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Abstract

Martingale transforms are a well known tool to derive asymptotically distribution free

tests for statistics based on empirical processes. Since its introduction by Khmaladze (1981)

they have been frequently applied to many testing problems. In this paper martingale trans-

forms for empirical processes are discussed from a non standard perspective with a specific

focus on the case where the null hypothesis is not satisfied. For the sake of a transparent

presentation we restrict our investigations to the problem of checking model assumptions in

regression models, but the conclusions are generally valid. We show the weak convergence of

empirical processes under fixed alternatives and introduce a new version of the martingale

transform such that the transformed limiting process is a Brownian motion in scaled time,

even if the null hypothesis is not satisfied.

Keywords: martingale transform, marked empirical process, weak convergence under fixed alter-

natives, model checks, nonparametric regression

1 Introduction

The problem of testing for the parametric form of a regression or the parametric form of the

distribution of the given sample has a long history in statistics [see Durbin (1974), Loynes (1980)

for some early references among others]. Several authors have proposed to use marked empirical

or partial sum processes for testing model assumptions in nonparametric regression models [see
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Stute (1997), Stute et al. (1998), An and Cheng (1991), Khmaladze and Koul (2004)]. It is well

known that these processes are not asymptotically distribution free. A powerful tool to obtain

asymptotically distribution free modifications of these processes is the martingale transform which

was proposed in a far reaching publication by Khmaladze (1981). Since its introduction this

transform has frequently been applied to tests based on empirical processes for various testing

problems [see Khmaladze (1993), Khmaladze and Koul (2004), Stute et al. (1998), Koenker and

Xiao (2002, 2006), Delgado et al. (2005), Koul and Yi (2006) and Dette and Hetzler (2009) among

others]. Most papers consider the asymptotic distribution of the process under the null hypothesis

and use a linear transform such that the limiting process is asymptotically distribution free.

The present paper is devoted to the investigation of martingale transforms in the case where the

null hypothesis is not satisfied. In this case a standardized (in particular appropriately centered)

version of the empirical process converges still to a Gaussian process, but the usual martingale

transform does not lead to an asymptotically distribution free process. In the present paper we

propose a new transform which has this property even under fixed alternatives. For the sake of

brevity, we restrict ourselves to the problem of checking model assumptions regarding the condi-

tional expectation in a nonparametric regression model. However, most of the conclusions and

ideas are easily generalized to any other testing problem which has been discussed in the literature

so far.

To be precise let {(X1, Y1), . . . , (Xn, Yn)} denote a sample of independent, identically distributed,

bivariate observations where X has a continuous distribution function F . Define

m(x) := E[Y |X = x] , σ2(x) := V ar[Y |X = x](1.1)

as the conditional expectation and variance, respectively. Let Θ ⊂ Rp denote a set of parameters

and consider a class of parametric models

M = {m(·, θ) : θ ∈ Θ}.(1.2)

In order to construct a test for the hypothesis of a parametric form of the regression function, i.e.

H0 : m ∈M versus H1 : m /∈M,(1.3)

Stute (1997) proposed to use the marked empirical process

Rn(x) = n−1/2

n∑
i=1

1{Xi≤x}[Yi −m(Xi, θn)],(1.4)

where θn denotes an appropriate estimator of the parameter vector θ under the assumption m ∈
M. In the following we will study several properties of this process in the case where the null

hypothesis is not true. In Section 2 we will present a result on the weak convergence of the process

{Rn(x)}x under fixed alternatives, i.e. m /∈M. In Section 3 we will introduce a generalization of

the martingale transform proposed by Stute et al. (1998), which yields a martingale even under a
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fixed alternative. The proposed transform is a two-step procedure and reduces to the transform

proposed by Stute et al. (1998) if the null hypothesis is satisfied. In concrete applications these

transforms have to be estimated from the data and have to be applied to the corresponding

empirical processes [see e.g. Koul and Song (2010) and Dette and Hetzler (2009)].

2 Weak convergence under fixed alternatives

Throughout this paper, we will denote by θ0 a parameter corresponding to a “best” approximation

of the unknown regression functionm by the parametric classM, where the specific metric depends

on the method of estimation. For example, if least squares estimation is used (i.e. if θn denotes

the least squares estimator of θ), we have

θ0 = arg min
θ
D(θ) = arg min

θ
E[(m(X)−m(X, θ))2].(2.1)

Similarly, if maximum likelihood estimation is used, let f(·, ·) and f(·, ·, θ) denote the density of

(X, Y ) in the general model and under the null hypothesis m ∈ M, respectively. As a “best”

approximation we then consider the minimizer of the Kullback-Leibler-distance, i.e.

θ0ML
= arg min

θ
DKL(θ) = arg min

θ
E

[
log

f(X, Y )

f(X, Y, θ)

]
.(2.2)

In order to investigate the asymptotic properties of the process defined in (1.4) we assume that

the following assumptions are satisfied:

(A1) The estimate θn has a stochastic expansion of the form

n1/2(θn − θ0) = n−1/2

n∑
i=1

l(Xi, Yi, θ0) + oP (1),(2.3)

where l(x, y, θ0) is a vector-valued square integrable function such thatE[l(x, y, θ0)lT (x, y, θ0)]

exists and E[l(X, Y, θ0)] = 0 is satisfied.

(A2) m(x, θ) is continuously differentiable at each interior point θ of Θ.

(A3) Let g(x, θ) := ∂m(x,θ)
∂θ

= (g1(x, θ), ..., gp(x, θ))
T . Then there exists a function M(x) which is

integrable with respect to F such that

|gi(x, θ)| ≤M(x) for all θ ∈ Θ and 1 ≤ i ≤ p.

(A4) [m(x)−m(x, θ0)]2 ≤ H(x) for all x and θ ∈ Θ where H is integrable with respect to F .

(A5) E[Y 2] <∞.
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In Example 2.4 and Example 2.5 we will show the existence of a stochastic expansion of the form

(2.3) for the least squares estimator θ0 and the maximum likelihood estimator θ0ML
, respectively.

Furthermore we will denote by

∆(t) = m(t)−m(t, θ0)(2.4)

the distance between the regression function m and its approximation in the parametric class and

by

R(x) :=

∫ x

−∞
(m(t)−m(t, θ0))dF (t) =

∫ x

−∞
∆(t)dF (t)(2.5)

the integrated difference between the functions m and m(·, θ0). Then the following result specifies

the asymptotic behavior of the centered marked empirical process

R1
n(x) := Rn(x)− n1/2R(x) , −∞ ≤ x ≤ ∞,(2.6)

where we extend R1
n continuously on R̄ = [−∞,∞] using the definitions R1

n(−∞) = 0 and

R
(1)
n (∞) = n−1/2

∑n
i=1(Yi −m(Xi, θn))−

∫∞
−∞∆(t)dF (t).

Theorem. 2.1 If the assumptions (A1)–(A5) are satisfied then as n→∞ we have

{R1
n(x)}x∈R̄

D−→ {R∞(x)}x∈R̄,

in D[−∞,∞] where R∞ denotes a centered Gaussian process whose covariance kernel coincides

with the covariance kernel of the process

{1{X≤x}(Y −m(X))−GT (x, θ0)`(X, Y, θ0) + 1{X≤x}∆(X)}x∈R,(2.7)

and the vector G is defined by

G(x, θ) =

∫ x

−∞
g(u, θ)dF (u).

Remark. 2.2 A straightforward calculation shows that for s ≤ t the covariance kernel of the

process (3.4) is given by

(2.8)

K(s, t) =

∫ s

−∞
σ2(u)dF (u) +GT (s, θ0)L(θ0)G(t, θ0)

−GT (s, θ0)E
[
1{X≤t}[Y −m(X)]l(X, Y, θ0)

]
−GT (t, θ0)E

[
1{X≤s}[Y −m(X)]l(X, Y, θ0)

]
−GT (s, θ0)E

[
1{X≤t}∆(X)l(X, Y, θ0)

]
−GT (t, θ0)E

[
1{X≤s}∆(X)l(X, Y, θ0)

]
+E

[
1{X≤s}∆

2(X)
]
− E

[
1{X≤s}∆(X)

]
E
[
1{X≤t}∆(X)

]
where L(θ0) := E[l(x, y, θ0)T l(x, y, θ0)]. Note that under the null hypothesis (1.3) we have ∆ ≡ 0

and in this case the kernel coincides with the kernel derived by Stute (1997).
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Remark. 2.3 Let W and B denote a Brownian motion and a Brownian bridge, respectively,

which are mutually independent. Then a straightforward calculation shows that the limiting

process in Theorem 2.1 has a representation of the form

R∞(t) = (W ◦ ψ)(t) +

∫ t

−∞
∆(u)d(B ◦ F )(u)−GT (t, θ0)V(2.9)

where

ψ(t) =

∫ t

−∞
σ2(u)dF (u),(2.10)

and V denotes a centered normally distributed random vector with covariance matrix L(θ0). This

result follows easily by a straightforward calculation. For example, an application of Ito’s rule [see

e.g. Goldstein and McCabe (1993)] yields

Cov
[∫ s

−∞
∆(u)d(B ◦ F )(u),

∫ t

−∞
∆(u)d(B ◦ F )(u)

]
=

∫ s∧t

−∞
∆2(u)dF (u)− 2

∫ s

−∞
∆(u)dF (u)

∫ t

−∞
∆(u)dF (u) +

∫ s

−∞
∆(u)dF (u)

∫ t

−∞
∆(u)dF (u)

=

∫ s∧t

−∞
∆2(u)dF (u)−

∫ s

−∞
∆(u)dF (u)

∫ t

−∞
∆(u)dF (u)

which gives the last two terms in (2.8).

Proof of Theorem 2.1. We make use of the decomposition

R1
n(x) = n−1/2

n∑
i=1

1{Xi≤x}[Yi −m(Xi, θn)]− n1/2R(x)(2.11)

= n−1/2

n∑
i=1

1{Xi≤x}[Yi −m(Xi)]− n−1/2

n∑
i=1

1{Xi≤x}[m(Xi, θn)−m(Xi, θ0)]

+

[
n−1/2

n∑
i=1

1{Xi≤x}∆(Xi)− n1/2R(x)

]

= A1
n(x)−B1

n(x) + C1
n(x),

where the last identity defines the quantities A1
n(x), B1

n(x) and C1
n(x) in an obvious manner. For

the second term B1
n(x), a Taylor expansion and an application of the assumptions (A1) and (A3)

yield

B1
n(x) = n−1/2

n∑
i=1

lT (Xi, Yi, θ0)G(x, θ0) + oP (1),(2.12)

uniformly with respect to x ∈ R. Because Rn(x) is a (rescaled) sum of independent identically

distributed random variables with mean R(x), the finite-dimensional distributions of the process
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{R1
n(x)}x∈R are asymptotically normal with mean 0 and covariance kernel defined by (2.8). In

order to prove tightness, note that similar arguments as in Stute (1997) show that it suffices to

assume that the underlying distribution F of X is the uniform distribution on [0, 1]. Furthermore

note that under assumptions (A1)–(A3) it follows from Stute (1997) that the processes {A1
n(x)}x∈R̄

and {B1
n(x)}x∈R̄ are tight, and it remains to prove tightness of the process {C1

n(x)}x∈R̄. We do

this by proving the inequality

h(u, u1, u2) = E[(C1
n(u)− C1

n(u1))2(C1
n(u2)− C1

n(u))2] ≤ (H(u2)−H(u1))2(2.13)

for 0 ≤ u1 ≤ u ≤ u2 ≤ 1 and some continuous non-decreasing function H. Then tightness of

{C1
n(x)}x∈R follows from Theorem 15.6 in Billingsley (1968). For a proof of the inequality (2.13)

we use Lemma 5.1 in Stute (1997) and obtain

h(u, u1, u2) =
1

n2
E
[( n∑

i=1

αi

)2( n∑
i=1

βi

)2]
≤ 1

n
E[α2

1β
2
1 ] + 3E[α2

1]E[β2
1 ],(2.14)

where the random variables αi and βi are defined by

αi = 1{u1≤Ui≤u}∆(Ui)− [R(u)−R(u1)],

βi = 1{u<Ui≤u2}∆(Ui)− [R(u2)−R(u)],

respectively. Using the notations (2.5) and µ(u) :=
∫ u

0
∆2(t)dF (t), we obtain (0 ≤ u ≤ 1) for the

first term on the right hand side of (2.14)

E[α2
1β

2
1 ] = E

[(
− 1{u1≤Ui≤u}∆(Ui)[R(u2)−R(u)]

−1{u≤Ui≤u2}∆(Ui)[R(u)−R(u1)] + [R(u)−R(u1)][R(u2)−R(u)]
)2]

= E
[
1{u1≤Ui≤u}∆

2(Ui)[R(u2)−R(u)]2

+1{u≤Ui≤u2}∆
2(Ui)[R(u)−R(u1)]2 + [R(u)−R(u1)]2[R(u2)−R(u)]2

−21{u1≤Ui≤u}∆(Ui)[R(u2)−R(u)]2[R(u)−R(u1)]

−21{u≤Ui≤u2}∆(Ui)[R(u)−R(u1)]2[R(u2)−R(u)]
]

= [µ(u)− µ(u1)][R(u2)−R(u)]2

+[µ(u2)− µ(u)][R(u)−R(u1)]2 − 3[R(u)−R(u1)]2[R(u2)−R(u)]2.

For the calculation of the second term in (2.14) note that

E[α2
1] = E

[(
1{u1≤Ui≤u}∆(Ui)− [R(u)−R(u1)]

)2
]

= E[1{u1≤Ui≤u}∆
2(Ui)]

−2E[1{u1≤Ui≤u}∆(Ui)][R(u)−R(u1)] + [R(u)−R(u1)]2

= µ(u)− µ(u1)− [R(u)−R(u1)]2,
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and similarly E[β2
1 ] = µ(u2)− µ(u)− [R(u2)−R(u)]2. This yields

h(u, u1, u2) ≤ 3[µ(u)− µ(u1)][µ(u2)− µ(u)] + (3− 3

n
)[R(u)−R(u1)]2[R(u2)−R(u)]2

− (3− 1

n
)
{

[µ(u)− µ(u1)][R(u2)−R(u)]2 + [µ(u2)− µ(u)][R(u)−R(u1)]2
}

≤ 3[µ(u)− µ(u1)][µ(u2)− µ(u)]− (3− 1

n
)[µ(u2)− µ(u)][R(u)−R(u1)]2

−(− 1

n
+

3

n
)[µ(u)− µ(u1)][R(u2)−R(u)]2

≤ 3[µ(u)− µ(u1)][µ(u2)− µ(u)] ≤ 3[µ(u2)− µ(u1)]2,

where we have used the Cauchy-Schwarz inequality in the second step in order to obtain [R(u)−
R(u1)]2 ≤ µ(u) − µ(u1). Therefore the assertion (2.13) follows with H(u) =

√
3µ(u), which

completes the proof of Theorem 2.1. 2

Example. 2.4 Consider the distance function D(θ) defined in (2.1) and the least squares estimate

θn = arg min
θ
Dn(θ),(2.15)

where

Dn(θ) = n−1

n∑
i=1

[(Yi −m(Xi, θ)]
2.

Let D′n and D′′n denote the gradient and the Hessian matrix of the function Dn, respectively. In

addition to the previous chapters, assume that

(B1) θ0 is a unique minimizer of D(θ) on Θ and an interior point of Θ.

(B2) m(x, θ) is twice continuously differentiable with respect to θ at each interior point θ ∈ Θ.

(B3) The Hessian matrix D′′n is invertible at each interior point θ ∈ Θ and the matrix D′′ is

invertible at θ0.

Under assumptions (A4) and (B1), White (1981) proved that θn is a strongly consistent estimator

for θ0. Therefore, together with assumptions (B2) and (B3) a Taylor expansion and an application

of Slutsky’s theorem yield

√
n(θn − θ0) = −

√
nD′′n(θ0)−1D′n(θ0) + oP (1).

Note that the random variable

−D′n(θ0) = 2n−1

n∑
i=1

(Yi −m(Xi, θ0))
∂

∂θ
m(Xi, θ)

∣∣
θ=θ0
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has expectation 0, because θ0 minimizes D(θ), which implies

∂

∂θ
D(θ)

∣∣
θ=θ0

=
∂

∂θ
E[(m(X)−m(X, θ)2]

∣∣
θ=θ0

= −2E
[ ∂
∂θ
m(X, θ)

∣∣
θ=θ0

(Y −m(X, θ0))
]

= 0

by successive conditioning. On the other hand the law of large numbers implies

D′′n(θ0)
P→ D′′(θ0) = 2

∫ ∞
−∞

[(
∂

∂θ
m(x, θ)

∣∣
θ=θ0

)(
∂

∂θ
m(x, θ)

∣∣
θ=θ0

)T
−∆(x)

∂2

∂θ2
m(x, θ)

∣∣
θ=θ0

]
dF (x),

and it follows that

√
n(θn − θ0) = −

√
nD′′(θ0)−1D′n(θ0) + oP (1)

= 2D′′(θ0)−1n−1/2

n∑
i=1

(Yi −m(Xi, θ0))
∂

∂θ
m(Xi, θ)

∣∣
θ=θ0

+ oP (1).

This yields the representation (2.3) with

l(X, Y, θ0) = 2D′′(θ0)−1(Y −m(X, θ0))
∂

∂θ
m(X, θ)

∣∣
θ=θ0

.

Note that under the null hypothesis the matrix D′′(θ0) equals

E[
∂

∂θ
m(X, θ)

∣∣
θ=θ0

(
∂

∂θ
m(X, θ)

∣∣
θ=θ0

)T ],

and this identity also holds under a fixed alternative if the model m(x, θ) is a linear model.

However, in general the two matrices are different under the alternative H1 : m /∈M.

Example. 2.5 Let DKL denote the Kullback-Leibler-Distance as defined in (2.2). Let f(·, ·, θ)
and f(·, ·) be the density of (X, Y ) under the null hypothesis m ∈M and the alternative m /∈M
and θML denote the maximum likelihood estimate of the parameter θ. Similarly as in the previous

example, we assume that

(C1) E[log f(X, Y )] exists and log f(x, y, θ) ≤ H̃(x) for all x and θ ∈ Θ, where H̃ is an integrable

function with respect to F .

(C2) θ0ML
is a unique minimizer of DKL(θ) on Θ and an interior point of Θ.

(C3) log f(x, y, θ) is twice continuosly differentiable at each interior point θ ∈ Θ.

(C4) The Hessian matrix ∂2

∂2θ
log f(x, y, θ) is invertible.

8



Under assumption (C1) and (C2), θML is a strongly consistent estimator for θ0ML
[for details see

White (1982)] and we get that

√
n(θML − θ0ML

) = E−1(θ0ML
)

1√
n

n∑
i=1

∂

∂θ
log f(Xi, Yi, θ)

∣∣
θ=θ0ML

+ oP (1),

where the matrix E(θ0ML
) is defined by

E(θ0ML
) = −

∫
∂2

∂2θ
log f(x, y, θ)

∣∣
θ=θ0ML

f(x, y)d(x, y) ∈ Rp×p.

Note that this matrix simplifies to

E
[( ∂
∂θ

log f(X, Y, θ)
∣∣
θ=θ0ML

)( ∂
∂θ

log f(X, Y, θ)
∣∣
θ=θ0ML

)T]
if the null hypothesis is satisfied, i.e. f(·, ·) = f(·, ·, θ0ML

).

3 Martingale transforms under the alternative

It turns out that there exists a martingale transform with the desired properties for a weighted

version of the process {R1
n(x)}x∈R̄. For this purpose we consider the weighted marked empirical

process

R̃1
n(x) := n−1/2

n∑
i=1

(
1{Xi≤x}β(Xi)[Yi −m(Xi, θn)]− R̃(x)

)
,(3.1)

(with an obvious continuous extension at x = ∓∞) where the centering term R̃(x) is given by

R̃(x) =

∫ x

−∞
β(t)∆(t)dF (t)(3.2)

and β(x) is a continuous real-valued weight function such that the following assumptions are

satisfied.

(D1) There exist functions M(x), M̃(x) and M∗(x) which are integrable with respect to F such

that

|β(x)gi(x, θ)| ≤M(x) for all θ ∈ Θ and 1 ≤ i ≤ p,

β2(x)∆2(x) ≤M∗(x) for all θ ∈ Θ

and

β2(x)σ2(x) ≤ M̃(x) for all θ ∈ Θ.

(D2) β(x) > 0 and σ2(x) > 0 for all x ∈ R and there exists a positive constant c such that

β2(x)[σ2(x) + ∆2(x)] ≥ c for all x ∈ R.
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Then similar arguments as given in the proof of Theorem 2.1 yield the following result:

Theorem. 3.1 If the assumptions (A1)–(A5) and (D1)–(D2) are satisfied, then for n → ∞ we

have on D[−∞,∞]

{R̃1
n(x)}x∈R̄

D−→ {R̃∞(x)}x∈R̄,

where

(3.3) R̃∞(x) =

∫ x

−∞
β(u)σ(u)d(W ◦ F )(u) +

∫ x

−∞
β(u)∆(u)d(B ◦ F )(u)− G̃(x, θ0)TV,

W and B denote a Brownian motion and a Brownian bridge, respectively, which are mutually

independent, V is a centered, normally distributed random variable and G̃(x, θ) is defined by

G̃(x, θ) =

∫ x

−∞
β(u)g(u, θ)dF (u).

The covariance kernel of the process R̃∞ coincides with the covariance kernel of the process

{1{X≤x}β(X)(Y −m(X))− G̃T (x, θ0)`(X, Y, θ0) + 1{X≤x}β(X)∆(X)}x∈R.(3.4)

In the following we will consider a composition of two linear transforms which maps the process R̃∞
onto a martingale. LetW ∗ denote a Brownian motion independent ofW , such thatBt = W ∗

t −tW ∗
1 .

Note that the limiting process R̃∞ in Theorem 3.2 can be represented as

R̃∞(x)
D
=

∫ x

−∞
β(u)σ(u)d(W ◦ F )(u) +

∫ x

−∞
β(u)∆(u)d(W ∗ ◦ F )(u)

−W ∗
1

∫ x

−∞
β(u)∆(u)dF (u) + V T

∫ x

−∞
β(u)g(u, θ0)dF (u)

D
=

∫ x

−∞
β(u)[σ2(u) + ∆2(u)]1/2d(W̃ ◦ F )(u)

−W ∗
1

∫ x

−∞
β(u)∆(u)dF (u) + V T

∫ x

−∞
β(u)g(u, θ0)dF (u)

= RA
∞(x)−RB

∞(x) +RC
∞(x)(3.5)

where
D
= denotes equality in distribution, W̃ is a standard Brownian motion and the quantitites

RA
∞(x), RB

∞(x) and RC
∞(x) are defined in an obvious manner. Our first transform is therefore a

standard martingale transform in the spirit of Khmaladze (1981), which transforms RB
∞ onto 0.

To this end, consider for a process of the form∫ x

−∞
r(u)d(W ◦ F )(u) + V T

∫ x

−∞
s(u)dF (u)

with non-random real and vector-valued functions r and s, respectively, and a random variable V

that does not depend on x. Note that a martingale transform can be obtained by defining

T (f) := f −
∫ ·
−∞

sT (u)A−1(u)

[∫ ∞
u

s(v)

r2(v)
df(v)

]
dF (u)
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where

A(u) =

∫ ∞
u

s(v)sT (v)

r2(v)
dF (v).

Thus, in our case for the process RB
∞ in (3.5) the first transform T is given by (here we have

s = β∆ and r = β(σ2 + ∆2)1/2)

T (f) := f −
∫ ·
−∞

∆(u)β(u)A−1(u)
[∫ ∞

u

∆(v)β−1(v)
[
σ2(v) + ∆2(v)

]−1
df(v)

]
dF (u),(3.6)

where

A(u) =

∫ ∞
u

∆2(v)

σ2(v) + ∆2(v)
F (dv).

In order to define a second transform which maps the remaining term T (RC
∞) onto 0, we introduce

the notation

l(u) = β(u)g(u, θ0)−∆(u)β(u)A−1(u)

∫ ∞
u

∆(v)g(v, θ0)

σ2(v) + ∆2(v)
dF (v)(3.7)

and, using the same procedure as above, we define a mapping S by

S(f) := f −
∫ ·
−∞

lT (u)Ã−1(u)

[∫ ∞
u

l(v)
[
β2(v)[σ2(v) + ∆2(v)]

]−1
df(v)

]
dF (u)(3.8)

with

Ã(u) :=

∫ ∞
u

[
β2(s)[σ2(s) + ∆2(s)]

]−1
l(s)lT (s)dF (s).

With these notations we obtain the following result:

Theorem. 3.2 Let T and S denote the transforms defined in (3.6) and (3.8), respectively, then

(S ◦ T )(R̃∞)
D
= W̃ ◦K,

where

K(t) =

∫ t

−∞
β(u)[σ2(u) + ∆2(u)]1/2dF (u)(3.9)

and W̃ denotes a standard Brownian motion. In particular, if β(u) = [σ2(u) + ∆2(u)]−1/2 we have

(S ◦ T )(R̃∞)
D
= W̃ ◦ F.

Proof. We start to investigate the transformed process T (R̃∞) and discuss the terms in the

decomposition (3.5) separately. For the first term we have

T (RA
∞)(x) = T

(∫ x

−∞
β(u)[σ2(u) + ∆2(u)]1/2d(W̃ ◦ F )(u)

)
=

∫ x

−∞
β(u)(σ2(u) + ∆2(u))1/2d(W̃ ◦ F )(u))

−
∫ x

−∞
∆(u)β(u)A−1(u)

∫ ∞
u

∆(v)

[σ2(v) + ∆2(v)]1/2
d(W̃ ◦ F )(v)dF (u)
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and a similar calculation as in Stute et al. (1998) shows

Cov[T (RA
∞)(s), T (RA

∞)(t)] =

∫ s∧t

−∞
β2(u)[σ2(u) + ∆2(u)]F (du)

which implies that

T (RA
∞)

D
= W̃ ◦K,(3.10)

where K is defined in (3.9). For the second term RB
∞ in (3.5) we have

T (RB
∞) = T

(
W ∗

1

∫ ·
−∞

β(u)∆(u)dF (u)

)
= 0.(3.11)

Finally, we obtain for the remaining term RC
∞

T (RC
∞) = V T

∫ ·
−∞

β(u)g(u, θ0)dF (u)(3.12)

−V T

∫ ·
−∞

∆(u)β(u)A−1(u)

[∫ ∞
u

∆(v)g(v, θ0)

[σ2(v) + ∆2(v)]
dF (v)

]
dF (u)

= V T

∫ ·
−∞

l(u)dF (u),

where the function l is defined in (3.7). Combining the results in (3.10)–(3.12) it follows that

T (R̃∞)
D
= W̃ ◦K + V T

∫ ·
−∞

l(u)dF (u).

Now the second transform defined in (3.8) obviously satisfies

S

(
V T

∫ ·
−∞

l(u)dF (u)

)
= 0,

and similar arguments as in Stute et al. (1998) show

S[T (W̃ ◦K)]
D
= S[W̃ ◦K]

D
= W̃ ◦K.

Consequently, the composition of both transforms yields

(S ◦ T )(R̃∞)
D
= W̃ ◦K

which simplifies to W̃ ◦ F if β(x) = [σ2(x) + ∆2(x)]−1/2. 2
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