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Part I

Introduction





1 Motivation and Outline

He who is certain he knows the ending of
things when he is only beginning them is

either extremely wise or extremely foolish;
no matter which is true, he is certainly

an unhappy man, for he has put a knife in
the heart of wonder.

Robert Paul Williams

Light and sound have been daily attendants of mankind from time immemorial since
they form the basic tools for interpersonal communication and experiencing nature.
Nowadays optics and acoustics have evolved to be two of the main subjects in physics,
still attracting interest of thousands of scientists working on light- and soundrelated
phenomena all over the world. Soundwaves have been investigated in a wide frequency
range in fields like seismo-
logy, medicine and material science, and have been found to offer a variety of possi-
ble applications. The wavelengths thereby cover a range from kilometers down to a
nanometer scale, where the latter have led to the field of terahertz acoustics in solids,
utilizing vibrations with ultimate wavelengths in the order of the atomic distances.
To obtain information about the vibrational spectra in solids, several techniques have
been developed, among of which optical spectroscopy has turned out to be a promising
one.

The rapid developement of optical spectroscopy during the last decades was accel-
erated by more and more advanced laser systems available. The diversity of lasers
thereby reaches from spectrally ultranarrow lasers, with linewidths down to Hz at well
defined frequencies to ultrashort laser pulses, with pulse durations down to attoseconds,
both close to constraints given by fundamental laws of nature. This developement was
driven to a high extent by the progress in semiconductor physics, aiming at applications
in the field of communication and information technologies. In particular miniaturized
semiconductor structures, in which quantum effects became directly accessible required



4 1 Motivation and Outline

highly sophisticated spectroscopic equipment.
Nowadays, it is possible to taylor the properties of these semiconductor nanostructures
to a wide extend, such that it became feasible to study the interaction between various
optically, acoustically and electronically well defined nanostructures with the ambition
to experience nature on a quantum level and to apply the gained knowledge to every-
day life.

This work focuses on the investigation of the impact of acoustic wave packages on
the optical properties of semiconductor nanostructures using optical spectroscopy. In
particular fast modulation processes will be presented, occuring on timescales compa-
rable or even shorter than the typical optical response-, or rather interaction times of
the structures under consideration. The experiments make use of a picosecond laser
ultrasonics technique to generate the acoustic wave packages, which provide a powerful
tool for reaching new acousto-optic and acousto-electro-optic regimes.
In this introductory part I, a reasonable physical background will be given in order
to catch on with the physical context presented in part II. Readers who are familiar
with the principals of ultrafast acoustics, semiconductor microcavity and quantum well
structures as well as with two dimensional cavity polaritons may skip this part.
The introductory part is organized as follows. In Chapter 2 a review over the ba-
sic theoretical aspects of acoustics will be given. As a preface the phonon concept
will be roughly summarized in Chapter 2.1. In Chapter 2.2 the main mechanisms of
the used coherent phonon wavepacket excitation process are presented; its time evo-
lution is discussed in Chapter 2.3, where anharmonicity and dispersion are shown to
lead to distinct regimes concerning acoustic wavepacket propagation. In the subse-
quent Chapter 3 the attention will be on the basic properties of the semiconductor
nanostructures investigated througout this work. In Chapter 3.1 the focus is on the
optical properties of semiconductor Bragg microcavities, quantum wells as well as on
cavity polaritons. In Chapter 3.2 the interaction mechanisms of these structures with
an acoustic wavepacket are described separating acousto-optic and acousto-electro-
optic effects. Chapter 4 comprehends a summary of the theoretical Part I and shows
prospects with regard to possible constitutive experimental implementations.



2 Picosecond Laser Acoustics

Generally vibrations might occur in all physical systems in which a potential land-
scape, which favors a non singular equilibrium state is predominant. If any of theses
systems experiences a small perturbation such that the energy of the system is in-
creased, it will start to oscillate around its equilibrium state, with frequencies that can
be related to the physical properties of the involved objects, as well as to the kind of
perturbation.
In the following chapter an introduction will be given concerning lattice vibrations,
which might occur in semiconductor crystal structures focusing on longitudinal, coher-
ent crystal excitations referred to as coherent longitudinal acoustic phonons. These
excitations will act as the key tool in the modulation processes described in Part II
and are therefore of particular importance in the context of this work. In detail in
Section 2.1 the phonon concept will be reviewed, where the basic idea as well as the
most important phonon properties will be highlighted. In the subsequent Section 2.2
the focus will be on the excitation process of picosecond pulses of coherent longitudinal
acoustic phonons, forming propagating strain waves. Further in Section 2.3 the mech-
anisms of nonlinear and dispersive strain wave propagation will be sketched, leading
to shockwave and acoustic soliton formation.

2.1 The Phonon Concept

In order to describe the lattice dynamics in crystals it is convenient to take advantage
of the adiabatic approximation, that separates the motion of the ionic cores from that
of their valence electrons. Within the adiabatic approximation the electron dynamics
are considered to evolve on timescales three orders of magnitude faster than those of
the ion cores and can be approximated by the corresponding electronic ground state
[1]. Turning now to the lattice dynamics translational symmetrie of the crystal reduces
the problem to the unit cell, which includes all necessary information.
Within the unit cell one might only consider two body interactions [2] writing a poten-
tial U(R) depending on the separation R of the atomic ion cores, or, simply spoken,
the interatomic separation. Expanding this potential in terms of small displacements
u = R − R0 from the equilibrium separation R0, one may write:

U − U(R0) = u

(

∂U

∂R

)

R=R0

+ u2

(

∂2U

∂R2

)

R=R0

+ ... (2.1)

Following Equation 2.1, in second order approximation, the lattice dynamics may be
expressed by a harmonic potential since the linear term vanishes on account of the
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Figure 2.1: Phonon classification:(a)
transverse acoustic phonon (b) longi-
tudinal acoustic phonon (c) transverse
optical phonon (c) longitudinal optical
phonon.

definition of equilibrium. A crystal atom though, in this approximation can be de-
scribed by a three dimensional harmonic oscillator, justifying the application of linear
force models [1]. The electronic contribution thereby enters the model via the phe-
nomenological force constants, whichs physical information might be a nontrivial task
to understand [3][4][5].
Equation 2.1 can be solved by a travelling wave (r-space, t-time) of the form uexp[i(qr−
ωt) + iφ], where q denotes the wave vector, u the amplitude of displacement of the
atoms from the equilibrium position, ω is the angular frequency of the wave with el-
ementary excitation energy ~ω, and φ its phase. This crystal excitation is called a
phonon and describes collective oscillations of the lattice atoms. In general two classes
of phonons excist referred as acoustic phonons and optical phonons, depending on
whether the unit cell atoms oscillate in phase or in antiphase. Within these classes
a phonon is called transverse, if u ⊥ q or longitudinal, if u ‖ q. Figure 2.1 shows a
chart from which all different kinds of phonons can be seen. The occupation of the
different phonon states in thermal equilibrium is governed by the Bose-Einstein statis-
tics, where the relation between the energies ~ω and the wave vector q is called the
phonon dispersion. A calculated phonon dispersion for a GaAs bulk crystal, based on
a one dimensional linear chain model [6][7] is shown in Fig. 2.2. As the model is one
dimensional, only longitudinal phonons appear.

-1.0 -0.5 0.0 0.5 1.0
0

1

2

3

4

5

6

7

8

9

 

 

P
ho

no
n 

Fr
eq

ue
nc

y 
/2

 (T
H

z)

q (units of /a)

GaAs bulk

LO

LA

Figure 2.2: Real part of the phonon disper-
sion in bulk GaAs calculated from a linear
chain model [6]: The interatomic force con-
stant Λ = 90.7 N/m. Further the atom sepa-
ration a = 2.83 Å, the masses mGa = 69.723
m, mAs = 74.923 m (m, atomic mass unit).
(LO) longitudinal optical, (LA) longitudinal
acoustic phonon branch. The gaps at both
sides of the dispersion indicate nonzero imag-
inary parts of q.
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The phonon occupation in thermal equilibrium is usually referred as heat and char-
acterized by the occupation number (i.e. how many phonons are apparent at a certain
energy) given by the Bose-Einstein statistics, and the random phase distribution among
them. If the occupation number differs from the Bose-Einstein statistics, one speaks
about nonequilibrium phonons among of which the coherent nonequilibrium phonons
appear with a well defined phase relationship. Nonequilibrium coherent phonons are
of particular interest, since a manifold of them might show interference effects leading
to notable lattice deformation, locally changing basic properties of the crystal.

2.2 Coherent Phonons

In the previous section the phonon concept was reviewed and coherent phonons were
already highlighted, being in a fixed phase relation to each other. A lot of efforts have
been taken to generate and detect either monochromatic [8][9][10][11], or broadband
coherent phonons [12][13][14][15] in various structures the recent decades. The phonon
frequencies reached up to the terahertz regime, focusing mainly on acousto-optical de-
vices [16][17] or acoustic imaging and material inspection applications [18]. All these
efforts have driven the field of acoustics to ultimate frequencies on the edge of con-
straints given by the lattice dimensions itself, and recently the focus has changed to
tailoring the acoustic properties by building up structures on the nanometer scale.

In this work the main attention will be on the excitation of nonequilibrium longidu-
dinal acoustic phonon wave packages, appearing as well localized strain waves in the
time-space, that propagate with the longitudinal speed of sound in the respective
material. The applied phonon generation technique might be referred as picosecond
ultrasonics and will be explained in the following section following mainly Ref. [12].
For a more detailed analysis of the underlying physical processes see for example Refs.
[19][20][21][22].

2.2.1 Excitation of Ultrashort Coherent Phonon Wavepackets

For simplicity, consider a metal film of thickness d and Reflectivity R, which is hit by
a laser pulse of energy Q directed on an area A with diameter much larger than the
penetration depth of light ζ into the film and the film thickness. Further consider this
laser pulse to be much shorter in time than all relevant scattering mechanisms that
might occur in the metal. Then the energy of this laser pulse will be transferred to the
electron system, and the energy deposition per unit volume will be distributed along
the z-direction (perpendicular to the metal film surface) according to1.

W (z) = C∆T (z) =
(1 − R)Q

Aζ
exp(−z/ζ), (2.2)

1possible diffusion processes are neglected in the following.
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where C denotes the spezific heat. When the lattice and the electron system are
assumed to be in thermal equilibrium the stress-strain relation [23] due to constrained
thermal (isotropic) expansion of the metal can be written as

σij = Cijkl(ηkl − α∆Tδkl). (2.3)

Here ηkl is the strain tensor and α the thermal expansion coefficient of the metal. The
elastic compliance tensor Cijkl (Hooke’s constants), determining the resistivity of the
material to an applied stress, can be written as

Cijkl =
E

2(1 + ν)
(δilδjk + δikδjl) +

Eν

(1 + ν)(1 − ν)
δijδkl, (2.4)

with Young’s Modulus E and Poisson’s Ratio ν, such that the stress-strain Relation 2.3
reads

σij =
E

1 + ν

[

ηij +
ν

1 − 2ν
ηkkδij

]

− Eα∆T

1 − 2ν
δij. (2.5)

Due to the geometrical conditions described above the only components (z-direction)
of the stress (strain) tensor are σ33 (η33). The equation of motion for the overall
displacement though can be written as [24][25]

ρ
∂2u3

∂t2
=

∂σ33

∂z
= 3B

∂

∂z

(

1 − ν

1 + ν

∂u3

∂z
− α∆T (z)

)

, (2.6)

where E = 3B(1− ν) has been replaced by the Bulk Modulus B, η33 = ∂u3/∂z by the
spatial derivative of the displacement in z-direction, and ρ denotes the mass density
of the metal. The solution of Equation 2.6 contains two components, among of which
the propagating part of the strain, launched in z-direction is given by Equation 2.7.
Equation 2.7 describes a bipolar strain wave i.e. with compressive (η(z, t) < 0) and
decompressive (η(z, t) > 0) parts. The waves localization in time-space is given by the
sound velocity vs and the penetration depth ζ, where its amplitude is determined by
the deposited energy density, i.e. the power of the laser used for the excitation process.

η(z, t) = −
(

3(1 − R)QβB

2ACζρv2
s

)

exp[−(z − vst)/ζ]sign(z − vst) (2.7)

The considerations above are summarized in Figure 2.3, where also hot electron dif-
fusion and heat diffusion are sketched leading to a broadening and smoothing of the
injected strain wave depending on the used metal. However, the produced strain wave
will propagate through the metal film and will be reflected and transmitted partially
due to the acoustic impedance missmatch at the interface. The reflection and trans-
mission coefficients related to an acoustic wave of frequency ω, propagating with sound
velocity vi(ω) from material 1 to material 2 with mass densities ρi (i=1,2) expressed
by the acoustic impedances Zi(ω) = ρivi(ω) are given by

R(ω) =
Z2(ω) − Z1(ω)

Z2(ω) + Z1(ω)
, T (ω) =

2Z1(ω)

Z2(ω) + Z1(ω)
. (2.8)

Once the strain wave has passed the interface toward a substrate (i.e. GaAs in this
work) it is free to propagate over distances up to millimeters, depending mainly on the
temperature of the lattice and the involved frequency components.
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t > ζ/vs0 < t < ζ/vs

ζζζζ

lattice

Tla ~ Tel > T0

electrons

Tel ~ Tla > T0

z
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ζζζζ

lattice

Tel > Tla > T0
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z

el-ph-coupling

(~1ps)

hot carrier diffusion
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cold lattice

Tla = T0

hot electrons

Tel >> T0
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t = 0 (laser excitation)
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Figure 2.3: Three stages of the experimental strain wave generation process in the metal film. (a)
The 150fs short excitation laser pulse heats the electron system in the surface region of the metal
film within the penetration depth of light ζ according to Equation 2.2 to several thousand K. (b)
Energy transfer from the electron system to the lattice. Due to thermal expansion of the lattice
a local thermal stress is set up in the lattice in z-direction. The region of stress generation might
be extended by fast heat diffusion or hot (not thermalized) electron diffusion [19] depending on
the material. The time ζ/vs indicates the escape time of the stress induced strainwave from the
heated region (vs-longitudinal sound velocity in the metal). (c) A bipolar strain pulse (red line:
Equation 2.7) has been launched into the deeper part of the metal film. A substantial part of the
energy has transferred to heat, leaving the lattice and the electron system at a temperature higher
than before the excitation process.

2.3 Anharmonicity: Shockwaves and Acoustic

Solitons

In the previous Section 2.2 it was discussed how a propagating strain wave might be
injected into a material using a metal film. The strain thereby has been considered
to be the first order spatial derivative of a lattice displacement originating from co-
herently excited longitudinal acoustic phonons. This section will provide a connection
between the phonon concept, described in Section 2.1 and these strain waves, where
the equation of motion 2.6 will be expressed in terms of energy. In this context,
the harmonic approximation concerning Equation 2.1 will be extended toward higher
order contributions, justifying the treatment of rather high strain amplitudes in an
equation of motion beyond the harmonic approximation. In the end of this section the
Korteweg-de-Vries (KdV) equation will be introduced, which describes the propagation
of nonlinear dispersive strain waves and important features will be discussed.

2.3.1 Concept of Strain Energy

In order to understand the work necessary to elongate or compress a linear elastic
object consider a rod of length L like shown in Fig. 2.4 [26]. The force P necessary to
elongate the rod by ∆L thereby depends linearly on ∆L.
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L

L + LD

A

PP

Figure 2.4: A rod of length L and cross sectional area A.
The force P required to elongate the rod by ∆L.

Keeping in mind that η33 = ∆L/L and σ33 = C̃η33 (compare Equation 2.3) in the
one dimensional case one writes for the energy

U =

∫ Lη33

0

Pd(∆L) =

∫ Lη33

0

AC̃

L
∆Ld(∆L) =

1

2
V C̃η2

33 = WV, (2.9)

where C̃ is an elastic constant and

W =
1

2
σ33η33 (2.10)

denotes the work necessary to elongate a quasi one dimensional rod such that its
deformation is given by η33. The work is stored in the rod as the potential energy of
deformation, which is thought to be completely recoverable by switching off P . The
stress σ now can be identified as the derivative of the energy of deformation with
respect to the deformation (strain), yielding the equation of motion

ρ
∂2u3

∂t2
=

∂

∂z

∂W

∂η33

. (2.11)

Comparing the right hand side of Equation 2.11 with Equation 2.1, it is obvious that
the harmonic phonon approximation is recovered in the linear elastic strain energy
concept, where all changes might be expressed by the local deformation relating neigh-
boring atom displacements to the undisplaced lattice. Note that the phonon dispersion
relation shown in Fig. 2.2 is a result originating from the discrete character of the lat-
tice, which cannot be deduced from the strain energy concept.

2.3.2 Nonlinear Elastic Expansion

Starting from the harmonic potential approximation, it is nearby to take higher order
expansion coefficients into account when dealing with higher local deformation. A
generalized expression of Equation 2.9 including the higher order strain energy then
might be written as

W − W0 = Cijηij +
1

2
Cijklηijηkl +

1

6
Cijklmnηijηklηmn + ... (2.12)

with ηij = (uij + uji + uikukj)/2 and uij = ∂ui/∂rj (rj, directions). The nonlinear
equation of motion up to the second order of the derivatives u then reads

ρ
∂2ui

∂t2
=

∂ujk

∂rl

(Cijkl + upqAijklpq) , (2.13)
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where the coefficients Aijklpq establish the nonlinearity in the system and are given
by second and third order elastic constants (see Equation 2.12)[24][25]. The physical
effects arrising from Equation 2.13 will be illuminated in the next section in a simplified
manner.

2.3.3 Korteweg-de-Vries Equation

In Section 2.2.1 it has been demonstrated that the induced thermal stress using a metal
film and a sufficiently large area of laser excitation will lead to a localized bipolar
deformation in time-space, which at most affects the z-direction i.e. the direction
perpendicular to the metal film surface. This strain wave was thought to be injected
into a substrate in which it might propagate over fairly long distances. In this particular
case Equation 2.13 reduces to [27]

ρ
∂2u

∂t2
=

(

C2 + C3
∂u

∂z

)

∂2u

∂z2
. (2.14)

For simplicity all indices have been omitted, since this equation is a scalar one. In
Equation 2.14 C2 and C3 are combinations of second and third order elastic con-
stants. It follows from Equation 2.14, that a high strain amplitude (∂u/∂z) wave
obeys not a constant sound velocity anymore. Contrary it shows a deformation de-
pendent, generalized sound velocity. Say C3 is negative [24][27], then the compressive
parts (η = ∂u/∂z < 0) of the strain wave propagate faster in time, whereas the de-
compressive parts slow down, yielding a self steepening process of the leading and the
trailing edge of the wave after propagation over long distances due to nonlinear elas-
ticity. The self steepening process resulting in an N -shaped shockwave is visualized in
Figure 2.5.

Figure 2.5: Sketch of the spatial
shape change of a high ampli-
tude strain pulse after propagating
through a nonlinear elastic mate-
rial. (Red curve) Injected strain
pulse, approximated by the deriva-
tive of a gaussian function. Parts
of the wave with η < 0 prop-
agate faster than the longitudi-
nal sound (vs) whereas parts with
η > 0 are slowed down (com-
pare Equation 2.14). (Dashed blue
curve) Nonlinear shockwave after
long propagation distances.

v > vs

v < vs

v = vs

z-direction

h < 0;

h = 0;

h > 0;

v > vs

v < vs

v = vs

z-direction

h < 0;

h = 0;

h > 0;

Note in particular that the slope of the N -wave becomes faster after propagation
at the leading and trailing edges, where it becomes slower in the center of the pulse.
The fast rise at the edges of the pulse indicate high frequency components within the
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fourier spectrum of the pulse. This suggests that a dispersionless treatment of the
wave is no longer valid, since high frequency acoustic phonons propagate slower than
low frequency ones (see also Fig. 2.2). However, since dispersion is a result of the
discrete lattice it has to be added to Equation 2.14 artificially. The highest frequencies
involved are around ∼ THz. Thus the dispersion relation might be expressed as

ω2 = v2
sk

2 − 2vsγk4 + ..., (2.15)

where vs = (C2/ρ)1/2 denotes the linear sound velocity and γ > 0 is the coefficient
of the lowest order dispersion (vs =4.77 km/s; γ = 0.74 in (001) GaAs [13]). The
dispersive part of the motion in this case can be accounted for in Equation 2.13 by
adding a term 2ρvsγ(∂4u/∂z4) to the right hand side [27]. Differentiating with respect
to z and replacing the displacement u by the strain η it follows:

∂2η

∂t2
= B2

1

∂2η

∂z2
+ 2B1B2

∂

∂z

(

η
∂η

∂z

)

+ 2B1B3
∂4η

∂z4
+ ..., (2.16)

where

B1 = vs, B2 = C3/2ρvs, B3 = γ. (2.17)

Equation 2.16 corresponds to the time derivative of the well studied Korteweg- De
Vries Equation (KdV-Equation), and though contains its solutions, namely spatially
unlocalized cnoidal solutions and the localized soliton solutions. Acoustic solitons in
solids have been observed for the first time by H.-Y. Hao & H. J. Maris [27] and
are characterized by high stability and a delicate balance concerning their nonlinear
and dispersive properties. Solitons form the normal modes of the respective nonlinear
system similar to the phonon modes in the linear system and therefore act as nonlinear
crystal excitation with increased sound velocity [28].
Numerically calculated strain pulses with three different amplitudes before and after
propagation through 114 µm GaAs material in (001) direction2 [29] are shown in
Figure 2.6. The chosen incident strain amplitudes cover three distinct regimes where
nonlinear elasticity and dispersion is negligible (Fig. 2.6(a)), nonlinear elasticity is
dominant but dispersion is negligible (Fig. 2.6(b)) and finally both, nonlinear elasticity
and dispersion are of importance during the propagation (Fig. 2.6(c)).

2Calculated by P. J. S. van Capel - Debye Institute, Department of Physics and Astronomy, Univer-

sity of Utrecht, Netherlands
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Figure 2.6: (a) Incident (thin black
line) temporal pulse shape and re-
sulting (thick red line) temporal
pulse shape of a strain pulse after
the propagation through 114 µm
(001) GaAs. Dispersion and non-
linear elastic effects are negligible
at the given strain amplitude re-
sulting from an optical excitation
density on the metal transducer of
P = 1 mJ/cm

2
. (b) Same as (a)

but with increased strain amplitude
(P = 5.1 mJ/cm

2
) and notable

nonlinear elastic effects (N -wave).
(c) Same as (b) but with increased
strain amplitude and notable dis-
persive effects (solitons at P = 10.2

mJ/cm
2
).
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The thin black curves show the incident pulse shapes as injected from the metal
film [20], which show an additional pulse feature compared to the discussion in Sec-
tion 2.2 around 35 ps originating from internal acoustic reflections in the metal film.
The time separation between the first and the second feature corresponds to twice
the propagation time of the pulse through the metal film. The thick red curves show
the transformed pulses after the propagation. From Figure 2.6(a) it is obvious, that
the strain pulse shape is approximately conserved along the propagation through the
material. The pulse is almost linear, and only very weak nonlinear effects cause the
maximum and minimum to diverge slightly. In Figure 2.6(b) the situation strongly
differs. The maxima and minima of the strain pulse diverge by more than 10 ps while
the edges become fairly steep, indicating the behaviour of a nonlinear shockwave in
which the propagation speed depends on the local strain. Dispersive features are only
of minor importance at the beginning of the leading edge and the end of the trailing
edge, where a small peak and weak oscillations show up, respectively. Contrary, at
high initial strain amplitudes (Fig. 2.6(c)) the behaviour of the wave again is quali-
tatively different. The overall pulse shape has spread in time, where the trailing part
shows fast oscillations. The leading part shows three solitons, which have splitted off
during the propagation and travel with a speed considerably higher than the center
of gravity. Since real strain waves scatter on the thermal background phonons during
the propagation through a material, the above assumptions hold for low temperatures
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only. To account for this a term proportional to the third order derivative of the strain
with respect to z might be added to the right hand side of Equation 2.16, yielding
the KdV-Burgers equation [24]. Since the experiments here have been performed at
low temperatures this fact is not further considered throughout this work. All of the
above mentioned three strain regimes might be realized experimentally varying the
excitation laser power on the metal film, and will lead also to various different effects
concerning the detection of the investigated acousto-optic and acousto-electro-optic
effects in Part II of this work. The basic optical properties of the studied structures
will be given in the next Chapter 3.



3 Semiconductor structures

In Chapter 2 the principles of strain pulse generation and propagation have been
reviewed. The second step is to present a basic overview concerning the optical and
acoustic properties of the relevant semiconductor structures investigated in detail in
this work, namely semiconductor quantum wells (QWs) and semiconductor microcav-
ities (MCs). It is crucial to be aware of the mechanisms governing the optical response
of these structures in order to study the interaction with the previously discussed
acoustic pulses. Therefore it will be given an introduction to the optics of MCs and
QWs in Section 3.1 of this chapter, as well as a description of the main principles of
light-matter interaction, governing the coupled quantum well-microcavity dynamics.
Afterwards, information on the interaction mechanism between the acoustic pulses and
the respective semiconductor structure will be provided in Section 3.2, differentiating
displacement- and straininduced phenomena. Additional information on spectroscopic
details will be given in the corresponding chapter of Part II within this work.

3.1 Optics

Since in the 1950s the transistor promised to replace the old fashioned tube tech-
nology, semiconductors have evolved to be one of the main research subjects in solid
state physics, where their electronic properties clearly were in the focus of interest.
The importance of the optical properties of semiconductors was recognized not much
later in the early 1960s when the possibility to fabricate semiconductor lasers was
first discovered, demonstrating the need for a fundamental knowledge concerning the
electro-optic response of semiconductors. Driven by the appearance of modelocked
titanium-sapphire lasersystems in the 1980s, semiconductor optics and electro-optics
nowadays are highly attractive for fundamental physics as well as for industrial appli-
cations, since the end of Moore’s Law’s validity seems to be close in the future. The
need for optical nanoscale devices operating at THz-frequencies has pushed the field
of semiconductor optics to the todays prominence, promising applications in informa-
tion processing and communications. The downscaling process thereby has lead to
heterostructures of various semiconductors with well defined interfaces of monoatomic
layer precision, as well as to the quantum confinement of electronic and optical states
down to zero dimensions, namely semiconductor quantum dots or nanoparticles (elec-
tronic) and photonic crystals (photonic). In the following the properties of MCs and
QWs are discussed taking over the photonic and electronic part in this work, respec-
tively.
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3.1.1 Semiconductor Microcavities

Semiconductor microcavities have been fabricated and studied in various different ways
like metallic and dielectric planar cavities, pillar cavities, microsphere and microdisc
cavities as well as photonic crystal cavities, all aiming at the confinement of light
in certain directions[30][31][32][33][34]. Here, the investigated cavity structures are
formed out of distributed Bragg reflectors (DBRs), acting as mirrors that are positioned
on both sides of a central cavity layer. The DBRs in such cavities usually consist
of periodic stacks of two λ0/4-layers of different refractive indices n1 and n2, where
λ0 is given in the simplest case by the spatial extension of the central cavity layer,
i.e. λ0=ncdc, where dc is the thickness of the central layer. The periodic structure
of the DBRs causes a photonic band gap called stop band, similar to the electronic
band gaps in periodic crystal structures. Photons, propagating in the direction of the
composed periodicity (say z-direction) are hindered to pass the cavity structure and are
reflected efficiently. The reflected amount of light might be close to 100% depending
on the photon energy, the number of stacks and the refractive index missmatch at the
involved material interfaces. A sketch of such a Bragg resonator is shown in Figure 3.1.
The central layer (defect layer) gives rise to a break in the symmetrie (periodicity) of
the structure. The result is a dip in the photonic stop band reflectivity allowing for
spectrally well defined photons to propagate in z-direction within the structure.

n2n1 d
c

l/2-stack central layer

DBR 1 DBR 2

k
z

n2n1 d
c

l/2-stack central layer

DBR 1 DBR 2

k
z

Figure 3.1: Sketch of an optical
Bragg Resonator: (red arrow) Di-
rection of hindered photon propa-
gation; n1 and n2 refractive indices
of the stack materials defining the
thickness of the layers according to
λ0; DBRs forming top and bottom
mirror; dc central layer thickness

The optical response of a stacked structure can be calculated using a transfermatrix
approach matching the boundary conditions of the corresponding electric field on the
interfaces according to Maxwell’s Equations [35][36]. For a TE optical wave (Trans-
verse Electric), on the interface of two optical layers with refractive indices n1, n2,
perpendicular to the layers surfaces, these boundary conditions read (transparency is
assumed in the considered wavelength range)1

E1 + E
′

1 = E2 + E
′

2 (3.1)

1Same for TM waves at normal incidence.
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Figure 3.2: Boundary conditions for a TE wave at the interface i
(say i=1) of two optical layers with refractive indices n1,n2. For-
ward and backward propagating waves are labelled with Ei and
E

′

i respectively. The fields on the left side of the interface are
labelled Ei whereas on the right side the fields are labelled Ei+1.
The dashed arrows indicate the direction of the waves magnetic
field amplitude. The described model assumes the angle of inci-
dence to be zero.

n1 n2

E1

E’1
E2

E’2

H1 + H
′

1 = H2 + H
′

2, (3.2)

where E and H denote the electric and magnetic field of the wave, respectively, ac-
cording to Figure 3.2. Replacing the magnetic field by the electric field assuming
Hi =

√
ǫiEi = niEi it is possible to combine Equations 3.1 and 3.2 in the matrix

equation2
[

1 1

n1 −n1

](

E1

E
′

1

)

=

[

1 1

n2 −n2

](

E2

E
′

2

)

. (3.3)

The dynamical matrices D1(n1) and D2(n2) thereby describe the boundary matching
of forward and backward propagating waves on the left and right side of the interface,
respectively, yielding an equation relating the fields on the left and right side via a
combined matrix

(

E1

E
′

1

)

= D−1
1 (n1)D2(n2)

(

E2

E
′

2

)

. (3.4)

The frequency dependence of the refractive index far off resonance has been assumed to
be of minor importance in the following. Since in an extended multilayered structure
the electro-magnetic wave, propagating through the layers, will change its phase, it
is necessary to relate also the phases on both sides of each layer to each other, i.e.
the phases of the fields Ei and Ei. This will be accounted for using a propagation
matrix Pi including the thicknesses di of the layers and only changing the phase of the
respective wave. The phase change is given by

(

Ei

E
′

i

)

= P (di, ni)

(

Ei

E
′

i

)

=

[

eiφ(di,ni) 0

0 e−iφ(di,ni)

](

Ei

E
′

i

)

, (3.5)

where the phase φi is given by φi = 2πnidi/λ, and λ is the wavelength of the incident
wave. All together the relation between forward and backward propagating waves of
the first and the last (s) interface of a multilayered structure is given by
(

E1(ω)

E
′

1(ω)

)

= D−1
1 (n1)

[

s
∏

i=1

Di(ni)Pi(di, ni, ω)D−1
i (ni)

]

Ds(ns)

(

Es(ω)

E
′

s(ω)

)

(3.6)

2Permeability of the materials is assumed to be µi = 1.
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Figure 3.3: Calculated optical response
of DBR structures using Equation 3.6.
(a) Reflectance of a DBR with 44
GaAs/AlAs λ0/2-layer stacks. A pro-
nounced stop band is visible in the range
from 1.35 eV - 1.55 eV. (b) Energy of
the structure photons according to (a)
in dependence of the normalized photon
wavenumber kz (real part). One corre-
sponds to the brillouin zone edge orig-
inating from the λ0/2 periodicity. (c)
Same as (a) but with a defect layer of
thickness ncdc = λ0 incorporated af-
ter the 20th λ0/2 stack. An additional
sharp feature occours within the stop
band with reflectance smaller than one,
indicating a longitudinally confined pho-
ton mode. A photon with the photon
mode energy might propagate within the
structure in z-direction however with de-
creased speed. The speed thereby corre-
sponds to the spectral width of the pho-
ton mode of the microcavity (not visible
here) and is a measure of ”how often”
the photon will be reflected at the mir-
rors before escaping from the structure.

or
(

E1(ω)

E
′

1(ω)

)

=

[

M11(S, ω) M12(S, ω)

M21(S, ω) M22(S, ω)

](

Es(ω)

E
′

s(ω)

)

, (3.7)

with S, the layered structure of interest and ω, the frequency of the electromagnetic
wave. In particular the reflectance of the structure is given by the squared modulus
of (M21/M11)

2 = rc(ω) (i.e. the squared reflection coefficient of the structure) and its
dispersion is given by the diagonal entries of Mij (Fig. 3.3). The time dependence of
a reflected infinitely short laser pulse is then given by the response [35]

R(t) =

∣

∣

∣

∣

1

2π

∫

res

rc(ω)e−iωtdω

∣

∣

∣

∣

2

, (3.8)

where ”res” denotes the spectral resonance region. An example of calculated reflectance
spectra and dispersion of DBR structures with and without defect layer is shown in
Figure 3.3. Further the matrix Mij(S, ω) containing the optical response to an incident
wave of frequency ω can usually be expressed as Mij(ω) if all structure parameters
are assumed to be constants. However, concerning the experiments in this work this
assumption does not hold, since a strain pulse is known to significantly alter the above
discussed parameters of the microcavity (see Chapter 3.2).
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Figure 3.4: Sketch of a QW structure. (upper part) The
QW material B is sandwiched between the barriers of
material A. (lower part) Corresponding bandstructure
in z-direction in a type-I material composition [38].

A AB

Barrier BarrierQW

CB

VB

3.1.2 Semiconductor Quantum Wells

Where in the preceding section the optical response of an optical resonator was dis-
cussed, which is however a passive device, usually [37] not able to produce the photons
that might be influenced by its presence, in this section the focus will be on an active
medium called a semiconductor quantum well (QW). A QW is able to absorb and emit
energetically well defined photons. In this structure the electronic (and hole) motion is
restricted in one direction due to a composition of different band gap materials, which
constitute a potential offset like sketched in Figure 3.4. This confinement gives rise
to a discretisation of the quantum numbers in the respective direction and a steplike
density of states compared to the square root behaviour in the bulk situation [38][39].
In particular the binding energy of the corresponding exciton (electron-hole) states
[40] in a QW is increased making the resonance a very robust one with regard to the
environmental temperature and applied external fields [41][42]. Further it is possible
to tune the resonance energy of an exciton state by the influence of the confinement
potential, tailoring the potential depth as well as its width [43]. The exciton Hamil-
tonian taking into account one valence and one conduction band within the effective
mass approximation is given in Equation 3.9. The discretization only acts in direction
of the confinement, i.e. the direction in which the different band gap materials have
been grown (say z-direction).

H = − ~
2

2me

∂2

∂z2
e

+ Ve(ze) −
~

2

2mh

∂2

∂z2
h

+ Vh(zh) −
~

2

2µ

(

∂2

∂ρ2
x

+
∂2

∂ρ2
y

)

− Ke2

√

ρ2 + (ze − zh)2

(3.9)
Here me and mh are the electron and hole effective masses in growth direction, respec-
tively, ρ = ρe − ρh is the fraction of the electron-hole distance in the plane of the QW,
µ is the in-plane reduced electron-hole mass and K is a constant. The potentials Ve

and Vh describe the confinement potential due to the band offset in z-direction usually
assumed to be steplike as sketched in Figure 3.4. It can be seen from Equation 3.9 that
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Figure 3.5: Sketch of a two dimensional (zinc blende)
QW bandstructure (three bands). The two hole
bands (dashed line: HH; dotted line: LH) lift their
degeneracy in contrast to the bulk case for kx,y = 0
due to the kz-quantization with different effective
masses m∗

z,HH and m∗

z,LH and the band gap Egap

is effectively increased (EQW
gap ). In particular it is

m∗

z,HH > m∗

z,LH perpendicular to the QW plane,
where m∗

x,y,HH < m∗

x,y,LH in the plane of the QW.
The two valence bands anticross in the full Lut-
tinger description [44].

the exciton solutions might be separable into z- and ρ-direction components depending
on which direction has the largest impact on the coulomb term in the hamiltonian.
However, the excitons get quantized in z-direction if the potential width of Ve,h(ze,h) is
sufficiently small ((ze − zh)

2 << ρ2), which means that the dispersion of the electron
and hole band, taken to be ∼ k2 in the bulk material turns into a constant offset in
z-direction proportional to the inverse electron and hole effective masses [38]. The
two dimensional bandstructure of a QW (zinc blende), including one conduction band
(CB) and two (heavy hole HH, light hole LH) valence bands, is sketched in Figure 3.5
according to the quantized Luttinger Hamiltonian [44]. Later on in this work kx,y will
be assumed to be close to zero in all cases. This leads to two distict exciton resonances
in the optical spectrum, due to the coulomb coupling of the conduction band to the
heavy hole as well as to the light hole bands (see Figure 3.6). A lift of the degeneracy
might also be caused by stress applied to the structure. This may leads to a shift of
the bands due to the materials deformation potentials, yielding a change in exciton
resonance energy. A further discussion of this effect will be presented in Chapter 3.2.
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Figure 3.6: Measured reflectance of a ZnSe QW em-
bedded between ZnMgSSe barriers [29]. Two ex-
citon resonances are seen, namely the HH-exciton
and the LH-exciton at lower and higher energies
respectively.
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The reflectance spectrum shown in Figure 3.6 differs from the simple shape of QW
reflectance as given in references [38] and [35], which can be explained by additional
interferences due to the QW top barrier layer thickness [45]. The spectral shape of the
excitons (Fig. 3.6) can be written as

rQW
i (ω) = 1 + Ai

~(ω − ωi)

Γ2
i + ~2(ω − ωi)2

, (3.10)

where ~ωi is the respective resonance energy (i = LH, HH), Γi denotes the resonances
widths as seen from the measured spectrum, and the Ai are scaling constants.

3.1.3 Principles of Light-Matter Interaction

In this section a basic idea of light-matter interaction will be given, bringing together
the previously discussed MC and QW structures. Consider a QW inside a MC at the
antinode position of the confined light field (center of the defect layer). Matching the
resonance energy of the confined exciton (say HH-exciton) to the confined cavity mode,
it is possible to strongly enhance the light matter coupling, which is - without a cavity
- limited by the QW’s spatial extension. In particular it is possible to reach the strong
coupling regime using a single QW in a planar MC structure as demonstrated by C.
Weisbuch et al. [46].
The regimes of light-matter interaction can be distinguished by the relation of cou-
pling parameters within the considered system. Where the exciton might couple to the
environment by photons, leaving the QW or via interaction with phonons, the cavity
will release photons with a coupling strength to the environment corresponding to its
capability to confine photons as described in Chapter 3.1.1. However if these mecha-
nisms are predominant in comparison to the exciton-cavity coupling, one speaks about
the weak coupling regime, where the cavity mode principally acts as a filter function
for the exciton. Nevertheless the radiative properties of the exciton will be altered due
to the cavity’s influence on the optical density of states, which may culminate in the
purcell effect in completely confined photonic cavities [47]. If on the other hand a pho-
ton at resonance energy has the possibility to interact with the QW-exciton sufficiently
often due to a high internal reflection propability at the cavity walls, and likewise the
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photon absorption propability is efficient, the photon may be absorbed and reemitted
several times before leaving the cavity. The state of such a system is no longer a pure
photonic or excitonic state. Rather, the mixture of both states is called a polariton
state i.e. a strongly coupled light-matter state, that manifests in an upper polariton
and a lower polariton branch, in the following refered as upper (UP) and lower (LP)
polariton. The energies of these lower and upper polariton branches are shifted with
respect to the uncoupled cavity and exciton resonances towards lower (LP) and higher
(UP) energies.
Here the main attention will be on the polariton energies and their photonic and exci-
tonic character. To this extend the main results from a (semi) classical treatment will
be introduced.
From the classical point of view it is apparent that the modes of two coupled ideal
oscillators will not exhibit the same energies, irrespective of how the parameters of
the system are changed. This phenomenon is known as the normal mode anticrossing,
where the normal modes are assumed to be the new eigenstates of the coupled sys-
tem. Assuming the exciton and the photon state in the cavity to be oscillators with
the complex frequencies ωl − iγl (l = x and l = c for the exciton and photon state
respectively), one writes the coupled mode equation as [35][38]

(ωx − iγx − ω)(ωc − iγc − ω) = V 2. (3.11)

In Equation 3.11 the imaginary parts γl of the uncoupled exciton polarisation and
photon eigenfrequencies introduce the coupling to the environment of each mode (ex-
citon nonradiative coupling). The coupling parameter V describes the exciton photon
interaction strength. Solving Equation 3.11 with respect to ω yields two polariton
frequencies

ωUP,LP =
ωx + ωc

2
− i

2
(γx + γc)

±
[

(

ωx − ωc

2

)2

+ V 2 −
(

γx − γc

2

)2

+
i

2
(ωx − ωc)(γc − γx)

]
1

2 (3.12)

as long as the squareroot term remains a real term. The polariton energies from
Equation 3.12 might be written as ~ωUP,LP = EUP,LP(Ex, Ec, γx, γc, V ). Defining the
detuning

∆d = Ex − Ec (3.13)

one may write
EUP(∆d = 0) − ELP(∆d = 0) = 2~ΩR, (3.14)

where ΩR is the so called Rabi-Frequency of the system, defining the minimum nor-
mal mode splitting as well as the frequency, with which the probability to find one
of the polariton branches in a certain superposition state has swapped to the other
branch and back. 2ΩR constitutes the beating frequency of both polariton branches.
The polariton branches consist of a photonic and an excitonic part with periodically
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oscillating propability amplitudes in time. The wavefunction of the overall polariton
state reads [48]

|Ψ〉 = |UP〉 + |LP〉 = (a1(∆d)|C〉 + a2(∆d)|X〉) + (a1(∆d)|X〉 − a2(∆d)|C〉) (3.15)

with |X〉, |C〉 beeing the uncoupled exciton and cavity (photon) state vectors, and the
Hopfield Coefficients [49] a1(∆d) and a2(∆d), which constitute the detuning dependent
UP excitonic and photonic character, respectively (vice versa for the LP). Explicitly,
the Hopfield Coefficient in the considered system read

a1 =
V

√

2∆1(∆1 + ∆2)
, a2 =

√

∆1 + ∆2

2∆2

,

∆1 = (ωx − ωc)/2, ∆2 =
√

∆2
1 + V 2.

(3.16)

Figure 3.7(a) shows the dependence of the polariton energies on the underlying exciton
energy at fixed Ec. At resonance, i.e. ∆d = 0, the two branches anticross with a
minimum energy distance of 2~ΩR. In contrast at increasing large values of ∆d (far
from resonance) the two polariton energies asymptotically approach the corresponding
uncoupled state energies and likewise adopt the corresponding photonic (excitonic)
content (Fig. 3.7(b)). At very large detunings Equations 3.12, 3.15 and 3.16 recover
completely the underlying uncoupled exciton and cavity photon states.

Figure 3.7: Calculated polariton properties ac-
cording to Equations 3.12 and 3.16. The pa-
rameter have been chosen to be in agreement
with the sample from Chapter 9 at zero angle
of incidence. (a) UP and LP polariton ener-
gies in dependence on the underlying exciton
energy Ex (dotted line). The cavity photon
energy Ec (dashed line) is held constant. The
polariton energies anticross at resonance i.e.
Ex = Ec with a splitting according to Equa-
tion 3.14. (b) Same dependence as in (a) but
for the Hopfield Coefficients |a1|2 and |a2|2 fol-
lowing Equation 3.16.
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3.2 Acousto-Optics and Acousto-Opto-Electronics

In the following, the concepts introduced in the preceding chapters will be merged
to provide a basic knowledge about the interaction of picosecond acoustic pulses, like
described in Chapter 2, with the introduced semiconductor structures.
The starting point will be the semiconductor Bragg-Resonator, i.e. an optical micro-
cavity, which is subject to two interaction mechanisms. Beside the changes in the
spatial dimensions of the periodic structure due to the dynamical displacement of the
interfaces, the photoelastic effect will be discussed, changing the refractive index of
each layer in the structure due to the strain. Further, the impact of the acoustic
pulse on the bandstructure of the investigated semiconductor quantum wells will be
discussed. The resonance energy shifts of the respective quantum well exciton reso-
nance might be described by an effective deformation potential, which connects the
bandenergies with the local strain.

3.2.1 Semiconductor Microcavities

The semiconductor Bragg-Microcavity, as described in Chapter 3.1.1, was shown to
exhibit a sharp resonance within a photonic stop band in the growth direction of
the periodic layers. The spectrum was explained by the interference of forward and
backward propagating electromagnetic waves, reflected and transmitted at the Bragg-
Resonators interfaces. Since coherent phonons likewise are able to show interference
effects, according to Chapter 2.1 and Equation 2.8, similar restrictions will be present
for the phonons sent to a Bragg-Resonator. The acoustic frequencies comprised in the
applied acoustic pulses, ranging continuously up to more than a terahertz, will - in
contrast to the optics - cover several tens of phononic stop bands. An example of a
calculated phononic bandstructure of a GaAs/AlAs infinite superlattice is shown in
Figure 3.8 [6]. The phonon dispersions of the bulk semiconductors are shown on the
left (panel(a)), and the corresponding zonefolded phonon dispersion is shown on the
right (panel(b)) side, originating from the additional optical period of the superlattice.
Similar to the photons, the phonons on the zone edges are prohibited to propagate in
the growth direction.
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Figure 3.8: Phonon disper-
sion in an optical superlat-
tice: (a) Bulk GaAs and AlAs
LA phonon dispersion as in
Fig. 2.2. Additional parame-
ters: aluminum mass mAl =
26.982 m, force constant AlAs
ΛAlAs=95.4 N/m. (b) Bulk
dispersions as in (a) and the
zonefolded LA phonon disper-
sion for an infinite superlattice
yielded from the layer thick-
nesses dGaAs = 60.07 nm and
dAlAs = 73.08 nm. (Dashed
line) Zone folded Brillouin-
Zone (ZFBZ) edge correspond-
ing to the periodicity dAlAs +
dGaAs. Phononic stop bands
occour at the center and the
edge of the ZFBZ.
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Disregarding the influence of the acoustic pulse on the structure as well as nonlinear-
ity (i.e. independent phonons), the missing and confined phonons change the temporal
shape of the red pulse from Figure 2.6(c) within the central λ-cavity of the structure
- discussed in more detail in Chapter 8 - to the shape shown in Figure 3.9 [50]3.

Figure 3.9: Short term temporal
acoustic pulse shape in the middle
of a GaAs/AlAs λ-cavity (see Chap-
ter 8) corresponing to an acoustic
pulse sent to the cavity as shown in
Fig. 2.6(c)(red pulse). Black curve
shows the strain profile [50]; grey
curve shows the displacement pro-
file.
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Now, the question how the interaction of the acoustic pulse with the microcavity
is established, or more specific, how the optical properties of the Bragg-Resonator
might be changed due to the presence of an acoustic pulse is adressed. The obvious
mechanism is the displacement of the interfaces constituting the structure, since the
interface positions determine the interference pattern of the electromagnetic field ac-
cording to Equation 3.6. A sketch of a Bragg-Resonator consisting of two materials

3Calculated by B. A. Glavin - Institute of Semiconductor Physics, National Academy of Science,

Kiev, Ukraine.
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Figure 3.10: Sketch of a Bragg-
Resonator, influenced by an acous-
tic pulse concerning the displace-
ment profile. The pulse propagates
with velocity vs from left to right
and subsequently moves the inter-
faces to the right side changing the
respective layer thicknesses. The
typical displacement amplitudes are
∼ 0.01 nm [51].

(say material I and material II) is shown in Figure 3.10. The dynamical displacement,
propagating from left to right, subsequently shifts the interfaces out of their equilib-
rium positions, where - depending on the spatial width of the acoustic pulse - one or
more interfaces might be affected at once. As a consequence the right sided layer of
a respective interface shrinks where the left sided one is expanded. The interference
pattern though is expected to change and so the optical response of the microcavity.
This purely geometrical aspect already gives an impression of the main changes in the
optical response. In case the λ-cavity is shrinked one expects a shift of the cavity
mode towards higher energies, if one assumes that the main contribution of an energy
shift of the cavity mode is determined by the λ-cavity dynamical thickness. However
the correct dependence might be calculated using Equation 3.6 with time dependent
interface positions according to the propagating acoustic pulse. Since the reflected
light polarisation depends also on the position within the stop band one might expect
also changes in the polarisation of the resonance reflectivity [35].
Furthermore it is seen in Equation 3.6, that the optical response also depends on the
refractive index n, which in the stationary case alternates with the periodicity of the
Bragg-Mirrors except in the λ-cavity. The thicknesses di of the layers are matched such
that the products dini are one quarter of dcnc. The products dini are also known as the
optical thicknesses of the respective layers i and are changed due to the displacement
of the interfaces as described above as well as to the change in the refractive indices,
caused by the local strain of the acoustic pulse. The latter effect is known as the
elasto-optic (or strain-optic, piezo-optic, acousto-optic) effect, which in general might
be written as [52]

∆

(

1

ǫ

)

ij

= −∆ǫij

ǫiiǫjj

=
∑

kl

pijklηkl, (3.17)

where ǫij and ηkl denote the dielectric and the strain tensor respectively. The property
pijkl is known as the photo-elastic tensor [53] and describes the changes in the dielectric
tensor due to an applied strain. Neglecting absorption, Expression 3.17 might be
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simplified to the first order in matrix notation concerning zinc-blende structures to

2nx∆nx = −n4
xpzz,xηzz. (3.18)

In Equation 3.18 the additional assumtions of uniaxial strain in the growth direction
(say zz-direction) of the structure and the case of normal incidence of linearly polarized
light have been made, yielding the only photo-elastic constant pzz,x to be left. The
constant pzz,x describes the influence of the uniaxial strain ηzz on the response of the
transverse electric field. The influence of the local strain on the cavity layers is sketched
in Figure 3.11, where pzz,x is in the order of ∼ 0.1 and has been taken to be negative
[54]. The dashed blue line indicates the equlibrium values of the refractive indices in
the different layers where the solid blue lines indicate the respective average changes.
The justification of the average is given by the altered average optical thickness of
the layer, influencing the interference pattern of the incident light. In fact in this
simplification no effects of propagating strain are present but time dependent optical
thicknesses. A decreased refractive index means according to the above discussion that
at a time when the compressive (leading) part of the strain reaches the λ-cavity the
optical length will be decreased due to the displacement and due to the refractive index
change in a similar way. Experimental details of the modulation process of the optical
properties of a Bragg-Resonator will be discussed in Part II of this work.

II III I

n2 > n2
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Figure 3.11: Sketch of the strain induced changes of the refractive index. The compressive strain
reduces the equlibrium refractive index (dashed blue line) to lower values, while it is increased by
the extensive part of the strain following Equation 3.18. The optical length of the layers change
according to the strain induced average refractive index (solid blue lines).

3.2.2 Semiconductor Quantum Wells

In order to explain the electron-acoustic phonon interaction in a semiconductor, one
needs to remind the adiabatic approximation concerning the atomic and electronic
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systems like described in Chapter 2.1. The electronic energies in this approximation
only depend on the ”fixed” atom positions Ri (i = 1, 2, ..., N) at any considered time
and might be written [55]

Enk = Enk(R1, R2, ..., RN ), (3.19)

where n and k are the electronic bandindex and wave vektor respectively; N denotes
the number of participating atoms. The change in the electronic energies due to a
vibration consequently can be expressed via the displacement ui of the lattice atoms
as

(

∂Enk

∂Ri

)

ui. (3.20)

It is obvious that if the phonon wavenumber q is equal to zero, no energy changes will
appear since the crystal is displaced as a whole. Another necessary condition therefore
is a non-zero deformation, i.e. a spatial gradient concerning the atom displacements.
This gradient is described by the strain tensor ηij discussed in the previous chapters.
In the linear approximation [56] the strain wave (see 2.2.1) induced energy change of
an exciton transition, which is constituted by the energy change in the conduction
band as well as in the respective valence bands (see 3.1.2) might be written as

∆Ei
X(t) = aiηzz(t) (3.21)

with ai, being the overall deformation potential constants (i = HH, LH), connecting
the strain with the band energies. The constants ai comprise hydrostatic and tetra-
gonal deformation potential constants concerning electrons and holes. The latter is
responsible for a symmetry change in the crystal and therefore causes a lift of the
degeneracy of the bulk heavy and light hole bands at k = 0 [57] similar to that induced
by the dimensional feature discussed before (see Figure 3.5). The order of magnitude of
the deformation potential a is ∼ 10 eV in most semiconductors [55], leading to expected
resonance energy shifts of the exciton transitions of ∼ 10 meV within the considered
strain conditions. Since in this work it is not possible to distinguish between different
kinds of deformation potential constants, because only the exciton transition energy
is considered, the description of deformation potential interaction will be restricted to
the constant a. It is important to notice that a clear optical resonance energy response
to a local dynamical strain in a quantum well is only possible due to the nanoscale of
the QW-structure and is limited when the spatial variation of the strain gets shorter
than the QW thickness.



4 Summary and Experimental

Prospects

Summarizing the introductory Part I, an overview was concerning the main physi-
cal principals, necessary to understand the effect of a spatio-temporal localized strain
wave on the optical properties of semiconductor microcavities, semiconductor quantum
wells and the regarding optically coupled system was provided.
It was shown in Chapter 2 that the phonon concept, i.e. the theory of linear elasticity
is a good starting point to derive the propagation of laser excited coherent LA phonon
wavepackets, but limitations of this point of view are present at elevated strain ampli-
tudes, that require a nonlinear description of lattice deformation. As a special feature
of nonlinear elastic waves, the formation of shockwave fronts has been discussed. The
dispersive effects in a shock wave thereby might cause the formation of supersonic
solitary waves called acoustic solitons within the Korteweg- de Vries description of the
dynamical strain.
In Chapter 3 the optical properties of semiconductor microcavities and semiconductor
quantum wells have been reviewed, focusing on the reflectance spectra and the reso-
nance reflectance time evolution. Further important features of the coupled quantum
well exciton - cavity photon system were presented. Thereby the properties of cavity
polaritons have been highlighted, being the new normal modes of the coupled system.
In the last sections of Chapter 3 possible interaction mechanisms of the strain wave
with the semiconductor structures have been considered. It turned out that for the
Bragg microcavity, as a purely photonic system, the dynamical interface displacement
as well as the photoelastic effect may alter the photonic mode energy in dependence of
the strain wave. The interaction mechanism for the quantum well exciton is governed
by the deformation potential interaction, defining the electron and hole band energies
in dependence of the dynamical strain wave.
It is straight forward that other prospective interaction mechanisms occur in struc-
tures where for example piezoelectricity or magnetostriction are present. Also laser
properties might depend on the strain application. An outlook concerning possibilities
of the here applied techniques concerning different structures not considered in detail
within this work will be given in the end of Part II.
There, the main questions to be answered are in which way, how fast and to what
extend is it possible to modulate the optical resonance energies of the discussed struc-
tures using a strain wave. What conditions must be fullfilled for maximum modulation
amplitudes and what are the restrictions? Which timescales play a role concerning the
outcoming experimental results and how can these timescales be tailored? How and
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to what extend can the light matter interaction in coupled systems be altered? Is it
also possible to alter the radiative emission dynamics of a semiconductor system, to
increase or decrease the amount of radiated intensity in dependence of the strain wave?
These questions will be answered after the discussion of the experimental results in
Part II. It will be shown that utilizing ultrafast modulation processes due to a strain
wave, new regimes might be entered concerning the speed of the modulation of an
optical resonance and the light matter interaction in a semiconductor. New strong fea-
tures show up in the optical spectra, that can be related unambiguously to the strain
waves temporal evoution.



Part II

Ultrafast Piezospectroscopy





5 Outline and Experiments

Turning now to the experimental point of view, in this first chapter of Part II a
description of the used experimental setup will be given and the important timescales
discussed in the following chapters will be introduced. Where this chapter is meant to
give an overview with regard to the experimental method, details will be clearified in
the respective chapters, which to a wide extend can be read independently with the
focus on the chosen topic. However cross references will be given justifying the steps of
argumentation, constituting to an overall understanding of the impact of strain waves
on semiconductor microcavity structures.
Chapter 6 contains an analysis of the spectral response of a semiconductor Bragg
resonator, as introduced in 3.1.1, to a propagating strain wave. Thereby the possibility
of optical bandpass switching in resonator structures will be highlighted. In Chapter 7 a
semiconductor quantum well acts as the object of modulation showing strong spectral
effects due to the coherence time of the exciton transition, where in Chapter 8 the
previously gained knowledge will be used to interpret the obtained results from a
quantum well embedded in a Bragg resonator, reaching a new diabatic regime of optical
resonance energy modulation. In Chapter 9 data will be provided, where the ultimate
limits of strong and weak light matter interaction are reached (Chapter 3.1.3). In
all of these chapters it is made use of spectral reflectance spectroscopy whereas in
Chapter 10 the modulation of radiated spontaneous photoluminescense from a strongly
coupled microcavity system is investigated. In Chapter 11 the results of Part II will
be summarized and prospects will be given concerning future developement of utrafast
piezospectroscopy. In particular the open questions arising from Chapter 4 will be
under discussion.

5.1 Experimental Setup

The experimental setup consists essentially of a laser system, a cryogenic system and a
detection scheme, all of which might be modified slightly in order to fullfill the required
experimental conditions, e.g. the spectral region or the desired power level of the acous-
tic and optical excitation processes. A sketch of the setup is shown in Figure 5.1. The
heart of the laser system is a Coherent RegA 9000 regenerative optical amplifier, that
intensifies the nanojule femtosecond light pulses from a standard titanium:sapphire
source (repetition rate: 80 MHz) in order to reach femtosecond microjule pulses with
a repetition rate between 50 kHz and 250 kHz preferentially at a wavelength of 800
nm. This is in particular desired for the excitation of high amplitude, nonlinear strain
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Figure 5.1: Experimental
setup as described in the
text: RegA: regenera-
tive amplifier; OPA: op-
tical parametric ampli-
fier; SHG: second har-
monic crystal; SAPPH:
sapphire crystal; CCD:
charge coupled device; T :
transducer; S: semi-
conductor structure; BS:
beamsplitter; M: Mirror;
td, τ : see table 5.1; ex-
changable: (OPA, SHG,
SAPPH)* ; (CCD, Streak
Camera)**; red curve:
propagating strain wave.

Reg A

OPA*,
SHG,

SAPPH

BS/M

M

SF

fixed beam delay path t

variable beam delay td

Spectrometer CCD**

bath cryostat

T

S

sample

waves as described in Chapter 2.2. The output pulses of the RegA might be split using
a beamsplitter, sending one part of the pulse through a nonlinear medium like a sap-
phire or an second harmonic generating (indicated as SAPPH and SHG) crystal and
the other part - via a variable delay (td) - directly focused to the aluminum transducer.
The transducer is deposited on the backside of each sample like shown in the inset of
Figure 5.1. T and S here denote the metal transducer and the semiconductor structure
under consideration, respectively. Alternatively the RegA output pulses can be sent to
an optical parametric amplifier (OPA), enabling for a tunable frequency conversion in
the visible and the near infrared spectral region. The OPA has an additional residual
pump laser ouput, which exhibits sufficiently intense pulses for the strain wave excita-
tion (dashed red line).
The cryogenic system typically consists of a bath cryostat, allowing for temperature
control inbetween 2 K and room temperature, where also the detection angle relative to
the surface of the samples can be controlled. After passing a fixed delay pass τ , which
corresponds to the time the strain wave needs to travel from T to S, the conditioned
second beam, e.g. the one sent through the SAPPH crystall, is focused opposite to the
acoustic wave excitation spot onto the frontside of the sample (toward S) right onto
the detection line. The detection line consists of a spatial filter as the main element in
order to control the detected light cone.
Finally the reflected (or emitted) light from the sample is sent towards the detection
apparatus, where a 0.5 m grating spectrometer followed by a CCD camera or a Streak
Camera is used in order to detect the reflectance spectrum or the time resolved lumi-
nescence originating from the sample, respectively. A more detailed description of the
measured signal properties and the relevant timescales is given in the next section.
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Table 5.1: Important time definitions and timescales in this work

quantity (time) explanation typical timescale/range

τ strain wave propagation > 20 ns

td variable time delay < 3 ns

τl luminescense decay time < 1 ns

τc optical coherence decay time < 10 ps

δtexc excitation pulse duration < 200 fs

texc(t,t0) time of optical excitation

5.2 Excitation and Detection

The properties and decay times of the detected signal will be shown to be of ma-
jor importance for the experimental observations presented in Part II. Therefore a
preliminary discussion is provided in this section to illustrate the basic experimental
idea, before being discussed in more detail in the respective chapter. A scheme of the
excitation processes of the strain wave and the optical signals as well as the related
time quantities are shown in Figure 5.2. The corresponding timescales are given in
Table 5.1. The strain wave is excited in the aluminum transducer and takes a time
τ for propagating through the (GaAs) substrate of the sample before it reaches the
semiconductor structure (see Fig. 5.1 (sample)). The propagation time τ is approxi-
mately 20 ns for a 100 µm thick GaAs substrate, assuming the longitudinal speed of
sound to be 4800 m/s [58]. The variable time delay td offers the possibility to vary the
overall delay between the strain wave excitation and the optical excitation. The optical
excitation process at texc though, can be realized at any point in time concerning the
passing strain wave at the respective semiconductor structure.
An important property of the detection process is the decay time of the optical exci-
tation, which is given by the coherence time of the excited electromagnetic resonance
polarisation τc (see also Chapters 3.1.1 and 3.1.2) or the radiative decay time of the
excited photoluminescence τl in case of reflectance or photoluminescense, respectively
(also referred to as t2 and t1). The timescales thereby can vary significantly in differ-
ent experiments. Changing the resonance energy during the respective decay will be
shown to potentially have influence on the measured (fourier) spectra under certain
experimental conditions, which will be discussed in the following chapters (see box
in the upper panel of Fig. 5.2). Thereby, it is obvious, that the slope of the strain
(displacement) wave is a measure of how fast the system is changed at a certain time
and will therefore be an important parameter in the evaluation of the experimental
data.
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Figure 5.2: Scheme for the time relations of the excitation and the detection processes. Upper panel:
optical excitation and decay process; lower panel: corresponding time evolution of the strain wave.
In the box of the upper panel the detected time window for the coherent electromagnetic field
decay (blue line) and alternatively the emitted luminescense intensity (black line) are given.



6 Optical Bandpass Switching in a

Semiconductor Microcavity

Optical resonators and in particular the Bragg structures introduced in Chap-
ter 3.1.1 have gained a lot of interest due to their ability to efficiently confine light.
Improvements of the growth procedure nowadays have led to spectrally sharp cavity
modes thats quality factors may reach values up to 105 spectrally surrounded by effec-
tive stop bands with close to unity reflectance [34][59]. The so formed optical bandpass
though is able to filter a well defined photon energy and is defined by the optical di-
mensions of the Bragg structures. It is expected that such a structure shows a notable
optical response to a propagating strain wave, altering the refractive indices of the
layers and the positions of the interfaces (see Chapter 3.2), such that a switching of
the transmission energy becomes feasible.
In this chapter reflectance spectra of the cavity mode in a II-VI semiconductor based
planar microcavity, that is modulated by a strain pulse, will be presented. The mod-
ulation occurs when the strain pulse passes interfaces of the layered cavity structure
at which the electric field has an antinode. Maximum modulation is reached when
the pulse enters or leaves the central cavity layer. The mode shifts in the cavity with
a finesse of about 2000 are comparable to its mode linewidth, which shows that the
proposed technique is prospective for ultrafast optical switching.
Modulation of periodic structures have been achieved up to the MHz regime [60][17]
using piezo-electric transducer techniques whereas the presented data here show mod-
ulations in the subterahertz regime, entering a new timescale concerning acoustic ma-
nipulation of photonic structures. In contrast to earlier experiments, investigating the
elastic properties of semiconductor layered structures and phononic band gap materials
[61][62][63][11][64][65][66], here the focus will be on the changes in the spectral optical
response, where a maximum cavity mode energy shift of ∼ 1 meV is reached during
tens of picoseconds [51].

6.1 Sample and Experiment

A scheme of the experimental configuration and the sample structure is shown in Fig.
6.1(a). The central ZnS0.06Se0.94 layer of the studied λ-cavity has a size of 196 nm, cor-
responding to the targeted wavelength of the cavity mode and is sandwiched between
two DBRs formed by periodic stacks consisting of 18.5 (on the substrate side) and 15
(on the surface side) pairs of λ/4 layers of high (47 nm ZnS0.06Se0.94, nh = 2.684) and
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low (60.3 nm MgS/ZnCdSe superlattice, nl = 2.082) refractive index materials [67]1.
The sample was grown by MBE on a 400 µm thick (001)-oriented GaAs substrate.
The λ-cavity contains also three ZnCdSSe quantum wells around the central antinode
position of the confined light field, whichs exciton transitions are in resonance with
the cavity mode at room temperature. However, at cryogenic temperatures there is a
50 meV detuning of the quantum well exciton resonances to higher energies relative
to the cavity mode [68], so that quantum well states do not need to be considered for
the present experiments. A reflectance spectrum of the cavity at T = 10 K is provided
in Fig. 6.1(b), showing the cavity mode at the energy E0 = 2.470 eV. The spectral
linewidth of the cavity mode is δE = 1.2 meV (spectral resolution 0.16 meV) leads to
a quality factor Q = E0/δE ∼ 2000.
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Figure 6.1: (a) Scheme of the experimental setup and sample structure consisting of the aluminum
transducer, the GaAs substrate and the cavity, sandwiched between two Bragg mirrors. The
indicated interfaces correspond to the antinodes of the confined electric field (modulus sketched by
the blue solid curve) as described in the text. The displacement pulse is injected via a laser pulse,
indicated as an arrow at the left side. Right arrows show the white laser pulses for probing the
reflectance spectrum. (b) Reflectance spectrum from the microcavity structure without influence
of the displacement pulse. (c) Typical temporal and spatial shape of the displacement pulse (black
line) and the corresponding strain (grey line) during propagation through the sample. The dashed
line indicates zero displacement/strain.

On the backside of the substrate a 100 nm thin aluminum film was deposited, af-
ter polishing the substrate down to a thickness of 100 µm. The film serves as the

1The refractive indices nl and nh are valid for a temperature T = 10 K and a photon energy
~ωp = 2.431 eV
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transducer for the injection of the picosecond acoustic pulses into the GaAs substrate
according to Chapter 2.2 (see also Fig. 6.1(a)). These pulses are generated by hitting
the transducer with 150 fs short laser pulses (central wavelength 800 nm), emitted at
a repetition rate of 100 kHz by a regenerative amplifier. The average power incident
on the sample did not exceed 130 mW. A picosecond acoustic pulse is injected into
the semiconductor substrate due to fast thermal expansion of the Al film after each
excitation [19][21] (also referred to as pump). This pulse, consisting of a coherent
acoustic wavepacket, propagates through the substrate with the longitudinal speed of
sound (vLA = 4800 m/s in GaAs) such that it reaches the cavity structure after a prop-
agation time ∼ 20 ns. The performance of the experiment in a cryogenic environment
ensures that damping of the acoustic wave packet due to anharmonic interaction with
thermal phonons is negligible [20]. The experiments were performed in a bath cryostat
in which the sample was efficiently cooled by helium vapour. The temperature was
measured by a sensor near the sample and stabilized at T = 10 K using a manostat,
where no integrated temperature rise due to the optical pump excitation was observed.
Figure 6.1(c) shows a typical temporal profile of a displacement pulse and the accom-
panying strain propagating in the GaAs substrate calculated according to Ref.[29],
which was discussed earlier in this work (Chapter 2.3.3). The dominant part of the
displacement pulse can be well modelled by a Gaussian function. The small negative
dip at 55 ps corresponds to a displacement resulting from internal reflections in the Al
film. The displacement amplitude is on the order of picometer for typical optical pump
excitation densities P (1-10 mJ/cm2) on the transducer, where the strain amplitude is
10−4 - 10−3. The duration of the leading part of the pulse is about 20 ps corresponding
to a spatial extension of 100 nm. The heat pulse, which is generated in the metal
film in parallel with the displacement pulse is known to reach the opposite side of the
substrate essentially later than the coherent pulse [69] so that it does not have to be
considered further in the context of the following discussion.
After passing the GaAs substrate the acoustic pulse first reaches the left DBR of the
microcavity (see Fig. 6.1(a)), then enters the central layer before reaching the right
DBR. The measurement of the effects induced by the acoustic pulse on the optical spec-
trum of the microcavity is realized by recording the spectral reflectance spectrum using
white light pulses originating from the same laser that excites the acoustic pulses in the
transducer. The white light is generated by splitting off a part of the pulse emitted by
the regenerative amplifier and sending it through a sapphire crystal (see Fig. 5.1). The
white light pulse is reflected from the microcavity at variable time delays t, where the
movement steps of the variable pump time delay provide sampling steps of δtd = 300
fs2.

6.2 Acoustic Pulse Induced Effects

Figure 6.2(a) shows a contour plot of experimentally measured reflectance spectra as a
function of the delay time when a laser pulse with an energy density of 6 mJ/cm2 per

2For simplicity the subscript in texc will be omitted in the following.
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pulse hits the transducer. The delay time t = 0 shown by the dashed vertical line has
been defined as the time when the maximum of the displacement profile of the pulse
passes the middle of the cavity (at 6 mJ/cm2). Note that the fixed delay time τ will
be omitted.

(a)

(b)

Figure 6.2: (a) Spectral/temporal
contour plot of the reflectance in
presence of the displacement pulse
propagating through the structure
measured at a laser energy density
of P = 6 mJ/cm

2
on the trans-

ducer (T = 10 K). The black line
shows the transfer matrix calcula-
tion of the time evolution of the res-
onance mode energy for a Gaussian
shaped displacement pulse prop-
agating with a velocity of 5365
m/s. The vertical dashed line in-
dicates the time, when the mid-
dle of the cavity is maximum dis-
placed. (b) Calculated energy re-
sponse based on the displacement
(dashed black curve), the photoe-
lastic effect (dashed grey curve) and
the combined response like shown in
panel (a).

At times well before t = 0, the spectrum consists of the cavity mode, which for
delays up to t = −150 ps basically undergoes no changes, showing that the acoustic
pulse does not yet influence the microcavity within the experimental accuracy. At
later times a modulation of the cavity mode is seen, which continuously becomes more
pronounced up to t ∼ −20 ps and shows a quasi-periodic temporal structure with
repeated shifts towards higher energies compared to the unperturbed case. Maxima of
the resonance energy modulation are reached at times, that are equidistantly spaced
with a separation of 20 ps. The amplitude of the higher energy shifts has its maximum
for the modulation peak at t ∼ −20 ps and is equal to ∆E = 0.28 meV. For later
times t > 0 the mode shifts to lower energies by comparable amplitudes, but the
temporal evolution of the modulation becomes more complicated and in particular the
quasi-periodicity is lost. Figure 6.3(a) shows the corresponding reflectance plot for the
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signal measured at twice higher excitation density P . The modulation of the resonance
energy to higher energies is stronger and reaches a maximum of ∆E = 0.47 meV, where
the oscillations at t < 0 are not so pronounced as at lower excitation density (compare
Figs. 6.2(a) and 6.3(a)). The inset in Fig. 6.3(b) shows the dependence of the maximum
higher energy shift ∆E on P . It is seen that for P < 9 mJ/cm2 this dependence is
linear while at higher P saturation occurs.

6.3 Discussion and Analysis

To understand the temporal/spectral behavior of the reflectance signal, one has to con-
sider: (i) the changes of the cavity mode energy E0 induced by the displacement of the
interfaces in the Bragg mirrors and (ii) how E0 changes with the strain induced mod-
ification of the refractive indices in the respective layers. The results will be discussed
at first on a qualitative level and will then be compared to the temporal/spectral evo-
lution of calculations based on a transfer matrix formalism (see Chapter 3.1.1). The
focus thereby will be on a propagating displacement pulse and will be generalized with
respect to the strain later on.
While moving through the interfaces of the DBRs, the displacement pulse perturbs the
periodicity of the structure by modulation of the interface positions xi (see Fig. 6.1(a)),
leading to variations of E0. Apparently, if the modulation amplitude δxi is not too
large (0 < |δxi| << λ) displacements of the interfaces where the electric field has
antinodes change E0, while the modulation of other interfaces where the electric field
possesses nodes have negligible effect on E0. In the studied λ-cavity, the field has
antinodes in the centre and also at the edges of the central cavity layer [35] (sketched
by the blue curve in the lower part of Fig. 6.1(a)). Thus the displacement of these edge
interfaces (i = 1 and i = −1 in Fig. 6.1(a)) will have the biggest effect on E0. Further
the displacement pulse, which is propagating along the x-direction from left to right
reaches the left edge of the cavity layer (i = −1) and induces a positive displacement
(δx−1 > 0) corresponding to a compression of the cavity layer, and so to an increase
of E0. Later the displacement pulse reaches the right cavity edge (i = 1) inducing a
positive displacement of the interface (δx1 > 0). This leads to a tension of the cavity
layer and thus, E0 decreases. Qualitatively such behaviour is consistent with the ex-
perimental data presented in Fig. 6.2(a) and Fig. 6.3(a), where the energy shifts with
E > 0 and E < 0 are observed at times t < 0 and t > 0 respectively.
The displacements of the uneven interfaces inside the DBRs (i = ±3,±5..), at which
the electric field possesses antinodes also affect E0. These interfaces are marked by
bold solid lines in Fig. 6.1(a) and correspond to refractive index changes from low to
high along the x-direction. The influence of δxi on E0 in the DBRs will decrease with
increasing distance of the respective interface from the cavity edges because the electric
field is decaying exponentially inside the DBRs. The penetration depth of the light
field into the DBRs is calculated to be 420 nm [35], corresponding to about twice the
wavelength of the cavity. Therefore the displacement pulse moving through the left
DBR from left to right induces an effect of δxi on E0 appearing as high energy shifts
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with the amplitudes ∆Ei > 0 at the temporal positions ti when the pulse passes the
corresponding interface. The value of ∆Ei increases when the pulse approaches the
central layer. In the right DBR the process evolves in reversed order, so that ∆Ei < 0
decreases when the pulse moves away from the cavity layer. The observation of the
quasi-periodic oscillations in the experimentally measured temporal evolution of E0

(Fig. 6.2(a)) while the displacement pulse passes the left DBR is also in agreement
with this qualitative consideration.
Similarly it is possible to qualitatively include the effect of strain induced changes in
the refractive index. It has been shown in Chapter 3.2 that a bipolar strain profile
will cause the optical length of the central layer to decrease (negative strain) when
the displacement pulse takes its maximum at x−1 taking into account the sign of the
photoelastic constant [54]. Therefore it is intuitive, that the energy shift of E0 due to
the strain pulse follows mainly the direction as the one due to the displacement of the
interfaces.
To be more specific calculations of the cavity mode energy in the presence of a moving
Gaussian displacement pulse, corresponding to the dominant part of the pulse shown
in Fig. 6.1(c) have been performed, using a transfer matrix formalism like discussed in
Chapter 3.2 (see also Equation 3.6). The displacement of the interfaces is realized sim-
ply by setting the new positions as a function of the local displacement at each time.
The layer thicknesses di and so the optical path in the layers changes correspondingly.
For the photoelastic effect Equation 3.18 enters the calculation, where the elasto-optic
constant is pzz,x ≈ −0.2 [54], and for the strain in each layer j the average

η̃j
xx =

1

Nj

Nj
∑

n=1

ηn
xx,j (6.1)

has been taken. Here η̃j
xx is the average strain in layer j, Nj is the number of available

strain datapoints in layer j, and ηn
xx,j is the local strain at datapoint n in layer j. The

obtained effective refractive indices ñ then enters Equation 3.6.
The result for the displacement amplitude 0.04 nm, corresponding to a strain ampli-
tude of 0.7 · 10−3, is shown in Fig. 6.2(a) by the solid line. For a sound velocity of
5365 m/s in the DBR good agreement between the experiment and calculations is seen
in the time interval when the displacement pulse passes the left DBR and the cavity
layer. The calculations confirm the main point of the qualitative discussion that the
resonance energy changes only when the acoustic pulse passes the interfaces where
the electric field possesses antinodes and the fitted strain and displacement values are
in good agreement with earlier observations [70]. The contribution from the strain
and the displacement of the acoustic pulse to the energy shift are shown seperately in
Fig. 6.2(b) by the dashed grey and black lines respectively. The black line in Fig. 6.2(b)
corresponds to the calculation presented in panel (a). The portion of the strain and
displacement induced contributions thereby is easily seen to be dependent on the spa-
tio temporal extension of the acoustic pulse, since at the same displacement amplitude
the accompanying local strain amplitude - as the spatial derivative of the local diplace-
ment - decreases with increasing spatial extension of the displacement pulse.
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When the displacement pulse is propagating through the right DBR the experimen-
tally measured signal behaves different from the one predicted theoretically. This
discrepancy apparently is due to a more complex displacement pulse time evolution
in comparison with the simple Gaussian shape used in the model. Indeed the layered
structure of the microcavity will cause multiple reflections of the acoustic pulse at the
interfaces resulting in oscillating features in the tail of the pulse [50].
Turning now to the discussion of the experimental result obtained for high values of
P (Fig. 6.3) it is seen that the value of the maximum positive resonance energy shift
∆E−1 saturates at high excitation density (Fig. 6.3(b) inset) and the oscillations of ∆Ei

(x−3, x−5...) are less pronounced than for low P ; compare Fig. 6.2(a) and Fig. 6.3(a).
Such a behaviour is the result of nonlinear propagation when the acoustic pulse prop-
agates through the GaAs substrate.
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Figure 6.3: (a) Spectral/temporal
contour plot of the cavity re-
flectance (see text) in the pres-
ence of the displacement pulse mea-
sured at a laser energy density of
P = 12 mJ/cm

2
on the transducer

(T = 10 K). (b) Three spectral
cuts in panel (a), corresponding to
the delay times t−1 = −23 ps (red
squares), t = −150 ps (thick solid
line) and t1 (blue circles). (Inset)
Dependence of the maximum higher
energy shift ∆E−1 on the excitation
laser energy P .

It is well known that at high P (i.e. high displacement and strain amplitudes) the
initially injected Gaussian pulse spreads in time while the corresponding strain is trans-
formed into a shockwave front, acoustic solitons and a dispersive tail [29][15] (compare
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Fig. 2.6). Thus at high P the displacement pulse possesses a complex temporal shape
covering more than one interface and correspondingly the oscillatory behaviour of E0

becomes less pronounced. To illustrate this phenomenon Fig. 6.4 shows the expected
energy response for three different spatio-temporal extensions of the acoustic pulse. It
is clearly seen in the calculations that for a broader pulse the oscillatory behaviour of
E0 gets supresssed, when more and more interfaces are affected by the acoustic pulse
at the same time. For shorter pulses the strain contribution dominates. The bipolar
charakter of the strain wave and the differing thicknesses of the epitaxial layers of the
high and low refractive index materials might lead - according to Equation 6.1 - to
average refractive index changes in the different layers of opposite sign and of different
absolute maxima, even if the photoelastic constant p1 and p2 in material 1 and material
2 are taken to be equal. As a result, at short pulse extensions, where the photoelastic
effect dominates, the calculations show also a small shift ∆E < 0 at time t < 0 not
present at actual pulse extensions realized in the experiments.
The spatial spreading of the displacement pulse with the increase of P also explains
the saturation of ∆E−1 at high densities; inset of Fig. 6.3(b). Furthermore the com-
plicated pulse shape can lead to the fact, that the maximum of the lower energy shift
∆E1 = −0.8 meV at t1 = 19 ps appears to be notably larger than ∆E−1 at t−1 = −23
ps at high excitation densities. This difference can be seen in Fig. 6.3(b) where cor-
responding cuts through the reflectance spectra are shown. Indeed spreading of the
negative and positive displacement parts of the pulse over the left and right DBRs will
induce bigger shifts of E0 in comparison to those induced by a Gaussian shaped pulse
or an asymmetric strain profile.
The maximum measured cavity mode energy shift from higher to lower energy is equal
to 1.3 meV which is comparable to the cavity mode spectral width of 1.2 meV. This
can be seen in Fig. 6.3(b), which shows spectral cuts of Fig. 6.3(a) at t−1 (red squares)
and t1 (blue circles). The cut at t = −150 ps (thick solid line) corresponds to an energy
of the cavity mode, that is not yet affected by the displacement pulse. Taking into
account the resonance width, the observed reflectance change is 5.5 % at an energy
exceeding (being equal) the width of the cavity mode. This corresponds to a change
in transmission of 50 % for negligible absorption.
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Figure 6.4: Calculated energy re-
sponse of the cavity mode as de-
scribed in the text. (black curve)
same dependence like shown in
Fig. 6.2. (blue curve) Spatial ex-
tension of the acoustic pulse 70 %
of that building the black curve.
(red curve) Spatial extension of the
acoustic pulse 130 % of that build-
ing the black curve.
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6.4 Summary and Outlook

It was demonstrated that the cavity mode energy is changed within tens of picoseconds
when a displacement pulse moves mirror interfaces close to the central layer of the λ-
cavity at which the confined light field takes its extrema. An oscillatory behaviour of
the cavity resonance energy is observed, where the measured signals are induced by
processes which were not reported in earlier works where the oscillatory behaviour of
the probe intensity was observed (see for example [71]). The reported results open
many possibilities among of which the obvious and attractive one is ultrafast modula-
tion of the filtering function of a resonator. For such applications, one may increase the
Q value of the resonator by an order of magnitude to perform a complete ps-switch,
offering the possibility of ultrafast gating. The characteristic time dependence of the
switch might be tailored by controlling the shape and the spatial extension of the
displacement pulse using acoustic filters and alternative metal transducers. In this re-
spect combination of optical and acoustic microcavities may be a step forward to THz
modulation of light. But also for fundamental quantum effects, resonator modulation
may turn out to be attractive. High quality resonators may also be formed by a Bragg
mirror and a metal tip that is positioned close to the Bragg mirror by a piezo drive.
In such a resonator huge field enhancements may be obtained, whose amplitude may
be modulated through modulation of the Bragg mirror. Further the investigation of
the dynamical Casimir effect, based on the action of fast oscillating cavity boundaries
on the vacuum field might be a prospective application [37].
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7 Chirping of an Optical Transition

in a Quantum Well

Modulation of the optical properties of a Bragg Resonator as a high quality pho-
tonic structure has been demonstrated so far in the previous Chapter 6. Optical res-
onators however, are passive structures, altering the photonic mode densities in certain
directions intended to show negligible optical absorption at the working frequencies.
It is further interesting to investigate the response of an active opto-electronic medium
(see Chapter 3.1.2) to the strain waves described previously. The nonlinear elastic
properties of solids result in the phenomenon of the transformation of a coherent strain
wave to a train of ultrashort acoustic solitons (see Fig. 2.6). Such an acoustic soliton
might occupy a space as small as a few nanometers, corresponding to durations as
short as a few hundred femtoseconds, and may reach strain amplitudes exceeding 10−3

[27][15][72][73][74][14]. These spatial and temporal characteristics of acoustic solitons
are close to the typical sizes of nanostructures (quantum wells, wires and dots) and
relaxation times of their electronic excitations and constitute a new way of THz mod-
ulation in semiconductor optics.
In this chapter it will be demonstrated, that acoustic solitons, formed during the prop-
agation of a picosecond strain pulse in a GaAs crystal with a
ZnSe/ZnMgSSe quantum well (QW) on top, lead to exciton resonance energy shifts of
up to 10 meV within picoseconds and ultrafast frequency modulation, i.e. chirping, of
the exciton transition. The effects are well described by a theoretical analysis based
on the Korteweg- de Vries equation and accounting for the properties of the excitons
in the quantum well [29], where beside the strain wave shape and amplitude the most
important parameters will be shown to be the exciton resonance coherence time and
the finite QW width. Good agreement between experiment and theory is reached,
which paves the way for a new class of ultrafast acoustic experiments in semiconductor
opto-electronics.

7.1 Sample and Experimental Conditions

Figure 7.1 combines the starting positions concerning the given physical problem as
described in detail in the previous Chapters 5, 3.1.2 and 2.2. The idea and scheme
of the experiment are shown in Fig. 7.1(a). The sample used was a (001)-oriented
GaAs slab with a thickness l0 ∼ 100 µm. The heterostructure deposited by MBE on
the front side of the slab was a ZnSe QW with a width a = 8 nm embedded between
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Zn0.89Mg0.11S0.18Se0.82 barriers [75]. As the thermoelastic transducer a ∼ 100 nm thin
aluminum film was deposited on the backside of the GaAs slab. In the experiments
the sample was immersed in liquid helium (T0 = 1.8 K), and the Al film was excited by
200 fs pulses from an amplified ti:sapph laser (wavelength 800 nm) with a repetition
rate of 250 kHz. This pump beam was focused to a 100 µm FWHM spot on the
film, creating energy densities P up to 10 mJ/cm2 per pulse. The temporal evolution
of the injected strain pulse (Fig 7.1(b)) was calculated using the known methods
of ultrafast acoustics and coincides with results from direct conventional pump-probe
measurements [76]. In the experiments a nearly symmetric bipolar strain wave packet
is injected into the GaAs slab, which can be modeled to a good degree of accuracy by
a Gaussian derivative with strain amplitudes reaching 8 · 10−4 in GaAs for the highest
pump intensity (see Fig. 7.1(b)).
To summarize Chapter 2.2, the temporal and spatial evolution of the strain pulse
ηP (t, x) (where x is the distance from the Al film) depends on P and on the linear
and nonlinear elastic properties of the crystal and can be calculated numerically. At
low pump excitation densities (W <1 mJ/cm2), the injected strain pulse propagates
linearly through the GaAs slab with the velocity of longitudinal sound and reaches the
ZnSe/ZnMgSSe heterostructure at a time τ ∼ 20 ns without any sizable distortion. At
excitation densities P >1 mJ/cm2, however, nonlinear elastic effects start to play a role
and the injected strain pulse transforms into a more complicated waveform, where at
medium fluences 1−3 mJ/cm2, the wave transforms into a shockwave. Finally, above 3
mJ/cm2, notable dispersion effects concerning the high frequency phonon components
in the supersonic compressive strain cause a further transformation of the shock front
into a train of ultrashort soliton pulses. Figure 7.1(c) shows an example trace for
ηP (t, x(τ)), calculated for P =10 mJ/cm2 (for a discussion, see also the strain pulses
in Fig. 2.6). The most striking features are the development of acoustic frequencies in
the THz range, and the formation of supersonic strain solitons at the front.
The effect of the soliton pulses on the optical response of the QW was studied using
optical reflectance spectroscopy. For this, a probe beam was split from the laser beam,
passed through a sapphire plate to generate femtosecond white light pulses, and given
an optical delay of 20 ns, corresponding to the travel time of the longitudinal strain
pulse through the GaAs crystal slab (see also the experimental setup in Fig. 5.1).
The probe beam was focused on the front side of the slab to a spot less than 50 µm
diameter exactly opposite to the pump spot (Fig. 7.1(a)). The reflected probe beam
was collected and analyzed by a spectrometer and CCD camera with the readout
synchronized with the scanning optical delay line in the pump beam. The chosen time
step δtd of the variable delay was set to 300 fs.
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Figure 7.1: (a) Experimental scheme.
(b) Calculated strain pulse as ini-
tially generated in the metal film for
excitation density P = 10 mJ/cm

2
,

and (c) its transformation to a soli-
ton train after propagation through
100 µm of GaAs. The time in (b)
is shifted toward that in (c) by the
sample traversal time τ . (d) Mea-
sured reflectance spectrum of the
ZnSe QW heavy hole exciton, nor-
malized to the off-resonance back-
ground. The vertical dashed line in
(d) shows the energy position of the
heavy-hole exciton resonance.

Figure 7.1(d) shows the reflectance spectrum in the absence of a pump pulse in the
energy range of the heavy-hole exciton resonance in the QW [75]. The exact shape of
the reflectance spectrum is determined by the thickness of the top barrier layer [45].
For the used sample, the reflectance rQW

i (ω) normalized to the off-resonant background
can be described by Equation 3.10.

7.2 Strain Modulated Exciton Resonances

The following investigation mainly focuses on the optical response of the QW heavy-
hole exciton resonance, as described in Chapter 3.1.2, when acoustic solitons impact
on the structure. To motivate this restriction, Fig. 7.2 shows the time traces of the
resonance energy reponse of the heavy-hole (HH, blue triangles) and light-hole (LH,
red circles) exciton at low excitation density P = 2 mJ/cm2, making it possible to
follow easily the strain profile of the impinging acoustic wave. A similar response has
been measured earlier [77], relating the unconventional shape of the wave to the inci-
dent strain wave from the GaAs slab and the reflected, phase shifted strain from the
barrier to liquid helium interface at the position of the QW. Both traces obey the same
time dependence with slightly differing absolute values of the induced energy change,
which is most likely due to differences in the tetragonal and hydrostatic deformation
potential constants of the heavy-hole and light-hole bands (see also discussion in Chap-
ter 3.2). However this difference is small and in the further discussion the light-hole
exciton response will be omitted. The results for three values of P are shown in Fig. 7.3
as spectral-temporal contour plots, where the color scheme in each panel of Fig. 7.3
is a measure of the time-dependent reflected spectral intensity normalized to the off-
resonant value. The value t = 0 corresponds to the arrival time τ of the center of the
initial bipolar wave packet (Fig. 7.1(b)) at the QW. Times t < −25 ps and t > 100 ps
correspond to the situation prior to the arrival of the strain wave packet and after full
passage of the heterostructure respectively, where no temporal modulation is observed
and the reflectance spectrum is equal to the one in the absence of strain, shown in the
insets of Fig. 7.3 by a dashed line.
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In the time interval −25 ps < t < 100 ps, however, the measurements show strong
responses, that depend on the pump excitation density P . In the linear regime (P <1
mJ/cm2, Fig. 7.3(a)), the optical response essentially tracks the temporal evolution of
the exciton resonance according to the strain profile of the acoustic wave. The im-
portant point here is that the exciton resonance does not change its shape but simply
shifts to different energies (compare solid and dashed lines in the inset of Fig. 7.3(a)).
The strain-induced shift of the exciton resonance ∆E(t) in this case might be approx-
imated by ∆E(t) = aηQW (t) (see Chapter 3.2), where a denotes the net deformation
potential constant). The time dependent strain in the QW ηQW (t) = η0(t)− η0(t− tr)
consists of the sum of the pulse η0(t) incident from the GaAs slab, and its reflection
η0(t − tr) from the sample to liquid-helium interface, arriving a time tr = 2lr/vZnSe

later (lr = 50 nm is the distance from the QW to the surface, and vZnSe = 4000 m/s
is the mean longitudinal sound velocity in the ZnSe/ZnMgSSe heterostructure [78]),
both indicated in Fig. 7.2. The minus sign in the reflected wave is due to the phase
jump of π at a free surface. Huge changes in the time-resolved reflectance spectra are
observed for higher P (Figs. 7.3(b) and 7.3(c)): (i) sharp features in the temporal
signal appear, (ii) the leading edge of the detected signal shifts to earlier times with
the increase of P , (iii) the spectrum broadens strongly (inset Fig. 7.3(b)), and (iv) dou-
blet structures appear at certain times t (inset Fig. 7.3(c)). Features (i) and (ii) point
to acoustic solitons arriving at the QW, which might become shorter than 1 ps (see
Fig. 7.1(c)), explaining the sharp features in the temporal evolution of the detected
signal at high P . Furthermore, the soliton velocity is supersonic, which results in the
early arrival of the front of the strain wave packet, as observed in [27][73][14]. The ar-
rival times, corresponding to the first energy maximum due to the incident strain wave
(see Fig. 7.2), are shown in Fig. 7.4 (lower panel). It is clearly seen, that at excitation
densities P exceeding 4 mJ/cm2 the arrival time notably shifts to earlier times t until
reaching the earliest measured relative arrival times of −8 ps. This time corresponds
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to a net change of soundspeed in the GaAs slab of ∆ṽGaAs ∼ 2 m/s, i.e. an increase of
0.4%. Note that the true soliton speed is even higher since the transformation process
into the split off solitons is not an instantaneous one. Note also that at high exitation
densities P the readout becomes difficult due to the strong chirp of the resonance.
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Figure 7.3: Spectral-temporal con-
tour plots of the reflectance nor-
malized to the off-resonance back-
ground, measured for pump flu-
ences of (a) 1 mJ/cm

2
, (b) 5.1

mJ/cm
2
, and (c) 10.2 mJ/cm

2
.

Black lines are calculated contours
of equal reflectance changes for cor-
responding pump fluences. Insets
show the spectral profiles of re-
flectance: the blue dashed line is
the stationary spectrum, the red
and black lines are, respectively, the
measured and calculated spectra at
the specified time, for the corre-
sponding fluence. Black arrows in
(b) and (c) indicate the arrival time
of individual solitons at the QW
center.
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7.3 Discussion and Analysis

To understand the optical response on a quantitative level, the temporal evolution
∆E(t) of the exciton resonance upon passage of a soliton train was calculated [29].
The shape of the strain wave thereby was calculated according to Chapter 2.2.

Figure 7.4: Dependence of the arrival
time (lower panel) and the energy
shift (upper panel) of the first re-
sponse maximum due to the inci-
dent strain wave. The arrival times
are related to travel time τ = tlin
of the linear strain pulse at an ex-
citation density on the metal trans-
ducer of P = 0.5 mJ/cm
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Because of the small distance between the QW and the surface, the temporal shapes
of the incident and reflected strain pulses are taken identical except for the phase jump
(see also [77]). It turnes out that in the soliton regime the spatial strain variations
become so short, that the QW no longer can be considered as an infinitely narrow object
as might be true for the linear regime. Taking account for the QW extension within
the the approximation of infinitively high barriers the electron wave function might be
written as φ(x′) =

√

2/d cos(πx′/d) (x′ = 0 at the center of the QW). The finite size
restricts the time resolution to the travel time through the QW d/vZnSe ∼ 2 ps, and
limits the sensitivity for very short soliton pulses, where the energy is concentrated
mostly in the high-frequency components. For illustration the relation between a single
soliton spatial extension (P = 10 mJ/cm2) and the quantum well electronic (similar
for the hole) probability distribution |φ|2 is shown in Figure 7.5.
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Clearly the strain amplitude is only a local feature within the QW implying a re-
sponse of the electron (and hole) based on a covolution ansatz concerning the strain
and the electronic wavefunction. Assuming that the strain does not change the poten-
tial profile of the QW significantly, perturbation theory gives the energy shift of the
exciton resonance in the QW in the presence of the strain pulse as the convolution

∆E(t) = a

∫ d/2

−d/2

|φ(x′)|2ηP
QW (t, x′)dx′ (7.1)

Note that Equation 7.1 is reminiscent of the equation of matrix elements for the
exciton-phonon interaction in a QW [79] that indeed shows a cutoff for high-frequency
phonons.

The interaction of the probe light with the exciton system is inherently not instan-
taneous but takes the exciton coherence time τc, which in high-quality QWs at low
temperatures is close to twice the value of the radiative exciton lifetime [80] and is
longer than the duration of the probe pulse and the strain soliton pulses. Thus a spec-
tral broadening and a shift of the exciton resonance are induced by the strain profile
arriving at the QW up to a coherence time τc after the incident probe pulse. This is
illustrated in Fig. 5.2 where the modulation of the polarisation decay after the optical
probe pulse becomes obvious. The overall measured spectrum at time t though is com-
posed from the chirped (i.e. frequency modulated) polarisation decay. To compute the
spectra R(E, t) at time t, a further convolution was performed:

R(E, t) =
1

τc

∫

∞

t

rQW [E − ∆E(τ̃)]exp

(

− τ̃ − t

τc

)

dτ̃ (7.2)

where r(E) and ∆E(τ̃) are given by Eqs. 3.10 and 7.1, respectively. In the calculations
[29] of the optical resonance response, the best agreement concerning the energy shifts is
obtained for a = −8 eV [29]. A dependence of the measured values for the first higher
energy shift ∆E from the excitation energy density P is shown in Fig. 7.4 (upper
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panel). The saturation at high P is likely to be due to difficulties in the determination
of the exact energy position (see Fig. 7.3(c)) as well as to the reduced sensitivity of
the QW to very high strain derivatives i.e. very high frequency components. Further
τc = 4.6 ± 1.3 ps [29], close to the measured dephasing time of excitons in similar
QWs [81]. The results of the numerical calculations for three values of P are shown
in Figs. 7.3(a) and 7.3(c) as solid contour lines of equal reflectance. Good agreement
between the experiment and simulations is seen. The sharpening of the leading edges
at elevated P signifies the formation of ultrashort strain pulses, i.e., solitons, indicated
by arrows in Figs. 7.3(b) and 7.3(c). The arrival time of the solitons decreases with
the increase of P (Fig. 7.4), as correctly described by the simulations.
The inset of Fig. 7.3(b) shows a typical chirped spectrum at the time of passage of
a soliton, which has clearly induced both a shift and significant broadening. The
simulations and experiments at the highest energy density show individual soliton
pulses, which, however, are not clearly separable. The passage of incident and reflected
solitons leads to strong spectral broadening over a large range of times, visible as an
increase in green areas in Fig. 7.3(c). The reasons for this are that both the duration
of individual soliton pulses and the time separation between different soliton pulses
are shorter than τc. Thus as soon as the soliton train arrives, the exciton resonance is
driven several times back and forth during its coherence time τc.
An even more elucidating example is presented in the inset in Fig. 7.3(c), which shows a
clear doublet structure that can be observed around t = 28 ps and might be explained
by the tensile part of the incident wave, shown in Fig. 7.1(b). Here, a dispersive
tail develops of both high frequency and high amplitude (Fig. 7.1(c)). Within the
time τc, the excitons are swept in energy over several meV a couple of times. One
can qualitatively understand the origin of the doublet by making the analogy with a
pendulum, which spends most of the time in its extreme positions. At high P both
experiment and theory show that ∆E(t) reaches 10 meV (Fig. 7.3(c) at t = 20 ps and
reveal that the reflected pulse induces higher excursions relative to the incident one.
This experimental observation, which is absent for low P , is due to the circumstance
that the whole strain wave spreads in time and the first soliton pulse reflected from the
surface and the tensile part of the incident pulse train meet in the QW and interfere
constructively, similar to coherent strain control like reported in [82]. All experimental
results presented in Fig. 7.3 show minor amplitude oscillations with a period ∼ 10 ps
after passage of the incident pulse which are not present in the simulated curves, and
are not understood yet. It might be speculated that this oscillations are due to elasto-
optic effects similar to that discussed in Chapter 6, which have not been considered in
the numerical calculation.

7.4 Outlook

The soliton-induced effects in more sophisticated nanostructures (e.g., tunneling de-
vices, shallow QWs, quantum wires, dots, and molecules), where the adiabatic approx-
imation for electron and lattice systems is not valid anymore, may lead to the discovery
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of new and ultrafast phenomena at constant carrier densities. An example of such a
diabatic modulation process will be discussed in the next Chapter 8, where indeed new
clear chirping features show up in the frequency modulated spectra, which indicate a
modulation much faster than the respective coherence time of the optical transition.
The experiments and theoretical analysis have shown, that the effect of acoustic soli-
tons on the electronic states may be used as an ultrafast method for modulating the
optical response in nanostructures. The large value of the energy resonance shift may
become a basis for picosecond control of emission from nanophotonic devices (semi-
conductor microcavities, 2D arrays, etc.), and will be demonstrated in a first attempt
in Chapter 10.



8 Generation of Terahertz

Sidebands in a Planar Quantum

Well Cavity

Where in the previous two Chapters 6 and 7 the impact of an acoustic pulse on the
optical properties of a Bragg resonator and a single quantum well have been reported,
and a fundamental understanding of these structures has been gained separately, in
the following chapter a single quantum well will be placed within the central layer of a
Bragg resonator. The combined quantum well-cavity system is in the regime of strong
light matter interaction, as basically described in Chapter 3.1.3.
It will be demonstrated, that a fast modulation process might cause new significant
spectral features, which can be related to the modulation process itself. Here the gen-
eration of terahertz sidebands, due to fast and strong energy modulation of a detuned
quantum well cavity lower polariton resonance is reported. In particular the regime of
resonance chirping treated in Chapter 7, will be further extended to a clear diabatic
modulation of a sharp lorentz like resonance [50].

8.1 Introduction

Manipulation on ever faster time scales has led to enormous progress in basic and
applied research. These advancements in ultrafast control have been based mostly on
the availability of ultrafast laser sources, which may provide coherent light pulses with
durations as short as attoseconds [83]. In parallel the field of ultrafast acoustics has
been developed towards terahertz frequencies (see Chapter 2). Recently efforts have
been undertaken to merge the fields of ultrafast optics and acoustics resulting in a
variety of novel acousto-optic phenomena. Among them are the generation of THz
radiation by acoustic waves [84], the amplification of THz sound waves in a combined
optical and phonon microcavity [65], strain pulse induced chirping of an optical tran-
sition (Chapter 7) [29] as well as the switching of an optical microcavity resonance
(Chapter 6) [51].
Here the ultrafast acoustics techniques used in the previous chapters are applied to a
semiconductor quantum well microcavity in the strong-coupling regime. By injecting
terahertz strain pulses a modulation domain can be obtained in which large variations
in the optical frequency are induced on time scales shorter than the polariton decoher-
ence. Under these conditions characteristic sidebands which are spectral fingerprints of
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the terahertz modulation process appear in the spectrum near the polariton resonance.
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Figure 8.1: Experimental principles of modulation. (a) Scheme of the experiments on a microcav-
ity formed by two distributed Bragg reflector mirrors (DBR) with a quantum well embedded in
between. The strain pulses are generated by a laser pulse shown by a red arrow, focused onto an
aluminum film. (b) Reflectance spectrum from the microcavity without modulation. LP and UP:
spectral resonances of the lower polariton and upper polariton respectively. (c-e) Strain pulses η(t)
simulated for low (upper panels) and high (lower panels) excitation densities P at various distances
(indicated by the spots 1-3 in panel (a)) from the aluminum transducer. the propagation time from
the transducer to the corresponding points was subtracted for clarity.

It is well-known that traditional MHz and GHz acoustics allows efficient modulation
of the optical frequency ω, such that the variations ∆Ω of the modulation amplitude
are large enough to be seen in the spectrum of the optical signal [85][86]. When the
modulation of the signal occurs on a time scale τa (the time that it takes the optical
frequency to reach maximum modulation ∆Ω, which is much longer than the coherence
time τc, it is easily possible to follow the time dependence of the modulated optical
frequency ω(t) from the emitted (reflected) light intensity, as the modulation occurs
adiabatically. For semiconductors, for example, modulation frequencies τ−1

a in the GHz
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regime could be achieved corresponding to τa exceeding by far the typical coherence
times τc ∼ 10−12 − 10−11 s in these systems. In this case the existing time-resolved
methodologies using linear or nonlinear spectroscopy are fully sufficient to track the
optical frequency modulation ω(t) [77].
Tracing ω(t) from the spectrum is hampered, however, when τa is clearly shorter than
τc and simultaneously the perturbation is so strong that the modulation amplitude ∆Ω
exceeds by far the stationary spectral width ∆ω ∼ τ−1

c . This situation is implemented
here in a system for which the adiabatic regime is left by applying an ultrafast acoustics
technique. The diabatic situation, with which one is confronted then, is characterized
by

τa ≤ τc and ∆Ω > ∆ω (8.1)

In the following ultrafast strain pulses are applied to a semiconductor microcavity (MC)
in the strong-coupling regime showing coherent emission over comparatively long times.
Insight into the diabatic regime might be obtained by analyzing the optical signal in
the spectral domain. Where intuitively such a spectral analysis appears to be inappro-
priate, since all information about the modulation process should be blurred by signal
integration over times essentially longer than τa, it will be shown that contrary the
experimentally obtained spectra contain clear signatures of the microcavity resonance
modulation. In agreement with a theoretical model [50] it will be demonstrated that
in the diabatic regime pronounced sidebands of the modulated resonance appear, from
which information about the modulation process might be obtained.

8.2 Experiment and Sample

The basic scheme of the experiments which were carried out at liquid-helium temper-
ature (T = 1.8 K) is shown in Fig. 8.1. The high quality optical MC structure (panel
(a)) contains an 8-nm-wide In0.04Ga0.96As quantum well (QW) in the middle of a GaAs
cavity layer of width d=240 nm, corresponding to the wavelength λ of the confined
photon resonance. This λ-cavity layer is surrounded by distributed Bragg reflectors
built from 24 and 20 pairs of GaAs/AlAs λ/4 stacks at the bottom (toward subtrate)
and the top (toward vacuum), respectively. The Q factor of the MC is ∼ 104, leading to
the strong-coupling (polariton) regime between the QW exciton state and the confined
photon mode [46][87]. Figure 8.1(b) shows the stationary optical reflectance spectrum
R(E) of the MC in which two narrow resonances corresponding to the lower (LP) and
upper (UP) polaritons are seen. The photonlike LP resonance is slightly broadened
relatively to the cavity mode, and shows a spectral width ∆ω = 0.18 meV.
In the ultrafast coherent experiments the polariton resonances were excited by 150 fs
white light pulses from a laser system with a repetition rate 100 kHz. The beam was
focused on the sample surface of the MC to a spot with a diameter 100 µm. As a
result of the femtosecond broadband excitation, the LP and UP states emit coherent
light into the specular direction relative to the excitation beam (Fig. 8.1(a)). The
amplitude of the reflected light decays within a time τc corresponding to the coherent
polarisation decay of the resonances. The value of τc is connected with the spectral
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width of the resonance ∆ω by the following relation:

τc =
2

∆ω
, (8.2)

where the factor 2 arises from the fact that τc corresponds to the decay of the electro-
magnetic field amplitude, while the spectral width of the optical resonance reflects the
decay of the field intensity. The value of τc for the LP resonance obtained from the
optical spectrum using Equation 8.2 is equal to 7.2 ps.
The THz frequency modulation is achieved using strain pulses, injected into the sample
via a metal transducer as described in Chapter 2.2. The strain pulses are generated
by excitation of a 100 nm thin Al film deposited on the GaAs substrate opposite to
the MC by 800 nm femtosecond light pulses, taken from the same laser system as the
white light pulse (Figs. 8.1(a), 5.1). The energy density of the excitation laser pulse
thereby could be increased up to P = 16 mJ/cm2, which corresponds to a maximum
strain amplitude of η0 ∼ 10−3 [29][77].
The strain pulses propagate through the 100 µm (001)-oriented GaAs substrate with
the velocity cLA ∼ 4800 m/s of longitudinal sound in GaAs [58]. Accordingly the strain
pulses reach the MC with a delay of about 20 ns relative to the 800 nm excitation pulse.
The temporal shape of the strain pulse reaching the MC strongly depends on the exci-
tation density on the transducer (see Chapter 2.2). At low excitation densities P < 1
mJ/cm2 the shape of the pulse does not change significantly while propagating through
the substrate (compare upper panels (c) and (d) of Fig. 8.1). At higher P nonlinear
elasticity and the phonon dispersion become important and the pulse shape is modified
during propagation. This results in the formation of a shockwave and, at low temper-
atures, an acoustic soliton train at the beginning of the strain pulse, while at its end
dispersive phonon oscillations take place [27]. The temporal evolution of the strain
pulse for this nonlinear regime, shown in the lower panel of 8.1(d) was calculated
numerically [29]. Further modifications (Fig. 8.1(e)) of the strain pulse reaching the
QW are due to multiple reflections at the interfaces of the MC structure [88].
The strain pulse η(t) arriving at the QW modulates the detuning ∆d = Ex − Ec be-
tween the energies of the uncoupled cavity mode and exciton, Ec and Ex, respectively
(see Chapter 3.1.3) where the effect of the strain pulse on Ex is significantly stronger
than on Ec [51][29] as can be deduced easily from Chapters 6 and 7. However small
oscillations are visible in the LP spectrum before the strain pulse reaches the QW
(see Fig.8.5) from which, according to Chapter 6, a sound speed in the superlattice of
∼ 5250 m/s can be deduced. This value is well between the known values for GaAs
(4800 m/s [58]) and AlAs (6400 m/s [89]) as expected for a periodic structure [7]
(compare also Fig. 3.8(b)). The lower amplitude compared to Chapter 6 most likely
is due to the larger optical dimensions of a III-V cavity compared to the strain pulse
spatial extension (indicated by the photonic resonance wavelength). Further the dif-
ferent elasto-optic response [90] as well as the fact that the polariton energy response
to the cavity shift is smaller than the pure cavity shift (Fig. 3.7) lead to the observed
differences.
The strain pulse now induces a time-dependent detuning ∆d(t) = aη(t) + ∆0

d, where
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a ∼ −10 meV is the deformation potential of the exciton in the (In,Ga)As/GaAs QW
[91] (see Chapter 3.2) and ∆0

d = 3.3 meV is the detuning without applied strain. Using
the dependence of the polariton energy on the detuning (Fig. 3.7), the corresponding
energy shift concerning the polariton resonances within the coherence time τc can be
estimated. For instance in the time interval 10 ps < t < 25 ps shifts of the LP res-
onance within τc = 7.2 ps of 0.15 meV and 0.37 meV for P = 1 mJ/cm2 and P = 8
mJ/cm2 respectively, are expected. Thus the effect of a strain pulse with sufficiently
high amplitude on the polariton resonance energies turns out to be well suited to reach
a diabatic optical modulation regime at THz frequencies under consideration of the
relations 8.1.

8.3 Diabatic Frequency Modulation

In the experiments, the spectrum of the coherent polariton emission was analyzed by a
spectrometer with a resolution of 0.16 meV and monitored as function of the time delay
t0 (t0 = texc from Chapter 5) between the white light excitation pulse and the strain
pulse at the QW. The results are shown in Fig. 8.2 for the UP (panel(s)) and LP (panels
(b) and (c)). The polariton spectrum, which under stationary conditions consists of the
well defined UP and LP resonances (Fig. 8.1(b)), undergoes enormous changes when
the strain pulse is hitting the QW. THz modulation of the UP energy (panel (a)) by
several meV occurs. Regardless of the smaller LP modulation amplitude (panels (b)
and (c)), for certain values of the delay t0, the LP spectra show a remarkable, well
defined structure with spectral fringes at the flanks of the main resonance. The most
pronounced sidebands with up to three fringes are observed for high amplitude strain
pulses (panel (b)) in the delay intervals t0 = 10 to 25 ps and t0 = 90 to 105 ps, which
correspond to the linear parts of the strain evolution (lower panel (e) of Fig. 8.1).
Figure 8.2(b) shows the reflectance spectrum R(t, E) for a delay t0 = 17 ps, at which
several fringes are clearly detected.
The observed spectral sidebands can be related to the characteristics of the diabatic
THz optical frequency modulation. To illustrate that this observation is a general
phenomenon, a scalar harmonic oscillator is considered, decaying with time τc, which
can be described by a time dependent variable x(t) following the equation of motion:

d2x

dt2
= −ω2

0(t)x − 2

τc

dx

dt
+ f(t − t0). (8.3)

Here ω0(t) denotes its time varying frequency and f(t− t0) is a short excitation pulse
acting on the oscillator at time t = t0. The quantities ω0(t) and f(t−t0) are associated
with the optical polariton frequency and white light excitation, respectively, and x(t)
is the polariton field. The scales, values, and initial conditions for solving Eqn. 8.3
are chosen in accordance with the experiments. The Fourier-transformed (FT) power
spectrum of x(t) for the case when ω0(t) is increasing linearly with t is shown in the
contour plot in Fig. 8.3(a) as a function of t0. A high-energy sideband with well
resolved spectral fringes is clearly seen. The sidebands can be also seen in Fig. 8.3(b)
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which shows the spectrum obtained at a fixed delay of t0 = 10 ps. Besides these
sidebands, the typical feature in the time-integrated spectra for delay t0 is the shift in
the spectral density maximum to higher energies with respect to ω0(t), which is shown
in Fig. 8.3(a) by the dashed white line. In case when ω0 is decreasing with t0 the
spectral density maximum is shifted to lower energies relative to ω0 and the sidebands
appear on the low-frequency side of the stationary resonance position.
Figure 8.3(c) shows the normalized positions β = τc(ω̃m −ω0) of the sideband maxima
of the modulated signal at frequencies ω̃m as a function of the dimensionless parameter
w̃ = τ 2

c (dω0/dt), which is the ratio of the frequency shift during the coherence time
τc and the half of the resonances spectral width τ−1

c . The maxima positions are seen
to be proportional to w̃1/2. The symbols indicate the values of w̃ below of which the
corresponding fringe does not appear as a maximum in the spectrum. From Fig. 8.3(c)
it is seen, that the value must be higher than 0.25 to have at least one additional
maximum. According to the theory the sidebands in our experiments will become
well pronounced if the shift in a polariton resonance within the coherence time τc

exceeds ∆ω/8 = 0.0225 meV. Such conditions are obviously realized in the detected
signals shown in Fig. 8.2. Note that the same evaluation for the structure discussed
in Chapter 6 yields a minimum necessary energy shift of the cavity mode of 0.15 meV
within the coherence time ∼ 2 ps, which is not achieved.

Figure 8.3: Calculations of the modulated
spectrum of a scalar oscillator excited by
a broad band excitation pulse in a situa-
tion when the resonance energy changes lin-
early with time: (a) spectral/temporal con-
tour plot of the power Fourier-transformed
time-dependent variable x(t), ω0 is shown by
the dashed line; (b)oscillator power spectrum
for t0=10 ps; (c) normalized positions β of
the sideband maxima as function of the pa-
rameter w̃, which characterizes the modula-
tion rate. Symbols indicate the values below
of which the corresponding maximum cannot
be observed.
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8.4 Model Calculation

The model presented above demonstrates the general idea of the diabatic approach. To
become more quantitative, a specific analysis has been performed for the MC studied
here [50], which will be given here for illustration.
The strain pulse results in a time-dependent modulation of the exciton energy Ex(t),
which is observed as a shift in the polariton resonances in the strong-coupling regime.
Because the amplitude of the exciton shift ∆Ex(t) exceeds the polariton Rabi splitting
the adequate description cannot be obtained within the single (lower or upper) po-
lariton branch approximation. Instead direct solution of the Maxwell equations with
a time dependent exciton resonance is necessary. If the spectral range of interest is
narrow compared to the stop band of the cavity Bragg mirrors the resonant approxi-
mation of cavity electrodynamics can be used [92][93]. Within this approximation the
Maxwell equations are reduced to a system of two coupled equations that describe the
dynamics of the cavity mode electric field at the quantum well ǫQW (k, t)

[

i
d

dt
− Ec(k)

]

ǫQW (k, t) = γ(k)
∑

i

P i(k, t) + α(k)ǫinc(k, t), (8.4)

and of the resonant exciton polarization, integrated over the thickness of the quantum
well P (k, t)

[

i
d

dt
− Ei

x(t)

]

P i(k, t) = AiǫQW (k, t). (8.5)

Here Ec and Ex are the resonance energies with nonzero imaginary parts due to the
decay of the cavity mode and exciton dephasing, respectively. A is the magnitude of
the quantum well exciton resonance susceptibility, α and γ are the coupling constants
of the microcavity electromagnetic field with the external field and the QW exciton
polarization, respectively. The polariton Rabi splitting ΩR can be calculated from
ΩR =

√
Aγ. The incident pulse far from the microcavity ǫinc = ǫ(t)exp(−iΩinct)δ(k −

kinc) is assumed to have the form of a plane wave with energy Ωinc and in-plain wave
vector kinc = Ωinc/c, ǫ(t) is the electric field amplitude of the excitation pulse, which
in the calculations is assumed to have a Gaussian shape with a duration of 100 fs. The
summation over the partial polarizations P i is introduced in Equation 8.4 in order to
take into account the inhomogeneous broadening of the exciton line, which is described
by the distribution of Ei

x(t) and Ai. The cavity resonance energy Ec and the coupling
constants α and γ are calculated in the scattering matrix formalism [92] by solving the
Maxwell equations for the particular cavity geometry and analyzing the poles of the
scattering matrix in the complex energy plane [93]. The solution of Eqs. 8.4 and 8.5
yields the dynamics of the cavity electromagnetic field ǫQW (t), which depends strongly
on the delay between the incident pulse ǫinc(t) and the exciton resonance modulation
Ex(t) due to the strain pulse. The temporal shape of the pulse reflected from the MC,
ǫrefl can be found in the same resonant approximation from

ǫrefl(k, t) =
ǫQW (k, t) − T inc(k)ǫinc(k, t)

T refl
, (8.6)
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Figure 8.4: Theoretical analysis of
the polariton sidebands. (a-c) Spec-
tral/temporal contour plots of the
modulated UP (a) and LP (b,c)
optical signals calculated for high
(a,b) and low (c) excitation densi-
ties P . Panels (b) and (c) have the
same intensity scale, which is shown
on the right of (c). Insets in (b) are
normalized measured (solid lines)
and calculated (dashed lines) spec-
tral profiles obtained for two delay
times t1 and t2. (d) Spectral separa-
tion δ (bar in Fig. 8.2(d)) between
the first minimum and first maxi-
mum in the sideband spectrum of
the LP modulated reflectance sig-
nal, as measured (closed symbols)
and calculated (open symbols) for
t0=20 ps.
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with the coefficients T inc(k) annd T refl(k), which are calculated from Maxwell’s equa-
tions and depend on the microcavity design.
The temporal variation in the reflected pulse ǫrefl(k, t) is obtained from Eqn. 8.6 for
given ǫinc(k, t) and ǫQW (k, t), calculated from Equations 8.4 and 8.5 for a particular
delay between ǫinc and Ex(t). The spectra of the reflected and incident pulses are
obtained by Fourier transformation and the time integrated reflectance spectrum is
calculated as |r(ω)|2 = |ǫrefl(ω)/ǫinc(ω)|2.
The calculations have been performed for the following parameters: Ec = 1.4513 eV,
E0

x − Ec = 3.32 meV, 2ΩR=3.26 meV, and a Gaussian shape of the exciton line with
Γ = 0.7 meV as well as the center of the exciton line modulated in time by the strain
pulse. In order to obtain a better fit of the reflectance spectra near the upper polariton
branch an asymmetric shape of the inhomogeneous exciton line was used. The best
agreement with the experimental results has been obtained for a = −20 eV.
Figure 8.4(a-c) shows the spectra calculated when the exciton resonance is modulated
by strain pulses generated at P = 8 mJ/cm2 (Figs. 8.4(a) and 8.4(b)) and P = 1
mJ/cm2 (Fig. 8.4(c)). The inhomogeneously broadened exciton line is smeared and
the spectral peculiarities near the UP branch are not observed (Fig. 8.4(a)). How-
ever, inhomogeneous broadening of the UP has nearly no effect on the lower branch
(Fig.8.4(b)) and several sidebands accompanying the main resonance are clearly visi-
ble. Most of the calculated sidebands in the LP modulated spectrum are observed also
in the experiments (compare Figs. 8.2(b) and 8.4(b) and see insets in Fig. 8.4(b)). For
a quantitative comparison we chose the time interval 10 ps to 25 ps where η(t) changes
linearly with t. To characterize the nonequidistant sideband fringes we consider the
spectral separation δ (see the bar in Fig. 8.2(d)) between the zero-order minimum
and first maximum in the sideband of the reflectance spectrum at fixed delay t0. Fig-
ure 8.4(d) shows the experimental (closed symbols) and calculated (open symbols)
values of δ as a function of P . These data are taken at t0 =20 ps where δ can be
considered almost independent of t0 in the time interval (t0 − τc, t0 + τc). Good agree-
ment between the experimental and calculated values is seen, which supports that the
suggested model of diabatic optical frequency modulation is appropriate for describing
the underlying physics. The nonmonotonic dependence of δ on P results from the non-
linear strain pulse propagation in the GaAs substrate [27][29]. At small P < 3mJ/cm2

the strain η(t) shows only changes in amplitude while the shape in the time interval
between negative and positive η(t) remains the same. This yields dω(t)/dt ∼ P and
correspondingly an increase of δ with P . For higher P > 4mJ/cm2 the dynamical
strain pulse consists of an acoustic soliton train at the front and a dispersive oscillat-
ing tail at the end while in the middle dω(t)/dt first saturates and then decreases with
increasing P [29].
Besides the observation of sidebands, the experiments bare another interesting feature
connected to the strong coupling of the exciton and cavity mode resonances. To illus-
trate this, Fig. 8.5 shows the contour plot already shown in Fig. 8.2(b) on an extended
timescale. Low amplitude oscillations occur between t0 = 150 ps and t0 = 500 ps
due to reflected components of the acoustic pulse on the microcavity interfaces. The
sideband effect is only weakly pronounced, making it possible to follow in reasonable
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approximation the stationary LP resonance.
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Figure 8.5: Spectral/temporal contour plot obtained from P = 8mJ/cm
2

like Fig. 8.2(b) but an
extended timescale is shown. (inset) LP energy (blue symbols) and LP reflectance at the peak
position of the resonance (red symbols).

The inset shows the LP energy position (blue symbols) and the reflected amount
of intensity at the respective peak position of the LP resonance line (red symbols,
compare also 8.1(b)). Apparently, antiphase oscillations are present, reflecting the
well known behaviour within the polariton formalism, which is explained in detail in
Chapter 3.1.3. At times when the LP resonance shifts to higher energies (as a result
of the exciton shift), the detuning Ex − Ec > 0 increases and the LP gains photonic
character. This manifests in a more pronounced LP resonance and accordingly to a
lower reflectance coefficient at the peak position of the resonance.
The injected strain pulse though is able to modulate the light matter interaction in
a well defined manner. To gain more insight into this aspect, Chapter 9 will provide
more information on the ultrafast manipulation of light matter interaction.
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8.5 Conclusions and Outlook

In conclusion the generation of sidebands in the microcavity polariton spectrum as
a result of ultrafast, high amplitude optical frequency modulation has been demon-
strated experimentally. The sideband spectra show quasiperiodic fringes with a period
depending on the modulation rate dω(t)/dt. The frequency modulation can be an-
alyzed by a simple diabatic model, in which the central optical frequency shifts by
an amount larger than the spectral width during a time shorter than the coherence
time of the resonance. The origin of the detected sidebands is distinctly different from
that of the well-known vibronic sidebands or THz radiation induced sidebands [94]
in optical spectra near the resonance lines of electronic transitions. The sidebands
observed here require not only fast modulation times τa < τc but also high modulation
amplitudes ∆Ω, which exceed the stationary spectral width. The sidebands can be
detected only in the coherent regime and may be considered as an optical analog of
radio frequency signals, for which high amplitude frequency modulation is widely used.



9 Manipulation of Light Matter

Interaction

Previously it has been shown that placing a quantum well (QW) inside a mi-
crocavity, in the strong light matter interaction regime a sharp photon like (lower)
polariton resonance (LP) in a well detuned system might be observed (Chapter 8).
The energy modulation of the underlying exciton resonance results in a shift of the
LP for values exceeding the resonance width within times τa being shorter than the
LP coherence time. This was shown to establish a novel diabatic regime in semicon-
ductor optics, resulting in pronounced sidebands accompanying the resonance energy
shift. In the preceeding chapter it has been already suggested that the methods of
ultrafast acoustics might offer an access to modulation processes concerning the light
matter interaction of excitons and cavity photons. In this chapter experiments will be
presented, using a quantum well cavity at negligible detuning in order to demonstrate
the ultimate possibilities connected with the modulation of light matter interaction
induced by a picosecond strain wave.

9.1 Introduction

Manipulating Light-Matter Interaction (LMI) is a basic necessity for various fundamen-
tal applications in atom physics as well as in solid state physics. Especially in semicon-
ductor physics, the strong interaction of electronic transitions with light have gained
a lot of interest since manipulation and characterisation on picosecond timescales and
below became feasible [83][95].
In particular tailoring the electromagnetic environment of an (optical) emitter using
quantum confined photons in down to zero dimensions has been shown to be an effi-
cient way to manipulate the radiative properties of the respective emitter [96]. In this
so called weak-LMI regime significant losses of the system occur much faster than the
interaction of the photon and the emitter appears to be [95]. Increasing the quality of
the photonic resonator (i.e. increasing the time within the photon and the emitter can
interact) leads to a strong-LMI regime as far as the oscillator strength of the emitter
is sufficiently large, and the involved emitter is in resonance with the confined cavity
mode (see Chapter 3.1.3). The system then shows new eigenstates called the upper
and the lower polariton branches (UP, LP).
Cavity structures furthermore act as high repetitive optical emitters [96], optical re-
tarders [97], lasers [98] and parametric amplifiers [99]. Moreover these cavities have
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been considered as candidates for optical information storing, processing and transmis-
sion [100] as well as for Bose-Einstein condensates [101]. Experimental studies on the
population dynamics in Atoms have shown that both, the amplitude and the frequency
of the energy modulation of one of the underlying states can have significant influence
on the transition probabilities in the respective system [102]. However, the transient
picosecond switching from strong- to weak-LMI, precisely from the transition of a state
which is characterized by a coherent conversion of a photon into a solid state excitation
(and back), to an uncoupled state in semiconductors has remained challenging [103].
In this chapter the picosecond switch from strong- to weak-LMI utilising a semicon-
ductor quantum well interband transition coupled to the confined mode of a planar
optical microcavity will be demonstrated. The switch was induced by a terahertz
acoustic pulse, which has been shown to be a powerful tool for manipulating optical
transitions in semiconductors on picosecond and sub-picosecond timescales (see also
Chapters 7 and 8) [85][50]. In the experiments described in the following, the energy of
the underlying exciton resonance of an optical system, initially governed by strong-LMI
is modulated in time, such that the characteristic Rabi-Frequency 2ΩR is exceeded.
The amplitude of the energy modulation thereby is so high, that effectively the regime
of strong-LMI is left.

9.2 Experimental Conditions and Sample

Picosecond strain waves have been applied to a 100 µm thick GaAs substrate using
a 100 nm thin aluminium transducer excited by a high intense 150 fs laser pulse of
wavelength 800 nm. The maximum reached excitation energy density on the trans-
ducer was P = 14 mJ/cm2. A sketch of the experimental configuration is shown in
Fig. 9.1. Propagating along the GaAs substrate, anharmonicity and dispersion give
rise to acoustic soliton formation, leading to acoustic angular frequencies up to 10
THz [15]. After a propagation time ∼ 20 ns the strain wave reaches an 8 nm wide
In0.04Ga0.96As quantum well (QW) embedded in a high quality (Q ∼ 104) optical cavity
(Q, quality factor of the cavity mode). The cavity has been built up from 24 periods
and 20 periods of AlAs/GaAs λ/4 layers forming the bottom (toward substrate) and
top mirrors (toward vacuum) respectively. λ represents the wavelength of the confined
cavity mode. The energy detuning between the pure QW exciton (electron-hole) reso-
nance energy Ex and the pure cavity mode energy Ec is negligible at a temperature of
10 K and k ≈ 0 (see Fig. 9.1(a)), leading to two almost equivalent polariton resonances
in the strong-LMI regime. The polariton resonances split by 2ΩR = 5.7 THz in terms
of angular frequencies and the ralation Ex −Ec ≈ 0 holds, if no strain wave is present.
A corresponding reflectance spectrum, obtained with a frequency shifted laser pulse
(via an optical parametric amplifier: coherent OPA) from the same source like the
strain wave excitation pulse is shown in Fig. 9.1(b).
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kkk
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acoustic
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Figure 9.1: Experimental preconditions: (a) Sketch of the quantum well microcavity formed by
two Distributed Bragg Reflectors and a central cavity layer with a centered quantum well at the
antinode position of the confined light field. The strain pulses are injected via the aluminum film
(left sided red arrow). (b) Reflectance spectrum at T = 10 K without applied strain pulse: LP
and UP denote the lower and upper polariton resonances, respectively. (blach arrow) Ec points
the expected energy of the caity mode.

The detection was realized using a 0.5 m grating spectrometer yielding a spectral
resolution of 0.16 meV. Varying now the time delay t between both laser pulses (i.e.
strain wave excitation and reflectance), it is possible to measure the time dependent
influence from the strain wave on the reflectance. The observed changes are essentially
due to deformation potential interaction, which determines the exciton energy (see
Chapters 6, 7, and 8)[29][50][51].

Ex(t) = Ex + aη(t) ≈ Ex + ∆(t), (9.1)

when the QW undergoes a time dependent uniaxial deformation η(t) (see for example
[104]) due to the presence of the strain wave, turning ∆ into the time dependent func-
tion ∆(t) (a < 0, electron hole net deformation potential, see for details Chapter 3.2).
The cavity mode energy will be taken to be constant within the experimental error in
the following discussion (for justification see Chapters 8 and 6).
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9.3 Results and Discussion
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Figure 9.2: Spectral/temporal contour plot at an applied strain wave excitation density of P =

12.5mJ/cm
2

(T = 20 K). The strain wave impacts the central cavity layer at t ≈ 0 ps. The areas
I,II,..,V indicate the different coupling regimes with ∆ ≈ 0 (area I), ∆ > 0 (areas II and IV) and
∆ < 0 (areas III and V).

Figure 9.2 shows a temporal/spectral contour plot of the observed reflectance spectra
at a temperature T = 20 K at P = 12.5 mJ/cm2. The time axis gives the time delay
t, recorded with a sampling step of δt = 300 fs. The time t = 0 highlights the time
delay when the strain wave enters the QW in the central cavity layer. Figure 9.2 is
subdivided in areas labeled I,II,...,V, temporally separated by dashed vertical lines,
which indicate the time windows of different light matter interaction conditions, i.e.
∆ ≈ 0, ∆ < 0 or ∆ > 0. In area I the strain wave has not yet influence on the spectra
and the UP and LP branches remain like shown in Fig. 9.1(b). At the beginning of
area II (t ≈ 0 ps) the UP and LP branches vanish from the spectrum, whereas a
pronounced single resonance appears in between the LP and UP energy positions as
seen in area I. Later on well separated sidebands occur (see Chapter 8) [50], and at the
end of area II (t ≈ 30 ps) again two equal polariton branches are seen at the original
polariton energies. In the subsequent area III, the LP branch evolves to be very weak
beside the UP branch, both shifted to lower energies until again two equal branches
are seen. Contrary in area IV the LP branch is more pronounced than the UP branch
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and both are shifted to higher energies. In area V a similar situation like in area III is
apparent.

Figure 9.3: Calculated polari-
ton properties according to
Equations 3.12 and 3.16. (a)
UP and LP polariton energies
in dependence on the under-
lying exciton energy Ex (dot-
ted line). The cavity pho-
ton energy Ec (dashed line)
is held constant. The polari-
ton energies anticross at res-
onance i.e. Ex = Ec =
1.4547 eV with a splitting ac-
cording to Equation 3.14. (b)
Same dependence as in (a) but
for the Hopfield Coefficients
|a1|2 and |a2|2 following Equa-
tion 3.16.(insets) Zoom into
the dependencies in (a) and
(b). (a) LP energy (solid black
line) and cavity mode energy
Ec (solid grey line) as a func-
tion of the detuning ∆. Dotted
lines indicate the experimental
uncertainty. (b) Same for the
hopfield coefficient a2

2. The
solid lines indicate the mini-
mum values of ∆ and a2

2 at
which the LP gets purely pho-
tonic within the experimental
uncertainty.
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The observed evolution of the polariton branches can be explained straight forward,
considering the polariton wave functions (see Chapter 3.1.3, Equation 3.15)

|Ψ〉 = |UP〉 + |LP〉 = (a1(∆d)|C〉 + a2(∆d)|X〉) + (a1(∆d)|X〉 − a2(∆d)|C〉), (9.2)

where |X〉 and |C〉 denote the exciton and the cavity state vectors respectively. The
Hopfield coefficients a1(∆) and a2(∆) give the excitonic and photonic density of the
respective polariton branch in dependence of the detuning ∆(t). In particular it is
√

a2
1(∆) + a2

2(∆) = 1. Further the avoided crossing behaviour of the polaritons
(Equation 3.12), which at a given detection angle, determines the energies EUP(∆) and
ELP(∆) of the polariton branches as well as their resonance width in dependence of
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the exciton energy Ex(∆) is to be considered. The polariton energies EUP,LP(Ex) as
well as the Hopfield coefficients a2

1,2(Ex) are plotted in Figure 9.3(a) and Figure 9.3(b),
respectively, where ∆ = 0 at resonance when Ex = Ec = 1.4547 eV (see also Chap-
ter 3.1.3). Corresponding to Fig. 9.2 (area I), at resonance, the UP and LP branches
are both, excitonic and photonic in the same manner as a2

1 = a2
2 ≈ 0.5 with the energies

EUP,LP(∆ ≈ 0) ≈ Ec ± ~ΩR (see equation 9.1 and Fig. 9.3(a,b)).
Since the leading edge of the strain wave compresses the crystal rapidly (i.e. easily
|dη(t)/dt| > 10−3/ps and η(t) < 0) [50], following Equation 9.1 and Fig. 9.3(a,b) the
LP (UP) branch shifts to higher energy and gains photonic (excitonic) character (be-
ginning of area II (t ≈ 0 ps in Fig. 9.2). Later, when the compressive part of the
strain wave has passed the QW and again η(t) = 0 and so ∆(t) = 0 (end of area
II (t ≈ 30 ps)) equal polariton branches are recovered. In general when the strain
changes the sign of ∆(t) (dashed lines in Fig. 9.2), i.e. η(t) passes zero, the two po-
lariton branches exchange their properties from photonic to excitonic and vice versa
(Fig. 9.3(b)) while they are shifted to higher (∆(t) > 0) or lower (∆(t) < 0) energies
following the avoided crossing curves (Fig. 9.3(a)). From Figure 9.2 it is obvious that
the deformation amplitude of the strain wave decays in time while it is changing its
sign from negative (η(t) < 0) to positive (η(t) > 0) several times within the observed
time window. Apparently the strongest modulation of the spectra is observed at time
t ≈ 0, where the spectra change from double to single resonance.

Figure 9.4: Experimental data from the transition region from weak-LMI to strong-LMI around
t = 0 (T = 10 K). (a) Single spectra separated by ≈ 0.7 ps from t = −5.6 ps (upper spectrum)
till t = 1.8 ps (lower spectrum). The spectra are shifted vertically for clarity. Red arrows indicate
the time evolution of the resonances energies. (bold solid lines) Highlighted spectra (1,2,3) refer to
the discussion in the text. (b) ”LP” energy (red squares) as obtained at t = 1.8 ps and deduced
hopfield coefficient a2

2 (black dots) as a function of the strain wave excitation density P on the
aluminum transducer.
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In order to reduce the damping of the strain wave due to interaction with thermal
phonons [13] and keeping to a high extend the experimental conditions given above
(i.e. ∆ ≈ 0), the temperature has been reduced to T = 10 K. Several spectra separated
by ≈ 0.7 ps are shown in Fig. 9.4(a) obtained at P = 14 mJ/cm2. Clearly the two
polariton branches vanish while a single resonance appears close to the energy position
in the middle between the polariton branches. The energies of the three involved
resonances thereby stay constant during the transition process within experimental
accuracy indicated by red dashed arrows.
The maximum energy position (corresponding to t = 1.8 ps in Fig. 9.4(a)) of the LP,
which according to Figures 9.3(a,b) provides information about the photonic character
of the resonance has been determined in dependence of P . The result is shown in
Fig. 9.4(b) (open squares), where the error bars represent the spectral resolution of
the detection apparatus. The LP maximum energy increases with increasing P , i.e.
with increasing |ηmax|, until it saturates at the energy Ec ≈ 1.4547 eV within the
experimental resolution. This energy corresponds to a maximum reached ∆(t) of at
least 39 meV as shown in the inset of Fig. 9.3(a). Here the dashed lines denote
the experimental error among the cavity mode energy. The corresponding Hopfield
coefficients a2

2(P ) are plotted in Fig. 9.4(b) as black dots and the error to lower values
has been estimated on the basis of the experimental resolution and the polariton energy
and Hopfield coefficient curves according to Equations 3.12 and 3.16. The maximum
reached value of a2

2 = 0.9997 − 0.003 (compare also inset of Fig. 9.3(b)) indicates a
purely photonic mode within the experimental resolution and so a complete break-
down of the polariton in the experiment, indicating a transition from the strong-LMI
to the weak-LMI regime.
An additional observed feature within the transition from strong to weak LMI within
the time window between t = −5.6 ps and t = 1.8 ps (Fig. 9.4(a)) can be seen directly
considering the highlighted (bold lines) spectra in Fig. 9.4(a). The third resonance
at energy Ec is seen to gain intensity not monotonuosly, but shows an oscillating
amplitude in dependence of the delay time t with a period of (1±0.3) ps (compare
bold lines 1,2, and 3 in Fig. 9.4(a)). This period is in good agreement with the normal
mode splitting τ2R = 2π/2ΩR = 1.1 ps. The amplitude of the oscillations thereby
increases with t. The oscillations affect the middle resonance (at Ec) as well as the
resonances at ELP and EUP, where the intensities at the polariton energies oscillate
in phase with respect to each other. Contrary, the intensity of the resonance at Ec

oscillates in antiphase with respect to the other two resonances.
This behaviour is not understood completely but might be a step forward to sub-
cycle coherent control of light matter interaction in an optical cavity. The highest
modulation angular frequecies involved (>10 THz) clearly exceed the Rabi frequency
of 2.85 THz in this case and constitute a high amplitude leading strain edge, offering
the possibility to modulate the coupling faster than the recurrence times, i.e. the
Rabi-cycle, concerning the polaritons time evolution.
To verify that the reached energy Ec of the lower polariton resonance indeed is limited
by the crossing behaviour of the involved polariton energies and so, is equivalent to
the photonic mode energy, Fig. 9.5 shows the experimental polariton energies (LP,UP)
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without applied strain wave (blue circles) as a function of temperature T .
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Figure 9.5: Energy structure as a

function of temperature T . (blue
circles) UP and LP energies as ob-
tained from reflectance measure-
ments. (green stars) shifted cavity
mode energies obtained from high
density photoluminescense spectra
of a reference sample (see Chap-
ter 10). The slopes have been fit-
ted (solid lines) to yield the under-
lying exiton energy (dashed black
line). Parameter: Normal mode
splitting 2ΩR = 3.62 meV, exciton
linewidth δEx = 0.4 meV, cavity
mode linewidth δEc = 0.17 meV,
Ec(T = 15 K)=Ex(T = 15 K) =
1.4547 eV. Red crosses show the
experimentally measured maximum
LP energies at delay time t ≈ 0.

The green stars indicate the measured temperature dependence of the cavity mode
obtained from high excitation density luminescense spectra [105] of a similar sample
structure with different detuning due to the growth procedure (see Chapter 10). An
example for the obtained cavity mode energy is shown in Fig. 9.6. Note that the
radiative decay in the laser regime, using pulsed high density excitation, is much
shorter than the luminescense decay, which was not detected in the corresponding time
resolved spectra at long times. The long-term low density luminescense component due
to depletion of the quantum well therefore has been assumed to be negligible in the
time integrated spectra at very high excitation density. The measured datapoints have
been shifted to the calculated value corresponding to ∆ = 0 (T = 15 K), and the
slope has been fitted (green solid line) together with the measured polariton energies
(blue solid lines) to obtain the exciton energy (dashed black line) using Equation 3.12.
The red crosses correspond to the maximum values of the LP resonance (P = 12.5
mJ/cm2) at t ≈ 0 (shown in Fig. 9.2). It is seen that the shifted LP energy follows the
temperature dependence of the cavity mode energy up to T = 30 K, where the induced
higher LP energy shift ∆ELP increases with temperature (difference energy between
the lower blue circles and the red crosses). This behaviour is a clear indication for
∆ELP being limited by the cavity mode energy Ec and not by the applied maximum
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strain amplitude at low T .

Figure 9.6: Photoluminescense spec-
tra of a reference sample discussed
in detail in Chapter 10. The
full polariton temperature depen-
dence is shown in the inset of
Fig. 10.1(a). The cavity mode en-
ergy Ec has been obtained from the
bold (black) spectrum which corre-
sponds to the excitation density of
I = 275µJ/cm
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9.4 Summary and Outlook

The subterahertz transition from strong light matter interaction to weak light matter
interaction and back in an optical cavity initially strongly interacting with a quantum
well interband transition (exciton) was demonstrated. The applied ultrafast acoustics
technique opens a new way to manipulate the coupling strength with THz frequen-
cies. This is in particular interesting for the ultrafast control of polariton population
dynamics, which is highly desired in quantum information processing schemes. The
long term oscillatory behaviour of the strain wave might be tailored by phononic band
gap materials, the variation of the metal type, the metal thickness and the surface
coating of the used transducer. Also the control of the injection (propagation) process
of the strain wave into (in) the substrate/sample (substrate) might be tailored using
different materials (material thicknesses). Additionally, indications of sub-rabi-cycle
modulation have been turned out, not seen in similar structures up to now. The ul-
trafast acoustics technique further proposes room temperature operation [70] with a
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high potential for effective modulation processes, which indeed offers a prospective
possibility for future applications.



10 Ultrafast Control of Polariton

Emission Dynamics

Focusing on the reflectance spectra of a strongly coupled quantum well microcavity,
where no carriers, i.e. elctrons and holes, have been excited in the preceding Chapters 8
and 9, in the following - closing - experimental Chapter, carriers are of explicit im-
portance enabling the system to actively emit light. The electrons and holes thereby
might be excited above the band gap and diffuse to the quantum well where they
scatter to the lowest energy level and recombine radiatively. The emitted (confined)
photons though couple strongly to the quantum well and will be released from the cav-
ity at the polariton energies EUP (upper polariton) and ELP (lower polariton), where
the emission distribution depends on the respective resonance profile as well as on the
Boltzmann distribution in the stationary (linear excitation) case. Higher excitation
densities might cause increasing scattering mechanisms, which lower the Rabi split-
ting, and at a certain threshold the breakdown of strong coupling in the system (see
Fig. 9.6)[106][107][105]. In the focus of this chapter will be the question how and to
what extend it is possible to manipulate the emission dynamics of a strongly coupled
quantum well microcavity in the non-coherent regime on ultrafast timescales using a
picosecond strain pulse [104].

10.1 Introduction

High-frequency acoustics has been recently shown to be a prospective tool for manip-
ulating optical emission characteristics in microcavities (MCs) [85][108]. One of the
currently challenging tasks of acousto-optics is to realize ultrafast intensity and fre-
quency modulation of the spontaneous and stimulated light emission from nanopho-
tonic emitters. Traditional ultrasonic experiments have been successfully performed
on semiconductor MCs but there the modulation frequency is limited to the gigahertz
frequency range [108][60]. The extension of the modulation frequencies to the terahertz
range would provide significant progress in the ultrafast control of light emission from
such cavities.
In the following, the potential of ultrafast acoustics, using picosecond strain pulses for
modulating the photon energy of the spontaneous photoluminescence (PL) from a MC
with a quantum well (QW) as the optically active medium will be explored. The strain
pulse induces a dynamical energy shift of the quantum well exciton resonance, which
results in an ultrafast modulation of the photoluminescence spectrum from the lower
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polariton branch.
The studied MC structure was grown by metal-organic chemical-vapor deposition
(MOCVD) on a (001)-oriented GaAs substrate.
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Figure 10.1: (a) Photoluminescence spectra of the studied MC structure at T=5 K for cw-low
power excitation (λlas = 352 nm; 100 W/cm2). The dashed and solid vertical arrows indicate the
energies of the uncoupled states (C photonic mode; X QW exciton) and polariton resonances (LP
and UP ), respectively. The inset shows PL spectra for different temperatures T=5-120 K. At T =
50 K the minimum-energy separation between the PL lines which is equal to 3.3 meV is reached
corresponding to the Rabi splitting. (b) Calculated energies of lower and upper polariton branches
as a function of detuning between the photon mode and the QW exciton for a Rabi splitting of 3.3
meV at T = 1.8 K (compare Fig. 3.7). The dashed lines are the resonance energies of the photon
mode and the QW exciton. (c) Dependence of the lower polariton emission intensity on detuning
determined from the temperature dependence of the PL spectra. The vertical dotted line in panels
(b) and (c) shows the detuning at T = 1.8 K in the absence of a strain pulse.

It contains an 8-nm-wide InGaAs QW in the middle of a GaAs barrier layer with a
width d=240 nm, corresponding to the wavelength λ of the confined photon resonance.
This λ-cavity layer is surrounded by Bragg mirrors made from 24 and 20 pairs of
GaAs/AlAs λ/4 wave stacks at the bottom (toward substrate) and the top (toward
vacuum) respectively. The quality factor Q (for definition see Chapter 6) of the MC
is ∼ 104 and the exciton linewidth ≈ 0.6 meV, leading to the strong coupling regime
among the resonances [46]
The PL spectrum measured at normal incidence to the cavity at low temperature
(T = 5 K) for cw excitation is shown in Fig. 10.1 by the solid line. The spectrum
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consists of two emission lines with maxima at ELP and EUP , which correspond to the
lower and upper polariton states, respectively. The dashed vertical arrows labeled Ec

and Ex indicate the energies of the uncoupled photon and exciton resonances of the
MC and the QW (see also Fig. 9.5 for illustration). The value of 3.3 meV for the Rabi
splitting was obtained from the dependence of the spectral position of the PL lines on
temperature T (see inset) [109]. The calculated dependence of the polariton energies
as a function of detuning Ex-Ec is shown in Fig. 10.1(b). For further consideration it
is convenient to present the curves in Fig. 10.1(b) such that Ec shown by the dashed
horizontal line is fixed while Ex (oblique dashed line in Fig. 10.1(b) could be tuned.
The vertical dotted line in Fig. 10.1 corresponds to a detuning Ex − Ec=2.7 meV at
T=1.8 K. Figure 10.1(c) shows the experimental dependence of the intensity of the
lower polariton branch emission as a function of detuning, measured by varying the
temperature. This dependence qualitatively is similar to one that was measured at
fixed temperature for different detunings in a wedge-shaped cavity [110].

10.2 Strain Modulated Photoluminescense

The scheme of the ultrafast acoustics studies is shown in Fig. 10.2(a). A beam from a
150 fs ti:sapph laser pumping a regenerative amplifier (wavelength 800nm and repeti-
tion rate of 250 kHz) was used for generation of strain wave packets in a 100-nm-thin
Al transducer deposited on the polished substrate opposite to the MC structure [19].

Figure 10.2: (a) Scheme of experi-
ment with picosecond strain pulses.
(b) Calculated temporal shape of a
strain pulse at the interface between
substrate and Bragg mirror in the
medium excitation density regime
(Chapter 2.2).
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As a result of optical excitation with an energy density of 3 mJ/cm2 on the metal
film, a bipolar strain pulse with a strain amplitude of ∼ 10−4 is injected into the GaAs
substrate. The strain wave packet propagates through the 100 µm GaAs substrate with
the velocity of longitudinal sound s = 4800 m/s, so that after about 20 ns it reaches
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the MC. Figure 10.2(b) shows the calculated temporal evolution of the pulse reaching
the MC. Details of the calculations, which include the nonlinear elastic properties of
the GaAs crystal, can be found in Chapter 2.2 [72].
A second beam split from the same laser excites nonresonantly the polariton PL
through the top surface of the MC. The excitation wavelength (800 nm) thereby cor-
responds to the first stop band minimum, allowing for efficiently coupling light into
the cavity structure (compare Fig. 3.3). The delay between the two pulses was set to
about 20 ns so that the strain wave passes the GaAs substrate and reaches the MC
when the PL is emitted with a decay constant τl. The effect of the strain pulse on the
lower polariton emission was monitored by measuring the time-resolved PL spectrum
with a single spectrometer followed by a streak camera. The temporal resolution was
about 30 ps corresponding to a spectral resolution of ∼ 0.16 meV.

10.3 Experimental Results

Figure 10.3 shows the temporal and spectral streak camera images of the lower po-
lariton PL intensity I(E, t) measured at T=1.8 K in the absence (left) and in the
presence (right) of the strain pulse. In the absence of the strain pulse (panel (a)) the
PL line shifts to lower energies while decaying with a time constant of τl ≈ 350 ps.
This behavior is governed by the dependence of the light-matter coupling parameter
on the polariton density as discussed earlier for similar MC samples [106][107].

3

1.451 1.452

t
3

t
2

t
1

In
te

n
s
it
y

Energy (eV)

600

400

200

0

-200

T
im

e
 (

p
s
)

1.451 1.452

t
3

t
2

t
1

Energy (eV)

t1

t2

t3

(d)(c)

(a) (b)PL excitation

Strain

injection

Figure 10.3: Streak-camera images
of the temporal (vertical direction)
and spectral (horizontal direction)
PL evolution in the (a) absence and
(b) presence of a strain pulse at
T=1.8 K. The big horizontal ar-
rows show times, which correspond
to the pulsed excitation of the PL
(panel (a)) and injection of a strain
pulse into the MC (panel (b)). Pan-
els (c) and (d) demonstrate spectral
profiles at time delays shown in (a)
and (b) by numbered arrows in (c)
absence and (d) presence of a strain
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The image in Fig. 10.3(b) shows the PL decay when a strain wave packet has been
injected into the MC. The delay ∆t between the exciting PL laser pulse (shown by
the big horizontal arrow in panel (a)) and the time moment when the strain pulse
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reaches the MC (shown by the big horizontal arrow in panel (b)) is 150 ps. Compared
to the case without strain, a pronounced bump occurring at time t ≈ 100 ps is clearly
observed. The lower panels in Fig. 10.3 show emission spectra at different fixed delay
times t. Panel (d) reveals, that the strain wave induces both, a shift and a broadening
of the PL spectra.
Figure 10.4 shows the time evolutions of the energy of the PL maximum (panel (a)),
of the spectral width of the emission (panel (b)) and of the PL intensity integrated
over the emission line (panel (c)). The energy shift induced by the strain pulse reaches
a maximum value of ∆ELP ≈ 0.2 meV (panel (a)). Further, the shift is almost inde-
pendent of the delay between the strain and the PL excitation pulses (see inset). The
width of the spectrum increases in the presence of the strain pulse (panel (b)), whereas
the integrated PL intensity of the lower polariton branch decreases (panel (c)) when
the PL linewidth starts to increase (t = 0), then rapidly increases simultaneously with
the shift of the emission line, and thereafter decreases again. From the comparison of
the leading edge of the energy shift with those of spectral width and intensity, it is
seen that this shift starts with a delay with respect to the two other quantities.
In the analysis of the strain-induced effect on the PL spectrum of the MC two effects
have to be considered: (i) the strain-induced change in the length and the refractive
index of the MC and (ii) the strain-induced change in the exciton resonance energy Ex

in the QW [77]. At first the contributions of (i) and (ii) to the strain-induced energy
shift of the PL line will be discussed (Figs. 10.3(b) and 10.4(a)). Both effects modulate
the detuning Ex−Ec and, therefore, the energies of the two polariton branches, as can
be seen from Fig. 10.1(b). To estimate the two contributions consider the temporal
profile η(t) of the strain pulse in Fig. 10.2(b). The change in the strain pulse shape due
to the multilayered Bragg mirrors (Chapter 8) [50] is ignored in the following discus-
sion. According to Chapter 6 the strain wave induces a combined cavity energy shift
which is ∆Emax

c < 0.1 meV when the strain passes the λ-cavity interface, taking into
account the displacement of the interfaces as well as the photoelastic effect. The sec-
ond contribution (ii) gives a maximum strain-induced change in the exciton resonance
energy by ∆Emax

x ∼ 1 meV and however occurs when the maximum strain reaches the
quantum well.
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Figure 10.4: Temporal evolution of
the LP line at T=1.8 K: (a) energy
shift, (b) spectral width, and (c) in-
tegral PL intensity of the LP line
normalized to the spectral width
and integral intensity in the absence
of a strain pulse. The inset shows
the temporal evolution of the PL
energy measured for various time
delays ∆t, between the pulses for
PL excitation and strain pulse in-
jection. The step between the de-
lays is 100 ps. The upper curve cor-
responds to the shortest delay when
the arrival of the strain pulse at the
QW coincides with the maximum
PL intensity. For better comparison
the time scales have been shifted by
the corresponding delay so that the
curves lie on top of each other.

This can be evaluated from measurements under similar experimental conditions for
a GaAs/(Al,Ga)As QW without a surrounding cavity [77]. Inserting the estimated
values of ∆Emax

x and ∆Emax
c into the dependence of the lower polariton energy on

Ex − Ec Fig. 10.1(b), however it can be easily seen that contribution (ii) dominates
over contribution (i) in the net straininduced PL energy shift, yielding ∆ELP ≈ 0.17
meV. This value is in good agreement with the experimentally measured lower polariton
energy shift ∆ELP ≈ 0.2 meV (shown in Fig. 10.4(a)).
The strain wave packet acts on the MC as a bipolar strain pulse (Fig 10.2(b)). The
compression part of the pulse η(t) < 0 is followed by a tensile perturbation (η(t) > 0).
Thus ∆Ex is expected to change sign from positive for η(t) < 0 to negative for η(t) >
0 (see Chapter 7) [77]. Therefore also ∆ELP should change its sign in phase with
∆Ex. However, this is not observed experimentally where only ∆ELP > 0 is detected
(Fig. 10.3(b)). Qualitatively this can be explained by the strong quenching of the
lower polariton branch PL for decreasing detuning (see Fig. 10.1(c) and Ref. [110]).
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Consequently the PL signal during compression will give a much greater contribution
than the PL signal during the tensile part to the signal I(E, t), recorded with a limited
time resolution. As a result ∆ELP < 0 is not observed in Fig. 10.3(b).
The observation of the lower polariton PL energy shift due to the modulation of Ex

is possible only due to the strong coupling between the photon mode and the exciton
resonance. An increase in the optical excitation density reduces this coupling (i.e.
decreases the Rabi splitting). This explains the observed shift of the lower polariton
PL peak up to 1.4515 eV at early delays in Fig. 10.3(a) from its energy position
ELP = 1.4510 eV measured for cw-low power optical excitation (Fig.10.1(a)). The
dependence of the coupling strength on excitation density also results in a decrease in
ELP during the PL decay after pulsed excitation (Fig. 10.3(a) and Ref. [106][107]).
However, the strain-induced shift ∆ELP ∼ 0.2 meV does not depend on the polariton
density in the experiments. This is demonstrated in the inset of Fig. 10.4(a) where
∆ELP is almost independent of the delay between the pulsed optical excitation of the
MC and the arrival of the strain pulse. Therefore here the density dependent effects
can be neglected in the analysis of the strain-induced PL energy shift. However, for
other experimental conditions than the ones realized here excitation density dependent
effects in the light-matter coupling might become important for the strain induced PL
changes.
The start of the strain-induced effect on the spectral width (Fig. 10.4(b)) and PL
intensity (Fig. 10.4(c)) is shifted by 30 ± 10 ps to earlier times compared to the PL
energy shift (Fig. 10.4(a)). This value agrees very well with the time for a distance of
x = 120 nm (Fig. 10.2(a)), which a strain pulse travels during its motion from the edge
of the Bragg mirror to the QW, as shown by the horizontal bar in Fig. 10.2(a). In fact,
the strain pulse reaches first the internal edge of the Bragg mirror inducing a small
energy shift hard to resolve with the used experimental setup. A much better indicator
of the small cavity energy shift is the emitted lower polariton luminescense intensity
which depends strongly on the detuning (Fig. 10.1(c)). Already small changes of the
detuning Ex − Ec are visible in the luminescense response. The strain-induced cavity
mode energy changes, and the energy shift of the exciton in the QW give different
signs for the PL intensity changes at the considered times. Together with different
arrival times of the strain pulse at the cavity structure and the QW this results in the
oscillation observed in Fig. 10.4(c). Also a broadening of the spectra might be observed
taking into account the results of Chapters 6 and 8, which show, that small amplitude
energy oscillation are expected, when the strain wave approaches the λ-cavity, where
the period (≈ 23 ps) is below the experimental timeresolution.
The PL energy and intensity modulation obviously depend on the initial detuning
Ex − Ec. In the present work this value is chosen positive and not too far from the
Rabi splitting value. In this case we get a considerable energy modulation without
strong changes in the PL intensity. From Figs. 10.1(b) and 10.1(c) it is clear that
having a detuning closer to the resonance Ex − Ec = 0, the energy modulation will
have higher amplitude but the intensity of the PL will be lower. Therefore values
Ex − Ec < 0 appear to be not useful because of the low PL intensity.
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10.4 Conclusions

In conclusion subterahertz modulation of the light-emission spectrum from a semicon-
ductor quantum well strongly coupled to a high quality planar microcavity has been
demonstrated. The modulation is achieved by injecting a picosecond strain pulse into
the microcavity. The experiments open the way to ultrafast control of light emission
in photonic devices using monochromatic sound, strain wave packets, and acoustic
solitons. Further, experiments in which the strain pulse controls optically stimulated
processes in a cavity, like lasing properties or Rabi flopping times (compare Chapter 9)
as well as the manipulation of polariton condensates may become feasible.



11 Summary and Future Prospects

Summarizing the experiments and the experimental results obtained in Part II, a
series of measurements has been presented, subsequently building up the basis for un-
derstanding the interaction of a picosecond strain wave with semiconductor quantum
wells, semiconductor Bagg microcavities and the combined strongly coupled system.
It has been shown that the two main investigated constituents, namely a quantum well
and a microcavity, representing electro-optic and elasto-optic components respectively,
show very different response to the strain wave. Thereby both of them have turned
out to be prospective structures for beyond-linewidth modulation within picoseconds
as long as the definition of stationary linewidth is not hampered by the fundamental
restriction of the finite coherent optical decay among the respective structure.
However, the achieved maximum energy shift is quite different. In the investigated
Bragg microcavity the maximum shift from higher to lower energies was about 1 meV
and could be explained by elasto-optical and dimensional considerations. The time
to perform this shift was limited by the microcavity spatial dimensions to ∼ 10 ps.
In the quantum well, energy shifts of more than 10 meV have been reported. The
temporal and spectral resolution of the detection was shown to be limited not by the
experimental setup but by the inherent properties of the quantum well. The impor-
tant parameters thereby were the quantum well thickness and the coherent resonant
polarisation decay of the quantum well exciton. The exciton resonance thereby was
shown to be stronly chirped and even doubled structures appear in the spectra due to
fast and strong energy modulation.
Contrary, in the strongly coupled quantum well-microcavity system, the shifts of the
polariton energies are limited by the avoided crossing of coupled resonances. It has
been demonstrated that the shift to higher energies of the involved exciton can be
as high as 40 meV within maximum ∼ 7 ps. This fast shift produced a purely pho-
tonic lower polariton mode, which indicates and effective switch-off of the strong light
matter interaction. The coherent optical decay has been further shown to be not a
drawback, blurring the spectral response of the modulation process, but may lead to
well defined sidebands in the detected spectrum in the diabatic modulation regime,
from which information about the speed and amplitude of any underlying modulation
process might be obtained.
Finally, the emission dynamics of the lower polariton luminescense decay have been
investigated, where a picosecond modulation of the polariton energy as well as of
the emitted intensity was found. The intensity modulation thereby was shown to be
strongly dependent on the resonance detuning in the coupled system and might con-
stitute a highly sensitive detector for small energy shifts of the underlying resonances



88 11 Summary and Future Prospects

supposed that the detection time resolution is below the limit of the strain induced
spectral changes.
The important ratios of the relevant timescales in the experiments might be tailored by
the growth process of the semiconductor structures as well as by the adaptation of the
strain wave excitation and injection process to the required experimental conditions.
The results suggest a high relevance for future research and applications. There are
many different structures available potentially showing different response to a strain
wave. It is obvious and particularly attractive, that self assembled semiconductor quan-
tum dots, as very tiny, highly strained objects, are expected to show strong optical
response to an applied strain wave. Further the geometry in the experiments might be
changed increasing for example the elasto-optic response. It might be possible to build
up novel pulsed thermal light sources with pulse durations in the order of picoseconds,
or on the other hand to influence the laser properties of certain structures. Further
information on ultrafast phasetransitions might be obtained and coherent control of
light matter interaction using sub-rabi-cycle modulation of quantum well optical po-
laritons as well as dynamic carrier trapping in bulk materials appear to be seizable.
To veer away from the presented data in this work, all materials that show a piezo
response in the broadest sense (e.g. magnetostriction or piezoelectricity) are attrac-
tive candidates for efficient picosecond modulation spectroscopy. The idea of acoustic
shockwave modulation thereby holds also at roomtemperature; a fact which allows the
technique to adopt a prominent position among future ultrafast optical modulation
spectroscopy techniques.
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Acoustic Phonons in Semiconductor Superlattices: Excitation and Detection. Phys.
Rev. Lett., 82:1044, (1999).

[11] A. J. Kent; R. N. Kini; N. M. Stanton; M. Henini; B. A. Glavin; V. A. Kochelap and
T. L. Linnik. Acoustic Phonon Emission from a Weakly Coupled Superlattice under
Vertical Electron Transport: Observation of Phonon Resonance. Phys. Rev. Lett.,
96:215504, (2006).

[12] C. Thomson; H. T. Grahn; H. J. Maris and J. Tauc. Surface generation and detection
of phonons by picosecond light pulses. Phys. Rev. B, 34:4129, (1986).

[13] H.-Y. Hao and H. J. Maris. Dispersion of the long-wavelength phonons in Ge, Si, GaAs,
quartz, and sapphire. Phys. Rev. B, 63:224301, (2001).



90 Bibliography

[14] E. Pronne and B. Perrin. Generation and detection of acoustic solitons in crystalline
slabs by laser ultrasonics. Ultrasonics, 44:e1203, (2006).

[15] O. L. Muskens and J. I. Dijkhuis. High amplitude, ultrashort, longitudinal strain
solitons in sapphire. Phys. Rev. Lett., 89:285504, (2002).

[16] E. J. Reed; M. Soljacic and J. D. Joannopoulos. Reversed Doppler Effect in Photonic
Crystals. Phys. Rev. Lett, 91:133901, (2003).

[17] Jr; M. M. de Lima and P. V. Santos. Modulation of photonic structures by surface
acoustic waves. Rep. Prog. Phys., 68:1639, (2005).

[18] S. Tamura; D. C. Hurley and J. P. Wolfe. Acoustic-phonon propagation in superlattices.
38:1427, (1988).

[19] G. Tas and H. J. Maris. Electron diffusion in metals studied by picosecond ultrasonics.
Phys. Rev. B, 49:15046, (1994).

[20] P. J. S. van Capel. Ultrafast nonlinear acoustics in crystals and nanostructures. Utrecht
University, (2008).

[21] O. B. Wright. Ultrafast nonequilibrium stress generation in gold and silver. Phys. Rev.
B, 49:9985, (1994).

[22] J. Wang and C. Guo. Effect of electron heating on femtosecond laser-induced coherent
acoustic phonons in noble metals. Phys. Rev. B, 75:184304, (2007).

[23] A. F. Bower. Applied Mechanics of Solids. CRC, (2009).

[24] O. L. Muskens. High-Amplitude, ultrashort strain solitons in solids. Utrecht University,
(2004).

[25] D. C. Wallace. Solid State Physics, volume 25. Academic Press, (1970).

[26] H. Reismann; P. S. Pawlik. Elasticity, Theory and Applications. John Wiley & Sons,
(1980).

[27] H.-Y. Hao and H. J. Maris. Experiments with acoustic solitons in crystalline solids.
Phys. Rev. B, 64:064302, (2001).

[28] T. Dauxois; M. Peyrard. Physics of Solitons. Cambridge University Press, (2006).

[29] A. V. Scherbakov; P. J. S. van Capel; A. V. Akimov; J. I. Dijkhuis; D. R. Yakovlev;
T. Berstermann and M. Bayer. Chirping of an Optical Transition by an Ultrafast
Acoustic Soliton Train in a Semiconductor Quantum Well. Phys. Rev. Lett., 99:057402,
(2007).

[30] N. C. Frateschi; A. P. Kanjamala; A. F. J. Levi and T. Tanbun-Ek. Polarization of
lasing emission in microdisk laser diodes. Appl. Phys. Lett., 66:1859, (1995).

[31] J. M. Gerard; O. Cabrol and B. Sermage. InAs quantum boxes: Highly efficient radia-
tive traps for light emitting devices on Si. Appl. Phys. Lett., 68:3123, (1996).



Bibliography 91

[32] G. V. Prakash; L. Besombes; T. Kelf; J. J. Baumberg; P. N. Bartlett and M. E.
Abdelsalam. Tunable resonant optical microcavities by self-assembled templating. Opt.
Lett., 29:1500, (2004).

[33] Y. Akahane; T. Asano; B.-S. Song and S. Noda. Fine-tuned high-Q photonic-crystal
nanocavity. Opt. Express, 13:1202, (2005).

[34] K. J. Vahala. Optical microcavities. Nature, 424:839, (2003).

[35] A. V. Kavokin; J. J. Baumberg; G. Malpuech; F. P. Laussy. Microcavities. Oxford
University Press, (2007).

[36] C. B. Fu; C. S. Yang; M. C. Kuo; Y. J. Lai; J. Lee; J. L. Shen; W. C. Chou and S. Jeng.
High Reflectance ZnTe/ZnSe Distributed Bragg Reflector at 570 nm. Chinese Journal
of Physics, 41:535, (2003).

[37] G. T. Moore. Quantum Theory of the Electromagnetic Field in a Variable-Length
One-Dimensional Cavity. J. math. Phys., 11:2679, (1970).

[38] E. L. Ivchenko. Optical Spectroscopy of Semiconductor Nanostructures. Springer,
Berlin, (2004).

[39] N. Peyghambarian; S. W. Koch; A. Mysyrowicz. Introduction to Semiconductor Optics.
Prentice Hall, Englewood Cliffs, New Jersey 07632, (1993).

[40] G. H. Wannier. The structure of electronic excitation levels in insulating crystals. Phys.
Rev., 52:191, (1937).

[41] S. W. Kirchoefer; N. Holonyak; K. Hess; D. A. Gulino; H. G. Drickamer; J. J. Coleman
and P. D. Dapkus. Absorption measurements at high pressure on AlAs-AlxGa1−xAs-
GaAs superlattices. Appl. Phys. Lett., 40:821, (1982).

[42] D. A. B. Miller; D. S. Chemla; T. C. Damen; A. C. Gossard; W. Wiegmann; T. H.
Wood; C. A. Burrus. Band-Edge Electroabsorption in Quantum Well Structures: The
Quantum-Confined Stark Effect. Phys. Rev. Lett., 53:2173, (1984).

[43] K. K. Bajaj R. L. Greene. . Solid State Commun., 45:831, (1983).

[44] C. Weisbuch; B. Vinter. Quantum Semiconductor Structures. Academic Press, London,
(1991).

[45] E. L. Ivchenko; P. S. Kopev; V. P. Kochereshko; I. N. Uraltsev; D. R. Yakovlev; S. V.
Ivanov; B. Ya. Meltser and M. A. Kalitievskii. Reflection in the exciton region of the
spectrum of a structure with a single quantum well. Oblique and normal incidence of
light. Sov. Phys. Semicond., 22:495, (1988).

[46] C. Weisbuch; M. Nishioka; A. Ishikawa and Y. Arakawa. Observation of the Coupled
Exciton-Photon Mode Splitting in a Semiconductor Quantum Microcavity. Phys. Rev.
Lett., 69:3314, (1992).

[47] E. M. Purcell. Spontaneous Emission Probabilities at Radio Frequencies. Phys. Rev.,
69:681, (1946).



92 Bibliography

[48] B. Sermage; S. Long; I. Abram; J. Y. Marzin; J. Bloch; R. Planel; V. Thierry-Mieg.
Time-resolved spontaneous emission of excitons in a microcavity: Behavior of the in-
dividual exciton-photon mixed states. Phys. Rev. B, 53:16516, (1996).

[49] J. J. Hopfield. Theory of the contribution of excitons to the complex dielectric constant
of crystals. Phys. Rev., 112:1555, (1958).

[50] T. Berstermann; A. V. Scherbakov; A. V. Akimov; D. R. Yakovlev; N. A. Gippius; B.
A. Glavin; I. Sagnes; J. Bloch and M. Bayer. Terahertz polariton sidebands generated
by ultrafast strain pulses in an optical semiconductor microcavity. Phys. Rev. B,
80:075301, (2009).

[51] T. Berstermann; C. Brggemann; M. Bombeck; A. V. Akimov; D. R. Yakovlev; C.
Kruse; D. Hommel and M. bayer. Optical bandpass switching by modulating a micro-
cavity using ultrafast acoustics. Accepted for publication in Phys. Rev. B, (2010).

[52] S. Adachi. Properties of Group-iV, III-V and II-VI Semiconductors. John Wiley &
Sons, (2005).

[53] Amnon Yariv and Pochi Yeh. Optical Waves in Crystals. John Wiley Sons, (1984).

[54] B. H. Bairamov; A. V. Gol’tsev; V. V. Toporov; R. Laiho and T. Levola. Photoelas-
tic coefficients and deformation-potential constants of ZnSe crystals. Phys. Rev. B,
33:5875, (1986).

[55] P. Y. Yu and M. Cardona. Fundamentals of Semiconductors, Physics and Materials
Properties. Springer, Berlin, (1996).

[56] F. H. Pollak and M. Cardona. Piezo-Electroreflectance in Ge, GaAs, and Si. Phys.
Rev., 172:816, (1968).

[57] G. L. Bir and G. E. Pikus. Symmetry and Strain-Induced Effects in Semiconductors.
John Wiley & Sons, (1974).

[58] J. S. Blakemore. Semiconducting and other major properties of gallium arsenide. J.
Appl. Phys., 53:R123, (1982).

[59] S. Reitzenstein; C. Hofmann; A. Gorbunov; M. Strau; S. H. Kwon; C. Schneider; A.
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1. T. Berstermann, C. Brüggemann, M. Bombeck, A. V. Akimov, D. R. Yakovlev,
I. Sagnes, J. Bloch and M. Bayer. Sub-Rabi-Cycle Coherent Control of Light-
Matter Interaction by THz acoustics. In preparation.
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