to deal with the imprecision introduced by natural language.

e Petri nets model synchronization aspects very well and can be used for speci-
fication. Tool support is also available. The imprecision of natural language is
reflected by Mutara’s fuzzy timed Petri nets, which is another benefit.

The two formal approaches are related, since it is possible to model Allen’s calculus
with Petri nets. This merits investigation of whether Murata’s fuzzy timing approach
models back into the interval calculus. In the next chapter we develop our approach
based on these considerations in more detail.

47

3. Related Work

48

Part Il.

Defining Vitruv

49

4. An Introduction to the Vitruv
Approach

In this part, we define the languages of the Vitruv approach and develop their seman-
tics. This chapter gives a brief introduction to the Vitruv approach and presents more
details of the basic ideas already presented in sec. 1.2 and in sec. 1.3 on page 12.

In the first section (sec. 4.1), we recall the main ideas of the Vitruv approach. In
sec. 4.2 on the next page we discuss some more details of Vitruy| , after which we
focus on the semantics of Vitruv| (sec. 4.3 on page 53). The section is followed by a
discussion of Vitruvy in sec. 4.4 on page 55.

The sequence of sections in this chapter is the same as the respective sequence of
chapters in the current part. We have chosen this order, since we prefer to provide
the foundations before we move to Vitruvy. For the same reason, we do not show
any example of Vitruv| or its semantics in this chapter, since any explanation of these
examples would require an inadequate anticipation of many details, which are intro-
duced later in this part. However, in sec. 4.4.2 on page 56 we present a simple example
of a Vitruvyy specification, the formal counterparts of which are shown in the follow-
ing chapters. We discuss a more complex example featuring Vitruv in its entirety in
chapter 10, after presenting all technical details of Vitruv in the preceding chapters.

4.1. Basic Concepts of Vitruv

With Vitruv, we develop an approach for the specification of multimedia presenta-
tions, suitable for both technical and non-technical developers. In section 1.3, we
presented a first glimpse on the structure of Vitruv, which we briefly recall here. To
make the application of Vitruv feasible for non-technical developers, we use natu-
ral language (NL) as common base for communication. The subset of NL used is
named Vitruvy. To tackle the inherent problems of NL, namely ambiguity, impreci-
sion, vagueness and incompleteness, we decided to provide a formal counterpart to
Vitruvy. However, giving a NL-based specification language a formal semantics is a
difficult task and thus we decided to introduce a formal specification language named
Vitruv| as mediator between Vitruvy and the formal semantics. Additionally, Vitruv|
serves as a specification language of its own for technical developers. The semantics
of Vitruv, are partitioned into three separate parts, 1) the static semantics, and the
dynamic semantics for 2) event-free and 3) event-based behavior, respectively.

51

4. An Introduction to the Vitruv Approach

For the formalization of Vitruvy we have several alternatives, as discussed in chap-
ter 3, where we conclude that Petri nets and Allen’s interval logic offer best support
(sec. 3.4.4 on page 47). To ease the transition between these two languages we are
interested in using similar abstractions in both. Allen’s approach, originating from
text understanding and everyday reasoning (cf. Allen and Hayes, 1985), is concep-
tually much closer to natural language than Petri nets, therefore we favor a formal
specification language based on interval calculus. Hence, the key concepts of the for-
malization of Vitruvy are temporal intervals and their relations (Allen, 1983) for rep-
resenting synchronization issues of multimedia presentations. Additionally, we use
fuzzy set theory for dealing formally with the inherent vagueness and imprecision of
NL, needed in particular for durations of intervals.

4.2. Vitruv|_

Vitruv|_is the manifestation of the Vitruvy formalization. We discuss its features fol-
lowed by some remarks on conceptual modeling within Vitruy| .

4.2.1. Language Features

Vitruv|_is a specification language of its own and thus has additional important fea-
tures compared to Vitruvy. We apply an object-oriented approach, such that all inter-
vals are defined as instances of classes with logic clauses defining the (partial) order
of intervals. Inheritance is interpreted as adding clauses, similar to the DoDL ap-
proach by Doberkat (1996) which in turn was inspired by the inner-construct of BETA
(Madsen et al., 1993). As usual, classes may aggregate other classes, such that the com-
position of classes is based on both inheritance and aggregation. The class structure
makes it possible to modularize and reuse Vitruv| specifications.

With the interval calculus, we can only describe event-free behavior. For extending
the behavior we introduce events, modeling user interaction. Reactions to events are
considered by special rule sets, which control either loops or alternative branches. The
latter are similar to case-statements in traditional programming languages. Loops and
branchings are in turn regarded as intervals and thus can be ordered in the same way
as ordinary actions. Event values are used for deciding whether loops are terminated
or which branch is selected. The values are instances of fuzzy types. Fuzzy types are
linguistic variables, defining a universe and a set of reference values and modifiers. In
addition to event values, fuzzy types are used in particular for specifying the duration
of intervals.

52

4.3. The Semantics of Vitruv|

4.2.2. Conceptual Modeling and its Realization

The concept of linguistic variables allows the transformation of quantitative into qual-
itative data and th construction of conceptual models, since the specific realization (or
valuation, as logicians would say) of such linguistic variables, i.e. their correspond-
ing fuzzy sets, is of no immediate concern for the conceptual model. In fuzzy control
theory (Yager and Filev, 1994), the realization of linguistic variables has to be adapted
and fine-tuned for each new application, but leaves the conceptual model, consisting
of linguistic variables, unchanged. We adopt this principle here. The conceptual mod-
els deal with qualitative data and are represented by linguistic variables. They remain
stable during refinement of the specification by fine-tuning each fuzzy set, needed for
developing the final application. This fine-tuning works on the realization (or valu-
ation) level and binds each qualitative data to its realization as a fuzzy set. It also
allows the binding of different realizations to the same conceptual model, which be-
comes a class of realizations in the same way as a type represents its possible values.
This separation of conceptual models and their realizations implies that we gain more
stable models since the conceptual models need no changes while applying different
realizations.

The connection between the conceptual model and its realization is handled in the
binding of Vitruv| . In the binding we assign fuzzy sets and modifier functions to the
reference values and modifiers of fuzzy types, respectively. Only in the binding, we
instantiate classes, thereby creating objects. To realize aggregation, we use polymor-
phic assignments of objects.

4.3. The Semantics of VitruvL

The semantics of Vitruv| (and thereby also indirectly those of Vitruvy)) are split into
three separate yet related areas. While moving from the static semantics to the two
dynamic semantics (for event-free and event-based behavior), we add in each step a
further amount of information and rely at the same time on the consistency provided
by the semantics of the previous steps.

4.3.1. Static Semantics

The static semantics of Vitruv| defines formally the type structure and the scoping
rules of Vitruv| . We use a deduction system where the type and scoping rules are no-
tated as the deduction system’s inference rules. The application of the static seman-
tics to a specific Vitruv| specification results in finding a formal proof deriving that
the specification is well-typed. The type system of Vitruv| provides static and strong
typing, i.e. each entity is required to have a type and all type errors can be found by

53

4. An Introduction to the Vitruv Approach

analyzing the specification. As usual for the object-oriented setting, we allow inheri-
tance induced polymorphism for variables with class types.

The benefit of a static and strong type system for Vitruy is that we can prevent
many errors in advance in the specification by type checking. In particular, this is
helpful for large specifications, and for specifications consisting of separated and
independent parts. The latter occurs frequently in Vitruv| , because classes are used
for modularization of Vitruv| specifications. Additionally, the distinction between the
conceptual specification and the binding, which is also separated in the specification
text, is a potential source of errors, which can be detected easily by type checking.
From a pragmatic point of view, the binding in its current form is only feasible be-
cause of the advantage of having a static and strong type system.

4.3.2. Dynamic Semantics for Event-Free Behavior

The first dynamic semantics is concerned with the event-free behavior specified in
Vitruv| . The event-free behavior is the part of the dynamic behavior of Vitruv| , but in-
dependent of events, selectors and loops. The interesting fact of the event-free behav-
ior is that we can check its consistency with a variety of algorithms, beginning with
Allen’s original constraint solver. The consistency checkers and constraint solvers
give us the ability to infer unspecified or refine specified durations and interval rela-
tions, and to check for contradictions in the specification.

However, these algorithms require a flat set of intervals, relations and duration
constraints. Therefore, it is not possible to use directly the definitions of Vitruy , but
we need a linearized version of them. To ease the process of providing a linearized
version of a Vitruv| specification, we define an intermediate language called Vitruy,
which handles only intervals, durations and interval relationships, i.e. the vocabulary
for the event-free behavior. The linearization process depends on the statics seman-
tics, since we need not only a well-typed specification but also information derived
during type checking. The linearization of a Vitruv specification results in a Vitruy,
program, which has to be executed as final step of the linearization. After execution,
the flat set of intervals, their duration constraints and interval relations are provided.
The execution of the Vitruv; program is formally defined by an operational seman-
tics. The semantic domain used for the state of the operational semantics contains
the set of intervals, their duration constraints and the interval relations of the Vitruy,
program, and can be used as input for consistency checking algorithms.

4.3.3. Dynamic Semantics for Event-Based Behavior

The second dynamic semantics handles not only the event-free but also the event-
based behavior specified in Vitruv| . Hence, we support events, loops and selectors,
not available in the semantics for the event-free behavior.

54

4.4. Vitrqu

We define the dynamic semantics by a variant of timed colored Petri nets which
we call Vitruvian Nets. In Vitruvian Nets we combine several Petri net types, all of
which are well-suited for particular aspects of the behavior of Vitruv| . Timed Petri
nets are suitable for modeling Allen’s interval relations (Little and Ghafoor, 1990),
and with Fuzzy Timed Petri Nets (Murata, 1996) we support fuzzy durations of inter-
vals. Events, which model user input in Vitruv| , are realized by transitions, which fire
tokens with random values. The tokens are fed into decision processes used in selec-
tors and loops. These processes are modeled by Fuzzy Petri nets, where tokens take
fuzzy values (Looney, 1988). The repetition and branching nature of loops and selec-
tors, resp., are supported by the net topology of Petri nets in general. Constructing
the net topology requires the linearization developed for the semantics of the event-
free behavior. This is the connection between the two dynamic semantics and thereby
indirectly also the connection to the static semantics.

Defining the semantics of the event-based behavior of Vitruv| with Petri nets allows
the use of analysis techniques for Petri nets to analyze the Vitruv|_ specification, e.g. for
determining properties such as liveness, deadlock situations or reachability. By sim-
ulating the net we can analyze additional properties, which depend on the random
firing of transitions modeling events, e.g. average durations of intervals or paths. The
simulation capability can also be used for tools providing an early and user-friendly
feedback to technical and non-technical developers: it is important that the formal
notation of the Petri net is translated back to abstractions which are familiar to the
developers. The details are left to an implementation.

4.4. Vitrqu

The part of Vitruv for specifying multimedia presentations usable by technical and
non-technical developers is Vitruvy;, a specification language based on natural lan-
guage (NL). We discuss the features of Vitruvy; and give an example.

4.4.1. Language Features

The structure of Vitruvy follows those of storyboards, such that in each Vitruvy doc-
ument an entire presentation is specified. Each presentation features scenes as the
highest structural element. Inside each scene, a set of media objects is used. Media
objects are required to have a certain media type, e.g. video, audio, image etc. The
main part of a scene description specifies the temporal arrangement of the scene’s
media objects. Some media objects may have an internal temporal structure, e.g. var-
ious shots inside a video clip. In such cases, we can use also use the internal media
structure in the same way for the definition of the temporal arrangement.

The specification of the temporal arrangement of media objects is given primarily
by stating how media objects are mutually related. This is quite similar to Allen’s

55

4. An Introduction to the Vitruv Approach

interval calculus, making the translation to Vitruv| easy, yet providing an adequate
and not too artificial description in NL. Compared to Vitruv| , the features in Vitruvp
for handling events are somewhat simpler. We decided on this option, since we did
not want to bother non-technical developers with the many technical details needed
for more complex control structures.

For Vitruvy, we decided to use a rather restricted subset of NL, restricting both
vocabulary and grammar. As a result, we gain a (general) context-free grammar for
Vitruvy. The restriction has its benefits, reducing the risk of ambiguity inherent in NL
and easing the construction of tools for Vitruvy;. As a disadvantage one may argue that
a restricted vocabulary and grammar makes it difficult and error-prone to write spec-
ifications. But since specification documents are much often read than written, we
favor an approach focusing on readability. To ease writing documents, however, with
the particular vocabulary and accompanying grammar rules of Vitruvy;, we can sup-
port the editing process with user-friendly tools, such as syntax-oriented editors. The
context-free grammar used allows to build parsers as the first step towards machine-
readability and general tool support.

The semantics of Vitruvy are given implicitly by the semantics of Vitruv| . Thus, we
are required to provide a mapping from Vitruvy to Vitruv| . Due to the regular struc-
ture of Vitruvy, its restricted grammar and vocabulary, and its proximity to behavioral
aspects of Vitruv| , we can define a systematic translation from Vitruvy to Vitruy| .

4.4.2. Example

In the following example 4.1 on the facing page we present a simple scene, consisting
of three media objects and their relations. As a reading hint, we should note that iden-
tifiers in Vitruvy are delimited by quotes to allow several words long identifers, in the
text we additionally use angle brackets as delimiters to distinguish Vitruvy code from
Vitruv|_or Vitruv| code. The scene starts with rendering of video (“*house”) and finishes
with video (“house2”). Both videos are overlapped by the audio-clip (“transition”),
which shall accompany the move from the first video to the second.

The example shows only a small fraction of the possibilities of Vitruvy. But this
is the reason why we use it also as introductory example for Vitruv; (spec. 5.2 on
page 65) and for Vitruvian Nets (fig. 8.4 on page 162) in the respective chapters.

4.5. Sketching a Process Model for Vitruv

For applying Vitruv we propose a process model sketch, which is strongly related to
the distinction between conceptual model and its realization, as it is made explicit in
Vitruv| . The process model consists of the following steps:

1. Specification of the presentation with Vitruvy

56

4.5. Sketching a Process Model for Vitruv

Specification 4.1 A simple example scene

Description of scene “Example”.

In this scene, these media are used:

e A video, identified by “housel”.
e A video, in the following named “house2”.

e An audio-clip identified by “transition”.

End of media definition.
The media composition:

The scene starts with video “housel”. Video “housel” and audio-clip “transi-
tion” overlap slightly. Video “house2” and audio-clip “transition” overlap slightly.
The scene finishes with video “house2”.

End of the media composition.

End of the scene description.

2. Translation to Vitruv

3. Consistency checking and net generation

4. Net simulation

5. If the behavior of the net is not satisfactory: fitting of the binding and go to step 3
6. Finish.

It should be remarked that this sequence of steps is an ideal similar to the waterfall
model. In practice, backward links to all steps might become necessary. Additionally,
tool support is appreciated.

The first step establishes the initial specification in Vitruvy;, understandable for all
developers, technical and non-technical. Thus, this specification is the communica-
tion vehicle for the entire development process. In the next step this specification
is translated to Vitruv| . The Vitruv|_specification is not intended to be used by non-
technical developers, we focus here on technical developers only.

Steps 3 to 5 are repeated until all developers are satisfied with the specification. In
step 3, we check the consistency of the Vitruv| specification and transform the specifi-
cation to a Vitruvian Net. As next step, we simulate this net. The purpose of the sim-
ulation is to check whether the behavior of the system meets the expectations of all
developers. If this is not the case, then the specification has to be changed. Our model-
ing approach assumes that the qualitative part of the specification remains stable and

57

4. An Introduction to the Vitruv Approach

only the quantitative part requires changes, demanding probably a new requirements
elicitation. Technically, it should be sufficient to modify bindings for media durations,
but alternatively we can modify media durations in the Vitruvy; specification as well.
After modifying the durations, we go back to step 3 (or to step 2, if we modified the
Vitruvy specification), and repeat the remaining steps.

We finish with step 6 after the simulation results are satisfactory. We consider now
the specification as stable. The design and implementation of the presentation can
begin.

58

5. The specification language Vitruv

5.1. Overview

In Vitruv; we want to capture central aspects of Vitruv in formal way. In particular, we
are interested in

e the ordering of activities, i.e., temporal relationships between activities,
e the duration of activities,

e events, their temporal interval in which they may occur, and their relationships
to other activities and events, and finally

e reactions to events.

Activities are time-consuming actions. Intuitively, we can model them in a very ab-
stract way as closed temporal intervals. The relationships evolve naturally in interval
relationships as presented by Allen (1983) (sec. 5.2.1 on the next page).

However, Allen’s calculus is only a set of formulas constraining a set of intervals.
It is a flat system requiring a structuring mechanism, if we aim at maintainability
and feasibility of large specifications. In sec. 5.3 on page 62 we apply object-oriented
concepts for structuring the specification.

Since the Vitruv approach is based on natural language, we have to deal with impre-
cise descriptions such as rather vague measures of durations, e.g. short or long. As
discussed earlier, requirements, stating that certain actions have a long duration with
a common-sense semantics — needed for the natural language basis of Vitruv—, do not
mean that these actions have exactly the same duration but durations which are more
or less compatible to a distinguished reference value. Hence, the compatibility does
not define an equality or a classical equivalence relation rather consists of graded
truth values stating whether a specific duration fits to the reference value. Fuzzy set
theory is the well-established theoretical underpinning of such vague concepts. Ap-
plied to our interval-based approach we introduce fuzzy intervals, which have fuzzy
durations, and fuzzy relationships extending Allen’s calculus. In sec. 5.4 on page 67
we present user-defined fuzzy types such as durations.

With Allen’s calculus we can only have a pre-determined temporal behavior with-
out any user interaction. However, in interactive multimedia presentations users con-
trol the behavior of by following links, choosing between menu items, starting or

59

intervals

alpha
omega

length

activated
interval

5. The specification language Vitruv|

stopping of media renderings such as videos, and so on. These interaction can be
modeled by events and reactions to events. In sec. 5.5 on page 70 we present events
in Vitruv| . The system’s reaction to events are considered by special rule-sets allow-
ing if-then-like clauses and loops. Additionally, user interactions such as following
links or using menus require the possibility for branching to different parts of the
presentation. This is discussed in sec. 5.6 on page 78, where we concentrate on the
presentation’s structure in the large. A library of standard definitions is presented in
sec. 5.7 on page 79.

In fuzzy control theory (Yager and Filev, 1994) it is important to distinguish be-
tween the conceptual expressions (such as long or short) and their values (the respec-
tive fuzzy sets). One of the appealing characteristics of fuzzy control theory is that
usually only the values need a fitting for a particular application whereas the con-
ceptual expressions remain constant. In order to transfer this characteristic to Vitruy ,
we separate classes, relations and other constraints from their realizations (sec. 5.8 on
page 81). In particular, this is useful because fuzzy durations such as short or long are
context-dependent and hence their values might differ considerably.

Finally, we should mention that we discuss some possible extensions of Vitruy in
sec. 12.2 on page 256. They are not part of the language definition because they do
not address the language core, they provide however valuable concepts for a more
pragmatic language use.

5.2. Intervals and their Relationships

The most basic materials in Vitruyv| are intervals and their relationships. They are
discussed in this section.

5.2.1. Intervals

Temporal intervals are the base abstractions of Vitruv| and are based on the real line
as time scale. Each interval is characterized by its definitive starting and finishing
point, alpha and omega, resp. The distance between these two points is the interval’s
duration, its length. These three characteristics are attributes of each interval in Vitruy|
and can be accessed by the usual dot-notation: let x be an interval, then the length of
x is notated as x.length, its starting and finishing point as x.alpha and x.omega, resp.
These attributes are an augmentation of Allen’s approach which considers intervals
only qualitatively. But we want to quantify intervals and later also the interval rela-
tionships, thus we need these attributes.

Let us now relate intervals and activities. Each interval i in Vitruv| corresponds to
an activity a. Whenever the activity a is executed, we say its corresponding inter-
val i is an activated interval and vice versa. Similarly, the behavioral characteristic of

60

5.2. Intervals and their Relationships

an interval is related to the behavior of its corresponding activity. For intervals repre-
senting (time-dependent) media objects the corresponding activity is the rendering of
the media object and the intervals’ length is accordingly the rendering time. The or-
der of activities (and hence the order of intervals) is defined by interval relationships,
explained next.

5.2.2. Interval Relationships

Interval relationships specify the partial order of intervals, thereby controlling the ac-
tivation of intervals and thus (an important part of) the behavior of the presentation.

Interval relationships are either primitive or modified relations. A primitive relation
is fuzzy version of one of Allen’s thirteen interval relations (cf. fig. 3.1 on page 31),
i.e., they are binary fuzzy relations of interval positions. Modified relations are based
on a primitive relation to which one or more modifiers are applied. We call such a
relation a compound relation.

The intended semantics of modifiers in compound relations requires the introduc-
tion of additional anonymous intervals, additional constraints and relations between
these new intervals and those being arguments of the compound relation. The addi-
tional intervals are anonymous, because they are not visible and accessible outside
the compound relation. As an example consider A shortly after B which introduces a
new interval C met by A and meeting B together with a length constraint C is short.

Thus, we consider compound relations as a kind of macro which expands to a set
of constraints including primitive interval relations. The set of possible compound
relations is not fixed but can extended by the user. This implies that we have to define
compound relations explicitly. Specification 5.1 shows the definition of shortly after.
The intervals A and B are formal parameters, C is a new anonymous interval. We
omit any typing of A, B and C, because local variables and formal parameters in a
compound relation have always type Interval. C gets the length constraint that C is
short. We defer details about the length constraint short to sec. 5.4 on page 67, where
we discuss fuzzy types and values.

Specification 5.1 Definition of the compound relation shortly after.

define interval relation A shortly after B =
let C in rules

B meets C;

C meets A;

C is short;
end;

61

primitive
relation

compound
relation

class
instance

elements

rules

local
declarations

let

5. The specification language Vitruv|

5.3. Classes Structuring the Specification

Until now we have presented rather unstructured specifications. Intervals as a kind
of runtime concepts are not well suited as structuring mechanisms for specifications.
Nevertheless, intervals themselves have structure and also enjoy relationships to other
intervals, which reminds of objects in object-oriented languages: objects are runtime
concepts, have structure and relationships. Because of that we now apply object-
oriented concepts: classes and inheritance for describing the structure of intervals,
objects as runtime concepts represent intervals.

5.3.1. Classes

We are interested in an explicit modeling device structuring the otherwise flat set
of intervals and their relationships. This device should fulfill the following general
requirements regarding modularity:

e information hiding
e compositionality
e explicit interfaces

These features are main properties of abstract data types (ADT). One specific real-
ization of ADTs are object-oriented classes which have been proven to satisfy these
requirements. However, since it is well-known that inheritance breaks encapsulation
it is required to balance object-oriented and ADT features. Nevertheless, the concep-
tual proximity of classes to typical implementation languages in the multimedia do-
main is another benefit. Therefore, we will use here object-oriented concepts. Firstly,
we discuss important general properties of classes, followed by details of syntax and
some selected concepts.

In Vitruv| , a class defines a set of objects with identical structure and internal behav-
ior. We say that an object is an instance of a class. Each object represents semantically
an interval and may have a complex internal structure. A class consists of two parts.
The first part structures the class by defining elements of which the class consists.
These elements are either objects or instances of other types, i.e. of fuzzy types (see
sec. 5.4 on page 67) or event types (see sec. 5.5.1 on page 70). This part shows compo-
sition of classes from other classes, extended by inheritance later. The class’s second
part defines the internal behavior. It consists of a set of rules subsuming interval re-
lationships, duration constraints and event reactions applied to the elements of the
class.

Syntactically, these two parts are divided into four sections:

1. local declarations defining the elements constituting a class. They are introduced
by the keyword let.

62

5.3. Classes Structuring the Specification

2. an export clause declaring elements visible to the outside the class. The clause
starts with keyword exports.

3. an inheritance declaration — we postpone its discussion to section 5.3.2 on page 65.

4. abody defining the rules of the class and thus the behavior of the class. The body
is enclosed by keywords body and end.

In contrast to general imperative or functional object-oriented languages, we do
not provide methods, any behavior is defined within the set of rules. Because each
object represents a temporal interval, the aggregation structure of objects is a tempo-
ral hierarchical structure of objects, implying that an interval, representing an outer
object, contains all intervals representing the inner objects. The (static) activation of an
object is consequently determined by interval relationships as explained on page 61.
In addition to that, events, loops and selectors deal with dynamic and event-based
activation of objects. Hence, there is no need for defining methods explicitly, and a
finer grain of control over the behavior can be achieved by accessing (and thus acti-
vating) elements of a class by referring to them in the rules. As the body of class has a
procedural character, classes in Vitruv| are more similar to patterns of BETA (Madsen
et al., 1993, p. 42) than traditional classes, because patterns as unification of classes,
procedures and variables can also have a procedural character.

Whether access to elements from outside the class is allowed, depends on the ac-
cessibility status of each element. Generally, any access to elements of classes is for-
bidden for other classes, except to those which are explicitly exported by their declar-
ing class. All exported elements of a class define the interface of this class. If the ex-
port clause is omitted in a class, only inherited exported attributes are exported (see
sec. 5.3.2 on page 65 for the discussion of inheritance in Vitruv|). Additionally, no
rule is accessible in any way outside the class, hiding information about internals of
classes.

If elements of a class, declared in the local declarations, are instances of classes,
then we call them attributes. To achieve safer specifications in Vitruv| , we apply typing
and declare explicitly the class for each attributes. If no new elements are declared in
the local declarations, then the rules in the class body can only operate on inherited
elements.

As usual in object-oriented languages it is possible to define recursive classes, i.e.
the class can be used as type of its own elements. But in contrast to usual object-
oriented approaches, we have only value semantics and no references (with the ex-
ception of references to scenes, cf. sec. 5.6 on page 78). Thereby, in contrast to recursive
classes, we do not have recursive objects. The finiteness of the binding ensures that
we do not get infinite objects, independent of any recursive class structure. This is
similar to the definition of recursive data structures in SML without using references
(Reade, 1989, p. 155 and following). The special attribute this is used to denote the

63

export clause
exports

body
body

interface

attributes

this

nil objects

5. The specification language Vitruv|

current object of a class, similar to this in Java (Gosling and Arnold, 1996) or current
in Eiffel (Meyer, 1992).

The body of a class declares the rules, i.e. all relationships between elements, du-
ration constraints and event reactions. All rules in the body of a class are implicitly
connected by conjunctions. The semicolon at the end of each rule can be regarded as
a logical-and with lowest priority of all operands: a set of rules R1; R2; R3; is then
semantically equivalent to (R1) and (R2) and (R3). Each element e of a class C is only
active while the actual object of class C is active. We require implicitly that between e
and the actual object this of class C the relationship

e (during or starts or finishes) this

holds. This implies that the duration of each element is not greater than the duration
of this.

The rules in the body of classes make use of the recursive structure of classes, which
leads to the question, how these rules are applied to objects which are finite in contrast
to the possible infiniteness induced by the class definition. We denote objects, that are
not instantiated but mentioned in rules, as nil objects. The evaluation of rules with nil
objects depends on the kind of rule:

1. Interval relations defining the arrangement of two intervals make only sense
if both intervals exist; arrangements with non-existing objects are meaningless.
Therefore, any interval relations where at least one nil object is used, are ig-
nored.

2. In constraints, where the target of the constraint (the left-hand-side) does not
exist, are ignored, because constraints for non-existing objects are meaningless.

3. In constraints, where the constraint expression (the right-hand-side) contains
nil objects, the constraint value cannot be calculated, the value is undetermined
and thus unknown. In our possibility theory setting, such a value means that
all values are possible, because we cannot establish any restrictions. This is ex-
pressed by the constant 1-fuzzy set u(x) = 1 VX, stating formally that each x is
equally and fully possible.

Specification 5.2 on the next page presents a simple example class specifying that
two videos are rendered sequentially with an audio transition between both videos.
We use the predefined attributes alpha and omega for beginning and end, respectively.
The three attributes housel, house2 and transition are instances of the classes video and
sound, resp., defined elsewhere. Only attributes housel and house?2 are exported and
therefore accessible outside class Example. We use again the usual dot-notation to
access elements of a class. The body defines the behavior: the sequence of the videos
housel and house2 with a sound transition guiding from the first video to the second.
The sound is rendered parallel to the end of video housel and to the beginning of
video house2.

64

5.3. Classes Structuring the Specification

Specification 5.2 A simple class.

class Example
exports housel, house2;
let
housel : video;
house2 : video;
transition : sound;
body
alpha starts housel;
housel overlaps slightly transition;
transition overlaps slightly house2;
house2 meets omega;
end;
end;

5.3.2. Inheritance

Inheritance is the object-oriented concept for building and using a classification hier-
archy of classes. In contrast to the division of classes into smaller parts that we have
seen in the last section, inheritance works in the opposite direction, synthesizing new
classes by inheriting features from other classes and adding new features. The intro-
duction of inheritance in Vitruv| demands to deal with the topics polymorphism, type
rules, visibility of class elements, and late binding. We discuss these topics now.

5.3.2.1. Defining Inheritance

Following Cardelli and Wegner (1985), inheritance defines a subset-relationship be-
tween sub- and super-classes, regarding classes as sets of values and thus as types.
Because each sub-class instance is also an element of the super-class, the subset-
relationship suggests that instances of a sub-class can be applied in all situations
where an instance of the super-class is expected. This is called substitutability and is
the basis of polymorphism. To ensure this, certain conditions have to be established.
In our situation, we do not have functions with complex type-rules, therefore the sit-
uation is much easier. We have only to ensure that (1) interfaces of sub-classes are
an extension of their super-classes’ interfaces and that (2) sub-classes do not weaken
inherited rules. The first condition applies to the sub-typing rules by Cardelli and
Wegner (1985), because the set of exported elements of a class defines essentially the
type of this class. The second condition refers to the design-by-contract rules of Meyer
(1997) for logical specification of classes’ semantics, in particular those for class invari-
ants.
Therefore, we require that the following two conditions hold:

65

Interval

5. The specification language Vitruv|

1. all exported elements of a class are also exported unchanged by its sub-classes,
guaranteeing that the interface of a class is always completely part of the inter-
face of its sub-classes.

2. the set of rules defined in the body of a sub-class are combined by a logical
conjunction with the rules of its respective super-classes. Therefore, a sub-class
has to fulfill all laws defined by its ancestors.

These two conditions ensure that substitutability is always possible in Vitruv; and be-
cause of that inheritance is properly defined according to Cardelli and Wegner (1985).

Let us now explain inheritance in Vitruv| in greater detail. The effect of inheritance
is that the new class contains all structures (i.e., declarations and rules) defined in the
inherited class. Additionally, the new class can define its own set of local declarations
and rules between new and old elements. The new elements need fresh names to
avoid naming conflicts. The inherited exported definitions are also always exported
by the new class. We allow only single inheritance avoiding harmful conflicts such as
name clashes by combining independent hierarchies. We additionally gain a simple
and strict specialization hierarchy between classes instead of a directed acyclic graph.

5.3.2.2. Class Interval: Root of the Inheritance Hierarchy

All classes inherit at least implicitly or indirectly from Interval, the root of the spe-
cialization hierarchy. Obviously, Interval does not inherit itself, as hierarchies are not
reflexive! The definition of the class Interval (see spec. 5.3 on the facing page) serves
similar aims as the class Object of Java (Gosling and Arnold, 1996): stating some gen-
eral features which are present in every other class. Additionally, class Interval ensures
that intervals are indeed the base abstraction of Vitruv; and that intervals are realized
by objects. The specification of class Interval is straightforward as it only states that it
consists of alpha and omega, and provides the special attribute length, which is a fuzzy
variable of the standard fuzzy type DURATION (sec. 5.4.2 on page 69), maintaining a
constraint on the fuzzy difference of alpha and omega.

However, both attributes alpha and omega are special, because they are considered
atomic, i.e. they do not contain any other intervals. This is indicated in the speci-
fication of class Interval by stating that alpha and omega have length zero, but we
explicitly forbid any other interval occurring in alpha and omega.

5.3.2.3. Late Binding

Semantically, inheritance works in Vitruv| as a macro expansion mechanism because
we can simply collect for each class all structures defined by its super-classes through-
out the entire hierarchy. This results in flattened classes consisting of all structures
induced by inheritance. The definitions of these flattened classes are independent
with respect to the inheritance relationship. Other relationships to other classes may

66

5.4. Fuzzy Types

Specification 5.3 The definition of the class Interval.

class Interval
exports alpha, omega, length;

let
alpha : Interval;
omega : Interval;
length : DURATION;
body

alpha starts this;
omega finishes this;
alpha (meets or before) omega;
alpha.length is DURATION. zero;
omega. length is DURATION. zero;
end;
end

exist only if a class declares a local element of another class. Assignments to such
elements are possible in a polymorphic way because of substitutability, this is done
in the binding which is discussed later (see sec. 5.8 on page 81). This leads to a last
point, which we need to discuss: late binding. Traditionally, it deals with determining
the right implementation of a method of an object at runtime depending on polymor-
phic assignments of an object to an variable. In Vitruv| we do not have functions or
methods as mentioned earlier, but the rules serve a similar purpose, because they re-
fer to elements. The temporal order of interval activations inside an element of a class
depends on the element’s actual value. That means, we may rely on the exported ele-
ments of such a class, but we can not rely on the temporal order of activation of such
exported elements, because this depends on the actual polymorphic assignment of
this element.

5.4. Fuzzy Types

In the section concerning interval relationships we used linguistic variables implicitly
in the rules. In Vitruv such linguistic variables are called fuzzy types. In this section
we describe their structure and properties, and present two standard types.

5.4.1. Structure and Properties of Fuzzy Types

In Vitruv| we use fuzzy types together with classes for the static structure. Similar to
types in usual programming or specification languages, a fuzzy type defines a set of
values. A value of a fuzzy type is a fuzzy set on a universe which is the basis of the

67

fuzzy types

universe

terms
modifier

5. The specification language Vitruv|

type. A reason to introduce fuzzy types in Vitruv| is to have a possibility to define du-
rations within Vitruv; and to have a means for data definition different from defining
intervals. However, the simple structure of our fuzzy types limits the expressiveness
of the data definition. Additionally, for the sake of simplicity, we restrict ourselves to
simple universes, because they are sufficient for our focus of temporal specifications.
Thus, the universes are either (closed) intervals of R or 7Z, or a set of enumerated
identifiers. The last alternative is useful for choices in menus of user interfaces. It
may be irritating that we use fuzzy types for such discrete values, but singleton sets
with a non-empty core encode discrete values. Thus, we do not need an additional
non-fuzzy construction. In sec. 12.2.1 on page 256 we discuss more elaborated con-
structions for universes of fuzzy types.

In addition to the universe, a fuzzy type consists of a set of reference values (i.e.
fuzzy sets on the universe) and a set of modifiers. The reference values are called
terms in Vitruv| and are the literals of the fuzzy type. A modifier is a unary function
which takes a fuzzy set as an argument and returns a new fuzzy set. Since a suitable
definition of modifiers is generally situation and application domain dependent, it is
important that each fuzzy type defines the set of applicable modifiers to its values.
The negation of a fuzzy set is also a modifier, because it is an unary function.

Expressions of a certain fuzzy type consists of terms, modifiers applied to an ex-
pression, and the union and intersection of expressions. The latter are expressed by
union and intersect, resp., and also by or and and, because these operator names are
conventionally used in the literature. These set theoretic operations can be applied
because each value of fuzzy type is always a fuzzy set as mentioned above. Expres-
sions can be used for at least two purposes: firstly, they denote a fuzzy, an imprecise
value and secondly, they constrain a variable of the same universe by denoting the
(graded) set of possible values.

As an example for applying fuzzy types for something other than temporal con-
straints — these are shown in the next section —, we define a fuzzy type Brightness
in specification 5.4 on the facing page. This type may be used to describe the bright-
ness of visual elements. Its universe is the integer interval [0, 255] in accordance to the
usual rgb color systems in video displays. The terms, the reference values, are black,
dark, muddy, shining, bright and white, the allowed modifiers are very, more_or_less and
not. Note that we only define names and omit any assignments of (explicit) fuzzy sets
or function definitions to these names. The assignment of such values is done in the
binding (sec. 5.8.6 on page 84), where the realization of the fuzzy type is defined. The
only exception is the universe definition, which is given explicitly and fixed, whereas
all other values referred to in a type definition are left to the interpretation in the
binding.

68

5.4. Fuzzy Types

Specification 5.4 The fuzzy type Brightness.

define type Brightness
universe [0 .. 255];
define term black, dark, muddy, shining, bright, white;
define modifier very, more_or_less, not;

end;

5.4.2. The Standard Type DURATION

In specification 5.1 on page 61 we used the term short as a value assigned to the length
of interval C. Term short was only implicitly defined, but in spec. 5.3 on page 67 we
defined that the length of an interval has type DURATION, hence short has to be a
term of this type. Now we define the standard fuzzy type DURATION, which is used
for all calculations and constraints concerning the duration of intervals (spec. 5.5).
DURATION’s universe is the subset of non-negative real numbers (R]), each value is
a fuzzy number or interval, i.e., a normalized convex fuzzy set (def. B.21 on page 286).
We provide the terms zero, short and long as generic durations. The modifiers allowed
for durations are not, very, extremely, more_or_less and slightly.

Union and intersection of fuzzy sets do not guarantee convexity (for intersection
only if one of the arguments is not convex). Therefore, we have to be careful if we
apply these standard operations to values of the fuzzy type DURATION, because we
may achieve results which are not proper values of type DURATION.

In general, terms such as short have a context dependent meaning: a part of a movie
may be seen as short compared to the full-length movie, but may be large compared
to a single scene of the movie. In a programming language setting, a classical so-
lution for the context sensitivity of fuzzy type terms would be to realize terms as
functions, where the argument is the fuzzy set defining the context. In Vitruv; we do
not have this possibility, however, we introduce a notion of context in the binding
(see sec. 5.8.4 on page 83), such that a term may have different realizations depend-
ing on the current context. A standard binding is provided in the prelude (sec. A.3on
page 273), where as context an entire scene is assumed.

Specification 5.5 The fuzzy type DURATION.

define type DURATION

universe [0.0 .. inf] ;

define term zero, short, long;

define modifier not, very, extremely, more_or_less, slightly;
end;

69

DURATION

events

5. The specification language Vitruv|

5.5. Events, Loops and Branching

Till now, we can only specify pre-orchestrated presentations, i.e. its behavior is com-
pletely fixed and no user interaction can occur, at least not altering the behavior in any
way. This is certainly not realistic, and thus we now introduce events and reaction to
events, resulting in loops and branchings.

5.5.1. Events
In Vitruv|_events model user interaction. Each event consists of three parts:
e an enabling interval, in which the event may occur,

e an occurrence interval, in which the event occurs and which is a subinterval of
the enabling interval, and

e avalue of a given (fuzzy) type.

Events have to be declared as elements of a class, because their enabling interval
can be positioned according to other elements in the class, requiring a suitable type
for events. The structure of events is always the same. The only possible difference
is the value’s type, because enabling and occurrence intervals are simple intervals.
Hence, events are generic type definitions such as arrays in Pascal or generic classes in
Eiffel (Meyer, 1997, chapter 10). We follow the convention of these languages and use
square brackets for denoting the value’s type. This is shown in spec. 5.6 on the facing
page, where we specify fuzzy type ButtonState and class Button. The latter declares
the event pressed with value type ButtonState.

The enabling interval of an event usually has a length greater than 0 and is de-
termined by the relation to other intervals. In contrast, the length of the occurrence
interval is always 0, because events are characterized as time-points without tempo-
ral extension. The event occurs during the enabling interval including start and end
points of enabling interval. Thus, between occurrence and enabling interval the rela-
tion starts or finishes or during holds implicitly.

Occurrence time and values of events are nondeterministic by nature. Hence, any
relationships between ordinary intervals and occurrence intervals would transfer this
non-determinism to the activation of these ordinary intervals. While this seems be a
possibility to model if-then-clauses, it is very problematic. Consider the following
situation:

afinishedby b; e meets b; b meets ¢; a meets ¢;

where e is an event’s occurrence interval and a, b and c¢ are ordinary intervals. b can
only occur if e occurs, and this is propagated to c. This seems to be no problem, be-
cause b and c¢ are immediately and explicitly connected by the meets-relation. But this
connection exists for other intervals as well because we can infer further relations

70

5.5. Events, Loops and Branching

Specification 5.6 Declaration of event pressed in class Button.

define type ButtonState
universe { up, down };
define term isPressed;
end;

class Button
exports pressed, ...;
let
pressed : Event [ButtonState];

body
this.alpha start pressed; // only the enabling interval!
end;
end;

with Allen’s algorithm. This situation is shown in fig. 5.1 on the next page, including
the following extension of our example by

d aftera;

implying
d afterb;

However, this means that there exists an interval i with
b meetsi; i meetsd;

and this makes d again dependent on e, which neither seems to match any intuitive
semantics nor seems to be useful at all, because with the existence of e any intervals
occurring after it would also depend on e. Additionally, the dependency even works
backward. Any intervals in relationship with e can occur only if e occurs. In our ex-
ample a depends via b on e, requiring that a can occur only, if e happens. But this
breaks causality, because now the future determines the past. This must not happen.

Therefore, we have to restrict the relations permitted to events. All ordinary inter-
vals may only refer to the enabling interval of an event. The enabling interval is not
automatically finished if the occurrence interval is activated, thereby the enabling in-
terval is an interval with a deterministic length and thus behaves like ordinary inter-
vals. The occurrence interval and the value depend on each other. If the event occurs,
then the occurrence interval is activated and the event’s value is set. If the user in-
teraction does not happen, we define that then the occurrence interval finishes the
enabling interval. For this case, we introduce the distinguishable TimeOut-value as

71

TimeOut

time-out event

value

Loop

5. The specification language Vitruv|

» time

Figure 5.1.: The temporal arrangement of a, b, ¢, d, e and i.

the event’s value, which is not allowed to appear as an ordinary value in all fuzzy
types. We call such an event a time-out event. It ensures that the occurrence interval
always exists and the event’s value has always a proper value. Relations with occur-
rence intervals are only allowed to loops (sec. 5.5.2) and selectors (sec. 5.5.3 on the
next page), both of which also have access to the value of events. The value can be
accessed by the usual dot notation, its identifier is value. More details are explained
in the respective sections (sec. 5.5.2 and sec. 5.5.3 on the next page). The distinction
whether a relationship exists between the enabling or the occurrence interval is done
implicitly: only loop and selector bodies use the occurrence interval, all other inter-
vals use the enabling interval only.

5.5.2. Loops

In Vitruv| we have one kind of loop. It is controlled by the evaluation of an event’s
value. We use a head-controlled, negated loop, i.e., we loop until the controlling con-
dition is true, and check the condition before the loop body is activated for the first
time.

Loops have to be declared as elements of classes, their type is Loop. We need the
declaration to allow relationships between the loop and other intervals. Each loop
depends on an event. To ensure that the loop have access to the event’s value, the
loop body is started parallel to the event’s enabling interval. More precisely, the im-
plicit relation between the loop and the enabling interval is the disjunction of starts,
startedby and equals. This implicit relation is required for consistency checking and
the semantics of the event-based behavior. It is handled in sec. 7.4.5 on page 146. The
loop body is executed until the condition is true or the time-out event occurs. The
latter prevents infinite loops, because the loop is at least aborted, if both its body and
the enabling interval of its events are finished. But if enabling intervals are infinite, of
course infinite loops are also possible.

The body of a loop has a scope of its own. All elements used inside the loop have
to be declared in the loop’s body, and no relationships to elements outside the loop’s

72

5.5. Events, Loops and Branching

body are allowed. Default elements are alpha and omega, representing beginning and
end points of each iteration of the loop’s body. As the elements in the loop body may
be activated more than once, relationships to elements outside the loop would re-
sult in multiple activation of these elements as well, as explained earlier. This means
that looping would not be restricted to the loop’s body, but is spread out through the
entire specification. However, at best this is confusing, hence we do not allow any
relationships from outside to the inside of loops. But nevertheless, the entire loop is
considered as an interval, the length of which may vary dramatically, and relation-
ships to this interval are possible. This is why loops are declared as elements.

In spec. 5.7 we present an example of a loop, using the button and event declara-
tions of spec. 5.6 on page 71. We have loop I, button b and interval x. At the beginning,
button b is activated, which also activates the enabling interval of event pressed. Loop
L is repeated until button b is pressed, as denoted by the event b.pressed and its value
isPressed. In the body of L, the audio a is declared and started immediately, because a
meets alpha, where alpha is the beginning of the loop body. After L finishes, interval x
is activated. Implicitly, we have also the relation b.pressed starts or startedBy or equals
L between button event and the loop.

Specification 5.7 Loop until the button is pressed.

let

L : Loop;

b : Button;

X : Interval;
body

alpha meets b;
L loops until (b.pressed.value is isPressed) do

let
a : Audio;
body
alpha meets a.play;
end;
end;
L meets Xx;

end;

5.5.3. Branching

Branching as a reaction to events means choosing between several alternative paths of
control depending on the event’s value. In contrast to loops, more than one path may
exist, but the selected one is not repeated.

73

paths of
control

Selector

degree of firing

5. The specification language Vitruv|

Branching is realized — similar to loops - in a special interval type called Selector.
Loops and selectors share a set of features. A selector has to be declared as an element
and can be used as other elements in the rules. Similar to bodies of loops, the alterna-
tive paths are completely encapsulated inside the selector and no relationships exists
between them and the outside world. There is also no relationship between the al-
ternative paths. The reason is the same as for loops and events’ occurrence intervals:
the activation of a certain path is based on an event and any external relationship to
its elements would result in an undesirable transfer of the event’s nondeterminism
characteristic to ordinary intervals. Thus, similar to loop bodies, the alternative paths
declare their own set of elements and their behavior is controlled by their own set of
rules for each path.

The selector is activated immediately after the occurrence interval of the event, the
selector is met by the occurrence interval. The decision process of selecting a path
is similar to those used in fuzzy control theory (Yager and Filev, 1994, chapter 4).
We have a conditional expression for each path, all of them are evaluated in parallel
resulting in fuzzy truth values, which are called the degree of firing (dof) of each con-
dition (Yager and Filev, 1994, pp. 118-120). After that the expression with the highest
dof is selected and the corresponding path is activated. In fuzzy control these rules
are usually denoted as IF-THEN-ALSO rules, but we use the form on <Condition>
do <Action> to emphasize the aspect of event reaction. If there is more than one path
with the same highest dof, a nondeterministic choice is made between them. If the
highest dof is 0, i.e. no expression matched, then — as an exception of the before-
mentioned rule — nothing happens at all. Essentially, this evaluation is a defuzzifi-
cation process, determining a crisp output of a fuzzy input (Yager and Filev, 1994,
p.121).

Similar to loops, the relations between the event, the entire selector and the selector
bodies are only given implicitly in the specification. The entire selector, i.e. the entity
declared of type Selector, has the relations starts, startedby or equals to the event en-
abling. The selector bodies, i.e. the different paths of control, are started immediately
after the event occurrence interval and thus have the relation meets to the event oc-
currence interval. These implicit relations are required for consistency checking and
the semantics of the event-based behavior. They are handled in sec. 7.4.5 on page 146.

In spec. 5.8 on the facing page we present a selector working on a button event as
defined in spec. 5.6 on page 71. We start with playing video v1. During this, button b
is enabled and selector s is activated if the button’s occurrence interval is activated. s
has two alternatives: if b is pressed, then video v3 is activated, if b is not pressed and
thus the TimeOut-value appears, then audio a is played. After the selector finishes,
video v2 is activated. Implicitly, we have the relation b.pressed starts or startedBy or
equals s.

74

5.5. Events, Loops and Branching

Specification 5.8 Select between additional video and audio depending on button

event.
let
s . Selector;
b : Button;
vl : Video;
v2 : Video;
body
alpha meets v1;
b during vi1;
s selects (b.pressed) with rules
on (isPressed) do
let v3 Video;
body
alpha starts v3;
end;
on (TimeOut) do
let a : Audio;
body
alpha starts a;
end;
end;
S meets v2;
end;

75

multiple
events

multiple
reactions

5. The specification language Vitruv|

5.5.4. Multiple Events and Multiple Reactions

In this section we discuss two complex topics concerning events and their use in loops
and selectors: multiple events and multiple reactions.

While explaining loops, it was discernible that during an event’s enabling interval
the event might occur more than once. If we have at most one event occurring during
the enabling interval, loops can only run until this event occurs, if it fulfills the termi-
nation condition, or until the following time-out event occurs. This is not sufficient,
because we have only two time-points in which the termination condition of the loop
is checked. Therefore, we offer a more expressive construct, permitting that during an
enabling interval more than one event might occur. These events are called multiple
events.

However, applying multiple events to selectors is not very useful: consider that
two events with same values occur during an enabling interval. The selector would
choose for both events the same path due to the same value. This means that the
same set of intervals would activated, in particular it is possible that both overlap
in rendering a certain media, e.g. a video or an audio. But multiple rendering of the
same media results in severe problems: do we render them on the same screen, result-
ing e.g. in an overlay or mix of videos, or do we have (nondeterministically!) many
screens — but what about positioning these screens? Is there the any possibility that
the resulting rendering is somehow comprehensible by the user? We think this sit-
uation is not satisfying at all, therefore we serialize multiple events: their respective
values are held in a queue ordered according to their incoming time.

Loops and selectors work differently on this queue. The termination condition of
loops is that either an event with the required value or the time-out event occurs.
Thus, whenever the condition is checked, the queue is searched for the respective
events. If one is found, the loop terminates. All other events in this queue are ignored
and also their ordering. Selectors, however, react only on the first event in the queue,
because otherwise the selector’s reaction might be unsatisfying as discussed above.
Hence, selectors react only on the first event in the queue, all events afterwards are ig-
nored. This ensures that multiple events do not start several selector paths in parallel,
which would again make control flow unpredictable.

Events, selectors and loops are declared as elements and are positioned by interval
relations. It is possible that one event meets several selectors and loops. In this case,
we have multiple reactions on an event. The aforementioned queues are duplicated
for each selector and for each loop, ensuring that they do not interfere with each
other. While it might not be very useful to define multiple reactions to an event in
its declaring class, it becomes handy if the event is exported by its declaring class.
This gains access to the event from the outside of its declaring classes. In this case
particularly, it is possible that different classes define selectors and loops operating
on the same event. It is useful for classes defining user interface elements declaring
events, react on them locally, but also export them to client classes.

76

5.5. Events, Loops and Branching

We have seen in the spec. 5.6 on page 71 class Button declaring and exporting event
pressed. We have also seen independent event reactions to this event in spec. 5.7 on
page 73 and spec. 5.8 on page 75, however, it is not evident that these examples work
on the same event or only use different instances of the same class Button resulting in
different events. Nevertheless, with a slight modification of the source code it would
be possible that both specifications work on the same event as shown in spec. 5.9.
Here, class LoopAudio inherits from class SelVideo and declares loop | on the same
event b.pressed as the inherited selector s.

Specification 5.9 Multiple reactions to the button event.

class SelVideo

exports b;
let
s : Selector;
b : Button;
vl, v2 : Video;
body
alpha meets v1;
b during vi;

s selects (b.pressed) with rules
. Il see spec. 5.8
end;
S meets v2;
end;
end;

class LoopAudio extends SelVideo

let

| : Loop;

X : Interval;
body

alpha meets b;
| loops until (b.pressed.value is isPressed) do
. Il see spec. 5.7
end;
| meets x;
end;
end;

77

scenes

links

leave for

5. The specification language Vitruv|

5.6. Presentations and Scenes

The expressiveness of Vitruv| presented so far concentrates on specifying multimedia
presentations in the small, i.e. how media elements (in Vitruv| characterized by in-
tervals) relate to each other. But multimedia presentations are also structured in the
large. We call the larger structures scenes. They have the characteristic that no me-
dia element overlaps two scenes and scenes cannot be nested. To make scenes the
top-level elements their third characteristic is that no media element is allowed out-
side scenes. This means that all media elements are parts of scenes and scenes are
independent, because they do not share elements. Apparently, scenes are a means for
modularization of multimedia presentations in the large, as opposed to classes which
structure multimedia presentations in the small.

Syntactically, scenes are realized by inheriting from class Scene, which itself inher-
its from class Interval. Class Scene is only a marker class, similar to marker interfaces
and classes in Java such as Serializable or Error (Gosling and Arnold, 1996), and does
not declare additional elements. Nevertheless, each class inheriting from Scene is in-
terpreted as a scene and is marked as a scene, which explains the wording “marker
class”.

Scenes are similar to nodes in hypermedia systems (e.g. the Dexter model, see Ha-
lasz and Schwartz, 1994), elements and their relations in a scene correspond to the
within layer of the Dexter model. We connect scenes to each other with links. We stick
here to the simple concept of unidirectional links, more elaborated connections are
discussed briefly in sec. 12.2.2 on page 257. Following links in hypertext or hyper-
media applications means leaving the origin node completely and moving to a target
node. In Vitruv| , this means to abort all activated intervals in the origin scene and
to activate the target scene right from the start. Reactivation of a scene does not re-
store the former state of the scene, i.e. we have neither procedural- nor coroutine-like
semantics, but are very close to goto-like jumps. While this is not appealing from a
programming language point of view, it is sufficient for coarse grained connection of
scenes, more complex behaviors are done inside the scenes.

Following links means activating an interval representing a scene. However, since
activation of a scene requires leaving the current scene, it is not sufficient to use the
scene object as an ordinary interval, because only one relation (meets) makes sense
as relation with the scene objects, but all other relations might be used by applying
Allen’s calculus. Therefore, we introduce the term leave for, which takes a scene object
as argument. Every time a scene object s is used somewhere in the body, it must be
in the form leave for (s) to underline explicitly that we leave the current scene and go
to the new scene. If we activate a scene s, all intervals positioned after scene s in the
current scene are not activated. Thus, it is often useful to activate a scene only as a
last action or inside a branch of a selector. We should also remark, that it is legal to
define relationships between several scenes, but this does not mean that all of them
are activated at all.

78

5.7. The Prelude

In spec. 5.10 on the next page we have two scenes, FrenchCathedrals and Chartres-
Details. In the former, we declare element cd with type of the latter scene. Because
scenes are not allowed to embed each other, this declaration means only a reference
to an object defined elsewhere, in contrast to other element declarations. The value
of cd is defined — as usual in Vitruv - in the binding and the references are resolved
there, too (sec. 5.8.9 on page 93). In the body of FrenchCathedrals, we follow the link
to cd and leave behind all currently activated intervals including, in particular, class
FrenchCathedrals. Both scenes show a typical pattern. Class FrenchCathedrals defines
a menu from which the user can select between different alternatives. One of them is
realized in scene ChartresDetails. Hence, element cd is declared locally in the selector.
In class ChartresDetails we present some information and finally jump back to menu,
i.e. to scene FrenchCathedrals, with leave for (fc).

Please note that in spec. 5.10 on the next page we have a tight connection between
the scenes objects even at class level, because the elements are declared as of type
FrenchCathedrals and ChartresDetails, respectively. Without loosing functionality it is
sufficient to declare the respective elements of type Scene and leave the selection of
proper scene instances to the binding, applying late binding. While this is more flexi-
ble and decouples both scenes, it might hinder comprehension of the specification.

5.7. The Prelude

We have seen a set of implicitly defined elements of Vitruv| such as the class Inter-
val, some fuzzy types and others. They all are part of Vitruv| , and are defined in the
prelude. The prelude defines a set of standard definitions always available in Vitruy| .
It can be extended by local definitions if needed. Usually, we can omit such a self-
written prelude and use the standard prelude. That is always the case if we omit the
prelude in the specification. The name prelude is a reminder of SML (Reade, 1989).

Most important in the prelude are the definitions of standard fuzzy types and their
operators. The prelude covers at least the two basic types for truth values and du-
rations, and a set of compound interval relations. The complete standard prelude is
defined in appendix A.3.

The fuzzy type for durations was presented in sec. 5.4.2 on page 69. Now we will
discuss the truth values. The fuzzy type TRUTH represents fuzzy truth values, e.g.
results from comparison of fuzzy sets. The universe is the unit interval [0.0,1.0]. The
terms are those of four-valued logic: true, false, unknown and undefined. Additionally
we define the standard modifiers very, more_or_less and not. The definition of this
type is shown in spec. 5.11 on the next page.

79

prelude

5. The specification language Vitruv|

Specification 5.10 Scenes and moving between them.

class FrenchCathedrals extends Scene
let
menu : Selector;
// some more elements
body

menu selects

on .. do

let
cd : ChartresDetails;

body
alpha meets leave for (cd); // now move to scene cd

end;

end;
end;
end;

class ChartresDetails extends Scene
let
fc : FrenchCathedrals;

body
omega isMetBy leave for (fc); // ... and back to the menu

end;
end;

Specification 5.11 A small part of the standard prelude.

prelude
define type TRUTH
universe [0.0 .. 1.0]
define term true, false, undefined, unknown;
define modifier very, more_or_less, not;
end;
/!l further definitions omitted
end;

80

5.8. The Binding

5.8. The Binding

Our modeling concept presented in sec. 4.2.2 on page 53 requires the distinction be-
tween concepts and realizations. Declaring classes with intervals and their relation-
ships define the conceptual model. We will now present the binding, the realization of
the conceptual model.

In contrast to stating constraints, as done in the previously explained parts of Vitruy ,
in the binding we explicitly assign values to fuzzy sets, and functions to modifiers,
respectively. The definition of values and functions forms the first part of this sec-
tion. Afterwards we discuss how the binding occurs in the syntactical structures of
Vitruv| . We introduce contexts as the general mechanism to bind and re-bind values
and functions in structures, and apply contexts in the binding of fuzzy types, com-
pound relations, classes and the prelude in this order. Finally, we discuss scenes and
the main entry point of our specification defining the start point of our dynamic sys-
tem specified in Vitruv, .

binding

5.8.1. L-Values

Assignments of values to identifers are possible in the binding. L-Values are those
identifiers to which assignments are allowed. It is important to distinguish carefully
between identifiers, being I-values, and other identifiers or expressions being values
to be assigned. Vitruv| differs here from most other languages because assignments
are not allowed to all accessible variables.

The assignment structure of Vitruv| is leveled and hierarchic. We follow the nesting
of objects, fuzzy types and compound relationships and each nesting level assign-
ments are only allowed to attributes defined in this very level. However, all visible
elements at each level may be used in the expressions assigned. This strategy ensures
that each variable is assigned at most one time and we have only one binding at any
time and thus are stateless. This approach is very similar to the binding of DoDL
(Doberkat, 1996).

L-Values

5.8.2. Defining Fuzzy Sets

Each fuzzy set is defined by its membership function. We have two different situ-
ations: firstly, for enumerated sets we simply state explicitely for each element its
membership value. Secondly, for numeric universes we define the membership func-
tion by a (in general piecewise assembled) function from the set’s universe to the
unit interval. The assembled function consists of a set of linear functions and is in-
troduced by the keyword linear, followed by the ordered set of points consisting of
ordered pairs (X, u(x)). This fuzzy set constructor allows definition of fuzzy sets with
an arbitrary linear approximated function without discontinuities. For the sake of eas-

linear

81

Modifier

5. The specification language Vitruv|

ier computation we restrict Vitruv| here and do not allow arbitrary functions without
linear approximations.

In addition to this general membership function definition, we provide various
fuzzy set constructors guaranteeing convexity (def. B.5 on page 280). The most popu-
lar convex constructions are the singleton set and the trapezoid, triangle and rectan-
gle shapes (def. B.6 on page 281). Additionally we provide s-, z-, sz- and 7t-functions
which represent the left and the right flank of a bell-shape and their combinations
(see def. B.7 on page 281).

All these convex sets are always normalized, i.e. their core is not empty. We do not
have to provide the membership values as they are clear from the context (either zero
or one). The arguments of the constructors are the required parameters of the function
definitions which are at most four numbers for both, the sz- and trapezoid-function.
Examples of the application of the fuzzy set constructors can be seen in the various
code examples in this section.

5.8.3. Defining Modifiers

Modifiers are unary functions taking a fuzzy set as an argument and returning a new
fuzzy set. A suitable definition of modifiers depends on the context and application
domain. We can apply various definitions of the same modifiers in different contexts,
e.g., different definitions of very in different fuzzy types. Therefore, we distinguish
the definition of the unary modifier functions from their application context.

Vitruv| provides a set of predefined non-domain-specific general modifier defini-
tions shown in table A.2 on page 274. However, we need to distinguish the modifier
symbol in the specification from the aforementioned modifier definition. Therefore,
we collect all available modifier definitions in an entity called Modifier which is syn-
tactically similar to classes and provides an entity for each definition. Access to these
definitions is provided by the usual dot-notation, e.g. referring to the definition of not
is done by Modifier.not. It implies that the definitions need globally unique names.

For the sake of simplicity, domain-specific and more complex modifier definitions
can not be added. But in sec. 12.2.1 on page 257, we discuss briefly more elaborated
and user definable modifiers as a possible extension to Vitruy| .

We have not discussed the mapping between modifier symbols from the specifica-
tion to modifier definitions in the binding. Usually, the modifier symbol maps to the
definition with the same name, expressing the intuitive matching of symbol and def-
inition: the modifier symbol very is bound to the definition Modifier.very. But it is pos-
sible to bind a different definition to the modifier symbol, e.g. very := Modifier.above.
The next sections discuss where and how such assignments can be done.

82

5.8. The Binding

5.8.4. Contexts

We have discussed application-domain and situation dependency of fuzzy sets and
modifiers: the fuzzy set describing the concept of a hot temperature or a long duration
is always context dependent. In Vitruv| , the concepts are mostly related to a temporal
background (e.g. shortly after). This poses the additional problem that, dependent on
the current scale, a concept like “short” might mean 2 seconds regarding the complete
presentation or 2 milliseconds regarding lip-synchronization of an audio and a video
stream. Therefore, we do not only need to bind values and functions to specification
symbols, we also need to re-bind new values or functions to these symbols to achieve
context-sensitivity.

In the following, we use the word value also for functions while discussing the
binding in general for the sake of simplicity. If the difference between values and
functions is important, we state this explicitly.

In Vitruv| , we have a block structure consisting of classes, fuzzy types and the pre-
lude. In the binding, we assign values to symbols following the block structure of the
specification but leaving the class level and moving towards objects: the binding is an
equivalent to the run-time environment of programming languages. But in contrast to
usual models of run-time environments, such as the contour-model (Waite and Goos,
1984, p. 36), we have to deal with re-binding of values in an inner block to symbols
defined in an outer block, but without side-effects. The discussion above concerning
the concept of “short” makes it evident that re-bindings need to occur, but are not the
same as assignment to global variables in programming languages. We need a con-
trolled area in a symbol’s scope in which we can re-bind its value, but outside this
area its value remains unchanged. We call such a controlled area a context!. A context
is always a range in which new symbols can be bound. These symbols come from the
elements of the context’s respective syntactical unit in the specification, e.g. the local
declarations in a class definition. According to the syntactical structure, contexts may
be nested. An inner context inherits all bindings of its outer context, unless they are
hidden by new definitions of symbols inside the context. Additionally, an inherited
binding may be re-bound to a new value. The extent of this re-binding is only the
current context itself: the binding in the outer context remains unchanged.

A more operational view on contexts relies on call-by-values semantics of proce-
dure calls. The effect of using contexts is comparable to a procedure, to which all
definitions from outer blocks are passed as parameters with call-by-value. All such
definitions are then local copies, which can be modified within the current context,
but without effecting the outer contexts. This approach is also known as closure of
procedures (Waite and Goos, 1984, p. 73), as used in PROSET (Doberkat et al., 1994).

In the following sections we present the binding of fuzzy types, classes and the
prelude. Common to all these elements is that their binding establishes contexts.

1our contexts have nothing to do with the contexts in semantics needed for operational equivalence
(Mitchel, 1996, p. 77).

83

context

5. The specification language Vitruv|

5.8.5. Compound Interval Relations

Compound relations are abstractions similar to procedures or functions in ordinary
imperative and functional languages, respectively. Once defined, they can be used
throughout the entire specification in various usually very different situations. An
important issue of such different situations is that the relative time scale may differ
dramatically, as discussed above in the example of concept “short” in the section
on contexts (p. 83). Nevertheless we want to apply the same compound relation in
such different situations but without defining all possible durations required for the
definition of the compound relation. In particular this would demand that each time
we apply a compound relation we also need to know how the relation is defined. This
would lead the idea of compound relations as abstractions ad absurdum!

Therefore, we omit a specific binding of compound relations. Their evaluation relies
only on the current bindings of fuzzy type DURATION, because this type is used to
denote the duration constraints which are imposed in the definition of compound
relations.

5.8.6. Fuzzy Types

The binding of a fuzzy type is an application of the bindings of fuzzy sets and mod-
ifiers defined previously. We have to state the type name and assign to each symbol
(fuzzy set or modifier) an explicit value.

In specification 5.12 we present the binding of fuzzy type Brightness which was
first defined in spec. 5.4 on page 69. The terms are bound to fuzzy sets defined by
fuzzy set constructors mentioned above, black and white as trapezoidal fuzzy sets,
the other four dark, muddy, shining and bright as triangle fuzzy sets. The graphs of
the membership functions are shown in fig. 5.2 on the next page. All modifiers are
inherited from the context outside the type, only Modifier.extremely is assigned to the
modifier symbol very.

Specification 5.12 Binding of fuzzy type Brightness.

in type Brightness

let black = trapezoid (0, 0, 10, 20);
let dark = triangle (10, 25, 40);
let muddy = triangle (25, 40, 120);
let shining := triangle (100, 170, 190);
let bright = triangle (170, 190, 240);
let white = trapezoid (230, 240, 255, 255);
let very = Modifier.extremely;
end;

84

5.8. The Binding

08| |

0.6 - ‘

ol

AN

I I
0

T
black ——
dark
) muddy --------
\ N shining
\ : |

1
50 100 150 200

Figure 5.2.: The terms of fuzzy type Brightness (spec. 5.12)

250

85

5. The specification language Vitruv|

5.8.7. Binding of Classes

The binding of classes is a misleading term, because in the binding we construct and
bind only objects and not classes. Nevertheless, the binding is structured by the class
of the object which is bound. Therefore, we keep this term.

An object has a object hierarchy (possibly empty), which follows the object’s class
definition. In the binding, we describe each object as a hierarchy of object bindings.
Objects are semantically equivalent to intervals, thus the possible values which are
bound to an object are fuzzy sets determining the interval’s length or duration. These
values can either be given explicitly in the binding or implicitly deduced from the
rules in the specification and their respective binding.

For each obiject, its structure is determined by its class, and each of its sub-objects
is individually given. The dominant role of inheritance, structuring the specification
of classes, is not repeated in the binding because we focus on objects, and thus the
structuring facility of inheritance — the incremental and classified definition — is not
useful. Certainly inheritance is essential for polymorphic assignments of an instance
of a subclass to a variable with type of the superclass. Therefore, we have to notate
both, the object variable and its class which may be a subclass of the variable’s speci-
fied class.

We can omit the binding for an attribute of a class. As result we gain a nil object.
This is particularly important for recursive classes, because it finishes effectively the
recursion and therefore ensures finiteness. The special attributes alpha and omega are
not allowed as I-values in the binding, according to the discussion in sec. 5.3.2.2 on
page 66.

In the following we discuss the binding of objects in various steps and use the four
classes A, B, C and D from spec. 5.13 on the next page as examples. We will explain the
binding of a simple object, of a simple hierarchy of objects, of inheritance and explain
the effect of redefining an outer binding in an inner context.

5.8.7.1. Binding a simple Object

Class A is simple because it does not refer to other classes than class Interval. If we
want to bind an object al of class A, we have only to consider the element a and its
duration constraint. In the simplest case, we refer to the corresponding term of fuzzy
type DURATION. This is shown in spec. 5.14 on page 88.

Alternatively, we can assign an explicitly defined fuzzy set as shown in spec. 5.15,
here we use the fuzzy set expression triangle (10, 20, 30) which we assign to element
a of object a2. In such a situation, it is possible to achieve inconsistent specifications if
the bound fuzzy set expression does not correspond to the specification stating that a
is large. Therefore, we introduce a local consistency rule for duration constraints.

Type Rule 1 (Consistent Assignment) Let a be a fuzzy duration with a specified con-
Straint expression c. The value of expression e assigned to a in the binding has to be a

86

5.8. The Binding

Specification 5.13 The demo classes A, B, C and D.

class A exports a

let

a : Interval;
body

a is large;
end;

end;

class B exports d

let
ba : A; // ba is a private element of B
d : Interval;

body

ba meets d;
d is short;
end;
end;

class C extends B
let
e : Interval;
body
e before d;
e is somewhat (d.length);
end;
end;

class D
let
b : B;
body
b is short;
end;
end;

87

5. The specification language Vitruv|

Specification 5.14 Assigning the value of large from DURATION.

object al : A
object a : A
let length := DURATION. large;
end;
end;

Specification 5.15 Assigning an explicite fuzzy set expression.

object a2 : A
object a : A
let length := triangle (10, 20, 30);
end;
end;

non-fuzzy subset of the value of constraint expression c.

The value of the constraint in this rule is determined by the current binding of
type DURATION to which the constraint expression corresponds. In our example the
constraint is a is large, therefore the expression triangle (10, 20, 30) has to be a subset
of DURATION.large. The rationale of this rule is that such duration constraints form
the set of possible values for the duration, and thus each proper value has to be a
member of the set of possible values. If we do not assign a crisp duration, we have
at least to assign a fuzzy set which is contained in the set of possible values. This
requires a subset relationship, which also includes crisp values: they are represented
by the singleton set with membership value 1 at the crisp value and zero otherwise.
More problematic than crisp values, the empty fuzzy set is always a proper subset
of any other fuzzy set, but is certainly no sensible value in our calculus, because it
means that no duration is possible at all. We exclude this situation explicitly in the
next rule.

Type Rule 2 (Non-empty Assignment) The value assigned to a duration needs a non-
empty support.

The binding of an object creates a new context. Therefore, we can change inherited
values of the outer context. In our case, we could redefine the terms and modifiers
of fuzzy type DURATION. In spec. 5.16 on the next page we re-bind the term large of
DURATION and afterwards we use the new value to assign it to element a of object a3.
The general scheme is firstly to re-bind inherited values and then to bind new values.

88

5.8. The Binding

Specification 5.16 Re-binding DURATION.

object a3 : A
in type DURATION
let large := pifunction (0.3, 0.1);
end;
object a : A
let length := DURATION. large;
end;
end;

5.8.7.2. Binding of a Hierarchy

Let us now consider an object b1 of class B which consists of an object ba of class A.
The nesting of the objects is repeated in the binding: we start with the outer object b1l
of class B, in which we bind the inner object ba needing an assignment to the duration

of its element a. After binding ba, we bind the duration of element d of object b1. This
is shown in spec. 5.17.

Specification 5.17 Binding a hierarchy of objects

object bl : B
object ba : A
object a : A
let length := DURATION. large;

end;
object d : Interval
let length := DURATION. short;
end;
end;

For simplicity reasons, we assigned only terms of fuzzy type DURATION, but other,
more complex expression are also possible. In particular, it is possible to re-bind terms

and modifiers of type DURATION in both contexts of b1l and ba independently in the
same way, as shown in spec. 5.16.

Object hierarchies have to satisfy the requirement that the duration of objects lower
in the hierarchy is not greater than the respective durations of objects higher in the hi-
erarchy. Otherwise, the embedding of objects by a hierarchy is not possible. Certainly,
references to scene objects, as needed for jumps, are not considered here.

89

super

5. The specification language Vitruv|

5.8.7.3. Binding and Inheritance

The binding of an object, which has a class that inherits from other classes, has to
reflect the inherited features. Inheritance is a mechanism allowing incremental exten-
sions of a base class and therefore a subclass of such base class has all features of
its base class. The binding of object c1 of class C in spec. 5.18 has to consider both
the features from class C and B, i.e. e and also d and ba. We cannot simply flatten
the classes, because we have private elements in inherited classes which are not visi-
ble outside. The inheriting class can introduce new elements with the same name as
the inherited private elements. Therefore, we distinguish between exported elements
and their private counterparts. The former are addressed as seen above, the latter
(but only for inherited ones) are defined recursively with a super-notation, similar to
various programming languages. Each super-block consists of assignments to private
elements and an additional super-block for the parent class. In spec. 5.18 we have
only one super-block for addressing element ba of parent class B. If B inherited from
another class, say X, with additional local elements, then we would have a nested
super-block for reaching the local elements of the grandfather X of class C.

Specification 5.18 Binding of an object with inheritance

object c1 : C
object d : Interval
let length := DURATION. short;
end;
object e : Interval
let length := DURATION. short;
end;
in super
object ba : A
object a : A
let length := DURATION. large;
end;
end;
end;
end;

A different situation arises if the specification contains a variable the class of which
has descendents. In spec. 5.13 on page 87 we have such a situation in class D, where
we have the variable b of class B. We mentioned earlier that polymorphic assignments
are possible in the binding and thus we can assign an instance of class C to this vari-
able B. This is shown in spec. 5.19 on the facing page. The variable b of class D is
assigned to an object of class C. Syntactically this is expressed by b : C, which does
not refer to the specified class B but to class C which inherits from class B.

90

5.8. The Binding

Specification 5.19 Polymorphic Binding of an Object

object d1 : D

object b : C

object d : Interval

let length := DURATION. short;
end;
object e : Interval

let length := DURATION. short;
end;
let length := pifunction (10, 20);
in super

object ba : A
let a.length := DURATION. large;
end;
end;
end;
end;

5.8.7.4. Loops and Selectors

The binding of loops and selectors is similar to those of classes, because both consists
of local declarations and rules. The main difference is that we have several paths in
selectors, each of which have their own local declarations and rules. To distinguish
between these paths, we use on ...end groups, in which the assignments to locally
declared elements of each path can be made. The order of the on ... end groups has to
match the order of the path declarations, similar to actual and formal parameters in
procedure calls.

In spec. 5.20 on the next page we bind an object of class LoopAudio as specified in
spec. 5.9 based upon spec. 5.8 and spec. 5.7. Object a locally declared in the body of
loop L is defined below L. The private inherited selector s is handled in the super-
block of object la. Each path of s is encapsulated by on and end defining the locally
declared elements such as v3 and a.

5.8.8. Binding of the Prelude

The prelude collects definitions of fuzzy types, modifiers and class definitions consti-
tuting the basic features of Vitruv| . If omitted in the specification, the standard pre-
lude is used, otherwise a new prelude can be defined. The binding of the prelude
reflects this situation: if it is omitted, then the standard binding will be used, other-
wise the new valuations are applied.

The binding of the prelude is separated from other parts of the binding by the key-

91

5. The specification language Vitruv|

Specification 5.20 Binding of Loops and Selectors

object la LoopAudio
in L : Loop
object a : Audio
end
end;
object b : Button end;
object x end;
in super
object vl Video end;
object v2 : Video end;
in s : Selector
on
object v3 Video end;
end;
on
object a : Audio end;
end;
end;
end;
end;

92

5.8. The Binding

words in prelude ... end. Clearly the prelude opens a new context, but different from
ordinary contexts, the valuations given here are also the default values of all others
contexts outside of the prelude. The canonical solution would be that the prelude’s
binding is the outermost binding and all other occur inside the prelude’s binding.
This matches the informal semantics. But syntactically, this is not appealing.

The binding of the prelude is only seldom given by the specifier, otherwise it would
not fulfill its intended task. Therefore, we want to separate the prelude’s binding from
the binding of the remainder specification, similar to separate compilation units in
programming languages. Because of that we define both bindings as siblings at the
same level in the syntax tree. However, this mismatch of syntactical and semantical
embedding should be no source of confusion.

The binding of the prelude provides default values for the proper binding of the
specification itself. But for classes we have the problem that we need defaults on
a class and not on an instance level, normally used in the binding. Therefore, we
introduce a specific binding which looks similar to those of objects but which starts
with class Ident instead of the usual object Ident : Ident. Inside the class binding,
anything is exactly as for objects, since conceptually this approach can be seen as
creating an anonymous instance of the class under consideration. Of course, we allow
at most one binding for a particular class.

5.8.9. Scenes

Elements of type Scene and its sub-types cannot be nested as objects in the object
hierarchy as explained in sec. 5.6 on page 78, but their values are only references to
scene objects. Consequently, scenes are named objects declared on the top-level of the
binding which can be referenced by their name. Each scene is an object hierarchy of
its own, i.e. we have a forest of trees together with references in these trees to their
roots. We use the operator ref to denote a reference to a scene, the argument of ref is
the name of the scene. The scope of ref’s arguments is restricted to scenes defined at
the top level of the binding to avoid name clashes with elements defined somewhere
in the classes.

In spec. 5.21 on the next page we present the binding of scenes FrenchCathedrals
and ChartresDetails, declared in spec. 5.10 on page 80. The scene objects are defined
at the top level of the binding, and are named fcScene and cdScene. These identi-
fiers are used in the binding of elements cd and fc in classes FrenchCathedrals and
ChartresDetails, respectively.

5.8.10. The Main Entry Point

Until now, we have discussed the binding of fuzzy sets, fuzzy types, modifiers, classes,
scenes and the prelude. Still missing is the main entry point, defining the initial state

93

re

5. The specification language Vitruv|

of the system specified. Following Meyer (1992, p. 35), all objects existing in a system
have to be accessible transitively from the first object created. Translated into Vitruv
this means, all objects in a system are contained (or referenced transitively) in a con-
text which is opened by only one object. In this situation the definition of the main
entry point becomes apparent: it has to be the first object which is bound immediately
after the binding of the prelude. It also has to have type Scene or one its subtypes.
The name of the object is not of real interest, nevertheless a sensible name makes
the specification more readable. In spec. 5.21 we show the binding of a specification
including the prelude and the main entry point init of class Presentation.

Specification 5.21 Binding with main entry point and scenes.

bindings
in prelude
. [/ bindings in the prelude
end;
object init : Scene // the main entry point
/1 ... and its values
end;

object fcScene : FrenchCathedrals // one well—known scene

let c¢d := ref (cdScene)
end;
object cdScene : ChartresDetails // another well—-known scene

let fc := ref (fcScene);
end;
end;

94

6. Static Semantics of Vitruv|_

Of course, the concrete grammar given in sec. A.1 on page 265 is not enough to define
meaningful Vitruv specifications. A specification is only sound if it obeys the syntax,
the type rules including scope and visibility rules. We will now establish the static
semantics of Vitruv| , which allows static typing. This includes all informal, implicitly
and explicitly given type and scope rules in the language design (sec. 5 on page 59).
We follow the style presented by Cardelli (1997).

In the following, we develop the grammar and the respective type rules. We start
with some preliminary definitions and then go to declarations of classes, fuzzy types
and compound intervals. Next we present the body of classes, and finally we discuss
the binding. In each section we refine grammar and type rules. We conclude with
some remarks on the approach for the static semantics.

6.1. Introduction

We define the static semantics using a type system which is itself a logical deduction
system according to Cardelli (1997), Schmidt (1994) and others. The purpose of the
deduction system is to derive whether or not a specification is well-typed, i.e. well-
formed regarding the type rules.

The inference rules use judgments of the form I' - I, where 1 is an assertion and
its free variables are declared in environment I'. Operator + is called entails and states
that | can deduced from I'. Environment I is a set of variables, x;, and their types,
6;, written as x; : 6;, and encloses the free variables of I. Most important for us is the
typing judgment which asserts that term M has type 6 with respect to environment I
in which all free variables of M are declared. It has the form:

r-M:6

where the colon, :, is a binary predicate. M : 6 can be read as M has type 6, the entire
judgment as M has type 6 in environment I'.

In complicated judgments we will use parentheses to distinguish between terms to
be typed and their type attributes. These parentheses are not part of the language of
terms, but should not be confusing for the reader. The above judgment can be written
as:

T+ (M):(6)

95

6. Static Semantics of Vitruv

Such terms, M, are elements of syntactic domains which correspond to the abstract
syntax and are not restricted to nonterminal symbols of the grammar. Because terms
of type attributes are also elements of syntactic domains, we can define most terms
by a context free grammar.

A particular form of judgments is

'™

where M is again aterm. In contrasttoI' - M : 6, where we state the term M has type
6, we state here that M is well-formed (i.e. well-typed) with respect to environment I'.
Such judgments are typical for terms not being expression-like and thus not having
natural type themselves. However, the term’s constituents need to be correctly typed
with respect to environment I'.

A type rule asserts the validity of judgments on the basis of other judgments known
to be valid. The syntax of type rules is always such that a single conclusion, I' - I, can
be drawn from a set of premises, I', F I;. A premise can also be a predicate. We notate
rules such that premises are written above a line and the conclusion below the line.
Additionally a rule may be named. In the following example it is named *“sample

rule”:
[sample rule]

Tyl oo Tk Iy
TFI

If all premises are satisfied, the conclusion must hold. The set of premises may be
empty. Similar to natural deduction a derivation in the type system is valid if we can
build a proof tree with the judgment of interest as its root. After introducing some
rules in the next sections we will present in sec. 6.5 on page 105 an example for a type
derivation.

As mentioned above, the terms are defined by a context-free abstract grammar
which is in turn defines meta-variables of various syntactical domains. These meta-
variables are usually introduced as name of a production. In such cases we do not
define the corresponding syntactic domain explicitly, but follow the convention that
each domain has the same name as its meta-variable, but written in bold letters. As
an example we have the variable IdList which takes values from the set IdList, i.e.,
we have the meta-meta-rule that for each meta-variable v holds:

vVev,

The meta-variables can be decorated by super- and subscripts and primes distin-
guishing various variables from the same domain but generally with different val-
ues. If a variable with the same decorations occurs twice in one rule, it always has the
same value. Consequently, with different decorations, values need not to be equal.
Literals occurring in terms of the type rules are notated in two different ways: if
they are part of the abstract syntax of Vitruv| , we use the sans-serif font together with

96

6.2. Preliminaries

single quotes (e.g. ‘class’); if they are part of the typing attributes, we use a slightly
different sans-serif font without quotes (e.g. class).

To ease the incremental definition of the grammar, we allow multiple definitions of
the same production p. The complete definition of production p is the disjunction of
all definitions as alternatives. As an example consider the following two definitions
of p:

pi=si|s2
p = S3

The entire definition of p is then their combination
pi=sils2]ss

and the values of p are taken from the set p.

6.2. Preliminaries

Throughout the following sections we rely on some basic definitions. We collect them
here.

6.2.1. Identifiers and Numerals

Identifiers are elements of the (infinite) set Id, x is an element of Id. Identifiers follow
the production Ident of the concrete grammar in sec. A.1.1.2 on page 265 but with the
additional characters ‘#', used for identifiers of compound relationships, and ‘a’, ‘0,
and ‘A’, used in the binding.

Numeric constants are elements of R U{co, —o0}, following the productions Real-
Number and IntegerNumber (again defined in sec. A.1.1.2 on page 265), n and m are
such numeric constants.

6.2.2. Type Attributes

The set of type attributes, ¥, has i as meta-variable. Type attributes are terms of
the type system, that is why they are defined by production rules. In most cases,
we reason about well-formed types, but sometimes we have to defer decisions about
typing. Thus we introduce two further type attributes partitioning the values of ¢:

pi=01¢

where 6 and ¢ denote well-formed and deferred types, respectively.
In our inference rules we often need a typing context or static environment I" . It is

97

environment
r

dom
ran

6. Static Semantics of Vitruv

defined as a set of typed identifiers:

I'={j:6jljed} Jcld (6.1)
with the additional constraint
(X:01) eTA(X:02) el =0, =06

As shorthand notation we use environments sometimes as partial functions:

Fx) = {9 if (x:60) €T

. (6.2)
undefined else

The functions dom and ran take an environment I' as argument and calculate its do-
main and range, respectively:

dom(I') = {j|(j:6;) eI} (6.3)
ran(l) = {6;](j:6;) €T}. (6.4)

Other predicates and functions are defined whenever they are used for the first time.

O =t|I6J]U|F|F—F
T = num | u | f | selector | loop
F:=U—f

U .

Fj[n,m]

6 = | dec | class | rel | ftype | event | Class | Rel | Ftype
| Event | val | ref | Sel | Loop

Figure 6.1.: Syntax of type attributes

In fig. 6.1 we present the grammar of well-formed type attributes, using I' as de-
fined in equation (6.1). Their informal meaning is the following: in type t are sim-
ple types, i.e. types of numeric values (num), of elements of enumerated universes of
fuzzy types (u), and finally the interval [0.0, 1.0] used for terms and modifiers of fuzzy
types (f). Also selector and loop are simple types, they model only declared selectors
and loops, which lack any structure. In U we will capture the structure of an universe.

98

6.2. Preliminaries

It is either a numeric interval or a type environment, the latter containing the identi-
fiers of the enumerated elements together with their type u. A fuzzy set is a function
from an universe U to the interval [0.0, 1.0], thus we introduce function types of the
form 6, — 0,, denoting the set of all functions from 6, to 6,. We need only a very lim-
ited subset of such generic types: fuzzy sets and modifiers. The type F of fuzzy sets is
denoted by U — f. Modifiers are functions between fuzzy sets of the same universe,
hence their type is F — F which is a second-order function.

A type attribute of form I'é denotes the various forms of type environments, dis-
criminated by the value of 6. Declaration of fuzzy types, compound relationships,
single classes and events have type attribute I'Ftype (sec. 6.4), I'Rel (sec. 6.6), I'Class
(sec. 6.7) and I'Event (sec. 6.7.4), respectively. The lowercase variants (I'ftype, Irel,
I'class, I'event) denote the respective instance, i.e. an identifier x; with type attribute
I'Class defines a class, an identifier x, with type attribute I'class is an object of class x;.
A set of declarations, including singleton sets of classes, of fuzzy types, of compound
relationships or of elements in a class, result in a type attribute of the form I'dec. With
I'Sel and T'loop we denote the complex definition of selectors and loops, resp., as they
are defined in the class bodies (sec. 6.7.5.4). In the binding (sec. 6.8), we use I'val and
I'ref to denote assignments of values and references, respectively. For intermediate
type environments we have the form I', where § is empty. A usual idiom is that dur-
ing construction of e.g. a fuzzy type we use the empty ¢ for intermediate results. The
final declaration of the fuzzy type with identifier x is {x : T'Ftype }dec, i.e. a declaration
type environment containing the pair of x and the I'Ftype type attribute as shown in
rule 6.32 on page 105.

Additionally, we have some expressions calculating type attributes based on usual
set-theoretic operations, e.g. to take the union of type environments. Such expressions
are needed for constructing type environments and for use in predicates.

6.2.3. General Building Blocks
6.2.3.1. Well-Formed Environments

An important general judgment assert that an environment is well-formed, which we
denote by ¢, and that a type 6 is well-formed in environment I':

o (6.5)
TH6 (6.6)

They come together with the general rule (6.7) that the empty environment @ is well-
formed. This rule has no premises and thus is an axiom. In every well-formed en-
vironment, the basic types T are well-formed (6.8). If an identifier x together with
its type attribute 6 is an element of the type environment, we can derive this type

99

6. Static Semantics of Vitruv

relationship with rule (6.9).

[empty environment]

(6.7)
Do
[primitive types]
I'Fo (6.8)
't
[entail identifier]
'to (x:0)eT (6.9)
' (x:0)

The union of well-formed environments I'; and I's is well-formed, if the domains
of both environments are disjoint.

[union of environments]
I'1Fo ToFo dom(Ty)Nndom(Ty) =@ (6.10)
T,UlL ko

6.2.3.2. Numerals

In each well-formed environment, numerals have the type num (remember that n and
m are the meta-variables for numerals):

[numerals]
ko (6.11)
I'=n:num

6.2.3.3. Deferred Types

Sometimes, we have to defer the decision about the type of an identifier. Therefore
we introduce a dummy basic type ident, which may be assigned to an identifier. This
is formalized in the following grammar and type rule:

@ = ident
[ident intro]
I'-o x¢&dom(T) (6.12)
I' = x:ident

100

6.2. Preliminaries

6.2.3.4. Identifier Lists

A general construct used in several situations is the IdList-production, which is a non-
empty comma-separated list of distinct identifiers:

IdList := x | IdList ", X

Its type attribute is an intermediate type environment I collecting the list’s identifiers
and their types requiring that these type are well-formed because they are elements
of 6.

The following rule shows how to construct the type attributes for an identifier list.
An initial list with two identifiers is shown in rule (6.13). The identifiers x; and x;
have types 6; and 6, resp., in the current environment I'. The type attribute is the
set containing both identifiers with their types. In rule (6.14) an existing identifier
list IdList is extended by identifier x, which have type 8 and which must not already
occur in IdList.

[IdList with two identifiers]
IF'EX1:0; TEX2:0, X1 # X (6.13)
[E(XgX2): {Xy:01,X2: 62}
[append IdList]
'Fx:0 TFlidLlist: Ty x & dom(Ty) (6.14)
I'F (ldList) x) : Ty U{x : 6}

These rules work well if we have a list of at least two elements. For the singleton
case, we need always an extra rule when we use an IdList in another production.
As an example we present these two rules for the export list of a class (compare the
rules (6.48) and (6.49)). The first one deals with the singleton case, the second one
with at least two elements in the list.

'Ex:6 I' = IdList: T’y
I' - ‘exports’ X ;" : {X : 6}dec I' - ‘exports’ IdList ;" : I'1dec

A more obvious rule would convert a single identifier x with type 6 into an IdList with
type {x : 6}. But this would result in an endless recursion by choosing the wrong
path at the nondeterministic decision whether a single identifier is an IdList or not, as
shown in the following derivation:

'Ex:06
Ex:{x:0}
F'Ex:{x:{x:6}}

101

6. Static Semantics of Vitruv

6.2.3.5. Dot-Notation

The dot-notation (I) requires a recursive descendent through nested type assign-
ments.

I:=x])1'"x

We have to distinguish between the different kinds of environments. If in an expres-
sion of the form 1.x the type attribute of | is a type environment I, but not for a class,
then we require that x is in the domain of I'. If | results in a class, we only allow access
to exported elements of this class, which we extract via I'y (‘exports’) (cf. sec. 6.7.1 on
page 110).

[ident expr]
F'E1:Té 6d#class ThFx:6 (6.15)
r=1x:0
[ident expr class]
I'E1:Tyclass T'1(‘exports’) Fx: 0 (6.16)

'El19x:60

6.3. The Entire Specification

The entire specification, S, consists of the prelude, P, the declaration, D, and the bind-
ing B. The prelude and the declaration build an environment in which the binding
must be well-formed. We have the following meta-variables:

S specification

B binding

P prelude

D declaration

C class definition

FType fuzzy type definition
IntDef interval relationship definition

and the abstract grammar is defined as follows:
S:=PDB

D::

| C | FType | IntDef | Dy D>

P =] ‘prelude’ D ‘end’*;

102

6.4. Fuzzy Types

The specification and the binding do not have types, but need to be well-formed.
Thus we introduce new judgments stating the specification and the binding are well-
typed with respect to a type environment I':

TFB (6.17)
TS (6.18)

The type rules for the declarations are straight-forward, because the main work is
done in the constituents, defined in the following sections. We demand that declara-
tions do not declare the same identifier twice, thus the intersection of the two type
environments’ domain has to be empty. The declarations in the first declaration, I'y,
may be used in the second one, thus we take the union of I'; with environment T
obtaining the environment for typing the second declaration. The prelude consists of
a declaration, hence its type attribute is the declaration’s type environment.

[combine declarations]
[k Dy:Tidec TUT; F Dy :Tedec dom(I';) ndom(T,) =@ (6.19)
I'-DyDy: (Fl Urg)dec

[the prelude]
' D:Tdec (6.20)
I' - ‘prelude’ D ‘end’ *;" : T'1dec

Specifications are well-formed if, starting from an empty environment, the declara-
tion builds an environment in which the binding is well-formed.

[specification]
@FP:Tdec THD:Tidec T3 FB (6.21)
O+-PDB

In the following we discuss the different forms of declarations, fuzzy types (sec. 6.4),
compound relations (sec. 6.6 on page 107), and classes (sec. 6.7 on page 109). Finally
we discuss the binding (sec. 6.8 on page 119).

6.4. Fuzzy Types

A fuzzy type introduces a universe, and several terms and modifiers. Elements in
a class can be instances of fuzzy types. Fuzzy values, consisting of an expression of
terms and modifiers, can be assigned to such elements. The grammar of a fuzzy type
definition is as follows:

FType = ‘define’ ‘type’ X FU FT FM ‘end’*;

103

6. Static Semantics of Vitruv

FU ::= ‘universe’ FUL*;
FUL:=Tn>m745 | { IdList '} "
FT = ‘define’ ‘term’ IdList *}

FM = | ‘define’ ‘modifier’ IdList *;’

The type attribute describing a fuzzy type is an environment I'Ftype, containing
all terms and modifiers with their types and the universe definition. The universe is
encoded as a special element of the environment where the identifier is the reserved
word ‘universe’.

We start with the type rules for an enumerated universe, i.e. for the list of identi-
fiers. We modify the type of an identifier from ident to u and collect all listed identi-
fiers in an environment I';.

[Ident universe intro]
I' = x:ident (6.22)
'EXx:u

[singleton universe|
'Ex:u (6.23)
I' = (‘'universe’ ‘{’ x V' ;") : {‘universe’ : {x 1 u}}

[enumerated universe]
['FldList: T; ran(I'y) = {u} (6.24)
['F (‘universe’*{’ IdList ‘} %",) : {‘'universe’ : T'; }

The rule for the closed interval universe of a fuzzy type follows:

[interval universe|
'En:num T'Fm:num n<m (6.25)
I' = (‘'universe’n .. m ") : {‘universe’ : [n,m|}

Terms and modifiers are very similar, only the type attribute differs. We use F to
denote a fuzzy set, and F — F to denote a unary function between two fuzzy sets.
We start again with IdList for the typing rules but this time we convert ident to F and
F — F, resp. In rule (6.28) and in rule (6.31) we require that the elements of I'; are
only terms and modifiers, resp.:

[Ident fuzzy set intro]
' x:ident T F ‘universe’: U (6.26)
'-x:U—f

104

6.5. Example of a Type Derivation

[define singleton term]
'Ex:F (6.27)
I' - (‘define’ ‘term’ x ;") : {x : F}
[define terms]
[k ldList: Ty ran(I'y) = {F} (6.28)
I' - (‘define’ ‘term’ IdList ;") : 'y

The rules for modifiers are symmetric:

[Ident modifier intro]
I' - x:ident T F ‘universe’: U (6.29)
FrEx:(U—f)— (U-—=f)
[define singleton modifier]
'-x:F—F (6.30)
I' - (‘define’ ‘modifier x ;') : {x : F — F}
[define modifiers]
' IdList: Ty ran(I'y) = {F — F} (6.31)
I' + (‘define’ ‘modifier’ IdList ;") : T’

The definition of fuzzy type x results in a type environment of identifier x the type
attribute of which is the union of three fuzzy type environments. Terms and modifiers
rely on the universe, and all modifiers are not allowed to be already used as a term. As
mentioned above, the pseudo identifier ‘universe’, used for the universe, is a reserved
word and thus cannot be an element of the terms or modifiers. To obtain easier rules
later on, we assign to the universe a fuzzy set (F = U — f) inT4 (6.33). This is the rule
for defining a fuzzy type:

[define fuzzy type]
@FFU:T; TyFFT:T, T{UT, FFM: T3 (6.32)
I' - (‘define’ ‘type’ x FU FT FM ‘end™;") : ({x : (T4 UT2 UT3)Ftype}dec)
where
[y = {‘universe’ : I'y(‘universe’) — f} (6.33)

6.5. Example of a Type Derivation
After presenting the type rules for fuzzy types in the last section, we can now show

an example of a type derivation, i.e. a proof tree. Our examples is the definition of a
fuzzy type Temp:

105

6. Static Semantics of Vitruv

define type Temp

universe [0.0, 100.0 J; /I =FU

define term cold, hot; [l =FT

define modifier very, not; /I =FM
end;

We want to prove what is stated in rule (6.32). Because our input is too long, we break
up the proof tree into four parts, the typing hypothesis and the three sub-terms of the
hypothesis.

Let us start with the hypothesis, the root of our proof tree:

QFFU: Ty TWHFT: T, THUuloFFM T3
I' - ‘define type Temp’ FU FT FM ‘end”;" : ({Temp’ : (I'4 UT, UT'3)Ftype}dec)

where
I'y = {‘'universe’ : I'y (‘universe’) — f}

Now we have to prove that the expanded productions FU, FT and FM are well-typed
and we will show how their type attributes I';, I', and I'3 are constructed. A new
fuzzy type defines a new and fresh scope for its constituents, thus the environment
for the production is empty ().

The proof-tree for FU follows rule (6.25)

OFO00:num @+ 100.0:num 0.0<100.0
@ 0.0..100.0": [0.0,100.0]
@ F ‘universe 0.0 .. 100.0;" : {‘universe’ : [0.0,100.0]}

and we get as result the type attribute I'; = {‘universe’ : [0.0, 100.0]}.
For FT we follow rule (6.28):

I'n Fo ‘cold r4 dom(Fl) I'nFo ‘hot £ dom(Fl)
I'1 - ‘cold’ : ident I'1 - ‘hot’ : ident
' Fcold: U — f 't F'hot: U — f
I'; + (‘cold, hot') : {‘cold’ : U — f} U{'hot’ : U — f}
I'; F (‘define term cold, hot;’) : {‘cold’: U — f,‘hot’ : U — f}

and we get type attribute I', = {‘cold’: U — f,‘hot’ : U — f}.
Finally for FM we follow rule (6.31), which is symmetric to the tree above for FT.
For simplicity we use I'; =T'; UT.

g0 ‘very £ dom(F4) I'sFo ‘not’ £ dom(1"4)
Iy - ‘very' :ident I'y - ‘not’ : ident
Iy very : (U —f)— (U—f) I[4Fnot’: (U —f) — (U—f)
4+ (‘very, not’) : {'very’: (U —=f) - (U —=f)}u{not': (U —f) —» (U— 1)}
', F (‘define modifier very, not;’) : {*'very’: (U — f) — (U — f),'not’ : (U — f) — (U — f)}

106

6.6. Compound Interval Relationships

These three derivations construct the four needed type environments:

I'1 = {‘universe’ : [0.0,100.0]}

I, ={cold": U — f,'hot’ : U — f}

I3 ={very:(U—-f)— (U—=f),not:(U—-f)—(U-—=fF)}
[y = {‘universe’: U — f}

where

U = I'y(‘universe’) = [0.0, 100.0]

which were used in the root of our complete proof tree. We have shown how to apply
the rules to prove that the declaration of Temp is well typed. During this proof we
constructed the type attribute of the fuzzy type declaration which is needed if we
want to prove other parts of the specification using Temp.

6.6. Compound Interval Relationships

The definition of compound interval relationships is similar to class definitions be-
cause in both situations we have a set of local class instances and a set of rules defin-
ing constraints on these instances. Therefore, we defer the detailed discussion of the
rules to the discussion of the class bodies.

IntDef .= IntHead ‘=" LetInt Rules "}

IntHead .= ‘define’ ‘interval’ ‘relation’ X1 IdSeq X»
IdSeq = X | IdSeqy IdSeq,

LetInt ::= ‘let’ IdList ‘in’

Rules = ‘rules’ Rule ‘end’

Rule := IntRel | Constraint | Ruley Rules

The type attribute of a compound interval relation is a type environment, I'Rel,
containing the two arguments of the relations (see rule (6.42). In this respect a com-
pound relation resembles binary functions or better a procedure with two arguments.
As usual in such situations, the argument declaration is considered as a declaration
block of its own (Schmidt, 1994, p. 94), accounting for the type attribute used here.

The identifier sequence takes the rather longish name of compound interval rela-
tions. The type of an identifier sequence is ident. The whitespace between parts of

107

6. Static Semantics of Vitruv

identifier sequences is not suitable to be used in domains of type environments, be-
cause we need there ordinary identifiers. Thus, in rule (6.34) we use the symbol ‘#,
not occurring in production Ident of the concrete grammar, to concatenate the non-
whitespace parts of the identifier sequence. This results in ordinary identifiers in the
type systems, because ‘#' occurs in the symbol set of 1dent, as defined in sec. 6.2 on
page 97. This procedure should not irritate the reader, it is only needed for technical
reasons.

[ident sequence]
I' - 1dSeq, :ident T F 1dSeq, : ident (ldSeq,#1dSeq,) £ dom(T’) (6.34)
I' = (1dSeq, #'1dSeq,) : ident

Each identifier in the Letint refers implicitly to the standard class ‘Interval’, which
needs to be defined in the current environment T, i.e. we need (‘Interval’ : T'1Class) € T
as produced by rule (6.67).

[Ident interval intro]
I't‘Interval’ : T'1Class T' - X : ident (6.35)
'=x:1I4

We explicitly state in the following rules that all identifiers in the LetInt-production
have the type of class ‘Interval’ and are not used in environment I'.

[singleton let interval]
F'-x:Ty TF'Interval : T;Class x £ dom(T) (6.36)
I'E (‘let’ x ‘in") : {x: Ty}dec
[let IdList intervals]
I'FldList: Ty T FInterval : ToClass ran(I;) = {I';} dom(T') ndom(I'y) =@
T F (‘let IdList ‘in") : Tydec

(6.37)

The head of the interval declaration combines the two formal arguments with the
identifier of the relation. The formal arguments get the type of class ‘Interval’, inde-
pendent of whether or not they have a different type attribute in I', and need to be
distinct. The identifier of the relation needs to be fresh, hence the requirement that its
type attribute is ident.

[interval head|
I+ ‘Interval’ : T1Class X1 # Xo T'F 1dSeq : ident (6.38)
['F (Xq 1dSeq x2) : {1dSeq : {Xq : ['1,X2 : 1} }dec

108

6.7. Classes

The rules in a compound interval relationship do not create any values, thus an
expression-like type attribute is not appropriate. We introduce a new judgment as-
serting that a rule Rule is well-formed in a type environment I':

I' - Rule (6.39)
With this judgment we can give the typing rule for a sequence of rules.

[combine rules]
I' - Rule; T F Ruley (6.40)
I' - Rule;Rule,

As stated above, the typing rules for constraints and interval rules are given in later
section when discussing the body of classes.

The typing environment for the rules of compound interval relationships consists
of the local interval declarations unified with the relationship’s formal arguments.
The scoping rules of Vitruv; allow that local declarations override definitions from
the outside. Thus, we need the asymmetric union operator LI:

Iyurly, =15 U(Fl \ {(X : 91)|(X : 91) el'{ANTO,: (X : 92) € 1“2}) (6.41)

Now we can build the complete definition of the compound interval relation. The
Letint production declares variables in the local scope of the interval relation, thus its
type environment contains only the definition of class ‘Interval’ and the formal argu-
ments of the relation. The rules may refer to definitions outside the interval relation,
but local definitions override outer ones, hence we use environment I" LU(T'; UT3).

[compound interval definition]
I'F IntHead : {x : I'; }dec I' F ‘Interval’ : T';Class
{'Interval’ : I';Class} UT; I LetInt : T3dec T'LI(I'; UT'3) - Rule
I' F (IntHead ‘=" LetInt ‘rules’'Rule ‘end’ ;") : {X : I';Rel}dec

(6.42)

6.7. Classes

A class declares a set of elements, either variables of a fuzzy type, instances of classes,
events, loops and selectors. These elements may be exported, i.e. they are made vis-
ible outside the class. All elements can be used in the body, where we state rules on
the elements. Additionally, a class A can inherit definitions from another class B, i.e.
all exported elements of this class B are available in A.

C = ‘class’ X Inherits Fxports Letpart Body ‘end’*;

Inherits = | ‘extends’ [

109

6. Static Semantics of Vitruv

FEzports ::= | ‘exports’ IdList *;

Letpart .= ‘let’ DLet

DLet == | X1V X2 ;' | LoopLet | SelLet | FventLet | DLety DLet,
LoopLet = X ‘" ‘Loop’

SelLet ::= X' 'Selector ;’

EventLet ::= X1V ‘Event’ ‘[X T}

Body = ‘body’ R ‘end’*;

Later, we will continue the grammar definition for the body of classes.

6.7.1. Representing of a Class

A class is a complex structured entity. In various situations we need different parts of
its type structure notably for defining the export, for sub-classing and in the binding.
The distinction between local and exported elements has to be reflected in the typing:
exported elements can be used outside the defining class, i.e. in other classes, thus
they are part of the interface of a class. In contrast to that the local elements are only
usable inside the class, but we need them again in the binding of the class, hence we
need information about local elements also in the type structure. Therefore, we use a
structured type environment for classes which consists of three elements:

1. identifier ‘extends’ is typed with the super class.

2. identifier ‘exports’ is typed with a type environment for the exported elements
of the class including the inherited ones.

3. identifier ‘let’ is typed with a type environment for the private elements of the
class. In this type environment we embed the inherited private elements again
with identifier ‘let: Consider class C; and C, where C; inherits from C, with
private elements I'; and I'y, resp. Then the private elements of C, are embedded
inTy:

(‘let’ : Ty) € I'y.

The three identifiers from above are reserved words of the concrete grammar, and
thus there cannot be any clashes with user-defined identifiers of elements in classes.

110

6.7. Classes

6.7.2. Sub-Classing and Inheritance

Classes enjoy a sub-class relation defined by inheritance. All classes inherit directly
or indirectly from class ‘Interval’, except ‘Interval’ itself. In the type system, we use
a transitive and reflexive variant of the sub-classing relationship, denoted by <:, to
obtain easier rules than with an irreflexive relationship. We capture sub-classing with
a new judgment

I' = T'yClass <: T’ Class (6.43)

which asserts that class x, is a sub-class of x; if x; : I';Class and x, : I';Class. The
transitivity of sub-classing is given in the next rule, followed by reflexivity.

[transitivity of sub-classing]
I' - T'1Class <: T'oClass T+ I';Class <: I'3Class (6.44)
I' = T'1Class <: I'3Class

[reflexivity of sub-classing]
't x:TyClass (6.45)
I' - T'1Class <: T'1Class

The inheritance relation is defined via keyword ‘extends’ (6.46). If it is omitted, then
the class inherits implicitly from class ‘Interval’. This is covered in rule (6.62).

[inherit explicit]
I'=1:TClass (6.46)
I'F (‘extends’ I) : I'; Class

We can deduce sub-classing from the type structure of class, as defined in detail in
sec. 6.7.5 on page 113.

[deduce sub-classing]
I'E xg :T1Class T F xp : TpClass T'i(‘extends’) = I',Class (6.47)
I' = T'1Class <: I';Class

6.7.3. Exports

The export clause lists all elements which are exported. So we have simply to collect
them. If the export clause is empty, i.e. Exports is the empty word e, then its type
attribute is the empty set, i.e. @dec.

[exports IdList]
T+ ldList : Ty (6.48)
I' F (‘exports’ IdList ;") : T'ydec
[exports singleton]
'-x:6 (6.49)
I'F (‘exports’ x ') : {x : 0}dec

111

6. Static Semantics of Vitruv

6.7.4. Local Declarations

The let-part of a class declares local elements. The typing rules are straightforward. If
we declare an element x; of class or fuzzy type x,, then the type attribute of x; will
be same as for xp, but we change the corresponding uppercase discriminator to its
lowercase counterpart (e.g. Class to class in rule (6.50)) to distinguish types from their
instances. Event declarations define the type of the value-field, which has to be a fuzzy
type. That is why the event’s type attribute, defined in rule (6.52), is an environment
containing the pair of identifier value and its type attribute, constructed according
to (6.51). Selectors and loops are basic types, hence they require only a well-formed
environment I'. Their structure is revealed in the rules of the body and we update the
type attributes of selectors and loops after type checking the rules.

[declare class instance element]
I'=xy : T'1Class (6.50)
I'F (X17'%2%") © {Xq : I'1class}
[declare fuzzy type element]
' Xo: I'1Ftype (6.51)
['E(Xg'%2%) @ {xq : (T1ftype}
[declare event element]
I' = Xy : T'1Ftype (6.52)
['F (X" 'Event ['X27" %)+ {Xq : ({'value’ : T'1ftype}Event)}
[declare selector element]
TFo (6.53)
I'F (X' ‘Selector’ ;") : {X : selector}

[declare loop element]
Tho (6.54)
I'F (x4 ‘Loop’ ;) : {X : loop}

We use the asymmetric union of type environments I' and I'; to prove the typing
of DLet , in rule (6.55). Finally, in rule (6.56) we have completed the definition of
local elements. Here, we require that the locally declared elements do not redefine an
global identifier defined elsewhere. We need this to ensure that in particular inherited
elements are not redefined, but it also makes no sense to redefine identifers of classes,
fuzzy types or compound relationships. If productionDLet is the empty word €, then
its type attribute is the empty set, i.e. Ddec.

[add local elements]
'FDLety:T; TUTy FDLet,: T, dom(T'p) ndom(I'z) =@ (6.55)
'+ (DLet;DLety) : (I UTLy)

112

6.7. Classes

[letpart]
I'-DLet: Ty dom(I')ndom(I'y) =@ (6.56)
I - (letDLet) : I';dec

6.7.5. The Class Definition

The type rules for the class definition has to consider three cases:
1. classes inheriting explicitly from a class, rule (6.57)
2. classes inheriting implicitly class from Interval, rule (6.62)
3. the special class Interval, rule (6.67)

The difference between these three variants is the handling of inherited elements, but
the remaining parts of the rules for class definitions are the same. Therefore, we use
the same identifiers in all three rules to highlight differences and similarities.

The identifier of the class to type check is x. The type attribute of the inherited class
is I'y Class. We need to determine all elements accessible in the body of our class x and
we have to divide these elements into private and exported ones. The set of all ele-
ments (I's) is the union of inherited (T'; (‘exports’)) and locally declared elements (I'3)
together with the current class itself and the pseudo-variable ‘this’. Exported elements
are those we inherit and the local elements listed in the export-clause, the remaining
elements are private. The private elements contain the private elements of the inher-
ited class (I';(‘let’)), we need them in the binding section. The body has attribute I';
containing the structures of selectors and loops which have to be propagated into
I'; and I'y. Now we have all elements of the type environment I'g of our class x: the
three elements for the inheritance relation, for the exported and for the local elements,
respectively.

This is the first rule for classes which inherit explicitly from other classes.

[general class definition]
I' - Inherits : T'1Class T, F Letpart : I'sdec T'3 - Exports : I'sdec

I's - Body : I'7 x € dom(T) X # ‘Interval’ (6:57)
I' - (‘class’ x Inherits Exports Letpart Body ‘') : {x : I'sClass}dec
where
I, =TUT(‘exports’) L{x : I'sClass, ‘this’ : I's } (6.58)
I's=TI,UTIj3 (6.59)
I'e = {‘extends’ : I';Class, ‘exports’ : (I'; (‘exports’) UTg),
let': (((I'swT7)\T'g) U{'this’: T’g,‘let’ : ['1(‘let’) })dec} (6.60)

113

6. Static Semantics of Vitruv

I'g={x:0|x edom(Ty) A (x:0) € (I'suI7)} (6.61)

Classes without explicit inheritance seem to be roots of the inheritance relation, but
they inherit implicitly from ‘Interval’. We have only two changes to the rule above:
The Inherits is omitted and the type attribute I'; Class is that of class ‘Interval’.

[root class definition]
I' - ‘Interval’ : T'1Class I'p - Letpart : I'sdec I's - Exports : I'sdec

I's - Body : I'7 x € dom(T) X # ‘Interval’ (6.62)
I' - (‘class’ x Exports Letpart Body ;") : {x : I'sClass}dec
where

I, = TUT(‘exports’) LI{x : T'sClass, ‘this’ : T's } (6.63)
I's=TI,UTIj3 (6.64)

I'e = {'extends’ : I'; Class, ‘exports’ : (I'; (‘exports’) UTg),
let’ : (((T3uT7) \ I'g) U{'this’: T'g,‘let’ : T'1(‘let’)})dec} (6.65)
I'g={x:0|x edom(Ty) A (x:0) e (I'sul7)} (6.66)

Finally, we have the class definition of ‘Interval’ which is somewhat easier, because
we can drop all references to the super-class, i.e. I'; = @.

class Interval definition]
I', - Letpart : T'sdec I's - Exports : I'sdec

I's - Body : I'y x € dom(T') X = ‘Interval’ (6.67)
I' - (‘class’ x Exports Letpart Body ‘;') : {x : I'sClass}dec
where
I, = T LU{x : T¢Class, ‘this’ : T'g} (6.68)
I's =T,UT;3 (6.69)
I'e = {'extends’ : @Class, ‘exports’ : I'g,‘let’: ((([3UI7) \ I'g) U{'this’: T'g})dec} (6.70)
I'g={x:0|x edom(Ty) A (x:0) e (I's3ul7)} (6.71)

6.7.5.1. The Body of a Class

The final step is the application of fuzzy types and elements of that type in expres-
sions which we find in the body of a class. We discuss interval constraints, interval
relationships and event reaction in this order. The grammar for the body is the fol-
lowing, where the binop-production refers to the binary operators ‘and’, ‘or’, ‘intersect’
and ‘union’:

114

6.7. Classes

R = | ConsRule | IntRel | Loop | Selector | Ry Ry
ConsRule = Constraint *;

Constraint .= 1'is’ £

E:=1]E{binop E; | 1'CE"Y

IntRel := Inty Rel Inty "}

Int == I | ‘leave’ for ‘C I ‘)

Rel = IdSeq | Rely ‘or' Rels

Loop := z ‘loops’ ‘until’ ‘(" EC' ') ‘do’ Letpart Body ‘end’*;
EC = El's' E

EI ::= I'’ ‘value’

Selector = x ‘selects’ ’(" I) ‘with’ ‘rules’ SelRule ‘end’ *;
SelRule ::= SelAnte SelCons *; | SelRule SelRule
SelAnte ;= ‘on’ E

SelCons ;= ‘do’ Letpart Body

Loops and selectors can only be defined once, hence we have to do some book-
keeping. While rules in the body are not expression which have a particular type, we
misuse a type environment for the bookkeeping. Every rule results in a type environ-
ment I', but only loops and selectors fill some values into I, all other rules result in an
empty type environment I' = @. This is explained in detail in sec. 6.7.5.4 on page 117.
All other rules result in empty environments. Combining rules unifies the respective
type environments, but as usual their domains have to be disjoint. The entire body
propagates the type environment of its rules (6.73). If there are no rules in the body
(i.e. production R reduces to the empty word), the type environment of the body is
empty.

[combine rules in body]
'FRy: Ty THRy: T, dom(l';) ndom(T,) =@ (6.72)
TFRiR, T UT,

[body]
''-R:I; (6.73)
I'-'begin"R‘end’ "} : I';

115

6. Static Semantics of Vitruv

6.7.5.2. Interval Constraints

Interval constraints assign fuzzy sets to elements of classes. These fuzzy sets are re-
sults of expressions. If the target of an interval constraint or an expression is not a
fuzzy type but a class instance, we use as default the element ‘length’, defined in class
‘Interval’ and thus always available.

[apply modifier]

TFE:F THI:FE—F (6.74)
TFICEY:F

[apply binop]

THE :F THE, F (6.75)

binop € {‘and’, ‘or’, ‘intersect’, ‘union’}

I'F (Eibinop Ey) @ F
[default element length]

I' - E:Tclass I'y - ‘exports’: I'odec T'p - ‘length’: F (6.76)
r'-E:F
[Constraint]
I'E1:T ftype I'y F‘universe’:F T HFE:F (6.77)
F'-149"E :F

[Constraint with default element]
['F1:Tyclass T'y(‘exports’) F ‘length’ : I'sftype I's3 + ‘universe’: F T3 HE:F
'FI149E @ F

(6.78)

[Constraint rule]
I' - Constraint : F (6.79)
I' - Constraint ;' : @

6.7.5.3. Interval Relationships

Interval relationships are binary predicates the arguments of which are instances of
class ‘Interval’. Therefore, we require that the type of the formal arguments is that of
class ‘Interval’ (6.80) and that the actual arguments conform to this type (6.82), i.e.
I <:Tyand T, <: Ty

[IdSeq intro]
['F1dSeq: T'1Rel {T'(‘Interval’)} = ran(Ty) (6.80)
' 1dSeq : T’y

116

6.7. Classes

[add Rel|
I'FRel;:T; THRel,: T, ran(I'y) = ran(I';) (6.81)
I' - (Rely ‘or' Rely) : T1 UT,
[IntRel|
THRel:T3 T Fint:Tyclass TF Ity Toclass (6.82)
ran(F3) = {F4} ' < Iy I <i Ty '

I'EInty RelInty, 7 : @

The intervals used arguments for interval relationships can either be ordinary in-
tervals, i.e. instances of classes, or leave for-expressions. The latter require arguments
conforming to class Scene.

[leave for|
I'-‘Scene’:T1Class T F1:Tyclass I'p <: T (6.83)
I' F‘leave’ ‘for’ ‘(" 1 *)' : I'pclass

6.7.5.4. Loops and Selectors

Loops and selectors are similar to classes, because they have their own let-parts and
bodies. All elements used in the bodies have to be declared in the respective let-part
and are in particular not allowed to be elements of the loops’ or selectors’ surrounding
classes. Hence, we need to reduce the type environment I' used for typing any rule in
the body of a class. We need to filter out all type instances of T, i.e. we get only type
definitions. This filter is called filterTypes and is defined in (6.84).

filterTypes(I') := {x : T'16|(x : I'16) € I A € {Class, Ftype} } (6.84)

The type attributes for loops and selectors is a nested type environment, where each
new declaration block (only one for loops and possibly several for selectors) is en-
coded as a separate type environment (see (6.87) and (6.95)). Each of these environ-
ments are attributes of identifier on, which cannot be used as an ordinary identifier
because it is a reserved word. The structure propagation applies to selectors and loops
as well, therefore we use the asymmetric union for the definition of I'4 in rules (6.89)
and (6.92). The order of such blocks in selectors is preserved by the nesting of the type
environments. This is similar to the nesting of private variables in the type environ-
ment for classes.

To guarantee that a loop refers only to an event and not to arbitrary fuzzy con-
straints as termination condition, we use event constraints (6.86), whose type envi-
ronment is extended for the TimeOut-value.

[Event Interval|
I'1:Tievent T’y + ‘value’: I'pftype (6.85)
' 14 'value’: T'pftype

117

filterTypes

6. Static Semantics of Vitruv

[Event Constraint]

I' - El: I'yftype Tp(‘universe’) = F Ty U{TimeOut': F} -E:F (6.86)
I'-ElISE:F
[loop]
'Fx:loop TFEC:F Ty DLet: Ty ThuUT,F Body: I3 (6.87)

I' F x ‘loops’ ‘until’ ‘CEC ‘)’ ‘do’ ‘let’ DLet Body *;" ‘end’ ;" : {X : I'4Loop}

with
Iy = filterTypes(T') (6.88)
I, = {on: ToUT3} (6.89)

All expressions in the antedecents of selectors have to conform to the event value’s
fuzzy type F extended by the TimeOut value (6.90). We encode the type of pseudo-
identifier on (6.95) as the value’s fuzzy type F. The consequent consists of a declara-
tion block and a set of rules, similar to loop bodies. Again, we have to filter out all
type instances in I" to ensure that no references to elements declared outside the selec-
tor are made (6.91). Selector rules and the combination is straightforward (see. (6.93)
and (6.94)).

[selector antedecent]

I'F‘on’: Tyftype Iy F ‘universe’: F T'y U{TimeOut' : F} -E:F (6.90)
'F'onE:F
[selector consequent]
' DLet:T; Ty =filterTypes(I') T,UT; - Body: T3 (6.91)
I'-‘do’ ‘let’ DLet Body ‘;’ : 'y
where T'y =T UT3 (6.92)
[selector rule]
I'=SelAnte : F T+ SelCons : I'y (6.93)

I' - SelAnte SelCons ;" : T';
[combine selector rules]

'+ SelRule; : T'; T F SelRule, : T, (6.94)
I' - SelRule; SelRuley @ {T'; U{'on’ : T2} }
[selector]
I' - X : selector I'E1:Tevent (6.95)

I'; - ‘value’: Toftype T'U{‘on’: I'>ftype} - SelRule : I'3
I' - x ‘selects’ ('l *) ‘with’ ‘rules’ SelRule ‘end’ ;" : {x : {‘on’: I'3}Sel}

118

6.8. The Binding Section

6.8. The Binding Section

In the binding section we assign values from and to structures defined in the decla-
ration part of the specification. Our focus lies on checking whether or not the values
assigned fit the declared structures. The effect of the bindings is captured in the eval-
uation semantics of Vitruv| , presented later in sec. 7 on page 131.

We start with the grammar of the binding section:

B ::= 'bindings’ inPrelude BindSpec ‘end’*;
inPrelude ;= | ‘in’ ‘prelude’ PList ‘end’*;

PList ;= inType | inClass | PListy PList,
BindSpec .= TopLevelObject | BindSpec BindSpec

TopLevelObject .= inObject

6.8.1. Representing the Binding

The type attributes of the binding reflects the bookkeeping needed to check the va-
lidity of creation and assignments to objects and fuzzy types. Notably we have to
deal with assigned values, references to top-level objects, I-values and the main entry
point of the specification.

6.8.1.1. Value Assignments

While we have mostly structured assignments in the binding, traditionally not re-
sulting in type attributes, we supply each of them with a type environment, T'val,
collecting all identifiers with assigned values. We require this for bookkeeping rea-
sons, because we do not allow more than one assignment to each variable. Alterna-
tively, as the semantics of multiple assignments is not clear, we would need some
kind of resolution strategy such as the last assignment wins, or there is an order of
assignments with side-effects as in imperative languages. But these alternatives are
not satisfactory at all and thus we forbid multiple assignments.

6.8.1.2. References to Scenes

Bookkeeping is also needed for references, because they refer to objects defined as
top-level objects. This is realized as part of the value type environments as an ad-
ditional environment I'ref, containing name and type of the reference (6.133). While
checking the entire binding, we have to check that all these references only refer to
the top level objects. All top level objects and their types are collected in an type envi-
ronment of pseudo identifier ¢ (6.112). We need this special identifier, because the top

119

U
No

6. Static Semantics of Vitruv

level objects’ identifiers have a I'val type attribute, but we need a I'Class attribute for
checking the references, hence this indirection. For a convenient dealing with the type
environment of top level objects, we define two operators U, (6.96) and N, (6.99):

T1NeTy:=T3NTy (6.96)
where
I3:=TI;\T1('0") (6.97)
Ty =T \To('0") (6.98)
and
Ty UpTpi=T3UT, (6.99)
where
I3:= (T \T1('0")) U2\ T2('0")) (6.100)
Iy:={0c:(T1(‘c)UT('0"))} (6.101)

Intersection N, considers everything except the environments for top level objects.
Union U, handles both parts independently: I's, unifying everything except the en-
vironments for top level objects, and I'y. The latter is a type environment containing
identifier o and its type attribute, which is the unification of the top level objects’ type
attributes found in I'y and T',.

Checking the integrity of references and top level objects requires identifying all top
level objects and all references in a value type environment. References are leaves in
the type environment, i.e. we do a recursive descend through the value environment,
the top level objects are collected as type environment for special identifier . We
define predicate cr (6.102) checking the references by splitting its argument into top
level objects and values, and applying predicate checkrefs (6.103). These predicates
requires that for each identifier’s value type environment the references are valid,
which is checked by applying checkref (6.104), using checkrefs again for the recursive
descend. If we find a reference {x : T'; }ref, then type I', must conform to that of top
level object x, which is T'1(x).

cr(I') := checkrefs(I'(‘c”), T\ T'(‘c")) (6.102)
checkrefs(T'y,T'2) 1= /\ checkref (', T2(X)) (6.103)
xedom(T';)
checkrefs(I'y,I') if 6 = [val
checkref (I'1, 0) := < TxClass <: Ty (x) if 0= {x:Ty}ref (6.104)
true else

120

6.8. The Binding Section

6.8.1.3. L-Values

L-values are identifiers to which assignments are possible. As stated in sec. 5.8.1 on
page 81, we need to distinguish between identifiers, being I-values, and other identi-
fiers or expressions being values to be assigned, because the scoping rules for assign-
ments differ from rules for visibility. In general, assignments are only possible for
elements in the innermost environment but not for those elements defined in outer
environments. The details are carried out in the type rules of terms VAssign, inType,
inObject and inSuper. We introduce a special element, A, in our type environments
collecting all I-values and their type attributes.

6.8.1.4. The main Entry Point

We denote the main entry point in the specification in the type environment of pro-
duction BindSpec with «. Each top level object’s type environment is duplicated with
« as additional identifier (6.108).

6.8.2. The Entire Binding

Now we can establish the rules for the entire binding applying the aforementioned
encodings.

The rules for prelude’s binding ((6.106) and (6.107)) are straightforward applying
the rules for objects and types, forbidding multiple assignments. Top level objects are
possible candidates for the main object, hence we introduce « in rule (6.108). In (6.109)
we propagate only the left « of each pair, guaranteeing that the first top level object
becomes the main entry object of the specification.

Finally, in rule (6.105) we present the entire binding occurring here in its long form
in the conclusion as judgment according to rule (6.17). We add the type environment
Iy = {'A": @} toensure that in all other dependent type environments the extraction
of T'(*A") is successful. We require that all references to top level objects are valid by
checking I', with predicate cr. Requirement dom(I';) Ny dom(T';) = @ in rule (6.109)
implies that T'y(‘c”) and T'»(‘¢c”) are disjoint according to rule (6.112), therefore the
application of U, in the conclusion of rule (6.109) is valid.

[bindings]
TFu{'A’: @} F inPrelude : T'yval TU{‘'A’: @} - BindSpec : I'pval cr(I';)
I' F (‘bindings’ inPrelude BindSpec ‘end’ ;')

(6.105)

[prelude]
T+ PList : Tyval (6.106)
I+ (‘in’ ‘prelude’ PList ‘end’ ;") : T'yval

121

6. Static Semantics of Vitruv

[combine PList]
[+ PListy : Tyval T+ PList, : Toval dom(T'y) ndom(Tz) =@ (6.107)
T F PList;PList, : (I3 UT)val

[top level object]
I' - inObject : T'yval (6.108)
I' - TopLevelObject : (I'y U{‘a’ : ran(I'y)})val
[combine BindSpec]
I' = BindSpec, : I'yval T = BindSpec, : I'val dom(I'y) Ny dom(Ip) = @
I' = BindSpec, BindSpec, : (I'1 Uy I'3)val

(6.109)
with

I's=1, \ {‘06’ . FQ(‘(X’)} (6.110)

6.8.3. Objects, Classes and Types

The binding of objects and types, the main structures in the binding, consists primar-
ily of assignments defined by the VAssign production explained later in sec. 6.8.4 and
secondarily of structures defining the target of the assignments. These structures re-
call the class definitions and are ordered in a hierarchy. The binding of classes, only
allowed in the binding of the prelude, is similar to those of objects, but the object
identifier is missing. The binding is based on following grammar:

inType ::= ‘in’ ‘type’ X VAssign ‘end’*;
inClass .= ‘class’ X OAssign ‘end’ "}
inObject ::= ‘object’ X1 ' Xo OAssign ‘end’*;

inSelector := 'in’ X " ‘Selector’ Path ‘end’*;’

inLoop = ‘in’ X " ‘Loop’ OAssign ‘end’ '}’

Path = Pathy Pathy | ‘on’ OAssign ‘end’

OAssign := RebindTypes BindObjects ValueAssign inSuper
ValueAssign = | VAssign

RebindTypes = | inType RebindTypes

BindObjects := | BindObjectsy BindObjectsy | inObject | inLoop | inSelector

122

6.8. The Binding Section

inSuper = | ‘in’ ‘super’ VAssign inSuper ‘end’

The typing of assignments of fuzzy type elements requires that the type is defined
in the current environment. The I-values are the type’s terms and modifiers. Note that
the reserved word ‘universe’ and its type attribute remain in the I-value set. This it is
not harmful: ‘universe’ cannot be used as an ordinary identifier in the specification,
hence no clashes with other identifiers can occur.

[in type]
I+ x:TyFtype TU(A :Tq) F VAssign : Tpval (6.111)
I'F (Yin" ‘type’ x VAssign ‘end’ ;") : {x : T'pval}val

The assignment of modifiers and terms in handled later from rule (6.130) onwards
together with assignments in classes.

The inObject-production is handled in rules (6.112) and (6.115). L-values of classes
are all exported and private elements; inherited private elements are considered later
in rule (6.129). Rule (6.112) handles assignments of top level objects and requires only
that they conform to class Scene. For assignments inside the current object the rule
introduces the proper I-values in (6.113), where alpha and omega are not allowed as
I-values.

[in object initial
I' - X : T'1Class X1 £ dom(T) r-x:@
F'uT, - OAssign : I'zval T'yClass <: I'(‘Scene’)
I' F (‘object’ X1 " xo OAssign ‘end’ ;") : {x : I'gval, ‘0" : {xy : I';Class} }val

(6.112)

where
I, = {Xl : F1C|aSS} UTy U{‘A’ : (Fl(‘exports’) U Fl(‘let’)) \ F4} (6.113)
Iy, = {'alpha’ : I';(exports)(‘alpha’), ‘omega’ : I';(exports)(‘omega’) } (6.114)

Rule (6.115) is used for all other objects in the hierarchy of objects and is only ap-
plicable if the current object x; is proper I-value, i.e. it isa member of I'(1). However,
as assignments to alpha and omega are not allowed, we check explicitly that x; is un-
equal to these identifiers. It is required that the type of x, is a proper subtype of the
type of x; to fulfill the laws of substitutability (cf. sec. 5.3.2.1 on page 65). Again we
remove alpha and omega from the set of I-values.

[in object]
T(‘A") F xq : Tyclass x; £ {‘alpha’,‘omega’} T I X, :T,Class
I'yClass <: I'1Class T UT3 F OAssign : I'zval
I' F (‘object’ X1 ‘' xo OAssign ‘end’ ;") : {Xq : I'zval}val

(6.115)

123

6. Static Semantics of Vitruv

where
[z =T U{'A": (T1(‘exports’) UT1(‘let’)) \ T4} (6.116)
Iy, = {‘alpha’ : I';(exports)(‘alpha’), ‘omega’ : I';(exports)(‘omega’) } (6.117)

The rule for classes (6.118) mimics exactly those for objects (6.112), since class bind-
ings occur also on the top-level. However, we omit the requirement that the bound
class inherits from Scene and we use the name of the class also as the identifier of the
value binding. This allows simple checking that no class is bound twice in the pre-
lude’s binding, by requiring that the class identifier does not occur in the domain of I'.
In contrast to the object bindings above, we do not exclude alpha and omega from the
I-value set, if the class bound is class Interval: we need to set alpha and omega once.

[in class]
I'Fx:T1Class x £ dom(I'") T'UT, F OAssign : I'zval (6.118)
I' F (‘class’ x OAssign‘end’ ;) : {x : I'pval}
where
Iy = {x:Tclass} Uy U{'A": (T'1(‘exports’) UT1(‘let’)) } \ I'4 (6.119)
2 X = ‘Interval’
‘T {*alpha’ : T';(exports)(‘alpha’), ‘omega’ : I';(exports)(‘omega’)} otherwise

(6.120)

Loops (6.121) and selectors (6.124) share a similar value structure, because each
local declaration and rule block (i.e. the loop body and the alternative paths) has its
own type environment using identifier on to indicate that we do not have an ordinary
object. For selectors each path has to be assigned in the same order as the paths are
declared (6.123).

[in loop]
IF(‘A) F x:Tiloop T'UT(‘on’) - OAssign : I'zval (6.121)
I'F (‘in" x * ‘Loop’ OAssign ‘end’ ;") : {x : {‘on’ : I'sval}val}val
[Path]
I' = OAssign : T'yval (6.122)

I' - ‘on’ OAssign ‘end™;’ : T'yval
[Combine Paths]

T - Path; : Tyval TUT;('on’) F Pathy : Taval (6.123)
I' - Path; Path, : (I'y U{‘on’ : I'val}val
[in selector]
T(‘A’) - x : T1Sel TUTy('on’) - Path : Taval (6.124)

I'F (Yin’ x “’ ‘Selector’ Path ‘end’ ;") : {x : {‘on’ : T'gval}val}val

124

6.8. The Binding Section

The binding of single objects is handled in rule (6.125) also dealing with contexts
which re-bind existing type definitions. Its type attribute I's is the union of its sub-
terms attributes, but omitting re-bound fuzzy types (6.126). Assignments to private
inherited elements are handled as in rule (6.129).

[object assignment]
I' - RebindTypes : T'yval T F BindObjects : I'pval

I' = VAssign : T'zval I' - inSuper : T'yval (6.125)
I' - (RebindTypes BindObjects VAssign inSuper) : T'sval
where
I's = (T uTz3U{'let : Tyval})val (6.126)

Rule (6.125) applies recursively rules (6.111) and (6.115) in productions RebindTypes
and BindObjects, resp., with corresponding type rules (6.127) and (6.128). Private in-
herited elements are encoded in the type attribute of the special element ‘let’. In
rule (6.129) we deal with assignments to private elements and thus replace the cur-
rent I-values with these elements. We do this again recursively for the next nested
‘let’-block while walking up the inheritance relation with the inSuper production.

[re-bind type]
I' FinType: I';val T+ RebindTypes : T'oval dom(T'y) ndom(Tz) = @ (6.127)
I' F (inType RebindTypes) : (I'1 UT'p)val

[bind objects]
I' - BindObjects, : I'yval T = BindObjects, : I'oval dom(T'y) ndom(Tz) = @
I' = (BindObjects, BindObjects,) : (T'; UT')val

(6.128)
[super]
FU(CA :T(A)(Ylet’)) = VAssign : Tyval TU(A" : T(‘A")(Ylet’)) = inSuper : T'pval
I' F (Yin’ ‘super’ VAssign inSuper ‘end™;’) @ (I'y U{‘let’ : I'pval})val

(6.129)

6.8.4. Assignment of Values

Assignment of values to identifiers demands that the identifiers are |-values. We as-
sign three kinds of values: modifiers, fuzzy sets and references. Note that objects are
handled by the inObject production and thus objects are not considered as values for
assignments. Fuzzy set values may be either constants defined by the various fuzzy
set construction mechanism or they refer to terms of fuzzy types. The grammar of

125

6. Static Semantics of Vitruv

assignments differentiates between identifers, fuzzy set expressions and references to
top level objects by ref. We discuss these kinds of assignments in this section.

VAssign = ‘let’ x =" Expr ‘' | VAssign VAssign
Expr = 1| FSExpr | ‘ref ‘(z)

All assignments and their combination have as type attribute a value environment.
The rules (6.130), (6.131) and (6.132) require that the declared type of x and the type
of the expression are compatible. The universe U of the declared type of x is added to
the type environment for checking if the expression matches the type of x. The latter
two rules (6.131) and (6.132) handle terms and modifiers in fuzzy types. The former
rule (6.130) handles assignments of fuzzy sets to attributes of objects. Because of type
F for Expr, assignments to x with values of other attributes are impossible, because
these values would have type I'ftype. Hence only assignments to x with constants or
terms of fuzzy types are possible. In (6.133) references are assigned. We check that the
declared type of x; conforms to class Scene. The type attribute of this assignment is a
references environment {x, : I'; }ref embedded in a value environment for x;. Finally
in (6.134) we check that no multiple assignments to variables are possible.

[assign fuzzy set]

I(‘A") F x: Tyftype Ty F ‘universe’: F T F Expr:F (6.130)
I'E (Ylet’ x =" Expr ‘") : {x:Tq}val
[assign term|
FA)Ex:F T(A') F ‘universe’: F T F Expr:F (6.131)

' (let x :="Expr*’) : {x:I'y}val
[assign modifier]
Fr(AYEx:F—F T(A')F‘universe’: F THExpr:F—F (6.132)
I'F (let x :="Expr*’) : {x: F — F}val

[assign ref]
F(‘A") F Xq : Tyclass T F ‘Scene’ : T'yClass T';jClass <: I';Class (6.133)
I (‘let xq ="‘ref *(X2)") : {Xqg : {Xg : [q}ref}val
[Combine value assignments]
I' = VAssign, : T'yval T F VAssign, : I'val dom(I'y) ndom(I'y) = @ (6.134)
I' = VAssign, VAssign, @ (I'1 UT)val

Fuzzy set constants can either be enumerated sets, built with the convex or the
generic constructor. The convex production denotes the convex constructors as de-
fined in production ConvexConstruction in sec. A.1.7.4 on page 272.

FSEzpr = FSEnum | FSConvez | FSGeneric

126

6.8. The Binding Section

FSEnum = '{ VList '}

VList = ‘'Cx',/n*) | VListy "', VList,
FSConvex = convex ‘(" AList ")

AList := n | AListy ", AListy
FSGeneric ::= ‘linear ‘(" MList ')

MList == ‘'Cn‘m*) | MListy ‘', MList,

Enumerated fuzzy sets are a list of pairs consisting of identifiers and membership
values. The universe of enumerated fuzzy sets is a type environment containing the
set of identifiers with their type attribute u. In rule (6.135) we assign the type attribute
I' — f to each pair of identifiers and membership values, where I" here is the environ-
ment I'; used in rule (6.137) to type check VList. The type attribute is propagated to
rule (6.136) and results in the final type of the fuzzy set expression in rule (6.137).

[Vlist]
'Xx:u n:num 00<n<10 (6.135)
FrECxyny:(I—-f)
[combine vlist]
' VListy : F T'F VListy : F (6.136)
I'F (VListy) VListy) : F
[enumerated fuzzy set]
I+ ‘universe’: Ty —f Iy - VList: F (6.137)
TF ({VLstT):F

Fuzzy sets created by a convex fuzzy constructor require that the universe is nu-
meric and that arguments of the constructor are also numeric. We use the type num
also for the list of parameters. We do not check the bounds of the arguments because
they depend on the parameterization of constructors.

[combine argument list]
I' = AListy : num T+ AListy : num (6.138)
I' - (AListy ‘) AListy) : num
[convex fuzzy set]
I' - ‘universe’: [n,m] — f I F AList: num (6.139)
I' - (convex ‘(AList*)") : ([n,m] — f)

The linear constructor requires as arguments pairs of numeric elements and their
membership values, similar to enumerated fuzzy sets. Thus, we mimic somewhat the

127

6. Static Semantics of Vitruv

rules mentioned above. In rule (6.140) each element needs to be an element of the uni-
verse, i.e. inside the bounds of the universe. The type of each pair is that of a fuzzy
type with a singleton universe. In rule (6.141) we concatenate two member lists. The
order of the member lists is relevant, because the arguments (more precisely: the first
element of each pair) of the linear constructor are required to be strictly ascending,
which checked by n, < ns. As result we get as universe the smallest interval contain-
ing both member lists’ universes. Finally, in rule (6.142), we require that the expres-
sion’s universe ([n, m]) contains the universe of the arguments of ‘linear’ ([ny, my]).

[member list element]
'k ‘universe’: [nm] —f Thkni:num n<n;<m
I'=ny:num 00<nN; <10
IE(Cneyn2) ([, ng] —f)
[combine member list]
I' F MListy : ([ng,n2] — f) T'F MListy @ ([n3, ng] —f) Ny <ng (6.141)
I' = (MListy *; MListy) : ([ng, ng] — f)
[generic fuzzy set|
I'+‘universe’: [n,m] —f Ik MList: [ny,m;] —-f n<n mp<m (6.142)
I'F (‘linear ‘(" MList®)") : ([n,m] — f)

(6.140)

6.9. Remarks

We finish this chapter with some remarks concerning our approach of defining the
static semantics of Vitruy, .

Often the static semantics is heavily intertwined with the evaluation semantics. We
separate both because of the complexity we would gain by discussing them together.
This is the reason for not considering semantics of types, because this influenced im-
mediately by the evaluation semantics.

We do not prove soundness and completeness of our type system, because more
than one hundred axioms and inference rules are to much to be proven by hand, an
automatic theorem prover would be required to do the structural induction on the
term construction. In the (research) literature we often find approaches introducing
new primitives into existing caluculi, such as introducing sub-typing to the typed
lambda calculus: in this case we need certainly a thorough analysis. In contrast to this
situation, we do not introduce any new type system primitives to the known systems
in the literature, but merely apply well known techniques. Therefore, we think it is
regretful to omit the proofs in our case.

Following Cardelli’s approach, we would model classes as recursive types consist-
ing of a union of the unit type (denoting nil-values) and a record-like structure. We
do not follow this path of explicit recursive types but apply the approach of Schmidt

128

6.9. Remarks

(1994). Nevertheless, it is important to notice that our definitions introduce implicitly
a recursive type in the type attribution of classes. In the binding we have the corre-
sponding unfolding, where we use the in-expression to look in the next unfolding of
the class definition. Also in the binding, we notate in the value type environments,
I'val all elements with values, i.e. all those variables x : 6 € I'Class, which are not in
the corresponding I'val, have no value. This finishes recursion and correlates to the
one and only value of the unit type as used by Cardelli in his example for lists. In this
respect, our approach uses the same concepts and our approach should be sound,
too.

129

6. Static Semantics of Vitruv

130

7. Vitruv|, the Intermediate Language
for Vitruv

In chapter 6 we discussed the static semantics of Vitruv| as a formal type system.
Now we move to the dynamic semantics or the behavior of Vitruv . We differentiate
between event-free and event-based behaviors of presentations specified with Vitruy| .
In this chapter we focus on event-free behaviors, in chapter 8 on page 149 we consider
also event-based behaviors.

In this chapter we start with characterizing the event-free behavior and discussing
why we need the language Vitruv,. This is followed by the language description of
Vitruv| and the presentation of its operational semantics. After that we show how to
transform a Vitruv| specification into Vitruv,.

7.1. Event-Free Behavior

The event-free behavior of Vitruv| contains all interval activations without events and
event reactions, i.e. without events, loops and selectors. Following the discussion con-
cerning loop and selector bodies in sec. 5.5.1 on page 70, selector and loop bodies are
independent of their surroundings. Therefore, we can partition the event-free behav-
ior of Vitruv such that loop and selector bodies are separated from each other and
from class bodies. We call these partitions blocks. In sec. 7.4.5 on page 146 we present
the details of how blocks are determined from a Vitruv|_specification.

The most interesting characteristic of event-free behavior is that its features can be
checked statically, i.e. without executing or simulating the specified (part of the) pre-
sentation. The most important question is whether the specified behavior is consis-
tent, i.e. whether it can really happen. The constraint solving algorithm by Allen deals
with this question. This algorithm, however, requires as input the set of all intervals
and their specified relations of a block as a flat structure. Therefore, we cannot use
a Vitruv|_ specification immediately, but we have to linearize Vitruv| specifications,
i.e. we have to resolve inheritance structures, compound relationships, constraints,
interval instantiation and nested assignments in the binding.

To ease the linearization process, we introduce Vitruv|, a simple imperative lan-
guage, which is the target language of the linearization. Within Vitruv; we have a flat
name-space with intervals and relations, blocks, and fuzzy values with constraints

131

block

7. Vitruv,, the Intermediate Language for Vitruv|

and assignments. The execution of a Vitruv| program results in a state structure con-
sisting of blocks, intervals, relations and durations. We use this structure as input
for consistency checking algorithms such as Allen’s constraint solver or the more ad-
vanced algorithm by Christoph Begall (2002).

The results of executing Vitruv; programs is also needed for modeling the behavior
of Vitruv|_ specifications with Vitruvian Nets (sec. 8 on page 149). An important ob-
servation is that if we properly glue models for the blocks together with models for
the respective events and event reactions, we can reconstruct the entire behavior of
Vitruv|_specifications. This is the main idea for deriving Vitruvian Nets from Vitruyv|_
specifications. As for the constraint solving, we require again the flat structure of the
event-free behavior for constructing FTVNSs (sec. 8.2 on page 153), which are major
building blocks for the construction of Vitruvian Nets. The detailed composition of
event-free and event-based behaviors is presented in sec. 8.6 on page 183.

7.2. Language Description

The objective of the intermediate language Vitruv, is to define a complete Vitruv, spec-
ification in terms of objects excluding events and event reactions. Vitruy; is an imper-
ative language the statements of which modify the complex state of the system. The
state is a set of finite sets, functions and relations, capturing the deterministic struc-
ture of Vitruv| . That means that we track elements of objects, in particular the length-
element, and scenes, loop and selector bodies, which we subsume as block in Vitruy,.
The state of Vitruv, is the basis for consistency checking of a Vitruv| specification, as
mentioned above.

name meaning
interval (x) declare x as an interval
fuzzyvalue (x) declare x as a fuzzy value
modifier (x) declare x as a modifier
block (x) declare x as a block
element (x,y) x is an element of interval (class) y
inBlock (x,y) interval x is in block y
constraint (x,f) fuzzy value x has to fulfill constraint f
length (x,y) y is the length element of x
value (x) yields the fuzzy value of x
update (x, f) updates the fuzzy value of x by f
holds (x, y, rl, ..., rn) one of relationsrl, ..., rn holds between x and y

Table 7.1.: Statements in Vitruv,

132

7.2. Language Description

In table 7.1 on the preceding page we present the statements of Vitruv,, where iden-
tifiers are denoted with x and y. Fuzzy set expressions are denoted with f and they
are constructed following productions ConvexConstruction and GenericConstruction as
defined for the binding of Vitruv| (sec. A.1.7.4 on page 272). We use inf and -inf to de-
note co and —oo, resp., used as parameters for the construction of unbounded fuzzy
sets. Interval relations, used as arguments of the holds statement, are encoded ver-
sions of Allen’s thirteen relations using the first letter except for = (equals), mi (metby),
fi (finishedby), si (startedby) and oi (overlappedby).

The four statements interval, fuzzyvalue, modifier and block declare new intervals,
fuzzy values, modifiers and blocks, respectively. In Vitruv|, we apply declaration be-
fore use. Fuzzy values and modifiers can be updated by update and additionally a
constraint for fuzzy values can be defined by constraint. Values and constraints have
to match: it is only allowed to update a fuzzy value if the new value satisfies the con-
straint. This can be checked statically. The dependency between value and constraint
is independent of their order of assignment: the value has always to be a subset of the
constraint, the lack of a constraint means every value is allowed, hence every value
will match. For uniform treatment, all fuzzy sets are elements of F(R), i.e. we encode
integer based and enumerated sets into universe R.

Elements of classes, which are instances of fuzzy types, and in particular element
length, are defined for each interval by element and length. It is required that the el-
ements are already declared as fuzzy values. Similarly, the relationship between in-
tervals and their block is defined by inBlock, the interval and the block have to be
declared. It is sufficient to define this relationship only for those intervals that are
explicitly declared in the block, i.e. only those declared in the let-part of a loop or a
conditional body, or as elements of a scene. The entire set of intervals inside a block
can easily calculated by interval relations.

Finally, we have the holds statement in Vitruv| defining interval relationships. Each
holds statement defines a disjunction of possible relations between its two intervals. If
two or more holds statements for the same two intervals are used, then the resulting
interval relation is the intersection of all these relation sets, because — as usual in
Allen’s calculus — we have conjunctions of disjunctive relations.

In spec. 7.1 on the next page we show a simple example of a Vitruv, specification. Itis
an excerpt of the binding of class Interval, where we introduce fuzzy value zero (from
fuzzy type DURATION) and setting its value to singleton(0.0). It is followed by defining
intervals alpha, omega and this and their length elements. After that we establish the
relations between this, alpha and omega, finishing with the length constraints that
alpha and omega have length zero and that length may have an arbitrary (positive)
duration.

Later, in sec. 7.4 on page 142, we present more examples while showing how to
transform Vitruv|_specifications into Vitruv, specifications.

133

7. Vitruv,, the Intermediate Language for Vitruv|

Specification 7.1 A simple Vitruv| example

fuzzyvalue (zero).

update (zero, singleton (0.0)).
interval (alpha).

interval (omega).

interval (this).

fuzzyvalue (length).

fuzzyvalue (alphalength).

fuzzyvalue (omegalength).

element (length, this).

length (length, this).

element (alphalength, alpha).

length (alphalength, alpha).

element (omegalength , alpha).

length (omegalength , alpha).

holds (alpha, this, { s }).

holds (omega, this, { f }).

holds (alpha, omega, {b, m}).
constraint (alphalength, value (zero)).
constraint (omegalength , value (zero)).
update (length, rectangle (0.0, inf)).

134

7.3. Semantics ofVitruv|

7.3. Semantics of Vitruv|

The semantics of Vitruv| define how a set of terms is executed and transformed into
an internal representation, which is the basis of any further analysis, in particular for
checking the consistency of the specification.

7.3.1. Abstract Syntax of Vitruy

The abstract syntax of Vitruv uses again identifiers from an infinite set Id with i rang-
ing through Id, f is a fuzzy set literal. In contrast to the concrete grammar used in
examples of Vitruv,, we omit parentheses around predicate arguments in terms and
parentheses for structuring expressions because of simplicity reasons.

statement = term ‘. | statement statement
term ::= ‘interval’ i | ‘element’ i ‘) i
| ‘fuzzyvalue’ i | ‘modifier’ i | ‘block’ i | ‘inBlock’ 7 ‘," i
| ‘constraint’i ‘e | ‘length’ i, i
| ‘holds’i ‘) i) rel
| ‘update’i‘’ e
ex= f | ‘value'i | ‘apply’ i e | defmod | e binop e

defmod := ‘not’ | ‘norm’ | ‘very’ | ‘mol’ | ‘somewhat’
| ‘plus’ | ‘extremely’ | ‘intensify’ | ‘slightly’ | ‘above’ | ‘below’

binop ::= ‘or’ | ‘and’

rel 2= {rs'}
rsi=rs')rs|r
r “: =1 I lm! I tmi! I ;f! I tﬁv I IS1 I ‘Si, I la! I 5b1 I ld! I ‘C’ I t01 I l0i1

7.3.2. Semantical Objects

The semantical structure of Vitruv| consists of various maps between references and
values, and between references themselves denoting the interval structures.
We use the following notation for finite functions g, g; and gy:

Dom(g) domain of g (7.2)
Ran(g) rangeofg (7.2)
{} =@ the empty function (7.3)

135

7. Vitruv,, the Intermediate Language for Vitruv|

g(X1) = X2 & (X1 — X2) €9 (7.4)
g1® g2 functional override with: (7.5)

~ J92(x1) ifx, € Dom(gz)
(0 ®02) () = {gl(xl) otherwise

Basic semantical objects are a set of assigned references, X C Ref, a set of fuzzy sets,
F C F(R), the set M of the eleven modifiers, and Allen’s 13 interval relations, R. We
use x, f, m, r and p to range through X, F, M, R and P(R), respectively. We assume
that Ref is disjointto R, M and F.

Additionally we have the (finite) sets and functions denoting the global state of
Vitruv| shown in tab. 7.2, their meaning is similar to the statements of Vitruy,. Sets
interval, fuzzyvalue, modifier and block have as elements those references denoting in-
tervals, fuzzy values, modifiers and blocks, respectively. The following functions map
references: element maps fuzzy values to their respective intervals, inBlock maps in-
tervals to their block, and length maps intervals to their length element. The next
two functions map references to fuzzy values and modifiers to their fuzzy set and
modifier values: constraint maps fuzzy values to their constraint fuzzy sets, and value
maps fuzzy values and modifiers to their fuzzy set and modifier values, respectively.
Finally, function holds maps references, (X1, X2), of a pair of intervals to the set of in-
terval relations between x; and X,.

Name Signature

interval c X
fuzzyvalue C X
modifier c X

block cX

element € fuzzyvalue — interval

inBlock € interval — block

constraint € fuzzyvalue — F

length € interval — fuzzyvalue

value € fuzzyvalue U modifier — FU M
holds € interval x interval — P(R)

Table 7.2.: Sets and functions for the global state of Vitruy;.

A particular state, S, of Vitruy, is a labeled 11-tuple of base set X and those ten
named sets and functions defined in the tab. 7.2. We access each component of S by
its name:

S = (X, interval, fuzzyvalue, modifier, block, element, (7.6)

136

7.3. Semantics ofVitruv|

inBlock, constraint, length, value, holds)

Semantical objects M and R are omitted, because they are constant. The set of used
fuzzy sets, F, is omitted for simplicity of the notation: the particular set of fuzzy sets is
not of interest and as reservoir of values we simply use F(R), which is again constant
and thus is omitted.

Updates of only one component of state S is denoted for simplicity as a form of a
functional override. In (7.7), S’ is equal to S except that component interval has the
additional element x (assuming x £ S), in (7.8), S differs from S only in component
element.

§' = So (S.interval U{x}) (7.7)
= (S.X, S.interval U{x}, S.fuzzyvalue, .. ., S.holds)
S” =S @ (S.element & {x; — Xz}) (7.8)

= (S.X, S.interval, . .., S.block, S.element & {X; — X»}, S.inBlock, . . ., S.holds)

7.3.3. Operational Semantics

Before defining the operational semantics of Vitruv|, we need some additional struc-
tures and functions.

For bookkeeping reasons we use an environment E mapping identifers to refer-
ences:

E:ld— X (7.9)

Function allocate allocates a fresh reference x € Ref and extends the set of allocated
references X. Function new introduces a new identifier, i, and updates accordingly
state, S, and environment, E:

allocate(X) := (x, X U{x}) wherex £ X (7.10)
new(i,E,S) := (E',S’) with (7.11)
(x,X") = aIIocate(S X)

We define the semantics of Vitruv| as a structural operational semantics (Winskel,
1993; Mitchel, 1996). It is a deduction system similar to the static semantics, consisting
of axioms and rules. The judgments used have the form

E,SHtE (E,S,V)

meaning that the evaluation of (compound) term t in state S and with environment E
results in a new state S, a new environment E’ and a value v e FUM U P(R) U{ok}.

137

7. Vitruv,, the Intermediate Language for Vitruv|

If we have expressions, then v will hold the respective values and the value for ok
is discarded, if we have commands, then v is ok if the execution of the command
succeeds. In these rules, i, f, m and r range through Id, F, M, and R, respectively.

If it is not possible to derive a proof tree, then the entire Vitruyv; specification is
invalid. We can distinguish three different cases here:

1. Access to not properly declared items, such as not defined values (7.14) or dou-
ble declarations (e.g. in (7.20)).

2. Updates to fuzzy values (7.29) or constraints (7.28), which do not fit.
3. Updates to the holds-relation resulting in an empty set of interval relation (7.31).

In a proper translation process from Vitruv to Vitruv|, the first error case should not
appear, because it can be avoided by syntactical analysis. The other two cases are re-
lated to the semantics of the specification and occur, if the origin Vitruv| specification
is also invalid. Further invalidity checks are discussed in sec. 12.1 on page 255.

7.3.3.1. Non-modifying Semantics

Non-modifying semantics are used for literals and read access to values. The rules for
literals (7.12, 7.13) are axioms in Vitruv|, because they do not depend on the current
state or environment. Reading access to values of identifiers (7.14) does not modify
the current state, but, in contrast to literals, the values depend on the current state. In
rule (7.15), the expression f = m(f;) means, that modifier m is applied to fuzzy set f;
yielding fuzzy set f.

[fuzzy literal]
(7.12)
E,SFfE(EST)
[modifier literal
m € {‘not’, ‘norm’, ‘very’, ‘mol’, ‘somewhat’, ‘plus’,
E,SFmE (E,S,m) ‘extremely’, ‘intensify’, ‘slightly’, ‘above’, ‘below’}
(7.13)
[get value]
E(i) € S.fuzzyvalue E(i) € Dom(S.value) f = S.value(E(i)) (7.14)

E,SF ‘value'i = (E,S,)
[apply modifier]
E,SFe [(ES, f1) E(i) € Dom(S.modifier) m = S.value(i) f =m(f;) (7.15)
E, St ‘apply’ie = (E,S, f)

138

7.3. Semantics ofVitruv|

[binary expression]
f1U f, binop = ‘or

. (7.16)
fi N f, binop = ‘and’

E,Skei E(E S, f1) E,Skey = (ES, f) f:{

E,S+ ey binope; = (E, S, f)

Relation literals are evaluated to a singleton set containing only the literal. This is
needed to construct the set of relations used in the holds-relation. In rule (7.19) we
define that the value of term rel is the same as of its constituting term rs.

[relation literal]
(7.17)

ESFrE(ES (1] re{=,'m, 'mf ‘s, s’ ‘a, b, d c, o, i}
[intermediate relation set]
E,SFrs; = (E S p1) E,Strs; = (ES, p2) (7.18)
E,SFrsyrsy = (E,S, p1Up2)
[relation set]
E,SFrsk=(ES,p) (7.19)
E.SEF{rsY = (ES,p)

7.3.3.2. Declarations

Declarations share a common structure, requiring that identifier i is currently un-
bound. A new references for i is allocated with new, followed by an update of the
appropriate components in S, either interval, fuzzyvalue or block.

[declare interval
i Z Dom(E) (E',S”) =new(i,E,S) S =S"a (S".interval U{E'(i))} (7.20)
E,SF ‘interval’i = (E’, S, ok)

[declare fuzzy value|
i ZDom(E) (E’,S”) =new(i,E,S) S =S" @ (S".fuzzyvalue U{E'(i))} (7.21)
E, S F ‘fuzzyvalue'i = (E', S, ok)

[declare modifier|
i Z Dom(E) (E’,S”) =new(i,E,S) S'=S"® (S”.modifier U{E'(i))} (7.22)
E, S F ‘modifier’ i = (E’, S, ok)

[declare block]
i Z Dom(E) (E’,S”) =new(i,E,S) S'=S"@ (S".block U{E'(i))} (7.23)
E,SF ‘block’ i = (E/, S, k)

139

7. Vitruv,, the Intermediate Language for Vitruv|

7.3.3.3. Extended Declarations

Extended declarations define functions between intervals, elements, blocks, etc. The
rules are similar, as an example we discuss rule (7.26). A declaration inBlock iy, I
states that interval iy is in block i, (cf. tables 7.1 on page 132 and 7.2 on page 136). We
need a proper environment E and state S, where identifiers i; and i, are declared in E
and their respective references E(i;) and E(iy) belong to their proper setsin S, i.e. iy
is an interval and i, is a block. To prevent double declarations we demand that each
interval is only mapped once to a block, hence E(i;) is not allowed in the domain of
S.inBlock. If these precondition are satisfied, we update the inBlock component of S by
adding the pair E(iy) — E(iy) resulting in a new state S’. Environment E is not mod-
ified, hence we have (E, S’, ok) is the result of declaration inBlock i, i;. Analogously,
in rule (7.24) we check that i, is already declared as fuzzy value and that i, is not yet
declared as an element, before updating S.element. In rule (7.25), we require that i, is
declared as an element of i,, before updating S.length.

[element]
E(i;) € S.fuzzyvalue E(iz) € S.interval
E(ip) € Dom(S.element) S’ =S & (S.element® {E(i1) — E(i2)})
E,SF ‘element’ iy, i; = (E, S/, 0k)

(7.24)

[length]

S.element(E(iy) = E(iz) E(iz) £ Dom(S.length)

S" = S@ (S.length @ {E(i2) — E(i1)})
E,S F ‘length’iy‘, i; = (E, S, 0k)
[in block]
E(i1) € S.interval E(iz) € S.block
E(i;) € Dom(S.inBlock) S =S (S.inBlock & {E(i;) — E(i2)})
E,S I ‘inBlock’ iy, iz = (E, S/, 0k)

(7.25)

(7.26)

7.3.3.4. Value Updates and Constraint Definitions

Value updates and constraint definitions apply to fuzzy values and modifiers. We
need to check that constraints and current assignments fit. This check is performed
by predicate checkConstraint, requiring that value and constraint fit if both are defined:

false ifi Z Dom(E)
true ifi € Dom(E)
true ifi € Dom(E)
f1 C f, otherwise

(E(i) € Dom(S.constraint))

checkConstraint(E, S, i) = (E(i) £ Dom(S.value))

A\
VAN
(7.27)

140

7.3. Semantics ofVitruv|

where

fy = S.value(E(i))
f, = S.constraint(E(i))

With predicate checkConstraint we can define the rules for constraint and value up-
dates of fuzzy values. For modifiers we do not need any additional predicates.

[constraint]
E,SFel=(ES,f) E(i) € Dom(S.fuzzyvalue) (7.28)
S’ = S@ (S.constraint & {E(i) — f}) checkConstraint(E, ', i) '
E,SF ‘constraint’i ‘, e = (E, S, 0k)
[update fuzzy value]
E,SFeE(ES,f) E(i) € Dom(S.fuzzyvalue) (7.29)
S'=S@ (Swvalue® {E(i) — f}) checkConstraint(E, S', i) '
E,St ‘update’i ‘e = (E, S/, 0k)
[update modifier]
E,Skel=(E,S,m) E(i) € Dom(S.modifier) (7.30)

S =S @ (S.value ® {E(i) — m})
E,S+ ‘update’i ‘e = (E, S/, 0k)

7.3.3.5. The Holds Relation

The holds relation is the centerpiece of Vitruv|. Each holds-statement defines a set, py,
of relations which shall hold between two intervals (see rule (7.19)). This set of re-
lations is regarded as a set of mutually exclusive relations, i.e. one of these relations
shall hold, but we do not know which one. If we have already defined another set,
p2, of relations holding between these two intervals, then we have to calculate the in-
tersection p3 of p; and p,, because the combination of independent hold-statements
is always a conjunction of the relations. The resulting ps is not allowed to be empty;,
because this would be an inconsistent specification. In this way, the holds-statement
is not a simple assignment overriding previous values, but depends on values previ-
ously assigned.

[holds]
E(i;) € Dom(S.interval) E(i2) € Dom(S.interval) E,SF rel = (E,S, p1)
ps # O S"=S® (Sholds {(E(i1), E(i2)) — p3})
E,S+ ‘holds’iy ‘i *, rel = (E, S/, 0k)

(7.31)

141

7. Vitruv,, the Intermediate Language for Vitruv|

with

)P if (E(i1), E(i2)) € Dom(S.holds)
Ps = p1 N p2 otherwise and additionally p, = S.holds(E(i1), E(i2))

7.3.3.6. Statements

Statements are combined in the usual way. The abstract syntax is ambiguous, be-
cause a sequence of statements can have different syntax trees. But this ambiguity is
resolved in the semantics, because we enforce here a strict left-to-right evaluation.

[statement]
E,SHterm = (E/, S, v) (7.32)
E,Skterm‘’ = (E',S,v)

[sequence]
E, S F statement, &= (E’,S',Vv/) E’,S’ I statement, = (E”,S"”,v") (7.33)

E, S |- statement; statement, = (E”,S”,v")

7.4. Linearizing Vitruv|_

The linearizing of a Vitruv|_specification means translation of Vitruv| to Vitruv,. We can
separate the translation process in an allocation and an application phase, occurring
intertwined but clearly distinguishable. The translation process is a syntax-driven
translation (Aho et al., 1987, chap. 5), based on attributed syntax trees as derived by
the static semantics (cf. sec. 6 starting on p. 95).

The core mechanism of the linearization is as follows. Each first entity occurrence
in the binding results in an allocation. After an entity is allocated, an application of
rules, constraints and value updates using the entity may follow. Allocation means
introducing new identifiers for entities resolving the nested name-space into a flat
one, which is similar to the allocation of storage cells when explaining the seman-
tics of programming languages. For objects consisting of other objects this process is
applied recursively, resulting in a pre- and post-order traversal through the nesting
hierarchy. Similar to the static semantics of Vitruv| and the operational semantics of
Vitruv; we need a dynamic environment mapping Vitruv, identifiers to their Vitruy,
counterparts. In particular, this is important for resolving nested scopes and the re-
binding of values in a context.

We will discuss now details of the linearization, starting with fuzzy types, followed
by compound relations and finishing with classes.

142

7.4. Linearizing Vitruv|

7.4.1. Fuzzy Types

Fuzzy types define modifiers and named fuzzy values. The binding of a fuzzy type
requires allocation of new fuzzy values and modifiers, followed by value updates.

In spec. 7.2 we show the translation of the binding of fuzzy type Brightness (see
spec. 5.12 on page 84). At first we translate the type declaration in a series of decla-
ration statements together with the initial values of the modifiers. It is followed by
the assignments of terms and modifiers made in the binding. We prefix the identifiers
of terms and modifiers here with br_ for the sake of easier identification. In an auto-
matic translation process we would simply use numbered identifiers to ensure that
no naming conflicts can arise.

Specification 7.2 Fuzzy Type Brightness in Vitruv,

fuzzyvalue (br_black).
fuzzyvalue (br_dark).
fuzzyvalue (br_muddy).
fuzzyvalue (br_shining).
fuzzyvalue (br_bright).
fuzzyvalue (br_white).
modifier (br_very).
modifier (br_not).

modifier (br_more_or_less).

update (br_very, very).

update (br_not, not).

update (br_more_or_less, mol).

update (br_black, trapezoid (0, 0, 10, 20)).
update (br_dark, triangle (10, 25, 40)).

update (br_muddy, triangle (25, 40, 120)).

update (br_shining , triangle (100, 170, 190)).
update (br_bright , triangle (170, 190, 240)).
update (br_white , trapezoid (230, 240, 255, 255)).
update (br_very, extremely).

Re-binding of Brightness’s terms and modifiers in some context requires fresh val-
ues without destroying the old values. Hence, we introduce new declarations and
value updates of for re-bound fuzzy values and modifiers. Additionally we have to
modify the dynamic environment mapping the re-bound identifiers in Vitruv| to the
new allocated identifiers in Vitruv,. As an example consider a re-binding of term black
to value zfunction (0, 20). In spec. 7.3 on the next page we use identifier br_blackl to
denote the re-bound term black.

143

7. Vitruv,, the Intermediate Language for Vitruv|

Specification 7.3 Re-binding term black in Vitruv,

fuzzyvalue (br_blackl).
update (br_blackl, zfunction (0, 20)).

7.4.2. Compound Relations

Compound Relations are not mentioned in the binding, however, they are used in the
body of classes. Their translation is a classical macro expansion mechanism, relying
on the current binding of fuzzy type DURATION, as discussed in sec. 5.8.5 on page 84.
We will discus the translation of the body together with the body of classes, because
all rules within a compound relation are also allowed in class bodies.

Locally declared elements in compound relations are instances of class Interval.
Hence their translation into Vitruv| follows exactly those of elements declared within
a class. We have only to be careful that for each application of a compound relation
all of its local elements are again declared as fresh class instances in Vitruy,.

7.4.3. Classes

A class in Vitruv| consists of two parts: the class definition, defining structure and
behavior, and the binding, giving each instance its individual values. Consequently,
we have to consider both parts in the translation process: each class instance is a set
of intervals and a set of fuzzy values, all of them following the structure of the class
definition. We do not consider events as a special kind of elements here, but use only
the event’s enabling interval, because in Vitruv; we consider only the static structure.
Dynamic aspects introduced by events are handled in sec. 8 on page 149. Similarly,
loops and selectors are only considered as unstructured intervals.

We show as examples how to translate some of the specifications presented in
sec. 5.8.7, starting at page 86. The classes used are specified in spec. 5.13 on page 87.
For each example translation the respective binding specifications already presented
in sec. 5.8.7 are repeated here, for the reader’s convenience.

The linearization process for classes is driven by the binding. For each object x, in-
stantiated by object x : X ...end we apply an allocation phase for x and all its fuzzy
values, followed by the recursive linearization of the elements of x. After the allo-
cation phase the application phase follows, handling the body of x, i.e. defining the
constraints and relations of x and its elements.

The allocation phase of object x results in Vitruv| statements identifying x as an in-
terval (interval(x)). Each fuzzy value y of x is identified as fuzzy value by fuzzyvalue (y)
and as an element of x by element (y, X). The length element L is additionally identified
by length (x, L). If and only if the attributes of x occur in the binding, their lineariza-
tion will be triggered. For each attribute a of x, with a occurring in the binding, we

144

7.4. Linearizing Vitruv|

have the relation that x contains, or is started or is finished by a, denoted by holds
(x, a, { ¢, si, fi }). For private and inherited elements we apply the same scheme. The
special attributes alpha and omega never occurring in the binding are handled in the
application phase.

In spec. 7.4 we show the allocation phase for the binding of al and a, respectively.
For easier identification we prefix the elements of al and a with al_ and a_, respec-
tively. Their class A consists only of an interval a, used in the binding of al. The
allocation of al states interval al and the inherited elements al_length, al_alpha and
al omega from class Interval. In al we bind also object a, allocating again the same
structure as for al. The binding recurses not into object a, therefore we do not enter
element a_a and do not allocate further elements.

Specification 7.4 Allocation phase for assigning large to the length of a.

object al : A
object a : A
let length := DURATION. large;

end;
end;
interval (al). /1l now entering al, declaring all elements
fuzzyvalue (al_length).
element (al_length, al).
length (al, al_length).
interval (al_alpha).
interval (al_omega).
interval (a). /!l now entering a, declaring all elements
fuzzyvalue (a_length).
element (a_length , a).
length (a, a_length).
interval (a_alpha).
interval (a_omega).
holds (a1, a, { ¢, si, fi }). // a is an attribute of al

/!l ... but we do not enter a_al!

The application phase considers the body of classes and assignments in the bind-
ing. Each constraint a is ¢ and each interval relationship a r b in the body results in
the corresponding Vitruv; statements constraint (a, ¢) and holds (a, b, { r }). For com-
pound relations we additionally have to introduce for each local element e a new

145

7. Vitruv,, the Intermediate Language for Vitruv|

fresh interval by interval (e) each time the relation is applied.

While these translations are straightforward, we have also to deal with some pe-
culiarities: nil objects and class Interval. For nil objects we apply the rules given on
p. 64:

1. we consider only relations where both parameters are not nil,
2. constraints with a not existing I-value are ignored,

3. in constraint expressions, not existing values are set to function with constant
value 1, i.e. their value is linear((-inf, 1.0), (inf, 1.0)).

Class Interval consists of atomic intervals alpha and omega, they are available in
each class. Because they are allowed to appear in the binding, we do include them
explicitly as intervals in the linearization process, as already seen in spec. 7.4 on the
preceding page. Their specific rules, in particular that they are not activated during
the current interval but rather start and finish their embedding interval, are stated in
the application phase of the class linearization.

In spec. 7.5 on the next page, we show the application phase, the second half of
the linearization, for our example started in spec. 7.4 on the preceding page. We have
three different parts there: the rules and constraints for alpha and omega of objects a
and al, resp.; the constraint for a; and finally the binding of a updating the value of
fuzzy value a.length. The constraint declared in class A is ignored for object a, because
the constraint refers its attribute a, which is not instantiated in the binding.

7.4.4. The Prelude

The prelude and its binding provide a standard set of definitions, which can be used
in Vitruv|_ specifications without the need to mention them explicitly. The binding of
the prelude provides default values for the elements defined in the prelude.

Concerning the linearization of Vitruv the prelude and its binding poses no diffi-
culties, we have only to use the definitions from the prelude including its binding,
if in the Vitruv|_ specification references are made to the prelude definitions. Typical
applications of the prelude are (implicit) references to class Interval or to type DURA-
TION. In the examples in this sections these references are already resolved , e.g. in
spec. 7.5 on the next page, where among other instance a_alpha of class Interval is
linearized.

7.4.5. Blocks: Dealing with Loops, Selectors and Scenes

The examples presented so far are rather simple, neither scenes nor selectors and
loops occurred. We now deal with them.

146

7.4. Linearizing Vitruv|

Specification 7.5 Application phase for assigning large to the length of a.

object al : A
object a : A
let length := DURATION. large;

end;
end;
holds (a, a_alpha, { si }). /1 rules declared for a, which are
holds (a, a_omega, { fi }). /! inherited from Interval

constraint (a_alpha, value(DU_zero)).

constraint (a_omega, value(DU_zero)).

constraint (a_length, rectangle (0.0, inf) .

/1 no constraint for a_a, because it does not exist

update (a_length, value (DU _large)). [// binding of a

holds (al, al_alpha, { si }). Il rules declared in al, which are
holds (al, al_omega, { fi }). /! inherited from Interval
constraint (al_alpha, value(DU_zero)).

constraint (al_omega, value(DU_zero)).

constraint (al_length, rectangle (0.0, inf) .

constraint (a_length, value (DU_large)). [// rule in al concerning a
/!l no further binding of al

147

7. Vitruv,, the Intermediate Language for Vitruv|

Scenes, selectors and loops differ from other intervals, because they introduce a
block, i.e. a set of intervals which has to be consistent, but with no relations to inter-
vals outside the block. It is sufficient to declare only the root interval r of the block b
by inBlock (r, b), because all other intervals inside block b can be deduced by a reach-
ability analysis following the declared interval relations.

We have two patterns for declaring blocks in Vitruy, if we translate an Vitruv, spec-
ification, the first for scenes and the second for loops and selectors. For scenes, we
have already an allocation because scenes are classes resulting in an interval for the
scene. This interval is the root of the new block, therefore we have only to declare a
new block and state that the interval for the scene is a member of the block.

The pattern for loops and selectors is slightly different. They result in an interval i,
which is used in the declaring block and thus is not the root of the block introduced by
loops and selectors. The interval relations between interval i and the respective event
are only implicitly declared in Vitruv| and are now made explicit, i.e. we declare the
relations s or si or = hold between the enabling interval of the event and interval i
for each loop or selector. For each loop body and for each selector path, we have
to allocate a new interval, which becomes the root of the new block. After that, we
follow the pattern for scenes, declaring a new block and stating that the root of the
block is a member of the block. Since occurrence intervals of events are not used in
Vitruv|, we have no relations between the event and the intervals for loop bodies and
selector paths.

In spec. 7.6 we show an example for both patterns, first scene the_scene, then loop
the_loop, which depends on event the_event. Both patterns start with the allocation
of the interval for the declared element in Vitruv , i.e. interval (the_scene) and inter-
val (the_loop). For the loop, we declare the relations between the event and interval
the_loop, after that we allocate an interval for the loop body (interval (the_loop_body)),
which becomes the root of the new block for the loop. It is followed by an alloca-
tion of new blocks (the_scene_block and the_loop_body_block). Blocks and their root
intervals are then connected by statements inBlock (the_scene, the_scene_block) and
inBlock (the_loop_body, the _loop_body _block).

Specification 7.6 Declaring blocks in Vitruy,

interval (the_scene).
block (the_scene_block).
inBlock (the_scene, the_scene_block).

interval (the_loop).

holds (the_event, the loop, { s, si, = }).
interval (the_loop_body).

block (the_loop_body_block).

inBlock (the_loop_body, the loop_body_ block).

148

8. Vitruvian Nets

After defining the static semantics and the semantics for the event-free behavior of
Vitruv|_in the preceding two chapters, we now move to the full dynamic semantics of
Vitruv| including in particular the event-based behavior. We do this with a Petri net
variant we call Vitruvian Nets, abbreviated by VN. The dynamic semantics of Vitruy . .
.) Vitruvian Nets
has to address different aspects:

e the static structure of temporal relationships between intervals,

e the dynamic flow of control originating by events applied in loops and selectors,
and finally

e the combination of static structure and dynamic behavior.

Realizing a divide-and-conquer approach, we model these three aspects indepen-
dently (as far as possible) as different Petri net variants, thereby reducing the com-
plexity of each variant. We start with a common base called abstract Vitruvian Nets,
defining the common structure and behavior of the forthcoming Petri net variants
(sec. 8.1). Itis followed by a discussion of temporal relationships in sec. 8.2 on page 153,
introducing Petri nets with fuzzy timing, and the control flow definition in sec. 8.3 on
page 163, applying Petri nets with fuzzy markings. In sec. 8.4 on page 168 we com-
bine this net type to Basic Vitruvian Nets dealing with events, loops, and selectors.
For scenes we extend Basic Vitruvian Nets to general Vitruvian Nets (VN), defined
in sec. 8.5 on page 178. The hierarchy of these different kinds of Vitruvian Nets is
shown in fig. 8.1 on the following page. Finally, in sec. 8.6 on page 183, we discuss
how to compose a various scenes together resulting in a translation process for Vitruy;
specification into Vitruvian Nets.

General definitions and notations for Petri nets and multi sets can be found in
sec. B.2 on page 288.

8.1. Prelimaries: Abstract Vitruvian Nets

Abstract Vitruvian Nets are the basis definition of Vitruvian Nets (VN). They define
the common structure and behavior, however, most of the definitions need to be re-
fined in derived nets. Vitruvian Nets are colored high-level Petri nets (Jensen, 1997;
Smith, 1998), accordingly each place has a color set or type, and tokens are individu-
als.

149

abstract
Vitruvian Net

marking

8. Vitruvian Nets

VN

|

Basic VN

— T~

Fuzzy Timed VN Fuzzy VN

\\\\\\ /////

Abstract VN
Figure 8.1.: The Hierarchy of Vitruvian Nets

Definition 8.1 (Abstract VN) Anabstract Vitruvian Net is atriple (N, X, C) defined as:
1. N = (T,P,A) is aPetri net.
2. X is a finite set of types or, equivalently, a finite set of color sets.
3. C: P — X isacolor function, assigning to each place a type.

The set of all abstract Vitruvian Nets is denoted with A.

Remarks:
Types (or color sets) here may represent types we also have in Vitruv| , thus we
realize each type as a set of values. Hence X is a set of sets and color function C
maps each place p € P to an element of X, i.e. a set of values.

The marking of an abstract VN is a multi-set of places and tokens, thereby guaran-
teeing that multiple tokens with the same value can exist at a place. In the literature
(e.g. Baumgarten (1996)) such tokens are called individual tokens. We need this prop-
erty to model places holding all event values of an enabled event. Certainly, these
event values might be equal and we want to differentiate between them. Hence, a
simple set of token values is not appropriate, and thus we use a multi-set as also
found in the literature (Jensen, 1997; Smith, 1998). Each token of place p is an element
of the type C(p) € %.

Definition 8.2 (Marking) The set of all possible tokens, W, of an abstract VN (N, %, C)
is defined as

W ={(p,v) | pePveC(p} (8.1)
the marking, M, is a multi-set over W :

M e M(W). (8.2)

150

8.1. Prelimaries: Abstract Vitruvian Nets

The marking of a specific place, p, is notated as map evaluation, M(p), yielding a
multi-set of token values. This construction is similar to relation images, but here the
result is a multi-set and not a regular set.

Definition 8.3 (Marking of a place) Let M be a marking and p be a place of an abstract
VN. The marking of place p is defined as the multi-set

M(p) = {(v,n) [((p,v),n) € M}. (8.3)

The firing behavior defines when and how tokens are removed from and added
to places. In contrast to the approach of Jensen (1997), we do not consider arc in-
scriptions explicitly, but use a rather abstract definition. The firing behavior of each
transition, t, can be seen as a function mapping possible markings in the pre-set, et,
of t to their corresponding markings in the post-set, te, of t. The firing behavior of the
entire net is then the union of the firing behavior of each transition, defined as a map
from transitions to functions between markings.

Definition 8.4 (Firing Function) If transitiont € T in a VN fires, the token movement
F(t) fort is a partial function, where the firing function F is a second order function:

FoT — (M(W) = M(W)), (8.4)

where A + B denotes the partial functions from A to B.

In the following, we present some general properties of F. However, for abstract VN
the definition of F remains abstract. The derived net variants in the following sections
define specific instances of F.

The usual firing behavior in Petri nets depend on pre- and post-sets of transitions:
if transition t fires, only tokens from et are removed and added to te. Situations are
triplets of transition t and markings w; and w,, describing possible firings. Thus, a
firing function F collects of all possible situations.

Definition 8.5 (Situation) Let (T,P, A) be an abstract VN, and wj,w, € M(W). A
situation is a triple (t, wj, w,) representing a possible firing of transition t relative to
a firing function F with F(t)(w;j) = w,. For each situation s = (t, wj, W,) markings w;
and w, can only denote places and tokens from the pre- and post-set of t, resp., i.e.
we require that

Wi Cms {(p,V) | (p,V) EWADPE othms (8.5)
Wo Cms {(p,V) | (p,V) EWADPE te}ms (8.6)

The set of all situations § is defined as

8 ={(t,wj,w,) | t € dom(F),w; € dom(F(t)),w, € ran(F(t)),w, = F(t)(w;j)}. (8.7)

151

firing function

situation

abstract
Vitruvian Net
system

8. Vitruvian Nets

Definition 8.6 (Abstract Firing Behavior) Let My, My, wj,w, € M(W) be markings,
t € T, and F(t)(w;j) = wy, i.e. (t,wj,W,) is a situation. If transition t fires in situation
(t,wj, Wy) and marking My with w; Cys My, the new marking M, is defined as the
formal sum

Mz = (Mg — w;) + Wo. (8.8)

Remarks:
1. Multi-sets w; and w, are essentially the arc expressions for the pre- and post-
set of transition t, resp., because w; and w, denote the multi-sets of tokens
removed from the pre-set and added to the post-set.

2. Often F(t) maps only one value w; to one value wy, thereby yielding a unique
behavior of t. In particular, this is the case in nets with anonymous tokens, as
shown in the next example.

Example 8.1 Consider the abstract VN in fig. 8.2 on the next page. It models as P/T-
net with arc weights 2 for arc (ps, t;), 3 for arc (pz, t1), and 1 for arc (t;, p3). Asa P/T-
net we have only one color set with exactly one value: . Thus, the formal definition
of this net is

1. T={t},

2. P = {p1, p2, ps},

3. A= {(p1,t1), (P2, ta), (tz, P3) },

4. ¥ = {{x}},

5. C = {(pr, {%}), (P2, {x}), (p3, {x})}.

Firing function F is defined according to the arc weights as

F = {(t{{((p1, %), 2), (P2, %),3)} — {((P3, %), 1)} }) }.
O

For the sake of completeness, we can collect an abstract VN together with its firing
function and initial marking to define a an abstract Vitruvian system. However, such
systems are not intended to be used directly, but serve as the basis for derived systems
defined in the following sections.

Definition 8.7 (Abstract VN System) An abstract Vitruvian Net system is a five-tuple
(N, X, C, F, My) consisting of an abstract VN (N, %, C), firing function F and an initial
marking Mg.

152

8.2. Vitruvian Nets with Fuzzy Timing

pl

<> t1 p3

<3>

p2

Figure 8.2.: Simple P/T-net with arc-weights as abstract VN.

The definitions of abstract VN and abstract VN systems do not deal with all ele-
ments we usually find in (high-level) Petri nets. We list the differences here and take
care of many of them in the next sections defining derived Vitruvian Nets.

e \We do not define the enabling conditions of transitions preventing the direct use
of abstract VN systems, because we define only what happens when a transition
occurs, but do not define which conditions have to be satisfied to enable the
transition for firing. Such enabling conditions are left to derived VN. Also guard
conditions, as used in other high-level nets such as Colored Petri Nets (Jensen,
1997) or Pr/T-nets (Smith, 1998), are not mentioned. However, generally, they
are part of the enabling conditions.

e Capacity restrictions, i.e. the number of tokens that are allowed in a place, are
not enforced. They might appear in derived nets, otherwise the capacity is un-
limited.

e There are no net structure constraints, such as acyclic nets. Such constraints can
be imposed in derived nets.

8.2. Vitruvian Nets with Fuzzy Timing

Petri nets with fuzzy timings are suitable to model the intervals and their relations we
found in Vitruv| . Fuzzy timing Petri nets were presented first by Murata (1996), the
definition matured in publications by Murata et al. (1999) and by Zhou and Murata
(1999). We adopt the latter model for the use within Vitruvian Nets.

8.2.1. Formal Definition

Fuzzy Timing Vitruvian Nets (FTVN) introduce a timed behavior based on possibility
distributions of time-points. These possibility distributions are disjunctive (Dubois
and Prade, 1989), i.e. only one time-point of their support will actually happen, but

153

do

FTVN

MU

8. Vitruvian Nets

which one is not known. Dubois and Prade call this time-pont to be ill-known. The
possibility distribution denotes the possibility of this ill-known time-point.

Definition 8.8 Let T be our time scale, i.e. T = RJ, and T € T be an element of the
time scale. The set of all fuzzy sets on the time scale is denoted with D, D = F(7).
Each d € D is characterized by its membership function uq(t).

We often need two specific durations, one denoting duration 0, the other denoting
that no duration exists at all.

Definition 8.9 The empty duration d, € D denotes that no duration is possible, the
zero duration dge D denotes the exact length of zero. Both are defined by their mem-
bership functions yg, and pg,:

dy ipq (t)=0 forallteT (8.9)
1 ift=0

do : = 8.10

0 Hao(T) {0 otherwise (8.10)

Structurally, FTVN extend abstract VN by assigning fuzzy delays to arcs from tran-
sitions to places. Each token carries a timestamp, which is updated with each firing
by the respective delays. We do not need any data except the timestamps as tokens,
because we only want to model the activity of an interval (details in sec. 8.2.2 on
page 159). Therefore, it is sufficient to restrict the set of types to the Cartesian product
of the set with the only value » and the set of durations, D.

Definition 8.10 A FTVN is a four-tuple (N, X, C, delay) where (N, X, C) is an abstract
VN. Additionally we have

1. delay : (T x P) - D is the delay for each outgoing arc of t € T, i.e. dom(delay) =
{(tp)|[teT, pete}.

2. .= {{x} x D}, i.e. all tokens are pairs of the anonymous value, %, and a fuzzy
time value, d.

The set of all FTVN is denoted with T .

For the semantics of a FTVN (N, X, C,delay) we need the usual markings, M €
M(W). For defining the enabling conditions of a transition we need an untimed mark-
ing, which is the projection of M to the token value to without last component, the
fuzzy timestamp d. We have to preserve the multiplicity, hence we have to sum up
the number of all tokens in each place to calculate the new multiplicity of the untimed
marking.

Definition 8.11 (Untimed Marking) Let M € M(W) be a timed marking. The untimed
marking MY of M is defined as the formal sum of all untimed elements of M:

154

8.2. Vitruvian Nets with Fuzzy Timing

M = Z {erTVN(m)} (8.11)
meM
where pre,\ IS the projection of a timed element of M to an untimed element
Preryn & (P x ({x} x D)) x N) — (P x {x}) x N) (8.12)
((p, (%,d),n) — ((p,%),n) forsomepecP,deD,neN (8.13)

Remarks:
1. We need the formal sum to get the number of all tokens in each place p, inde-
pendent of the fuzzy timestamps of the tokens.

2. Letm = ((p,%,d),n) € M, then the expression {prg,\(m)} is a multi-set
with element (p, %) occurring n times.

We give now details of the functions defined by F. Thus, we will define when a
transition is enabled and occurs, and also define how timestamps, the tokens’ value,
are calculated. This is worked out in the next definitions.

Transition t or situation s is quasi-enabled, if there are enough tokens available in
ot, independent of their timestamps.

Definition 8.12 (quasi-enabled) A situation s = (t,wj,W,) € 8 is quasi-enabled at a
particular marking M if
W' Cms MY, (8.14)

In FTVN, we establish a “first come, possibly first serve” fire policy, such that earlier
enabled situations are preferred. The enabling time depends on the latest arrival of
the token that quasi-enables the situation: this is the earliest time, at which the situ-
ation is enabled. For the occurrence time, we determine the earliest enabling time of
all quasi-enabling situations of a transition. The intersection of the earliest enabling
time of all quasi-enabled situations and the enabling time of a particular situation s
becomes then the occurrence time of s.

Firstly, we define operator latest determines latest-arrival/lowest-possibility distri-
bution, similar to extended maximum (B.39) of intervals, but the height is restricted
to the minimal height of all fuzzy sets.

Definition 8.13 (latest) Let dq,d» € D be fuzzy durations, h the minimum of the
height of d; and dy, i.e. h = min(height(d;), height(d;)). Let m be the extended max-
imum of d; and d, (see eq. (B.39)) with membership function um(t). Operator latest
applied to d; and d; is defined by its membership function gt (T) as:

h ‘Z/lm(T) > h
= 8.15
Hiatest(T) {]/lm (t) otherwise ()

For more than two arguments, latest can applied recursively:
latest(dy, do, ..., dn) = latest(dy, latest(ds, . . . latest(d,_1,dn))) (8.16)

155

Prervn

guasi-enabled

latest

fuzzy enabling
time

fuzzy
occurrence
time

8. Vitruvian Nets

Remarks:
Murata and Zhou do not present a formal definition of latest. An algorithm for latest
is presented by Zhou and Murata (1999), however, the algorithm is not usable for
general fuzzy sets, but requiring all involved fuzzy sets having a trapezoidal shape
only.

With the definition of operator latest we can now define how to calculate the fuzzy
enabling time of a situation.

Definition 8.14 (Fuzzy Enabling Time) The fuzzy enabling time es(t) of a situation,
s = (t,wj,Wy) € 8, is the possibility distribution of the latest arrival time among the
arrival time of all tokens in w;. Ifw; has n tokens with timestamps di(7),i € {1,...,n},
we have

es = latest(dy,...,dpn) (8.17)

Remarks:
The enabling time is defined for each quasi-enabled situation s. If there are several
guasi-enabled situations for the same transition t, these situations have in general
different enabling times.

The firing of a transition selects one enabled situation s and calculates its occurrence
time. If we have several enabled situations, we prefer the earliest arrival time with
highest possibility. Therefore, we determine the intersection between the enabling
time of s and the earliest enabling time of all enabled situations including s.

Definition 8.15 (Fuzzy Occurrence Time) The fuzzy occurrence time os(7) of a situa-
tion, s = (t,wj,w,) € 8, is the possibility distribution of the time at which the situa-
tion s occurs (i.e. fires). Let there be m quasi-enabled situations of t (including s) with
fuzzy enabling times e (7),k € {1,...,m}, letks (1 < ks < m) be the index of s in
{1,...,m} . Then the fuzzy occurrence time of situation s = (t, w;j, w,) with enabling
time es(7) is defined by

0s(T) = min{es(7), earliestyc(y, . my{ex(7)}} (8.18)
Remarks:
1. Operator earliest determines the earliest-arrival/highest-possibility distribu-
tion and is the extended minimum (B.38) on intervals. Murata seems not to be
sure about that, in his earlier publications (Murata, 1996; Murata et al., 1999)
he defined earliest as the extended minimum, in a later publication (Zhou and
Murata, 1999) earliest is described to be only similar to the extended minimum
but without giving reasons for not being the extended minimum. As for oper-
ator latest, no formal definition is presented for earliest, except for an algorithm
in the last publication. However, this algorithm is not usable for general fuzzy
sets, but requiring all involved fuzzy sets having a trapezoidal shape.

156

8.2. Vitruvian Nets with Fuzzy Timing

2. The intersection of e and the earliest enabling time results in applying the
min-operator.

3. If the earliest enabling time and the enabling time of situation s have a disjoint
support, then s cannot occur, because its occurrence time is o; = d |, i.e. the
support of o5 is empty. Otherwise, s is enabled and the support of o5 is not
empty. However, if height(os) < 1, then their is no occurrence time for s, which
is possible.

Before calculating the new fuzzy timestamp of the occurring situation, we need the

relative fuzzy delay of the outgoing arc.

Definition 8.16 (Fuzzy Delay) The fuzzy delay delay(t, p) is the fuzzy time function
associated with an arc (t,p) € A, defining how long the token needs to arrive in p
after firing from t.

Now all elements needed for calculating the timestamp are available. If situation s
occurs, we add to its occurrence time the fuzzy delay of the corresponding arcs.

Definition 8.17 (Fuzzy Timestamp) The fuzzy timestamp 7y, (T) of a token produced
in situation sy = (t, wj, W,) is the possibility distribution of the time at which the token
arrives in place p € te and is given by

tp(T) = 01(7) @ delay(t, p) ()

_ {supT_Tl+T2 min{o¢(t1),delay(t,p)(2)} if3n,mn:T=1+n0

- (8.19)
0 otherwise

Remarks:
Eq. (8.19) is the unfolded version of the fuzzy addition (see (B.34)).

The firing in a FTVN removes and add tokens as usual, however, we do not define
here, what to do if conflicts of enabled situations arise.

Definition 8.18 (Firing) If a situation s; = (t1,w;j, W,) occurs at marking My, the re-
sulting marking M, is
Mz = (Mg — wj) + W, (8.20)

Finally, we can present a FTVN system, i.e. a FTVN net together with its dynamic
semantics.

Definition 8.19 AFTVN system is a six-tuple (N, X, C, delay, F, Mg) where
1. (N, X, C,delay) isa FTVN,

2. F is the firing function as defined above,

157

fuzzy delay

fuzzy
timestamp

FTVN system

8. Vitruvian Nets

3. My is the initial marking.

If we have conflicts between quasi-enabled transitions, the timing information might
resolve such conflicts if the enabling times are totally ordered. If the times are only
partially ordered, i.e. the fuzzy times are overlapping, then the timing information
does not resolve the conflict. In the literature, we found different approaches to deal
with this situation:

1. Murata (1996) and Murata et al. (1999) consider all possible(!) firing sequences
to determine the resulting timestamp at the final place. If there is a conflict, at
least two subsequences exists, in which the timestamps (may) have different
possibilities. The timestamps of each token in each place in all sequences are
joined (i.e. U is applied to them) resulting in the overall possibility distribution
for the token’s arrival time. In particular, this means that fuzzy timed Petri nets
are not timed Petri nets in the usual sense, because the timing information is not
used for resolving conflicts by priorities introduced by timing. To cite Murata
(1996): “fuzzy timing makes partial orders not totally ordered, but adds some
information on degrees of possibilities of event occurrence times”.

2. Zhou and Murata (1999) define a new fuzzy measure, ¥, as alternative to the
well-known measures IT and N (see sec. B.1.6 on page 287), to define the order
of firings for fuzzy timed occurrence times. Fuzzy measure ¥ makes partial
orders totally ordered by applying a defuzzification method to the possibility
distributions. But this reduces the set of possible time points to exactly one,
which is not an appropriate interpretation of possibility distributions modeling
vague concepts, such as a “short delay”, which are used widely in Vitruv.

3. Inarecent approach, Zhou et al. (2000) select a random realization of possibility
distributions. This is used to simulate the timing behavior of the fuzzy-timing
net.

The first approach is only feasible for small nets, in particular those where the occur-
rence graph is finite. The second approach is interesting, however, the reduction of
a possibility distribution to a single value results in a deterministic timing, neglect-
ing other possible occurrence sequences. Independent from the third approach, Marc
Storzel and the present author (Storzel and Alfert, 2002) developed a simulation in-
terpreting possibility distributions as scaled probability distributions (see sec. 12.1 on
page 255), extending the simulation engine developed in Marc Stozel’s diploma the-
sis (Storzel, 2001). Both approaches, from Zhou et al. (2000) and our, use possibility
distributions as source for random variates and include explicitly possible timings in
simulation runs.

In the following, we apply the simulation point of view, i.e. possibility distributions
describe possible realizations of values, which can be analyzed by simulation runs.

158

8.2. Vitruvian Nets with Fuzzy Timing

8.2.2. Translating Interval Relationships of Vitruv| to FTVN

With FTVN we can model static temporal relationships between intervals of Vitruy, .
In this section, we discuss the translation of the respective parts of Vitruv; specifi-
cations to FTVNs. As in Vitruvj, we do not model events, selectors and loops, their
dynamic behavior is discussed later in sec. 8.4 on page 168. The composition of both,
static and dynamic behavior is presented in sec. 8.6 on page 183. Therefore, it is suffi-
cient to focus here on static temporal relationships only.

Since the structural facilities of Vitruv| are not supported by FTVN and we do not
model the event-based features of Vitruv| , we can use the linearized specifications
found in Vitruv|. These linearized specifications have several advantages for the trans-
lation of interval relationships into a FTVN:

e the set of effective interval relations for each object is defined during the lin-
earization of the Vitruv| specification, we do not have to deal with the rules for
nil-objects again (cf sec. 5.3.1 on page 64).

e if we need additional relations between intervals not explicitly given in the
Vitruv| specification, they can be inferred by the constraint solving algorithm
on the basis of Vitruv,.

e blocks define the maximal set of connected intervals without dynamic elements
and thereby define the set of intervals in each FTVN.

The translation is driven by the block and scene structure, as defined for Vitruv,. For
each block exists a separate net. These nets are constructed independently, because no
interval relations exists between intervals inside different blocks. However, any block
in a scene can only be active, if the scene is active. Because of that, relationships exist
between blocks inside a scene, they are discussed later in sec. 8.5.2 on page 181.

We identify for each interval, i, a transition, tj, and a place, p;, where p; € tje. The
delay, delay(t;, pj), of the arc between t; and p; corresponds to duration of interval i.
Consequently, activation of interval i is related to firing of transition t; and producing
a new token in p;.

Interval relations between two intervals can be modeled as FTVN as shown in
fig. 8.3 on the next page. In this figure, we show all 13 of Allen’s interval relations,
compare fig. 3.1 on page 31. We denote the delay of an arc as arc inscription @Da,
where a corresponds to an interval (with transition t, and place p,), and Da is the
interval’s duration, i.e. Da = delay(t,, pa). The notation is adopted from Jensen (1997).
To obtain a connected net, it is sometimes necessary to introduce filler intervals be-
tween intervals a and b, e.g. if a before b, then there exists by definition a non-empty
interval i, meeting b and met by a (this is possible because we work in T = Rg). These
filler intervals are denoted with i and j and have durations Di and Dj, respectively.
For easier comprehension, transitions, only needed for synchronization purposes be-
tween intervals, are drawn as black rectangles. Arcs starting at these transitions do

159

8. Vitruvian Nets

ameets b
b metBy a

O—LF—0O—L}=0O

@Da

aequals b ‘ ‘

a before b
b after a

O—{F-0O—{1+—-O—L1+—0O

astarts b @ba
b startedBy a
‘ Da < Db
O—L =0

a finishes b

b finishedBy a

‘ n @Dba ‘ Da < Db

‘ n @Db ‘ ‘

bacgtl\::gsba . . @b ’ n @Dba ‘ - @bj ‘ Db = Di + Da + Dj
- j: o f—= : I: -
aoverlaps b @pa . . Di + Db = Da + Dj

b overlappedBy a Da > Di

Figure 8.3.: Allen’s Relations as Fuzzy Timing Vitruvian Nets. The black transitions
fire without any time delay, all others have a fuzzy time delay.

160

8.2. Vitruvian Nets with Fuzzy Timing

not have delay inscriptions, because their delays have always a zero length: synchro-
nization transitions fire without consuming time.

In fig. 8.4 on the next page we present the FTVN for class Example (first shown in
spec. 5.2 on page 65), applying the FTVN representations of interval relations shown
before in fig. 8.3 on the preceding page. We have four parallel paths in the net, ac-
cording to the specification:

1. path alpha to omega of class Example,
2. path housel to omega,
3. path transition to omega and

4. path house?2 to omega,

The last three paths are overlapping each other, thus we need to introduce additional
anonymous intervals for the path synchronization. The intervals are called i, j, k, I, m,
and n, and are introduced by compound relations and some of the basic relations. We
omit the fuzzy delays for reasons of simplicity, because it is clear that they occur on
the post-set arcs of each transition representing an interval.

Additionally, we omit the sub-intervals alpha and omega, which by definition exist
for each interval. However, for demonstration purposes, we show them for interval
house2, they appear together with house2 in the dashed box. If no explicit relations
between alpha, omega and the remaining intervals exist, — which is the case here ex-
cept for alpha and omega of class Example — then sub-intervals alpha and omega can
be omitted, because they do not change the overall behavior of the net.

Remarks:
We should note that we observe the same important properties of FTVN as Little
and Ghafoor (1990) did for their OCPN nets, provided the net topology follows
Allen’s interval relations:

1. Apparently, the net is acyclic, because Allen’s relations do not allow cyclic
dependencies.

2. The net is also k-safe, which means that each marking has a at most k tokens
at each place (Baumgarten, 1996, p. 131). This is because no place p has a pre-
set of more than one transition, i.e. Vp € P : | e p| < 1 and only one token is
moved for each arc. Hence at most one transition puts a token into a place. For
an initial marking with at most one token in each place, the net is 1-safe.

3. Because no cycle exists, after each initial marking My exists a marking M &
[Mp), such that all transitions are dead, i.e. they cannot fire again. This mark-
ing M has only one token in the leaf place (cf. def B.34 on page 291). However,
there is no deadlock: if we introduce a cycle from the leaf place to the root
place which exactly one transition, the net is life: the final marking M; enables
t, resulting in a token in the root place.

161

8. Vitruvian Nets

class Example
exports housel, house2;
let
housel : video;
house2 : video;
transition : sound;
body
alpha starts housel;
housel overlaps slightly transition;
transition overlaps slightly house2;
house2 meets omega;
end;
end;

Figure 8.4.: The body of class Example as FTVN

162

8.3. Vitruvian Nets with Fuzzy Markings

8.3. Vitruvian Nets with Fuzzy Markings

Intervals and their relations are one important part of Vitruv| . Another one deals with
events and reactions to them. Event values are fuzzy sets, in selectors and loops we
have expressions with these values selecting between different paths. Evaluation of
fuzzy logic expressions is subject to Petri nets with fuzzy markings (also called fuzzy
Petri nets), which we use to model the evaluation of event values in selectors and
loops.

Fuzzy Petri nets have their origin in the works of Looney (1988) and are used for
knowledge modeling and processing. They are generalized variants of elementary
nets, in particular condition/events-nets, where Boolean valued tokens are replaced
by tokens representing fuzzy values (Fay and Schnieder, 1999). The cited approaches
use only fuzzy truth values and apply the net dynamics to maintain continuously
truth values in rule based knowledge management systems.

In contrast to the literature, we use fuzzy Petri nets to non-continuously evaluate
fuzzy logic expressions in a fuzzy rule based system, i.e. we evaluate these expres-
sions only at particular, discrete time-points. First, we present an example how to
model a selector, after that we give the formal definition.

8.3.1. Translating Selections in Vitruv| to Fuzzy Vitruvian Nets

We use Fuzzy Vitruvian Nets (FVN) to model the selection process in selectors and
loops. After an event occurs, we have to decide which path in selectors and loops
control will take depending on the event’s value. This decision process can easily be
modeled with a FVN.

In fig. 8.5 on the next page we show an example for a selection between two alter-
natives. The corresponding code fragment above the net shows a selector, s, with two
branches. The first is chosen, if the event value is compatible to f1, the second branch
if the event value is compatible to 2.

The FVN represents the selection process, therefore neither the event nor the bodies
of the branches are of interest here. The event value is realized as token in place root;
the token value is the value of the event. The comparison between event value and
the two constants f1 and f2 is done in the two compat-transitions, therefore we copy
the token in place root to the pre-set of both compat-transitions. The gen-transitions
produce new tokens with fuzzy set values f1 and f2, resp., required for the tests of
compatibility. The gen-transitions have no pre-set, therefore they can fire until the
maximum capacity of their post-set is reached. We restrict all places in the FVN to a
capacity of 1 to ensure a sequential and stepwise firing process.

The tests for compatibility of event value v and constant value f in the compat-
transitions result in fuzzy truth values denoting the degree of compatibility, which
is computed by function simil (defined in eq. (B.49)). Constant f is the pattern value
to be matched by event value v, i.e. we apply simil(v, f). To encode which the tests

163

8. Vitruvian Nets

s selects (..) with rules

on f1 do ... end;
on f2 do ... end;
end;
root
co
py t2
t4 | compat
(1,x1)

Figure 8.5.: Comparison of a value with two alternatives.

164

t5

1Y)

compat

8.3. Vitruvian Nets with Fuzzy Markings

yields which result value, we enumerate the tests. The token produced by the compat-
transitions is pair of the ordinal number of the test and the comparison result: (1,x1)
and (2, x2), for the comparison with f1 and f2, resp., where x1 and x2 hold the respec-
tive degrees of compatibility.

The decision of the highest compatibility is carried out by transition switch, result-
ing in a token with a natural number value in place leave. In this example, the possible
value in leave is either 1, 2 or 0, depending whether the value of the initial token in
root, i.e. the event value, is compatible to f1, f2 or neither.

The construction used in fig. 8.5 on the facing page can easily be extended to more
than two alternatives, because we have only to add further tests of compatibility to-
gether with their generators of the test values, additional copies of the token in place
root, and connections between the result of the tests and transition switch.

The construction can also be reduced to check the termination condition of a loop.
We have only to remove one of the two tests, together with its test value generator
and its copy transition of the token in place root. We have then only one path from
root to leave and hence only one condition to be checked.

8.3.2. Formal Definition

Fuzzy Vitruvian Nets (FVN), constructed as shown in fig. 8.5 on the preceding page,
extend abstract Vitruvian Nets by constraining X and introducing new components.
Each FVN models the decision procedure of one event, therefore all fuzzy sets in a
FVN have the same universe X of the event value. Transitions can be partitioned into
four groups: copying tokens; generating new tokens used as constant values in the
comparison; test for compatibility; and finally selecting which of the tests was most
successful. We can assign a symbol to each transition, denoting the partition to which
it belongs. Additionally, we need the constant values generated by gen-transitions
and a mapping between transition and value.

Definition 8.20 (FVN) A FVN is a seven-tuple (N, X, C, X, Sym, f, g) where
1. (N, %, C) is an abstract VN,

X is a universe for fuzzy sets,

Y ={F(X),[0,1],N,N x [0,1]}

Sym is a set of function symbols, Sym = {copy, gen, compat, switch},

f =T — S assigns a function symbol to each transition,

S 0 A W N

g: T — F(X),whereT' = {t |t e T A f(t) = gen}, assigns a constant fuzzy set
to transitions with function symbol gen,

7. the arc relation A of N is acyclic,

165

FVN

8. Vitruvian Nets

8. the capacity of each place p € P is 1.

The coloring of places depends on the assigned function symbols of the associated
transitions, as shown in table 8.1. Function symbol gen denotes generator transitions,
which have no pre-set.

f(t)y ~ C(p).peet C(p)pcte

copy F(X) F(X)
gen F(X)
compat F(X) N x [0, 1]
switch N x [0,1] N

Table 8.1.: Token colors and transition function symbols

The set of all FVN is denoted with F.

Remarks:

1. Fuzzy Vitruvian Nets are rather restricted, because we need them only for
modeling the path selection in selectors and the termination condition for
loops. In particular, it is impossible to evaluate general fuzzy logic expres-
sions, however it is simple to extend the FVN definition for modifiers, union
and intersection, etc., together with a suitable firing function.

2. X is a generic parameter resulting in F(X) € X, all other elements of X are
independent of the type of event value.

3. g is the mapping between generator transitions and their respective fuzzy set,
produced by the transitions.

4. In fig. 8.5 on page 164 we have seen, that the net is acyclic, we enforce it here
in the definition.

Now we define the dynamic semantics of FVN, i.e. the interpretation of the function
symbols, the firing function F, and the enabling of transitions.

In switch transitions, we decide which of the compatibility tests has the highest
degree of compatibility. For this decision, we define function m. If all parameters have
a compatibility degree of 0, m returns 0. If we have only one parameter, we apply a
threshold value as minimal required degree of compatibility.

Definition 8.21 Partial functionm : (N* x [0,1])" -» N, n > 1, is defined as follows for
n>1:

0 if 0 =max{Xy,...,Xn}

_ (8.21)
Ik ifxy =max{xy,...,Xn}, L <k<n

m((13, X1), ..., (In,Xn)) = {

166

8.3. Vitruvian Nets with Fuzzy Markings

If several maxima exist, a nondeterministic choice is made between them. If we have
only one parameter (1,x), we apply threshold t = 0.5 as a measure of a required
minimal compatibility:

0 ifx<t

m(l,x) = { (8.22)

| otherwise
For parameters (ly, X¢), we demand that all |, are positive and pairwise not equal.

A situation, s = (t,wj,w,) € 8, is enabled if enough tokens in the pre-set of t are
available and the capacity constraint for the post-set of t is satisfied: transition t is
only allowed to fire if its post-set, te, is empty.

Definition 8.22 (Enabling) Let (N,X,C, X,Sym, f,g) be a FVN. Transitiont € T is
enabled in situation (t, wj, w,) € 8 and marking M if

Wi Cms M (8.23)
Vp € te: [M(p)| = 0. (8.24)

The firing behavior of a transition in a FVN depends on its assigned function sym-
bol: either copying tokens, generating tokens, comparing tokens or switching. There-
fore, we can define explicitly the firing function for transitions as function expres-
sions, depending on the function symbol, i.e. we can define how to calculate w, for
transition t and for w; such that F(t)(w;) = wo.

Definition 8.23 (Firing Function) The firing function, F, of FVN (N, %, C, X, Sym, f, g)
for transition t depends on the function symbol f(t). Let {pj1,...,pik} = et and
{Po1:-- -, Poi} = te be ordered in some arbitrary, but fixed way. Let v, v; € C(p) where
p € nb(t). The firing function, F, is defined for each transition t as

{(pit, V) tms — {(Po1, V), --+s (Poly V) }ms if f(t) = copy
F(t) = @D = {(Po1, 9(1)), - - (Por, 9(1)) Fms if f(t) = gen

{(Piz, V1), (Piz: V2) hms — {(Po1, (K,Simil(v1,V2)))}ms if f(t) = compat

{Pin, Va), - - (Pik Vi) Fms — {(Por, M(Ve, . Vi) tms BF F (1) = switc(g -

where simil is the similarity measure for fuzzy sets (cf. (B.49)).

Remarks:
1. Copy transitions copy the token in the pre-set to all places in the post-set.

2. Each generator transition, t, has no pre-set, but put its defined token value,
g(t), into all places of its post-set.

3. Comparison transitions apply function simil as measure for the degree of com-
patibility between vy, and v,, where v; is the reference value. Value k € N* is
a constant for each transition, and is used to differentiate comparison transi-
tions, if their post-set is in the pre-set of the same switch transition.

167

enabled

FVN system

8. Vitruvian Nets

4. Switch transitions apply function m, hence token values of the pre-set are pairs
vi = (li, Xj) € N x [0, 1]. Function m requires that all |; are pairwise not equal.

Example 8.2 Firing function, F, for the net in fig. 8.5 on page 164 is:

F={ti ={{(p1,v1)} — {(p4,v1), (ps,v1)}}
ty —={D — {(pas, f1)}}
t3 —={@ — {(ps, f2)}}
ty —{{(P4,Va), (P2,V2)} — {(pe, (1,simil(vz,v4)))}}
ts —{{(ps, Vs), (P3,V3)} — {(p7,(2,simil(vs,vs)))}}
ts —{(pe, V6), (P7,V7)} — {(ps,M(Ve, V7)) }}

O

As usual, a FVN system combines a net together with the firing function and an
initial marking.

Definition 8.24 (FVN System) The nine-tuple (N,%,C, X,Sym, f,g,F, Mg) is a FVN
system where

1. (N,X,C, X,Sym, f,g) isa FVN,
2. F is the firing function as defined above,

3. My is the initial marking.

8.4. Nets for Events, Selectors and Loops

To translate a complete Vitruv|_ specification, we combine FTVNs for blocks and FVNs
for decisions in a more general net class, the basic Vitruvian Net (sec. 8.4.1 on the next
page). With them we can model events, selectors and loops.

Selectors and loops are the glue between blocks of a scene. Both depend on events.
If an event occurs, its value is fed into a decision procedure either for a selector, choos-
ing an alternative path, or for a loop, deciding about the loop’s termination. The de-
cision procedures are modeled by FVNs. We will discuss how to combine FTVNs
for blocks and FVNs for decision procedures with events for selectors and loops, re-
spectively. Our strategy is to use particular net structures for events (sec. 8.4.2 on
page 172), selectors (sec. 8.4.3 on page 174) and loops (sec. 8.4.4 on page 176), re-
spectively. Because these net structures are never used alone, we call these structures
subnets. They take part in larger nets.

168

8.4. Nets for Events, Selectors and Loops

8.4.1. Basic Vitruvian Nets

Modeling events, selectors and loops requires combining both, FTVN, for modeling
bodies, and FVN, for decision procedures selecting between different bodies. There-
fore, our new net class shares characteristics of both, FTVN and FVN, and thereby of
abstract Vitruvian Nets. But we need some more properties.

The main characteristics of events are that they generate random values at a ran-
dom time, modeling the user’s choice. In a Petri net, we can model this by transitions
producing tokens with random values and random delays. In particular, the delays
might be different each time the transitions fires.

If we have several events, they might have different universes for their values.
Hence we cannot use one set X of FVN as the single universe. Therefore, we gen-
eralize X to a family of universes (X;) and extend the set of token types by J(X)for
each X € X;.

Modeling of selectors and loops requires complex synchronizations between tran-
sitions. Therefore, we also add as structural elements inhibitor and reset arcs (see
def. B.38 on page 292 and B.37 on page 292). Their use is shown in the particular nets
for selectors and loops in sec. 8.4.3 on page 174 and sec. 8.4.4 on page 176, respectively.

Definition 8.25 (Basic Vitruvian Net) A Basic Vitruvian Net (BVN) is a ten-tuple (N,
(Xj), %, C, delay, Sym, f, g, I, R) where

1. N = (T,P, A) is a Petri net,

2. (Xj)jes is a family of universes for j € J,) = {ji,...,Jn} is an index set, T is an
element of (Xj),

3. X is a set of token types (color sets) including {x},N, [0,1], D, ¥(X;,), F(Xj,),
..., F(Xj,) and (n-ary) product types with oy x ... X onh € 2 = 01,...,0n € X,

4. C . P — X assigns to each place a type,

5. delay : T x P+ D assigns fuzzy delays to arcs from transitions to places,
6. Sym is a set of function symbols,

7. f: T -+ S assigns a function symbol to transitions,

8. 9:T — F, whereT'={t|teTAtedom(f)A f(t) =gen}, assigns a constant
fuzzy set to transitions with function symbol gen.

9. | C P x T are inhibitor arcs,
10. R C P x T are reset arcs.

The set of all BVN is denoted by B.

169

Basic Vitruvian
Net

timed marking

untimed
marking

timed color set

8. Vitruvian Nets

Remarks:

1.

The mentioned types {x},N,[0,1], D, F(Xj,),...,F(X,) are basic types. We
can build recursively more complex types as Cartesian products of elements
of X. This is needed for timed color sets, such as {x} x D, which is the (only)
color set in FTVN.

. The set of fuzzy durations, D, is included in F(X;,), because T € X;, however,

for fuzzy timing of transitions, we need D explicitly.

Function f is in contrast to the definition in FVN only a partial function, be-
cause not all transitions are defined in the same way as in FVN.

4. A FTVN can be expressed as a BVN, where |, R, f and g are empty sets.

A FVN can be expressed as a BVN, where | and R are empty sets, all delays are
zero, i.e. V(t,p) € A :delay(t, p) = dp, and f is a total function (T = dom(f)).

The markings of a BVN are more complex than in FTVN, because the color sets are
more complex. Therefore we refine both, timed and untimed markings. In contrast

to FTVN, we do not necessarily have tokens with a fuzzy duration as its value or

part of its value. A marking, where at least one token has a fuzzy duration as the last
component of its value (this is compatible to the definition in FTVN), is called a timed
marking, otherwise it is called an untimed marking.

Definition 8.26 Let M € M(W) be a marking of BVN. M is a timed marking if and

only if

A(p,V) Ems M:C(p) =0 xD (8.26)

otherwise M is called an untimed marking. We call o, a timed color set with o =
ocxDandoy,o,D e .

Remarks:

1.

For a timed marking, we need a color set of at least one place which is a prod-
uct of at least two color sets, because the duration is a kind of attachment to
another possible token value. Token type o x D is the general form of such
product types of a timed marking, where ¢ matches any type in %, including
product types.

2. InaFTVN, ¢ is always {x}, and the color set of each place is the pair {x} x D.
3. IfVY(p,v) €éms M : C(p) = D, then M is an untimed marking, although the

token values are durations. For timed markings, however, we require tokens
which can exist with their fuzzy timestamp stripped. This would be here not
the case, if we strip D from C(p) type, the remaining color set would be empty.

With the notion of timed color sets we can define an additional constraint for delay:
its domain contains all arcs to places, which have a timed color set as type. This pre-
serves the structure constraint of delay defined for FTVNSs.

170

8.4. Nets for Events, Selectors and Loops

Definition 8.27 Let B be a basic Vitruvian Net. The domain of delay contains all arcs
to places with a timed color set:

dom(delay) D {(t,p) | (t,p) € AANC(p) =0 x D} forsomececX (8.27)

For defining quasi-enabled situations, we need an untimed version of a timed
marking. Therefore, we define the untimed marking of a timed marking similar to
FTVN by dropping the last component of the token value, if the last component is a
fuzzy duration. Again, we require that the token value with the fuzzy duration has
at least two components. We generalize function prg ,, of def. 8.11 on page 154 to
deal with the more complex color sets, the remainder of the definition is taken from
def. 8.11.

Definition 8.28 Let M € M(W) be a timed marking of BVN. The untimed marking,
MY, of timed marking M is defined as the formal sum of all untimed elements of M:

MY =} {pr(m)} (8.28)
meM
where function pr is defined as
pr:((PxXZ)xN)— ((PxX)xN) (8.29)

((p,d’),n) ifc=0"xD

((p,o),n) otherwise (8.30)

pr((p,c),n) ={

Remarks:
1. If C(p) is timed color set (i.e. C(p) = ¢’ x D), function pr strips the fuzzy
timestamp, otherwise pr is the identity function.

2. The un-timing operator - is not idempotent, i.e. (M")" £ MY: consider mark-
ing M = {(p, (%, d1,d2)) }ms, Where d;,d, € D. MY = {(p, (%, d1))}ms is again
a timed marking, and hence (MY“)Y = {(p, %) }ms.

As we have timed markings, we need the definition of quasi-enabled situations.
However, we have to refine the definition of FTVN, because we have inhibitor arcs
for further constraints of the enabling: if transition t is quasi-enabled, then all places
of inhibitor arcs of transition t need to be empty.

Definition 8.29 (quasi-enabled) Situation s = (t, wj, W,) is quasi-enabled in marking
M if

WY Cns MY (8.31)
VpeP:(pt)el = M(p)=0. (8.32)

171

MU

pr

guasi-enabled

Basic Vitruvian
System

8. Vitruvian Nets

The firing behavior is extended by reset arcs. We will not mention them in the def-
inition of firing function F for each transition t, because connections between places
and transitions by reset arcs are clear from relation R (or equivalently from its graph-
ical representation). Thus, we present here the rule for calculating the new marking
when a transition fires, depending on both, function F and the reset arcs.

Definition 8.30 (Firing behavior) Let F be the firing function of a BVN, and s =
(t,wj, Wy) a quasi-enabled situation in marking M. If s occurs, the new marking M,

IS

M, = M3 + W, (8.33)
where

Mz = Ms —{My(p) [p€ PA (P, 1) € R}ms (8.34)

My = My — w; (8.35)
Remarks:

1. If My cannot calculated because wi ¢ My, then we cannot fire. This shall,
however, never happen, because in such a case the situation s = (t, wj, Wy) is
not quasi-enabled.

2. My is the marking of net after w; is removed from M;. For M3, we remove all
(remaining) tokens in all places connected by a reset arc to t from M,.

The remaining definitions of the firing behavior of both, FTVN and FVN, are trans-
ferred to BVN, such that their behavior is preserved. Calculating fuzzy timestamps
and applying the firing functions for the four functions symbols in Sym are defined
for BVN in the same way as in the original nets. With these definitions we can define
basic Vitruvian Systems combining, as before, the net and its behavior.

Definition 8.31 (Basic Vitruvian System) A Basic Vitruvian System is a twelve-tuple
(N, (Xj), %, C,delay,Sym, f, g, I,R,F, Mg), where

1. (N, (Xj),Z,C,delay,Sym, f,g,1,R) isa BVN,
2. F is the firing function, and

3. My is the initial marking.

8.4.2. Event Subnets

For each event, we have to consider that during its enabling time the event may occur
multiple times. For loops it is important to have access to all occurring event values,

172

8.4. Nets for Events, Selectors and Loops

for selectors we are only interested into the first value. Additionally, we need the
information whether no event occurred during the enabling time, resulting in the
TimeOut value. All these considerations can be found in the net shown in fig. 8.6 on
the following page.

We discuss different paths through the net. The occurrence of the event is modeled
by transitions t3 and e.oc, the former fires with a random delay, the latter fires a ran-
dom value of the event’s type. For simulation, appropriate probability distributions
may be attached to both transitions to describe properly the application-specific ran-
dom behavior. However, discussing which distributions are appropriate is beyond
the scope of this thesis and thus is not discussed further.

Transition e.oc has three elements in its post-set:

1. the event’s value is put in place Value;

2. one token is moved back into the enabling place pl of e.oc allowing multiple
occurrences;

3. one token is put in a place in the pre-set of transition hasFired, indicating that
the event occurred and thus no TimeOut value will be generated.

To prevent e.oc from firing after the enabling of the event has finished, we have an
inhibitor arc from place End to transition e.oc with an hollow circle instead of the
arrow of ordinary arcs.

The enabling interval of an event is modeled by transition e.en and its following
place together with fuzzy delay Den. This is the only fuzzy timed transition in the
entire event subnet. Immediately after the enabling time of the event we have two
possible situations:

1. the event occurred, then a token is put in the post-set of transition hasFired,
enabling transition t1, adding a token into place End and additionally removing
all tokens from p2;

2. the event has not occurred, transition t2 can fire, removing tokens from p1 and
p3, and adding tokens to End and TimeOut.

Parallel to the start of the event enabling, one token is put in place Enabled to indicate
that the event is currently enabled. It is used by selectors (sec. 8.4.3 on the next page).

This net will be used later for all events, because they all share the structure and
the behavior. The net is a kind of a parameterized macro, similar to machine code
macros for certain high-level instructions found in code generators of compilers. As
an abstraction, we fold the net to a transition with pre-set Start and the post-set Value,
Enabled, End and TimeOut as indicated by the gray rectangle. This allows also easier
identification of event subnets in larger nets. The parameters of the net for events are

173

8. Vitruvian Nets

Value
random()

Start

End

TimeOut

Enabled

O

Figure 8.6.: BVN for Events.

e the type of place Value, corresponding to the type parameter of the event decla-
ration in Vitruv ,

e the enabling time, in the net denoted as @Den,

e probability distributions for both, the generated values and their occurrence
delays; they are used for simulation purposes.

If we have multiple reactions to an event, we additionally need for each output place
(i.e. Value, End, TimeOut, and Enabled) a one-to-many copy-transition, which copies
the token from the one pre-set place to its many post-set places. In such a case, a
selector or loop reacting on the event, is not connected directly with the output places
of the event, but rather with post-set places of the respective copy-transitions. With
this construction, we can easily support an unlimited (but finite) number of reactions
to the same event. However, for reasons of simplicity, we do not show these copy
transitions in the applications of event subnets in the following sections.

8.4.3. Selector Subnets

Nets for selectors apply both, an event subnet and a FVN for decisions. The bodies
of the alternative paths are Basic Vitruvian Nets, because they may contain again
selectors and loops. The selector net is shown in fig. 8.7 on the facing page and is
explained next.

174

8.4. Nets for Events, Selectors and Loops

UnusedValues

Start

Event

TimeOut

Figure 8.7.: The net for selectors.

The overall structure of a selector net is divided into a pipeline of three parts:

1. the selector’s event net, here shown only as a single white transition with in-
scription Event. The value of the event is fed into

2. the decision procedure, a FVN, shown as single white transition with inscription
D. Either its result, the number of the selected alternative, or the token in place
TimeOut triggers one of

3. the alternative bodies, shown as white transitions with inscriptions b1, bn and
bTO.

Between these different parts we need several places and transitions defining details
of synchronization and control aspects. We discuss them now, moving from left to
right.

In contrast to loops, selectors react only on the first value generated by their event.
Therefore, transition tv fires only if the event is enabled (token in place enabled) and a
value is available in place Value. After firing of tv, the value-token is fed into transition
D. Since the only token in enabled is removed, transition tv cannot fire again, until the
event is re-enabled, preventing multiple activation of selector alternatives during the
event’s enabling interval. If the enabling interval is finished, the event net puts a token
in TimeOut. We can distinguish two cases:

1. if the event has occurred, we might have some unused values in place Value and
place enabled is empty. Transition UnusedValues can fire, removing all tokens
left in Value via the reset arc between Value and UnusedValues. The reset arc is
notated with a double hollow triangle instead of the arrow of ordinary arcs.

175

8. Vitruvian Nets

2. if the event has not occurred, we have no values in place Value, but the token in
enabled is still there. Now transition tTO fires activating the selector’s alternative
for the TimeOut-value.

In the FVN, denoted with transition D, the decision for selecting an alternative body
has to be made. Its result in place leave is an integer value m € [0, n] if we have n alter-
native bodies. Value 1 activates the first body, 2 the second, and so on. Value 0 denotes
that the event value lacks compatibility to any test values, hence no body is activated.
The activation is controlled via the arc inscriptions indicating the corresponding val-
ues, i.e. the firing function F for transition tm with m € [0, n] is

{(pm, %) }ms m>0
{(leave, %)}ms M =0

F(tm)({(leave,m)}ms) = {

After the event is activated, either one of the n bodies is activated, depending on the
event value and the decision procedure D, or body bTO is activated by the TimeOut-
event. Finally, a token is put into Finish, indicating that the selector is finished.

For a proper application of the selector net, we have to satisfy the following condi-
tions for glueing together the various nets:

e the type of place Value, i.e. C(Value), has to be the same as of place root (C(root)):
event and decision procedure match.

e the number of different selector alternatives b1i, ..., bn has to match the number
of branches inside D, resulting in the proper interval range in place leave. This
means that the number of antecedents equals the number of consequents, taken
from the corresponding selector statement in Vitruv| but excluding the TimeOut
branch.

8.4.4. Loop Subnets

Nets for loops apply both, an event subnet and a FVN for decisions. The loop body is
a Basic Vitruvian Net because it may contain events, selectors and loops. The structure
of the net is more complex than that of the selector net, because we have to deal with
multiple event values during event enabling interval, and true concurrency between
the loop body and the occurring event. The net is shown in fig. 8.8 on the next page
and explained now.

A loop net consists three different parts:

1. the loop’s event net, shown as a single white transition with inscription Event.
The value of the event is fed into

2. the decision procedure, a FVN shown as a single white transition with inscrip-
tion D. Its result, either 0 or 1 triggers execution of

176

8.4. Nets for Events, Selectors and Loops

loopControl enableBody
1

body

terminate

cycle

finished

unuseg ; okens

tl

Figure 8.8.: The net for loops.

3. the loop body, shown as a single white transition with inscription body.

Between these parts several places and transitions exist controlling the synchroniza-
tion between them. We discuss now the structure in detail, moving from left to right.

In contrast to selectors, loops depend not only on the first event value: the loop
body remains active until the termination condition is true or the event enabling is
finished. Thus, we feed all event values (place Value) immediately into the decision
net D, i.e. place Value and D’s place root are merged. In place loopControl we collect
the results of D, i.e. loopControl and D’s place leave are also merged. In loopControl the
token values are either 0 or 1, where 0 means that the termination condition is not
met, 1 means the opposite.

The loop body can be activated immediately after the event is enabled. Therefore,
transition t1 occurs immediately after a token appears in place enabled, indicating
that the event is enabled. Transition t1 creates a token in place cycle, enabling the
loop body. Now the loop can start after firing of transition enableBody, provided no
event satisfying the termination condition has occurred in parallel, since this would
result in a token in place terminate. Any token in place terminate disables transition
enableBody because of the inhibitor between terminate and enableBody.

If the termination condition is satisfied, a token is in place terminate. After the cur-
rent activation of the loop body, i.e. after place cylce obtains a token, transition finish
fires, removing the token from cycle and creating a new one in finished. Now the loop
cannot be activated until the event is re-enabled: the loop is finished and intervals
following the loop body can be activated.

An additional final step has to be done after the event’s enabling interval is finished,

177

8. Vitruvian Nets

i.e. a token is created in place End. Transition t2 fires creating a token in terminate.
This token terminates the loop even in the case that all other event values have not
satisfied the termination condition. Transition t2 creates also a token in the pre-set of
clean, which becomes enabled after finish has fired. Transition clean has reset arcs to
places loopControl and terminate, i.e. after firing of clean the net’s places are empty
except for unusedTokens and finished.

The following conditions have to be satisfied for properly glueing together the sub-
nets for the loop net:

¢ the type of place Value (C(Value)) has to be the same as of place root (C(root)) of
the FVN D, i.e. event and decision procedure match.

¢ we have only one condition in D resulting in values 0 or 1 in leave, which is the
same place as loopControl.

8.5. Nets for Scenes

Scenes are the largest constructions in Vitruv . Combining a set of blocks connected
by events, selectors and loops, scenes are also the largest nets in the dynamic seman-
tics for a Vitruv specification. We will now discuss the structure of scenes and their
connection by jumps (sec. 8.5.2 on page 181) and present an algorithm to construct the
entire net of a presentation (sec. 8.6 on page 183). Before that we introduce Vitruvian
Nets, an extension of BVN in the next section.

8.5.1. Vitruvian Nets

Scenes combine blocks, events, selectors and loops. These ingredients can be modeled
by basic Vitruvian Nets, as we have seen in the sections before. Most important now is
that scenes are simply objects and thus intervals. Intervals have a definitive start and
end point, resp., all other activities inside the scene occur between these two points.
Therefore, we can model scenes as a FTVN, as we have done for ordinary intervals,
but augmented by events, selectors and loops. That is why we need BVNSs here.

Leaving the current scene, let us say s, for a new scene, s/, requires removing all
tokens from all places of s. This can easily be modeled by reset arcs, however, the
selection of all places of s is rather tedious, because we have to infer them from the
interval relations. Therefore, we introduce scenes as an explicit structural element of
Vitruvian Nets, realized as a set, Sc, of scenes and map, S, assigning to each place a
scene. Then it is easy to determine the set of places of scene s, for which reset arcs are
needed if we leave scene s.

The very first scene of presentation is defined in Vitruv| as the first scene is in the
binding. The class specification does not specify which of the scenes starts the pre-
sentation. To reflect this using Vitruvian Nets, it is useful to include Sc in the set of

178

8.5. Nets for Scenes

color sets, .. A place, p, with color set Sc connected to the first transition of all scenes
can be used to trigger the start of any scene s, if the token value of p is the scene
s € Sc to be started. This makes the net topology independent of the order of scenes
in the binding, because only the token value of p defines which scene is started first.
However, this place p is not a part of any scene defined in the Vitruv| specification,
and therefore we cannot assign a unique scene to p, any scene may be as possible.
This violates, however, the structure of Vitruv , where anything can uniquely be as-
signed to a scene. Therefore, we introduce a distinguished element scy € Sc, denoting
a scene which is not a regular presentation but rather an artifical scene, i.e. it has no
counterpart in the Vitruv specification. Accordingly, scy is the assigned scene of the
aforementioned place p, residing outside regular scenes defined in Vitruy| .

Vitruvian Nets are an extension of Basic Vitruvian Nets, hence they inherit features
from Fuzzy Timed Vitruvian Nets and from Fuzzy Vitruvian Nets.

Definition 8.32 (Vitruvian Net) A Vitruvian Net (VIN) extends Basic Vitruvian Nets
with the notion of scenes and is a 13-tuple (N, (Xj), X, C, delay, Sym, f, g, I, R, Sc, S,
sco) where

Vitruvian Net

1. (N, (Xj),Z,C,delay,Sym, f,g,I,R) isa BVN,
2. X contains Sc,

3. Sc is a nonempty set of scene symbols, Sc € %, and Sc is disjoint to all other
elements of X,

4. S: P — Sc assigns to each place a scene,
5. scy € Sc is a distinguished element of Sc.

The set of all Vitruvian Nets is denoted by V.

v
Remarks:

The type of places p € P, taking values s € Sc, is Sc.

The firing behavior of Vitruvian Nets is unchanged from BVN, because the intro-
duction of scenes does not alter the behavior. All definitions about situations, en-
abling and the firing behavior remain valid.
Definition 8.33 (Vitruvian System) A Vitruvian System is a 15-tuple (N, (X;),%,C, . .

Vitruvian

delay, Sym, f, g, |, R, sc, S, sco, F, Mg) where System

1. (N, (Xj),Z,C,delay,Sym, f, g, I,R,sc,S,sc) is a Vitruvian Net,
2. F is the firing function and

3. My is the initial marking.

179

connector
place

regular

8. Vitruvian Nets

With Vitruvian Nets and Systems we have all ingredients to model Vitruv| specifi-
cations. However, we prefer nets where the number of places assigned to scene scy is
minimal, because these places do not belong to any scene specified in Vitruv| and thus
any markings of these places model situations which cannot encoded in Vitruv| ex-
plicitly. Also, it is possible that in a Vitruvian System places from different scenes are
marked simultaneously. This clearly contradicts our assumption from Vitruy| that at
most one scene is active, hence only places of this particular scene shall be marked si-
multaneously. Therefore, we constrain Vitruvian Nets and Systems further, to obtain
structures and dynamic behaviors respecting the aforementioned requirements.

In a Vitruvian Net places p € P with scenes S(p) = scg are important, because they
model the state of the presentation outside a regular scene, e.g. the presentation state
at the very beginning and the very end. Additionally, these places can be used for
modeling the connection from one scene to another, therefore we call them connector
places.

Definition 8.34 (Connector Place) Let V = (N, (Xj),Z, C,delay, Sym, f, g, I, R, sc, S,
sco) be a Vitruvian Net. Place pg € P is called connector place iff

C(po) =Sc A S(pg) = SCp. (8.36)

Modeling a Vitruv| specification as a Vitruvian Net should result in a net which is as
close as possible to original specification. Hence, a minimal set of connector places is
of interest, because then the state space outside of regular scenes is then also minimal.
We call such minimal Vitruvian Nets regular Vitruvian Nets.

Definition 8.35 (Regular Vitruvian Net) Let V. = (N, (Xj),X,C,delay,Sym, f,g, I, R,
Sc, S,scp) be a Vitruvian Net. Let Py = {p | p € PAC(p) = ScA S(p) = scy} be
the set of connector places. V is called regular iff

1. |Py| = 1, i.e. we have only one connector place,
2. ¥p e (P\ Py) :C(p) # Sc, i.e. only the connector place has type Sc.

3. Sc={S(p) | p € nb(x)} forall x € nb(pg) and pg € Py, i.e. the set of all scenes is
exactly determined by the scenes in the neighborhood of the connector places.

The smallest regular Vitruvian Net, i.e. where all components are minimal, can be the
initial net for an iterative net construction. The following observation deals with that.

Observation 8.36 The smallest regular Vitruvian Net V; consists only of the connec-
tor place: Vo = ((@,{po}, D), (7), {{x}N,[0,1],D, {sco}},{po — Sc},,D,0,0,,
{sco}, {Po > sCo},SCo}).

Proof. We need at least the connector place pg to satisfy condition 1 of Def. 8.35. To
define pg we also need scy € Sc, Sc € X, and the type C(pg) and scene S(pg) of pg. O

180

8.5. Nets for Scenes

A regular Vitruvian Net is extended to a regular Vitruvian system to model the dy-
namic behavior closely to the corresponding Vitruv| specification, where the regular
Vitruvian system is a constrained Vitruvian system. First, the regular Vitruvian Nets
provides a minimal set of places outside regular scenes. Second, for every marking
M in such a regular Vitruvian system, each place p with [M(p)| > 0 shall belong to
the same scene, i.e. only places of one scene are marked at any time. Additionally, we
require the initial marking, My, placing only one token into the connector place with
a value different from scg. This gives some regularity for marking sequence: we start
always before any regular scene and the first scene is encoded in the token value of
the connector place.

Definition 8.37 (Regular Vitruvian System) A Regular Vitruvian System is a 15-tuple
(N, (Xj), %, C, delay,Sym, f, g, I, R, Sc, S, sco, F, Mg) where

1. (N, (Xj),Z,C,delay,Sym, f, g, I,R,Sc, S, sco) is a regular Vitruvian Net,
2. F is the firing function and
3. Mg = {(p,sc)} withp € P andsc € Sc\ {sco} is the initial marking.

4. YM € [Mp)ds € ScvVp € P : [M(p)| > 0=S(p) = s, i.e. all places in each
reachable marking from My are in the same scene.

Remarks:
Apparently, the smallest regular Vitruvian Net does not qualify to become a regular
Vitruvian system. This is so because Sc = {scp} allows no marking (p,sc) with
sc € Sc '\ {sco}, otherwise sc would be an element of the empty set.

8.5.2. Scenes and Leaving Them

The remaining elements of Vitruv| we have to deal with are scenes and the leave for
statement to switch between scenes. The foundation for scenes are prepared in the
definition of regular Vitruvian Nets, but the details are still missing. We discuss next
the connection of two scenes, as shown in fig. 8.9 on the following page.

As discussed previously, scenes can be considered as a large interval with a defini-
tive start and end point, if we neglect jumps between scenes. All scenes of a presen-
tation have equal rights and are independent of each other. Accordingly, we can sim-
plify scenes and fold them to a transition with exactly one place in its pre- and post-
set. Each scene can be the very first or the very last scene of the entire presentation,
hence we need arcs between the connection place and the start- and end-transition of
the scene. A token in the connection place is used for deciding which scene is started.

In fig. 8.9 on the next page we apply these considerations. We have two scenes s1
and s2, denoted as transitions with dashed border, and each one is connected with

181

Regular
Vitruvian
System

8. Vitruvian Nets

the place ConnectionPlace via transitions startS1 and startS2, respectively. These two
arcs have arc expressions s1 and s2, i.e. their enabling situations are

(startS1, { (ConnectionPlace, s1) }ms, { (P1, %) }ms)
(startS2, { (ConnectionPlace, s2) }ms, { (P3, %) }ms)

Therefore, the token in place ConnectionPlace decides which of the scenes is started.
After the end of each scene, either transition endS1 or endS2 places a token in Connec-
tionPlace with value s0, denoting that we have reached a state outside of any scene.
If this token is the only marking in the entire net, the net is dead, because no transi-
tion is enabled and will ever be enabled. After the end of a scene, nothing else can
happen, because we have no means to express the order of scenes in Vitruv| . The only
possibility to activate another scene is to use the leave for statement.

startS1 pl p2 endS1

Connection
Place

starts2 P3 p4 endS?2

Figure 8.9.: Two scenes with the connection place.

Activation of a leave for statement results in an immediate termination of the cur-
rent scene and all of its activities, and the target scene is started. With our prepa-
rations so far, it is straightforward to define the realization of leave for with regular
Vitruvian Nets. Stopping all current activities means removing all tokens from all
places, independent of whether or not the tokens have timestamps. Hence, each leave
for is realized by a transition with reset arcs to all places in the scene. Its post-set is
the place ConnectionPlace, where the transition puts a token with value s; if s;j is the
target scene.

More formally, lett € T be a leave for transition in scene s; with target scene s;. We
have reset arcs from all places assigned to s; to t:

{(p.t) [pePAS(P) =5sj} CR

182

8.6. Composition of Scenes: Translating Vitruv|

For any marking w; of et which enables t, we have the same result of firing function
F viz a token in ConnectionPlace with value s;:

F(t)(w;) = {(ConnectionPlace, s;)}

The sheer amount of reset arcs for leave for transitions makes it hard to draw them
explicitly in the graph. Since the post-set of these transitions is also always the same,
the resulting graph would be additionally cluttered. Therefore, we introduce as sym-
bol for leave for transitions a new graphical element, a triangle with the target scene
as inscription. With this notation, we have a clear interface between scenes, thus it is
now possible to split the entire net for a Vitruv|_specification into several subnets, one
for each scene.

It should be remarked that this approach is not as general as the introduction of hi-
erarchies in colored Petri Nets (Jensen, 1997), but nevertheless reduces the complexity
of a Vitruvian Net, because it is often sufficient to deal with each scene independently.

8.6. Composition of Scenes: Translating Vitruv

After presenting the various parts of Vitruvian Nets, we can now discuss how to
translate entire Vitruv specifications to Vitruvian Nets. The process is driven by the
hierarchical structure of scenes dividing scenes into blocks connected by events, se-
lectors and loops. We combine the subnets developed for the various bits and pieces
of Vitruv|_into a larger regular Vitruvian Net. The combination works on both, basic
and regular Vitruvian Nets.

The combination process follows the hierarchical structure of the Vitruv; specifica-
tion, similar to linearization done for generating a Vitruv, specification from its Vitruv|_
counterpart. In contrast to Vitruv), where we partition the Vitruv| specification into a
set of independent blocks, we now have to combine these blocks to produce a Vitru-
vian Net for the entire Vitruv| specification. During the linearization process, events,
loops and selectors are represented as intervals, and loop and selectors bodies as
blocks, respectively. We have to keep track which interval and which block represents
which event, loop or selector, because we need to identify the proper combinations of
subnets to generate the entire net.

With the proper combinations, i.e. with the net representation of the interval, de-
noting the event, loop or selector, and the subnet representing the interval’s internal
structure, we replace the interval by the subnet. The replacement is called expansion.
A recursively applied expansion of events, loops and selectors found in the block of
the selector or loop under consideration is called deep expansion.

In the following we define how to expand events, loops and selectors. Before that
we define some auxiliary functions and how to connect the very first block of scene
to a regular Vitruvian net.

183

add

modify

8. Vitruvian Nets

8.6.1. Auxiliary Functions

We need some auxiliary functions taking care of tasks required in various expansion
and connection processes.

The first auxiliary functions adds a BVN B to a (regular) Vitruvian Net V and a
specific scene s. We take the union of the components of both nets and add the places
of B to scene function Sy, of V. The resulting net is not connected, because it depends
on what B models: we have to do different things for events, selectors and loops. We
take care of that later on in the specific expansion functions.

Definition 8.38 Let V = (Ny, (Xj)v,Zv,...,SC0) € V be a Vitruvian Net, let B =
(Ng, (Xk)B, 2B, .., Rg) € B be a basic Vitruvian Net, and lets € Scy, be a scene of V.
The combination of both nets and scene s is defined by function add:

add(V, B, S) = (N\/ U Ng, (XJ)V U(Xk)B:ZV UXxg,...,
Scv, Sy U{(p.s) [p € Pa},sco}) (8.37)

Remarks:
1. Each corresponding component existing in both nets are joined, the set of
scenes, Scy, and the distinguished scene, scg, remain unchanged. Scene func-
tion Sy is extended by the mapping of each place in B to scene s.

2. The union of the universe families requires the index sets J and K to be disjoint:
JNK = Q.

3. Function add assumes that no new scene is added and thus the set Sc is not
modified by adding the BVN.

4. We take the union of firing functions R, and Fg, because both nets have no
connection. Hence, no modifications of the firing functions are needed.

The replacement of an interval by its respective subnet requires that transitions,
places and arcs are removed and new arcs are introduced. Function modify takes a
Vitruvian Net and modifies the net structure.

Definition 8.39 Function modify updates the Vitruvian NetV = (N, (Xj),Z,...,sC) €
VY by removing some places, transitions and arcs, and by adding new arcs.

modify(V, dropp, dropy, drop,, adda) = V' (8.38)
where
V' = (TP, A),...,Sch) (8.39)
T' =T \dropg (8.40)
P’ =P\ dropp (8.41)

184

8.6. Composition of Scenes: Translating Vitruv|

A’ = (AUaddp) \ drop (8.42)

Elements of V' depending on the modified T’, P’ and A’, such as f’, ¢’ etc., are modi-
fied accordingly, the other elements are unmodified copies from V.

Remarks:
1. New places and transitions are not needed for function modify, because they
are introduced via subnets and are added by function add.

2. A proper use of modify requires that all new arcs only connect transitions and
places which are not deleted, i.e. adda C (T' x P") U(P' x T').

If we have to update only one component of a n-tuplet (i.e. of some Vitruvian Net),
we adopt the functional override notation introduced earlier for the formal semantics
of Vitruv, (cf. (7.8) on page 137).

Notation 8.40 We notate an update of a single component of Vitruvian Net V =
(N,...,sCp), e.g. Sc, leaving the remainder of V unmodified, with @, if it is clear from
which component is updated:

V=V & (Scu{s}) (8.43)
= (N, (Xj), X, C,delay, Sym, f, g, I, R, (Scu{s}), S, sco) (8.44)

Remarks:
1. The notation is also applicable to all other net types.

2. Itis possible that the application of @ results in an inconsistent net. Consider a
regular Vitruvian Net, adding an element s to Sc without using s in the range
of function S at the same time violates the definition of a regular Vitruvian
Net. However, this is not considered harmful, because the application of & is
targeted to be used for more complex net modifications, the task of which is
to ensure that all required constraints are satisfied.

Sometimes, and in particular for events, we need access tokens in a place, p, with-
out knowing how many “clients” are needed. Thus, in the initial construction we can-
not provide enough copies of p in advance. Therefore we define the function addClient
adding another “client”, p’, to place p, returning the modified net. If we have only an
empty post-set of p, then addClient adds a new transition t; as post-set of p as the
connection between p and p/, i.e. we add the respective arcs between p, t; and p’ to
the set of arcs.

Definition 8.41 LetV = (N, X, C) be an abstract Vitruvian Net, p some place in V.
Function addClient adds a new place p’ to V, such that each token in p is also copied

185

addClient

8. Vitruvian Nets

top'.
addClient(V, p, p’) =V’ (8.45)
where
ifpe =0 :V = (P, TUu{ty},AU{(p,t1), (t1,p)}, %, C) (8.46)
where tq is a new fresh transition, t; £ T
ifpe = {t;}: V' = (P, T,AU{(ty,p")},Z,C) (8.47)

with conditions

p,p' eP (8.48)
C(p) = C(p) (8.49)

o =0 (8.50)
(pe=Q)=1, £T (8.51)
pe| <1 (8.52)

The firing function F for transition t; is defined as

F(ty){(p,V)}ms = {(P1,V) | P1 € t1@}ms (8.53)

Remarks:
1. Since we only require that V is an abstract Vitruvian Net, all other Vitruvian
Net types are also allowed.

2. If p has no post-set, we introduce a new fresh transition t;. If pe is neither the
empty set nor the singleton set {t; }, it is illegal to apply addClient.

3. The place p’ needs to have the same type as the original place p.

4. The definition of F for t; is the identity function and is independent of the
amount of places in the post-set of t;.

8.6.2. Connecting Scenes

A new scene is connected to a regular Vitruvian Net following the pattern given in
sec. 8.5.2 on page 181. In contrast to the example shown there (fig. 8.9), we consider
only one scene, s, as BVN B with places p; and p», being the root and leaf places of B,
respectively. We need to introduce transitions t; and t,, which become ep; and pye,
resp., and connect t; and t, with the connection place, pg, of the regular Vitruvian
Net, V. In fig. 8.9 on page 182, transitions t; and t, are called startS1 and endS1, re-
spectively. Firing function F of V needs to be updated also, because we introduce new
transitions and new arcs. All these considerations are summarized in the definition
of function connectScene.

186

8.6. Composition of Scenes: Translating Vitruv|

Definition 8.42 (Connecting a Scene) LetV = (Ny,Xy,...,sCov) be a regular Vitru-
vian Net, B = (Ng,Xg,...,Rp) be a basic Vitruvian net representing a scene s. Let
P1, P2 € Pg be the (unique) root and leaf places of B, and py € Py be the unique
connection place of V. The connection between scene s represented by B with 'V is de-
fined by function connectScene introducing new transitions t; and t,, which connect
Po with p1 and py:

connectScene(V, B, pg,s) = V’ (8.54)

where

V' = ((Pyn, Tyn U{ty, t2}, Ayr U{(Po, t1), (t1, P1), (P2, t2), (t2, Po) }),

(Xj)vr, oy, .. SCo) (8.59)
{p1} = root(Ng) (8.56)
{p2} = leaf(Ng) (8.57)
V" =add(V @ (Scy U{s}), B,s) (8.58)
with conditions
Po € Py (8.59)
C(po) = Scy (8.60)
C(p1) = C(p2) = {x} (8.61)
S # Scy (8.62)
ty,t, € Tyr (8.63)

The enabling situations s, and s, for t; and ty, resp., — and thereby the firing function
— are defined as:

s1 = (t1, {Po,S) }ms: {P1, % }ms) (8.64)
S2 = (t2, {p2, %) }ms, { Po, SCo,v }ms) (8.65)

Remarks:

1. Connecting a new scene s to an existent regular Vitruvian Net V is done in
two steps: first, we add the net B representing s to V after adding s to the set
of scenes of V. Second, we introduce new transitions t; and t, and connect
them with pg, p; and p».

2. We take simply the union of the firing functions for B and V, because both
nets have no connection. For the new transitions t; and t, we have only one
enabling situation for each transition, hence the two situations s; and s, also
determine their firing function.

187

connectScene

expandEvent

8. Vitruvian Nets

8.6.3. Expanding Events

When expanding an event we replace the transition denoting the enabling interval
of the event and its pre- and post-set by a event subnet, structured as presented in
sec. 8.4.2 on page 172. The replacement is carried out by function expandEvent the pa-
rameters of which are the regular Vitruvian Net with the unexpanded event, the event
subnet, the transition of the unexpanded event and the two places of the event sub-
net denoting start and end of the event’s enabling interval. We also need the current
scene to add the subnet properly to the regular Vitruvian Net.

Definition 8.43 LetV = (Ny, (Xj)v,...,SCoyv) be a regular Vitruvian Net and B =
(Ng,Zg, ..., Rp) a basic Vitruvian net which is an event subnet. Let e be a transition
in V denoting an unexpanded event. Replacing the unexpanded event e by event
subnet B, where Start and End are the named places in B, is defined with function
expandEvent:

expandEvent(V, B, e, Start, End, sc) = modify(V’, dropp, dropy, drop,,adds) (8.66)

where

V' = add(V, B, sc) (8.67)

{es} = et (8.68)

{eg} =ece (8.69)

dropp = {es,eg} (8.70)

drop; = {e} (8.71)

drop, = {(t.es) | (t.es) € Ay fU{(ee.t) | (ee.t) € Ay} (8.72)

adda = {(t, Start) | (t,es) € Ay} U{(End,t) | (eg,t) € Ay} (8.73)

with conditions

ec Ty (8.74)
{Start} = root(Np) (8.75)
End € leaf (Np) (8.76)
C(es) = C(Start) (8.77)
C(eg) = C(End) (8.78)

We modify the firing function for dealing with the new arcs by replacing all occur-
rences of es and eg by Start and End, respectively.

Remarks:
1. The expansion works in two steps: first, we add B to V. Second, we modify
the net, such that e and its pre- and post-set is removed from V and all arcs to
e¢ and all arcs from ee are replaced by arcs to Start and from End, respectively.

188

8.6. Composition of Scenes: Translating Vitruv|

2. Firing function F from V and B can be joined, because V and B are disjoint.
Deleting e and its neighborhood, nb(e), from V' requires modification of the
firing function as well: the arcs to and from nb(e) are replaced by arcs to Start
and from End, hence the firing function has to reflect these changes by replac-
ing es and eg by Start and End, resp., in all markings.

3. Access to the leaf places of E, e.g. for selectors and loops, is realized by appli-
cation of function addClient, which decouples multiple reactions to the same
event as explained on page 174. But this construction is handled during the
expansion of loops and selectors.

8.6.4. Expanding Loops

When expanding a loop, we replace the transition denoting the loop and its neighbor-
hood by a loop subnet, structured as presented in sec. 8.4.4 on page 176. The replace-
ment is carried out by function expandLoop, the parameters of which are the regular
Vitruvian Net with the unexpanded loop, the loop subnet, the transition of the un-
expanded loop, the place finished of the loop subnet, the places of event and loop
subnet, connecting the loop to its event, and the current scene.

Definition 8.44 Let V = (Ny, (Xj)v,...,SCoyv) be a regular Vitruvian Net and B =
(Ng,Zg, ..., Rg) a basic Vitruvian net which is a loop subnet. Let | be a transition in
V denoting an unexpanded loop. Replacing the unexpanded loop | by loop subnet B,
where finished is a named place in B, is defined with function expandLoop:

expandLoop(V, B, I, finished, p1v, P2.v, P3v, P18, P2.8, P3.8,SC) = V" (8.79)
where

V" = modify(V’, dropp, dropy, drop », add 4) (8.80)

V' = addClient(addClient(addClient(Vy, p1.v, P1),

P2.v, P2,8);

P3v, P3B) (8.81)
Vi = add(V, B, sc) (8.82)
{Is} = ol (8.83)
(I} =lo (8.84)
dropp = {ls, I} (8.85)
drop; = {I} (8.86)
drop, = {(t,1s) | (t,1s) € Ay} U{(I1, 1) | (It,1) € Ay} (8.87)
addp = {(finished, t) | (I1,t) € Ay/} (8.88)

189

expandLoop

expandSelector

8. Vitruvian Nets

with conditions

€Ty (8.89)

C(l¢) = C(finished) (8.90)
leaf (Ng) = {finished} (8.91)
root(Ng) = {p1,B, P28, P38} (8.92)
Pv O {prv, P2y, P3v} (8.93)

We modify the firing function for dealing with the new arcs by replacing all occur-
rences of | by finished.

Remarks:

1. Places p1g, p2,8, P38 and p1v, P2v, P3v are named Value, End and enabled in
fig. 8.8 on page 177 and fig. 8.6 on page 174. They are the interface between
event and loop. The nested applications of addClient in (8.81) connect these
places pairwise, such that Value, End and enabled from loop-subnet B (i.e.
P18, P2,8, P3,8) become a client of Value, End and enabled in V (i.e. p1v, P2v,
p3v), respectively.

2. In contrast to the event expansion we do not replace arcs to Ig explicitly, be-
cause this is handled in the details of the interaction between event and loop
subnets.

8.6.5. Expanding Selectors

When expanding selectors, we replace the transition denoting the selector and its
neighborhood by a selector subnet, structured as presented in sec. 8.4.3 on page 174.
The replacement is carried out by function expandSelector, the parameter of which are
the regular Vitruvian Net with the unexpanded selector, the selector subnet, the tran-
sition of the unexpanded selector, the place Finish of the selector subnet, the places of
event and selector subnet, connecting the selector to its event, and the current scene.

Definition 8.45 Let V = (Ny, (Xj)v,...,SCoyv) be a regular Vitruvian Net and B =
(Ng,2g,...,Rp) a basic Vitruvian net which is a selector subnet. Let s be a tran-
sition in V denoting an unexpanded selector. Replacing the unexpanded selector s
by selector subnet B, where Finish is a named place in B, is defined with function
expandSelector:

expandSelector(V, B, I, Finish, p1 v/, P2 v, P3v. P4y, P1,8: P28, P38, Pa,SC) = V" (8.94)

where

V" = modify(V’, dropp, dropy, drop », add) (8.95)

190

8.6. Composition of Scenes: Translating Vitruv|

V' = addClient(addClient(addClient(addClient(V1, p1v, P1s),

P2v, P28),
P3v: P3B),
P4\, PaB) (8.96)
V; = add(V, B, sc) (8.97)
{ss} = es (8.98)
{st} =se (8.99)
dropp = {ss, s} (8.100)
drop; = {s} (8.101)
dropy = {(t,ss) | (t,8s5) € Ay} U{(s¢,1) | (51, t) € Ay} (8.102)
adda = {(Finish,t) | (s;,t) € Ay} (8.103)
with conditions
se Ty (8.104)
Finish € leaf (Ng) (8.105)
C(l¢) = C(Finish) (8.106)
root(Ng) = {p1,8, P28, P3,8, P48} (8.107)
Pv D {p1v: P2v, P3v, P4y} (8.108)

We modify the firing function for dealing with the new arcs by replacing all occur-
rences of | by Finish.

Remarks:
1. Places pi1g, P28, P38, P4 and p1v, P2v, P3v, Payv are named Value, End, en-
abled and TimeOut, resp., in fig. 8.7 on page 175 and fig. 8.6 on page 174.
They are the interface between event and selector. The nested applications
of addClient connect these places pairwise, similar to (8.81) for the interface
between events and loops.

2. In contrast to the event expansion we do not replace arcs to sg explicitly, be-
cause this is handled in the details of the interaction between event and selec-
tor subnets.

8.6.6. Net Construction

With these preliminaries we can now outline an algorithm to derive a Vitruvian Net
V from a Vitruv| -specification L. This is shown in fig. 8.10 on page 193. The basic
idea of the algorithm is for each scene to walk through the hierarchy of blocks in

191

8. Vitruvian Nets

the current scene and to combine blocks by adding subnets for events, selectors and
loops. Finally, all leave for transitions are connected with place connectionPlace.

The algorithm assumes implicitly to have access to a series of mappings which can
be inferred from the translation process of Vitruv| . Essentially these mappings are
parts of the augmented abstract syntax tree and the accompanying symbol table. In
particular, we need to keep track the nesting of blocks as determined in Vitruy;, the
connection of blocks with events, loops and selectors as determined in Vitruv, . We
also need to maintain a list, U, of unexpanded events, loops and selectors, because
this list controls the next expansion steps.

Let us now consider the steps in more detail. We start with the minimal regular
Vitruvian Net consisting only of the connection place, pp, which is our entry point.
After that we initialize each scene: we model each scene as a Vitruvian Net, which we
connect with pg. This is carried out in function connectScene. The Vitruvian Net rep-
resenting the scene is unexpanded, i.e. all events, loops and selectors are only mod-
eled as simple intervals as we have also done in Vitruv|. We collect these unexpanded
events, loops and selectors in list U. The next steps carry out the deep expansion of
the scene. We do a breadth-first traversal through the block hierarchy of the scene. For
each element of list U, we generate an appropriate unexpanded subnet and replace
the simple unexpanded interval by the corresponding subnet in steps b), c) and d).
The replacement is done by functions expandEvent, expandLoop and expandSelector. Af-
ter each expansion, the corresponding unexpanded element is deleted from U. Since
the expansion works only on one level at each step, each expansion might introduce
new unexpanded events, loops and selectors, which are added to U’. If after step d)
U’ is not empty, we move all elements of U’ to U in) and start with the next cycle of
the expansion loop working on the elements in U, thereby recursing deeply into the
scene definition.

The process terminates since each block hierarchy of a scene is finite and each ex-
pansion only adds new child-blocks, the internal structure of which is inaccessible for
their parent-blocks. Hence, the expansion of a child block cannot modify the parent-
block, which guarantees that the expansion process terminates in the leaf-blocks. Af-
ter all blocks of a scene are expanded we do the same for the next scene. Finally, after
all scenes are connected with py and are expanded, we model the leave for statements.
Each transition, t, representing a leave for is connected with po, i.e. te = {pp}, and a
reset arc from each place in the current scene to transition t is established. After that
the net is complete.

In sec. 10.4.2.3 on page 246 we show an application of this algorithm in a larger
example.

192

8.6. Composition of Scenes: Translating Vitruv|

1. Start with the minimal regular Vitruvian Net, V, consisting only of place Connection-
Place, here called pyg.

2. for each scene sc do:

a) translate the block of sc into BVN B, and connect B with V:
V « connectScene(V, B, po, S¢)
and establish the list U of unexpanded events, loops and selectors of sc, list U’ is
empty.

b) for each unexpanded evente in U do:

generate the event subnet E for e (see sec. 8.4.2 on page 172) with its distin-
guished places Start and End,

extend V with E, after that e is expanded and deleted from U:

V «— expandEvent(V, E, e, Start, End, sc)

c) for each unexpanded loop I in U do:

generate the loop subnet L for | with the distinguished places finished, Value ,
End, and enabled, (see fig. 8.8 on page 177, there without subscript). L in-
cludes BVN B for the (unexpanded) loop body. Identify in V the distinguished
places Valuey, Endy and enabledy from the event subnet for I.

ii. extend V with L, after that | is expanded and deleted from U:

V « expandLoop(V, L, I, finished, Valuey,, Endy,, enabledy,
Value(, End, enabled|, sc),

extend list U’ of unexpanded events, loops and selectors by the respective
elements of B.

d) for each unexpanded selector s in U do:

generate the selector subset S for s including BVNs B; for the (unexpanded)
bodies of the alternatives paths. Identify in S the distinguished places finished,
Valueg, Ends, enableds and TimeOuts (see fig. 8.7 on page 175), and in V their
counterparts from the event subnet Valuey, Endy, enabledy and TimeOuty,.

ii. extend V with S, after that s is expanded and deleted from U:

V « expandSelector(V, S, s, Finish, Valuey, Endy/, enabledy,, TimeOuty,
Values, Endg, enableds, TimeOutssc)

extend list U’ of unexpanded events, loops and selectors by the respective
elements of B;.

e) if there are any unexpanded events, loops or selectors in V, i.e. U’ is not empty,
then let U be U’, clear U’ and goto b).

3. for each leave for transition add the arc to py and reset arcs to all places from their scene
(see sec. 8.5.2 on page 181).

193
Figure 8.10.: The Algorithm for Connecting Nets

8. Vitruvian Nets

194

9. Specifying with Natural Language

In the previous chapters we discussed the formal models of the Vitruv approach. We
now outline how it is possible to use specification techniques based on natural lan-
guage within this approach.

9.1. Basic Considerations

After discussing Vitruv; and its formal semantics in the previous chapters, we are
now able to present Vitruvy, the natural language (NL) based specification language.

The purpose of Vitruvy, is to allow non-technical developers to understand specifi-
cations of multimedia presentations with ease, in particular without technical train-
ing. In addition, the use of NL makes it much easier for them to write specifications as
well. Since the semantics of Vitruvy are defined via Vitruv| , we have the same central
features in Vitruvy as in Vitruv| , viz:

e temporal relationships including fuzzy quantitative annotations,
e scenes and media objects for modularization,
e interactivity with events.

In our opinion defining classes and algorithms should better be left to technical devel-
opers. Therefore, classes appear in Vitruvy only implicitly (see the mapping to Vitruv|
in sec. 9.3 on page 207), and — compared with Vitruv — interactivity is available in a
simplified form only (see sec. 9.2.4.2 on page 205). For describing multimedia presen-
tations, however, these simplifications should mostly be sufficient.

As discussed earlier, NL as basis for a specification language requires to deal prop-
erly with the inherent problems of NL, i.e. with ambiguity, imprecision, vagueness
and incompleteness. Imprecision and vagueness are handled within the semantics of
Vitruvy, i.e. in Vitruv|_and its formal semantics, by using fuzzy set theory for denot-
ing vague or imprecision statements. Also incompleteness of Vitruvy specifications
is tackled in the formal setting, since the translation of the Vitruvy specification to
Vitruv|_indicates missing elements and with Vitruv| ’s formal semantics we can reveal
whether the specification is lacking required information.

The problem of ambiguity cannot be handled via the semantics, but is linked to
language structure. Essentially, it is connected with the central design decision for

195

9. Specifying with Natural Language

specification language based on natural language: either we allow the free use of NL
or we restrict ourselves to a limited subset of NL. The former alternative is, in general,
more user friendly, since it does not prevent users applying any kind of NL they like.
There are no restrictions on vocabulary or grammatical structures. Concerning tool
support (see req. 4 on page 11), this approach relies on parsing techniques from lan-
guage understanding, which have their difficulties. The aforementioned approaches
from Rolland and Proix (1992) or Gervasi and Nuseibeh (2002) have applied such
techniques with some success, but they either generate only a linguistic model of the
specification or are not concerned with the complete comprehension of the specifica-
tion. If we use a limited subset of NL only, we have a different set of pros and cons.
The subset of NL can be defined by a restricted vocabulary or a restricted grammar
(or both). Apparently, it constricts the specifier’s freedom concerning the language
used. For writers it might be an error-prone process to write correctly. Using sophis-
ticated editing tools can ameliorate the latter drawback by preventing many errors
in advance. On the positive side, a restricted grammar dramatically eases construc-
tion of analyzing tools, since we can move from general rewriting systems towards
more standard compiler techniques. Concerning ambiguity, the restricted grammar
and vocabulary makes it more easy to allow only such sentence structures which
avoid ambiguous situations. This is an additional reason why we prefer the restricted
option.

Another crucial point in designing a specification language based on NL is how
to deal with the semantics of the specification language. In particular, the formal se-
mantics should preferably not be visible in the specification language, since the main
motivation to use NL is to support non-technical developers, which are not inter-
ested in formal semantics at all. However, this approach is also applied in formal lan-
guage design. For instance, most functional programming languages, although based
on lambda calculus, do not support lambda calculus in its pure form but apply so-
called “syntactic sugar” (e.g. Mitchel, 1996; Schmidt, 1994; Winskel, 1993), choosing
semantical equivalent but better human-readable formulations. In contrast to formal
language design, where it is sufficient to define the semantics for each language con-
struct explicitly, in our case we have to ensure that the intuitive semantics match the
formal semantics as close as possible. Only in this case, non-technical developers can
understand documents written in the specification language with everyday reason-
ing and without (formal) training.

For Vitruvy;, we assume that specifications are more often read than written, and
thereby it is important to support an easy and comfortable reading. But we also want
to make tool development possible, and thus opt for a context-free grammar of a
careful selected subset of NL, which is amenable to relative efficient parsing. To sat-
isfy both expectations, we have to provide a language style which is not too tedious to
read by offering alternative formulations of the same semantic issues, i.e. we provide
different pieces of syntactic sugar for the same semantic element.

After these basic considerations, we discuss the selected language elements in more

196

9.2. Language Elements

detail in the next section.

9.2. Language Elements

To give Vitruvy a proper background regarding multimedia presentations, we choose
storyboards as the main metaphor for the language design. Storyboards originate
from the movie industry and are a well-known means for sketching multimedia pre-
sentations (Bailey et al., 2001a; Harada et al., 1996). Often a basic screen layout is
sketched for each scene combined with annotations of the action. The storyboard
metaphor structures specifications in Vitruvy, since each scene needs to be described
and each scene description has a similar structure, listing its constituents and their
temporal behavior. Therefore, the storyboard metaphor establishes important stylis-
tic and structural features of the language used.

Vitruvy is based largely on concepts and structures found in the German specifi-
cation language SFMP (Specification language For Multimedia Presentations), pro-
posed in the diploma thesis of Matthias Heiduck (1999). In an earlier paper (Alfert
and Heiduck, 2002), we presented a first proposal for translating SFMP into English
and for giving SFMP a more formal basis. Vitruvy;, as presented in this thesis, is a
newer development of this proposal. For SFMP, Heiduck (1999) shows a context-free
grammar definition, therefore a similar grammar should be definable for Vitruvy as
well. Of course, it is not guaranteed that parsing the grammar can be very efficiently
done, it may be required that we use Earley’s algorithm.

Although based on the same roots, there are some differences between SFMP and
Vitruvy. Most obviously, SFMP is a German specification language, whereas Vitruvy
is in English. Additionally, we restrict ourselves in Vitruvy; to the temporal behavior,
as found in Vitruv| , and thus omit spatial specifications for layout descriptions and
the media production hints found in SFMP. These differences are of minor concern
for this thesis, since we are only interested in specifications of temporal behavior and
their support for non-technical developers. The temporal features are maintained in
both languages, SFMP and Vitruvy.

In the following, we present the elements of Vitruvy with the help of some exam-
ples.

9.2.1. Preliminaries

The following description of Vitruvy, documents assumes a simple text-only format
of the specification documents. Usually, such documents have a rich format, e.g. for
emphasizing headings etc. Under usability considerations such formatted documents
are necessary, however, for our purposes they are not required. As a consequence, any
embellishments found in Vitruvy; specifications have only commenting characteristics

197

9. Specifying with Natural Language

but do not have any formal semantics, or with other words: the embellishments are
intended for the human reader only.

Similar to ordinary programming and specification languages, Vitruvy requires to
identify entities by name. Such names (or identifiers) may be several words long.
Identifiers in Vitruvy are delimited by quotes and may remind the reader of strings in
programming languages. This rather unusual form, at least from a programming lan-
guage viewpoint, has the benefit that identifiers may use otherwise reserved words
without conflict, since it is always perfectly clear whether we have an identifier or
another part of the specification. This is in contrast to languages such as PL/1, where
the decision whether a token is a reserved work or an identifier is context dependent
(Waite and Goos, 1984, p. 136), e.g. in the following code snippet: IF IF THEN THEN
ELSE ELSE.

For quantitative duration measures we can apply the usual time units of hours,
minutes, seconds and milliseconds. Fragments of hours and minutes are as usual
given as 1/60 of hours and minutes and are separated by colons, whereas fragments
of seconds are given as decimal fractions and separated by a decimal point. A dura-
tion of 23 minutes, 37 seconds and 415 milliseconds is denoted as 23:37.415 minutes.
For differentiating between precise and fuzzy durations we use as heuristic the use
of fragments: a duration of 5 seconds is considered as fuzzy duration whereas 5.0
seconds are a precise duration. Derivations from this heuristic can be resolved in the
binding of the specification after a translation from Vitruvy to Vitruy| .

To distinguish code fragment in Vitruvy from ordinary text we use angle brackets:
(This is an Vitruvy example), identifiers are shown with their quotes. In the following
examples we use three dots (...) as abbreviation for omitted parts of the specification.
Text in italics is considered as a comment and is often found as an explanation of the
abbreviation. Both, the dots and the comments are not part of the syntax of Vitruvy.

9.2.2. Presentation and Scenes

Each Vitruvy, document specifies one multimedia presentation, consisting of a list of
scenes, the first of which starts the presentation. Scenes are the top-level structuring
mechanism in Vitruvy;, and each scene has its own scope for its constituting elements.
Scenes are named with an identifier, which can be used to reference scenes, e.g. for
following links.

In example 9.1 on the facing page we show a presentation definition including one
scene. The beginning of the presentation is introduced by (Beginning of scene defini-
tions:), followed by a list of scene definitions. The presentation is closed by the single
word (End.). Each scene definition starts with (Description of scene), followed by an
identifier (here: (“The first scene”)). After that, a statement about the duration of the
scene may follow. The duration can be given qualitatively (e.g. by stating it is (short)
as in the example) or quantitatively. The scene definitions is finished by (End of the

198

9.2. Language Elements

scene description.).

Specification 9.1 Scene Definitions

Beginning of scene definitions:
Description of scene “The first scene”.
It is a short scene.

... details about the scene

End of the scene description.

... additional scene descriptions may follow
End.

The details of a scene consist of a list of media and their composition. This is dis-
cussed in the next sections.

9.2.3. Media Definition

In each scene a list of media is used. The media are declared and defined in the first
part of a scene definition, assigning to Each media an identifier and a type. The list
of types is open, we only require that for each type a respective class in Vitruv| ex-
ists. The five types (video), (audio-clip), (image), (text) and (button) are defined in the
prelude of Vitruv| and thus are the default set of media types.

In spec. 9.2 on the next page we show the media definitions for a scene. It starts with
(In this scene, these media are used:), followed by the media definitions. The list of
definitions is closed by (End of media definition.). Each media can be characterized by
an adjective, given between the article and the media type (here: loud). Additionally, a
short content description can be given, as shown for the text media. Both, this adjective
and the content description are intended for the human specifier only and are ignored
in the mapping to Vitruv| . For defining the identifier of media, different formulation
variations can be used as shown in the example. For videos and audio-clips we can
specify additionally their duration.

Media with a temporal extension, i.e. videos and audio-clips, may have a (tem-
poral) structure. A typical example is a video with different shots or topics. In the
Altenberg Cathedral context it might be a video showing several cathedrals, where
we want to identify for each cathedral when it is shown. In Vitruvy;, these parts of
media are called content elements and can be specified as part of the media definition.

In spec. 9.3 on the following page we see the definition of two content elements
of video (French). The definition of content elements is introduced by (In this media
the following content elements exist:) and is finished by (End of the content description).

199

content
description

content
elements

element
composition

9. Specifying with Natural Language

Specification 9.2 Media definition
In this scene, these media are used:

e The video, identified by “the video”. It has a duration of about 10 seconds.
e A loud audio-clip, in the following named as “loudness”.

e A detailed text about French cathedrals, identified by “cathedrals”.

.. additional media definitions may follow
End of the media definition.

Each element definition starts with (An element). The temporal arrangement of con-
tent elements with respect to each other and the containing media can be defined in
the element composition. Here we can use the same rules as for the media composition,
explained in the sec. 9.2.4, with the restriction that only references to the media itself
and its content elements are allowed. The element composition finishes the content
description and is introduced by (Element composition:).

Specification 9.3 Content Elements

The video with filename “French.mov”, in the following named as “French”. In
this media the following content elements exist:

An element named “Chartres”.

An element identified by “Amiens”.
... more elements may follow
Element composition:

The element“Chartres” starts immediately after the beginning of the video. The
element “Amiens” is 30 seconds long and follows “Chartres”.

End of the content description.

9.2.4. Media Composition
The media composition defines the temporal arrangement of the various media used

in a scene. It starts with (The media composition:) and ends after (End of the media
composition).

200

9.2. Language Elements

9.2.4.1. Temporal Arrangement

Defining the temporal arrangement of media is based on two central concepts, inter-
vals and time points. If we address the entire media, then we use the concept of an
interval since the media has temporal extension. If we refer to the start or end of a
media, then we are talking about time points. The distinction is important, because
the relations between intervals and time points are different from relations between
time points and relations between intervals and should be reflected by the language
design.

The media composition section is the central part of Vitruvy and in contrast to other
parts (cf. the media definition) it is less structured than a list of entities. Therefore, the
requirement of good readability is of particular importance here and thus we provide
a variety of sentence structures. In the following enumeration we list them with a
high-level grammar and an example. The nonterminals used in this grammar are
explained in table 9.1 on the following page, alternatives are separated by | similar to
regular expressions. With TE we identify a temporal entity, which is either a media,
a content element, or a time point of a media or of a content element. Obviously,
duration constraints are not allowed for time points, since their temporal extension is
zero.

1. TERV]RP TE: (The scene starts with video “French”.) The relation is either given
as a verb or as a preposition.

2. RP TE TE: (During video element “Amiens” we hear the audio-clip “present Amiens”).
Between both TE we have to add an appropriate activity, here (we hear), to form
a proper sentence.

3. TE ‘and’ TE RV: (Video “French” and audio-clip “Bells” start together). Both TE are
subject of the verb. The word ‘and’ in the grammar is a literal.

4. TE DURATION ‘and’ RV|RP TE: (The audio-clip “Bells Intro” is short and is fol-
lowed by audio-clip “Chartres Explained”.) The word ‘and’ in the grammar is a
literal.

5. TE DURATION: (Button “Abort” is enabled for 25 seconds.)

Beside the duration specification we can also qualify each media or content element
with a qualitative duration, e.g. (The scene starts with the long video “French”). We
present a media composition part of a scene definition applying these various gram-
matical structures in spec. 9.4 on the next page.

The relations used in the grammar relate pairs of time points, pairs of intervals, or a
time point and an interval, respectively. The relations between time points are either
(before), (after) or (equals). Between a time point and an interval we have (before),
(after) and (during), if we reverse interval and time point then we have instead of

201

9. Specifying with Natural Language

Specification 9.4 Media composition without events
The media composition:

The scene starts with video “French”. The audio-clip “Bells Intro” is short and
starts at the beginning of video “French”. The audio-clip “Bells Intro” is followed
by audio-clip “Chartres Explained”. During video element “Amiens” we hear
the audio-clip “present Amiens”. Button “Chartres Button” is active parallel to
the video element “Chartres”.

... more media composition descriptions may follow

End of the media composition.

nonterminal meaning

TE timed entity, i.e. an interval or time point

RV relation verb, i.e. a temporal relation as verb

RP relation preposition, i.e. a temporal relation as preposition

DURATION a duration specification, either quantitative or qualitative

Table 9.1.: Nonterminals of the grammar for temporal specifications.

(during) relation (contains). If we relate a time point to the beginning or end of an
interval, we do not have a relation between an interval and a time point but rather
between two time points, since start and finish of intervals are considered a time
point.

For relations between intervals we could use the 13 well known relations defined by
Allen (1983). We made experiments with users, including an English native speaker
without a computer science education, applying a first version of Vitruvy on scene
(The Intro), presented later in sec. 10.2.1 on page 220. The experiments showed that
Allen’s relations do not always satisfy the semantics of everyday English. Therefore,
we chose more appropriate terms and formulations, which are sometimes quite con-
trary to Allen’s approach. They, however, meet the expectations of the users more
correctly, which is what is required here. In table 9.2 on the next page we summarize
allowed formulations together with their translation into Allen’s calculus.

Interesting is that some of the formulations look like a modified relation or a com-
bination of relations (e.g. (starts immediately after)), but they are in fact linguistic vari-
ants of completely different relations in Allen’s calculus (here: met by). Another in-
teresting property is shown for (starts with), which translates to started by in Allen’s
system of relations. This is because Allen requires that the first mentioned interval
of the (starts) relation is the shorter of both intervals. Thus, (starts with) and Allen’s
starts are inverse relations, since the (starts with) implies that the second interval is

202

9.2. Language Elements

the shorter of both intervals. Other relations, such as (contains), are in their NL vari-
ant usually indifferent whether the borders are included. Therefore, we differentiate
between (contains) and (contains completely), similar to the subset and proper subset
relations in set theory.

Natural Language Relation Relation in Allen’s Calculus
A before B A before B
A after B A after B
A meets B A meets B
A and B start together A (starts or is started by or equal) B
A and B finish together A (finishes or is finished by or equal) B
A and B overlap A (overlaps or is overlapped by) B
A starts before B A (before or overlaps) B
A starts B A meets B
A starts immediately after B Ais met by B
A starts with B A is started by B
A finishes before B A before B
A finishes earlier than B A (before or overlaps or starts) B
A finishes immediately before B A meets B
A finishes B Ais met by B
A during B A (starts or during or finishes) B
A within B A (starts or during or finishes) B
A completely within B A during B
A contains completely B A contains B
A contains B A (is started by or contains or is finished by) B
A overlaps B A is overlapped by B

Table 9.2.: Natural language expressions regarding intervals and their counterparts in
Allen’s calculus.

All these relations can be qualitatively modified, e.g. the relation (after) can be mod-
ified to (shortly after), where the modifier (shortly) add some detail about the distance
between both related entities.

In addition the aforementioned temporal relations we have some other relations as
well, which are not built from words of Allen’s system of relations. We call these new
relations synonyms, since they can (or better: must) be replaced by some of Allen’s
relations to define their semantics, similar to synonyms in linguistics. Therefore, syn-
onyms can be seen as macros, which are replaced by their definition when we trans-
form the Vitruvy specification to Vitruv| (see sec. 9.3.4.1 on page 212). The synonyms

203

synonyms

canonical form

9. Specifying with Natural Language

used in the examples are listed in table 9.3, where we also present their definition in
terms of Allen’s relations.

We call the representation of relations in Vitruvy in terms of Allen’s relations as the
relations’ canonical form.

Synonym Relation in Allen’s Calculus
A follows B A met by B
A parallel to B A equals B
A at the same timeasB A equals B
A goes beyond B B (overlaps or starts) A
A extends beyond B B (overlaps or starts) A

Table 9.3.: Some synonyms for temporal relations

Similar to the relations, we can also use modified qualitative duration constraints.
This means that we not only allow single adjectives such as (short) or (long) as qual-
itative durations, but also expression such as (very long) or (not too long). Some of
these modified durations can immediately be built from the set of modifiers defined
in Vitruv|_(e.g. (very long) or (extremely short)), while others (e.g. (not too long)) do not
have this feature and thus are similar to the synonyms of interval relations: they need
an explicit translation definition. Because of this structure we use the same terms of
modifiers and synonyms for the additional duration constraints as for the relations.
In table 9.4 we show the three modified durations presented in this paragraph and
their definitions as Vitruv| expressions.

Modified Duration or Synonym Duration constraint in Vitruv

very long very (DURATION.long)
extremely short extremely (DURATION.short)
not too long below (DURATION.long)

Table 9.4.: Some modified durations and synonyms

However, we do not fix the set of modifiers and the set of synonyms for relations
and durations in Vitruvy for various reasons:

e Modifiers and synonyms are crucial for creating specifications, which are not
boring to read because of a limited set of allowed wordings. By not fixing the
set, it is easy to support specific dialects of developer groups.

204

9.2. Language Elements

e The intuitive semantics of modifiers and synonyms should be clear from the
context for the human reader of the specification. Due to their macro charac-
teristics it is easy to provide a library of definitions as compound relations for
them as part of the Vitruv| prelude, which can used for a (not necessarily au-
tomatic) translation from Vitruvy to Vitruv . Any further details are left to an
implementation.

9.2.4.2. Interaction

We have now to discuss how to describe interactions in Vitruvy;, which requires to de-
scribe events and reactions to events. In contrast to Vitruv| , more complex behaviors,
in particular combinations of loops and selectors, shall not be our primary concern for
Vitruvy. Such behavioral descriptions are better left for technical developers. There-
fore, we do not support loops and selectors in full detail, but only in a rather simple
form.

In Vitruvy, we have four different types of events: button can be pressed, and for
mouses we have click, double click and rollover events. Mouse events can be used
with every media or content element, button events only with buttons. The activa-
tion of an event is then implicitly equal to the activation of respective media. For
simplicity reasons, the reaction to an event is either an (if)-statement or a (loop), but
not both. This means that we do not support multiple reactions to an event, which
however are allowed in Vitruv| . Any (if)-statement refers to exactly one action in its
consequent part, which either follows a link to another scene or starts a media. In
spec. 9.5 we present an (if)-statement which links the button (ChartresButton) to the
scene (Chartres Info) which must be defined elsewhere in the same specification. Al-
ternative formulations for the activation of scene (Chartres Info) are (leave for scene
...) (asin Vitruv|) and (replace the current scene by scene ...).

Specification 9.5 Branching to another scene
... declaration of “ChartresButton”

The media composition:

If button “ChartresButton” is pressed then scene “Chartres Info” is activated.

End of the media composition.

Loops have a temporal extension and are thus considered an additional media type.
Therefore, loops need to declared in the media definition section as of type (Loop)
before we can use them in the media composition section. This is similar to loops

205

9. Specifying with Natural Language

in Vitruv|_ (see sec. 5.5 on page 70). In spec. 9.6 we present a loop (L) depending on
button (b). This specification corresponds to spec. 5.7 on page 73: loop (L) iterates
until button (b) is pressed and plays in each iteration the audio-clip (a). After the
loop finishes, video (x) is activated. The body of the loops is introduced by (Loop
...repeats until ...:) and is closed by (End of the loop). In the body of loops arbitrary
media compositions are allowed, but as in Vitruv| , and for the same reason, the used
media must not be applied outside the loop body.

Specification 9.6 Loops in Vitruvy

A loop named “L.
...declaration of b, a, x ...
The media composition:

The scene starts with activating button “b”. Loop “L’ repeats until button “b” is
pressed:

The loop starts with audio “a”.
End of the loop.
Loop “L” is followed by video “x”.

End of the media composition.

9.2.5. Omitted Elements of VitruvL

Not every part of Vitruv| specifications is expressible in Vitruvy;, since some of them
are either better suited for technical developers or they do not occur in a NL specifi-
cation. We will list these issues here and discuss them briefly.

206

¢ An explicit binding section is not available in Vitruvy;, because we are interested

in a conceptual model and not its realization. Some information in Vitruvy spec-
ifications can be used for establishing a binding, when the specifications are is
translated to Vitruv| . In particular, all quantitative duration constraints and each
declared and used media object occur also in the respective Vitruv| binding.

While instances of classes defined in Vitruv| are available in Vitruvy, e.g. for
media types, class definitions cannot be made. The required knowledge about
class hierarchies, syntactic and semantic details of inheritance, etc., prevents the
explicit use of object-orientation without training. Although possible NL state-
ments, like “X is a Y, give a hint for applying inheritance, the intended se-
mantics of such statements, however, are too ambiguous. Typical pitfalls, such
as incompatible class hierarchies (Do unbounded stacks inherit from bounded

9.3. Mapping Vitruvy; to Vitruv

stacks or the other ways round or neither?) or mixing of classes and instances,
can arise easily. Therefore, we prefer limited expressiveness of Vitruvy in favor
of a unambiguous specification.

e Additional compound relations need not to be defined in Vitruvy, but can sim-
ply be used. Their definitions, however, have to be provided for Vitruy , since
we need the definitions for the technical realization. But common sense should
be enough to understand what their meaning is, hence no definition in Vitruvy
is required.

o New fuzzy types can not be defined in Vitruvy;. They are considered as too tech-
nical and thus, similar to classes, are omitted from Vitruvy.

9.3. Mapping Vitruvy to Vitruv

In this section we explain how to translate systematically a Vitruvy specification to
Vitruv| in a top-down manner, following the structure of sec. 9.2. While we do not
present an algorithm in its entirety, we provide the core features of the translation
algorithm which should provide enough information to perform the transformation
by hand. We illustrate the process by translating the examples given earlier in sec. 9.2.
Additionally, in sec. 10 on page 219 we show a larger example of a Vitruvy specifica-
tion with its transformations into Vitruv; and Vitruvian Nets.

The central idea of the transformation is to preserve as much structure, names, etc.
as possible from the source specification into the transformed Vitruv| specification.
We do this by applying a three-level scheme for scenes and media:

1. each scene becomes a class,

2. each media (o) of type (m) defined in a scene becomes an instance of a prede-
fined media class M if media (o) does not contain any content elements. Other-
wise, we generate a class M’ of its own for media (o)and instantiate class M'.

3. each content element is modeled as an instance from class Interval.

These classes are augmented by event declarations if needed. Additionally we con-
struct a rudimentary binding section indicating the media and scenes used.

This should give an impression of the path of the transformation process, we will
now investigate the details.

9.3.1. Preliminaries

Some general rules can be discussed independently of the transformation context. In
particular the handling of identifiers and duration measures are to mention.

207

9. Specifying with Natural Language

Whitespace is not significant for identifiers in Vitruvy. This makes it easy to trans-
form these identifiers to Vitruv| , since we can simply remove any whitespace to get
appropriate identifiers for Vitruv| . For better readability, we can choose whether we
replace whitespace by underscores or start each new word with a capital letter: the
identifier several words long would replaced to several_words_long or to severalWord-
sLong, respectively. However, this is a matter of taste. If an identifier name clashes
with a reserved word from Vitruv| or predefined identifier, e.g. from the prelude,
a completely fresh identifier should be chosen. In the following discussion we use
identifiers from Vitruvy with their quotes to distinguish them unambiguously from
identifers of Vitruv| specifications.

In Vitruv, we do not have the notion of time units, there is only the real line as
abstraction of time. Therefore, it is required that a transformation from Vitruvy to
Vitruv|_fixes a mapping from the various time units into the real line, i.e. into a system
with only one unit. For simplicity reasons, we propose to use seconds as unit of choice
and apply this mapping throughout all examples. However, which specific mapping
is used does not matter (at least semantically), the mapping needs only to be fixed for
each transformation process. Any further details are left to an implementation.

9.3.2. Presentations and Scenes

Each scene defined in Vitruv|_is mapped to a class in Vitruv| which inherits the marker
class Scene (see 5.6 on page 78). All media defined in the scene become elements
of the scene class. In the binding, each scene is instantiated once. Essentially, the
scene classes and most other classes, created during this transformation, are singleton
classes.

The first scene in Vitruv| is the first scene in the presentation, therefore the instance
of the respective class is also the first scene in binding section.

In spec. 9.7 on the next page we see the transformed specification of scene (“The
first scene”) (taken from spec. 9.1 on page 199). This specification comes complete
with binding, but the more interesting parts are left to later specifications, after we
introduce the remaining transformation rules.

9.3.3. Media Definitions

The media defined in a scene are transformed to elements of the respective scene
class. The type of these class elements corresponds to the media type of Vitruvy: me-
dia type (video) corresponds to the predefined class Video, and so on. If we have a
duration constraint for the media (e.g. (a long video)), then this constraint is trans-
formed to a duration constraint on the length of object in the body of the scene class.
Additionally we add an entry for each media in the binding making sure that an in-
stance of respective class is created. These entries in the binding may be empty, e.g.

208

9.3. Mapping Vitruvy; to Vitruv

Specification 9.7 The first scene in Vitruv|

// additional definition classes, compound relations and fuzzy types
class TheFirstScene extends Scene
let
/1l some media definitions
body
this.length is DURATION. short;
/!l further relations and constraints

end;
end;
/! additional definition classes, compound relations and fuzzy types
bindings
in prelude
/! binding of the prelude
end;

object tfs : TheFirstScene
/!l binding of the first scene
end;
/1 binding of additional scenes
end;

object theVideo : Interval end;. This is the case whenever we do not have any informa-
tion about the internals of the media. Nevertheless, this is sufficient for instantiating
the respective objects.

In spec. 9.8 on the next page we see the respective parts of a Vitruv| specifica-
tion, based on the spec. 9.2 on page 200. The three media definitions of (“the video”),
(“loudness”) and (“cathedrals”) are modeled as elements theVideo, loudness and cathe-
drals, resp., of an appropriate class. In the binding, we realize the duration constraint
({ca. 10 seconds)) of (“the video”) as triangular fuzzy set with 10 as core value.

If the media contains media elements then the construction is more complicated.
The predefined media classes do not have any internal structure and thus cannot be
used to model the media with its elements. Therefore, we create a new class for the
media inheriting from the respective class of the media type. All media elements be-
come elements of the new class with type Interval, since we do not know anything
specific about the media elements. All qualitative duration constraints and tempo-
ral relationships between the elements and the media are transformed into the body
of the newly created class. Quantitative duration constraints make their way to the
binding of the respective instance of the new class.

The respective media is usually the only instance of its class, since each media is
unique, because no other media with the same structure exists. This is the reason why
we do not require any kind of equivalence tests of media structure during the trans-

209

9. Specifying with Natural Language

Specification 9.8 Media definitions in Vitruv|

/!l in some class extending Scene
let
theVideo : Video;
loudness : Audio;
cathedrals : Text;
body
. I/ the remainder of the specification
bindings

object theVideo : Video
let length := triangle (6, 10, 14);
end;
object loudness : Audio
end;
object cathedrals : Text
end;
end;

formation, even if their outcome could result in fewer classed generated. Of course,
the assumption that no equivalent structures exist is only a heuristic, nevertheless we
are convinced that the heuristic will only seldom fail.

In spec. 9.9 on the next page we see the transformation of spec. 9.3 on page 200,
where two elements, (“Chartres”) and (“Amiens”), are defined inside video (“French”).
In Vitruv| we generate the new class Videol extending class Video and defining the
two elements Chartres and Amiens as intervals. Their temporal arrangement is found
in the body of class Videol. The quantitative duration constraint of “Amiens” is applied
in the binding of element Amiens of class instance French.

9.3.4. Media Composition

While transforming the media composition we have to address various topics, most
of them deal with the body of the class modeling the current scene. The temporal
arrangement, which is rather freely defined in Vitruvy;, has to be normalized to legal
Vitruv|_expressions. If we use events, suitable event declarations have to be made. We
discuss these issues now.

210

9.3. Mapping Vitruvy; to Vitruv

Specification 9.9 Media definitions with elements in Vitruv|

class Videol extends Video
exports Chartres , Amiens

let
Chartres : Interval;
Amiens : Interval
body

this.alpha starts Chartres.
Chartres meets Amiens.

end;
end;
/! in some other class
let
French : Videol;
body
// the remainder of the specification
bindings
object ... // binding of some class
object French : Videol
object Chartres : Interval ... end;
object Amiens : Interval
let length := triangle (26, 30, 34);
end;
end;
end;
end;

211

9. Specifying with Natural Language

9.3.4.1. Temporal Arrangement

The temporal arrangement defined in Vitruvy applies to scenes. Therefore, the me-
dia composition maps primarily to the body of the class modeling the current scene.
The interval relationships found in Vitruvy have to be transformed to their canonical
form in the strict INTERVAL RELATION INTERVAL syntax used in Vitruy; . Compound
relations are not declared explicitly in Vitruvy but this is required for Vitruv| . For the
translation of compound relations two strategies are possible:

1. The transformation is only possible if for all compound relations used in Vitruvy,
a respective definition of the relation in Vitruv|_exists. The typical place for such
definitions is the prelude.

2. The transformation generates for each unknown compound relation an empty
definition in Vitruv| . The specifier is obliged to check the generated specification
and to fill the empty definitions.

We prefer the second alternative, because it is more user friendly in our opinion. But
both alternatives can be realized in an implementation.

In spec. 9.10 on the next page we present the transformation of spec. 9.4 (see p. 202),
both specifications use the former specification of video “French” or class Videol, re-
spectively. The type of French is class Videol, defined in spec. 9.9 on the preceding
page. The relation between media “present Amiens” and element “Amiens” in Vitruv
are realized by a relation between presentAmiens and French.Amiens, the latter rep-
resenting the media element. The activity of a button means that the corresponding
eventis enabled. The event is pressed, according to the former specification of buttons
in spec. 5.6 on page 71. This knowledge about buttons and their structures makes evi-
dent why the standard set of media types in Vitruvy is not completely open: in general
the transformation process needs knowledge about the intended meaning of the me-
dia definitions. Consequently, adding a media type to Vitruvy requires also a change
in the transformation implementation.

9.3.4.2. Interaction

For interaction purposes Vitruvy allows four different kinds of events. Buttons can be
used immediately, since their event declaration is already done in the prelude. For the
three mouse events, the situation is different, since they can be used for every media.
Therefore, we apply a similar strategy as for media elements: if a mouse event is used
for an instance of a media type, then we generate a new class for the media inheriting
from the respective media type and add to this new class a mouse event. If the events
is applied to a media element, then we generate also a new class, inheriting, however,
from class Interval, which is normally used for modeling media elements.

Access to events with an (if)-statement is translated to a selector, which has to be
declared in the let-block of the class definition. The selector is somewhat degenerated

212

9.4. Assessment of Vitruv

Specification 9.10 Media composition without events in Vitruv|

let
French : Videol;
Bellsintro : Audio;
ChartresButton : Button;
presentAmiens : Audio;
ChartresExplained : Audio

body
this.alpha starts French;
Bellsintro.length is DURATION. short;
Bellslintro isStartedBy French;
Bellsintro meets ChartresExplained;
presentAmiens during French.Amiens;
ChartresButton.pressed equals French.Chartres;

end;

since it features only one path of control, to which we translate the consequent of
the (if)-statement. Branching to another scene is realized as always in Vitruv| by us-
ing leave for. This is shown in spec. 9.11 on the following page, which is the Vitruv;
transformation of spec. 9.5 on page 205.

Translating loops to Vitruv| is now straightforward. The loop is already declared in
Vitruvy;, and has to be declared in Vitruv| as an element of the scene class as well. The
body of the loop enjoys the same temporal arrangement constructions as the media
composition of a scene, so there is nothing new here. The only important difference
is that all media and media elements occurring in the body of the loop in Vitruvy
are required to be local elements of the loop in Vitruv| . For proper Vitruvy specifica-
tions this is no problem, since no relation between temporal entities inside a loop and
those outside a loop are allowed. We do not provide an example since Vitruvy speci-
fication 9.6 on page 206 is built after its Vitruv| counterpart in spec. 5.7 on page 73.

9.4. Assessment of Vitrqu

For assessing Vitruvy we carried out experiments. Our aim was to check whether
Vitruvy specifications are understandable without training or detailed explanation
such that different experiment subjects come to the same interpretation of the spec-
ification. Since we want to test the simple understandability of Vitruvy, we decided
that the subjects have to draw a bar chart, where each bar indicates a certain interval
and its position throughout the scene. This is very similar to the bar chart provided
in fig. 3.1 on page 31 and is an apparent and simple notation for (simple) concurrent

213

9. Specifying with Natural Language

Specification 9.11 Branching to another scene in Vitruv|

let
S : Selector;
ChartresButton : Button;
body

s selects (ChartresButton.pressed) with rules
on (isPressed) do
let Chartresinfo : Scene;

body
alpha meets leave for (Chartresinfo);
end;
end;
end;
activities.

The simple bar notation restricts us to pre-orchestrated specifications, just because
branching and loops are not well suited for this notation. Using branching and loops
in the experiment would require a more difficult notation for the interpretation of the
specification. Their use increases the risk that erroneous interpretations are based on
misunderstandings of both, Vitruvy; and that particular notation. In such a case the
analysis of negative experiment results is also difficult, because it is unclear where
the roots of the problem are.

The experiment was undertaken by three subjects, including an English native
speaker without a computer science education. We gave the subjects a scene descrip-
tion (the intro scene from sec. 10.2.1 on page 220, in a first version of Vitruvy) together
with a brief introduction of less than five minutes. Their task was to draw a bar chart
of the temporal arrangement of the scene, showing position and length of the media
and their elements. The results were promising, since all bar charts were very sim-
ilar, differences result primarily from unspecified media durations. However, some
derivations from the correct solution had other reasons: using Allen’s relation directly
does not fit to the semantics of every day English. This result was also discussed ear-
lier in sec. 9.2.4.1 on page 201. A second experiment with the same scene, but the
current version of Vitruvy, did not show these derivations.

Nevertheless, the discussion after the experiments indicated some disadvantages
of Vitruvy. Concerning multimedia presentations, the users missed information of
the spatial arrangement, required for building the mental image of the specified pre-
sentation. Of course, this is a disadvantage by design, since we explicitly omitted any
spatial information from Vitruv, but focus on temporal specifications only.

A second problem mentioned in the discussion was that only binary relations be-

214

9.4. Assessment of Vitruv

tween media are considered. This results sometimes in quite boring and repeating
sentence structures. A typical example is a sequence of intervals, which are described
by structures like A meets B, B meets C, C meets D etc. Another example is the parallel
start of some intervals, e.g. in A starts B. A starts C. A starts D. Here, n-ary relations
were preferred by the users, e.g. A starts B, C and D.

Concluding, we can say that the experiments have shown that the overall approach
of Vitruvy looks promising.

215

9. Specifying with Natural Language

216

Part Ill.

Applying Vitruv

217

10. The Multimedia Cathedral

In this chapter we present as a larger example a multimedia presentation specified in
Vitruv. The example presents French Gothic cathedrals and is intended as an extension
of the Altenberg Cathedral Presentation (sec. 1.1 on page 1). We present three scenes
in detail, but make references to other scenes as well, which are required to specify
a complete application: three scenes are not enough for all the beautiful cathedrals.
Beside the ability to specify multimedia presentations with Vitruv, we show in this
example how the different models of Vitruv are related and how the models cooperate
in the transformation from the initial Vitruvy specification to the formal semantics as
Vitruvian Nets.

In sec. 10.1 we sketch the scenes very briefly, followed in the next sections with
more elaborated specifications in Vitruvy (sec. 10.2 on the next page), transformed to
Vitruv|_in sec. 10.3 on page 224 and finally in sec. 10.4 on page 238 as Vitruvian Nets.
In sec. 10.5 on page 248 we conclude the example with a summarizing discussion.

10.1. Scene Collection

In this section we describe the three scenes very briefly to guide the reader more
easily through the example. In the setting of a development process, the description
here can also be seen as a first coarse grained requirements statement, which is refined
in the next sections.

Intro Scene
The introduction scene presents a video moving from a cathedral ground plan to the
west work, through the rose window into the interior. Then the focus moves to the
colored windows and the video finishes while showing a medieval scene in one of
the windows.

During the video, we hear organ music, superimposed with bells during the west
work shot and with medieval music parallel to the medieval scene. Additionally, the
title and subtitle of the presentation is shown during the first parts of the video.

Main Menu
The main menu scene is the central scene of our presentation. Various buttons allow
to branch to different subsequent scenes and to exit the presentation.

219

10. The Multimedia Cathedral

Various Cathedrals

This scene is well known from various examples throughout the thesis. \We see some
cathedrals, including those of Chartres and Amiens, in an animation. For each cathe-
dral a button is shown, a click on the respective button leads to another scene explain-
ing that cathedral in more detail.

10.2. Specifying with Vitruvy

In this section we specify with Vitruvy the scenes sketched in the last section. To ease
reading the specification we have enhanced the layout of the specifications: headings
are set in boldface and for enumeration lists of media and elements we use lists with
bullets; comments within the specification use an italic font.
For each scene, we have a section of its own. The specifications found there have to
be embedded into the following torso:
Beginning of scene definitions:

Description of scene “The Intro”.
Details are in sec. 10.2.1.

Description of scene “Main Menu”.
Details are in sec. 10.2.2 on the facing page.

Description of scene “Various Cathedrals™.
Details are in sec. 10.2.3 on page 222.

Some more scenes may be specified here. In particular the scenes presenting
details of the cathedrals of Amiens, Chartres, Paris, Reims and Rouen, which
are referred in sec. 10.2.3 on page 222.

End.

10.2.1. The Intro
The introduction is a typical pre-orchestrated scene without any user interaction.

Description of scene “The Intro”.
It is a short scene.
In this scene, these media are used:

e An image identified by “the Title”.
e Animage named as “Subtitle”.
e A video named as “intro”. In this media the following elements exist:

— An element named “rose windows”.

220

10.2. Specifying with Vitruv

— An element identified by “west work”.
— An element identified by “ground plan”.
— An element named “colored windows”.
— An element named “medieval scene”.

Element composition:

Element “rose windows” is shown completely during “west work” and is
about 2 seconds long. Element “west work” is overlapped a very little by
“ground plan”. Element “ground plan” starts immediately after the begin-
ning of the video. Element “colored windows” is overlapped slightly by
“medieval scene” and is met by “west work”. Element “medieval scene”
and video “intro” finish together.

End of the content description.
e A short audio-clip identified by “bells”.
e An audio-clip named as “organ music”.
e A short audio-clip identified by “medieval music”.

End of the media definition.
The media composition:

The scene starts with video “intro”. Parallel to video “intro” we hear the audio-
clip “organ music”. Presenting the image “the Title” overlaps largely video el-
ement “ground plan”. Shortly after image “the Title” the image “Subtitle” is
shown. Video element “west work” and the rendering of image “Subtitle” finish
together. During video element “west work” we hear audio-clip “bells”. Audio-
clip “medieval music” sounds during the “medieval scene”. Immediately after
video “intro”, we activate scene “Main Menu”.

End of the media composition.
End of the scene description.

10.2.2. Main Menu

The main menu contains a loop, which is finished by pressing the exit button. Af-
ter the loop, nothing else happens and thus the presentation ends. Inside this loop,
we activate button (“The Cathedral Tour”), leading to the respective scene. If we had
additional menu entries, we would add a button for each entry. We make the entire
loop as long as the audio-clip, which guarantees that the loop body finishes when the
audio-clip ends. Hence, the audio-clip is repeated until the exit button is pressed.

Description of scene “Main Menu”.
In this scene, these media are used:

221

10. The Multimedia Cathedral

A button identified by “Exit-Button”.

A button named as “The Cathedral Tour”.

A not too long audio-clip identified by “atmosphere”.

e A loop named “waiting for the end”.

End of the media definition.
The media composition:

The scene starts with activation of button “Exit-Button”. Loop “waiting for the
end” repeats until button “Exit-Button” is pressed:

The loop starts with activating button “The Cathedral Tour”.
The loop is equal to the audio-clip “atmosphere”.

If button “The Cathedral Tour” is pressed then scene “Various Cathedrals” is
activated.

End of the loop.
End of the media composition.

End of the scene description.

10.2.3. Various Cathedrals

This scene is similar to various examples throughout this thesis. We have a video
and an audio-clip, the elements of both synchronously present various cathedrals.
During the presentation of each cathedral, a button appears. A click to this button
links to another scene (not shown here), which shall present the respective cathedral
in more detail.

The very regular structure of the scene is also present in the specification. Since the
sequence of the video and audio elements are equally structured, it is sufficient that
we only specify the video element sequence in the element composition of the video,
whereas the audio elements are arranged to be more or less equal to the video coun-
terparts in the media composition part of the scene. An even more regular structure of
the scene would include also the sequence of audio elements in the media definition
part.

Description of scene “Various Cathedrals™.

In this scene, these media are used:

e A button identified by “To Chartres”.
e A button named as “To Amiens”.

e A button named as “To Reims”.

222

10.2. Specifying with Vitruv

e A button identified by “To Paris”.
e A button named “To Rouen”.

e A 2 minute long video, named as “Some Cathedrals”. In this media the
following content elements exist:
— An element named as “Chartres”.
— An element identified by “Amiens”.
— An element named as “Reims”.
— An element identified by “Paris”.
— An element identified by “Rouen”.

Element composition:

The element “Chartres” starts immediately after the beginning of the
video. The element “Amiens” is 30.0 seconds long and follows element
“Chartres”. The element “Reims” is shown immediately before element
“Paris” and has a duration of nearly 25 seconds. The element “Reims”
finishes element “Amiens”. The element “Rouen” is about 25 seconds
long and follows element “Paris”. The end of element “Rouen” is equal to
the end of the video.

End of the content description.
e An audio-clip identified as “Characterize the Cathedrals”. In this media,
the following content element exists:
— An element identified by “Explain Chartres”.
— An element named as “Explain Amiens”.
— An element named as “Explain Reims”.
— An element named as “Explain Paris”.
— An element identified by “Explain Rouen”.

End of the media definition.
The media composition:

The scene starts with video “Some Cathedrals”. Immediately after the video
“Some Cathedrals”, we replace the current scene with scene “Main Menu”.

During video element “Chartres” we hear the audio element “Explain Chartres”.
Parallel to video element “Chartres”, button “To Chartres” is active. If button “To
Chartres” is pressed then we leave for scene “Chartres Details”.

The audio element “Explain Amiens” is played during video element “Amiens”.
The Activation of button “To Amiens” is at the same time as the rendering of
video element “Amiens”. If button “To Amiens” is pressed then scene “Amiens
Details” is activated.

223

EEN GO RN O I

10. The Multimedia Cathedral

The video element “Reims” contains the audio element “Explain Reims”. Par-
allel to video element “Reims”, button “To Reims” is active. If button “To Reims”
is pressed then scene “Reims Details” is activated.

During video element “Paris” we hear the audio element “Explain Paris”. Par-
allel to video element “Paris”, button “To Paris” is active. If button “To Paris” is
pressed then scene “Paris Details” is activated.

During video element “Rouen” we hear the audio element “Explain Rouen”.
Video element “Rouen” is shown at the same time as the activation of button
“To Rouen”. If button “To Rouen” is pressed then the current scene is replaced
with scene “Rouen Details”.

End of the media composition.

End of the scene description.

10.3. Cathedrals in Vitruv|_

We now present the scenes of our example presentation written in Vitruy, .

We model the class structure of each scene as an UML diagram, using the con-
vention that aggregation of predefined classes (i.e. of Interval, Video, Audio, Image,
Text, and Button) is modeled as attribute declarations, whereas aggregation of classes
defined in the scene is modeled by aggregation associations between the respective
classes. Marker classes, such as Scene, are tagged with the stereotype <<Marker
Class>>.

The following listings for the scenes are self-contained, i.e. we provide class, rela-
tion and type definitions together with their respective binding. This breaks the rather
longish specification into three shorter parts, one for each scene. This eases the expla-
nation of each scene. Of course, for a complete and syntactically correct specification,
all three listings have to be merged as indicated in listing 10.1.

The transformation from Vitruvy to Vitruv follows the rules given in sec. 9.3 on
page 207. The entire Vitruvy presentation is translated to a set of classes, definitions
for compound relations and the respective binding. Each scene in Vitruvy is mapped
to a class inheriting from class Scene, where the first scene instantiation in the binding
defines which scene is the starting scene in the presentation. Here, it is scene object
introScene, representing scene (“The Intro”). We reference the remaining rules when
they are applied for the first time in this example.

Listing 10.1: The Code-Frame for the Cathedrals Presentation

/1 We start with the definition of the Introduction Scene,

/! shown in listing10.2

define interval relation A overlapped a very little by B =
[/l ... and other compound relations

224

© O N 45 O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

10.3. Cathedrals in Vitruv

// and classes of Scene IntroScene
end; // of class IntroScene

/!l We go on to the definition of the Main—Menu Scene,
/1 shown in listing10.3
class MainMenuScene
Il
end; // of MainMenuScene

/1 Now to the definition of scene Various Cathedrals,
/! shown in listingl10.4
class SomeCathedralsVideo
/1 ... and other classes of Scene VariousCathedralsScene
end; // of class VariousCathedralsScene

/!l Finally the combined binding section

bindings
object introScene : IntroScene
/!l The binding is shown in listing10.2
end;

object MainMenu : MainMenueScene
/!l The binding is shown in listing10.3
end;
object variousCathedrals : VariousCathedralsScene
/!l The binding is shown in listing10.4
end;
end;

10.3.1. The Introduction Scene

The introduction scene (“The Intro”) consists of several media, but the only one of
them with internal structure is video (“intro”). Following the rules for media defini-
tions in sec. 9.3.3 on page 208, we have only to introduce a new class for the video
(intro) inheriting from class Video, all other media are only instances of the prede-
fined media classes. This structure is shown in the UML diagram in fig. 10.1 on the
following page: classes Thelntro and introVideo represent the scene itself and the video
(“intro™), respectively. In introVideo the elements are declared with type Interval (cf.
sec. 9.3.3).

In listing 10.2 on page 227 we present the Vitruv| specification of scene Intro, corre-
sponding to the UML diagram in fig. 10.1 on the following page. The four compound
relations used in scene (“The Intro”) are explicitly defined in the specification, accord-
ing to sec. 9.3.4.1 on page 212. For the sake of completeness, we present them not only

225

10. The Multimedia Cathedral

«Marker Class»
Scene

[P

| Video v
Thelntro
Title: Image Interval
Subtitle: Image
OrganMusic: Audio
Bells: Audio
MedievalMusic: Audio
MM: Scene
introVideo
ntros GroundPlan: Interval
1OLLO RoseWindow: Interval

WestWork: Interval
ColoredWindows: Interval
MedievalScene: Interval

Figure 10.1.: UML Class Diagram for the Scene “Intro”

as empty definitions but add proper definitions. However, these definitions are not
covered by the systematic translation of Vitruvy to Vitruv| , but are the task of the de-
velopers working on the transformation. To make the comprehension of the relation
definition easier, we add to the definition a pictorial description of the temporal ar-
rangement of the intervals used. The regular interval relationships, i.e. not compound
ones, are transformed from Vitruvy; following the mapping presented in table 9.2 on
page 203.

The final statement in scene (“The Intro”) activates scene (“Main Menu”). This is trans-
lated into a leave for statement in the class definition of IntroScene and requires in the
binding a reference to an instance of class MainMenu (cf. sec. 9.3.4.2 on page 212).

Not all media or media elements in scene (“The Intro”) have an internal structure or
duration assignments. Nevertheless, all media and media elements referenced in the
Vitruvy specification are required to be instantiated in the Vitruv| specification. There-
fore, following the rules in sec. 9.3.3 on page 208, we have several object-entries in the
binding, which are empty (e.g. object OrganMusic : Audio end;), but we guarantee that
the respective objects are instantiated.

For media or media elements with specified durations, we need assignments in
the binding (cf. sec. 9.3.3). In the Vitruvy specification (sec. 10.2.1 on page 220), the
duration of (rose windows) was specified as about 2 seconds long. This requires an
assignment of a fuzzy set, with 2 in its core, to the length of RoseWindow, the Vitruv|
counterpart of (“rose windows”). We decide here to use the triangular fuzzy set triangle
(1.5, 2.0, 2.5), which models a duration of about 2 seconds. However, the decision for
this particular fuzzy set is somewhat arbitrary. In general, the value used depends on
the developers involved in the transformation process, or on an appropriate heuristic
in an automatic translation process. However, if the initial value is not appropriate,

226

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

10.3. Cathedrals in Vitruv

then, according to our proposal of a process model for Vitruv (sec. 4.5 on page 56), we
can try a better value in the next iteration.

Listing 10.2: The Introduction Scene

/!l The Introduction Scene

define

interval relation A overlapped a very little by B =

// BBBBBBBBBBBB

I

AAAAAAAAAAAAA

/| CCCCCCCCCDDDEEEEEEEEEE
let C, D, E
in rules

)
>

define

I

2uomoooo>»

’

overlapped by B;
starts B;

meets A;

meets D; D meets E;
finishes B;
finishes A;

.length is extremly (short) ;

interval relation A overlapped largely by B =
AAAAAAAAAAAAA

/| BBBBBBBBBBBB

/] CCCDDDDDDDDDEEEE
let C, D, E

in rules

)
>

define

I

doomooo>»

’

overlapped by B;
starts B;

meets A;

meets D; D meets E;
finishes A;
finishes B;

.length is large;

interval relation A overlaps slightly B =
BBBBBBBBBBBB

/1 AAAAAAAAAAAAA

/| CCCCCCCCCCDDDEEEEEEEEE
let C, D, E

in rules

A overlaps B;

C starts A;

227

10. The Multimedia Cathedral

41 C meets B;

42 C meets D;

43 D meets E;

44 E finishes B;

45 D finishes A;

46 D.length is slightly (short) ;
47 end;

48

49 class IntroScene
50 extends Scene
51 exports theTitle;

52 let

53 Bells : Audio;

54 intro : IntroVideo;

55 OrganMusic : Audio;

56 MedievalMusic : Audio;

57 theTitle : Image;

58 Subtitle : Image;

59 MM : Scene;

60 body

61 this isStartedBy intro;

62 intro equals OrganMusic;

63 theTitle overlapped largely by intro.GroundPlan;

64 Subtitle (shortly after) theTitle;

65 Subtitle (finishes or finished by) intro.GroundPlan;
66 Bells (starts or during or finishes) intro.WestWork;
67 MedevialMusic (starts or during or finishes) intro.MedievalScene;
68 intro meets leave for (MM) ;

69 end;

70 end;

71

72

73 class IntroVideo
74 extends Video
75 exports GroundPlan, RoseWindow, WestWork,

76 ColoredWindows, MedievalScene;
77 let

78 GroundPlan : Interval;

79 RoseWindow : Interval;

80 WestWork : Interval;

81 ColoredWindows : Interval;

82 MedievalScene : Interval;

83 body

84 this isStartedBy GroundPlan;

228

85

86

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

10.3. Cathedrals in Vitruv

GroundPlan overlapped a very little by WestWork;
RoseWindow during WestWork;
ColoredWindows overlaps slightly MedievalScene;
MedievalScene finishes this;
end;
end;

bindings
object introScene : IntroScene
object Bells : Audio end;
object intro : IntroVideo
object GroundPlan : Interval end;
object RoseWindow : Interval
/1l rose window has a length of about 2 seconds
let length := triangle (1.5, 2.0, 2.5) ;
end;
object WestWork : Interval end;
object ColoredWindows : Interval end;
object MedievalScene : Interval end;
end;
object OrganMusic : Audio end;
object MedievalMusic : Audio end;
object theTitle : Image end;
object Subtitle : Image end;
let MM := ref (MainMenu) ;
end;
object MainMenu : MainMenuScene
/1 see listing 10.3 on page 231
end;
end;

10.3.2. The Main Menu

In scene (Main Menu) we have as declared entities a loop and two buttons, which
handle user input. The transformation of the buttons follows those of other media,
each button becomes an instance of the standard class Button. As reaction to button
(“The Cathedral Tour”) we have an (if)-statement in the media composition part of
scene (Main Menu). This (if)-statement and the loop are transformed into a Selector
and a Loop instance, resp., including the access to the events of the two buttons, as
defined in sec. 9.3.4.2 on page 212. The Loop instance is named in accordance to its
Vitruvy identifier as waitingForTheEnd, while we have to introduce a new identifier
for the selector, because the selector has no corresponding named entity in Vitruvy.
We decided to use SelTCS as identifier for the selector. Since the (if)-statement occurs

229

10. The Multimedia Cathedral

inside the loop body, the corresponding selector SelTCS is defined as local variable
of the body of loop waitingForTheEnd.

The UML diagram in fig. 10.2 shows the class structure of the main menu scene,
which is applied in listing 10.3 on the facing page. As usual, class MainMenuScene is
derived from class Scene. Loop waitingForTheEnd and selector SelTCS inside the loop
are modeled as entities of their own with stereotypes Loop and Selector, respectively.
The graphical symbol is derived from UML’s object icon. The aggregation relations
show how these three entities are nested.

«Marker Class»
Scene

[F

MainMenu
ExitButton: Button

«Loop»

wailtingForTheEnd »

theCathedralTour: Button
atmosphere: Audio

«Selector»
< selTCS

CTS : Scene

Figure 10.2.: UML Class Diagram for the Scene “Main Menu”

The constraint of audio-clip (“atmosphere”) to be (not too long) is modeled in the
class definition of MainMenu as a qualitative constraint. In accordance to the definition
in table 9.4 on page 204, we translate this constraint by applying modifier below on
DURATION.long.

In the binding, we find instances of all used entities. Since we have no further
guantitative information, buttons ExitButton and theCathedralTour and audio-clip at-
mosphere have empty bindings.

For the sake of completeness, we added in the binding a proper definition of the
durations short and long of type DURATION exemplifying the use of context specific
value assignments. We decided that a duration in the interval from zero to 45 seconds
is short, and a duration greater than 2 minutes (120 sec.) can be considered as a long
duration, a duration greater or equal than 3 minutes (180 sec.) is definitive a long du-

230

10.3. Cathedrals in Vitruv

ration. Between the corner points (0 and 45, 120 and 180, resp.), the s- and z-functions,
resp., define the possibility grades. But we have to remark that these values cannot be
inferred from original Vitruvy, specification, since there is no indication what a long
duration is. However, the values used show how knowledge about the application
context can be applied for the translation from Vitruvy to Vitruy| .

Listing 10.3: The Main-Menu Scene

1 // Scene Main Menu

2

3 class MainMenuScene

4 extends Scene

5 let

6 ExitButton : Button;

7 waitingForTheEnd : Loop;

8 body

9 this isStartedBy ExitButton;

10 waitingForTheEnd loops

11 until (ExitButton.pressed.value is isPressed) do
12 let

13 theCathedralTour : Button;

14 atmosphere : Audio;

15 SelTCS : Selector;

16 body

17 this isStartedBy theCathedralTour;
18 this equals atmosphere;

19 atmosphere.length is below (DURATION.long) ;
20 SelTCS selects (theCathedralTour.pressed) with rules
21 on (isPressed) do

22 let CTS: Scene;

23 body

24 alpha meets leave for (CTS) ;
25 end;

26 end;

27 end;

28 end;

29 end;

30 end;

31

32 bindings

33 object MainMenu : MainMenuScene

34 object ExitButton : Button end;

35 in waitingForTheEnd : Loop

36 in type DURATION

37 let long := sfunction (120, 180) ;

231

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

10. The Multimedia Cathedral

let short := zfunction (0, 45) ;
end;
object theCathedralTour : Button end;
object atmosphere : Audio end;

in SelTCS : Selector
on
let CTS := ref (variousCathedrals) ;
end;
end;
end;
end;
object variousCathedrals : VariousCathedralsScene
/]l see listing10.4
end;
end;

10.3.3. The Various Cathedrals

Scene VariousCathedrals has the most complex structure in our example, which is
shown in the UML diagram in fig. 10.3 on the facing page, but the scene has a very
regular structure though. Both media, video someCathedrals and audio-clip character-
izeCathedrals, have an internal structure, which requires respective class definitions
modeling the content elements. We have five buttons in the scene and for each button
a selector branching to a distinct target scene.

In listing 10.4 on page 234, we present the Vitruv| specification of scene Various-
Cathedrals, applying UML diagram 10.3 on the facing page. The temporal behavior
is streamlined by the translation from Vitruvy to Vitruv . Whereas the Vitruvy; specifi-
cation applies a variety of expressions to make the sequence of sentences concerning
the video and audio elements, buttons and branchings less monotonous, in Vitruyv|
the similarity of these sections is stressed: the five sections in the body of class Vari-
ousCathedralsScene concerning the selectors are equal except for the identifiers used.

In class SomeCathedralsVideo we use relations where the order of arguments cor-
responds to the respective relations in the Vitruvy specification (e.g. Reims meets
Paris and Reims isMetBy Amiens corresponds (“Reims” immediately before “Paris”) and
(“Reims” finishes “Amiens”), resp.). We do this for easier comprehension of the Vitruv|
code with respect to the Vitruvy code. Alternatively, we could use the semantically
identical uniform sequence of meets relations (here: Reims meets Paris and Amiens
meets Reims), avoiding the inverse relation isMetBy.

As in the Vitruvy specification, we have no relations between the elements of class
CharacterizeCathedralsAudio, they are only used in the body of class VariousCathe-
dralsScene, where they are related to the elements of class SomeCathedralsVideo. In

232

10.3. Cathedrals in Vitruv

«Marker Class»
Scene

[F

VariousCathedrals

toAmiens: Button
toChartres: Button
toReims: Button
toParis: Button
toRouen: Button

Video

V

Interval

0

SomeCathedralsVideo

someCathedrals »

Amiens: Interval
Chartres: Interval
Paris: Interval
Reims: Interval

Rouen: Interval

T

characterizeCathedrals »

characterizeCathedralsAudio

Audio

ExplainAmiens: Interval

ExplainChartres: Interval

ExplainParis: Interval
ExplainReims: Interval
ExplainRouen: Interval

«Selectors»
SelChartres

«Selector»
SelParis

«Selector»
SelAmiens

CDetalil : Scene

PDetail : Scene

ADetall : Scene

«Selector»
SelReims

«Selector»
SelRouen

ReDetail : Scene

RoDetail : Scene

Figure 10.3.: UML Class Diagram for the Scene “Various Cathedral”

233

10. The Multimedia Cathedral

the binding, we have empty bindings for these elements, which guarantee that they
are instantiated. All buttons are instantiated as well with empty bindings. All ele-
ments of object someCathedrals are also instantiated with empty bindings, except for
the specified quantitative durations. We assign to elements Reims and Rouen trian-
gular fuzzy sets, such that the duration of Reims has at most 25 seconds (triangle(22,
24, 25)) and that of Rouen has about 25 seconds (triangle(23, 25, 27)). Element Amiens
is precisely 30 seconds longs, which is expressed by assigning a singleton fuzzy set,
the fuzzy notation for a precise value.

Listing 10.4: Scene Various Cathedral

1 // Scene Various Cathedrals
2

3 class SomeCathedralsVideo
4 extends Video

5 exports Amiens, Chartres, Paris, Reims, Rouen;
6 let

7 Amiens : Interval;

8 Chartres : Interval;

9 Paris : Interval;

10 Reims : Interval;

11 Rouen : Interval;

12 body

13 Chartres starts this;
14 Amiens isMetBy Chartres;
15 Reims meets Paris;

16 Reims isMetBy Amiens;
17 Rouen isMetBy Paris;

18 Rouen finishes this;

19 end;

20 end;

21

22 class CharacterizeCathedralsAudio
23 extends Audio
24 exports ExplainAmiens, ExplainChartres, ExplainParis , ExplainReims,

25 ExplainRouen ;

26 let

27 ExplainAmiens : Interval;

28 ExplainChartres : Interval;

29 ExplainParis : Interval;

30 ExplainReims : Interval;

31 ExplainRouen : Interval;

32 body

33 /1 no rules are defined for class CharacterizeTheCathedrals
34 end;

234

10.3. Cathedrals in Vitruv

CharacterizeCathedralsAudio;

35 end;

36

37 class VariousCathedralsScene

38 extends Scene

39 let

40 toChartres Button;

41 toAmiens Button;

42 toReims Button;

43 toParis Button;

44 toRouen Button;

45 SelChartres Selector;

46 SelAmiens Selector;

47 SelParis Selector;

48 SelReims Selector;

49 SelRouen Selector;

50 someCathedrals SomeCathedralsVideo;

51 characterizeCathedrals

52 MM : MainMenuScene;

53 body

54 this isStartedBy someCathedrals;

55 someCathedrals meets leave for (MM) ;

56

57 /! the section for Chartres

58 characterizeCathedrals. ExplainChartres (starts or during or
59 finishes) someCathedrals.Chartres;
60 someCathedrals . Chartres equals toChartres;
61 SelChartres selects (toChartres.pressed) with rules
62 on (isPressed) do

63 let CDetail: Scene;

64 body

65 alpha meets leave for (CDetail) ;
66 end;

67 end;

68

69 /1 the section for Amiens

70 characterizeCathedrals . ExplainAmiens (starts or during or
71 finishes) someCathedrals.Amiens;

72 someCathedrals . Amiens equals toAmiens;

73 SelAmiens selects (toAmiens.pressed) with rules
74 on (isPressed) do

75 let ADetail: Scene;

76 body

77 alpha meets leave for (ADetail) ;
78 end;

235

10. The Multimedia Cathedral

79 end;

80

81 /! the section for Paris

82 characterizeCathedrals. ExplainParis (starts or during or
83 finishes) someCathedrals.Paris;

84 someCathedrals . Paris equals toParis;

85 SelParis selects (toParis.pressed) with rules
86 on (isPressed) do

87 let PDetail: Scene;

88 body

89 alpha meets leave for (PDetail) ;

90 end;

91 end;

92

93 /1 the section for Reims

94 characterizeCathedrals . ExplainReims (starts or during or
95 finishes) someCathedrals.Reims;

96 someCathedrals . Reims equals toReims;

97 SelReims selects (toReims.pressed) with rules
98 on (isPressed) do

99 let ReDetail : Scene;

100 body

101 alpha meets leave for (ReDetail) ;
102 end;

103 end;

104

105 /1 the section for Rouen

106 characterizeCathedrals . ExplainRouen (starts or during or
107 finishes) someCathedrals.Rouen;

108 someCathedrals .Rouen equals toRouen;

109 SelRouen selects (toRouen.pressed) with rules
110 on (isPressed) do

111 let RoDetail : Scene;

112 body

113 alpha meets leave for (RoDetail) ;
114 end;

115 end;

116

117

118 end;

119 end;

120

121 bindings

122 object variousCathedrals : VariousCathedralsScene

236

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

10.3. Cathedrals in Vitruv

object toChartres
object toAmiens
object toReims
object toParis
object toRouen

Button end;
Button end;
Button end;
Button end;
Button end;

object someCathedrals SomeCathedralsVideo

object Amiens Interval

let length := singleton (30) ;
end;
object Reims Interval

let length := triangle (22, 24, 25) ;
end;
object Rouen Interval
let length := triangle (23, 25, 27) ;
end;
object Paris
object Chartres
end;
object characterizeCathedrals
object ExplainAmiens
object ExplainChartres
object ExplainParis
object ExplainReims
object ExplainRouen

Interval end;
Interval end;

Interval end;
Interval end;
Interval end;
Interval end;
Interval end;

end;
in SelChartres Selector
on
let CDetail := ref (ChartresDetails) ;
end;
end;
in SelAmiens Selector
on
let ADetail := ref (AmiensDetails) ;
end;
end;
in SelParis Selector
on
let PDetail := ref (ParisDetails) ;
end;
end;
in SelReims Selector
on
let ReDetail := ref (ReimsDetails) ;

CharacterizeCathedralsAudio

237

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

10. The Multimedia Cathedral

end;
end;
in SelRouen : Selector
on
let RoDetail := ref (RouenDetails) ;
end;
end;

// now the local elements of variousCathedrals
let MM := ref (MainMenu) ;
end; // end of Scene variousCathedrals

object MainMenu : MainMenuScene
/1l see listing 10.3 on page 231
end;
/!l Following the scenes for the details of the various cathedrals
end;

10.4. The Cathedrals as Vitruvian Net

In this section we present our example presentation as a series of Vitruvian Nets. We
have chosen a series of nets since the even the net for merely one scene get quickly
large, such that it is too inconvenient to present one diagram only.

We start with the basic structure of the presentation in sec. 10.4.1, followed by a
detailed look into scene MainMenu in sec. 10.4.2 on page 240. We have chosen this
scene because it is small enough to be presented nicely and additionally it embodies
all elements of Vitruv|_including selectors, loops, events and branching. The other two
scenes have only subsets of these features: scene IntroScene consists of one block only
and a final branching to MainMenu, scene VariousCathedrals does not feature a loop.

10.4.1. The Presentation Structure

The high-level view on our example presentation is shown in fig. 10.4 on the facing
page and follows the construction defined in sec. 8.5.2 on page 181. In the center we
have the place ConnectionPlace, connecting the three scenes IntroScene, MainMenu
and VariousCathedrals. The level of detail in this figure corresponds to the Vitruvp
specification torso in sec. 10.2 on page 220 and to the Vitruv| specification torso in
spec. 10.1 on page 224, because we show only the existence of the three scenes. The
Vitruvian Net construction for all the details found in the other Vitruvy and Vitruv|
specifications is exemplified in sec. 10.4.2 on page 240 for scene MainMenu.

The three scenes are folded into three transitions for purposes of information hid-
ing. Each scene is bracketed by respective start- and end-transitions, which connect

238

10.4. The Cathedrals as Vitruvian Net

the scenes properly with place ConnectionPlace. The edges between scenes and Con-
nectionPlace have scene names inscriptions controlling which scene is started next.
The initial marking would place a token with value IntroScene intro place Connec-
tionPlace.

From scene MainMenu we have two arcs from the scene to ConnectionPlace. The
regular arc from endMainMenu transports a token with value s0. Since no scene with
the name exists, the net is dead after endMainMenu has fired. This corresponds to the
missing leave for in the body of class MainMenu: after the body is finished regularly
(i.e. without premature branching), the presentation finishes as well. The second arc
from scene MainMenu to ConnectionPlace models the branching from the menu to
scene VariousCathedrals. The branching is done inside the menu and not parallel to
the regular end of the menu, therefore we have a direct connection from a transi-
tion inside the scene to ConnectionPlace. The token moving along this arc has the
value VariousCathedrals, hence scene VariousCathedrals is started next. In scene Var-
iousCathedrals we have five branchings to scenes presenting various cathedrals (cf.
spec. 10.4 on page 234). Since we omitted these scenes we also omitted the respective
arcs from scene VariousCathedrals to place ConnectionPlace.

startMainMenu MainMenu

MainMenu

endMainMenu

startintro IntroScene

<-—O—:

IntroScene

endintro

MainMenu s0

VariousCathedrals MainMenu

VariousCathedrals

—Q0—{_ 0 —m

startVariousCathedrals endVariousCathedrals

Figure 10.4.: The basic structure of the presentation

239

10. The Multimedia Cathedral

10.4.2. Scene MainMenu

An analysis of spec. 10.3 on page 231 reveals that the scene has three blocks:
1. the body of the scene,
2. the body of loop waitingForTheEnd and
3. the body of selector selTCS.

These three blocks are connected by the loop and the selector, respectively. Before
we move towards the Vitruvian Net modeling scene MainMenu, we discuss the cor-
responding Vitruv| specification of the scene, since it is used for deriving parts of the
Vitruvian Net.

10.4.2.1. Vitruv| Specification

In listing 10.5 on the next page we present the Vitruv| specification of scene MainMenu.
We start with the binding of fuzzy type DURATION from the prelude (line 4), for the
sake of brevity we restrict ourself to zero and below, which are used later. After that,
the linearized binding of scene MainMenu follows (line 10). The linearization follows
the procedere given in sec. 7.4 on page 142.

We start with the definitions for fuzzy type DURATION taken from the prelude,
according to sec. 7.4.4 on page 146 and to sec. 7.4.1 on page 143. Since we need no
further definitions from the prelude, we omit their representations in Vitruy;.

The next part follows the rules given in sec. 7.4.3 on page 144: the linearized scene
MainMenuScene follows the structure of the binding of instance MainMenu (compare
spec. 10.3). We observe the nesting structure of the binding by the sequence of inter-
twined allocation and application phases: for flat objects, such as event ExitButton_-
pressed of button ExitButton, their allocation and the application phases follow im-
mediately, for nested objects, such as the root object MainMenu, the allocation phase
(lines 14-21) and application phase (lines 124-130) bracket those phases of their inner
objects.

In a Vitruv| specification, selectors and loops define blocks inside scenes. Following
the rules given in sec. 7.4.5 on page 146, selector selTCS and loop waitingForTheEnd
are simple intervals without internal structure and are separated from their respective
bodies selTCS_body and waitingForTheEnd_body. Each body is the root interval of
a corresponding block. Together with the block for the entire scene, we have three
blocks: MainMenu_block, selTCS_body_block, and waitingForTheEnd_body_block.

In line 60 we show the re-binding of term long and short of fuzzy type DURATION.
According to the rules in sec. 7.4.1 on page 143, we introduce new identifiers DURA-
TION_longl and DURATION_shortl and set their values. For their application during
the translation process, we have to maintain properly the dictionary mapping Vitruy

240

10

15

20

25

30

35

10.4. The Cathedrals as Vitruvian Net

identifiers to Vitruv| identifiers: within the scope of loop waitingForTheEnd, DURA-
TION.long is mapped to DURATION _long1, outside this scope we map DURATION.long
to DURATION long. The newly bound term long is used in line 87 and following,
where we encode the Vitruv| statement length is below (DURATION.long).

Listing 10.5: Scene MainMenu in Vitruy,

(PP rrr b r b r bbb rr b rrrr i
/1 Defaults for DURATION, taken from the prelude

(PP rrr b r b r bbb rrrr i
modifier (DURATION_ below) .

fuzzyvalue (DURATION_zero) .

update (DURATION_ below, below) .

update (DURATION_zero, singleton (0.0)) .

[HEELEEEP il rrrririrli
!/l Scene MainMenu
[HH0PEPEE i rririrld

/1 Allocation phase of Scene MainMenu
interval (MainMenu) .

block (MainMenu_block) .

inBlock (MainMenu, MainMenu_block) .
fuzzyvalue (MainMenu_length) .

element (MainMenu_length , MainMenu) .
length (MainMenu, MainMenu_length) .
interval (MainMenu_alpha) .

interval (MainMenu_omega) .

/!l End of the allocation phase of MainMenu

/1 Allocation phase of Button ExitButton
interval (ExitButton) .

fuzzyvalue (ExitButton_length) .

element (ExitButton_length, ExitButton) .
length (ExitButton , ExitButton_length) .
interval (ExitButton_alpha) .

interval (ExitButton_omega) .

holds (MainMenu, ExitButton, { ¢ , si , fi })

/1 Allocation phase for Event pressed of Button ExitButton
/] as usual

/1 Application phase for Event pressed of Button ExitButton
holds (ExitButton_alpha, ExitButton_pressed, { s })
update (ExitButton_pressed_length, rectangle (0.0, inf)) .

241

40

45

50

55

60

65

70

75

80

10. The Multimedia Cathedral

I

Application phase of Button ExitButton

holds (ExitButton , ExitButton_alpha, { si }) .

holds (ExitButton , ExitButton_omega, { fi })
constraint (ExitButton_alpha, value (DURATION_zero)) .
constraint (ExitButton_omega, value (DURATION_zero)) .
update (ExitButton_length, rectangle (0.0, inf)) .

I
I

I

Allocation phase of loop waitingForTheEnd
as usual ...

Allocation phase of the body of loop waitingForTheEnd

interval (waitingForTheEnd_body) .

block (waitingForTheEnd_body_block) .

inBlock (waitingForTheEnd_body, waitingForTheEnd_body_block) .
fuzzyvalue (waitingForTheEnd_body_length) .

element (waitingForTheEnd_body_length, waitingForTheEnd_body) .
length (waitingForTheEnd_body, waitingForTheEnd_body_length) .
interval (waitingForTheEnd_body_alpha) .

interval (waitingForTheEnd_body_omega) .

I

Type Duration inside loop waitingForTheEnd

fuzzyvalue (DURATION_ longl) .

fuzzyvalue (DURATION_shortl) .

update (DURATION_longl, sfunction (120, 180)) .
update (DURATION_shortl, zfunction (0, 45)) .

/1
I

I
I

I
I

/1
I

I
I
/1

Allocation phase of TheCathedralTour
as usual ...

Allocation phase for Event pressed of Button TheCathedralTour
as usual ...

Application phase for Event pressed of Button TheCathedralTour
as usual ...

Application phase of TheCathedralTour
as usual....

Allocation phase of atmosphere
as usual ...
Application phase of atmosphere

holds (atmosphere, atmosphere_alpha, { si }) .
holds (atmosphere, atmosphere_omega, { fi })

242

85

90

95

100

105

110

115

120

125

10.4. The Cathedrals as Vitruvian Net

constraint (atmosphere_alpha, value (DURATION_zero)) .
constraint (atmosphere_omega, value (DURATION_zero)) .
update (atmosphere_length , rectangle (0.0, inf)) .
/] use new duration term
constraint (atmosphere_length ,
apply (DURATION_ below, value (DURATION longl))) .

/1l Allocation phase of selector selTCS within loop waitingForTheEnd
/] as usual...

/!l Allocation phase of the body of selector selTCS
interval (selTCS_body) .

block (selTCS_body_ block) .

inBlock (selTCS_body, selTCS_body_block) .
fuzzyvalue (selTCS_body_length) .

element (selTCS_body_length, selTCS) .

length (selTCS, selTCS_body_length) .

interval (selTCS_body_alpha) .

interval (selTCS_body omega) .

holds (waitingForTheEnd_body, selTCS, { ¢ , si , fi }) .
/1 Application phase of the body of selector selTCS
/] as usual

/1 Application phase of selector selTCS within loop waitingForTheEnd
/ as usual..

/1 Application phase of the body of loop waitingForTheEnd

holds (waitingForTheEnd_body, waitingForTheEnd_body_alpha, { si })
holds (waitingForTheEnd_body, waitingForTheEnd_body_omega, { fi }) .
constraint (waitingForTheEnd_body_alpha, value (DURATION_zero)) .
constraint (waitingForTheEnd_body_omega, value (DURATION_zero))
update (waitingForTheEnd_body_length, rectangle (0.0, inf)) .

/! declared interval relations in waitingForTheEnd

holds (waitingForTheEnd_body, theCathedralTour, { si }) .

holds (waitingForTheEnd_body, atmosphere, { = })

/1 Application phase of loop waitingForTheEnd
/!l as usual...

/1 Application phase of Scene MainMenu

holds (MainMenu, MainMenu_alpha, { si })

holds (MainMenu, MainMenu_omega, { fi }) .
constraint (MainMenu_alpha, value (DURATION_zero)) .

243

130

10. The Multimedia Cathedral

constraint (MainMenu_omega, value (DURATION_zero)) .
update (MainMenu_length , rectangle (0.0, inf)) .
/1 declared interval relations in MainMenu

holds (MainMenu, ExitButton , { si }) .

/!l End of the application phase of MainMenu

10.4.2.2. The nets for the blocks

In the following we discuss the Vitruvian Nets modeling each block of scene Main-
Menu from the respective Vitruv| specification (see listing 10.5 on page 241). In the
Vitruv| specification, we identified three blocks, the body of scene MainMenu, the body
of loop waitingForTheEnd, and the body of selector selTCS. Before we discuss some
details of these nets, let us explain their main structures in the next paragraph.

The body of scene MainMenu is shown in fig. 10.5 on the next page and contains
primarily two parallel activities: event ExitButton_pressed is enabled and loop wait-
ForTheEnd runs. Therefore, we fork the body into these two parallel paths shown on
top of the net. The remainder of the net reflects the intervals and their relations as
defined in the Vitruv, specification, we observe a staircase pattern on the left and right
side which is typical for sequences of starts and finishes relations. The body of loop
waitingForTheEnd (fig. 10.6 on the facing page) has a similar structure, but we omit
most alpha and omega intervals as explained later. In the loop body we have audio-
clip atmosphere parallel to the event pressed of button theCathedralTour, on which the
selector selTCS depends. Finally, the body of selector selTCS (fig. 10.7 on page 246)
shows the branching to scene VariousCathedrals as indicated by the triangular sym-
bol.

In these three figures, we use the same convention as in sec. 8.2.2 on page 159, the
black transitions are required for synchronization purposes and fire without any de-
lay. All other transitions fire with fuzzy delays, but we omit the respective arc inscrip-
tions for the sake of clearness. Additionally, transitions to be expanded have a yellow
(or light gray) color (in fig. 10.5 on the next page transitions ExitButten_pressed and
waitingForTheEnd), and transitions required for internal delays of interval relations
have a pink (or dark gray) color (in fig. 10.5 on the facing page transitions delay MM,
delay EB and delay_event).

In figures 10.6 on the next page and 10.7 on page 246, we omit the alpha- and omega-
intervals of almost all intervals. Since all alpha- and omega-intervals have no specified
relation in the Vitruv| specification (with the exception of the body of the path in se-
lector selTCS) and they have only a duration of zero, they appearance in the Petri
nets would not add any further information and would only blow up the resulting
nets. This blow-up can be observed when comparing figures 10.5 and 10.6: the former
has 20 transitions, the latter only 13, but the respective block of loop waitingForThend
has a more complex temporal structure than the body of scene MainMenu. The com-

244

10.4. The Cathedrals as Vitruvian Net

waitingForTheEnd

delay_Event

EB_pressed

EB_alpha delay EB EB_omega
. o) » -
A\
M| o) .
(I N\
ExitButton
MM_alpha delay_MM MM_omega
o o) -- o) .
— A\ N\
Nl o)
| S A4

MainMenu

Figure 10.5.: The unexpanded body of scene MainMenu

atmos here
WFTE_body_alpha

gm"a-

theCathedraITour

{CT_pressed
WFTE_body_omega

eITCS

WFTE_body
g

Figure 10.6.: The unexpanded body of loop waitingForTheEnd. We renamed the prefix
waitingForTheEnd to wFTE and the event pressed of button theCathedral-
Tour to tCT_pressed.

245

10. The Multimedia Cathedral

plete net for the loop body has 28 transitions: in addition the transitions of fig. 10.5
we have the interval atmosphere together with its alpha and omega intervals, the de-
lay between alpha and omega, and four synchronization transitions. They realize the
equals relation of atmosphere with wFTE_body, and the relations between atmosphere
and its alpha and omega intervals.

In fig. 10.7 we use the triangle notation for the transition modeling the leave for
statement as introduced in sec. 8.5.2 on page 181. We use this notation here for easier
identification, but without its assigned semantics, since the proper translation of leave
for statements is left to the final step of the algorithm for connection nets.

VariousCathedrals
selTCS_body_alpha

O—m—O—1 +—O ,

selTCS_body_omega

—O——O0——0

selTCS_body

Figure 10.7.: The unexpanded path selTCS_body of selector selTCS

10.4.2.3. Connecting the nets

After preparing the nets for the blocks, we can apply the algorithm for connecting
nets (fig. 8.10 on page 193). The first step is to start with the minimal regular Vitru-
vian Net, V, with its only place ConnectionPlace. We will only consider scene Main-
Menu, thereby the second step iterating over all scenes is executed only once. In step
2.a) we construct the basic Vitruvian Net of the block for scene MainMenu (shown in
fig. 10.5 on the preceding page), and connect it with place ConnectionPlace. Now, we
establish the list U of unexpanded events, loops and selectors of MainMenu, i.e. U
contains event ExitButton_pressed and loop waitingForTheEnd.

In the next three steps (2.b) to 2.d)), we expand the elements of U. First, we generate
for event ExitButton_pressed its event subnet E and replace the transition for ExitBut-
ton_pressed with E applying function expandEvent (def. 8.43 on page 188). The event
is removed from U. Then, we generate the loop subnet L for loop waitingForTheEnd
including the block of the loop body (fig. 10.6 on the preceding page) and replace
the loop transition with L applying function expandLoop (def. 8.44 on page 189). This
is the situation shown in fig. 10.8 on the facing page with the exception of the loop
body, which we folded into transition body for the sake of brevity. The two expanded
transitions are indicated by the two rectangles. The left rectangle comprises the net

246

10.4. The Cathedrals as Vitruvian Net

paysiuyy

Apogaud

T¥doo)

—O)

Apoga|geua

o [oums |

passaids!

a

jonnkoodoo)|

zydoo|

0s:
nuapurepua

(M)

2de|duollosuuod

N\

|
nusyurey
Me [

NN~ Aejap

A\ T
eydre” AW

uonngix3g
1

wang Aejep

()
N\

g3 Aejep

| S

)

C‘
pajqeus

O

mnoawiL

.pu3ay_io4bunrem, doo

(Jwopuel

uels

Luonngiuixs, uonng Jo Juan3

Figure 10.8.: The scene MainMenu without the loop body of waitingForTheEnd, which

is shown in fig. 10.9 on page 249.

247

10. The Multimedia Cathedral

for event ExitButton_pressed (cf. sec. 8.4.2 on page 172), the right one shows loop wait-
ingForTheEnd (cf. sec. 8.4.4 on page 176). For easier comparison, we reused the names
of places and transitions from the formerly presented subnets. This is why several
transitions with name, for instance, t1 exist. The connecting transitions between both
rectangles are given in function expandLoop. Now we continue with the expansion. We
delete waitingForTheEnd from U and add the unexpanded events, selectors and loops
of the body of waitingForTheEnd to list U’, i.e. we add event TheCathdralTour_pressed
and selector selTCS to U’. Since we have no selectors in U, we omit the third step.

List U’ is not empty, we have to expand its elements and repeat the last three
steps after moving all elements from U’ to U. First we replace event TheCathdral-
Tour_pressed applying function expandEvent. The second step (2.c)) is omitted, since
we have no unexpanded loop in U. In the third step, we expand selector selTCS in-
cluding the net for the body of its path (see 10.7 on page 246) by applying function
expandSelector (def. 8.45 on page 190). This situation is shown in fig. 10.9, where we fo-
cus on the body of loop waitingForTheEnd, since no modifications on the surrounding
net has occurred. Again, we expand the event and the selector, and indicate this by
the two rectangles. The left rectangle features the event of button theCathedralTour,
the right rectangle shows selector selTCS (cf. sec. 8.4.3 on page 174). The selector
is reduced to its one path, therefore the selector subnet differs from the net shown
fig. 8.7 on page 175. In particular, the time-out value of the event is not used, how-
ever, we transfer control to particular place into the selector subnet. This is due to
the application of function expandSelector, which takes no account of such possible
optimizations.

Inside the body of the selector nothing has to be expanded, hence U’ is empty,
and we can leave the loop for expanding net elements. As we only consider scene
MainMenu, step 2 is now finished, otherwise we would move to the next scene.

In the final step 3 of the algorithm, we add to the transition for the leave for state-
ment inside the loop body an arc to place ConnectionPlace and reset arcs to all places
of scene MainMenu. The algorithm terminates, the complete net (except for the other
scenes) is constructed.

10.5. Summary

The example has shown how to specify a multimedia presentation with the Vitruv ap-
proach. We exemplified that we do not have to sacrifice the formal specification for
the sake of common understandability, since we can derive the formal specification
systematically from the Vitruvy specification. With establishing the formal specifica-
tion, formal analyses of the multimedia presentation can be done. This is the reason
for our particular interest of the systematic transformation from the natural language
specification into the formal models: first from Vitruvy to Vitruy , then from Vitruv|
into its dynamic semantics, the Vitruvian Nets. The transformation process used in

248

10.5. Summary

passaidsl

|
a

sanjeApasnun

noawiL

Apog soLles eydie Apog soLies

o—O0—=—0

eydre Apoq~soLles “ M

s[eipayregsnolep

pajgqeus

anfe

.SO1I9S,, 10109|8S

N0 1eipayresy, uonng 4o JusAg

InoJ [eipayiedayl

<
alaydsouwye

[«

ebawo Apoq JL4m

L_r
Apog 314m

eydre” Apog™3L4m

Figure 10.9.: The Loop-Body of waitingForTheEnd. The triangular transition denotes
the branching to scene VariousCathedrals.

249

10. The Multimedia Cathedral

this example followed the first steps of the process model sketch for Vitruv presented
earlier in sec. 4.5 on page 56.

The example has also shown how the various models of Vitruv are related and how
they cooperate. To illustrate the cooperation between the models of Vitruv let us dis-
cuss how the models deal with the intrinsic risks, viz ambiguity, imprecision, vague-
ness and incompleteness, which occur in Vitruv due to its NL basis. Taking care of
these risks is not only needed when formalizing the Vitruvy specification, but influ-
ences also the other models. Therefore, it emphasizes the model interaction.

Ambiguity is handled already in the definition of Vitruvy by disallowing reflex-
ive and pronoun language constructions, resulting in a superfluous but unambigu-
ous use of definitive subject designators, e.g. in the media composition part of scene
(“Various Cathedrals”) on page 223, where in each paragraph it is clear which button is
meant but nevertheless the button’s identifier is always required again. From a stylis-
tic point of view concerning the use of the English language, this is a bit clumsy, but
avoids misinterpretation, which is what we require here.

Vagueness and imprecision occur in the Vitruvy specification in various situations,
e.g. vague relationships such as (overlaps largely) (p. 221) or imprecise quantifications
such as (about 25 seconds) (p. 223). They are handled in the formalization of Vitruvy
as compound relationships and fuzzy quantifications in Vitruv| , where they can only
occur in well defined places such that the link to the original specification in Vitruvy,
is maintained. The valuation of fuzzy variables, required in the binding (e.g. in list-
ing 10.4 on page 237 defining (about 25) as triangle (23, 25, 27)), is somewhat arbitrary,
because there exists no counterpart in Vitruvy specification. But the valuation honors
the vagueness and imprecision found in the Vitruvy specification, since we did not
introduce any arbitrary nor overly precision just for the sake of the formalization.

Incompleteness indicates a lack of information. A typical situation in our example
is the lack of quantitative information, found in both the Vitruvy and the Vitruv| speci-
fication. If we have additional information concerning the quantitative data, e.g. after
an additional requirements elicitation, we can augment our model by adding these
data to the specification, as discussed earlier in sec. 4.2 on page 52. For instance, we
may add the missing durations of video elements Chartres and Paris of scene Vari-
ousCathedrals, modifying only the binding of Vitruv| specification. If the new data
does not contradict the remainder of the model, the data is regarded as valid. In this
case, the qualitative model, i.e. anything except the binding, remains unchanged and
stable. For Vitruvian Nets, however, the additional data would result in altered delay
inscriptions, whereas the structure of the net remains stable as well. If the additional
data excludes a former possible solution (e.g. we might reduce relation starts or during
to starts), the net structure will become simpler, since we have to remove the part of
the net representing the now excluded solution.

With this discussion we close our presentation of the Vitruv approach.

250

Part |V.

Summary and Future Work

251

11. Summary

In this thesis, we investigated a specification language for temporal aspects of multi-
media presentations.

Starting from the experience in our own Altenberg Cathedral project and further
analysis, we argued that in multimedia development new developer roles exist which
we collectively call non-technical developers. The non-technical developers are dis-
tinguished from traditional technical developers by different educational backgrounds
and skills, which are manifested prominently by a general dislike of formal notations.
This situation makes it difficult to use traditional design and specification languages
as a common basis for communication between all developers throughout the de-
velopment process. This situation reminds us to the relationship between customers
and developers during requirements engineering, where formal models are usually
not applied for similar reasons. There, the formal models are derived from informal
models by the virtuosity of the requirements engineers only. In our situation such
an approach is not applicable, since we have to provide an adequate communication
means between both groups throughout the entire development process.

In this thesis, we focus on the synchronization of media objects, i.e. we focus on the
problem of how to specify the temporal arrangement of media objects. Technically,
this is a challenging problem. Nevertheless, it is required for developing complex vi-
sualizations including user interaction but with the additional problem that both de-
veloper groups should be able to use the specification approach. Therefore, we stated
four requirements for our approach, viz, a commonly understood (1) specification
language (2) for synchronization of media objects (3), which shall be amenable for
tool support (4). The literature reviews only the approaches discussed above, which
satisfy some but not all of the requirements.

We identified natural language (NL) as a suitable common basis for communication
between technical and non-technical developers. NL easily satisfies requirement 1,
but has problems with imprecision, ambiguity, vagueness and incompleteness, which
are considerable risks for using a NL-based specification language and for providing
tool support. With the Vitruv approach, we have shown how to cope with these short-
comings.

We defined an understandable specification language (Vitruvy) for temporal as-
pects of multimedia presentations, based on a subset of NL. This subset allows for
tool support, since we define Vitruvy with a (general) context free grammar, which
eases parsing of specification documents. For semantical issues, we presented a for-
mal counterpart, Vitruv| , to Vitruvy, to which a systematic transformation of Vitruvy is

253

11. Summary

given. Vitruv|_is a statically typed specification language of its own, applying object-
oriented concepts and fuzzy set theory for structuring specifications and for dealing
properly with vagueness and imprecision inherent in the NL-based Vitruvy, respec-
tively. For the event-free temporal structure, we use an extended variant of Allen’s
interval calculus. For event-based behavior, this is not applicable, and we developed
a specialized Petri net model, Vitruvian Nets, to define the semantics of the event-
based behavior of Vitruv| . Within the Vitruv approach, we consider Vitruv| as mediator
to the formal semantics of Vitruvy, i.e. the formal semantics of Vitruvy; are not given
explicitly but implicitly as semantics of Vitruy, .

We have shown that it is possible to construct specification languages which are
understandable to all participants of a development process, even in a complicated
situation such as specifying dynamic system behavior. Even NL can be used, if we
support its flexibility i.e. vagueness and imprecision, with respective formal mod-
els, as we have done with fuzzy set theory. The effect of incomplete specifications
based on NL can be diminished in the Vitruv approach by reasoning and analyzing
the formal counterparts, i.e. by studying the corresponding specifications in Vitruy
and Vitruvian Nets. This is similar to traditional formal specification approaches, but
the main difference in Vitruv is that we derive the formal specification systematically
from the NL specification. Therefore, we are convinced that the formal specification
meets the intended meaning of the informal specification.

Leaving the special domain of requirements engineering for multimedia, our re-
sults seem to promise that difficulties in requirements engineering, concerning un-
derstandability between different stakeholder groups, can be minimized in similar
settings as used in the Vitruv approach.

254

12. Directions of Future Research

Due to the broad range of topics in this thesis, some aspects are not discussed exhaus-
tively. In this chapter we present some aspects providing us with directions for future
research. We identify future work in three areas, concerning the usability of Vitruv and
tool support, language extensions, and finally generalizations.

12.1. Usability and Tools

In this thesis, we developed the foundations of the Vitruv approach. It is based on
the observation that we require commonly understood specification approaches for
temporal aspects of multimedia presentations in the presence of technical and non-
technical developers.

Our experiences with non-technical developers in the Altenberg Cathedral Project
have shown that it is very important to provide not only the rudimentary approach
but to focus also on usability aspects. The experiments reported in sec. 9.4 on page 213
are a very first step to validate the vocabulary of Vitruvy. Since these experiments
focus only on Vitruvy;, they cannot address the entire Vitruv approach. Consequently,
additional empirical research is required.

But, before doing that, we have to do further preliminary work. It is not sufficient
to have an approach with a sound formal basis, we also need tools to ease the effec-
tive work and provide comfortable handling of Vitruv. The tools required include a
sophisticated editor for Vitruvy, a consistency checker for Vitruv; and Vitruv|, a Vitru-
vian Net generator and simulator, and compilers translating the different formalisms.
For some of these tools, a first attempt has been undertaken.

In his diploma thesis, Christoph Begall (2002) is developing currently a consistency
checker for Vitruv| specifications, applying the theoretical results for constraint solv-
ing of qualitative and quantitative interval relationships combined with fuzzy set
theory. The first task is to convert a Vitruv|_specification into Vitruv| such that only flat
structures of intervals, relationships and length constraints exist. The second job is
to check the satisfiability of such structures and to deduce lowest upper and highest
lower bounds for interval durations.

A first version of a simulator for Vitruvian Nets has been implemented (Storzel
and Alfert, 2002), extending the simulation engine developed in the diploma thesis of
Marc Storzel (2001). The simulator is based on Reference Nets (Kummer et al., 2001),
which are high-level timed Petri nets with inscriptions in Java. The structure of Vit-

255

12. Directions of Future Research

ruvian Nets is preserved within Reference Nets: we have only to provide fuzzy sets
as color sets, the functions for fuzzy decision control (see sec. 8.3 on page 163), and
have to deal properly with fuzzy delays. The fuzzy delays are used as sources for
random variates such that the possibility distributions are interpreted as empirical
frequency distributions (Neelamkavil, 1987, p. 126). We can choose, whether the val-
ues for these random variates are determined each time or only once for a simulation
run. The latter variant is closer to the real world because the media durations are fixed
throughout a presentation, the former variant emphasizes the vagueness of knowl-
edge about the media durations. The random variates for event occurrence times and
event values are independent of the considerations concerning the media durations:
each time an event is activated the random variates are determined in accordance to
their respective random distributions.

These tools are the first incarnation of an environment for applying Vitruv, needed
for the aforementioned empirical research.

12.2. Language Extensions

The languages of Vitruv are designed to deal sufficiently with temporal aspects of
multimedia presentations. There are, however, some areas where enhancements and
extensions are possible and desirable.

We focus here on two interesting areas of enhancement for Vitruv; with impact
on Vitruv; and Vitruvian Nets. First, a higher expressiveness of fuzzy types gives us
better facilities for specifying with Vitruv| . Second, the connection between scenes
currently follows the link principle of hypermedia systems, but more sophisticated
connection types are sometimes desirable.

As we show in the following discussion, these additional facilities have demanding
requirements and modify Vitruv| considerably. Thus, a careful analysis of the facili-
ties’ requirements and features is needed.

12.2.1. Fuzzy Types

Fuzzy types are an important part of Vitruy| , but their expressiveness is somewhat
limited. In this section we discuss two possible enhancements.

More General Universes for Fuzzy Types
Fuzzy types as defined in sec. 5.4 on page 67 can only have numeric or enumerated
universes. From a type-theoretic point of view, these are very simple universes. Other
type constructors, such as records, products, unions, etc., would be helpful to apply
more ordinary data abstractions.

However, such data abstractions also require the means for handling them, in par-
ticular functional expressions and logical predicates. The introduction of such pred-

256

12.2. Language Extensions

icates and expressions results in a powerful language of its own, the expressiveness
of which may become similar to Z, VDM or algebraic specification approaches. Their
existence would seriously change the characteristic of Vitruv , requiring completely
different semantics.

Internal Modifiers and Functional Modifier Definition Language

The modifiers presented in table A.2 on page 274 are external modifiers. Additionally,
in the literature we find internal modifiers (Thiele, 1998, p. 204) not changing the
shape of the fuzzy set, but translating the fuzzy set along its universe:

vueu: F(X)(u) = (fopux)(u) = pux(f(u))

But such modifiers do not fit in our framework, as the following example shows.

Let us consider the modifier very applied to a fuzzy set large, such that very just
moves the fuzzy sets by an offset xo towards infinity. The resulting membership func-
tion would have the form

Hvery Iarge(x) =]/llarge(x — Xo)

This definition is problematic, because it would need either a second parameter defin-
ing offset xg, or offset xo would be fixed in the definition. The latter one makes it im-
possible to reuse the modifier in different areas and application domains where the
once fixed offset is not adequate.

Alternatively, we could use a higher-order functional sub-language for defining
modifiers. Then we could apply e.g. currying to achieve unary functions from binary
functions where the first argument is given and fixed. The primary modifier defini-
tion would be a higher order function taking only a (non-fuzzy-set) argument (e.qg.
the offset) and returning a function mapping a fuzzy set to another fuzzy set. This
approach would allow us to use such internal modifiers because we can construct
suitable modifier definitions from the primary modifier for each application domain.
Additionally, such a language can provide means for user-defined modifiers, extend-
ing the currently restricted set of modifiers. Also, this language would possibly fit
very well to more complex universes for fuzzy types, discussed above.

We expect that the proposed changes to fuzzy types and modifiers also would re-
quire major changes for Vitruv|, at least such that the proposed sublanguage can be
compiled to Vitruv. This requires support for functions, expressions and logical pred-
icates in Vitruv, as well.

12.2.2. Connections between Scenes

In Vitruv| we have several abstractions of control flow. Classes, in particular with
private elements, can be interpreted as macros similar to hierarchical Petri nets with
transition substitution (Jensen, 1997). Loops and selectors model various control flow

257

12. Directions of Future Research

alternatives. Scenes and links between them (realized by leave for) model the graph
of the presentation’s structure in the large.

However, more sophisticated connections between scenes are sometimes desirable.
In particular connections with procedure-like semantics come to our mind. A promi-
nent example is a help screen, the activation of which causes pausing the current
scene, which is restored after leaving the help screen. Often such situations can be
modeled inside classes, i.e. we do not switch to another scene but exchange only the
media currently rendered.

An incorporation of procedure-like connections between scenes would require a
fundamental modification of the semantics of Vitruv| , because we have to deal with
states, storing them on a run-time stack, and reloading them back from the stack. Re-
placing the stack with an unstructured state storage would simplify procedures to
coroutines, but essentially the complexity remains. Procedures suggest parameters
and recursion, adding the entire complexity of procedural or functional languages
to Vitruv| . In contrast to the considerations concerning the aforementioned sublan-
guages for fuzzy type, the procedural or functional language aspects appear at run-
time and not only at compile time. This requires to model these features also in the
dynamic semantics of Vitruv| , which may be difficult for the current Petri net based
dynamic semantics.

12.3. Generalizations

We can generalize our approach in two directions: first, to support other aspects of
multimedia presentations, and second, to support other areas than multimedia.

12.3.1. Multimedia Complete

Intervals remain the main abstraction in Vitruv, if we broaden the capabilities of Vitruv
towards multimedia presentations in general, since media objects are the centerpieces
of multimedia presentation. Additional information about media objects such as de-
noting the corresponding media files, defining inscriptions on buttons, etc., can be
realized as additional attributes of media objects in both, Vitruvy and Vitruv, . For the
dynamic semantics, we can abstract from these information, since they deal only with
temporal aspects. If we regard media files as implementation of media objects, we can
use the additional attributes to check easily whether the implementation fits to the
specification: the duration of the addressed media files have to match the specified
duration of the respective media object. The exact durations found can be used for
further constraint solving: we can then reduce the specified possibility distributions
to singleton sets, adding more precision to the entire specification.

258

12.3. Generalizations

12.3.2. Beyond Multimedia

A different kind of generalization is to change the application domain of Vitruv. Tim-
ing considerations and dynamic behavior are important properties of any application,
which have to be elicited and specified during the requirements engineering phase of
software development.

As long as it is adequate to model these requirements in terms of intervals, their
temporal relationships and durations, and finally events for input, the Vitruv approach
can be used. Our experience with Vitruv suggests that customers and software engi-
neers can work together, similar to Participative Design, applying Vitruvy. The for-
malization to Vitruv| and Vitruvian Nets gives software engineers the possibility to
work with more formal models, which are, however, strongly related to the natural
language model. In this way, the risk of misunderstandings and mistranslation dur-
ing the transformation from one model into another could be reduced.

259

12. Directions of Future Research

260

13. Final Remarks

With Vitruv we have presented an approach for dealing with vague and imprecise
requirements, which occur as intrinsic properties of natural language formulations.
We have applied fuzzy set theory to handle formally imprecision and vagueness.

In software engineering, fuzzy set theory and other approaches of soft computing
are used for analyzing software and related systems, e.g. for automatically generating
design models in reverse engineering or for predicting metrics and complexity mea-
sures from data sets of similar projects, as reported in the SCASE workshop (Jahnke
and Ryan, 2001).

In this thesis, we applied fuzzy set theory in a different way. We do not use fuzzy
set theory for creating models of the software, but applied fuzzy set theory within the
models: in contrast to traditional analyzing approaches, we use fuzzy set theory in
the synthesis part of software engineering coping with vague and imprecise require-
ments. We hope that our ideas help to improve modeling the customers’ requirements
in a more appropriate fashion.

261

13. Final Remarks

262

Part V.

Appendices

263

A. Definition of VitruvL

In this chapter we define the concrete syntax of Vitruv| and present the standard pre-
lude.

A.1l. Concrete Syntax

We define the concrete syntax of Vitruv| in BNF starting with some preliminaries (no-
tation, lexicographic definitions and basic building blocks). It is followed by the over-
all structure, fuzzy types, compound relations, events, classes, and finally the bind-

ing.

A.1.1. Preliminaries
A.1.1.1. Notation

We notate the grammar in a simple BNF form. Nonterminals are written in italics such
as Nonterminal, terminals in sans-serif enclosed by single quotes such as ‘terminal’.
Alternatives are separated by |, the right-hand-side and the left-hand-side of the pro-
duction are separated by ::=.

Lexicographic definitions defined by regular expressions. We apply the usual nota-
tion and use the operators defined in tab. A.1 on the next page where we assume that
a and b are regular expressions. Again, terminals are written in single quotes.

A.1.1.2. Lexicographic Definitions

The production Ident defines an identifier, which is a usual alpha-numeric identifier:
starting with a letter, followed by letters, digit or underscores in any order.

letter »= [‘a’-‘Z,'A'-'Z']
digit == ['0'-'9']
Ident ::= letter (letter | digit | <) *

We have two different kinds of numbers: real and integer number. As usual, for a
real number we have to denote the point, otherwise it would be an integer number. A
special symbol, inf, denotes the (positive) infinity for both, real and integer domains.

265

A. Definition ofVitruv,_

Operator Meaning
ab concatenation of aand b
ax repeat a zero or more times
a+ repeat a one or more times
a? matches a zero or one times
(a) groups a regular expression

[introduce a character set
‘A" — ‘B’ range from ‘A’ to ‘B’ (only inside [])

alb matches either a or b
. matches any character
$ denotes end of line

Table A.1.: Operators of regular expressions

UnsignedReal ::= digit+ (‘. digit+ (['eE]['-+]? digit+)?)?

RealNumber = *-'? (UnsignedReal | ‘inf’)

UnsignedInteger := digit+

IntegerNumber ::= ‘-'? (UnsignedInteger | ‘inf’)

Comments in Vitruv| are similar to C++ and Java line comments. They start with ‘//’

and everything until the end of the line is ignored.

Comment = ‘II' *$

A.1.1.3. General Building Blocks

Some productions are used in many situations. We collect them in this section, be-
cause they have no proper home.

In declaration lists we often need a non-empty list of identifiers separated by com-
mas:

IdentList == Ident | IdentList ", IdentList

Compound relations are named by an identifier sequence separated only by whites-
pace. The identifier sequence may consist also of primitive relations.

IdentSeq ::= Ident | PrimitiveRelation| IdentSeq IdentSeq

Expressions in the rules of classes and compound relations use not only identifiers
but also expressions of identifiers by applying the dot-notation. The reserved word
‘this’ applies to the current object.

IdentExpr ;= Ident | ‘this’ | IdentExpr ‘. Ident

266

A.l. Concrete Syntax

A.1.2. The Structure in General

A specification consists of three parts:
1. the prelude, defining a set of standard declarations,
2. the declaration of classes, relations and types,

3. the binding section, defining the values of the used variables and operators.

Specification ::= Prelude Declarations Bindings
Prelude ;= | ‘prelude’ Declarations ‘end’*;

Declarations ::= ClassDec | FTypeDec | IntervalDec
| Declarations Declarations

In the following we present these parts in greater detail.

A.1.3. Fuzzy Types

Fuzzy types consist of four parts, its name, a set of terms, an optional set of modifiers,
and their universe. Generally, a fuzzy type defines a new value set together with typ-
ical values, the terms. These standard values can be modified by applying modifiers
to terms.

FTypeDec ::= ‘define’ ‘type’ Ident Universe DefineTerms DefineModifiers ‘end’*;
DefineTerms ::= ‘define’ ‘term’ IdentList *;
DefineModifiers ::= | ‘define’ ‘modifier’ IdentList *;

The universe of a fuzzy type is either a crisp convex subset, i.e. an interval of R or
7, or its possible values are explicitly enumerated identifiers.

Universe »= ‘universe’ Reallnterval *;
| ‘universe’ Intinterval *;
| ‘universe’ EnumeratedSet *;

Reallnterval ::= ‘[RealNumber ‘.." RealNumber ‘|
IntInterval .= [IntegerNumber ‘.. Integer Number ‘|

EnumeratedSet ::= {' IdentList '}

267

A. Definition ofVitruv,_

A.1.4. Compound Interval Relationships

Compound interval relationships modify Allen’s thirteen predefined relationships.
We define a compound relation as a kind of macro which is expanded if used in
bodies of classes or in definitions of other compound relations. The rules are a subset
of those used in class bodies, they are defined there (sec. A.1.6.1 on the facing page).

IntervalDec ::= ‘define’ ‘interval’ ‘relation’ Ident CompoundRelation Ident ‘=’
LetIntervals IntRules *;

CompoundRelation ::= IdentSeq
LetIntervals ::= ‘let’ IdentList ‘in’
IntRules ::= ‘rules’ IntRule ‘end’

IntRule ;= IntervalRelationship | Constraint | IntRule IntRule

A.1.5. Events
Events are declared to define the type of their value element.

EventDec ::= ‘Event’ ‘[Ident |

A.1.6. Classes

Each class has a name and consists of four different parts discussed next. The inheri-
tance declaration is optional, but a class has to export some of its elements. The local
declaration define the elements of the class with their types, they are used in the class
body.

ClassDec ::= ‘class’ Ident Inherits Exports LocalDec Body ‘end’*;
Inherits ;= | ‘extends’ Ident

Exports == | ‘exports’ IdentList *;

LocalDec ::= ‘let’ ElementDec

ElementDec = | Ident " ElementType *; | ElementDec ElementDec
ElementType := Ident | EventDec | ‘Selector’ | ‘Loop’

Body ;= ‘body’ Rule ‘end’*;

268

A.l. Concrete Syntax

A.1.6.1. Rules

The rules in class bodies and also the subset used in the definition of compound
relations define the behavior.

Rule ;= | Constraint | IntervalRelationship | UseLoop
| UseSelector | Rule Rule

Constraints are fuzzy set expressions built on terms and modifiers of fuzzy types
and the general binary operators or a reference to another element. As usual, and-
operators have a higher priority than or. The productions Term and Unary-Op refer to
terms and modifiers of the respective fuzzy types.

Constraint .= IdentFxpr ‘is’ ConstraintFExpr '}

ConstraintExpr ;= ConstraintTerm | ConstraintExpr Or-Op ConstraintTerm
ConstraintTerm := UnaryEzpr | ConstraintTerm And-Op UnaryEzpr
UnaryEzpr »= ConstraintPrimary | Unary-Op ‘(C ConstraintEzpr)’
ConstraintPrimary .= Term | ‘' ConstraintExpr ‘)’

Or-Op == ‘or' | ‘union’

And-Op := ‘and’ | ‘intersect’

Unary-Op .= Ident

Term ::= IdentFExpr

Interval Relationships are surrounded by intervals which are either identifier ex-
pressions denoting some intervals or the leave for expressions denoting links to other
scenes. Such relationship-constraints between two intervals can be a disjunction of
different relationships as stated in sec. 3.1.2.2 on page 30 and following. Therefore,
we can combine several compound relationships by disjunction.

IntervalRelationship .= Interval Relationship Interval *}
Interval ::= IdentEzpr | LeaveFor
LeaveFor .= ‘leave’ ‘for’ ‘(" IdentExpr ‘)

Relationship := CompoundRelation | PrimitiveRelation
| Relationship ‘or’ Relationship | ‘(' Relationship ‘)’

269

A. Definition ofVitruv,_

PrimitiveRelation = ‘starts’ | ‘isStartedBy’ | ‘finishes’ | ‘isFinishedBy’
| ‘meets’ | ‘isMetBy’ | ‘equals’ | ‘after’ | ‘before’
| ‘overlaps’ | ‘isOverlappedBy’ | ‘during’ | ‘contains’

Selectors react on Events and decide which branch has to be activated. Each con-
dition, the antecedent, is a fuzzy expression following the structure of a constraint
defined above stating whether the event value is compatible to the constraint expres-
sion. Each branch, the consequent, has its own local elements and body following the
structure of classes.

UseSelector ::= Ident ‘selects’ ‘(" IdentFxpr *) ‘with’ ‘rules’ SelectorRule ‘end’*;

SelectorRule ::= ‘on’ ‘(" SelectorAntecedent *)’ ‘do’ SelectorConsequence
| SelectorRule SelectorRule

SelectorAntecedent .= ConstraintExpr

SelectorConsequence ::= LocalDec Body

Loops define — similar to selectors — a body and local elements of their own and
repeat the body until their event has value fulfilling the termination condition. The
structure is very similar to selectors except that we have only one body.

UseLoop .= Ident ‘loops’ ‘until’ ‘(" IdentEzpr ‘is’ ConstraintExpr ‘)’ ‘do’ LocalDec Body
lendi [;1

A.1.7. The Binding

The purpose of the binding section is to assign explicit values to fuzzy sets and func-
tions to modifiers. The structure of the prelude and the class definitions is repeated
and a value or function is assigned to each definition either by inheriting a previous
assignment or by a new one.

A.1.7.1. The Binding’s Structure

The structure of the binding section follows the structure of prelude and class defi-
nitions, resp. If the prelude part is omitted, then the standard definitions will apply.
The first object bound in production SpecBindings is the main entry point of the system
specified.

Bindings ::= ‘bindings’ PreludeBindings SpecBindings ‘end’*;

PreludeBindings ::= | ‘in’ ‘prelude’ PBind ‘end’ *;

270

A.l. Concrete Syntax

PBind ::= InClass | InType | PBind PBind

SpecBindings := InObject | SpecBindings SpecBindings

A.1.7.2. Binding of Fuzzy Types

Following the structure of a fuzzy type, we have to consider the terms and the mod-
ifiers of the type. The universe of the set is taken from the type’s declaration. Values
for modifiers are taken from the special object Modifier, hence production VAssign can
handle all kinds of bindings in a fuzzy type.

InType ::= ‘in’ ‘type’ Ident VAssign ‘end’ "}

A.1.7.3. Binding of Objects and Classes

The binding of an object is recursive, because we need also to bind all objects of which
our object of interest consists. As each binding of an object opens a new context, we
can also re-bind formerly defined fuzzy types. The last part of an object’s binding is
to bind the inherited private elements, that is done in production InSuper, moving up
the inheritance hierarchy. The binding of classes in the prelude is similar to those of
objects but starts with class.

InClass ::= ‘class <ldent> <OAssign> ‘end’ *;’

InObject .= ‘object’ Ident ;" Ident OAssign ‘end’*;

inSelector ::= ‘in’ Ident *." ‘Selector’ Path ‘end’ *;

inLoop = 'in’ Ident " ‘Loop’ OAssign ‘end’*;

Path ::= Path Path | ‘on’ OAssign ‘end’*;

OAssign := RebindTypes BindObjects ValueAssign InSuper

ValueAssign = | VAssign

RebindTypes .= | InType RebindTypes

BindObjects ::= | BindObjects BindObjects | InObject | inLoop | inSelector

InSuper ::= | ‘in’ ‘'super’ VAssign InSuper ‘end’‘;

271

A. Definition ofVitruv,_

A.1.7.4. Assigning of Values

All values in both, fuzzy types and classes, are bound in the same manner. Possi-
ble values are either fuzzy sets, other elements in the scope including special object
Modifier for modifier definitions and references to a scene by ref.

VAssign = ‘let’ Ident =" Value ;' | VAssign VAssign
Value ::= FuzzySetConstructor | IdentExpr | ‘ref ‘(Ident)’

Fuzzy sets can either be enumerated or constructed by convex or piece-wise lin-
ear constructors. For the enumerated fuzzy sets we need for each identifier its mem-
bership value. The convex constructors only need their respective sensitive points,
whereas the generic constructor needs pairs of both, numbers and their membership
values.

FuzzySetConstructor .= FuzzySetEnumeration | ConvexConstruction
| GenericConstruction

FuzzySetEnumeration .= ‘{" EnumValues '}
EnumValues = ‘(" Ident *, RealNumber ‘) | EnumValues ‘,” EnumValues
GenericConstruction .= ‘linear ‘(" MList ‘)

MList ;= ‘' Number’,” RealNumber *)'| MList ‘', MList
ConvexConstruction ::= FuncOne | FuncTwo | FuncThree | FuncFour
FuncOne ::= ‘singleton’ ‘(" Number ‘)’

FuncTwo ::= FuncTwoldent ‘(" Number *,” Number ‘)’

FuncThree .= FuncThreeldent ‘(" Number ',” Number *,” Number ‘)
FuncFour := FuncFourldent ‘(" Number ‘,” Number ‘,” Number ‘, Number ‘)
FuncTwoldent = ‘rectangle’ | ‘sfunction’ | ‘zfunction’

FuncThreeldent = ‘triangle’ | ‘pifunction’

FuncFourldent ::= ‘trapezoid’ | ‘szfunction’

Number ::= IntegerNumber | RealNumber

272

A.2. Standard Modifiers

A.2. Standard Modifiers

Vitruv provides a set of predefined non-domain-specific general modifiers shown in
table A.2 on the following page. As general modifiers, they are external modifiers
(Thiele, 1998, p. 204, from German: aulere), that means that the applications of mod-
ifier f to fuzzy set X with membership function u and universe U/ results in

vueu: (X)) = (ux o H)u) = f(ux(u).

These standard modifiers are adopted from the NRC Fuzzy Package (Orchard, 1999)
and are based on various widely used definitions (Biewer, 1997). All standard modi-
fiers can be applied to every fuzzy set, except above and below which need a numeri-
cal universe. Modifiers above and below realize the fuzzy sets | X, +oo[and | — oo, X|,
resp., defined in (B.43) and (B.45). We should explain the modifier norm, which nor-
malizes its argument X (defined as above) and works in two steps. Firstly it deter-
mines the peak xg of X:
Xo = sup p(u).

uel
Secondly, it divides each value of u by Xp:

Yu € U i norm(X)(u) = plu)
Xo
The effect is that each normal fuzzy set remains unchanged, because xo = 1, and
otherwise each subnormal fuzzy set is raised, because 0 < Xg < 1: all elements with
membership value Xo become elements of the now non-empty core; the support re-
mains unchanged. Normalization of the empty set is explicitly defined as the fuzzy
set with membership function u(x) = 1.

A.3. The Standard Prelude of Vitruv|_

In listing A.1 on the next page we present the standard prelude of Vitruy| . It contains
a set basic definitions used for Vitruv| , including fuzzy types, classes, compound re-
lations and their default binding.

We start with four fuzzy types, namely the general types TRUTHand DURATION,
and the enumerated types for events (ButtonState and MouseState). The root class
Interval of Vitruv| is defined next. The classes Button and SensitiveArea provide events
for buttons and mouse actions, respectively. These events are immediately enabled,
any further constraints have to defined in derived classes. The last class in the prelude
is the marker class Scene, which does not provide any new elements, but marks a
derived class as a scene. Finally before the binding, we have the definition of the two
compound relations shortly after and shortly before.

273

ButtonState
MouseState
Button
SensitiveArea

A. Definition ofVitruv,_

modifier name definition

1—p(u)
u(u)/Xo
(1(u))?
%40
Vi(u)
(u(u))t>
(u(u))?
{ 2(u(u))? if0<pu(u) <05
1-2(1—u(u))? if05<u(u) <1
intensify norm (plus p(u) intersect not very p(u))
] X, 00|
] =00, X]

Table A.2.: The standard modifiers applied to fuzzy set X given by its membership
function u with u ranging through the universe of X.

In the binding, we provide default values for the fuzzy types and class Interval.
Neither the remaining classes nor the compound relations require additional values.
For all fuzzy types, we do not redefine the modifiers, but stick to their default defini-
tions. The terms of type TRUTHprovide fuzzy true and false values and additionally
the values undefined and unknown, the membership function of which are defined as
to be constant zero and one, respectively. For the terms of fuzzy types ButtonState
and MouseState we define enumerated sets, which are only singletons. A button is
pressed if the button state is down. For mouse events clicks and double-clicks can
only appear, if the mouse is over the respective sensitive area.

The default values durations inside intervals are given in the binding of class In-
terval. The intervals alpha and omega have only a zero duration which is notated as
a singleton fuzzy set at duration 0.0. On the other hand, the duration of an interval
can be anything between zero and infinity, therefore all these durations are equally
possible, notated as the rectangular fuzzy set from 0.0 to +oco.

Listing A.1: The Standard Prelude of Vitruv

prelude
define type TRUTH

universe [0.0 .. 1.0] ;
define term false , true, unknown, undefined;

274

A.3. The Standard Prelude of Vitruv|

define modifier not, very, more_or_less;
end;

define type DURATION

universe [0.0 .. inf] ;

define term zero, short, long;

define modifier not, very, extremely, more_or_less,
end;

/!l For Button—Events
define type ButtonState
universe { up, down } ;
define term isPressed;
define modifier not;
end;

/!l For Mouse—Events

define type MouseState
universe { over, click, doubleclick } ;
define term isRollover, isClicked , isDoubeClicked ;
define modifier not;

end;

/!l The root class of the inheritance hierarchy
class Interval
exports alpha, omega, length;

let
alpha : Interval;
omega : Interval;
length : DURATION;
body

alpha (before or meets) omega;
alpha is DURATION. zero;
omega is DURATION. zero;
end;
end;

/!l A button can be pressed.
class Button
exports pressed;
let
pressed : Event [ButtonState] ;
body

slightly;

275

A. Definition ofVitruv,_

this.alpha starts pressed; // only the enabling
end;

end;

interval!

/] A SensitveArea is sensitve to mouse movements and clicks
class SensitiveArea

exports rollOver , clicked , doubleClicked;
let

rollOver : Event[MouseState] ;

clicked : Event [MouseState] ;

doubleclicked : Event[MouseState] ;
body

this.alpha starts rollover;

this.alpha starts clicked;

this.alpha starts doubleclicked;
end;

end;

/1 Marker class Scene
class Scene

let

body

end;
end;

/1 Some compound relations
define interval relation A shortly after B =
/| BBBBBBBBCCCAAAAAAA
let C in rules
B meets C;
C meets A;
C is short;
end;

define interval relation A shortly before B =
/1 AAAAAAACCCBBBBBBBB
let C in rules
A meets C;
C meets B;
C is short;
end;

end;

276

A.3. The Standard Prelude of Vitruv|

bindings
in prelude

in type TRUTH
let false := zfunction (0.0, 0.3) ;
let true = sfunction (0.7, 1.0) ;
let undefined := linear ((0.0, 0) , (1.0, 0)) ; // undef(x) =0
let unknown := rectangle (0.0, 1.0) ; // unknwon (x) =1

end;

in type DURATION
let zero := singleton (0.0) ;

let short := zfunction (60.0, 120.0) ;

let long sfunction (180.0, 240.0) ;
end;

in type ButtonState
let isPressed := { (down, 1.0) , (pressed, 0.0) } ;

end;
in type MouseState
let isRollover := { (over, 1.0) , (clicked, 0.0) ,
(doubleclicked , 0.0) } ;
let isClicked := { (over, 1.0) , (clicked, 1.0) ,
(doubleclicked , 0.0) } ;
let isDoubleClicked := { (over, 1.0) , (clicked, 0.0) ,
(doubleclicked , 1.0) } ;
end;

class Interval
/1 alpha and omega have zero length

object alpha : Interval
let length := singleton (0.0) ;
end;
object omega : Interval
let length := singleton (0.0) ;
end;
/] each interval may have an arbitrary length
let length := rectangle (0.0, inf) ;
end;
end;
end;

277

A. Definition ofVitruv,_

278

B. Some Definitions and Results from
Fuzzy Set Theory and Petri Nets

In this chapter we present some definitions and results from fuzzy set theory and
Petri nets, as they are used throughout the thesis. Omitted proofs can be found in the
literature.

B.1. Fuzzy Set Theory

Fuzzy set theory originates in the seminal paper of Zadeh (1965). This presentation is
based on a set of books (Bandemer and Gottwald, 1993; Biewer, 1997; Yager and Filev,
1994; Fedrizzi and Kacprzyk, 1999). In the following, the closed and open interval
between a and b is notated as [a, b] and as |a, b[, respectively.

B.1.1. Fuzzy sets

A conventional set A may be equated with its characteristic function
(OF - Uu— {O, 1}

associating each element u of a universe of discourse ¢/ a number ga(u) € {0,1},
such that ¢ (u) = 0 means that u € ¢/ does not belong to A, and that pa(u) = 1
means that u belongs to A.

Definition B.1 (Fuzzy Set) A fuzzy set generalizes the binary-valued characteristic
function of a conventional set by allowing partial memberships, expressed by a fuzzy
set membership function:

pa U — [0,1] (B.1)

such that ua(u) € [0, 1] is the degree of membership of an elementu € U to the fuzzy
set A ranging from ua(u) = 0, meaning that u does not belong to A, to ua(u) = 1,
meaning that u belongs fully to A, with possible intermediate (0 < ua(u) < 1) values.

It is equivalent to say that a fuzzy set A in a universe of discourse I/ is defined as a
set of pairs

A={(upua(u));ueld} (B.2)

279

fuzzy set

fuzzy set
membership
function

fuzzy singleton

normal

subnormal

convex

B. Some Definitions and Results from Fuzzy Set Theory and Petri Nets

with the membership function pa : &4 — [0,1] of A and ua(u) € [0, 1] defining the
grade of membership of u € I/ in A.

Remark B.1 Usually the membership functions use the real interval of [0, 1] as co-domain,
but this is not necessary. Goguen (1969) showed that a lattice is sufficient as co-domain, so
generally fuzzy set A is characterized by its membership function

“l/lA:Z/{—>L.

where L is a partially ordered set. Trivially, the unit interval [0, 1] is such a partially ordered
set.

Notation B.2 If the universe U/ of fuzzy set A is finite, i.e., i/ = {u,uy,...,up}, the
pair (u, ua(u)) is denoted by ua(u)/u and called a fuzzy singleton. The fuzzy set A is
then written as

A = {(upa(u)} ={pa(u)/u}
= pa(U)/ur + pa(uz)/uz + -+ pa(Un)/un = Y pa(ui)/ui - (B3)

i=1

where + and) are meant in the set-theoretic sense. Pairs with ua(u) = 0 are usually
omitted.

Fuzzy set A defined in ¢/ is said to be normal, iff

sup pa(u) =1, (B.4)

uel
otherwise A is subnormal,

Notation B.3 (Fuzzy Power Set) The set of all fuzzy sets in X, the fuzzy power set of
X, is notated as F(X).

Corollary B.4 The empty set @ and the full set X are elements of F(X).

Definition B.1 makes no further assumptions on membership functions of fuzzy
sets. In practice, some general useful normalized convex functions have been estab-
lished, which are widely used. Let us first define convexity for fuzzy sets.

Definition B.5 Let A be a fuzzy set with membership function u and a totally or-
dered universe U. A is called convex, if ua has only one maximum:

abceld:a<c<b= pupa(c)>min{ua(a), ua(b)} (B.5)

In fuzzy control often piece-wise linear functions are used, because they are easy
to compute. Such functions are trapezoid, triangle and rectangle functions. Zadeh
presented parametric functions which approximate the right and the left flanks of a
bell-shape and their combinations. Their graphs are shown in figure B.1 on page 282.

280

B.1. Fuzzy Set Theory

Definition B.6 (Linear Functions) The rectangle, triangle and trapezoidal parametric
functions are assembled from various linear functions with domain R, which is also
the universe of the respective fuzzy sets.

0 x<u
rect(x,a,p) =< 1 a<x<§p (B.6)
0 x>p8
(0 (X<m-—a)V(X>m+p)
X—(m—u)
triangle(x,m, &, 8) =<4 — 5 (M—a) <x<m (B.7)
1_x;m m < x < (m+B)
(0 (X<mp—a)V(Xx>my+p)
m (ml_“)<X§ml
trapezoid(x, mg, my, &, B) = 01‘ My < X < My (B.8)
1—)(_[3m2 my < X < (my + B)

Definition B.7 (Bell-Shape Functions) Zadeh defined the parametric s-, z-, sz- and
rt-functions (Biewer, 1997, p. 57/58)) with x € R, which is also the universe of the
respective fuzzy sets.

(0 X <a
2(2_ R a<xs "‘*T’Y
s(X,,) = _x—fy a4y (B.9)
1—2(7_“)2 5 <X<q
(1 otherwise
Z(X,a,7) =1 —5s(X,a,7) (B.10)
sz(X, &, B, 7, 8) = { 22’;‘;@% iig (B.11)
(X B, y) =sz(X, vy = B 7,7,y + B) (B.12)

Definition B.8 (Support, Core, Height) The support of fuzzy set A is defined as

suppA ={u el | ua(u) > 0}, (B.13)
the core is defined as
coreA={uel|pua(u) =1}, (B.14)
the height is defined as
height A = supyecy pa(u). (B.15)

281

support

core

height

alpha-cut

subset relation

B. Some Definitions and Results from Fuzzy Set Theory and Petri Nets

I s(x,3,7l)
/ pi (X, 2,5) —------

08 |- L/ 1
06 | ; / .
0.4 ; / | i

02 ; / .

Figure B.1.: The s-, z- and 7t-functions

Support and core of a fuzzy set are special crisp (i.e. non-fuzzy) subsets defined by
the grade of membership. Their generalization is called an alpha-cut.

Definition B.9 (Alpha-Cut) The alpha-cut of fuzzy set A is denoted as A, and is de-
fined as

Ac={ucl|pau)>a} w€l0] (B.16)

The non-fuzzy subset relation between fuzzy sets A and B holds, if for each element
a in the support of A the membership grade of a in B is higher and equal or higher,
resp.

Definition B.10 (Subset) Let A, B be fuzzy sets. The non-fuzzy subset relation A C B
holds iff

ACB:=VacsuppA:ua(a) < pug(a). (B.17)

The subset-or-equal relation is defined in a similar way:
ACB:=VacsuppA:ua(a) < pug(a). (B.18)
The usual set-theoretic operations of union, intersection and complement are also

available for fuzzy sets. They result in new fuzzy sets and are defined by their mem-
bership functions.

282

B.1. Fuzzy Set Theory

Definition B.11 (Set theoretic operations) Let A, B be fuzzy sets. The union C = AU

B is defined with the membership function union

e () = max(jua(x), pe(x)), (8.19)
the intersection C = AN B is defined as . .
Intersection
He(x) = min(pa(x), g (X)) (8.20)
and the complement C = A is defined as
complement
He(x) = 1 pa(x). (B.21)
The definitions above using max, min for union and intersection are widely used,
but other definitions are possible and used. In particular the t-norms and s-norms for
intersection and union, resp., are often used.
Definition B.12 (t-norm) A t-norm is a function defined as t-norm
t:[0,1] x [0,1] — [0, 1] (B.22)
such that for each a, b, c € [0,1]:
1. 1is the unit element: t(a,1) = a.
2. tis monotone:a < b = t(a,c) < t(b,c).
3. t is commutative or symmetric: t(a,b) = t(b, a).
4. tis associative: t(t(a,b),c) = t(a, t(b,c)).
Definition B.13 (s-norm) A s-norm is a function defined as s-norm

s:[0,1] x [0,1] — [0,1] (B.23)
such that for each a, b, c € [0,1]:
1. 0 is the unit element: s(a,0) = a.
2. sis monotone: a < b = s(a,c) < s(b,c).
3. s is commutative or symmetric: s(a,b) = s(b, a).
4. s is associative: s(s(a,b),c) = s(a,s(b,c)).

Relevant examples for t- and s-norms are:

t-norm t(a,b) s-norm s(a,b)
minimum min(a, b) maximum max(a, b)
algebraic product a-b probabilistic product a+b—ab
tukasiewicz max(0,a+b—1) *tukasiewicz min(a+b,1)

283

fuzzy relation

B. Some Definitions and Results from Fuzzy Set Theory and Petri Nets

B.1.2. Fuzzy Logic

A direct link exists between fuzzy set theory and fuzzy logic, i.e. a logic of fuzzy truth-
values. The expression x € A is a predicate concerning the membership of x in A. If
A is a fuzzy set, then the truth value 7 is given by the evaluation of the membership
function, i.e.

T(x € A) = pa(X).

More general, suppose “u is P” is a predicate where P is an imprecise term charac-
terized by a fuzzy setin i, i.e. P € F(U). Let t(“uis P”) = 7(u,P) = up(u) for each
u € U. In the following we notate with a slight abuse of notation t(P) := 7(-,P). The
following definitions are usually employed:

Definition B.14 Let P, Q be predicates as defined above, t and s are fixed t- and s-
norms, respectively. The negation of P (“not P”), denoted by —P, is defined as

T(—=P) =1—7(P). (B.24)
The intersection of P and Q (“P and Q”), denoted by P A Q, is defined as

T(PAQ) =t(z(P), 7(Q)), (B.25)

where t is a t-norm (B.22). The union of P and Q (“P or Q”), denoted by P Vv Q, is
defined as

T(PVQ) =s(7(P), 7(Q)), (B.26)

where s is as-norm (B.23).

B.1.3. Fuzzy Relations

A fuzzy relations R between non-fuzzy sets X and Y is in turn a fuzzy set of the
Cartesian product of X and Y.

Definition B.15 A fuzzy relation R between non-fuzzy sets Xy, ..., Xn is defined by
R = {((Xg,--.,Xn), Ur(X1,...,Xn)); Xj € Xjforl <i<n} (B.27)

where pug : X1 x - - - x Xy — [0, 1] is the membership function of R.

As a fuzzy relation is a fuzzy set, all definitions, properties etc. on fuzzy sets pre-
sented above hold as well.

The composition of two fuzzy relations R in X x Y and S inY x Z is given by
the max-min-composition. Certainly the max- and min-operations can be replaced by
corresponding t- and s-norms, resp., resulting in a t-s-composition.

284

B.1. Fuzzy Set Theory

Definition B.16 (Max-Min-Composition) The max-min-composition of two fuzzy re-
lations R in X x Y and S inY x Z, denoted as R o S is defined as fuzzy relation in
X x Z such that

HRos(X,Z) = mag(min(yR(x,y), us(y,z))) foreachx e X,ze Z (B.28)
ye

Definition B.17 The Cartesian product of two fuzzy sets A in X and B inY, denoted
as A x B, is defined as the fuzzy set in X x Y such that

taxs = mMin(ua(x), us(y)) foreachx € X,y € Y (B.29)

Definition B.18 Let Y = X; X --- X Xj_1 X Xi+1 X -+ x Xp and y = (Xl, vy Xj—1,
Xit1,- .-, Xn) for some fuzzy sets X;. We define the projection R; of fuzzy relation R on
X1,...,Xp as

ey (X) = SUPTHR (X, X0 1, X, Xigzie o Xn) | X € X 1< <nj i} (B30)

Definition B.19 Fuzzy relation R on X1, X, ..., Xy Is said to decomposable iff it can
represented as

HR(X1, X2, ..., Xn) = Min{uRr,, ..., kR, ... Yr,} Wherex; € X;,;1<i<n. (B.3l)

B.1.4. The Extension Principle

If there exists some relationship between non-fuzzy entities, it is interesting to see,
if there exists an equivalent relationship between fuzzy entities. Zadeh’s extension
principle deals with this question.

Definition B.20 (Extension Principle) LetAq,..., Ay befuzzy setsinXy,..., Xy, resp.,
and
f:Xyx---xXqp—=Y

be some non-fuzzy function such thaty = f(xy,...,Xn). The extension principle in-
duces the fuzzy set B in Y by Aq, ..., A, via extending the non-fuzzy function f to
the fuzzy function f* such that B = f*(Ag,..., An):

O F(Xg) % - x F(Xn) — F(Y) (8.32)
us(y) = sup min{pa, (X1), .. A (Xn)} (B.33)
(Xl Xn)exlx X Xn
y:f(xl ----- Xn)

together with sup(@) = 0.

The extension principle shares the property of other fuzzy set operations, such as
union or intersection, that if the A; are crisp sets (i.e. A; = 1.0/x;), then B is also crisp
with B = 1.0/y,andy = f*(Aj) = f(X1,...,Xn).

285

max-min-
composition

Cartesian
product

projection

decomposable

extension
principle

fuzzy number

fuzzy interval

B. Some Definitions and Results from Fuzzy Set Theory and Petri Nets

B.1.5. Fuzzy Numbers and Intervals

Fuzzy numbers and intervals are generalizations of ordinary (real) numbers. The cor-
responding universe is therefore the real line R. Important for all fuzzy numbers and
intervals is that their membership function y is convex.

Definition B.21 Fuzzy set A € F(R) is afuzzy number if A is convex and normalized
with exactly one a € R such that ua(a) = 1. Is A only convex and normalized, then
A is afuzzy interval.

The basic arithmetical operations with fuzzy numbers are an application of the
extension principle (def. B.20 on the page before). The resulting fuzzy sets are also
fuzzy numbers. The same operations can also be applied to fuzzy intervals which
results also in fuzzy intervals.

Definition B.22 (Basic arithmetical operations) Let A and B be fuzzy numbers. The
sum S := A @ B is defined with membership function

vaeR: ps(a) =supmin{pa(x) ps(a—x)}, (B.34)

xeR

the difference D := A © B is analogous

vaeR: pp(a) =supmin{ua(x), us(x —a)}, (B.35)

xeR

and also the product P := A® B

VvaeR: pup(a) = SUFI’Rmin{VA(X)'VB(y)}- (B.36)
X,y€
Xy=a

If0 ¢ supp(B), then the quotient Q := A @ B is defined with membership function

vaeR: pq(a) = sup min{ua(x), us(y)}. (B.37)
X,yeR
x/y=a

Minimum and maximum of A and B are defined as

VZER: pmin(z) = sup min{ua(X), us(y)} (8.38)
X,YER
min(x,y)=z

VZER: pmax(z) = sup min{pa(x), pus(y)} (B.39)
X,YER
max(Xx,y)=z

Corollary B.23 Let A be a fuzzy number. The negative N :="A of A is given by
VaeR: un(a) =pa(—a). (B.40)

286

B.1. Fuzzy Set Theory

The scalar product of a fuzzy number is similar to scalar products of vectors.

Definition B.24 Let A be a fuzzy number and A € R\ {0}. The scalar product AA of
A with A is defined with the membership function p, a

VaeR: jua(a) = pa(3) (B.41)

For efficient calculation often piece-wise linear membership functions are used. De-
tails of this approach are given by Dubois and Prade (1987), and Biewer (1997).

For given fuzzy number or interval X four fuzzy semi-intervals exists describing
the sets of all numbers lower or greater than X (Dubois and Prade, 1989). We have
four intervals, because we allow also the equality case.

Definition B.25 Let X be a fuzzy number or interval with membership function px.
The fuzzy set [X, +oo[of numbers which are greater or equal than X is defined by the
membership function px i

VX ER T px 4o (X) = SUP x(Y), (B.42)

y<X

the fuzzy set | X, +oo[of number which are strictly greater than X is defined by the
membership function pyx 4o

VX ER: iy eo(X) = INF(L— pix(y), (B.43)

y>X

The fuzzy set| — oo, X] of numbers which are lower or equal than X is defined by the
membership function p | . x;:

YXER D pyieox)(X) =supux(y) =1 — px, reo[(X), (B.44)

y=>X

the fuzzy set | — oo, X[of number which are strictly lower than X is defined by the
membership function py_q, x|

VX ER: pcox((X) = INf(1—pux(y)) =1 — px +o00[(X). (B.45)

y<x

B.1.6. Possibility Theory

This section is based on (Dubois and Prade, 1999; Biewer, 1997). Possibility theory
uses fuzzy set theory not as a measure for impreciseness but as a measure for uncer-
tainty, i.e. it is a theory of incomplete information similar to probability theory.

Let & be a universe and P be a (fuzzy) predicate on U, i.e. P is a fuzzy set on U,
P :U — [0,1]. The proposition “y is P” for y € U evaluates to pup(y). Let x € U be
fixed with unknown exact value but with possible values given by P. The possibility

287

possibility
distribution

possibility

necessity

similarity

B. Some Definitions and Results from Fuzzy Set Theory and Petri Nets

that “u = x” for u ranging through / is given by the possibility distribution 7y, which
is induced by the predicate P, our only source of knowledge about x. The possibility
distribution 7ty is defined via pp:

nix(u) = up(u) Yuel (B.46)
with the following interpretation:
1. 7tx(u) = 0: u can not be assigned to x, short: X = u is impossible.
2. 1tx(u) = 1:u can perfectly be assigned to x, short: x = u is (completely) possible.

3. 7x(uy) > 7y (up): prefer x = u; to X = uy because x = uy is with a higher degree
possible than x = us,.

In contrast to probability distributions, the possibility distributions do not sum up
to 1, usually they are normalized resulting in a sum greater than 1. An event with a
low probability can have a high degree of possibility and a high degree of possibility
induces not automatically a high probability. The degree of possibility is always equal
or greater as the probability of the same event.

The measures of possibility and necessity as defined as follwos

Definition B.26 (Possibility and Necessity) Let A € F(U) and 7ty be a (reference)
possibility distribution on U, associated with variable x. The possibility of “x is A”,
notated as I'1(A|x), is defined as

IT(A|x) = supmin{pua(u), 7x(u)}. (B.47)

uel

It measures the degree of compatibility (or consistency) between an element of A and
the possibility distribution 7. The necessity N of A is defined as

N(A]x) =1 —-TI(=A|x) =1 —supmin{1l — ua(u), x(u)}. (B.48)

uel
For the similarity of fuzzy set D (for data) and of reference possibility distribution
P (for pattern) over some universe U/ we use the definition of Orchard (1999):

I1(P|D) if \'(P|D) > 0.5

(NM(P|D) +0.5) - TI(P|D) otherwise (B.49)

simil(D, P) = {

B.2. Petri Nets

In this section we present some important definitions and properties of Petri nets.
Firstly, we present multi-sets followed by Petri nets.

288

B.2. Petri Nets

B.2.1. Multi-Sets

For colored nets we need individual tokens at the same place p instead of anonymous
tokens as in place-transition nets. These individual tokens are modeled with multi-
sets.

Definition B.27 (Multi-sets) A multi-set, M, over base type A is a mapping A — N.
The set of all multi-sets over base type A is denoted with M(A). Let M, My, M3 be
multi-sets over base type A, a € A. Some set-theoretic operations and notations can
be transfered to multi-sets; subscript ms indicates that we operate on multi-sets:

1. M, My, My € M(A)
2.a€ms M= M(a) >0

3. M1Ums My = {(a, M1(a) + Mz(a)) | a € A}

4. |Mlms = Laecm M(a)

5 M; Cps My i Vae A My(a) < My(a)

6. M1 \ms M2 = {(a,M1(a) — Mz(a) |a€ A} iff My C M,
7.6-M={(a,pn)]| (an) e M} forpeN

We may omit subscript ms, if it is clear from the context that we have multi-sets.
The effect of firing of transitions is to remove tokens from multi-set M; and to add
new token to multi-set M,. We denote this as formal sums.

Definition B.28 (Formal Sum) Let M; and M, be multi-sets over some base type A,
a € A. The formal sums M; + M, and M1 — M, are defined componentwise:

M1+ Mz = {(a Mi(a) +Mz(a)) |a€ A}
M;— M, = {(a Mi(a) —Mz(a)) [a€ A} iff My C My

Let M = {M1, My, ..., My} be a set of multi-sets over base type A, we extend the
binary formal sum to an n-ary sum:

Y m=M;+Mz+ -+ My

meM

Definition B.29 Let A; = {ay,...,ax} € A. As shorthand notation for multi-set con-
structors we have

{(ag,ny), ..., (&,)} = My
defined as
My (a) — n; ifac A_l/\ (a,nj) € My -
0 otherwise

289

multi-set

formal sums

Petri net
places

transitions
arcs

flow relation

pre-set
post-set
neighborhood

transitive
closure

acyclic

B. Some Definitions and Results from Fuzzy Set Theory and Petri Nets

Ifallnj = 1, we may omit n; for the sake of brevity: {ay, . .., a}ms. Singleton multi-sets
can be written as (a, N)ms.

Sometimes, we use the notation by Jensen (1997) for elements of a multi-set:
n‘a< (a,n) € M.

This notation is easier to read if a is a complex data structure.

B.2.2. Petri Nets
B.2.2.1. Basic Petri Nets

According to newer presentations (Rozenberg and Engelfriet, 1998; Desel and Reisig,
1998; Baumgarten, 1996) we distinguish between Petri nets and Petri systems, the
former describes the static structure only and the latter defines the dynamic semantics
of a net by means of markings and firing behavior.

Definition B.30 (Petri Net) A Petri net is a tuple (P, T, A) where P and T are finite
sets, PNT = @, and A C (P x T)U(T x P). Elements of P and T are named places
and transitions, resp., A is the set of arcs or the flow relation.

Graphically we denote places, transitions and arcs by circles, rectangles and lines with
an arrowhead, respectively.
In the following, we define some important operations on the net structure.

Definition B.31 Let (P, T, A) be a Petri net. Let X = PUT and x € X. The pre-set
of X, eX, is defined as ex = {y € X | yAx}. The post-set of x, xe, is defined as
xe = {y € X | X Ay}. The neighborhood of x is defined as nb(x) = ex U Xe.

We now extend the definitions of pre- and post-sets to their transitive closure, being
the basis of properties acyclic and connected nets.

Definition B.32 (Net Structure 1) Let N = (P, T, A) be a Petri net, x € X = PUT,
olx = ex and
o'x={y|lyeXrycexXAx ee"Ix} n>1,

xe" is defined accordingly. The transitive closure of ex is defined as

o x = U "X,

n>1

Xo+: UXon.

n>1

the transitive closure of xe as

The net is acyclic, if
VX e X:x & (eTxUxe™).

290

B.2. Petri Nets

Definition B.33 (Net Structure 2) LetN = (P, T, A) and N’ = (P’, T, A’) be Petri nets
withP =P/, T=T and A’ = AUAL, ie, N is the undirected version of N. Net N
is connected iff

Vx, X' € X =PUT:x# X = (x,x') € A'F

In the net structure, we can identify root and leaf places in the usual graph theoret-
ical sense.

Definition B.34 Let N = (P, T, A) be a Petri net. The root places, R, of N are defined
as

root(N) = {p € P | ep = @},

the leaf places, L, of N are defined as
leaf (N) = {p € P | pe = @}.

The marking, M, of a Petri net (P, T, A) describes the state of a Petri system by
assigning values, also called tokens, to places. Details of the marking depends on the
Petri system type: for elementary nets the marking a map with range is {0,1}: M :
P — {0, 1}, for place-transition nets (P/T-nets) it is a map withrange N: M : P — N.
For higher level nets such as Colored Petri Nets (Jensen, 1997) the marking of a place
is a multi-set of a datatype’s instances. The initial marking is notated with M.

The firing behavior of a Petri net defines the dynamic semantics by stating how we
proceed from one to another marking. It defines when a transition is enabled which
is a precondition of the occurence of the transition. If a transition t occurs, it fires,
removing tokens from et and adding new tokens to te. Adding and removing tokens
to and from a place need to be properly defined for each net type.

Notation B.35 We denote a firing step from marking M; to M, 1, where transition
t fires by, Mj[t) M. For a sequence, s, of transitions s = t;...ty, we denote with
Mi[s) M; that marking M is reached by M;[t;)M; 1 and recursively the following
holds: Mj; [tz ...tn)M;. The set of all markings reachable from a particular marking
M is denoted by [M).

B.2.2.2. Extensions

There are a few well known extensions of the aforementioned basic Petri nets, which
are often used. These extension modify the firing behavior of P/T-nets and can be
extended to higher-level nets such as Colored Petri nets.

While not explicitely defined above, in P/T-system a firing transition t removes
only one token of each place in et and add exactly one token to each place in te. TO
generalize the amount of tokens removed and added during firing of transition we
introduce arc weights:

291

connected

root places

leaf places

marking
tokens

initial marking
firing behavior

enabled
occurence

arc weights

arc expressions

reset arcs

inhibitor arcs

B. Some Definitions and Results from Fuzzy Set Theory and Petri Nets

Definition B.36 (Arc weights) A Petri net with arc weights assigns to each arc a nat-
ural number, denoting how many tokens are removed or added from place of the arc
if the transition of the arc fires.

In higher level nets, token usually have a more complex structure than natural
numbers as in P/T-nets. Thus, arc weights are extended to arc expressions denoting
not only the amount of tokens but also an expression defining the values of tokens
consumed or produced. Here, a inscription language is needed to formulate the ex-
pression, classical example are ML for Colored Petri Nets Jensen (1997) or predicate
logic for Pr/T-Nets Smith (1998).

Arc weights define a constant amount of token removed or created. Sometimes it is
desirable to have a dynamic arc weight, and in particular an arc weight that is equal
to the current number of tokens in the place of interest. This is modeled by reset arcs,
which are arcs from places to transitions modifying the firing behavior such that all
tokens from the place are removed, the place’s marking is reset to an empty marking.
To distinguish formally reset arcs from regular arcs, we introduce a new element of
the Petri net structure, the set of reset arcs.

Definition B.37 (Net with Reset Arcs) A net with reset arcs is a quadruple (P, T, A,R)
such that (P, T, A) isa Petrinetand R C P x T.

We denote reset arcs graphically by a double arrow head at the transition end.

Sometimes, we have situations where a transition t shall only fire if a specific place
p has an empty marking. This can be expressed by an inhibitor arc from p to t. In
contrast to ordinary arcs between transitions and places, no token movement occurs
on an inhibitor. To distinguish formally inhibitor arcs from regular arcs, we introduce
a new element of the Petri net structure, the set of inhibitor arcs.

Definition B.38 (Net with Inhibitor Arcs) A Petri net with inhibitor arcs is a quadru-
ple (P, T, A, 1) such that (P, T,A) isaPetrinetand | C P x T.

We denote inhibitor arcs graphically by a circle instead of an arrow at the transition
end.

292

Bibliography

S. Abramsky, Dov M. Gabbay, and T. S. E. Maibaum, editors. Handbook of Logic in
Computer Science, volume 4. Clarendon Press, Oxford, 1995.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers. Principles, Techniques and
Tools. Addison-Wesley, Reading, MA, 1987.

Yahya Y. Al-Salgan and Carl K. Chang. Temporal relations and synchronization
agents. IEEE Multimedia, pages 30-39, 1996.

Klaus Alfert, Ernst-Erich Doberkat, and Corina Kopka. Towards constructing
a flexible multimedia environment for teaching the history of art. SWT-
Memo 101, Lehrstuhl fur Software-Technologie, Fachbereich Informatik, Univer-
sitdit Dortmund, September 1999. Available online http://1s10-www.cs.
uni-dortmund.de/.

Klaus Alfert and Matthias Heiduck. Natural language-based specification and fuzzy
logic for the multimedia development process. In Wolfgang Gaul and Gunter Rit-
ter, editors, Classification, Automation, and New Media. Proceedings of the 24th Annual
Conference of the Gesellschaft flir Klassifikation e.V., University of Passau, March 15-17,
2000, Studies in Classification, Data Analysis, and Knowledge Organization, Berlin,
2002. Springer-Verlag.

James F. Allen. Maintaining knowledge about temporal intervals. Communications of
the ACM, 26(11):832-843, November 1983.

James F. Allen and Patrick J. Hayes. A common-sense theory of time. In 9th Interna-
tional Joint Conference on Artificial Intelligence, pages 528-531, 1985.

J. C. M. Baeten and C. Verhoef. Concrete process algebra. In Abramsky et al. (1995),
pages 149-268.

Brian P. Bailey, Joseph A. Konstan, and John V. Carlis. DEMAIS: Designing mul-
timedia applications with interactive storyboards. In ACM Multimedia 01. The 9th
ACM International Multimedia Conference, pages 241-250, Ottawa, Onatario, Canada,
September/October 2001a.

293

Bibliography

Brian P. Bailey, Joseph A. Konstan, and John V. Carlis. Supporting multimedia design-
ers: Towards more effective design tools. In Lloyd Ruthledge, editor, Proceeding of
the 8th International Conference on Multimedia Modeling 2001 (MMMO01), Amsterdam,
The Netherlands, November 2001b.

Hans Bandemer and Siegfried Gottwald. Einfuhrung in Fuzzy-Methoden. Akademie
Verlag, Berlin, 4th edition, 1993.

Bernd Baumgarten. Petri-Netze: Grundlagen und Anwendungen. Hochschultaschen-
buch. Spektrum Akademischer Verlag, Heidelberg, Berlin, Oxford, 2nd edition,
1996.

Christoph Begall. VOLT - Ein Ubersetzer fur Vitruv. Diplomarbeit (Master’s
thesis), Universitat Dortmund, Fachbereich Informatik, Lehrstuhl flr Software-
Technologie, 2002. In preparation, In German.

Benno Biewer. Fuzzy-Methoden. Praxisrelevante Rechenmodelle und Fuzzy-Programmier-
sprachen. Springer-Verlag, Berlin, 1997.

Berry W. Boehm. A spiral model of software development and enhancement. Com-
puter, pages 61-72, May 1988.

Susanne Boll and Wolfgang Klas. ZyX —a multimedia document model for reuse and
adaption of multimedia content. IEEE Transactions of Knowledge and Data Engineer-
ing, 13(10):361-382, May 2001.

Grady Booch, James Rumbaugh, and Ivar Jacobsen. The unified modeling language user
guide. Object Technology Series. Addison-Wesley, 1999.

Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible markup language
(XML) 1.0. W3C Recommendation REC-xmI-19980210, World Wide Web Consor-
tium, February 1998.

Manfred Broy. Formalization of distributed, concurrent, reactive systems. In Neuhold
and Paul (1991), pages 319-362.

Reinhard Budde, Karlheinz Kautz, Karin Kuhlenkamp, and Heinz Zullighofen. Pro-
totyping: An Approach to Evolutionary System Development. Springer-Verlag, Berlin
edition, 1992.

Luca Cardelli. Type systems. In Allen B. Tucker, editor, The Computer Science and
Engineering Handbook, chapter 103, pages 2208-2236. CRC Press, Boca Raton, 1997.

Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and poly-
morphism. ACM Computing Surveys, 17(4):471-522, December 1985.

294

Bibliography

Janette Cardoso and Heloisa Camargo, editors. Fuzziness in Petri Nets, volume 22
of Studies in Fuzziness and Soft Computing. Physica-Verlag, Heidelberg, New York,
1999.

Janette Cardoso, Robert Valette, and Didier Dubois. Fuzzy petri nets: An overview. In
13th IFAC World Congress, San Francisco, USA, volume J, pages 443-448, June/July
1996.

Edmund M. Clarke, Jr, Orna Grumberg, and Doron A. Peled. Model Checking. MIT
Press, Cambrigde, MA, 1999.

Donald D. Cowand and Carlos J. P. Lucena. Abstract data views: An interface specifi-
cation concept to enhance design for reuse. IEEE Transactions on Software Engineer-
ing, 21(3):229-243, March 1995.

Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial
Intelligence, 49:61-95, 1991.

Jorg Desel and Wolfgang Reisig. Place/transition petri nets. In Reisig and Rozenberg
(1998), pages 122-173.

Michel Diaz and Patrick Sénac. Time stream petri nets —a model for timed multimedia
information. In Robert Valette, editor, Application and Theory of Petri Nets 1994. 15th
International Conference, number 815 in LNCS, pages 219-238. Springer-Verlag, 1994.

Ernst-Erich Doberkat. A language for specifying hyperdocuments. Software — Concepts
and Tools, 17:163-172, 1996.

Ernst-Erich Doberkat and Dietmar Fox. Software Prototyping mit SETL. Leitfaden und
Monographien der Informatik. BG Teubner Verlag, Stuttgart, 1989.

Ernst-Erich Doberkat, Wolfgang Franke, Wilhelm Hasselbring, Claus Pahl, Hand-
Gerald Sobottka, and Bettina Sucrow. PROSET — Prototyping with Sets. Language
Definition. Technical report, Lehrstuhl fur Software-Technologie, Fachbereich In-
formatik, Universitat Dortmund, 1994,

Didier Dubois and Henri Prade. Fuzzy numbers: An overview. InJ. C. Bezdek, editor,
Analysis of Fuzzy Information Vol. 1: Mathematics and Logic, pages 3-39. CRC Press,
Boca Raton (FL), 1987.

Didier Dubois and Henri Prade. Processing fuzzy temporal knowledge. IEEE Trans-
actions on Systems, Man, and Cybernetics, 19(4):729-744, July/ August 1989.

Didier Dubois and Henri Prade. A brief introduction to possibility theory and its use
for processing fuzzy temporal information. In Cardoso and Camargo (1999), pages
52-71.

295

Bibliography

Didier Dubois, Henri Prade, and Florence Sédes. Fuzzy logic techniques in multime-
dia database querying: A prelimary investigation of the potentials. IEEE Transac-
tions of Knowledge and Data Engineering, 13(10):383-392, May 2001.

Didier Dubois, Henri Prade, and Ronald R. Yager, editors. Readings in Fuzzy Sets for
Intelligent Systems. Morgan Kaufmann, San Mateo (CA), 1993.

Soumitra Dutta. An event based fuzzy temporal logic. In Proceedings 18th International
Symposium on Multiple-Valued Logic, pages 64-71, Palma de Mallorca, Spain, 1988.
IEEE Computer Society.

E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, chapter 16, pages 995-1072. Elsevier Science
Publishers B. V., Amsterdam, New York, Oxford, Tokyo, 1990.

Bruce A. Epstein. Director in a Nutshell. O’Reilly, 1999.

A. Fantechi, S. Gnesi, G. Ristori, M. Cerenini, M. Vanocchi, and P. Moreschini. Assist-
ing requirement formalization by means of natural language translation. Formal
Methods of System Design, 4(3):243-263, 1994.

Alexander Fay and Eckehard Schnieder. Fuzzy petri nets for knowledge modeling in
expert systems. In Cardoso and Camargo (1999), pages 300-318.

Mario Fedrizzi and Janusz Kacprzyk. A brief introduction to fuzzy sets and fuzzy
systems. In Cardoso and Camargo (1999), pages 25-51.

A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. Viewpoints:
A framework for integrating multiple perspectives in system development. Inter-
national Journal of Software Engineering and Knowledge Engineering, 2(1):31-57, 1992.

William Fleming and David John Watkin. The history of western architecture: The
renaissance. In Britannica CD ’99. Encyclopadia Britannica, Inc., 1999.

Martin Fowler and Kandal Scott. UML distilled: A brief guide to the standard object
modeling language. Addison-Wesley, Reading, MA, 2nd edition, 1999.

Franca Garzotto, Paolo Paolini, and Daniel Schwabe. HDM — a model-based ap-
proach to hypertext application design. ACM Transactions on Information Systems,
11(1):1-26, January 1993.

Vincenzo Gervasi. Environment Support for Requirements Writing and Analysis. PhD
thesis, Dipartimento di Informatica, Universita degli Studi di Pisa, 2000.

Vincenzo Gervasi and Bashar Nuseibeh. Lightweight validation of natural language
requirements. Software — Practice and Experience, 32(2):113-133, February 2002.

296

Bibliography

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineer-
ing. Prentice Hall, Englewood Cliffs, NJ, 1991.

Simon J. Gibbs and Dionysios C. Tsichritzis. Multimedia Programming — Objects, Envi-
ronments and Frameworks. Addison-Wesley, 1995.

Rainer Goetze. Dialogmodellierung fiir multimediale Benutzerschnittstellen. Teubner-
Texte zur Informatik. Teubner, Stuttgart [u.a.], 1. korr. Nachdr. edition, 1995. ISBN
3-8154-2064-4. Dissertation, Universitat Oldenburg.

Joseph Goguen. The logic of inexact concepts. Synthese, 19:325-373, 1969. reprinted
in Dubois et al. (1993).

James Gosling and Ken Arnold. Java: The Language. Addison-Wesley, 1996.

Christopher Habel, Michael Herweg, and Simone Pribbenow. Wissen Uber Raum
und Zeit. In Gunther Gorz, editor, Einfihrung in die kiinstliche Intelligenz, chapter
1.4, pages 139-204. Addison-Wesley, Bonn, 1993.

Elzbieta Hajnicz. Time Structures. Formal Description and Algorithmic Representa-
tion. Number 1047 in Lecture Notes in Artificial Intelligence, subseries of LNCS.
Springer-Verlag, Berlin, 1996.

Frank Halasz and Mayer Schwartz. The dexter hypertext reference model. Communi-
cations of the ACM, 37(2):30-39, February 1994.

Komei Harada, Eiichiro Tanaka, Ryuichi Ogawa, and Yoshinori Hara. Anecdote: A
multimedia storyboarding system with seamless authoring support. In ACM Mul-
timedia 96. The 4th ACM International Multimedia Conference, pages 341-351, Boston,
MA, USA, 1996.

Lynda Hardman, Dick C. A. Bulterman, and Guido van Rossum. The amsterdam
hypermedia model: Adding time and context to the dexter modell. Communications
of the ACM, 37(2):50-62, February 1994.

David Harel. Statechards: A visual formalism for complex systems. Science of Com-
puter Programming, 8:231-274, 1987.

David Harel and Amnon Naamad. The STATEMATE semantics of statecharts. ACM
Transactions on Software Engineering and Methodology, 5(4):293-333, October 1996.

Matthias Heiduck. Konzeption einer Beschreibungssprache fur eine eingeschrankte
Klasse von Multimedia-Systemen. Diplomarbeit (Master’s thesis), Universitat
Dortmund, Fachbereich Informatik, Lehrstuhl flr Software-Technologie, July 1999.
In German, Available online http://1s10-www.cs.uni-dortmund.de/.

297

Bibliography

C. A. R. Hoare. Communicating sequential processes. Prentice Hall International Series
in Computer Science. Prentice Hall, 1985.

Karen Holtzblatt and H. Beyer. Making customer-centered design work for teams.
Communications of the ACM, 36(10), October 1993.

Ellis Horowitz. Fundamentals of Programming Languages. Computer Science Press, 2nd
edition, 1984.

Philipp Hoschka. Synchronized multimedia integration language (SMIL) 1.0 specifi-
cation. W3C Recommendation REC-smil-19980615, World Wide Web Consortium,
June 1998.

Anthony Hunter and Bashar Nuseibeh. Managing inconsistent specifications: Rea-
soning, analysis and action. ACM Transactions on Software Engineering and Method-
ology, 7(4):335-367, October 1998.

Tomas Isakowitz, Edward A. Stohr, and P. Balasubramanian. RMM: A methodology
for structured hypermedia design. Communications of the ACM, 38(8):34-44, August
1995.

Jens H. Jahnke and Conor Ryan, editors. Proceedings of the 2nd International Workshop
on Soft Computing Applied to Software Engineering (SCASE), Enschede, The Nether-
lands, February 2001. University of Twente, ISBN 90-365-1552-1.

Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Volume 1. Monographs in Theoretical Computer Science. Springer-Verlag, Berlin,
2nd edition, 1997. 2nd corr. reprint.

Peter Jonsson and Christer Backstrom. A unifying approach to temporal constraint
reasoning. Artificial Intelligence, 102:143-155, 1998.

Sarah Kahn and Michael J. Muller. Participatory design — introduction to the special
section. Communications of the ACM, 36(6):24-28, June 1993.

H. Khalfallah and A. Karmouch. An architecture and a data model for integrated
multimedia documents and presentation applications. ACM Multimedia Systems, 3
(5/6):238-250, 1995.

John F. Koegel Buford. Multimedia Systems. ACM-Press, Reading, MA, 1994a.

John F. Koegel Buford. Uses of multimedia information. In Koegel Buford (1994a),
pages 1-25.

Gerald Kotonya and lan Sommerville. Requirements Engineering: Processes and Tech-
niques. John Wiley and Sons, 1998.

298

Bibliography

Olaf Kummer, Frank Wienberg, and Michael Duvigneau. Renew — user guide. Release
1.5.2, Distributed Systems Group, Theoretical Foundations Groups, Department for
Informatics, University of Hamburg, July 2001. Available online at http://www.
renew.de.

Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872-923, May 1994.

T. D. C. Little and A. Ghafoor. Inverval-based conceptual models for time-dependent
multimedia data. IEEE Transactions of Knowledge and Data Engineering, 5(4):551-563,
August 1993.

Thomas D. Little and Arif Ghafoor. Synchronzation and storage models for multi-
media objects. IEEE Journal on Selected Areas in Communication, 8(3):413-427, April
1990.

Thomas D. C. Little. Time-based media representation and delivery. In Koegel Buford
(1994a), chapter 7, pages 175-200.

Xiaoging Frank Liu and John Yen. An analytic framework for specifying and analyz-
ing imprecise requirements. In Proceedings of ICSE 18, pages 60-69, 1996.

Carl G. Looney. Fuzzy petri nets fo rule-based decisionmaking. IEEE Transactions on
Systems, Man, and Cybernetics, 18(1):178-183, January 1988. reprinted in Cardoso
and Camargo (1999).

David Lowe and Wendy Hall. Hypermedia & the Web: An Engineering Approach. John
Wiley and Sons, 1999.

Kim Halskov Madsen and Peter H. Aiken. Experiences using cooperative interactive
storyboard prototyping. Communications of the ACM, 36(6):57-64, June 1993.

Ole Lehrmann Madsen, Birger Magller-Pedersen, and Kristen Nygaard. Object-
Oriented Programming in the BETA Programming Language. ACM-Press. Addison-
Wesley, Reading, MA, 1993.

Bertrand Meyer. Eiffel: The Language. Prentice Hall, 1992.

Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd edition,
1997.

John C. Mitchel. Foundations for Programming Languages. Foundations of Computing.
MIT Press, Cambrigde, MA, 2nd. printing 1998 edition, 1996.

Stephen J. Morris and Anthony C. W. Finkelstein. Integrating design and develop-
ment in the production of multimedia documents. In Mulh&user and Effelsberg
(1996), pages 98-108.

299

Bibliography

Stephen J. Morris and Anthony C. W. Finkelstein. Engineering via discourse: Con-
tent structure as an essential component for multimedia documents. International
Journal of Software Engineering and Knowledge Engineering, 9(6):691-724, 1999.

Peter D. Mosses. A practical introduction to denotational semantics. In Neuhold and
Paul (1991), pages 1-50.

Max Mulhauser and Wolfgang Effelsberg, editors. MMSD ’96: Proceedings of the Inter-
national Workshop on Multimedia Software Development, March 26/26 1996, Berlin, Los
Alamitos, CA, March 1996. IEEE Press.

Tadao Murata. Temporal uncertainty and fuzzy-timing high-level petri nets. In
Jonathan Billington and Wolfgang Reisig, editors, Application and Theory of Petri Nets
1996. 17th International Conference, number 1091 in LNCS, pages 11-28. Springer-
Verlag, 1996.

Tadao Murata, Takeshi Suzuki, and Sol M. Shatz. Fuzzy-timing high-level petri nets
(fthns) for time-critical systems. In Cardoso and Camargo (1999), pages 88-114.

Francis Neelamkavil. Computer Simulation and Modeling. John Wiley and Sons, 1987.

Erich J. Neuhold and Manfred Paul, editors. Formal Description of Programming Con-
cepts. IFIP State-Of-The-Art Reports. Springer-Verlag, Berlin, 1991.

Steven R. Newcomb, Neill A. Kipp, and Victoria T. Newcomb. The hytime
hypermedia/time-based document structuring language. Communications of the
ACM, 34(11):67-83, November 1991.

Peter Norvig. Paradigms of Artificial Intelligence Programming: Case Studies in Common
Lisp. Morgan Kaufmann Publishers, San Mateo, California, 1992.

OMG. OMG Unified Modeling Language Specification. Object Management Group, Inc.,
September 2001. Version 1.4. Available online at http://www.omg. org.

Robert A. Orchard. NRC Fuzzy Java Toolkit User’s Guide. Integrated Reasoning, Insti-
tute for Information Technology, National Research Council Canada, 1.0 beta 1 edi-
tion, November 1999. availableonlineathttp://ai.iit.nrc.ca/IR public/
fuzzy/.

Helmuth Partsch. Requirements-Engineering systematisch. Modellbildung fir soft-
waregestltzte Systeme. Springer-Verlag, Berlin, 1998.

Fabiano Borges Paulo, Paulo Cesar Masiero, and Maria Cristina Ferreira de Oliveira.
Hypercharts: Extended statecharts to support hymermedia specification. IEEE
Transactions on Software Engineering, 25(1):33-49, January/February 1999.

300

Bibliography

Dimitrie O. Paun and Marsha Chechik. Events in linear-time properties. In William N.
Robinson and Kevin Ryan, editors, 4th IEEE International Symposium on Require-
ments Engineering, pages 123-132, Limerick, Ireland, June 1999.

Amir Pnueli. The temporal logics of programs. In Proc. 18th Ann. IEEE Symposium on
Foundations of Computer Science, pages 46-57, 1977.

Klaus Pohl. Requirements engineering: An overview. Aachener Informatik-Berichte
96-5, RWTH Aachen, Fachgruppe Informatik, 1996.

Chris Reade. Elements of functional programming. International Computer Sciences
Series. Addison-Wesley, 1989.

Wolfgang Reisig and Grzegorz Rozenberg, editors. Lectures on Petri Nets I: Basic Mod-
els, volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

C. Rolland and C. Proix. A Natural Language Approach For Requirements Engi-
neering. In P. Loucopoulos, editor, Proceedings of the Fourth International Conference
CAISE’92 on Advanced Information Systems Engineering, volume 593, pages 257-277,
Manchester, United Kingdom, 1992. Springer-Verlag. URL citeseer.nj.nec.
com/rolland92natural.html.

Grzegorz Rozenberg and Joost Engelfriet. Elementary net systems. In Reisig and
Rozenberg (1998), pages 12-121.

James Rumbaugh, Grady Booch, and lvar Jacobsen. The unified modeling language
reference manual. Object Technology Series. Addison-Wesley, 1999.

C. A.S. Santos, P. N. M. Sampaio, and J. P. Courtiat. Revisiting the concept of hyper-
media document consistency. In ACM Multimedia 99 (Part 2). The 7th ACM Interna-
tional Multimedia Conference, pages 183-186, Orlando, FL, USA, November 1999.

Stefan Sauer and Gregor Engels. Extending UML for modeling of multimedia appli-
cations. In Proceedings of the 1999 IEEE International Symposium on Visual Languages
(VL’99), pages 80-87, Tokyo, Japan, September 1999.

David A. Schmidt. The Strucutre of Typed Programming Languages. Foundations of
Computing. MIT Press, Cambrigde, MA, 1994.

Daniel Schwabe and Gustavo Rossi. The object-oriented hypermedia design model.
Communications of the ACM, 38(8):45-46, August 1995.

Daniel Schwabe, Gustavo Rossi, and Simone D. J. Barbosa. Abstraction, composition
and lay-out definition mechanisms in OOHDM. In I. F. Cruz, J. Marks, and K. Wit-
tenburg, editors, Electronic Proceedings of the ACM Workshop on Effective Abstractions
in Multimedia. In Association with ACM Multimedia ’95, San Francisco, California,

301

Bibliography

November 1995. Electronic address: http://www.cs.tufts.edu/~isabel/
mmwsproc.html.

Einar Smith. Principles of high-level net theory. In Reisig and Rozenberg (1998),
pages 175-210.

lan Sommerville. Software-Engineering. Addison-Wesley, 4th edition, 1990.
J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2nd edition, 1992.

Ralf Steinmetz. Multimedia-Technologie. Grundlagen, Komponenten und Systeme.
Springer-Verlag, Berlin, 3rd edition, October 2000.

Alison Stones. Glossary of medieval art and architecture. Www-document, Univer-
sity of Pittsburgh, 1997. available online at http://www.pitt.edu/~medart/
menuglossary/INDEX.HTM.

Marc Storzel. Simulation verteilter Prozesslandschaften. Diplomarbeit (Master’s
thesis), Universitat Dortmund, Fachbereich Informatik, Lehrstuhl flr Software-
Technologie, October 2001.

Marc Storzel and Klaus Alfert. Benutzerhandbuch “Renew-Auswertungskomponente”.
Universitdat Dortmund, Fachbereich Informatik, Lehrstuhl fir Software-
Technologie, January 2002. In German, unpublished.

Bjarne Stroustrup. The C++ programmling language. Addison-Wesley, 2nd edition,
1991.

Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, Englewood ClIiffs,
NJ, 1992.

Helmut Thiele. EinfUhrung in die Fuzzy-Logik. Scriptum zur Spezialvorlesung, Uni-
versitat Dortmund, Fachbereich Informatik, 1998.

Klaus Tochtermann. Ein Modell fir Hypermedia. Beschreibung und integrierte Formal-
isierung wesentlicher Hypermediakonzepte. PhD thesis, Universitat Dortmund, 1994.

Michalis Vazirgiannis. Interactive multimedia documents: modeling, authoring, and imple-
mentation experiences, volume 1564 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 1999.

Michalis Vazirgiannis, Yannis Theodiridis, and Timos Sellis. Spatio-temporal com-

position in multimedia applications. In Mulh&user and Effelsberg (1996), pages
120-127.

302

Bibliography

Marc Vilain and Henry Kautz. Constraint propagation algorithms for temporal rea-
soning. In Proceedings of American Association for Artificial Intelligence, pages 377-382,
1986.

William M. Waite and Gerhard Goos. Compiler Construction. Springer-Verlag, New
York, 1984.

Jos Warmer and Anneke Kleppe. The Object Constraint Language: Precise Modeling with
UML. Object Technology Series. Addison-Wesley, 1999.

Glynn Winskel. The Formal Semantics of Programming Languages. An Introduction. Foun-
dations of Computing. MIT Press, Cambrigde, MA, 1993.

Glynn Winskel and Mogens Nielson. Models for concurrency. In Abramsky et al.
(1995), pages 1-148.

Ronald R. Yager. Fuzzy temporal methods for video multimedia information systems.
Journal of Advanced Computational Intelligence, 1(1):37-44, 1997.

Ronald R. Yager and Dimitar P. Filev. Essentials of Fuzzy Modeling and Control. John
Wiley and Sons, 1994.

Lofti A. Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965. reprinted in
Dubois et al. (1993).

Y. Zhou, T. Murata, T. DeFanti, and T. Zhang. Fuzzy-timing petri net modeling and
simulation of a networked virtual environemnt - NICE. IEICE Transactions Funda-
mentals Special Section on Concurrent Systems Technology, 83(11):2166-2175, Septem-
ber 2000.

Yi Zhou and Tadao Murata. Fuzzy-timing petri net model for distributed multimedia
synchronization. In Proceedings of the 1998 IEEE International Conference on Systems,
Man, and Cybernetics, pages 244 — 249, Lolla, California, October 1998.

Yi Zhou and Tadao Murata. Petri net model with fuzzy-timing and fuzzy-metric tem-
poral logic. International Journal of Intelligent Systems, 14(8):719-746, August 1999.

303

Interne Berichte des Lehrstuhls Software-Technologie (ISSN 0933-7725)

199/

/100/

/101/

[102/

103/

104/

105/

/106/

/107/

/108/

109/

/110/

/111/

[112/

[113/

T. Biihren, M. Cakir, E. Can, A. Dombrowski, G. Geist, V. Gruhn, M. Giirgrn, S. Handschumacher, M. Heller,
C. Luer, D. Peters, G. Vollmer, U. Wellen, J. von Werne

Endbericht der Projektgruppe eCCo (PG 315)

Electronic Commerce in der Versicherungsbranche

Beispielhafte Unterstiitzung verteilter Geschéftsprozesse

Februar 1999

A. Fronk, J. Pleumann,
Der DoDL-Compiler
August 1999

K. Alfert, E.-E. Doberkat, C. Kopka
Towards Constructing a Flexible Multimedia Environment for Teaching the History of Art
September 1999

E.-E. Doberkat
An Note on a Categorial Semantics for ER-Models
November 1999

Christoph Begall, Matthias Dorka, Adil Kassabi, Wilhelm Leibel, Sebastian Linz, Sascha Liidecke, Andreas Schréder, Jens Schréder,
Sebastian Schiitte, Thomas Sparenberg, Christian Stiicke, Martin Uebing, Klaus Alfert, Alexander Fronk, Ernst-Erich Doberkat
AbschluBbericht der Projektgruppe PG-HEU (326)

Oktober 1999

Corina Kopka
Ein Vorgehensmodell fiir die Entwicklung multimedialer Lernsysteme
Mérz 2000

Stefan Austen, Wahid Bashirazad, Matthais Book, Traugott Dittmann, Bernhard Flechtker, Hassan Ghane, Stefan Gobel, Chris Haa-
se, Christian Leifkes, Martin Mocker, Stefan Puls, Carsten Seidel, Volker Gruhn, Lothar Schdpe, Ursula Wellen

Zwischenbericht der Projektgruppe IPSI

April 2000

Ernst-Erich Doberkat
Die Hofzwerge — Ein kurzes Tutorium zur objektorientierten Modellierung
September 2000

Leonid Abelev, Carsten Brockmann, Pedro Calado, Michael Damatow, Michael Heinrichs, Oliver Kowalke, Daniel Link, Holger Liim-
kemann, Thorsten Niedzwetzki, Martin Otten, Michael Rittinghaus, Gerrit Rothmaier

Volker Gruhn, Ursula Wellen

Zwischenbericht der Projektgruppe Palermo

November 2000

Stefan Austen, Wahid Bashirazad, Matthais Book, Traugott Dittmann, Bernhard Flechtker, Hassan Ghane, Stefan Gobel, Chris Haa-
se, Christian Leifkes, Martin Mocker, Stefan Puls, Carsten Seidel, Volker Gruhn, Lothar Schépe, Ursula Wellen

Endbericht der Projektgruppe IPSI

Februar 2001

Leonid Abelev, Carsten Brockmann, Pedro Calado, Michael Damatow, Michael Heinrichs, Oliver Kowalke, Daniel Link, Holger Lim-
kemann, Thorsten Niedzwetzki, Martin Otten, Michael Rittinghaus, Gerrit Rothmaier

Volker Gruhn, Ursula Wellen

Zwischenbericht der Projektgruppe Palermo

Februar 2001

Eugenio G. Omodeo, Ernst-Erich Doberkat

Algebraic semantics of ER-models from the standpoint of map calculus.
Part I: Static view

Marz 2001

Ernst-Erich Doberkat
An Architecture for a System of Mobile Agents
Mérz 2001

Corina Kopka, Ursula Wellen
Development of a Software Production Process Model for Multimedia CAL Systems by Applying Process Landscaping
April 2001

Ernst-Erich Doberkat
The Converse of a Probabilistic Relation
Oktober 2002

/114/ Ernst-Erich Doberkat, Eugenio G. Omodeo
Algebraic semantics of ER-models in the context of the calculus of relations.
Part Il: Dynamic view
Juli 2001

/115/ Volker Gruhn, Lothar Schépe (Eds.)
Unterstiitzung von verteilten Softwareentwicklungsprozessen durch integrierte Planungs-, Workflow- und Groupware-Ansétze
September 2001

/116/ Ernst-Erich Doberkat
The Demonic Product of Probabilistic Relations
September 2001

/117/ Klaus Alfert, Alexander Fronk, Frank Engelen
Experiences in 3-Dimensional Visualization of Java Class Relations
September 2001

/118/ Ernst-Erich Doberkat
The Hierarchical Refinement of Probabilistic Relations
November 2001

/119/ Markus Alvermann, Martin Ernst, Tamara Flatt, Urs Helmig, Thorsten Langer, Ingo Ropling,
Clemens Schéfer, Nikolai Schreier, Olga Shtern
Ursula Wellen, Dirk Peters, Volker Gruhn
Project Group Chairware Intermediate Report
November 2001

/120/ Volker Gruhn, Ursula Wellen
Autonomies in a Software Process Landscape
Januar 2002

/121/ Ernst-Erich Doberkat, Gregor Engels (Hrsg.)
Ergebnisbericht des Jahres 2001
des Projektes “MuSofT — Multimedia in der SoftwareTechnik”
Februrar 2002

/122/ Ernst-Erich Doberkat, Gregor Engels, Jan Hendrik Hausmann, Mark Lohmann, Christof Veltmann
Anforderungen an eine eLearning-Plattform — Innovation und Integration —
April 2002

/123/ Ernst-Erich Doberkat
Pipes and Filters: Modelling a Software Architecture Through Relations
Juni 2002

/124/ Volker Gruhn, Lothar Schope
Integration von Legacy-Systemen mit Eletronic Commerce Anwendungen
Juni 2002

/125/ Ernst-Erich Doberkat
A Remark on A. Edalat’s Paper Semi-Pullbacks and Bisimulations in Categories of Markov-Processes
Juli 2002

/126/ Alexander Fronk
Towards the algebraic analysis of hyperlink structures
August 2002

/127/ Markus Alvermann, Martin Ernst, Tamara Flatt, Urs Helmig, Thorsten Langer
Ingo Ropling, Clemens Schéfer, Nikolai Schreier, Olga Shtern
Ursula Wellen, Dirk Peters, Volker Gruhn
Project Group Chairware Final Report
August 2002

/128/ Timo Albert, Zahir Amiri, Dino Hasanbegovic, Narcisse Kemogne Kamdem,
Christian Kotthoff, Dennis Miiller, Matthias Niggemeier, Andre Pavlenko, Stefan Pinschke,
Alireza Salemi, Bastian Schlich, Alexander Schmitz
Volker Gruhn, Lothar Schope, Ursula Wellen
Zwischenbericht der Projektgruppe Com42Bill (PG 411)
September 2002

/129/ Alexander Fronk
An Approach to Algebraic Semantics of Object-Oriented Languages
Oktober 2002

/130/ Ernst-Erich Doberkat
Semi-Pullbacks and Bisimulations in Categories of Stochastic Relations
November 2002

/131 Yalda Ariana, Oliver Effner, Marcel Gleis, Martin Krzysiak,
Jens Lauert, Thomas Louis, Carsten Réttgers, Kai Schwaighofer,
Martin Testrot, Uwe Ulrich, Xingguang Yuan
Prof. Dr. Volker Gruhn, Sami Beydeda
Endbericht der PG nightshift:
Dokumentation der verteilten Geschaftsprozesse im FBI und Umsetzung von Teilen dieser Prozesse im Rahmen eines FBI-Intranets
basierend auf WAP- und Java-Technologie
Februar 2003

/132/ Ernst-Erich Doberkat, Eugenio G. Omodeo
ER Modelling from First Relational Principles
Februar 2003

/133/ Klaus Alfert, Ernst-Erich Doberkat, Gregor Engels (Hrsg.)
Ergebnisbericht des Jahres 2002 des Projektes “MuSofT — Multimedia in der SoftwareTechnik”
Marz 2003

/134/ Ernst-Erich Doberkat
Tracing Relations Probabilistically
Madrz 2003

/135/ Timo Albert, Zahir Amiri, Dino Hasanbegovic, Narcisse Kemogne Kamdem,
Christian Kotthoff, Dennis Miiller, Matthias Niggemeier,
Andre Pavlenko, Alireza Salemi,Bastian Schlich, Alexander Schmitz,
Volker Gruhn, Lothar Schope, Ursula Wellen
Endbericht der Projektgruppe Com42Bill (PG 411)
Marz 2003

/136/ Klaus Alfert
Vitruv: Specifying Temporal Aspects of Multimedia Presentations —
A Transformational Approach based on Intervals
April 2003

/137/ Klaus Alfert, J6rg Pleumann, Jens Schroder
A Framework for Lightweight Object-Oriented Design Tools
April 2003

