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Abstract

We develop optimal design theory for additive partially nonlinear regression models, and

show that D-optimal designs can be found as the products of the corresponding D-optimal

designs in one dimension. For partially nonlinear models, D-optimal designs depend on the

unknown nonlinear model parameters, and misspecifications of these parameters can lead

to poor designs. Hence we generalise our results to parameter robust optimality criteria,

namely Bayesian and standardised maximin D-optimality. A sufficient condition under

which analogous results hold for Ds-optimality is derived to accommodate situations in

which only a subset of the model parameters is of interest. To facilitate prediction of the

response at unobserved locations, we prove similar results for Q-optimality in the class of all

product designs. The usefulness of this approach is demonstrated through an application

from the automotive industry where optimal designs for least squares regression splines are

determined and compared with designs commonly used in practice.
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1 Introduction

In many real life problems, regression models are used to describe the relationship between

a real valued response and a high dimensional predictor. Because of the so called curse of

dimensionality, a popular strategy in this situation is to additively combine univariate basis

functions for different variables for dimensionality reduction (see [3] or [13] among others). These

models are parsimonious, but sufficiently flexible to capture the important features as long as

the variables do not interact. A typical class of such models in K variables x1, . . . , xK is defined

by

µ(x, τ) = θ0 +
K∑
k=1

µ̃k(xk, τk), x = (x1, . . . , xK)T , (1)

where the kth regression function µ̃k depends only on the variable xk ∈ χk ⊂ IR. We assume

that n observations

Yi = µ(x(i), τ) + εi, i = 1, . . . , n, (2)

at experimental conditions x(1), . . . x(n) are available, where τ = (θ0, τ
T
1 , . . . , τ

T
K)T is the vector of

unknown parameters and the errors εi, i = 1, . . . , n, are independent and identically distributed

according to a N (0, σ2) distribution. Model (2) is partially nonlinear in its parameter vector τ

if the vector τ = (θT , λT )T can be split into a linear component θ and a nonlinear component λ

such that the Fisher information at the point x can be represented as

M(x, θ, λ) = Cθf(x, λ)fT (x, λ)CT
θ . (3)

Here Cθ is a nonsingular square matrix depending only on the linear parameters θ, but neither

on λ nor x, and f(x, λ) is a vector of functions depending on x and the nonlinear parameters λ

only (see e.g. [14] and [15]).

Partially nonlinear models are widely used in various application areas. They often have the

form

µ̃k(xk, τ) =

lk∑
i=1

θk,ihk,i(xk, λk)

for the different additive components µ̃k, where hk,i(z, λ) are linearly independent functions

(i = 1, . . . , lk). This class of models is extremely flexible and contains exponential models used

in toxicokinetic and pharmacokinetic experiments (see, e.g., [2] or [1]), rational models ([8]) and

logarithmic models. A particularly popular subclass of the partially nonlinear models, which in
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fact motivated this research, are least squares regression splines leading to a model of the form

(1) where the individual components µ̃k are given by

µ̃k(xk, τk) =

lk∑
i=1

θk,ix
i
k +

rk∑
i=1

lk,i−1∑
j=0

θk,i,j(xk − λk,i)mk−j
+ .

Here, the knots λk,i are assumed to be unknown and thus require estimation. Due to their

conceptual simplicity combined with their high flexibility ([9]) these models are widely used in

applications such as engine-mapping experiments from the automotive industry ([12]), dynamic

programming, computer models and chromatography ([5], [20], [10] and [16]).

The present paper is devoted to the problem of constructing efficient designs for partially non-

linear regression models with multivariable predictors. While optimal design has been discussed

intensively for multivariable linear models (see e.g. [17] or [19]), much less effort has been devoted

to develop theory for finding efficient designs in the nonlinear case. [18] investigate locally D-

optimal designs for linear heteroscedastic models, whereas [11] consider locally D-optimal designs

for multivariable generalised linear models. Many commonly applied models are not covered by

this literature, and no theoretical results for multivariable models have yet been provided that

take into account parameter uncertainty which arises naturally from nonlinear models. The goal

of the present paper is to present a unified approach for characterising robust designs for a large

class of multivariable nonlinear models. In particular, we investigate the relationship between

optimal designs in the additive model and the corresponding single variable models with respect

to several local and robust criteria. In many cases the optimal designs for the multivariable case

can be constructed from the univariate optimal designs for the single variable models, which are

considerably easier to calculate analytically and numerically.

2 Optimal design for partially nonlinear models

Recall the definition of the additive model in (1) and consider the projection

µk(xk, τk) = θk,0 + µ̃k(xk, τk) (4)

onto its kth variable, where θk,0 are intercept terms, k = 1, . . . , K. We assume that µk(xk, τk)

is a partially nonlinear regression model in one variable xk ∈ χk ⊂ IR with parameter vector

τk = (θTk , λ
T
k )T , which means that its Fisher information matrix at the point xk has the form

Mk(xk, θk, λk) = Cθkfk(xk, λk)f
T
k (xk, λk)C

T
θk
.

It is obvious that the additive model (1) is then also partially nonlinear in the sense of (3).

If a single variable model contains additive terms, which are only distinguishable through dif-

ferent values of the nonlinear parameters in λk, we need to restrict the possible values for the

components of λk to avoid identifiability problems. For example, for a spline featuring additive

3



terms θk,i(xk − λk,i)l+ and θk,j(xk − λk,j)l+ for i 6= j the case λk,i = λk,j must be excluded. In

particular when specifying prior distributions for the nonlinear parameters λk, see later, we must

ensure that unidentifiable parameter combinations will not be in the support of the priors.

An approximate design ξ = {x(1), . . . , x(m);w1, . . . , wm} is a probability measure with finite

support on the design space χ = χ1 × . . . × χK ⊂ IRK , i.e. x(i) ∈ χ, i = 1, . . . ,m. The

observations are taken at the support points of the design, and the number of observations in

each point x(i) is proportional to the weight wi.

Let gk(xk, θk, λk) = Cθkfk(xk, λk) and g(x, θ, λ) = Cθf(x, λ) be the respective vectors of param-

eter sensitivities for the kth single variable model (4), k = 1, . . . , K, and the additive model (1).

The Fisher information of a design ξ for the additive model (1) is then given by the matrix

M(ξ, θ, λ) =
m∑
i=1

wi g(x(i), θ, λ)gT (x(i), θ, λ) = CθI(ξ, λ)CT
θ (5)

where I(ξ, λ) =
∑m

i=1wif(x(i), λ)fT (x(i), λ). Using properties of the determinant, it follows that

|M(ξ, θ, λ)| = |CθI(ξ, λ)CT
θ | = |Cθ|2 |I(ξ, λ)|,

so the same design ξ∗D,λ will maximise the determinants of the Fisher information M(ξ, θ, λ) and

of the matrix I(ξ, λ), which is independent of θ and which will be denoted as an information

matrix in what follows. The design ξ∗D,λ will only depend on the vector of the unknown nonlinear

parameters λ, but not on the linear parameters θ. Following [6], we call a design ξ∗D,λ locally

D-optimal if it maximises the determinant of the Fisher information matrix for given λ, i.e.

ξ∗D,λ = arg max
ξ
|I(ξ, λ)|.

3 D- and Ds-optimal designs

3.1 Locally and robust D-optimal designs

The concept of local D-optimality requires knowledge of the unknown parameter vector λ. If λ

is misspecified at the design stage, the design may be inefficient. Several approaches to overcome

the parameter dependency of optimal designs in nonlinear models have been suggested. We will

focus on two non-sequential concepts: Bayesian D-optimality (see, e.g., [4]) and standardised

maximin D-optimality ([7]).

When some prior knowledge about the nonlinear parameters is available, which can be sum-

marised in a prior distribution π on the parameter space Λ, it is reasonable to use a Bayesian

optimality criterion which averages the original criterion over the plausible values for λ. The

Bayesian D-optimality criterion function with respect to the prior π on Λ is given by

ΦD,π(ξ) =

∫
Λ

log |I(ξ, λ)| dπ(λ), (6)
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and is maximised with respect to the design ξ.

Alternatively, the problem of specifying a prior on the knots can be avoided by using a maximin

approach guarding the experiment against the worst case scenario. This is a more cautious

approach than the Bayesian, and is recommended in the absence of adequate prior knowledge.

The standardised maximin D-optimality criterion is defined as maximisation of

ΨD,Λ(ξ) = inf
λ∈Λ

|I(ξ, λ)|
|I(ξ∗D,λ, λ)|

, (7)

where ξ∗D,λ is the locally D-optimal design with respect to λ. Throughout this paper we assume

that Λ = Λ1 × . . . × ΛK , where Λk ⊂ IRrk , k = 1, . . . , K, are sets of plausible values for

the parameters λk = (λk,1, . . . , λk,rk)T , specified by the experimenter, which exclude parameter

combinations that lead to identifiability problems in the additive model (1). The following result

states how Bayesian and standardised maximin D-optimal designs for the additive model (1) can

be constructed from the corresponding Bayesian and standardised maximin D-optimal designs

for the single variable models (4).

Theorem 1

(a) Let ξ∗D,π1 , . . . , ξ
∗
D,πK

be the respective Bayesian D-optimal designs for the single variable

models (4) with respect to the priors πk, and let π be the product prior π1 ⊗ . . . ⊗ πK,

k = 1, . . . , K. Then the product design ξ∗D,π = ξ∗D,π1 ⊗ ξ∗D,π2 ⊗ . . . ⊗ ξ∗D,πK is Bayesian

D-optimal with respect to π for the additive model (1).

(b) Let ξ∗D,Λ1
, . . . , ξ∗D,ΛK

be the standardised maximin D-optimal designs with respect to the

compact sets Λk, k = 1, . . . , K, for the single variable models (4). Then the product design

ξ∗D,Λ = ξ∗D,Λ1
⊗ ξ∗D,Λ2

⊗ . . .⊗ ξ∗D,ΛK
is standardised maximin D-optimal with respect to Λ for

the additive model (1).

See Appendix A.1 for the proof of Theorem 1. Local D-optimality can be viewed as a special

case of Bayesian or standardized maximin D-optimality, where the set Λ is a singleton.

Remark 1 The number of support points of product designs quickly increases in higher dimen-

sions, so the experimenter may prefer to run a smaller design. It is still vital to have an optimal

design as a benchmark to compare competing designs against to avoid inefficient designs being

run, which could result in unreliable conclusions from the data.

From Corollary 5.4 in [19] we obtain that a necessary condition for local D-optimality of a design

ξ in the additive model (1) is local D-optimality of the marginals of ξ in the corresponding

single variable models (4). If the D-optimal designs ξ∗D,λk , k = 1, . . . , K, for the single variable

models are unique, any D-optimal design for the additive model must therefore have its support

contained in the support of the product design ξ∗D,λ1⊗ . . .⊗ ξ
∗
D,λK

. A numerical determination of

a locally D-optimal design with possibly smaller support than the product design can therefore

be restricted to the support of the product design.
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3.2 Application - Engine mapping experiment

The purpose of engine mapping experiments as considered in [12] is to model a measure of engine

performance as a function of several adjustable engine variables. The data for such an experiment

described in [21] give rise to an additive spline model for the maximum brake torque timing of

an engine in the three variables “speed”, “load” and “air-fuel ratio”. The corresponding single

variable models are the cubic spline model

µ1(x1, τ1) = θ1,0 + θ1,1x1 + θ1,2x
2
1 + θ1,3x

3
1 + θ1,4(x1 − λ1,1)3

+ , (8)

with unknown knot λ1,1 for the variable “speed”, and quadratic polynomials for “load” and “air-

fuel ratio”, respectively. [12] use a complicated numerical search algorithm in three variables to

find optimal designs for this model, which could have been simplified considerably if our results

had been available to them.

We use the engine mapping model to demonstrate the usefulness of designed experiments and to

address the issue of robustness in the situation where the knot location is unknown. The data

imply that the knot λ1,1 should be in the interval [0, 0.6]. We investigate the performance of:

(1) ξ1, the locally D-optimal design for the midpoint λ1,1 = 0.3

(2) ξ2, the Bayesian D-optimal design with respect to π1, the uniform distribution on the seven

points 0, 0.1, . . . , 0.6

(3) ξ3 the Bayesian D-optimal design with respect to the continuous uniform prior on [0, 0.6]

with (6) approximated using π2, a uniform distribution on 121 equidistant points from 0

to 0.6

(4) ξ4, the product of: the uniform design on 11 equidistant points in [−1, 1] for the splined

variable, and two uniform designs on {−1, 0, 1} for the other two variables

(5) ξ5, the product of: an irregularly spaced uniform design with 11 points, where the points

are more concentrated in the interval for the knot, for the splined variable, and two uniform

designs on {−1, 0, 1} for the other two variables.

The two latter designs are commonly applied in such experiments. Note that designs ξ1 − ξ3

are also product designs where the marginals for the variables “load” and “air-fuel ratio” are

the same as for ξ4 and ξ5. To compare designs, we define the relative D-efficiency of a design ξr
compared with a design ξs as

effrel,D(ξr, ξs, λ) =

(
|I(ξr, λ)|
|I(ξs, λ)|

)1/p

,

where p is the number of model parameters. Designs ξ1 − ξ3 were calculated numerically, and

the marginals of ξ1, ξ2, ξ4 and ξ5 for the splined variable “speed” are depicted in the left part
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Figure 1: Left: Support points and weights of the marginals of ξ1, ξ2, ξ4 and ξ5 for the splined

variable “speed”, described by (8). Right: Relative D-efficiencies of designs ξ2 − ξ5 compared

with ξ1, plotted against the possible knots in the interval [0, 0.6].

of Figure 1. Design ξ3 is very similar to ξ2 and therefore not shown. Figure 1 also shows the

relative D-efficiencies of ξ2 − ξ5 compared with ξ1.

Figure 1 shows that the commonly used designs ξ4 and ξ5 are uniformly inferior to the Bayesian

designs. The spacing of the support points for the uniform designs seems to have little effect.

We also considered two similarly structured uniform designs with 21 support points, which were

both outperformed by the 11-point designs and are therefore not shown here. For those designs,

unequal spacing appeared to have an adverse effect on efficiency. We further note that in the

interval from about 0.14 to 0.42 the Bayesian D-optimal designs are slightly less efficient, but

outperform the locally D-optimal design if the knot is closer to the boundary. Both Bayesian

designs have similar relative D-efficiencies, with the Bayesian D-optimal design with respect to

π1 having slightly higher efficiency around the boundary, and the Bayesian D-optimal design

with respect to π2 being somewhat more efficient in the interior. For a large degree of uncertainty

it is thus recommended to use a Bayesian D-optimal design, where a close approximation to the

continuous uniform prior does not seem to have an advantage over a prior distribution with a

relatively crude space-filling support on the same interval.

3.3 Optimal designs for estimating subsets of the model parameters

In some practical problems, the experimenter’s main interest is in estimating a subset of the

parameters only. For example, for spline models interest may be in the knot locations, since

they indicate at which experimental conditions the behaviour of the regression function changes

and thus provide insight into the complexity of the response. In other examples, the intercept

may be less important than the parameters describing the shape of the response curve. In what

follows, we therefore investigate Ds-optimal designs for the estimation of subsets ϕ ⊂ (θT , λT )T

of the parameters. This means we minimise the determinant of the asymptotic covariance matrix
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for the estimator of ϕ, or equivalently, maximise the function

ψs(M(ξ, θ, λ)) = |(ATM−(ξ, θ, λ)A)−1|. (9)

The matrix AT = (Js | 0s×(p−s)) consists of two blocks, where Js is the identity matrix of size

s where s is the number of parameters in ϕ and 0s×(p−s) is a zero matrix of size s × (p − s).

Without loss of generality, throughout this section we have re-ordered the rows and columns

of the information matrix M(ξ, θ, λ) such that the top left corner of size s × s of this matrix

corresponds to the derivatives of the regression function with respect to ϕ, and also re-ordered

the rows and columns of I(ξ, λ) accordingly, i.e. through multiplication with the appropriate

permutation matrix P from the left and its transpose from the right. Here, M−(ξ, θ, λ) and

I−(ξ, λ) denote the respective generalised inverses of the matrices M(ξ, θ, λ) and I(ξ, λ). The

design ξ must ensure that the parameters in ϕ are estimable, i.e. the matrix ATM−(ξ, θ, λ)A

must be non-singular.

Lemma 1 shows that for many interesting problems we can restrict ourselves to considering

the simpler problem of maximising ψs(I(ξ, λ)) = |(AT I−(ξ, λ)A)−1|, and that consequently Ds-

optimal designs for estimating ϕ in model (1) do not depend on the linear model parameters θ.

The proof of Lemma 1 can be found in Appendix A.2.

Lemma 1 Let C̃θ = PCθP
T , and suppose the lower left block of size (p − s) × s of C̃θ, C̃θ,21,

is the zero matrix 0(p−s)×s. Then there exists a positive constant cθ, depending only on θ but

neither on λ nor on the design ξ, such that

|(ATM−(ξ, θ, λ)A)−1| = cθ|(AT I−(ξ, λ)A)−1|.

Remark 2 For many partially nonlinear models, the condition on C̃θ is satisfied for all subsets

ϕ. For example, if the marginal models are of the form µk(xk, τk) = θk,0 +
∑lk

i=1 θk,ihk,i(xk, λk,i),

k = 1, . . . , K, the matrix Cθ is diagonal, and so is C̃θ = PCθP
T . For different models it will

depend on the subset of interest, ϕ, if the condition is satisfied. For spline models the condition

is met, for example, for ϕ = (θTϕ , λ
T )T where θϕ can be any subset of θ, or for ϕ = λϕ where λϕ

can be any subset of λ.

We now consider Bayesian and standardised maximin Ds-optimality, where a Bayesian Ds-

optimal design with respect to a prior π on Λ maximises

ΦDs,π(ξ) =

∫
Λ

logψs(I(ξ, λ)) dπ(λ),

and a standardised maximin Ds-optimal design with respect to Λ maximises

ΨDs,Λ(ξ) = inf
λ∈Λ

ψs(I(ξ, λ))

ψs(I(ξ∗Ds,λ
, λ))

.

Here ξ∗Ds,λ
denotes the locally Ds-optimal design with respect to λ. Analogous to Section 3.1,

we show that under certain conditions the product of designs which are Bayesian (standardised
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maximin) Ds-optimal for estimating the set of parameters ϕk in the kth marginal model (4) are

Bayesian (standardised maximin) Ds-optimal for estimating the set ϕ = (ϕT1 , . . . , ϕ
T
K)T in the

additive model (1). Local Ds-optimality is embedded in this result as the special case where the

set Λ is a singleton. The proof of Theorem 2 is in Appendix A.3.

Theorem 2 Suppose that C̃θ,21 = 0(p−s)×s, and that the subset ϕ = (ϕT1 , . . . , ϕ
T
K)T of parameters

of interest does not contain the intercept.

(a) Let π be a product prior for λ ∈ Λ with marginals πk, and let ξ∗Ds,πk
denote the Bayesian

Ds-optimal design for estimating ϕk with respect to πk in the single variable models, k =

1, . . . , K. Then the product design ξ∗Ds,π
= ξ∗Ds,π1

⊗ ξ∗Ds,π2
⊗ . . . ⊗ ξ∗Ds,πK

is Bayesian Ds-

optimal for estimating ϕ with respect to π in the additive model (1).

(b) Let ξ∗Ds,Λk
be the standardised maximin Ds-optimal design for estimating ϕk with respect

to Λk, k = 1, . . . , K, in the single variable models (4) for compact parameter spaces Λk.

Then the product design ξ∗Ds,Λ
= ξ∗Ds,Λ1

⊗ ξ∗Ds,Λ2
⊗ . . . ⊗ ξ∗Ds,ΛK

is standardised maximin

Ds-optimal for estimating ϕ with respect to the parameter space Λ in the additive model

(1).

4 Optimal designs for prediction of the response surface

The experimenter may be more interested in the prediction of the response surface at different

points than in the particular values of the unknown parameters. Spline models, for example, are

mainly used for prediction rather than estimation. A first order approximation to the variance

of µ̂(x, τ) at some point x = (x1, . . . , xK) ∈ IRK is given by

Var (µ̂(x, τ)) = gT (x, θ, λ)M−1(ξ, θ, λ)g(x, θ, λ) = fT (x, λ)I−1(ξ, λ)f(x, λ).

Naturally, it is appealing to minimise this variance jointly for a user-selected choice of values for

x, reflected in a distribution H(x). So the goal is to minimise the objective function

Q(ξ, λ) =

∫
fT (x, λ)I−1(ξ, λ)f(x, λ) dH(x). (10)

To achieve robustness against misspecification of the nonlinear model parameters, we seek

Bayesian Q-optimal designs with respect to a prior π, which minimise

ΦQ,π(ξ) =

∫
Λ

Q(ξ, λ) dπ(λ). (11)

Similarly, a minimax Q-optimal design minimises

ΨQ,Λ(ξ) = max
λ∈Λ

Q(ξ, λ). (12)

Theorem 3, which is proven in Appendix A.4, establishes the main result of this section, i.e. that

the product design of the Bayesian (minimax) Q-optimal designs in the marginal models (4) is

Bayesian (minimax) Q-optimal for the additive model (1) in the class of all product designs.
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Theorem 3 Let π be a product prior on λ ∈ Λ with marginals πk on Λk, k = 1, . . . , K, and the

weighting measure H(x) be a product measure with marginals H1(x1), . . . , HK(xK).

(a) The product of the Bayesian Q-optimal designs for the single variable models with respect

to Hk and πk, k = 1, . . . , K, is Bayesian Q-optimal within the class of all product designs

with respect to H and π.

(b) For compact Λ, the product of the minimax Q-optimal designs for the single variable models

with respect to Hk and Λk, k = 1, . . . , K, is minimax Q-optimal within the class of all

product designs with respect to H and Λ.

5 Discussion

We have illustrated the benefit of using optimal designs through an application to our motivating

example on engine mapping. Through our theoretical results, the computational burden to find

optimal designs has been reduced considerably, so it is more likely that they will be adopted in

industry and generate impact. Even if the complete product designs are too large to be run in

practice, it is vital to have a benchmark to compare candidate designs against, in order to avoid

inefficient designs being run.

We note that for some applications interactions between the explanatory variables may be

present. For linear models with complete product-type interactions, it is well known that for

many popular optimality criteria the product of the optimal designs in the marginal models is

indeed optimal in the multivariable model. These results, however, do not carry over to partially

nonlinear models, for which the complete product-type interaction model constructed from par-

tially nonlinear single variable models is not in general partially nonlinear, so optimal designs

for the multivariable model will depend on (some of the) linear parameters, i.e. the coefficients

of additive terms in the model.
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tausch Dienst, the Deutsche Forschungsgemeinschaft and the Defence Threat Reduction Agency
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A Proofs

For clarity of presentation, in what follows we restrict ourselves to proving our results for K = 2.

The general case K > 2 follows by defining meta-variables consisting of more than one single

variable and applying the result for K = 2.
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A.1 Proof of Theorem 1

(a) Let ξ1, ξ2 denote the marginals of the design ξ. The special form of the information matrices

permits application of Lemma 5.1 in [19], so for all λ = (λT1 , λ
T
2 )T ∈ Λ

|I(ξ, λ)| ≤ |I1(ξ1, λ1)| |I2(ξ2, λ2)| = |I(ξ1 ⊗ ξ2, λ)|. (13)

Using inequality (13) and the assumption that π is a product prior, the following holds:∫
Λ

log |I(ξ∗D,π1 ⊗ ξ
∗
D,π2

, λ)| dπ(λ) ≤ max
ξ

∫
Λ

log |I(ξ, λ)| dπ(λ)

≤ max
ξ1,ξ2

∫
Λ

log(|I1(ξ1, λ1)| |I2(ξ2, λ2)|) dπ(λ)

= max
ξ1

∫
Λ1

log |I1(ξ1, λ1)| dπ1(λ1)

+ max
ξ2

∫
Λ2

log |I2(ξ2, λ2)| dπ2(λ2) (14)

=

∫
Λ1

log |I1(ξ∗D,π1 , λ1)| dπ1(λ1) +

∫
Λ2

log |I2(ξ∗D,π2 , λ2)| dπ2(λ2).

From the equality in (13) we obtain immediately that∫
Λ

log |I(ξ∗D,π1 ⊗ ξ
∗
D,π2

, λ)| dπ(λ) =

∫
Λ1

log |I1(ξ∗D,π1 , λ1)| dπ1(λ1) +

∫
Λ2

log |I2(ξ∗D,π2 , λ2)| dπ2(λ2),

so all inequalities in (14) turn into equalities and ξ∗π is optimal.

(b) Since we consider compact sets Λk, k = 1, 2, the product set Λ is also compact, and the

infimum in (7) is a minimum. Applying (13) and the result for locally D-optimal designs from

part (a) of this Theorem, we obtain that for all designs ξ with marginals ξ1 and ξ2 and all λ ∈ Λ:

Φ(ξ, λ) ≤ Φ(ξ1, λ1)Φ(ξ2, λ2) = Φ(ξ1 ⊗ ξ2, λ), (15)

where Φ(ξ, λ) = |I(ξ, λ)|/|I(ξ∗D,λ, λ)|. Taking the minimum with respect to λ ∈ Λ does not change

the (in)equalities in (15). Moreover, since Λ is a product set, the two-dimensional minimisation

problem can be split up into one-dimensional problems as follows:

min
λ∈Λ

Φ(ξ∗, λ) ≤ min
λ1∈Λ1

Φ(ξ∗1 , λ1) min
λ2∈Λ2

Φ(ξ∗2 , λ2), (16)

where ξ∗ is standardised maximin D-optimal with respect to Λ with marginals ξ∗1 and ξ∗2 , and

min
λ∈Λ

Φ(ξ∗D,Λ1
⊗ ξ∗D,Λ2

, λ) = min
λ1∈Λ1

Φ(ξ∗D,Λ1
, λ1) min

λ2∈Λ2

Φ(ξ∗D,Λ2
, λ2). (17)

From (16), using the optimality of ξ∗ in the multivariable model and of ξ∗D,Λ1
and ξ∗D,Λ2

in the

single variable models, we find that

min
λ∈Λ

Φ(ξ∗D,Λ1
⊗ ξ∗D,Λ2

, λ) ≤ min
λ∈Λ

Φ(ξ∗, λ) ≤ min
λ1∈Λ1

Φ(ξ∗1 , λ1) min
λ2∈Λ2

Φ(ξ∗2 , λ2)

≤ min
λ1∈Λ1

Φ(ξ∗D,Λ1
, λ1) min

λ2∈Λ2

Φ(ξ∗D,Λ2
, λ2).

Using (17), all inequalities turn into equalities, which completes the proof of Theorem 1. 2
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A.2 Proof of Lemma 1

If C̃θ,21 = 0(p−s)×s, the inverse of C̃θ also has 0(p−s)×s as its lower left block, and the non-singular

s× s-matrix C̃−1
θ,11 as its upper left block. Hence AT (C̃−1

θ )T = ((C̃−1
θ,11)T | 0s×(p−s)), and so

|M−1
11 (ξ, θ, λ)| = |ATM−(ξ, θ, λ)A| = |AT (C̃−1

θ )T I−(ξ, λ)C̃−1
θ A| = |C̃−1

θ,11|
2|I−1

11 (ξ, λ)|,

where M−1
11 (ξ, θ, λ) and I−1

11 (ξ, λ) denote the upper left blocks of size s × s of the matrices

M−(ξ, θ, λ) and I−(ξ, λ), respectively. The assertion of Lemma 1 follows with cθ = |C̃−1
θ,11|2. 2

A.3 Proof of Theorem 2

From Lemma 1, we can restrict ourselves to theDs-criterion for the re-ordered information matrix

I(ξ, λ), which is at the same time the information matrix for the linear model ν(x) = fT (x, λ)β

with iid normal errors and fixed values for λ. (Here f(x, λ) is the re-ordered version of the model

vector.) From the proof of Theorem 5.13 in [19], we then obtain the inequality

ψs(I(ξ, λ)) ≤ ψs(I1(ξ1, λ1)) ψs(I2(ξ2, λ2)) = ψs(I(ξ1 ⊗ ξ2, λ))

for estimating any subset ϕ = (ϕT1 , ϕ
T
2 )T of the model parameters not containing the intercept,

where ξ1 and ξ2 are the marginals of the design ξ, and λ = (λT1 , λ
T
2 )T . The rest of the proof now

follows exactly along the same lines as the proof of Theorem 1 and is therefore omitted. 2

A.4 Proof of Theorem 3

Since gT (x, θ, λ)M−1(ξ, θ, λ)g(x, θ, λ) = fT (x, λ)I−1(ξ, λ)f(x, λ) a Q-optimal design for model

(1) is at the same time Q-optimal for the linear model ν(x) = fT (x, λ)β with iid normal errors

and fixed λ. Each single variable model can be expressed by νk(xk) = fTk (xk, λk)βk with fTk (xk) =

(1, f̃Tk (xk, λk)), so fT (x, λ) = (1, f̃T1 (x1, λ1), f̃T2 (x2, λ2)). Lemma 5.5 (ii) in [19] states the form

of the covariance matrix C(ξ, λ) of the parameter estimators for product designs ξ = ξ1 ⊗ ξ2 in

such a model,

C(ξ, λ) =


C0(ξ1 ⊗ ξ2) −(

∫
f̃1dξ1)TC1(ξ1) −(

∫
f̃2dξ2)TC2(ξ2)

−C1(ξ1)(
∫
f̃1dξ1) C1(ξ1) 0p1×p2

−C2(ξ2)(
∫
f̃2dξ2) 0p2×p1 C2(ξ2)

 ,

where pk, k = 1, 2, is the number of parameters in model ν̃k(xk) = f̃Tk (xk, λk)β̃k. The covariance

matrix in the kth single variable model, k = 1, 2, is given by

Ck(ξk, λk) =

(
Ck,0(ξk) −(

∫
f̃kdξk)

TCk(ξk)

−Ck(ξk)(
∫
f̃kdξk) Ck(ξk)

)
,
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where C0(ξ1 ⊗ ξ2) = C1,0(ξ1) + C2,0(ξ2) − 1. If H = H1 ⊗ H2 is a product distribution with

marginals H1 and H2, the objective function for the Q-criterion in the additive model splits

according to∫
fT (x, λ)C(ξ, λ)f(x, λ)dH(x) = H2(χ2)

∫
fT1 (x1, λ1)C1(ξ1, λ1)f1(x1, λ1)dH1(x1)

+ H1(χ1)

∫
fT2 (x2, λ2)C2(ξ2, λ2)f2(x2, λ2)dH2(x2)−H(χ).

From this representation, it is obvious that for product designs the local Q-objective function for

ξ in the additive model with respect to H and λ is minimised by the product of the Q-optimal

designs for the single variable models with respect to Hk and λk. Interchanging the integration

with respect to π(λ) (maximisation with respect to λ ∈ Λ) and the summation of the Q-objective

functions in the marginal models yields the desired result for Bayesian (minimax) Q-optimality.

2
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