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Abstract:
We present methods to answer to basic questions that arise when benchmarking optimization

algorithms. The first one is: which algorithm is the ‘best’ one? and the second one: which

algorithm should I use for my real world problem? Both are connected and neither is easy

to answer. We present methods which can be used to analyse the raw data of a benchmark

experiment and derive some insight regarding the answers to these questions. We employ the

presented methods to analyse the BBOB’09 benchmark results and present some initial findings.

1 Introduction

The last years have seen several competitions for optimization algorithms at evolutionary com-

putation (EC) conferences, possibly starting with the CEC’05 [1], and currently most notably

continued with the black-box optimization algorithm benchmarking (BBOB) competitions at

GECCO 2009 and 2010 [2]. However, this bears two main questions: a) Given a number of

comparison results on different functions, what is the ‘best’ algorithm? and b) How can we

transfer benchmarking results onto real-world situations?

To answer the first question, we turn to existing benchmarking theory, and especially to consen-

sus ranking procedures. Answering the second question is surely harder. While it is relatively

easy to control the settings of a benchmark experiment and to enforce every problem property

we can possibly imagine, not much is usually known about a real-world problem we may have

to deal with. The only possible solution for achieving a good algorithm-problem matching may



be to extract meaningful high-level empirical properties and approach the matching from two

sides: a) find out which algorithms perform especially well on certain property combinations

and b), develop ways to cheaply and automatically extract problem properties from a concrete

problem instance. The latter may be termed Exploratory Landscape Analysis (ELA) and is our

long-term objective which is not explicitly attempted in this work. However, in order to achieve

any progress in this directions, we need a good set of properties and to resolve the first issue of

detecting and evaluating algorithm-property dependencies.

After introducing benchmarking theory in sect. 2 we will focus on the BBOB’09 test in sect.

3 which is grouped into 5 categories using predefined properties. We will analyse if the mea-

sured performance of the benchmarked algorithms is in line with this grouping and will include

additional properties into the analysis. Furthermore, we will explicitly make the distinction of

low (2 and 3) and high (5-20) dimensions 1 and analyse how similar or different the algorithms

behave with respect to these groups. Conclusions are given in sect. 4.

2 Benchmarking Theory

The outcome of benchmarking experiments and competitions strongly depends on chosen per-

formance measures and ranking procedures ([3],[4]). The general setup of a benchmark exper-

iment is shown in figure 1.

Initially a problem domain needs to be defined. This step is crucial since it restricts the domain

to which any conclusions made in later steps can possibly generalize. Next, t test functions with

a known global optimum value or a known bound that should be achieved are chosen. Finding

good test functions is a hard problem since they should be distributed in a ‘uniform’ fashion

in the space of all possible functions from the problem domain. To judge the performance of

an optimization result, q (ideally independent) quality indicators are chosen. Finally, a set of

candidate optimization procedures needs to be determined.

The next step is to determine the number of independent runs of each of the k algorithms on the

t test functions with respect to the trade-off between speed and accuracy. In practice 10 to 25

repetitions are a good rule of thumb. The result of this are t× q× k quality indicator estimates.

Using these, individual rankings of the algorithm for each quality indicator and test function

will be constructed.
1The BBOB’09 data for 40 dimensions is not complete and therefore discarded.
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Figure 1: Flow chart describing the steps involved in a benchmark experiment.

2.1 Individual Ranking

Benchmarking theory is mainly based on the theoretical framework of relations and orders [5]

from which a formal definition of a ranking of a set of items can be derived [4]. We will use

�, where a � b reads as ”a better than or equal to b”, to denote this ranking and the underlying

relation.

Initially, without loss of generality, we will consider the case of a fixed test function f and qual-

ity criterion I to be maximized. If we only had two algorithms, a1 and a2, then we could define

� by saying a1 � a2 (a1 is better than or equal to a2) if I(a1(f)) ≥ I(a2(f)). Generalizing this

result to a higher number of algorithms is straight forward. We use the order induced by I on

the algorithms as our ranking. The main disadvantage of our simple definition of � is that we

must estimate the value of a quality criterion from several runs of the optimization algorithm.

This means that I(a, f) is a random variable whose distribution is unknown. One way to deal

with this is to use classical statistical hypothesis tests to define �. Details of this procedure are

given in [3] and [4]. The main obstacle is that we need � to be transitive and antisymmetric in

order for it to define a meaningful ordering.

2.2 Consensus Ranking

In case the best algorithm out of a given set should be determined the problem of building

a consensus of a number of individual rankings of the considered algorithm arises. Ideally,

a consensus should be non-dictatorial, universal, Pareto efficient and fulfill the Independence

of irrelevant alternatives (IIA) criterion as well as the majority criterion (see [3] or [4] for
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formal definitions). Unfortunately, all criteria cannot be met simultaneously. Thus, consensus

approaches yield different results with respect to the criteria chosen to be fulfilled.

Generally, we can differentiate between positional and optimization based methods. It can be

shown that the Borda count method [6], as one of the oldest consensus methods, is optimal under

all positional consensus methods [7]. An algorithm is assigned one point for each algorithm that

it weakly dominates, i.e. the algorithms that are not better than the algorithm considered. The

Borda score results by taking the sum of these values. Optimization based methods transform

the consensus ranking task into an optimization problem based on a suitable distance measure

between the individual rankings. The consensus ranking comes out as the ranking which min-

imizes the median or mean distance to all individual rankings (SD approach, [8]). Advantages

and drawbacks of the introduced consensus methods are summarized in [9].

3 Benchmarking Results for the BBOB09-Testset

3.1 Suggested Problem Properties

The BBOB’09 test set is built according to problem properties, a) separable problems, b) low

or moderate conditioned problems, c) high conditioned and unimodal problems, d) multi-modal

problems with adequate global structure, and e) multi-modal problems with weak global struc-

ture. We suggest to add more properties applied to the BBOB’09 test set in table 1. It gets evi-

dent that some property values are sparsely populated, e.g. only one test function has plateaus.

Multi-modality refers to the number of local optima of a problem. In practical applications,

many problems are not unimodal (convex) as favoured by most classical optimization

algorithms.

Global structure is what remains after deleting all non-optimal points. For Rastrigins prob-

lem, we obtain a perforated parabola which is unimodal. Problems without global basin

structure are more difficult because one virtually needs to look in every corner.

Separability means a problem may be partitioned into subproblems which are then of lower

dimensionality and should be considerably easier to solve. However, for an unknown

problem, information about its separability may be scarce.

Variable scaling can make a problem behave differently in each dimension. It can be essential

to perform small steps in some dimensions, and large ones in others, which is due to the

non-spherical form of basins of attraction. Note that scaling may differ between different

basins of attraction.
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Search space homogeneity refers to a search space without phase transitions. Its overall ap-

pearance is similar in different search space areas. Most benchmark problems are of this

type.

Basin size homogeneity means the size relation (largest to smallest) of all basins of attraction

(e.g. [10] postulated that size differences influence problem hardness).

Global to local optima contrast refers to the difference between global and local peaks in

comparison to the average fitness level of a problem. It thus determines if very good

peaks are easily recognized as such.

Plateaus can make the life of optimization algorithms a lot harder as they do not provide any

information about good directions to turn to. However, in the BBOB’09 test set, this

property is largely unused.

3.2 Algorithm Analysis

Initially, a ranking for each test function / dimension combination is calculated using the the

expected running time (ERT, [2]) which is shown in figure 2 and 3. It is evident that there is

a change in the general performance of the algorithms going from three to five dimensions.

Especially in the parallel coordinate plot we recognize a deterioration of performance for some

algorithms as the dimension rises.

Looking at the distribution of these ranks separately for the two and three as well as the 5 to 20

dimensional functions as shown in figure 4, we see two very different consensus rankings of the

algorithms. The order of the algorithms was chosen by decreasing mean rank, this coincides

with the Borda consensus for the two dimension groups. In lower dimensions the Nelder-

Mead type algorithms perform best while only ranking in the middle for higher dimensional

problems. The same behaviour can be observed for some other classical algorithms such as

the Rosenbrock procedure. On the other hand, BFGS performs better for higher dimensional

problems. Here, the effort invested for estimating the gradient obviously pay off. Generally, the

order of the algorithms gets more stable for higher dimensions, so that the differences between

dimensions 5/10/20 are much smaller than the ones between 2/3/5 (see figure 2). We therefore

do not present a consensus ranking over all dimensions.
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Function multim. gl.-struc. separ. scaling homog. basins gl.-loc. plat.

1: Sphere none none high none high none none none

2: Ellipsoidal separable none none high high high none none none

3: Rastrigin separable high strong none low high low low none

4: Büche-Rastrigin high strong high low high med. low none

5: Linear Slope none none high none high none none none

6: Attractive Sector none none high low med. none none none

7: Step Ellipsoidal none none high low high none none small

8: Rosenbrock low none none none med. low low none

9: Rosenbrock rotated low none none none med. low low none

10: Ellipsoidal high cond. none none none high high none none none

11: Discus none none none high high none none none

12: Bent Cigar none none none high high none none none

13: Sharp Ridge none none none low med. none none none

14: Different Powers none none none low med. none none none

15: Rastrigin multimodal high strong none low high low low none

16: Weierstrass high med. none med. high med. low none

17: Schaffer F7 high med. none low med. med. high none

18: Sch. F7 mod. ill-cond. high med. none high med. med. high none

19: Griewank-Rosenbrock high strong none none high low low none

20: Schwefel med. deceptive none none high low low none

21: Gallagher 101 Peaks med. none none med. high med. low none

22: Gallagher 21 Peaks low none none med. high med. med. none

23: Katsuura high none none none high low low none

24: Lunacek bi-Rastrigin high weak none low high low low none

Table 1: Classification of the noiseless functions based on their properties (multi-modality,

global structure, separability, variable scaling, homogeneity, basin-sizes, global-local contrast,

plateaus). Predefined groups are separated by horizontal lines

3.3 Function-Set Analysis

We have seen that the algorithms perform quite differently in different dimensions. Can we

expect similar behaviour for different classes of functions from the test function set? And

more importantly, can we use any insight gained from the benchmark experiment to choose

a good algorithm for a real world optimization problem? For this, we will use the distance

measure SD introduced for the SD/L consensus method to calculate the distances between the
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144 rankings as a way to quantify how similar the algorithms performed. We focus our analysis

on the 5 to 20 dimensional functions, as they are more challenging than the low dimensional

ones. Additionally, algorithm ranks are much more consistent on these functions, which should

simplify the analysis.

Ideally, we would like to identify groups from this reduced function set that lead to similar

algorithm rankings. We then could reduce the size of the function set by only including one

prototype from each group. In addition, new functions similar to functions in this group would

probably result in similar algorithm performance. We could therefore try to guess a good algo-

rithm from the function group the new problem belongs to.

Two approaches are used to retrieve groups or clusters from the distance matrix. First, we

project the high-dimensional data onto a lower dimensional space by means of multidimen-

sional scaling (MDS, [11]) in order to visualize the relationship between observations. The

MDS embeds the observations into the lower dimensional space while attempting to retain the

distance between data points. Thus, the starting point for any MDS algorithm is a distance ma-

trix2 over all observations of a dataset. Starting from this matrix, a geometrical representation

of the relationship is created while preserving the input distances or distance as accurately as

possible. This is formalized as the optimization problem of minimizing a loss function over the

difference between the input and output distance matrix. Next, the clustering algorithm PAM

[12] is employed to find clusters in the data, based on the distance matrix. For this dataset 2

clusters were determined to be optimal, yielding an average silhouette width of ≈ 0.44. These

clusters were then correlated with the identified function properties (see table 1). Note that this

silhouette width value is not exceptionally high, meaning that the clustering is not seen as very

good (that would be the case for values near 1).

The two dimensional MDS of the distance matrix in figure 5 shows that a test function will

generally lead to similar performance (close proximity) regardless of the dimension. The first

MDS component seems to be adequate to describe the clustering. Observations with a value

smaller than −50 are assigned to cluster one, the rest to cluster two. This however does not

indicate how the clustering relates to the properties of the test functions. Therefore, we look at

the cross tabulation of the cluster against the function properties. To determine if there is any

correlation between the property and the clustering, a Fisher Test was performed for the null

hypothesis that the two are independent. For the four properties shown in table 2 this hypothesis

was rejected at the 1% level.

To further model the unknown decision boundary of the clustering with respect to the function

2usually, a similarity matrix, but it is trivial to compute one out of the other
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1 2

none 14 16

low 9 0

medium 3 3

high 0 27

(a)

1 2

none 26 19

weak 0 3

medium 0 9

strong 0 12

deceptive 0 3

(b)

1 2

none 12 9

low 1 26

medium 6 3

high 7 8

(c)

1 2

none 14 16

low 9 24

medium 3 0

high 0 6

(d)

Table 2: Cross tabulation of Multi-modality (a), Global Structure (b), Variable Scaling (c),

Global / Local contrast (d) against the clusters found via PAM.

properties, a classification tree (figure 6) was constructed using the four properties identified

by the cross tabulation as having a relationship with the clustering. It comes as no surprise

that the first split separates the highly multi-modal problems from all others. The matched 9

problems (27 observations in 5/10/20 dimensions) obviously require a specific algorithm be-

havior, whether no, low, and medium multi-modality go together. Interestingly, the second split

considers low variable scaling as a separate function group. Possibly, this reflects that some

algorithms have basic means to adapt to rescaled variables where others do not possess such

means. The third split between none and deceptive (Schwefel function) global structure is not

that surprising. Global structure needs multi-modality, and after removing highly multi-modal

functions, the Schwefel function is the only one that possesses a global structure (according to

our classification). It could be interesting to add more functions with low multi-modality but

some global structure to the set. Basically, we obtain four different classes of functions with

respect to algorithm performance.
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Figure 2: Benchplot for each dimension by function. The color indicates the algorithm and the

position of its rank in the ranking. For higher dimensions, a clear structure emerges because

many algorithms are not able to reliably solve such problems with the given number of FEs.

The black lines separate the 5 function groups as defined by the BBOB’09 organizers.
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Figure 3: Parallel coordinate plot for each function, showing the rank of each algorithm as

the number of dimensions rise. Some algorithms dramatically loose ground as the number of

dimensions rises (diagonal lines in upper right direction).
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Figure 4: Boxplot of the ranks for each algorithm in {2,3} (top) and {5,10,20} dimensions (bot-

tom). The algorithms are ordered by mean rank which is marked by a red dot. This corresponds

to the Borda ranking method. In low dimensions, the classical Nelder-Mead algorithm performs

quite well.
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Figure 6: Decision tree modeling the cluster boundary for the 5 to 20 dimensional function set.

The vector y reflects the proportion of observations in each cluster class.
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4 Conclusions and Outlook

In this article, we have shown how a combination of benchmarking methods and classical sta-

tistical exploratory data analysis can be used to gain insight into the true performance of a set of

algorithms under test. Furthermore, we demonstrated how the structure of the function set can

be explored. This leads us to define different groups or clusters of functions for which the rank-

ing of the algorithms was essentially the same or very similar. To describe these groups we used

decision trees for modeling the unknown cluster boundary. In future, we would like to extend

this work by including additional, measured features, and using the generated decision trees to

develop heuristics for supporting practitioners in the choice of an optimization procedure that

works well for their problem type.
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