'.I"
Fachbereich Informatik ~

Lehrstuhl fiir Software-Technologie

MEMO Nr.137
MuSofT Bericht Nr. 3
A Framework for Lightweight Object-Oriented Design Tools

Klaus Alfert Jorg Pleumann Jens Schroder

N

vo
(nalys)
(Design)

e e?

bbb A

April 2003

Internes Memorandum des
Lehrstuhls fiir Software-Technologie
Prof. Dr. Ernst-Erich Doberkat
Fachbereich Informatik

Universitat Dortmund

Baroper StraBBe 301

D-44227 Dortmund ISSN 0933-7725

A Framework for Lightweight Object-Oriented
Design Tools *

Klaus Alfert Jorg Pleumann Jens Schrdder

Lehrstuhl fir Software-Technologie
Fachbereich Informatik
Universitat Dortmund

Abstract with all these programs before working effectively

with the supported notations. The tools’ user inter-
Teaching object-oriented software engineering afgtes are quite complex, with lots of features aimed
design with industrial tools is not always satisfyingat efficient development in industry. Unfortunately,
since the focus of these tools lies on developmeb many features are distracting when using the tool
rather than education. In this paper we presentd demonstration purposes, e.g. in a lecture hall.
family of graphical tools for object oriented desigiFor educational purposes it is sometimes required
devoted explicitely to teaching. They are built upofy use a simplified notation. This requires the tools
a common framework and a metamodel approachto be easily adaptable, which is usually not the case.
Last but not least, commercial tools always have the
problem that it might be costly for the students to
use them at home.

Teaching obiect-oriented software engineering i All these deficiencies led to our new approach. In
ng obj an 9 {Re MuSofT project (multimedia for software tech-
becoming more and more part of the basic curricu-

lum for computer science, similar to object-oriente plogy, [DE02]) eight German universities work to-
np ’ I€ ether on teaching software engineering with the
programming some years ago. Learning softw

7 : . . . &lp of multimedia technologies and tools. The
engineering requires that — in addition to stud P g

ing the concents behind lanauages. formalisms ;fg'lr jects at Dortmund are concerned with teaching
mgthods—thepstudents Workgact?vel’ with these Iars1- tware architecture based on an object-oriented

: y wit notation and with teaching process modeling us-
guages, formalisms and methods (similar to learn- e
. . Ing the Unified Process. In both cases, we need
ing programming). Hence, tool support for the vag.

. . . .) ols for the graphical notations. The experiences of
ious notations is desirable. However, typically use8 grap P

industrial tools, such as Rational Rose or Togeth arnother MuSofT project [Kel02] showed that sim-
LT : . 9€Nelified CASE tools for didactical purposes are a
have significant drawbacks in an educational setting.

These drawbacks arise from the fact that profes-OmISIng approgch. Ther_efore, we de_(:lded to de-
elop our own suite of design tools, which are pre-

sional tools are rather "heavyweight" pieces of SO% nted in this paper. We have termed these tools

x;:g’ IPeOtSi:gée{énfu?]f iﬂglrrnfes?:cj)ﬁslet aB(iit:e gjcr:'hi'ghtweight" to distinguish them from the heavy-
q Y- 9 eight professional ones.

professional tools, there is a high risk that mereY)‘ll The rest of this paper is organized as follows: In

the tool handling is taught instead of focusing on the_ .. \ :
articular language or method. If different tools fo?eCtIon 2, we present the tools from & user's point of
P guag ' view. In sections 3 and 4 we discuss the framework

different notations are used, this situation becomgﬁd the metamodel which provide the basis for the

even worse, since the students have to be familjar . .
{301s. In section 5 we report on some experiences,

followed by an outlook on future work in section 6.
*This work is supported by the German Federal Ministry of Ed-

ucation and Research, grant 08NM098.

1 Introduction

2 Lightweight Design Tools [SGW94]. The dynamic aspects of each architec-
tural component are again described using statema-
For the MuSofT projects at Dortmund we have cuehines. Similar to the statemachine editor, the soft-
rently developed three lightweight tools for teachingare architecture editor provides different drawing
and learning specific aspects of object-oriented sofols and presentation modes.
ware engineering: A simulation component animating the behavior
)) of the modeled software architecture is also part of
e an editor and simulator foUML statema- e tool. To illustrate the behavior of the architec-
chines, ture, the statechart diagrams are evaluated and visu-
lized analogously to the simulation component of
ge statemachine editor. Yet, in this case, a poten-
tially large number of statemachines is simulated in
e a process modeler for thénified Process. parallel.

The tools can be used both for presenting exary- e
ples of specific object-oriented design techniqure?s'3 :nggiss Modeler for the Unified
rocess

during a lecture and for training the application of

cussion of elements and features common to llocess models exists. A process model particu-

e an editor for software architectures (reusin
parts of the former tool), and

tools is given in section 3. lar suited for developing object-oriented software is
the Unified Process [JBR98], a generic and itera-
2.1 Statemachine Editor tive process model, which has to be adapted to the

_) _ project’s requirements before use. The process mod-
One task of the design process is to specify the Rger 100 (see Fig. 3) allows tailoring and instantia-

havior of the software that has to be developed. {, of theunified Process for a project in a graphi-
object-oriented systems statecharts [Har87, HNS9S)| manner.
are a well-known technique for that purpose. FOr the editor generates¥ML-representation of the

teaching and learning this technique a statemachifgiantiated process which can be used by other
editor (see Fig. 1) was developed, incorporating thgqs

UML-notation for statecharts [OMGO03]. It offers

different components for drawing (e.g. a toolbar,

an inspector, or a treeview) and presenting (e.g3a Basic Framework
fullscreen mode) statechart diagrams.

To give a better impression of the modeled b&o avoid implementation of each of the above ap-
havior of a software system, the statemachine edifgications individually and from scratch (thus rein-
provides a simulation component that can executenting the wheel over and over again) and to also
a statemachine. The simulation component evalkestablish a common look and feel for all of them, a
ates the drawn diagram and highlights active statdgva/Swing-based framework for lightweight mod-
Through a suitable graphical interface the user hakng tools was developed. The framework provides
the possibility to simulate events that trigger thivo main components: A more-or-less fixed user in-
transitions between states of the modeled systemterface including an application frame, and a vari-

able metamodel underneath.
2 2 Software Architecture Editor _ To be suitable f_or educationgl purposes, the user

interface was designed to be simple, intuitive to use
Another task of object-oriented design is modelingnd non-distracting. The largest part of the screen
the architecture of the software which has to be crigs-occupied by the model itself, because this is the
ated. The software architecture editor (see Fig. @pplication’s main focus. All graphical aspects of
is a tool that allows modeling software architeanodeling, like moving or resizing elements or draw-
tures, covering both static and dynamic aspectsinf graphical connections between them, are han-
these architectures. The editor employs a notatidied here. It is not necessary to use nested menu
based on UML-RT [SR98] which, in turn, goes backtructures for common tasks like loading, saving,
on Real-Time Object-Oriented modelin@®OM) printing, or adding new elements to the model. In-

stead, these everyday functions are accessible from

2.8
File Mode Simulator
{ 3 -
raiN eoe FH£e 00005
[} Washing Mashine: UmIS} = =
® Initiall: InitialState Washing The Washing
9 |5 Washing: UmiCom O

O Main: UmiSimple: \w‘ Machine
O whiz: UmliSimple:

O soak: UmiSimple

State machines can be used to

® Initial2: InitialStat after 15 mis] specify the behavior of pretty

® UrniFinalStatel: Umif]

ordinary devices like, for

example, a washing machine

Properties wrn_off/

after 30 mins/ The machine to the left is

Name: turned on wher it receives a

T signal "turn_on”. It then goes
I Rerin into the "Washing" state which
Catar (224, 224, 224 G is a composite state that

consists of three simple states
star:

These three states represent
end, whiz the different phases of the
igger: lafter 30 mins ‘washing process. Transitions

between them are triggered by

1| e events.

@

‘Washing’ selected

Figure 1: The state machine editor for visualizing UML-statecharts

File Test& Debug

FE RO ES—=E e 000000

|| Compiler
Architecture

Y Traditional Compiler

© [} Compiler : Capsule Compiler

© [Lexer ;s Capsule
© [} Parser : Capsule

© (3 Semantor : Capsule
© (3 Emitter : Capsule [Figure 1 depicts the
5 sourceCode : Protocd architecture of a traditional
- 5 Token : Protocol input: SourceCode compiler, the main
& 5 syntaxTree : Protocol constituents of which are
(e = ek ey the lexer, the parser, the
Bl sernantor and the ernitter.
) outgoing nputSourceCade output: MachineCode
® Lexer: The lexer
— Lo ! output: SyntaxTree
e input Token Ut Sy performs lexical
Properties |
output: Token analysis of the source
Name: d code. It splits the input
MachineCode
Ty e = file into a stream of
g input: Source Code so~called tokens, which
ut: SyntaxTree output: SyntaxTree e
Source Code 5 for example,
< e Z DN =]
Seleciion

Figure 2: Example of a compiler architecture modeled with the software architecture editor

a toolbar atop the diagram area, with clear graphical e The Bird's Eye gives an overview on the po-
icons describing each function. sitions of all model elements and is useful for

In addition to the main diagram area and the tool- models that span more than a single screen.
bar, the application provides a number of user inter-

face components with more Speciﬁc purposes: These three components are placed left to the di-
agram area, honoring the common principle of plac-

e The Navigator shows a tree-like representaing navigational items on the screen’s left side. All
tion of the model (based on the nesting of el¢hree can easily be hidden when only the diagram
ments) and allows quick selection of single eltself is of interest, for example during a lecture.
ements, which results in having them focused On the opposite side, that is, to the right of the di-
and selected in the diagram area. agram, a hypertext viewer and editor can be shown

, . if required. This component usually comes into play

e The Inspector displays the properties of the,hen the students are using the tool at home. It al-
currently selected model element and allowgys annotation of a model: every element may be
their modification. It is particulartly u:sefulgiVen a hyperlink to such an annotation. When the

for those properties that have either no diregiement is selected in the drawing area, the corre-

graphical representation or cannot be modipgnging hypertext is displayed on the right hand

fied inside the drawing area for other reasonsiye - additionally, specific hyperlinks in the hyper-

wRE | ey

1

Artifact Test Plan

The test plan defines what

each iteration. It includes the

required level of test and code

coverage, and the percentage

of tests that should execute

with @ specific result. The plan
a0 lists the required
resources and the testing
schedule

Responsible Role:

Perform and Evaluate System Test ‘ Perform and Evaluate Integration Test @ Test Designer

I [W ition for the

Figure 3: The process modeling editor for tailoring the Unified Process

text allow focusing on individual model elementstrive for a generalizable solution here.
or even modification of the model. This allows The solution we chose is based on the notion of
provisioning of complex, hypertextually annotated generic metamodel, or, practically speaking, a box
models which the students should study. Anothef building bricks from which application-specific
area where the hypertext becomes handy are assigretamodels can be built. 1t is loosely based on
ments: the students are presented a hypertextualidsas also found in the Meta Object Facility (MOF)
signment, and they can annotate their solution usifgMGO02] or similar metamodeling approaches. Yet,
the same means. The solution is submitted in digifialis not an implementation of the MOF nor is it
form, and a tutor uses just the same tool to review &.true meta-metamodel in the strict sense, because
Developing the user interface parts of the framelements of the application-specific metamodel are
work has been eased by using JHotDraw [KaiO1derived from the generic metamodel via inheritance
a class library for applications dealing with techrather than instantiation.
nical drawings. JHotDraw builds upon the notion At its very core, the generic metamodel consists
of adrawing (displayed in our diagram area) whictof a graph structure with (nestable) vertices repre-
my contain an arbitrary number of so-calléggures senting metamodel concepts and edges forming re-
(graphical representants of single model elementkgtionships between concepts. Each element can be
Interestingly, although JHotDraw originated as aamugmented with an arbitrary number of uniquely
attempt to demonstrate the use of design pattermmamed attributes and association ends. Attributes
[GHJV97], it does not have a clean separation bare used for storing primitive values. The currently
tween model and view (in the sense of MVC), thatupported types for these attributes Boelean, In-
is, there is no real model underlying the figureseger, String, Color, andDate. Examples for met-
Thus, it became necessary to extend the basic JHalevel attributes are the visibility specifiefsublic,
Draw figures in a way that they rely on a propeasrivate, ...) found in class diagrams. Association
(meta-) model underneath. ends provide anchor points for associations, which
are used to link elements of the metamodel. They
) may have an inverse and a multiplicity greater than
4 Meta MOdeImg one. They are first class members of the metamodel,
))) __ so the implementation can easily keep both of their
The aforementioned user interface provides diffefn s consistent. Associations differ from edge ele-

ent views of a model whose syntax and semagyans in that they usually do not have a graphical
tics are determined by an application-specific mettae'presentation.

model. Apart from the figures that make up the Tpe generic metamodel elements also provide a
graphical representation, this metamodel is the PAttmber of methods used for enforcing the syntax

where the various possible modeling applicationgjes inherent in the supported modeling language.

differ the most. It is also the part that requires they example, both the vertex and the edge elements
largest implementation effort, so it makes sense to

have methods namechnConnect(), the result of well-defined steps, using the hooks provided by the
which determines whether an edge element can cdramework, the developer has to follow to achieve a
nect two given vertex elements. These methods usunning application:

ally need to be overridden in self-defined model el-))
ements. 1. build a data model for the tool through inher-

Figure 4 gives a rough impression of the generic 1ing the framework’s metamodel

metamodel. Some of the important classes are de-,
picted in the upper section. The lower section
shows how (part of) a metamodel for UML state
machines could be derived from the generic classes.

develop graphical representations of the
data model’s elements through inheriting the
framework’s generic figures

Having an obviously vertex-like characteristionl- 3. customize the layout and functionality adapt-
State and UmICompositeState would be derived ing the generic components provided by the
from ModelVertex. UmlTransition would become a framework (if necessary)

derivative ofModelEdge. All three classes override . .) ,
syntax-enforcing methods as necessary to ensure thé- integrate additional functionality (such as a
rules of the UML specification: states may be con- ~ Simulation component)

nected using transitions, and composite states M@ experienced that the framework is a stable and
contain other states. powerful base suitable for different tools devoted

The same user interface works on all applicatioly teaching and leaming various aspects of object-

specific metamodels without adjustments, since thganted development.
basic metamodel elements provide introspectionCurren“y, we are releasing a first stable version

mechanisms that allow querying an element's &l e tools. They will be used in the lecture on soft-
tributes and associations with other elements, re engineering during this spring/summer term
potentially also allow their modification. Thesgy, the first time and their impact will be evaluated.
mechanisms are used for loading, saving, and prifiz hope that the clear focus of the lightweight tools
ing models on a generic basis as well as for provigly| gain a positive acceptance among students. We

ing a foundation on which the more sophisticatetkqme that the tools’ short startup times and low
user interface components mentioned above Canrh@mory foot print are further benefits.

built.

5 Experiences 6 Outlook

))) . Our next step is to extend the above-mentioned sim-
Our framework for lightweight object-oriented t00l$,|4tion engine of the statechart editor by a multime-

is the result of an iterative process. First the Soffy jnterface. This will allow incorporation of ar-
ware architecture editor was developed from scratgfyary media elements into the simulation, thereby
without any framework in mind. Then the needjnating or “controlling” real world applications
for a tool to tailor theUnified Process arose and g qavices by the statemachine modeled. Different
furthe_r lightweight tools fo_r object—ori_ented design.adia elements might be used to illustrate the ap-
techniques followed. While developing the Othebﬁalication in its different states. A typical example
tools, we identified several features common {g, 14 pe a simulation of Harel's watch [Har87], il-
the different tools and decided to evolve a framg;qirating the state changes using pictures of a dig-
work that allows efficiently developing lightweightia| watch. Using the multimedia component we
ob!ect—orlented design tools. Through' severa] refa}%pe to bridge the gap between abstract formal mod-
toring steps we separated the generic functionalitys and real world applications. We assume that is

from the tool-specific ones and achieved the framgassiple to use the same approach to illustrate the
work and metamodel presented in sections 3 and 4 namics of software architectures as well.

Our experiences during development of different |y harajiel to the extended simulation engine, we

Iightweight tools for object-oriented Qesign teChdeveIop a project tutor for applying thunified Pro-

niques using our framework (see section 2) showgdss Based on the tailored model instantiated by
that the framework is worth the effort we spenhe process modeler, the tutor provides additional
on evolving it. Instead of repeatedly starting fror@upport for the students during execution of the

scratch, the framework and metamodel allows effiqiect's development process (e.g. gives hints what
cient development of lightweight tools. There are

ModelElement ModelAttribute ModelAssociationEnd
-chil -name : Strin - - attril -name : Strin
children I+] element -attributes 9 ~addAssocan)
N . +getAssociate()
0. 1 0. +getAssociateCount
+removeAssociate()
-associates | 0.*
-parent | 0.1
ModelVertex | SoUee -outgoing ModelEdge ModelPrimitiveAttribute
-bounds : Rectangle * -points : Point
d 1 o0 P I +getinteger()
+canAddChild(~ ~ +canConnect(+getString()
+canConnect() target -incoming +setinteger)
+canRemoveChild(| o +selString()
? -trigger | 0.1 -effect | 0.1 .
Generic
<‘ Metamodel
Specific
UmiState UmiCompositeState UmiTransition Metamodel
+canConnect() +canAddChild() +canConnect()
b |
+canRemoveChild()

Figure 4: Simplified generic and specific metamodel

to do next). The tutor is also based on our framgBR98] Ivar Jacobson, Grady Booch, and James Rum-

work illustrating the broad range of tools which can baugh. The Unified Software Development
be built onto the framework. Process Addison Wesley, 1998.

To complete the set of our tools, a class diagrajKaiol] Wolfram Kaiser. Become a pro-
editor is the obvious choice. Due to the metamodel gramming Picasso with JHotDraw,
approach of our framework, such an editor would 2001. http://www.javaworld.

a suitable starting point for studying model driven com/javaworld/jw-02-2001/

architecture approaches [Fra03]. In this case, the jw-0216-jhotdraw.html

tool and its internals would become part of the le¢kel02] Udo Kelter. Gestaltungsrichtlinien fir Editor-
ture. In the ideal case, it would also allow us devel- Simulatoren fiir graphartige Dokumente. In
oping the metamodels for further lightweight tools Sigrid Schubert, Bernd Reusch, and Nor-
with the tool itself. bert Jesse, editordnformatik bewegt. 32.

Jahrestagung der Gesellschaft fiir Informatik
e.V. (Gl), 30. Sept.—3. Okt. 2002 in Dortmuynd

References pages 393-400. Gesellschaft fur Informatik,
2002.

[DEOZ] Emnst-Erich Doberkat and Gregor Engel§omgo2] Object Management Group.Meta Object
MuSofT — Multimedia in der SoftwareTech- Facility (MOF) Specification 1.5 2002.
nik. Informatik Forschung und Entwicklung http:/Awww.omg.org/cgi-bin/

17(1), January 2002. doc?formal/2002-04-03

[Fra03] David S. Fr_ankel. Model Driver_1 Architec- [OMGO3] Object Management GroupUnified Model-
ture — Applying MDA to Enterprise Comput- ing Language (UML) 1.5 Specificatip003.
ing. OMG Press, 2003. http://www.omg.org/cgi-bin/

[GHJV97] Erich Gamma, Richard Helm, Ralph John- doc?formal/03-03-01
son, and John VlissideBesign Patterns. Ele- (gG\y94] Bran Selic, Garth Gullekson, and Paul T.
ments of Reusable Object-Oriented Software Ward. Real-Time Object-Oriented Modeling
Addison-Wesley, 1997. John Wiley and Sons, 1994.

[Har87] I_David Harel. Statecharts: A_Visual Formula[SR%] Bran Selic and Jim Rumbaugh. Using UML
tion for Complex SystemsScience of Com- for Modeling Complex Real-Time Systems.
puter Programming8(3):231-274, 1987. 1998. http://www.rational.com/

[HN96] David Harel and Amnon Naamad. The products/whitepapers/442.jsp
STATEMATE Semantics of Statechar&CM
Transactions on Software Engineering and
Methodology5(4):293—-333, 1996.

Interne Berichte des Lehrstuhls Software-Technologie (ISSN 0933-7725)

199/

/100/

/101/

[102/

103/

104/

105/

/106/

/107/

/108/

109/

/110/

/111/

[112/

[113/

T. Biihren, M. Cakir, E. Can, A. Dombrowski, G. Geist, V. Gruhn, M. Giirgrn, S. Handschumacher, M. Heller,
C. Luer, D. Peters, G. Vollmer, U. Wellen, J. von Werne

Endbericht der Projektgruppe eCCo (PG 315)

Electronic Commerce in der Versicherungsbranche

Beispielhafte Unterstiitzung verteilter Geschéftsprozesse

Februar 1999

A. Fronk, J. Pleumann,
Der DoDL-Compiler
August 1999

K. Alfert, E.-E. Doberkat, C. Kopka
Towards Constructing a Flexible Multimedia Environment for Teaching the History of Art
September 1999

E.-E. Doberkat
An Note on a Categorial Semantics for ER-Models
November 1999

Christoph Begall, Matthias Dorka, Adil Kassabi, Wilhelm Leibel, Sebastian Linz, Sascha Liidecke, Andreas Schréder, Jens Schréder,
Sebastian Schiitte, Thomas Sparenberg, Christian Stiicke, Martin Uebing, Klaus Alfert, Alexander Fronk, Ernst-Erich Doberkat
AbschluBbericht der Projektgruppe PG-HEU (326)

Oktober 1999

Corina Kopka
Ein Vorgehensmodell fiir die Entwicklung multimedialer Lernsysteme
Mérz 2000

Stefan Austen, Wahid Bashirazad, Matthais Book, Traugott Dittmann, Bernhard Flechtker, Hassan Ghane, Stefan Gobel, Chris Haa-
se, Christian Leifkes, Martin Mocker, Stefan Puls, Carsten Seidel, Volker Gruhn, Lothar Schdpe, Ursula Wellen

Zwischenbericht der Projektgruppe IPSI

April 2000

Ernst-Erich Doberkat
Die Hofzwerge — Ein kurzes Tutorium zur objektorientierten Modellierung
September 2000

Leonid Abelev, Carsten Brockmann, Pedro Calado, Michael Damatow, Michael Heinrichs, Oliver Kowalke, Daniel Link, Holger Liim-
kemann, Thorsten Niedzwetzki, Martin Otten, Michael Rittinghaus, Gerrit Rothmaier

Volker Gruhn, Ursula Wellen

Zwischenbericht der Projektgruppe Palermo

November 2000

Stefan Austen, Wahid Bashirazad, Matthais Book, Traugott Dittmann, Bernhard Flechtker, Hassan Ghane, Stefan Gobel, Chris Haa-
se, Christian Leifkes, Martin Mocker, Stefan Puls, Carsten Seidel, Volker Gruhn, Lothar Schépe, Ursula Wellen

Endbericht der Projektgruppe IPSI

Februar 2001

Leonid Abelev, Carsten Brockmann, Pedro Calado, Michael Damatow, Michael Heinrichs, Oliver Kowalke, Daniel Link, Holger Lim-
kemann, Thorsten Niedzwetzki, Martin Otten, Michael Rittinghaus, Gerrit Rothmaier

Volker Gruhn, Ursula Wellen

Zwischenbericht der Projektgruppe Palermo

Februar 2001

Eugenio G. Omodeo, Ernst-Erich Doberkat

Algebraic semantics of ER-models from the standpoint of map calculus.
Part I: Static view

Marz 2001

Ernst-Erich Doberkat
An Architecture for a System of Mobile Agents
Mérz 2001

Corina Kopka, Ursula Wellen
Development of a Software Production Process Model for Multimedia CAL Systems by Applying Process Landscaping
April 2001

Ernst-Erich Doberkat
The Converse of a Probabilistic Relation
Oktober 2002

/114/ Ernst-Erich Doberkat, Eugenio G. Omodeo
Algebraic semantics of ER-models in the context of the calculus of relations.
Part Il: Dynamic view
Juli 2001

/115/ Volker Gruhn, Lothar Schépe (Eds.)
Unterstiitzung von verteilten Softwareentwicklungsprozessen durch integrierte Planungs-, Workflow- und Groupware-Ansétze
September 2001

/116/ Ernst-Erich Doberkat
The Demonic Product of Probabilistic Relations
September 2001

/117/ Klaus Alfert, Alexander Fronk, Frank Engelen
Experiences in 3-Dimensional Visualization of Java Class Relations
September 2001

/118/ Ernst-Erich Doberkat
The Hierarchical Refinement of Probabilistic Relations
November 2001

/119/ Markus Alvermann, Martin Ernst, Tamara Flatt, Urs Helmig, Thorsten Langer, Ingo Ropling,
Clemens Schéfer, Nikolai Schreier, Olga Shtern
Ursula Wellen, Dirk Peters, Volker Gruhn
Project Group Chairware Intermediate Report
November 2001

/120/ Volker Gruhn, Ursula Wellen
Autonomies in a Software Process Landscape
Januar 2002

/121/ Ernst-Erich Doberkat, Gregor Engels (Hrsg.)
Ergebnisbericht des Jahres 2001
des Projektes “MuSofT — Multimedia in der SoftwareTechnik”
Februrar 2002

/122/ Ernst-Erich Doberkat, Gregor Engels, Jan Hendrik Hausmann, Mark Lohmann, Christof Veltmann
Anforderungen an eine eLearning-Plattform — Innovation und Integration —
April 2002

/123/ Ernst-Erich Doberkat
Pipes and Filters: Modelling a Software Architecture Through Relations
Juni 2002

/124/ Volker Gruhn, Lothar Schope
Integration von Legacy-Systemen mit Eletronic Commerce Anwendungen
Juni 2002

/125/ Ernst-Erich Doberkat
A Remark on A. Edalat’s Paper Semi-Pullbacks and Bisimulations in Categories of Markov-Processes
Juli 2002

/126/ Alexander Fronk
Towards the algebraic analysis of hyperlink structures
August 2002

/127/ Markus Alvermann, Martin Ernst, Tamara Flatt, Urs Helmig, Thorsten Langer
Ingo Ropling, Clemens Schéfer, Nikolai Schreier, Olga Shtern
Ursula Wellen, Dirk Peters, Volker Gruhn
Project Group Chairware Final Report
August 2002

/128/ Timo Albert, Zahir Amiri, Dino Hasanbegovic, Narcisse Kemogne Kamdem,
Christian Kotthoff, Dennis Miiller, Matthias Niggemeier, Andre Pavlenko, Stefan Pinschke,
Alireza Salemi, Bastian Schlich, Alexander Schmitz
Volker Gruhn, Lothar Schope, Ursula Wellen
Zwischenbericht der Projektgruppe Com42Bill (PG 411)
September 2002

/129/ Alexander Fronk
An Approach to Algebraic Semantics of Object-Oriented Languages
Oktober 2002

/130/ Ernst-Erich Doberkat
Semi-Pullbacks and Bisimulations in Categories of Stochastic Relations
November 2002

/131 Yalda Ariana, Oliver Effner, Marcel Gleis, Martin Krzysiak,
Jens Lauert, Thomas Louis, Carsten Réttgers, Kai Schwaighofer,
Martin Testrot, Uwe Ulrich, Xingguang Yuan
Prof. Dr. Volker Gruhn, Sami Beydeda
Endbericht der PG nightshift:
Dokumentation der verteilten Geschaftsprozesse im FBI und Umsetzung von Teilen dieser Prozesse im Rahmen eines FBI-Intranets
basierend auf WAP- und Java-Technologie
Februar 2003

/132/ Ernst-Erich Doberkat, Eugenio G. Omodeo
ER Modelling from First Relational Principles
Februar 2003

/133/ Klaus Alfert, Ernst-Erich Doberkat, Gregor Engels (Hrsg.)
Ergebnisbericht des Jahres 2002 des Projektes “MuSofT — Multimedia in der SoftwareTechnik”
Marz 2003

/134/ Ernst-Erich Doberkat
Tracing Relations Probabilistically
Madrz 2003

/135/ Timo Albert, Zahir Amiri, Dino Hasanbegovic, Narcisse Kemogne Kamdem,
Christian Kotthoff, Dennis Miiller, Matthias Niggemeier,
Andre Pavlenko, Alireza Salemi,Bastian Schlich, Alexander Schmitz,
Volker Gruhn, Lothar Schope, Ursula Wellen
Endbericht der Projektgruppe Com42Bill (PG 411)
Marz 2003

/136/ Klaus Alfert
Vitruv: Specifying Temporal Aspects of Multimedia Presentations —
A Transformational Approach based on Intervals
April 2003

/137/ Klaus Alfert, J6rg Pleumann, Jens Schroder
A Framework for Lightweight Object-Oriented Design Tools
April 2003

