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Abstract

We propose several new tests for monotonicity of regression functions based on

different empirical processes of residuals. The residuals are obtained from recently

developed simple kernel based estimators for increasing regression functions based on

increasing rearrangements of unconstrained nonparametric estimators. The test statis-

tics are estimated distance measures between the regression function and its increasing

rearrangement. We discuss the asymptotic distributions, consistency, and small sample

performances of the tests.
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1 Introduction

In a nonparametric regression context with regression function m we consider the important

problem of testing for monotonicity of the regression function, i. e. testing for validity of the

null hypothesis

H0 : “m is increasing”.
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First literature on testing for monotonicity of regression function is given by Schlee (1982)

who proposes a test which is based on estimates of the derivative of the regression func-

tion. Bowman, Jones and Gijbels (1998) used Silverman’s (1981) “critical bandwidth” ap-

proach to construct a bootstrap test for monotonicity, while Gijbels, Hall, Jones and Koch

(2000) considered the length or runs of consecutive negative values of observation differ-

ences. Hall and Heckman (2000) suggested to fit straight lines through subsequent groups

of consecutive points and reject monotonicity for too large negative values of the slopes.

Other recent work on testing monotonicity can be found in Goshal, Sen and Van der Vaart

(2000), Dümbgen (2002), Durot (2003), Baraud, Huet and Laurent (2003) and Domı́nguez-

Menchero, González-Rodŕıguez and López-Palomo (2005). Birke and Dette (2007) consider

a test for strict monotonicity based on the L2-distance of the distribution function of the

unconstrained estimator evaluated at the unconstrained estimator to the identity (see sec-

tion 3 for more comments on that test). Most tests for monotonicity suffer from the problem

of underestimating the level because they are calibrated with the most difficult null model

which is a constant regression function. Gijbels (2005) gives a thorough review on tests

for monotonicity of regression functions and suggests as alternative “to base a test statistic

on a measure of the distance between an unconstrained and a constrained estimate of the

regression function”. However, to the authors’ best knowlegde in the paper at hand for the

first time those tests for monotonicity are investigated. For similar testing problems (for in-

stance, testing whether m belongs to a parametric class of functions) such tests based on an

estimated norm difference between an estimator under H0 and an unconstrained estimator

are very popular. In our context, such tests would be based, for example, on an estimated

L2-distance between a completely nonparametric regression estimator m̂ and an increasing

estimator m̂I constructed under the null hypothesis; see Härdle and Mammen (1993) for

such a test in the goodness-of-fit context. Other test statistics could be constructed sim-

ilar to the goodness-of-fit tests by Stute (1997) or Van Keilegom, González-Manteiga and

Sánchez Sellero (2008) based on estimated empirical processes of residuals (see section 3

for exact definitions of those processes). To do so one needs an estimator for the regression

function under the null hypothesis H0 of monotonicity. Such increasing regression estimators

were proposed by Mammen (1991), Hall and Huang (2001), and Dette, Neumeyer and Pilz

(2006), among others. The mentioned methods have in common that they are based on a

preliminary unconstrained estimator m̂ and are (under appropriate assumptions) first order

asymptotically equivalent to each other and to the unconstrained estimator m̂. This is a

nice and desirable property for estimation purposes, but it limits the application of such

estimators for testing monotonicity by distance based tests as suggested before. It turns

out that those typical distance based test that are so popular in testing for different model

assumptions have, when testing for monotonicity, degenerate limit distributions under the
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null hypothesis and, hence, are not suitable for testing.

The intuitive idea we follow in the present paper instead is as follows. We investigate the

behaviour of pseudo-residuals built under the hypothesis H0 of monotonicity, which estimate

pseudo-errors that coincide with the true errors in general only under the null hypothesis.

Whereas the true errors are assumed to be independent and identically distributed, the

pseudo-errors behave differently. We construct several test statistics to detect these different

behaviours. The test statistics are based on several empirical processes of (pseudo-)residuals.

To build the pseudo-residuals, we estimate the regression function under H0 by applying the

simple kernel based increasing estimator by Dette, Neumeyer and Pilz (2006) [see also Birke

and Dette (2008) for further discussion of this estimator]. Under the null hypothesis we

show weak convergence of the empirical processes to Gaussian processes. The asymptotic

distributions are independent of the regression function m and, hence, the tests need not

be calibrated using a most difficult null model. For normal regression models we can even

obtain asymptotically distribution free tests. The test statistics turn out to be estimators

for certain distance measures between the true regression function m and an “increasing

version” mI of m, and hence, are consistent. Moreover, the tests can detect local alterna-

tives of convergence rate n−1/2. To the authors’ best knowledge those are the first tests in

literature for testing monotonicity of regression functions with this property. We compare

the small sample behavior of the empirical process approaches to that of the L2-test in Birke

and Dette (2007) and observe, that they are less conservative and can in fact better detect

local alternatives of convergence rate n−1/2.

The paper is organized as follows. In section 2 we define the monotone regression estima-

tor and list the model assumptions. Section 3 motivates and defines the test statistics, for

which the asymptotic distributions are stated in section 4. In section 5 we explain bootstrap

versions of the tests and investigate the small sample behaviour, whereas some concluding

remarks are given in section 6. All proofs are given in an appendix.

2 Model and assumptions

Consider the nonparametric regression model

Yi = m(Xi) + εi, i = 1, . . . , n,

where (Xi, Yi), i = 1, . . . , n, is a bivariate sample of i.i.d. observations. If there is evidence

that the regression function m is increasing we define

m̂−1
I (t) =

1

bn

∫ 1

0

∫ t

−∞
k
(m̂(v)− u

bn

)

dudv
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as an estimate of m−1(t), where m̂ denotes a local linear estimator for m with kernel K and

bandwidth hn. [By increasing throughout the paper we mean nondecreasing in distinction

from strictly increasing.]

The estimator m̂I is defined as the generalized inverse of m̂−1
I , that is

m̂I(x) = inf{t ∈ IR|m̂−1
I (t) ≥ x}.

Under H0 and under the following assumptions m̂I is asymptotically first order equivalent

to the unconstrained estimator m̂, see Dette, Neumeyer and Pilz (2006). This is a smoothed

version of the monotone rearrangement (see e.g. Hardy, Littlewood and Polyá, 1952 or Lieb

and Loss, 2001)

(A1) The covariates X1, . . . , Xn are independent and identically distributed with distribu-

tion function FX on compact support, say [0, 1]. FX has a twice continuously differ-

entiable density fX such that infx∈[0,1] fX(x) > 0. The regression function m is twice

continuously differentiable.

(A2) K and k are symmetric, twice continuously differentiable kernels of order 2 with

bounded supports, say (−1, 1), such that K(−1) = K(1) = k(−1) = k(1) = 0.

(A3) The bandwidths fulfill hn, bn → 0, nhn, nbn → ∞ and

nh4
n → 0, nb4n → 0,

b2n log(h
−1
n )

hn

→ 0,
log(h−1

n )

nh3
nb

4δ
n

→ 0,
log(h−1

n )

nhnb2n
→ 0

for some δ ∈ (0, 1
2
) and for n → ∞.

(A4) The errors ε1, . . . , εn are independent and identically distributed, independent from the

covariates, with strictly increasing distribution function Fε and bounded density fε,

which has one bounded continuous derivative. The errors are centered, i. e. E[εi] = 0

with variance σ2 > 0 and existing fourth moment.

(A5) The errors have median zero, i. e. Fε(0) =
1
2
.

(A6) The errors ε1, . . . , εn are independent and normally distributed with expectation zero

and variance σ2 > 0, independent from the covariates.

(A7) The error density fε is unimodal.

Conditions (A1)–(A4) are assumed to be valid throughout the paper, whereas it is stated

explicitly when (A5), (A6) or (A7) are assumed.

We restrict to the homoscedastic case with random covariates for the moment, but other

cases will be discussed in Remarks 4.4 and 4.5.
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3 Test statistics

In general the estimator m̂I estimates the increasing rearrangement mI of m. Only under

the hypothesis H0 of an increasing regression function we have m = mI . We build (pseudo-)

residuals

ε̂i,I = Yi − m̂I(Xi),

which estimate pseudo-errors εi,I = Yi − mI(Xi) that coincide with the true errors εi =

Yi −m(Xi) (i = 1, . . . , n) in general only under H0. Let further

ε̂i = Yi − m̂(Xi)

denote the unconstrained residuals. Under H0 both m̂ and m̂I join the same first order

asymptotic expansion. This for estimation purposes very desirable property limits the possi-

bilities to apply the estimator m̂I for hypotheses testing. Test statistics based on estimated

empirical processes such as

1√
n

n
∑

i=1

ε̂i,II{Xi ≤ ·} or
1√
n

n
∑

i=1

(

I{ε̂i,I ≤ ·} − I{ε̂i ≤ ·}
)

(3.1)

[compare to Stute (1997) and Van Keilegom, González-Manteiga and Sánchez Sellero (2008)]

are of convergence order oP (1) and not suitable for the testing problem considered here. For

the estimated L2-distance

nh1/2
n

∫

(m̂I − m̂)2(3.2)

[cf. Härdle and Mammen (1993)] the same problem arises. One could try to rescale the test

statistics and apply second order asymptotic expansions to derive an nondegenerate limit

distribution. Whereas this seems not possible for the second empirical process in (3.1) with

methods of proofs typically applied for such processes, it might work for the first process in

(3.1) as well as for the L2-distance test (3.2). However, the resulting tests typically react

rather sensitive to the choice of smoothing parameters. Birke and Dette (2007) follow this

approach by considering a suitably scaled version of the test statistic
∫

(m̂−1
I (m̂(x))− x)2 dx

and by applying second order asymptotic expansions.

The idea we follow in the present paper instead is the following. Whereas the true er-

rors ε1, . . . , εn are assumed to be independent and identically distributed, the pseudo-errors

ε1,I , . . . , εn,I behave differently. If the true function m is not monotone (e.g. like in Figure

1) and we calculate the pseudo-residuals from mI too many of them are positive (see solid

dots with black lines) on some subinterval of [0, 1] and too many are negative (see open dots

with grey lines) on another subinterval. Therefore, they are no longer identically distributed

if H0 is not fulfilled.
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Figure 1: Left part: True function m (grey line), monotonized function mI (black line)

together with observations. Right part: Pseudo-residuals (positive ones solid with black

dashed lines, negative ones open with grey dashed lines)

We construct test statistics from several estimated empirical processes to detect this different

behaviour. The first process we will consider is defined as

Sn(t) =
1√
n

n
∑

i=1

(

I{ε̂i,I > 0}I{Xi ≤ t} − 1

2
F̂X,n(t)

)

where t ∈ [0, 1] and F̂X,n denotes the empirical distribution function of the covariates

X1, . . . , Xn. For every t ∈ [0, 1] it counts how many pseudo-residuals are positive up to

covariates ≤ t. This term is then centered with respect to the estimated expectation under

H0 and scaled with n−1/2. Under assumptions (A1)–(A5), Sn(t) consistently estimates the

expectation

√
n
(

E[I{εi,I > 0}I{Xi ≤ t}]− 1

2
FX(t)

)

=
√
n
(

E[I{εi > (mI −m)(Xi)}I{Xi ≤ t}]− (1− Fε(0))FX(t)
)

(3.3)

=
√
n

∫ t

0

(

Fε(0)− Fε((mI −m)(x))
)

fX(x) dx.

This term is zero for all t ∈ [0, 1] if and only if mI = m is valid FX-a. s. To obtain

this equivalence one especially uses that Fε is strictly increasing, whereas equality (3.3)

applies assumption (A5). As we have seen, for instance a Kolmogorov-Smirnov type statistic

sn = supt∈[0,1] |Sn(t)| estimates a distance measure between mI and m and, to obtain a

consistent testing procedure, the null hypothesis should be rejected for large values of sn.
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To avoid assumption (A5) one can alternatively consider the process

S̃n(t) =
√
n
( 1

n

n
∑

i=1

I{ε̂i,I > 0}I{Xi ≤ t} − (1− F̂ε,n(0))F̂X,n(t)
)

,

where F̂ε,n denotes the empirical distribution function of ε̂1, . . . , ε̂n.

The application of tests based on Sn and S̃n may not lead to good power in cases where m

and mI are quite similar and the variance is large. Hence it seems sensible to not only take

into account the sign of the estimated pseudo-errors, but also their value, i. e. to consider

tests based on

1

n

n
∑

i=1

ε̂i,II{ε̂i,I > 0}I{Xi ≤ t}.

The estimated expectation of this term under H0, i. e. E[εiI{εi > 0}I{Xi ≤ t}] is known

to be σ√
2π
FX(t) under assumption (A6), and then can be estimated by σ̂√

2π
F̂X,n(t), where

σ̂ = (n−1
∑n

i=1 ε̂
2
i )

1/2. This leads to the process

Vn(t) =
√
n
( 1

n

n
∑

i=1

ε̂i,II{ε̂i,I > 0}I{Xi ≤ t} − σ̂√
2π

F̂X,n(t)
)

.

To avoid assumption (A6) one can alternatively consider the process

Ṽn(t) =
√
n
( 1

n

n
∑

i=1

ε̂i,II{ε̂i,I > 0}I{Xi ≤ t} − 1

n

n
∑

i=1

ε̂iI{ε̂i > 0}F̂X,n(t)
)

.

Lemma 3.1 Tests that for some constant c > 0 reject H0 whenever supt∈[0,1] |Vn(t)| > c

or supt∈[0,1] |Ṽn(t)| > c are consistent under assumptions (A1)–(A3),(A6) and (A1)–(A4),

respectively.

Because the proof of this statement requires a longer argumentation we defer it to the

appendix.

Now let R̂i,I denote the fractional rank of ε̂i,I with respect to ε̂1,I , . . . , ε̂n,I , i. e.

R̂i,I =
1

n

n
∑

j=1

I{ε̂j,I ≤ ε̂i,I}

and consider the term

1

n

n
∑

i=1

R̂i,II{ε̂i,I > 0}I{Xi ≤ t},

which (under H0) estimates the expectation

E
[ 1

n

n
∑

j=1

I{εj ≤ εi}I{εi > 0}I{Xi ≤ t}
]

= E[Fε(εi)I{εi > 0}]FX(t) + o(1)

=

∫ 1

Fε(0)

x dxFX(t) + o(1) =
(1

2
− (Fε(0))

2

2

)

FX(t) + o(1) =
3

8
FX(t) + o(1),
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where the last equality holds under assumption (A5). This expectation can be estimated by
3
8
F̂X,n(t) under (A5) and by 1

2
(1− (F̂ε,n(0))

2)F̂X,n(t) otherwise, which leads to the empirical

processes

Rn(t) =
1√
n

n
∑

i=1

(

R̂i,II{ε̂i,I > 0}I{Xi ≤ t} − 3

8
F̂X,n(t)

)

R̃n(t) =
1√
n

n
∑

i=1

(

R̂i,II{ε̂i,I > 0}I{Xi ≤ t} − 1

2
(1− (F̂ε,n(0))

2)F̂X,n(t)
)

.

Lemma 3.2 Tests that for some constant c > 0 reject H0 whenever supt∈[0,1] |Rn(t)| > c or

supt∈[0,1] |R̃n(t)| > c are consistent under assumptions (A1)–(A5),(A7) and (A1)–(A4),(A7),

respectively.

Again, the proof of this result needs a longer argumentation and is defered to the appendix.

4 Main asymptotic results

In the following theorem we state weak convergence results for the processes defined before.

Note that we have to assume a strictly increasing regression function to derive the asymptotic

distributions. Nevertheless, the monotone regression estimator m̂I can also be applied for

monotone regression functions with flat parts, see Dette and Pilz (2006).

Theorem 4.1 Assume that m′ is positive in [0, 1].

(i) Under assumptions (A1)–(A5) the process Sn converges weakly in ℓ∞([0, 1]) to a Gaussian

process S with covariance

Cov(S(s), S(t)) = FX(s ∧ t)
(1

4
+ σ2f 2

ε (0) + 2fε(0)E[ε1I{ε1 ≤ 0}]
)

= FX(s ∧ t)(
1

4
− 1

2π
),

where the last equality holds under the additional assumption (A6).

(ii) Under assumptions (A1)–(A4) the process S̃n converges weakly in ℓ∞([0, 1]) to a Gaus-

sian process S̃ with covariance

Cov(S̃(s), S̃(t))

= (FX(s ∧ t)− FX(s)FX(t))
(

Fε(0)(1− Fε(0)) + σ2f 2
ε (0) + 2fε(0)E[ε1I{ε1 ≤ 0}]

)

= (FX(s ∧ t)− FX(s)FX(t))(
1

4
− 1

2π
),

where the last equality holds under the additional assumption (A6).

(iii) Under assumptions (A1)–(A3) and (A6) the process Vn converges weakly in ℓ∞([0, 1])
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to a Gaussian process V with covariance

Cov(V (s), V (t)) = FX(s ∧ t)(
1

4
− 1

2π
)σ2 − FX(s)FX(t)

σ2

4π
.

(iv) Under assumptions (A1)–(A4) the process Ṽn converges weakly in ℓ∞([0, 1]) to a Gaus-

sian process Ṽ with covariance

Cov(Ṽ (s), Ṽ (t))

= (FX(s ∧ t)− FX(s)FX(t))
(

(2Fε(0)− 1)E[ε21I{ε1 ≤ 0}]− (E[ε1I{ε1 ≤ 0}])2 + σ2(1− Fε(0))
2
)

= (FX(s ∧ t)− FX(s)FX(t))(
1

4
− 1

2π
)σ2,

where the last equality holds under the additional assumption (A6).

(v) Under assumptions (A1)–(A5) the process Rn converges weakly in ℓ∞([0, 1]) to a Gaus-

sian process R with covariance

Cov(R(s), R(t))

= (FX(s ∧ t)− FX(s)FX(t))
( 29

192
+ σ2(fε(0)Fε(0)− E[fε(ε1)I{ε1 > 0}])2

+ 2E[Fε(ε1)ε1I{ε1 ≤ 0}](fε(0)Fε(0)− E[fε(ε1)I{ε1 > 0}])
)

+
1

16
FX(s)FX(t).

(vi) Under assumptions (A1)–(A4) the process R̃n converges weakly in ℓ∞([0, 1]) to a Gaus-

sian process R̃ with covariance

Cov(R̃(s), R̃(t))

= (FX(s ∧ t)− FX(s)FX(t))
(

E[F 2
ε (ε1)I{ε1 > 0}]− (E[Fε(ε1)I{ε1 > 0}])2

+ σ2(fε(0)Fε(0) + E[fε(ε1)I{ε1 > 0}])2

− 2E[Fε(ε1)ε1I{ε1 ≤ 0}](fε(0)Fε(0) + E[fε(ε1)I{ε1 > 0}])
)

.

The proof is given in the appendix.

Remark 4.2 For a normal regression model, i. e. under assumption (A6) we can obtain

asymptotically distribution free tests, because then

sup
t∈[0,1]

|Sn(t)| = sup
s∈(0,1)

|Sn(F
−1
X (s))|

converges in distribution to (1
4
− 1

2π
) sups∈[0,1] |W (s)| for a Brownian motion W . Similarly,

supt∈[0,1] |S̃n(t)| converges in distribution to (1
4
− 1

2π
) sups∈[0,1] |B(s)|, where B is a Brownian

bridge.
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Remark 4.3 The proposed tests can detect local alternatives of the form

H1,n : m(x) = mI(x) +
∆(x)√

n
,

where ∆ 6= 0 on an interval in [0, 1] of positive length. Consider Sn for simplicity. From

(3.3) we see that the asymptotic expectation of Sn(t) under H1,n is

√
n

∫ t

0

(

Fε(0)− Fε((mI −m)(x))
)

fX(x) dx = fε(0)

∫ t

0

∆(x)fX(x) dx+ o(1).

With similar arguments as in the proof of Theorem 4.1 one can show that under H1,n,

Sn converges in distribution to the process fε(0)
∫ t

0
∆(x)fX(x) dx + S(t), t ∈ [0, 1]. The

Kolmogorov-Smirnov test statistic supt∈[0,1] |Sn(t)| constructed from Theorem 4.1 detects

H1,n because fε(0) supt∈[0,1] |
∫ t

0
∆(x)fX(x) dx| > 0.

Remark 4.4 Assume a heteroscedastic regression model

Yi = m(Xi) + σ(Xi)εi, i = 1, . . . , n,

where Xi and εi are independent, E[ε2i ] = 1, E[ε4i ] < ∞, the regression function m, error

distribution Fε and covariate distribution FX fulfill assumptions as before, whereas the vari-

ance function σ2 is twice continuously differentiable and bounded away from zero. Then

similar tests for monotonicity of the regression function m can be constructed by replacing

residuals ε̂i and pseudo-residuals ε̂i,I from before by

ε̂i =
Yi − m̂(Xi)

σ̂(Xi)
, ε̂i,I =

Yi − m̂I(Xi)

σ̂(Xi)
,

where σ̂2 denotes a Nadaraya-Watson estimator for σ2 with kernel K and bandwidth hn

based on “observations” (Yi−m̂(Xi))
2. With these changes the same processes as before can

be considered for testing H0. Weak convergence to Gaussian processes can be obtained with

methods as in Akritas and Van Keilegom (2001), where the asymptotic covariances change

in comparison to Theorem 4.1 due to the estimation of the variance function.

Remark 4.5 Assume a (homoscedastic) fixed design regression model

Yi = m(xni) + εi, i = 1, . . . , n,

with assumptions as before but with nonrandom covariates xn1 ≤ . . . ≤ xnn such that there

exists a distribution function FX with support [0, 1] so that FX(xni) =
i
n
, i = 1, . . . , n, and

FX fulfills assumptions as before. Then similar tests for monotonicity of m can be derived

by considering sequential empirical processes. For instance, instead of S̃n we would consider

S̄n(t) =
√
n
( 1

n

⌊nt⌋
∑

i=1

I{ε̂i,I > 0} − (1− F̂ε,n(0))t
)

,
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where ⌊nt⌋ is the largest integer ≤ nt. Weak convergence of the processes similar to the

results in Theorem 4.1 can be obtained with methods as in Neumeyer and Van Keilegom

(2009).

5 Bootstrap method and simulation results

Since the asymptotic distributions of the test statistics still depend on the unknown functions

m and f we use the bootstrap procedures to construct tests based on the above statistics.

We build bootstrap observations that fulfill the null hypothesis by defining

Y ∗
i = m̂I(Xi) + ε∗i , i = 1, . . . , n.

Here, under assumption (A6) we can generate the bootstrap errors ε∗1, . . . , ε
∗
n by the normal

distribution N(0, σ̂2), where σ̂2 is the estimated variance from residuals ε̂1, . . . , ε̂n.

Without assumption (A6) instead we apply a nonparametric smoothed residual bootstrap.

To this end, we randomly draw ε̃∗i with replacement from centered residuals ε̃1, . . . , ε̃n, where

ε̃j = ε̂j −n−1
∑n

k=1 ε̂k. Let further a denote a small smoothing parameter and let Z1, . . . , Zn

be independent and standard normally distributed. Then, ε∗i = ε̃∗i + aZi, i = 1, . . . , n, are

independent, given the original sample Yn = {(Xi, Yi) | i = 1, . . . , n} and have a distribution

function F̃n,ε with density

f̃n,ε(y) =
1

na

n
∑

i=1

ϕ
( ε̃i − y

a

)

.

From the bootstrap observations calculate the constrained and unconstrained regression

estimators m̂∗
I and m̂∗ and build residuals ε̂i,I = Y ∗

i − m̂∗
I(Xi) and ε̂∗i = Y ∗

i − m̂(Xi),

respectively. Let F̂ ∗
ε,n denote the empirical distribution function of ε̂∗1, . . . , ε̂

∗
n and R̂∗

i,I the

fractional rank of ε̂∗i,I with respect to ε̂∗1,I , . . . , ε̂
∗
n,I . The bootstrap versions of the considered

processes are defined as follows,

S∗
n(t) =

√
n
( 1

n

n
∑

i=1

I{ε̂∗i,I > 0}I{Xi ≤ t} − (1− F̃ε,n(0))F̂X,n(t)
)

S̃∗
n(t) =

√
n
( 1

n

n
∑

i=1

I{ε̂∗i,I > 0}I{Xi ≤ t} − (1− F̂ ∗
ε,n(0))F̂X,n(t)

)

V ∗
n (t) =

√
n
( 1

n

n
∑

i=1

ε̂∗i,II{ε̂∗i,I > 0}I{Xi ≤ t} − σ̂∗
√
2π

F̂X,n(t)
)

Ṽ ∗
n (t) =

√
n
( 1

n

n
∑

i=1

ε̂∗i,II{ε̂∗i,I > 0}I{Xi ≤ t} − 1

n

n
∑

i=1

ε̂∗i I{ε̂∗i > 0}F̂X,n(t)
)

R∗
n(t) =

1√
n

n
∑

i=1

(

R̂∗
i,II{ε̂∗i,I > 0}I{Xi ≤ t} − 1

2
(1− (F̃ε,n(0))

2)F̂X,n(t)
)

11
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Figure 2: Simulated size and power in dependence of n for the tests ϕsn (diamonds), ϕvn

(dots) and ϕrn (triangles) compared to the test ϕL2 (dashed line) for different standard

deviations σ (left σ = 0.025, middle σ = 0.05, right σ = 0.1). First row m1, second row

m2,n.

R̃∗
n(t) =

1√
n

n
∑

i=1

(

R̂∗
i,II{ε̂∗i,I > 0}I{Xi ≤ t} − 1

2
(1− (F̂ ∗

ε,n(0))
2)F̂X,n(t)

)

,

where only in the case of V ∗
n under assumption (A6) we use the parametric bootstrap applying

the normal distribution as explained above, where then σ̂∗ is the empirical standard deviation

of ε̂∗1, . . . , ε̂
∗
n. Note that the bootstrap processes are centered in a slightly different way than

the original statistics with the aim to obtain processes that are asymptotically centered with

respect to the conditional expectation E[· | Yn]. In the appendix we sketch a proof for

validity of the bootstrap procedures.

Since it turned out in a simulation study in Birke and Dette (2007), that their test and the

test developed by Bowman, Jones and Gijbels (1998) behave very similar we will compare

the tests described here only to the one by Birke and Dette (2007). More precisely we

use the Kolmogorov-type statistics sn = sup |Sn(t)|, vn = sup |Vn(t)|, rn = sup |Rn(t)|,
s̃n = sup |S̃n(t)|, ṽn = sup |Ṽn(t)| and r̃n = sup |R̃n(t)| and denote the corresponding tests by

ϕsn , ϕvn , ϕrn , ϕ̃sn , ϕ̃vn and ϕ̃rn . We show the behavior of all tests under the null hypothesis

12
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Figure 3: Simulated size and power in dependence of n for the tests ϕ̃sn (diamonds), ϕ̃vn

(dots) and ϕ̃rn (triangles) compared to the test ϕL2 (dashed line) for different standard

deviations σ (left σ = 0.025, middle σ = 0.05, right σ = 0.1). First row m1, second row

m2,n.

as well as under local alternatives and compare it to the behavior of the L2-test ϕL2 . To this

end we simulate from the regression model

Yi = m(Xi) + σεi

with different regression functions

m1(x) = x, x ∈ [0, 1]

m2,n(x) = x+
1

2
√
n
sin(10πx), x ∈ [0, 1]

and standard normal errors for the sample sizes n = 25, 50 and 100 and standard deviations

σ = 0.025, 0.05 and 0.1. Those errors fulfill all conditions (A4)-(A7) from section 2 and

should give acceptable results for all test statistics. We perform 500 simulation runs with

each 200 bootstrap repetitions to estimate the size and power of the tests. Note that m1

corresponds to the null hypothesis while m2,n corresponds to a local alternative as described

in Remark 4.3 which converges for increasing sample size to the null hypothesis with rate

13
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Figure 4: Simulated size and power in dependence of n for the tests ϕsn (diamonds), ϕvn

(dots) and ϕrn (triangles) compared to the test ϕL2 (dashed line) for different standard

deviations σ (left σ = 0.025, middle σ = 0.05, right σ = 0.1) and t-distributed errors. First

row m1, second row m2,n.

1/
√
n and should therefore be harder to detect by an L2-test than by the empirical process

approach discussed here. The bandwith for the unconstrained estimator is chosen by cross

validation while the bandwith for monotonizing is chosen as bn = h1.2
n . For generating the

bootstrap data we use a slightly larger bandwidth hn,b = h0.5
n to guarantee the consistency

(see also Härdle, 1990 for that). For the smoothed residual bootstrap we use for the test

statistics Sn, Rn, S̃n, Ṽn and R̃n we need an additional smoothing parameter a which we

choose as a = 0.2σ̂n−0.15.

Figure 2 shows the simulated size (first row) for m1 and the simulated power (second

row) for m2,n of the tests ϕsn , ϕvn and ϕrn . We compare this to the results for the L2-test

proposed by Birke and Dette (2007) (dashed line). The behavior of the tests heavily depends

on the standard deviation σ. For all standard deviations, the tests ϕsn , ϕvn and ϕrn are less

conservative than the L2-test. Let us now consider the behavior under the alternative. For

a small standard deviation (σ = 0.025) all tests behave very similar with some advantages

for the L2-test for a sample size of n = 25 and advantages for both the L2-test and the

14
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Figure 5: Simulated size and power in dependence of n for the tests ϕ̃sn (diamonds), ϕ̃vn

(dots) and ϕ̃rn (triangles) compared to the test ϕL2 (dashed line) for different standard

deviations σ (left σ = 0.025, middle σ = 0.05, right σ = 0.1) and t-distributed errors. First

row m1, second row m2,n.

test based on Vn for the sample size n = 50. But for n = 100 the power of all tests is

comparable and satisfactorily high for the local alternative. Now, for moderate standard

deviation (σ = 0.05) we see clear advantages in the power of the test ϕvn while the results

for the tests based on ϕsn and ϕrn are still lower than that of the L2-test. For a comparable

high standard deviation the tests again behave very similar with small advantages for the

tests proposed here which have for n = 100 still a power larger than the size of α = 0.05.

This is not the case for the L2-test. To conclude the above discussion we note that our

assumption in section 3, that ϕvn exhibits the best power, is confirmed for this simulation

example.

We already mentioned in section 3, that ϕsn , ϕvn and ϕrn need the restrictive assumption

(A5). Furthermore an asymptotic consideration of Vn additionally needs the assumption

(A6) of normal errors and we therefore used the parametric bootstrap in this case. It would

now be interesting to see how the more general test statistics behave for the same simulation

setting. The results are shown in Figure 3. As before we see that the tests ϕ̃sn , ϕ̃vn and ϕ̃rn
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approximate the size better than the L2-test and are therefore less conservative. The behavoir

under local alternatives is similar to that of the tests ϕsn , ϕvn and ϕrn . Again the test ϕ̃vn has

the best power under the tests ϕ̃sn , ϕ̃vn and ϕ̃rn . But the different standardisation without

using assumption (A5) seems to result in a slightly lower power.

To show the limits concerning the different types of error distributions of the different test

statistics, we simulate from the same regression models but now with the following two error

distributions

(i) The errors are generated as εi =
√

6/8σti, i = 1, . . . , n where ti, i = 1, . . . , n are drawn

independently from a t-distribution with 8 degrees of freedom.

(ii) The errors are generated as εi = σ(ei−1), i = 1, . . . , n where ei, i = 1, . . . , n are drawn

independently from an exponential distribution with parameter 1.

(i) Note that in this case, the errors fulfill assumptions (A4), (A5) and (A7) but not (A6)

and the expectation is that this choice results in a failure of the test based on Vn since we

need the assumption of normality for deriving the asymptotic distribution while all other

test statistics should perform right. Figure 4 shows the results for the tests ϕsn , ϕvn and

ϕrn . As expected we observe, that for m1 and the tests based on ϕsn and ϕrn the size is

approximated very well while for the test based on ϕvn , the size is much to large and gets

even larger for increasing sample size. Concerning the power of the tests there are no large

differences to the case of normal errors. We constructed the further test statistic Ṽn to avoid

assumption (A6) and therefore the test based on Ṽn (and, of course, also the tests based

on S̃n and R̃n) should perform better for those errors. The results are shown in Figure 5.

We observe, that the test ϕ̃vn still has problems to approximate the size for small sample

sizes but tends to the right size for larger sample sizes and has the best power of the three

different tests. The tests based on ϕ̃sn and ϕ̃rn perform very well with the typical effect that

the power gets lower the larger the standard deviation is.

(ii) The centered exponential errors fulfill assumptions (A4) and (A7) but not (A5) and

(A6). Therefore we would expect from the theoretical results that the tests ϕsn , ϕvn and ϕrn

can no longer be used while the tests based on ϕ̃sn , ϕ̃vn and ϕ̃rn still behave well. We see

the results in Figure 6 where we show the estimated size for Sn, Vn and Rn in the first row

which is much too large and increasing for all tests. In the second and third row we show

the estimated size respectively power of the tests ϕ̃sn , ϕ̃vn and ϕ̃rn . Again, the approximated

size of the test ϕ̃vn is too large for small sample sizes but seems to approximate it better

for larger sample sizes while the other two tests approximate the size very well. All tests

perform satisfactorily concerning the power. Here again ϕ̃vn provides the best power.
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Figure 6: Behavior of the tests for different standard deviations σ (left σ = 0.025, middle

σ = 0.05, right σ = 0.1) and exponenial errors. First row: Behavior of the tests ϕsn , ϕvn and

ϕrn for m1; second and third row: Behavior of the tests ϕ̃sn , ϕ̃vn and ϕ̃rn for m1 respectively

m2,n.
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6 Conclusion

In this paper we have considered the problem of testing for monotonicity of regression

functions. We have demonstrated that typical distance based tests, which are popular in

goodness-of-fit testing in regression models, are not applicable here. As alternative we sug-

gested several non-standard, but intuitive distance based tests constructed from Kolmogorov-

Smirnov type statistics of empirical processes of residuals estimated both under the null

hypothesis of monotonicity and under the general nonparametric model. We presented the

asymptotic distributions as well as the small sample performance of bootstrap versions of the

tests. We discussed differences in the behaviours of the various tests and compared with the

results of the L2-test proposed in Birke and Dette (2007). We have seen, that all empirical

process approaches lead to less conservative testing procedures than does the L2-test while

having a comparable power. It turned out, that the power is even better for local alternatives

of order 1/
√
n and relatively large standard deviations. But we also observed, that some of

the tests fail for non-normal or non-symmetric error distributions.

It is a topic of current research to investigate whether similar tests can be applied to test

for monotonicity of quantile regression curves.

A Proofs

A.1 Consistency proofs

Proof of Lemma 3.1. To check whether Kolmogorov-Smirnov statistics supt∈[0,1] |Vn(t)|
or supt∈[0,1] |Ṽn(t)| can lead to a consistent testing procedure we consider the estimated

expectation of the processes and show, that it is 0 if and only if H0 holds. With mI(x) −
m(x) = δ(x) we have

√
n
(

E[εi,II{εi,I > 0}I{Xi ≤ t}]− E[εi{εi > 0}I{Xi ≤ t}]
)

=
√
n
(

E[(εi − δ(Xi))I{εi > δ(Xi)}I{Xi ≤ t}]− E[εi{εi > 0}I{Xi ≤ t}]
)

=
√
n

∫ t

0

(

∫ ∞

δ(x)

(y − δ(x))fε(y)dy −
∫ ∞

0

yfε(y)dy
)

fX(x)dx

the latter expression is 0 for all t ∈ [0, 1] if and only if fX-a.s.

0 =

∫ ∞

δ(x)

(y − δ(x))fε(y)dy −
∫ ∞

0

yfε(y)dy

= −
∫ δ(x)

0

yfε(y)dy − δ(x)

∫ ∞

δ(x)

fε(y)dy

18



= −
∫ δ(x)

0

yfε(y)dy + δ(x)

∫ δ(x)

0

fε(y)dy − δ(x)(1− Fε(0))

If we define

G(z) =
1

(1− Fε(0))

∫ z

0

(z − y)fε(y)dy − z

the above equation is equivalent to G(δ(x)) = 0 fX-a.s. Consistency now follows if we can

show that δ(x) = 0 is the only solution of the above equation. To this end note, that with

assumption (A4)

∂

∂z
G(z) =

1

1− Fε(0)

∫ z

0

fε(y)dy − 1 =
Fε(z)− Fε(0)

1− Fε(0)
− 1 < 0

and therefore G is strictly decreasing. Since δ(x) = 0 is obviously a solution, this is also the

only one. This means mI = m fX − a.s. which is only the case if m is increasing. Otherwise

mI and m differ on a set with positive measure. 2

Proof of Lemma 3.2. To prove the consistency of supt∈[0,1] |Rn(t)| or supt∈[0,1] |R̃n(t)| we
again consider the estimated expectation of both processes which should be 0 if and only if

H0 is true. Let again δ(x) = mI(x)−m(x). Both Rn(t) and R̃n(t) estimate the expectation

P
(

ε1 − δ(X1) ≤ ε2 − δ(X2), ε2 > δ(X2), X2 ≤ t
)

− 1

2
(1− F 2

ε (0))

=

∫ t

0

∫ 1

0

(

∫

IR

Fε(y + δ(x)− δ(z))I{y>δ(z)}fε(y)dy −
∫

IR

Fε(y)I{y>0}fε(y)dy
)

fX(x)dxfX(z)dz

and this equals 0 for all t ∈ [0, 1] if and only if fX-a.s.:

1− F 2
ε (0)

2
=

∫ 1

0

(

∫

IR

Fε(y + δ(x)− δ(z))I{y>δ(z)}fε(y)dyfX(x)dx(A.1)

=

∫ ∞

0

∫ 1

0

Fε(u+ δ(x))fX(x)dxfε(u+ δ(z))du =: H(δ(z))

Now assume, that δ(x) takes on different values for some different x ∈ [0, 1]. Then we have

positive as well as negative values for δ(z) because it is the difference between mI and m

which have to cross if and only if m is not monotone. For a positive value v of δ(z) the

derivative of the function

H(v) =

∫ ∞

0

K(u)fε(u+ v)du

with K(u) =
∫∞
0

∫ 1

0
Fε(u+ δ(x))fX(x)dxfε(u+ v)du is

∂

∂v
H(v) =

∫ ∞

0

K(u)f ′
ε(u+ v)du < 0
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for a unimodal density fε centered in 0 (assumptions (A4) and (A7)). That is H is strictly

decreasing for v ∈ [0,∞). This is a contradiction to equation (A.1) which means that H is

constant. We conclude, that for some d+ > 0, δ(x+) = d+ for all x+ ∈ I+ = {x ∈ [0, 1] |
δ(x) > 0}. Since two different negative values of δ cause two different positive value of δ,

δ(x−) = d− for some d− < 0 and for all x− ∈ I− = {x ∈ [0, 1] | δ(x) < 0}. Because d+ 6= d−,

δ would have at least one point of discontinuity which is not possible because mI and m are

both continuous functions. Therefore, I+ = I− = ∅, which means δ = 0 fX − a.s. 2

A.2 Auxiliary results

Lemma A.1 Under assumptions (A1)–(A5) under the null hypothesis of an increasing re-

gression function m, it holds that

sup
x∈[0,1]

|m̂I(x)−m(x)| = oP (1), sup
x∈[0,1]

|m̂′
I(x)−m′(x)| = oP (1)

sup
x,t∈[0,1]

|m̂′
I(x)−m′(x)− m̂′

I(t) +m′(t)|
|x− t|δ = oP (1).

Proof of Lemma A.1. The first assertion directly follows from Theorem 3.3 in Birke and

Dette (2008). For the second assertion we decompose

|m̂′
I(x)−m′(x)| =

∣

∣

∣

1

(m̂−1
I )′(m̂I(x))

− 1

(m−1)′(m(x))

∣

∣

∣

≤
∣

∣

∣

(m̂−1
I )′(m̂I(x))− (m−1)′(m̂I(x))

(m̂−1
I )′(m̂I(x))(m−1)′(m̂I(x))

∣

∣

∣
+
∣

∣

∣

1

(m−1)′(m̂I(x))
− 1

(m−1)′(m(x))

∣

∣

∣

and use Theorem 3.3 in Birke and Dette (2008) again and the uniform continuity of (m−1)′.

It remains to establish the Lipschitz condition. To this end we distinguish two different cases

where |s − t| > b2n and |s − t| ≤ b2n for the sequence of bandwidths hn → 0 for n → ∞. In

the first case we derive

sup
|s−t|>b2n

|m̂′
I(s)−m′(s)− (m̂′

I(t)−m′(t))|
|s− t|δ ≤

2 sups∈[0,1] |m̂′
I(s)−m′(s)|

b2δn

= OP

( log h−1
n

nh3
nb

4δ
n

)1/2

= oP (1),

see Blondin (2007). In the second case we decompose

Dn(s, t) = |m̂′
I(s)−m′(s)− (m̂′

I(t)−m′(t))| ≤ |m̂′
I(s)− m̂′

I(t)|+ |m′(s)−m′(t)|
= D(1)

n (s, t) +D(2)
n (s, t),

D(1)
n (s, t) =

|(m̂−1
I )′(m̂I(s))− (m̂−1

I )′(m̂I(t))|
(m̂−1

I )′(m̂I(s))(m̂
−1
I )′(m̂I(t))
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and define

D(1)
n = sup

|s−t|≤b2n

D
(1)
n (s, t)

|s− t|δ ≤ C1 sup
|u−v|≤Cb2n

|(m̂−1
I )′(u)− (m̂−1

I )′(v)|
|m̂−1

I (u)− m̂−1
I (v)|δ .

The last inequality follows because m̂I is continuously differentiable and, hence, Lipschitz

continuous. Under the assumptions (A3) we obtain by using Taylor expansions

|m̂−1
I (u)− m̂−1

I (v)| =
1

bn

∫ 1

0

k
(m(x)− v

bn

)

dx|u− v|(C2 + oP (1))

|(m̂−1
I )′(u)− (m̂−1

I )′(v)| =
1

bn

∣

∣

∣
k
(m(1)− v

bn

)

− k
(m(0)− v

bn

)∣

∣

∣
|u− v|(C3 + oP (1))

That means for D
(1)
n

D(1)
n ≤ C1 sup

|u−v|≤Cb2n

1
bn

∣

∣

∣
k
(

m(1)−v
bn

)

− k
(

m(0)−v
bn

)∣

∣

∣
|u− v|(C3 + oP (1))

(

1
bn

∫ 1

0
k
(

m(x)−v
bn

)

dx
)δ

|u− v|δ(C2 + oP (1))

= OP

(

sup
|u−v|≤Cb2n

|u− v|1−δ

bn

)

= OP (b
1−2δ
n ) = oP (1).

The regression function m is two times continuously differentiable and therefore m′ is Lips-

chitz continuous on [0, 1]. That means

sup
|s−t|≤b2n

D
(2)
n (s, t)

|s− t|δ = O(b2−2δ
n ) = o(1).

2

Lemma A.2 Under assumptions (A1)–(A5) under the null hypothesis of an increasing re-

gression function m, it holds that

∫ t

0

(m̂I(x)− m̂(x))fX(x) dx = oP (
1√
n
)

uniformly with respect to t ∈ [0, 1].

Proof of Lemma A.2. We use the representation

m̂I(x)−m(x) = −m̂−1
I −m−1

(m−1)′
(m(x)) + B̃n(x)

(see Birke and Dette, 2008) with

B̃n(x) = (m̂−1
I (m(x))−m−1(m(x)))

( 1

(m−1)′(m(x))
− 1

m̂−1
I (ηn(x))

)
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and |ηn(x)−m(x)| ≤ |m̂I(x)−m(x)| for all x to rewrite

∫ t

0

(m̂I(x)−m(x))fX(x)dx = −
∫ m(t)

m(0)

(m̂−1
I (u)−m−1(u))fX(m

−1(u))du+

∫ t

0

B̃n(x)dx

= An(t) + Bn(t),

where

An(t) = An,1(t) + An,2(t) + An,3(t)(A.2)

and

An,1(t) = −
∫ t

0

(mI(x)−m(x))fX(x)dx = 0

An,2(t) = − 1

bn

∫ 1

0

∫ m(t)

m(0)

k
(m(v)− u

bn

)

fX(m
−1(u))du(m̂(v)−m(v))dv

An,3(t) = − 1

bn

∫ 1

0

∫ m(t)

m(0)

k′
(ξ(v)− u

bn

)

fX(m
−1(u))du(m̂(v)−m(v))2dv.

One obtains the expansion

An,2(t) =
(

∫ t

0

(m̂(v)−m(v))fX(v)dv −
∫ m−1(m(0)+bn)

0

(m̂(v)−m(v))fX(v)dv

−
∫ m−1(m(t)−bn)

m−1(m(0)+bn)

(m̂(v)−m(v))fX(v)dv
)

(1 + oP (b
2
n))

=
(

∫ t

0

(m̂(v)−m(v))fX(v)dv −Rn,1(t)−Rn,2(t)
)

(1 + oP (b
2
n)).

The two remainders Rn,1(t) and Rn,2(t) can be handled in the same way. We show the

estimation of Rn,1(t) here.

Rn,1(t) ≤ sup |m̂(v)−m(v)| sup fX(v)m−1(m(0) + bn) = OP

(b2n log h
−1
n

nhn

)1/2

= oP

( 1√
n

)

since b2n log h
−1
n /hn → 0. The third term An,3(t) in the decomposition (A.2) can be estimated

by similar means as ∆
(2)
n in Dette, Neumeyer and Pilz (2006) as

An,3(t) = OP

( 1

nhn

)

= oP

( 1√
n

)

,

the first one as An,1(t) = O(b2n) = o(1/
√
n) and

∫ t

0

B̃n(x)dx = oP

( 1√
n

)
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by using similar arguments as for estimating the deterministic part and Bn,j(x) in Birke and

Dette (2007). This means

∫ t

0

(m̂I(x)−m(x))fX(x)dx =

∫ t

0

(m̂(x)−m(x))fX(x)dx+ oP

( 1√
n

)

.

wich proves the assertion. 2

Lemma A.3 Under assumptions (A1)–(A5) under the null hypothesis of an increasing re-

gression function m, it holds that

∫ t

0

(m̂(x)−m(x))fX(x) dx =
1

n

n
∑

i=1

εiI{Xi ≤ t}+ oP (
1√
n
)

uniformly with respect to t ∈ [0, 1].

Proof of Lemma A.3. From the proof of Proposition 2.10 by Neumeyer and Van Keilegom

(2009) it follows that

∫ t

0

(m̂(x)−m(x))fX(x) dx =
1

n

n
∑

i=1

εi

∫ t

0

1

hn

K
(Xi − x

hn

)

dx+ oP (
1√
n
)

uniformly with respect to t ∈ [0, 1]. Applying Theorem 2.11.23 in Van der Vaart and Wellner

(1996, p. 221) (similar to, but simpler than the proof of Th. 2.7 in the aforementioned paper)

one shows that the process

1√
n

n
∑

i=1

εi

(

I{Xi ≤ t} −
∫ t

0

1

hn

K
(Xi − x

hn

)

dx
)

, t ∈ [0, 1],

converges weakly to a degenerated Gaussian process with vanishing covariances. This proves

the assertion. 2

A.3 Proof of main results

Proof of Theorem 4.1.

(i). The process Sn has the following simple form,

Sn(t) =
√
n
( 1

n

n
∑

i=1

I{Xi ≤ t} − 1

n

n
∑

i=1

I{ε̂i,I ≤ 0}I{Xi ≤ t} − 1

2
F̂X,n(t)

)

=
√
n
(1

2
F̂X,n(t)− F̂X,εI ,n(t, 0)

)

(A.3)

where F̂X,εI ,n denotes the empirical distribution function of (Xi, ε̂i,I), i = 1, . . . , n. Further

let FX,ε,n denote the empirical distribution function of (Xi, εi), i = 1, . . . , n. Analogous to
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the proof of Lemma A.2 in Neumeyer and Van Keilegom (2009) applying Lemma A.1 it

holds that

F̂X,εI ,n(t, y) = FX,ε,n(t, y) + fε(y)

∫ t

0

(m̂I(x)−m(x))fX(x) dx+ oP (
1√
n
)

uniformly with respect to t ∈ [0, 1] and y ∈ IR. Applying Lemma A.2 and (A.3) it follows

that

F̂X,εI ,n(t, y) =
1

n

n
∑

i=1

I{Xi ≤ t}I{εi ≤ y}+ fε(y)
1

n

n
∑

i=1

εiI{Xi ≤ t}+ oP (
1√
n
)(A.4)

and

Sn(t) =
1√
n

n
∑

i=1

I{Xi ≤ t}
(1

2
− I{εi ≤ 0} − εifε(0)

)

+ oP (1)

uniformly with respect to t ∈ [0, 1]. Weak convergence to the asserted Gaussian process now

follows by standard arguments. 2

(ii). The proof for S̃n is very similar to (i). We have

S̃n(t) =
√
n
( 1

n

n
∑

i=1

I{Xi ≤ t} − 1

n

n
∑

i=1

I{ε̂i,I ≤ 0}I{Xi ≤ t} − (1− F̂ε,n(0))F̂X,n(t)
)

=
√
n
(

− F̂X,εI ,n(t, 0) + F̂ε,n(0)F̂X,n(t)
)

Similarly to (A.4) one has

F̂ε,n(y) =
1

n

n
∑

i=1

I{εi ≤ y}+ fε(y)
1

n

n
∑

i=1

εi + oP (
1√
n
)(A.5)

(this follows from Akritas and Van Keilegom (2001), see also Neumeyer and Van Keilegom

(2009), for instance). Applying (A.4) and (A.5) we obtain the expansion

S̃n(t) =
1√
n

n
∑

i=1

(

F̂X,n(t)− I{Xi ≤ t}
)(

I{εi ≤ 0}+ εifε(0)
)

+ oP (1)

=
1√
n

n
∑

i=1

(

FX(t)− I{Xi ≤ t}
)(

I{εi ≤ 0}+ εifε(0)
)

+
√
n(F̂X,n(t)− FX(t))(Fε(0) + oP (1)) + oP (1)

=
1√
n

n
∑

i=1

(

I{Xi ≤ t} − FX(t)
)(

Fε(0)− I{εi ≤ 0} − εifε(0)
)

+ oP (1)

uniformly with respect to t ∈ [0, 1]. Weak convergence to a Gaussian process with the

asserted covariance structure follows by standard arguments. 2
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(iii). From Lemma A.1 it follows that P (m − m̂I ∈ C) → 1 for n → ∞, where the class

C = C1+δ
1 [0, 1] of smooth functions is defined in Van der Vaart and Wellner (1996, p. 154),

and its bracketing number fulfills

logN[ ](ǫ, C, || · ||∞) ≤ Kǫ−1/(1+δ)

for some K > 0 and all ǫ > 0, where || · ||∞ denotes the supremum norm (see Th. 2.7.1 in

the same reference). Note that for the process

V̄n(t, h) =
1

n

n
∑

i=1

(εi + h(Xi))I{εi + h(Xi) > 0}I{Xi ≤ t}, t ∈ [0, 1], h ∈ C,

we have

V̄n(t,m− m̂I) =
1

n

n
∑

i=1

ε̂i,II{ε̂i,I > 0}I{Xi ≤ t}

(compare to the definition of Vn). Now consider the empirical process

√
n(V̄n(t, h)− E[V̄n(t, h)]) =

1√
n

n
∑

i=1

(

gh,t(Xi, εi)− E[gh,t(Xi, εi)]
)

,

where the functions gh,t vary over the pairwise products of the function classes G and H
defined as

G =
{

ε 7→ (ε+ h(x))I{ε+ h(x) > 0}
∣

∣

∣
g ∈ C

}

H =
{

x 7→ I{x ≤ t}
∣

∣

∣
t ∈ [0, 1]

}

.

H is Donsker by standard empirical process theory with bracketing numbers N[ ](ǫ,H, || ·
||∞) = O(ǫ−1). In the following we calculate bracketing numbers for G. Let ǫ > 0 and

let [hL
j , h

U
j ] (j = 1, . . . ,m) build ǫ2-brackets for C, where m = N[ ](ǫ

2, C, || · ||∞). Then for

hL
j ≤ h ≤ hU

j one has

(ε+ hL
j (x))I{ε+ hL

j (x) > 0} ≤ (ε+ h(x))I{ε+ h(x) > 0} ≤ (ε+ hU
j (x))I{ε+ hU

j (x) > 0}

and such a bracket has L2-length

(

E
[(

(ε1 + hU
j (X1))I{ε1 + hU

j (X1) > 0} − (ε1 + hL
j (X1))I{ε1 + hL

j (X1) > 0}
)2])1/2

≤
(

2E
[

(|ε1|+ 1)2(I{ε1 + hU
j (X1) > 0} − I{ε1 + hL

j (X1) > 0})2 + (hU
j (X1)− hL

j (X1))
2
])1/2

≤
(

2

∫ ∫ −hL
j (x)

−hU
j
(x)

(|y|+ 1)2fε(y) dy fX(x) dx+ 4||hU
j − hL

j ||∞
)1/2

≤
(

2||hU
j − hL

j ||∞E[(|ε1|+ 1)2] + 4||hU
j − hL

j ||∞
)1/2

≤ cǫ
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for some constant c, where we have used that |hL
j | ≤ 1, |hU

j | ≤ 1.

The function classHG of pairwise products has a square-integrable envelope and the covering

numbers with respect to the L2-norm || · ||2 fulfill

logN[ ](ǫ,HG, || · ||2) ≤ log
(

N[ ](ǫ,G, || · ||2)N[ ](ǫ,H, || · ||2)
)

≤ c1 log
(

N[ ](c2ǫ
2, C, || · ||∞)N[ ](ǫ,H, || · ||2)

)

≤ c3 log(exp(ǫ
−2/(1+δ))ǫ−1)

for some constants c1, c2, c3, for ǫ ≤ 2(E[(|ε1| + 1)2])1/2, whereas for larger ǫ one bracket is

sufficient, because

|(ε+ h(x))I{ε+ h(x) > 0}I{x ≤ t}| ≤ |ε|+ 1

for all h ∈ C, t ∈ [0, 1]. Hence,

∫ ∞

0

(

logN[ ](ǫ,HG, || · ||2)
)1/2

dǫ < ∞

and GH is Donsker [see Van der Vaart and Wellner (1996, p. 129)].

This yields weak convergence of the empirical process

V̌n(h, t) =
1√
n

n
∑

i=1

{(

(εi + h(Xi))I{εi + h(Xi) > 0} − εiI{εi > 0}
)

I{Xi ≤ t}

− E
[(

(ε1 + h(X1))I{ε1 + h(X1) > 0} − ε1I{ε1 > 0}
)

I{X1 ≤ t}
] }

,

t ∈ [0, 1], h ∈ C, to a Gaussian process. For the expectation we obtain the expansion

E
[(

(ε1 + h(X1))I{ε1 + h(X1) > 0} − ε1I{ε1 > 0}
)

I{X1 ≤ t}
]

=

∫ ∫

(y + h(x))I{y + h(x) > 0}I{x ≤ t}fX(x)fε(y) dxdy

− FX(t)

∫

yI{y > 0}fε(y) dy

=

∫ ∫

zI{z > 0}I{x ≤ t}fX(x)(fε(z − h(x))− fε(z)) dxdz(A.6)

which tend to zero if supx∈[0,1] |h(x)| → 0. Similarly it follows that the covariances

Cov(V̌n(h, s), V̌n(h, t)) tend to zero if supx∈[0,1] |h(x)| → 0. Hence, with Van der Vaart (1998,

Le. 19.24 and proof of Le. 19.26, p. 280) we obtain that supt∈[0,1] |V̌n(m− m̂I , t)| = oP (1).

Inserting h = m − m̂I into (A.6) for the expectation and applying Taylor’s expansion we

obtain
∫ ∫

zI{z > 0}I{x ≤ t}fX(x)(fε(z + m̂I(x)−m(x))− fε(z)) dxdz
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=

∫ ∫

zI{z > 0}I{x ≤ t}fX(x)f ′
ε(z)(m̂I(x)−m(x)) dxdz + oP (

1√
n
)

=

∫ ∞

0

zf ′
ε(z) dz

∫ t

0

(m̂I(x)−m(x))fX(x) dx+ oP (
1√
n
)

= (Fε(0)− 1)
1

n

n
∑

i=1

εiI{Xi ≤ t}+ oP (
1√
n
),

where the last equality follows from integration by parts and Lemmata A.2 and A.3.

Combining all results we obtain the asymptotic expansion

1√
n

n
∑

i=1

ε̂i,II{ε̂i,I > 0}I{Xi ≤ t}(A.7)

=
1√
n

n
∑

i=1

εi

(

I{εi > 0} − (1− Fε(0))
)

I{Xi ≤ t}+ oP (1).

For the asymptotic expansion of Vn now consider σ̂−σ = (σ̂2−σ2)/(σ̂+σ) = (σ̂2−σ2)/2σ+

oP (1/
√
n), from which with results by Müller, Schick and Wefelmeyer (2004) it follows that

σ̂ − σ =
1

2σn

n
∑

i=1

(ε2i − σ2) + oP (
1√
n
)

and

σ̂√
2π

F̂X,n(t) =
1

2
√
2πσn

n
∑

i=1

(ε2i − σ2)FX(t) +
σ√
2π

1

n

n
∑

i=1

(I{Xi ≤ t} − FX(t))

+
σ√
2π

FX(t) + oP (
1√
n
).

Now we have

Vn(t) =
1√
n

n
∑

i=1

(

εiI{εi > 0}I{Xi ≤ t} − σ√
2π

FX(t)− εi(1− Fε(0))I{Xi ≤ t}

− (ε2i − σ2)
FX(t)

2
√
2πσ

− σ√
2π

(I{Xi ≤ t} − FX(t))
)

+ oP (1)

=
1√
n

n
∑

i=1

((

εiI{εi > 0} − σ√
2π

− 1

2
εi

)

I{Xi ≤ t} − (ε2i − σ2)
FX(t)√
8πσ

)

+ oP (1)

The proof of weak convergence is omitted for the sake of brevity. The calculation of the

covariances uses that under (A6),

E[ε1I{ε1 > 0}] = σ√
2π

, E[ε21I{ε1 > 0}] = σ2

2
, E[ε31I{ε1 > 0}] = 2σ3

√
2π

.

2
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(iv). We only give a sketch of the asymptotic expansion for the process Ṽn. Similarly to

(A.7) one obtains

1√
n

n
∑

i=1

ε̂iI{ε̂i > 0}F̂X,n(t)

=
1√
n

n
∑

i=1

εi

(

I{εi > 0} − (1− Fε(0))
)

F̂X,n(t) + oP (1)

=
1√
n

n
∑

i=1

εi

(

I{εi > 0} − (1− Fε(0))
)

FX(t)

− 1√
n

n
∑

i=1

(I{Xi ≤ t} − FX(t))
(

E[ε1I{ε1 > 0}] + oP (1)
)

+ oP (1)

and in combination with (A.7) this yields the expansion

Ṽn(t) =
1√
n

n
∑

i=1

(

εiI{εi > 0} − E[ε1I{ε1 > 0}]− εi(1− Fε(0))
)(

I{Xi ≤ t} − FX(t)
)

+ oP (1).

2

(v). We first consider the process

R̄n(t) =
1√
n

n
∑

i=1

R̂i,II{ε̂i,I > 0}I{Xi ≤ t},

where R̂i,I = F̂X,εI ,n(0, ε̂i,I). On has the expansion R̄n = R̄1,n + R̄2,n, where

R̄1,n(t) =
1√
n

n
∑

i=1

Fε(ε̂i,I)I{ε̂i,I > 0}I{Xi ≤ t}

R̄2,n(t) =
1√
n

n
∑

i=1

(

F̂X,εI ,n(1, ε̂i,I)− Fε(ε̂i,I)
)

I{ε̂i,I > 0}I{Xi ≤ t}.

Analogously to the proof of (iii) [see (A.7)] we obtain

R̄1,n(t) =
1√
n

n
∑

i=1

Fε(εi)I{εi > 0}I{Xi ≤ t}

+
√
n

∫

f ′
ε(z)Fε(z)I{z > 0} dz

∫ t

0

(m̂I(x)−m(x))fX(x) dx+ oP (1)

=
1√
n

n
∑

i=1

(

Fε(εi)I{εi > 0} − εi

(

fε(0)Fε(0) + E[fε(ε1)I{ε1 > 0}]
))

I{Xi ≤ t}+ oP (1).
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Now, for the second term we have

R̄2,n(t) =
√
n

∫ ∫

(

F̂X,εI ,n(1, y)− Fε(y)
)

I{y > 0}I{x ≤ t} dFX(x) dFε(y)

+
√
n

∫

(F̂X,εI ,n − FX ⊗ Fε)(1, y)I{y > 0}I{x ≤ t} d(F̂X,εI ,n − FX ⊗ Fε)(x, y).

The last integral converges to zero uniformly in probability, because the process
√
n(F̂X,εI ,n−

FX ⊗Fε) converges to a Gaussian process, see the proof of (i). Inserting the expansion (A.4)

we further have

R̄2,n(t) =
1√
n

n
∑

i=1

∫

(

I{εi ≤ y} − Fε(y) + fε(y)εi

)

I{y > 0} dFε(y)FX(t) + oP (1)

=
1√
n

n
∑

i=1

(

1− Fε(0) + I{εi > 0}(Fε(0)− Fε(εi))− E[Fε(ε1)I{ε1 > 0}]

+ εiE[fε(ε1)I{ε1 > 0}]
)

FX(t) + oP (1).

We obtain the expansion

Rn(t) = R̄1,n(t) + R̄2,n(t)− E[Fε(ε1)I{ε1 > 0}] 1√
n

n
∑

i=1

I{Xi ≤ t}

=
1√
n

n
∑

i=1

(

I{Xi ≤ t} − FX(t)
)(

Fε(εi)I{εi > 0} − E[Fε(ε1)I{ε1 > 0}]

+ εi

(

fε(0)Fε(0)− E[fε(ε1)I{ε1 > 0}]
))

+
(

1− Fε(0) + I{εi > 0}Fε(0)− 2E[Fε(ε1)I{ε1 > 0}]
)

FX(t) + oP (1).

2

(vi). With (A.5) one obtains

F̂ 2
ε,n(0) =

2Fε(0)

n

n
∑

i=1

(I{εi ≤ 0}+ fε(0)εi)− F 2
ε (0) + oP (

1√
n
).

Further we have

1

2
(1− F̂ 2

ε,n(0))F̂X(t) =
1

2

(

F̂X(t)− F̂ 2
ε,n(0)FX(t)− F 2

ε (0)(F̂X(t)− FX(t))
)

+ oP (
1√
n
)

=
1

n

n
∑

i=1

(1

2
(1− F 2

ε (0))I{Xi ≤ t} − FX(t)Fε(0)(I{εi ≤ 0}+ fε(0)εi)
)

+ F 2
ε (0)FX(t) + oP (

1√
n
),
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and hence, with notations from the proof of (v),

R̃n(t) = R̄1,n(t) + R̄2,n(t)−
√
n

2
(1− F̂ 2

ε,n(0))F̂X(t)

=
1√
n

n
∑

i=1

(I{Xi ≤ t} − FX(t))
(

Fε(εi)I{εi > 0} − E[Fε(ε1)I{ε1 > 0}]

− εi(fε(0)Fε(0) + E[fε(ε1)I{ε1 > 0}])
)

+ oP (1).

2

A.4 Validity of bootstrap

In the following we sketch the proof of bootstrap consistency for the process

S̃∗
n(t) =

√
n
(

− F̂ ∗
X,εI ,n

(t, 0) + F̂ ∗
ε,n(0)F̂X,n(t)

)

(the other processes are treated similarly). From Neumeyer (2009, Lemma 2) (confer this

reference also for restrictions on the bandwidth a) we have

F̂ ∗
ε,n(y) =

1

n

n
∑

i=1

I{ε∗i ≤ y}+ f̃ε,n(y)
1

n

n
∑

i=1

ε∗i + oP (
1√
n
).

Combining the methods shown in the paper at hand with the methods by Neumeyer (2009)

one can show similarly to (A.4) that

F̂ ∗
X,εI ,n

(t, y) =
1

n

n
∑

i=1

I{Xi ≤ t}I{ε∗i ≤ y}+ f̃ε,n(y)
1

n

n
∑

i=1

ε∗i I{Xi ≤ t}+ oP (
1√
n
).

Hence we obtain the expansion S̃∗
n(t) = S̃∗,1

n (t) + oP (1), where

S̃∗,1
n (t) =

1√
n

n
∑

i=1

(

F̂X,n(t)− I{Xi ≤ t}
)(

I{ε∗i ≤ 0} − F̃ε,n(0) + ε∗i f̃ε,n(0)
)

uniformly with respect to t ∈ [0, 1]. Note that bootstrap results are formulated conditionally

on the original sample Yn = {(Xi, Yi) | i = 1, . . . , n} and hence, that in this expansion

F̂X,n and F̃ε,n, f̃ε,n are “not random”. Further, for the conditional expectation we have

E[S̃∗,1
n (t) | Yn] = 0. To derive weak convergence we first consider the conditional covariances

Cov(S̃∗,1
n (t), S̃∗,1

n (s) | Yn) =
(

F̂X,n(s ∧ t)− F̂X,n(s)F̂X,n(t)
)(

F̃ε,n(0)(1− F̃ε,n(0))

+f̃ 2
ε,n(0)

∫

y2f̃ε,n(y) dy + 2f̃ε,n(0)

∫

yI{y ≤ 0}f̃ε,n(y) dy
)

,

which (under regularity conditions) converge almost surely to Cov(S̃(t), S̃(s)) as defined in

Theorem 4.1.
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Using Cramér-Wold’s device and Lindeberg’s condition one can show convergence of the

finite dimensional distributions analogously to the proof of Theorem 3 by Neumeyer (2009).

To show tightness we follow the proof of Lemma A.3 by Stute, González Manteiga and

Presedo Quindimil (1998). To this end, note that the dominating term of the process has

the form

S̃∗,1
n (t) =

1√
n

n
∑

i=1

(

F̂X,n(t)− I{Xi ≤ t}
)

Z∗
n,i

where E[Z∗
n,i | Yn] = 0 and E[(Z∗

n,i)
4 | Yn] is independent of i and converges for n → ∞ to

positive constants with probability one. For 0 ≤ s ≤ t ≤ r ≤ 1 one can easily obtain the

bound

E
[(

S̃∗,1
n (t)− S̃∗,1

n (s)
)(

S̃∗,1
n (r)− S̃∗,1

n (t)
) ∣

∣

∣
Yn

]

≤ C
(

F̂X,n(r)− F̂X,n(s)
)2

E[(Z∗
n,i)

4 | Yn]

for some constant C. Tightness follows as in the aforementioned proof from monotonicity of

F̂X,n, which converges almost surely to FX .

Altogether we obtain that the process S̃∗
n, conditional on Yn converges weakly to the process

S̃ as defined in Theorem 4.1, in probability. 2
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