
M E M O Nr. 137

MuSofT Bericht Nr. 3

A Framework for Lightweight Object-Oriented Design Tools

Klaus Alfert Jörg Pleumann Jens Schröder

April 2003

Internes Memorandum des
Lehrstuhls für Software-Technologie
Prof. Dr. Ernst-Erich Doberkat
Fachbereich Informatik
Universität Dortmund
Baroper Straße 301

D-44227 Dortmund ISSN 0933-7725



A Framework for Lightweight Object-Oriented
Design Tools ∗

Klaus Alfert Jörg Pleumann Jens Schröder

Lehrstuhl für Software-Technologie
Fachbereich Informatik
Universität Dortmund

Abstract

Teaching object-oriented software engineering and
design with industrial tools is not always satisfying,
since the focus of these tools lies on development
rather than education. In this paper we present a
family of graphical tools for object oriented design
devoted explicitely to teaching. They are built upon
a common framework and a metamodel approach.

1 Introduction

Teaching object-oriented software engineering is
becoming more and more part of the basic curricu-
lum for computer science, similar to object-oriented
programming some years ago. Learning software
engineering requires that – in addition to study-
ing the concepts behind languages, formalisms and
methods – the students work actively with these lan-
guages, formalisms and methods (similar to learn-
ing programming). Hence, tool support for the var-
ious notations is desirable. However, typically used
industrial tools, such as Rational Rose or Together,
have significant drawbacks in an educational setting.

These drawbacks arise from the fact that profes-
sional tools are rather "heavyweight" pieces of soft-
ware, both in terms of their feature set and the hard-
ware required to run them smoothly. Using such
professional tools, there is a high risk that merely
the tool handling is taught instead of focusing on the
particular language or method. If different tools for
different notations are used, this situation becomes
even worse, since the students have to be familiar

∗This work is supported by the German Federal Ministry of Ed-
ucation and Research, grant 08NM098.

with all these programs before working effectively
with the supported notations. The tools’ user inter-
faces are quite complex, with lots of features aimed
at efficient development in industry. Unfortunately,
too many features are distracting when using the tool
for demonstration purposes, e.g. in a lecture hall.
For educational purposes it is sometimes required
to use a simplified notation. This requires the tools
to be easily adaptable, which is usually not the case.
Last but not least, commercial tools always have the
problem that it might be costly for the students to
use them at home.

All these deficiencies led to our new approach. In
the MuSofT project (multimedia for software tech-
nology, [DE02]) eight German universities work to-
gether on teaching software engineering with the
help of multimedia technologies and tools. The
projects at Dortmund are concerned with teaching
software architecture based on an object-oriented
notation and with teaching process modeling us-
ing the Unified Process. In both cases, we need
tools for the graphical notations. The experiences of
another MuSofT project [Kel02] showed that sim-
plified CASE tools for didactical purposes are a
promising approach. Therefore, we decided to de-
velop our own suite of design tools, which are pre-
sented in this paper. We have termed these tools
"lightweight" to distinguish them from the heavy-
weight professional ones.

The rest of this paper is organized as follows: In
section 2, we present the tools from a user’s point of
view. In sections 3 and 4 we discuss the framework
and the metamodel which provide the basis for the
tools. In section 5 we report on some experiences,
followed by an outlook on future work in section 6.

1



2 Lightweight Design Tools

For the MuSofT projects at Dortmund we have cur-
rently developed three lightweight tools for teaching
and learning specific aspects of object-oriented soft-
ware engineering:

• an editor and simulator forUML statema-
chines,

• an editor for software architectures (reusing
parts of the former tool), and

• a process modeler for theUnified Process.

The tools can be used both for presenting exam-
ples of specific object-oriented design techniques
during a lecture and for training the application of
these techniques during exercises. A detailed dis-
cussion of elements and features common to all
tools is given in section 3.

2.1 Statemachine Editor

One task of the design process is to specify the be-
havior of the software that has to be developed. In
object-oriented systems statecharts [Har87, HN96]
are a well-known technique for that purpose. For
teaching and learning this technique a statemachine
editor (see Fig. 1) was developed, incorporating the
UML-notation for statecharts [OMG03]. It offers
different components for drawing (e.g. a toolbar,
an inspector, or a treeview) and presenting (e.g. a
fullscreen mode) statechart diagrams.

To give a better impression of the modeled be-
havior of a software system, the statemachine editor
provides a simulation component that can execute
a statemachine. The simulation component evalu-
ates the drawn diagram and highlights active states.
Through a suitable graphical interface the user has
the possibility to simulate events that trigger the
transitions between states of the modeled system.

2.2 Software Architecture Editor

Another task of object-oriented design is modeling
the architecture of the software which has to be cre-
ated. The software architecture editor (see Fig. 2)
is a tool that allows modeling software architec-
tures, covering both static and dynamic aspects of
these architectures. The editor employs a notation
based on UML-RT [SR98] which, in turn, goes back
on Real-Time Object-Oriented modeling (ROOM)

[SGW94]. The dynamic aspects of each architec-
tural component are again described using statema-
chines. Similar to the statemachine editor, the soft-
ware architecture editor provides different drawing
tools and presentation modes.

A simulation component animating the behavior
of the modeled software architecture is also part of
the tool. To illustrate the behavior of the architec-
ture, the statechart diagrams are evaluated and visu-
alized analogously to the simulation component of
the statemachine editor. Yet, in this case, a poten-
tially large number of statemachines is simulated in
parallel.

2.3 Process Modeler for the Unified
Process

To manage the development of software various
process models exists. A process model particu-
lar suited for developing object-oriented software is
the Unified Process [JBR98], a generic and itera-
tive process model, which has to be adapted to the
project’s requirements before use. The process mod-
eler tool (see Fig. 3) allows tailoring and instantia-
tion of theUnified Process for a project in a graphi-
cal manner.

The editor generates aXML-representation of the
instantiated process which can be used by other
tools.

3 Basic Framework

To avoid implementation of each of the above ap-
plications individually and from scratch (thus rein-
venting the wheel over and over again) and to also
establish a common look and feel for all of them, a
Java/Swing-based framework for lightweight mod-
eling tools was developed. The framework provides
two main components: A more-or-less fixed user in-
terface including an application frame, and a vari-
able metamodel underneath.

To be suitable for educational purposes, the user
interface was designed to be simple, intuitive to use
and non-distracting. The largest part of the screen
is occupied by the model itself, because this is the
application’s main focus. All graphical aspects of
modeling, like moving or resizing elements or draw-
ing graphical connections between them, are han-
dled here. It is not necessary to use nested menu
structures for common tasks like loading, saving,
printing, or adding new elements to the model. In-
stead, these everyday functions are accessible from

2



Figure 1: The state machine editor for visualizing UML-statecharts

Figure 2: Example of a compiler architecture modeled with the software architecture editor

a toolbar atop the diagram area, with clear graphical
icons describing each function.

In addition to the main diagram area and the tool-
bar, the application provides a number of user inter-
face components with more specific purposes:

• The Navigator shows a tree-like representa-
tion of the model (based on the nesting of ele-
ments) and allows quick selection of single el-
ements, which results in having them focused
and selected in the diagram area.

• The Inspector displays the properties of the
currently selected model element and allows
their modification. It is particulartly useful
for those properties that have either no direct
graphical representation or cannot be modi-
fied inside the drawing area for other reasons.

• The Bird’s Eye gives an overview on the po-
sitions of all model elements and is useful for
models that span more than a single screen.

These three components are placed left to the di-
agram area, honoring the common principle of plac-
ing navigational items on the screen’s left side. All
three can easily be hidden when only the diagram
itself is of interest, for example during a lecture.

On the opposite side, that is, to the right of the di-
agram, a hypertext viewer and editor can be shown
if required. This component usually comes into play
when the students are using the tool at home. It al-
lows annotation of a model: every element may be
given a hyperlink to such an annotation. When the
element is selected in the drawing area, the corre-
sponding hypertext is displayed on the right hand
side. Additionally, specific hyperlinks in the hyper-

3



Figure 3: The process modeling editor for tailoring the Unified Process

text allow focusing on individual model elements
or even modification of the model. This allows
provisioning of complex, hypertextually annotated
models which the students should study. Another
area where the hypertext becomes handy are assign-
ments: the students are presented a hypertextual as-
signment, and they can annotate their solution using
the same means. The solution is submitted in digital
form, and a tutor uses just the same tool to review it.

Developing the user interface parts of the frame-
work has been eased by using JHotDraw [Kai01],
a class library for applications dealing with tech-
nical drawings. JHotDraw builds upon the notion
of a drawing(displayed in our diagram area) which
my contain an arbitrary number of so-calledfigures
(graphical representants of single model elements).
Interestingly, although JHotDraw originated as an
attempt to demonstrate the use of design patterns
[GHJV97], it does not have a clean separation be-
tween model and view (in the sense of MVC), that
is, there is no real model underlying the figures.
Thus, it became necessary to extend the basic JHot-
Draw figures in a way that they rely on a proper
(meta-) model underneath.

4 Meta Modeling

The aforementioned user interface provides differ-
ent views of a model whose syntax and seman-
tics are determined by an application-specific meta-
model. Apart from the figures that make up the
graphical representation, this metamodel is the part
where the various possible modeling applications
differ the most. It is also the part that requires the
largest implementation effort, so it makes sense to

strive for a generalizable solution here.
The solution we chose is based on the notion of

a generic metamodel, or, practically speaking, a box
of building bricks from which application-specific
metamodels can be built. It is loosely based on
ideas also found in the Meta Object Facility (MOF)
[OMG02] or similar metamodeling approaches. Yet,
it is not an implementation of the MOF nor is it
a true meta-metamodel in the strict sense, because
elements of the application-specific metamodel are
derived from the generic metamodel via inheritance
rather than instantiation.

At its very core, the generic metamodel consists
of a graph structure with (nestable) vertices repre-
senting metamodel concepts and edges forming re-
lationships between concepts. Each element can be
augmented with an arbitrary number of uniquely
named attributes and association ends. Attributes
are used for storing primitive values. The currently
supported types for these attributes areBoolean, In-
teger, String, Color, andDate. Examples for met-
alevel attributes are the visibility specifiers (public,
private, ...) found in class diagrams. Association
ends provide anchor points for associations, which
are used to link elements of the metamodel. They
may have an inverse and a multiplicity greater than
one. They are first class members of the metamodel,
so the implementation can easily keep both of their
ends consistent. Associations differ from edge ele-
ments in that they usually do not have a graphical
representation.

The generic metamodel elements also provide a
number of methods used for enforcing the syntax
rules inherent in the supported modeling language.
For example, both the vertex and the edge elements

4



have methods namedcanConnect(), the result of
which determines whether an edge element can con-
nect two given vertex elements. These methods usu-
ally need to be overridden in self-defined model el-
ements.

Figure 4 gives a rough impression of the generic
metamodel. Some of the important classes are de-
picted in the upper section. The lower section
shows how (part of) a metamodel for UML state
machines could be derived from the generic classes.
Having an obviously vertex-like characteristic,Uml-
State and UmlCompositeState would be derived
from ModelVertex. UmlTransition would become a
derivative ofModelEdge. All three classes override
syntax-enforcing methods as necessary to ensure the
rules of the UML specification: states may be con-
nected using transitions, and composite states may
contain other states.

The same user interface works on all application-
specific metamodels without adjustments, since the
basic metamodel elements provide introspection
mechanisms that allow querying an element’s at-
tributes and associations with other elements, and
potentially also allow their modification. These
mechanisms are used for loading, saving, and print-
ing models on a generic basis as well as for provid-
ing a foundation on which the more sophisticated
user interface components mentioned above can be
built.

5 Experiences

Our framework for lightweight object-oriented tools
is the result of an iterative process. First the soft-
ware architecture editor was developed from scratch
without any framework in mind. Then the need
for a tool to tailor theUnified Process arose and
further lightweight tools for object-oriented design
techniques followed. While developing the other
tools, we identified several features common to
the different tools and decided to evolve a frame-
work that allows efficiently developing lightweight
object-oriented design tools. Through several refac-
toring steps we separated the generic functionality
from the tool-specific ones and achieved the frame-
work and metamodel presented in sections 3 and 4.

Our experiences during development of different
lightweight tools for object-oriented design tech-
niques using our framework (see section 2) showed
that the framework is worth the effort we spent
on evolving it. Instead of repeatedly starting from
scratch, the framework and metamodel allows effi-
cient development of lightweight tools. There are

well-defined steps, using the hooks provided by the
framework, the developer has to follow to achieve a
running application:

1. build a data model for the tool through inher-
iting the framework’s metamodel

2. develop graphical representations of the
data model’s elements through inheriting the
framework’s generic figures

3. customize the layout and functionality adapt-
ing the generic components provided by the
framework (if necessary)

4. integrate additional functionality (such as a
simulation component)

We experienced that the framework is a stable and
powerful base suitable for different tools devoted
to teaching and learning various aspects of object-
oriented development.

Currently, we are releasing a first stable version
of the tools. They will be used in the lecture on soft-
ware engineering during this spring/summer term
for the first time and their impact will be evaluated.
We hope that the clear focus of the lightweight tools
will gain a positive acceptance among students. We
assume that the tools’ short startup times and low
memory foot print are further benefits.

6 Outlook

Our next step is to extend the above-mentioned sim-
ulation engine of the statechart editor by a multime-
dia interface. This will allow incorporation of ar-
bitrary media elements into the simulation, thereby
simulating or “controlling” real world applications
or devices by the statemachine modeled. Different
media elements might be used to illustrate the ap-
plication in its different states. A typical example
would be a simulation of Harel’s watch [Har87], il-
lustrating the state changes using pictures of a dig-
ital watch. Using the multimedia component we
hope to bridge the gap between abstract formal mod-
els and real world applications. We assume that is
possible to use the same approach to illustrate the
dynamics of software architectures as well.

In parallel to the extended simulation engine, we
develop a project tutor for applying theUnified Pro-
cess. Based on the tailored model instantiated by
the process modeler, the tutor provides additional
support for the students during execution of the
project’s development process (e.g. gives hints what

5



Figure 4: Simplified generic and specific metamodel

to do next). The tutor is also based on our frame-
work illustrating the broad range of tools which can
be built onto the framework.

To complete the set of our tools, a class diagram
editor is the obvious choice. Due to the metamodel
approach of our framework, such an editor would
a suitable starting point for studying model driven
architecture approaches [Fra03]. In this case, the
tool and its internals would become part of the lec-
ture. In the ideal case, it would also allow us devel-
oping the metamodels for further lightweight tools
with the tool itself.

References

[DE02] Ernst-Erich Doberkat and Gregor Engels.
MuSofT – Multimedia in der SoftwareTech-
nik. Informatik Forschung und Entwicklung,
17(1), January 2002.

[Fra03] David S. Frankel. Model Driven Architec-
ture – Applying MDA to Enterprise Comput-
ing. OMG Press, 2003.

[GHJV97] Erich Gamma, Richard Helm, Ralph John-
son, and John Vlissides.Design Patterns. Ele-
ments of Reusable Object-Oriented Software.
Addison-Wesley, 1997.

[Har87] David Harel. Statecharts: A Visual Formula-
tion for Complex Systems.Science of Com-
puter Programming, 8(3):231–274, 1987.

[HN96] David Harel and Amnon Naamad. The
STATEMATE Semantics of Statecharts.ACM
Transactions on Software Engineering and
Methodology, 5(4):293–333, 1996.

[JBR98] Ivar Jacobson, Grady Booch, and James Rum-
baugh. The Unified Software Development
Process. Addison Wesley, 1998.

[Kai01] Wolfram Kaiser. Become a pro-
gramming Picasso with JHotDraw,
2001. http://www.javaworld.
com/javaworld/jw-02-2001/
jw-0216-jhotdraw.html .

[Kel02] Udo Kelter. Gestaltungsrichtlinien für Editor-
Simulatoren für graphartige Dokumente. In
Sigrid Schubert, Bernd Reusch, and Nor-
bert Jesse, editors,Informatik bewegt. 32.
Jahrestagung der Gesellschaft für Informatik
e.V. (GI), 30. Sept.–3. Okt. 2002 in Dortmund,
pages 393–400. Gesellschaft für Informatik,
2002.

[OMG02] Object Management Group.Meta Object
Facility (MOF) Specification 1.5, 2002.
http://www.omg.org/cgi-bin/
doc?formal/2002-04-03 .

[OMG03] Object Management Group.Unified Model-
ing Language (UML) 1.5 Specification, 2003.
http://www.omg.org/cgi-bin/
doc?formal/03-03-01 .

[SGW94] Bran Selic, Garth Gullekson, and Paul T.
Ward. Real-Time Object-Oriented Modeling.
John Wiley and Sons, 1994.

[SR98] Bran Selic and Jim Rumbaugh. Using UML
for Modeling Complex Real-Time Systems.
1998. http://www.rational.com/
products/whitepapers/442.jsp .

6



Interne Berichte des Lehrstuhls Software-Technologie (ISSN 0933-7725)

/99/ T. Bühren, M. Cakir, E. Can, A. Dombrowski, G. Geist, V. Gruhn, M. Gürgrn, S. Handschumacher, M. Heller,
C. Lüer, D. Peters, G. Vollmer, U. Wellen, J. von Werne
Endbericht der Projektgruppe eCCo (PG 315)
Electronic Commerce in der Versicherungsbranche
Beispielhafte Unterstützung verteilter Geschäftsprozesse
Februar 1999

/100/ A. Fronk, J. Pleumann,
Der DoDL-Compiler
August 1999

/101/ K. Alfert, E.-E. Doberkat, C. Kopka
Towards Constructing a Flexible Multimedia Environment for Teaching the History of Art
September 1999

/102/ E.-E. Doberkat
An Note on a Categorial Semantics for ER-Models
November 1999

/103/ Christoph Begall, Matthias Dorka, Adil Kassabi, Wilhelm Leibel, Sebastian Linz, Sascha Lüdecke, Andreas Schröder, Jens Schröder,
Sebastian Schütte, Thomas Sparenberg, Christian Stücke, Martin Uebing, Klaus Alfert, Alexander Fronk, Ernst-Erich Doberkat
Abschlußbericht der Projektgruppe PG-HEU (326)
Oktober 1999

/104/ Corina Kopka
Ein Vorgehensmodell für die Entwicklung multimedialer Lernsysteme
März 2000

/105/ Stefan Austen, Wahid Bashirazad, Matthais Book, Traugott Dittmann, Bernhard Flechtker, Hassan Ghane, Stefan Göbel, Chris Haa-
se, Christian Leifkes, Martin Mocker, Stefan Puls, Carsten Seidel, Volker Gruhn, Lothar Schöpe, Ursula Wellen
Zwischenbericht der Projektgruppe IPSI
April 2000

/106/ Ernst-Erich Doberkat
Die Hofzwerge — Ein kurzes Tutorium zur objektorientierten Modellierung
September 2000

/107/ Leonid Abelev, Carsten Brockmann, Pedro Calado, Michael Damatow, Michael Heinrichs, Oliver Kowalke, Daniel Link, Holger Lüm-
kemann, Thorsten Niedzwetzki, Martin Otten, Michael Rittinghaus, Gerrit Rothmaier
Volker Gruhn, Ursula Wellen
Zwischenbericht der Projektgruppe Palermo
November 2000

/108/ Stefan Austen, Wahid Bashirazad, Matthais Book, Traugott Dittmann, Bernhard Flechtker, Hassan Ghane, Stefan Göbel, Chris Haa-
se, Christian Leifkes, Martin Mocker, Stefan Puls, Carsten Seidel, Volker Gruhn, Lothar Schöpe, Ursula Wellen
Endbericht der Projektgruppe IPSI
Februar 2001

/109/ Leonid Abelev, Carsten Brockmann, Pedro Calado, Michael Damatow, Michael Heinrichs, Oliver Kowalke, Daniel Link, Holger Lüm-
kemann, Thorsten Niedzwetzki, Martin Otten, Michael Rittinghaus, Gerrit Rothmaier
Volker Gruhn, Ursula Wellen
Zwischenbericht der Projektgruppe Palermo
Februar 2001

/110/ Eugenio G. Omodeo, Ernst-Erich Doberkat
Algebraic semantics of ER-models from the standpoint of map calculus.
Part I: Static view
März 2001

/111/ Ernst-Erich Doberkat
An Architecture for a System of Mobile Agents
März 2001

/112/ Corina Kopka, Ursula Wellen
Development of a Software Production Process Model for Multimedia CAL Systems by Applying Process Landscaping
April 2001

/113/ Ernst-Erich Doberkat
The Converse of a Probabilistic Relation
Oktober 2002



/114/ Ernst-Erich Doberkat, Eugenio G. Omodeo
Algebraic semantics of ER-models in the context of the calculus of relations.
Part II: Dynamic view
Juli 2001

/115/ Volker Gruhn, Lothar Schöpe (Eds.)
Unterstützung von verteilten Softwareentwicklungsprozessen durch integrierte Planungs-, Workflow- und Groupware-Ansätze
September 2001

/116/ Ernst-Erich Doberkat
The Demonic Product of Probabilistic Relations
September 2001

/117/ Klaus Alfert, Alexander Fronk, Frank Engelen
Experiences in 3-Dimensional Visualization of Java Class Relations
September 2001

/118/ Ernst-Erich Doberkat
The Hierarchical Refinement of Probabilistic Relations
November 2001

/119/ Markus Alvermann, Martin Ernst, Tamara Flatt, Urs Helmig, Thorsten Langer, Ingo Röpling,
Clemens Schäfer, Nikolai Schreier, Olga Shtern
Ursula Wellen, Dirk Peters, Volker Gruhn
Project Group Chairware Intermediate Report
November 2001

/120/ Volker Gruhn, Ursula Wellen
Autonomies in a Software Process Landscape
Januar 2002

/121/ Ernst-Erich Doberkat, Gregor Engels (Hrsg.)
Ergebnisbericht des Jahres 2001
des Projektes “MuSofT – Multimedia in der SoftwareTechnik”
Februrar 2002

/122/ Ernst-Erich Doberkat, Gregor Engels, Jan Hendrik Hausmann, Mark Lohmann, Christof Veltmann
Anforderungen an eine eLearning-Plattform— Innovation und Integration —
April 2002

/123/ Ernst-Erich Doberkat
Pipes and Filters: Modelling a Software Architecture Through Relations
Juni 2002

/124/ Volker Gruhn, Lothar Schöpe
Integration von Legacy-Systemen mit Eletronic Commerce Anwendungen
Juni 2002

/125/ Ernst-Erich Doberkat
A Remark on A. Edalat’s Paper Semi-Pullbacks and Bisimulations in Categories of Markov-Processes
Juli 2002

/126/ Alexander Fronk
Towards the algebraic analysis of hyperlink structures
August 2002

/127/ Markus Alvermann, Martin Ernst, Tamara Flatt, Urs Helmig, Thorsten Langer
Ingo Röpling, Clemens Schäfer, Nikolai Schreier, Olga Shtern
Ursula Wellen, Dirk Peters, Volker Gruhn
Project Group Chairware Final Report
August 2002

/128/ Timo Albert, Zahir Amiri, Dino Hasanbegovic, Narcisse Kemogne Kamdem,
Christian Kotthoff, Dennis Müller, Matthias Niggemeier, Andre Pavlenko, Stefan Pinschke,
Alireza Salemi, Bastian Schlich, Alexander Schmitz
Volker Gruhn, Lothar Schöpe, Ursula Wellen
Zwischenbericht der Projektgruppe Com42Bill (PG 411)
September 2002

/129/ Alexander Fronk
An Approach to Algebraic Semantics of Object-Oriented Languages
Oktober 2002



/130/ Ernst-Erich Doberkat
Semi-Pullbacks and Bisimulations in Categories of Stochastic Relations
November 2002

/131 Yalda Ariana, Oliver Effner, Marcel Gleis, Martin Krzysiak,
Jens Lauert, Thomas Louis, Carsten Röttgers, Kai Schwaighofer,
Martin Testrot, Uwe Ulrich, Xingguang Yuan
Prof. Dr. Volker Gruhn, Sami Beydeda
Endbericht der PG nightshift:
Dokumentation der verteilten Geschäftsprozesse im FBI und Umsetzung von Teilen dieser Prozesse im Rahmen eines FBI-Intranets
basierend auf WAP- und Java-Technologie
Februar 2003

/132/ Ernst-Erich Doberkat, Eugenio G. Omodeo
ER Modelling from First Relational Principles
Februar 2003

/133/ Klaus Alfert, Ernst-Erich Doberkat, Gregor Engels (Hrsg.)
Ergebnisbericht des Jahres 2002 des Projektes “MuSofT – Multimedia in der SoftwareTechnik”
März 2003

/134/ Ernst-Erich Doberkat
Tracing Relations Probabilistically
März 2003

/135/ Timo Albert, Zahir Amiri, Dino Hasanbegovic, Narcisse Kemogne Kamdem,
Christian Kotthoff, Dennis Müller, Matthias Niggemeier,
Andre Pavlenko, Alireza Salemi,Bastian Schlich, Alexander Schmitz,
Volker Gruhn, Lothar Schöpe, Ursula Wellen
Endbericht der Projektgruppe Com42Bill (PG 411)
März 2003

/136/ Klaus Alfert
Vitruv: Specifying Temporal Aspects of Multimedia Presentations —
A Transformational Approach based on Intervals
April 2003

/137/ Klaus Alfert, Jörg Pleumann, Jens Schröder
A Framework for Lightweight Object-Oriented Design Tools
April 2003


