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Abstract

Procedures for local-constant smoothing are investigated in a broad
variety of data situations with outliers and jumps. Moving window
and nearest neighbour versions of mean and median smoothers are
considered, as well as double window and linear hybrid smoothers.
For the choice of the window width or the number of neighbours the
different estimators are combined with each of several cross-validation
criteria like least squares, least absolute deviations, and median-cross-
validation. It is identified, which method works best in which data
scenarios. Although there is not a single overall best robust smooth-
ing procedure, a robust cross-validation criterion, called least trimmed
squares-cross-validation, gives good results for most smoothing meth-
ods and data situations, with cross-validation based on least absolute
deviations being a strong competitor, particularly if there are jumps,
but little problems with outliers in the data.

1 Introduction

We consider a regression model

Yi = f(xi) + Ei, i = 1, . . . , n , (1)

where f is an unknown piecewise continuous function, x1, . . . , xn are val-
ues of a covariate generated from a random design X1, . . . , Xn, E1, . . . , En

are i.i.d. errors possibly contaminated by some outliers, and Y1, . . . , Yn are
observations of a response variable measured at x1, . . . , xn, with realisation
y1, . . . , yn. For simplicity of the exposition we assume the data to be already
ordered according to the size of the xi, x1 ≤ x2 ≤ . . . ≤ xn.

Local parametric fitting allows estimation of the unknown regression func-
tion f under weak assumptions on f , that is without the need of specifying a
global functional form which is known except for some unknown parameters.
We concentrate on local constant smoothing in the following. Several such
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smoothers have been proposed, based on the idea to approximate f within
suitably chosen local data windows by a constant.

The choice of the window width is crucial for the performance of any
local fitting method. If it is chosen small, the variance of the estimate is
large and the bias small. The estimation of f can become quite wiggly
then. If the window width is chosen large, the variance of the estimate gets
smaller, but the bias increases. Important details of f can be lost then. A
data-based approach to select the window width adaptively is cross-validation
(CV). Besides the commonly used L2-CV, alternatives like L1-CV (Yang and
Zheng, 1992) and the robust median-CV (Yang and Zheng, 1998) have been
proposed in the literature. We present a robust CV-criterion based on the
idea of least trimmed squares (Rousseeuw, 1984), and compare it to the other
criteria.

In the comparisons, we compare the CV-criteria with eight estimators
based on local constant fits like moving averages, running medians, double
window and linear hybrid smoothers in an extensive simulation study, consid-
ering data situations with jumps in the regression function f and outliers in
the errors E1 . . . , En. As there is a lack of experimental comparisons, we look
for recommendations, which smoother combined with which CV-criterion to
use in different types of data situations.

Section 2 reviews local constant smoothing methods. Section 3 intro-
duces different CV-criteria. Section 4 describes the data sets analyzed in the
simulations and the results of the simulation study. Section 5 concludes.

2 Local constant smoothers

A multitude of methods is available for nonparametric fitting of an at least
piecewise constant function f . A simple moving average smoother

Φ1(yi) =
1

2k + 1

k∑

j=−k

yi−j, (2)

estimates f at each point xi by the mean of the observations at the 2k + 1
design points xi−k . . . , xi+k centered at xi. For the first and the last k design
points, located at the boundary of the design space, we take the mean of the
first and the last k observations, respectively, for the estimate. This kind of
method we will call a moving window technique.

A modification of this procedure is the (2k + 1)-nearest neighbour mean

smoother. Let x
(j)
i = {|x1 − xi| , . . . , |xn − xi|}(j) be the j-th nearest neigh-

bour of xi and y
(j)
i the value observed at x

(j)
i , for j = 1, . . . , n. Then the
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2k + 1-nearest neighbour mean is defined as

Φ2(yi) =
1

2k + 1

2k+1∑
j=1

y
(j)
i . (3)

Note that Φ1(yi) and Φ2(yi) are identical for i = k + 1, . . . , n − k in case of
an equidistant fixed design, but they are different in general, since the 2k +1
nearest neighbours are not necessarily distributed as k points on the left and
k points on the right hand side of xi.

An advantage of the above smoothers based on averages is the high effi-
ciency in case of normal errors. However, a single outlier affects the estima-
tion and can make it completely meaningless locally. The robustness of an
estimate against outliers can be measured by the finite sample breakdown
point (Donoho and Huber, 1983). It corresponds to the minimal fraction
of modifications in a sample of size 2k + 1 which can drive the estimate to
the boundaries of the parameter space. In case of a sample of size 2k + 1 it
is 1/(2k + 1) for the sample mean, meaning that a single outlier can cause
a spike of any size in the estimate of f . Moreover, mean smoothers smear
jumps since the estimate averages observations before and after the location
of the jump what clearly indicates its lack of robustness.

In an attempt to avoid these disadvantages of Φ1 and Φ2, we can use
a robust measure of location instead of the non-robust average. Median-
based smoothers improve upon both shortcomings since they are robust to
outliers and preserve shifts much better. The moving window version is called
running median smoother and is defined by

Φ3(yi) = Med(yi−k, . . . , yi+k). (4)

At points xi close to the boundary the median of the first k and the last k
observations, respectively, is taken as estimate of f(xi).

The 2k + 1 nearest neighbour median smoother is given by

Φ4(yi) = Med(y
(1)
i , . . . , y

(2k+1)
i ) . (5)

Both variants offer a finite sample breakdown point of (k+1)/(2k+1) within
each window, which is optimal within the class of all location-equivariant
estimators. Moreover, jumps between two constant parts of the function are
preserved if there are at least (k + 1) observations for each part (Gather et
al., 2006). Under Gaussian noise, the median offers an asymptotic efficiency
relatively to the average of 63.7% in an increasingly large window.

Another approach from signal processing for local constant function fit-
ting are linear median hybrid (LMH) filters (Heinonen, 1987). Linear subfil-
ters H1, . . . , Hm are calculated for each xi and then the median of the outputs
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of the m subfilters is taken for estimation of f(xi). As proposed by Heinonen,
we use m = 3 and

Φ5(yi) = Med(H1(yi), H2(yi), H3(yi)), with

H1(yi) =
1

k

k∑
j=1

yi−j, H2(yi) = yi, H3(yi) =
1

k

k∑
j=1

yi+j, (6)

where H1(yi) and H3(yi) take the average of the k observations left and right
of the current design point xi, whereas the filter output of H2(yi) is yi itself.

To increase the robustness of the procedure against outliers, we follow
Fried et al. (2007) and use the median instead of the average in the subfilters
to derive median median hybrid (MMH) filters, or better to say smoothers
in our context,

Φ6(yi) = Med(M1(yi),M2(yi),M3(yi)), with M2(yi) = yi,

M1(yi) = Med(yi−k, . . . , yi−1), M3(yi) = Med(yi+1, . . . , yi+k). (7)

Including the central observation as a subfilter improves the preservation
of level shifts in both cases. For design points close to the boundary the
estimated values Φ`(yk+1) and Φ`(yn−k), ` = 5, 6, are used for estimation of
f(xi) at the first and the last k design points, respectively.

Another method from signal processing is the double window modified
trimmed mean (DWMTM) (Lee and Kassam, 1985). Defining a trimming
factor $ ∈ (0, 0.5), a $-trimmed mean is an average value of the observa-
tions, with the 100$% smallest and the 100$% largest values being disre-
garded. By taking $ about 20% a compromise between the sample median
($ = 0.5) and the sample mean ($ = 0) is obtained, what allows efficient
estimations for a wide class of distributions with tails heavier than the Gaus-
sian. However, trimmed means with $ < 0.5 do not preserve jumps exactly.
Therefore a procedure with an adaptive, data-based choice of the trimming
factor, like the DWMTM, is preferable. The DWMTM uses two windows of
width k and l, respectively, with l ≤ k. The median ỹi and the median abso-
lute deviation from the median (MAD) ŝM as a robust measure of location
and variability, respectively, are calculated from the possibly smaller inner
window yi−l, . . . , yi+l. Then all observations z ∈ {yi−k, . . . , yi+k} with

|z − ỹi| > δŝM(yi−l, . . . , yi+l) (8)

are trimmed and the remaining values are averaged. Here, δ is a predefined
constant regulating the amount of trimming, e.g. δ = 2 (Lee and Kassam,
1985). Advantages of the DWMTM over the ordinary $-trimmed means
are the better noise suppression and the better preservation of fine details
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of f . Noise can be suppressed more efficiently because we can use a larger
outer window width of 2k + 1 data points for the smoothing and since the
percentage of trimming is chosen adaptively. Relevant details of f can be
preserved better because the median and MAD are calculated from a smaller
window of 2l+1 points. At the k smallest and largest design points, we again
take the estimates of f(xk+1) and f(xn−k), respectively.

The robust version of locally weighted regression, or briefly Lowess (Cleve-
land, 1979) is also taken into account for comparison, since it is a commonly
applied standard. Let W be the tricube function and B be the bisquare
function, with

W (x) =

{
(1− |x|3)3 , if |x| < 1

0 , if |x| ≥ 1
, (9)

B(x) =

{
(1− x2)2 , if |x| < 1

0 , if |x| ≥ 1
. (10)

Let dik be the absolute distance between xi and x
(2k+1)
i , which is again the

(2k + 1)-th nearest neighbour of xi. By calculating wj(xi) = W (
xj−xi

dik
), j =

1, . . . , n, weights for each design point are included in the estimation of f(xi).
By construction these weights are only larger than zero for the 2k+1 nearest
neighbours. The residuals ê1, . . . , ên of an initial locally weighted polynomial
regression are calculated and used to derive new robustness weights δ1, . . . , δn,
with

δj = B

(
êj

6êMed

)
, (11)

where êMed is the median of the absolute residuals. Every residual which is
too large compared to the median of the absolute residuals gets the weight
δj = 0. Then a new locally weighted regression is calculated with each data
point (xj, yj) getting a new robust localized weight δj wj(xi): observations
with large residuals in the step before get a small weight or are even trimmed
completely. This step can be repeated, calculating another robust local poly-
nomial regression with weights based on the previous step. Cleveland states
that two iterations already lead to an adequate fit for many data sets. We
use the R-function lowess (R Development Core Team, 2009) for computing
these estimates.

3 Cross-validation

The performance of each of the procedures described in Section 2 depends
on its smoothing parameter k, which delivers the window width 2k + 1. In
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case of the DWMTM we have two smoothing parameters k and l, but we
fix l = b(k − 1)/2c here for the reason of simplicity and choose δ = 2, as
proposed by Lee and Kassam (1985).

A way to choose the smoothing parameter adaptively, i.e. based on the
data, is cross-validation (CV). If f̂(xi) is the estimate of f at the point xi

derived by one of the smoothing methods from Section 2, then let f̂−i(xi)
be the estimate of f at the point xi, when (xi, yi) itself is not used for the

estimation. For the moving window techniques we base the estimation f̂−i(xi)
on the 2k + 1 points in {xi−1−k, . . . , xi−1, xi+1, . . . , xi+k}.

A common criterion for the choice of k is the traditional least squares CV,
or briefly L2-CV. It averages the squared distances between the observations
yi and the estimates f̂−i(xi) and chooses k as

arg min
k

1

n

n∑
i=1

(
yi − f̂−i(xi)

)2

. (12)

Outliers close to xi affect the estimate f̂−i(xi) and increase its distance to
the observed value yi. A somewhat robust alternative is to use absolute
instead of squared distances. The least absolute deviations CV, or briefly
L1-CV-criterion (Yang and Zheng, 1992) for the choice of k is

arg min
k

1

n

n∑
i=1

| yi − f̂−i(xi) | . (13)

Although absolute distances are less affected by outliers than squared ones,
outliers still have an impact on the estimation of f̂−i(xi) and thus on the
choice of k. Zheng and Yang (1998) introduced median-CV

arg min
k

Med
(
| y1 − f̂−1(x1) |, . . . , | yn − f̂−n(xn) |

)
, (14)

as a more robust alternative to L1- and L2-CV. A possible disadvantage
of median-CV is that a lot of information gets lost in the determination
of k since only the median residual is used. Therefore we use least trimmed
squares-CV (LTS-CV) as another robust criterion. Let r2

i = (yi−f̂−i(xi))
2, i =

1, . . . , n be the squared distance between the estimated f̂−i(xi) and the ob-
served value yi, and r2

(j), j = 1, . . . , n its order statistics. Then LTS-CV is
defined by

arg min
k

1

bhnc
bhnc∑
j=1

r2
(j), (15)

6



where (1−h) ∈ (0, 0.5) is a trimming factor. All squared residuals r2
i , are cal-

culated and sorted, before the n−bhnc largest squared residuals are trimmed
and the others are averaged. We consider LTS-CV with h ∈ {0.5, 0.75} and
call it 50%-LTS-CV and 75%-LTS-CV, respectively. In the following we call
median- and LTS-CV robust CV-methods, because they use a robust distance
measure.

4 Comparative Study

We combine each of the eight smoothing methods from Section 2 with each of
the five cross-validation criteria from Section 3. The resulting 40 smoothing
procedures (also briefly called estimators in the following) are compared in
a simulation study. The unknown regression function f is chosen to be
piecewise constant since we assume the effects of jumps and outliers on the
estimates to be more severe than a slight slope.

To generate a broad variety of different data situations we vary five factors
for the unknown function f , the design and the noise of the model in (1).
For each factor we consider three settings and generate ν = 1000 data sets
from each of the arising η = 35 = 243 combinations. The five factors and
their three settings are:

(a) sample size: n ∈ {40, 100, 200};
(b) percentage of outliers: π ∈ {0.01, 0.05, 0.15}
(c) absolute magnitude of the outliers: γ ∈ {3σ, 6σ, 12σ}
(d) number of level shifts: m ∈ {1, 2, 5}
(e) absolute magnitude of level shifts: s ∈ {1σ, 3σ, 6σ}

To generate n observations from model (1), we draw n values X1, . . . , Xn

from an uniform random design and error variables E1, . . . , En which are i.i.d.
N (µ, σ2) with σ2 = 1. As usually, uniform design means that X1, . . . , Xn are
i.i.d. uniformly distributed on the interval [0, 1].

Then max{bnπc, 1} of the noise values are modified to become outliers.
The positions of the outliers are chosen at random by drawing max{bnπc, 1}
of the n positions without replacement. At each position of an outlier, the
value ±γ is added to the noise, with the same sign as the closest level shift,
to produce a more challenging situation for the estimation procedures.

The positions ξ1, . . . , ξm of the m jumps within the interval (0,1) are fixed
for each m (for m = 1: ξ1 = 0.4, for m = 2: ξ1 = 0.4 and ξ2 = 0.6, for m = 5:
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Figure 1: Data example with n = 200 observations, π = 15% outliers of size
γ = 6 and m = 5 level shifts of height s = 6.

ξ1 = 0.2, ξ2 = 0.4, ξ3 = 0.55, ξ4 = 0.7 and ξ5 = 0.85). In Figure 1 an example
with n = 200, π = 0.15, m = 5 and γ = s = 6σ is shown.

For every data set j, j = 1 . . . , ν, generated for each of the total η = 243
data situations, and each of 40 estimators we choose k by the corresponding
CV method. Using this k we calculate the resulting estimates f̂e(x

j
i ) for po-

sitions i = 1, . . . , n, data set j and estimator e = 1, . . . , 40. The performance
of the procedures for the j-th data set can be compared by the Averaged
Squared Error (ASE; see Härdle, 2002, pp. 90)

dj(f̂e, f) =
1

n

n∑
i=1

(
f̂e(x

j
i )− f(xj

i )
)2

, (16)

where xj
i is the i-th design point for the j-th data set, respectively. This

criterion measures the averaged squared distance between the true function
f and the estimated function values for data set j. Finally, the different
estimation procedures are compared for each data situation p, p = 1, . . . , η
by the mean ASE-value (denoted by MASE), averaged across the ν = 1000
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data sets generated for this situation,

d̄(f̂e, f) =
1

ν

ν∑
j=1

d̂j(f̂e, f) =
1

νn

ν∑
j=1

n∑
i=1

(
f̂e(x

j
i )− f(xj

i )
)2

, (17)

In order to simplify the evaluation of the 40 different estimation proce-
dures for the 243 data situations, we define a summary measure to compare
the relative performance of the methods. For each data situation, we con-
sider the loss in the MASE-value due to not using the best estimator for
this data situation, relatively to the minimal MASE-value for that situation.
This gives us

ζe
p =

d̄p(f̂e, f)− d̄?
p(f̂ , f)

d̄?
p(f̂ , f)

, (18)

with d̄p(f̂e, f) being the MASE-value of the estimator e for the p-th data
situation as defined in (17) and

d̄?
p(f̂ , f) = min

(
d̄p(f̂1, f), . . . , d̄p(f̂40, f)

)
(19)

being the MASE-value of the estimator which performs best for the p-th data
situation. Small values of ζe

p close to zero indicate that estimator e performs
almost as good as the best estimator for data situation p.

In the following we will consider interesting subsets of data situations.
Given such a subset with η̃ data situations, p = 1 . . . , η̃, the average relative
performance

ζ̄e =
1

η̃

η̃∑
p=1

ζe
p . (20)

is used as global performance measure in the comparison of the different
estimation procedures.

4.1 Results for a single jump and a moderate number
of outliers

In a first step we compare the estimators in data situations with problems
caused mainly by outliers. Setting all other factors to their easiest values,
we consider a uniform design with n = 200 data points and one jump with
height 1σ. We calculate ζ̄e from equation (20) for the η̃ = 9 data situ-
ations with different percentages (π ∈ {0.01, 0.05, 0.15}) and magnitudes
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Figure 2: Average loss in MASE for different outlier situations and a sample
size n = 200 (left) and n = 40 (right).

(γ ∈ {3σ, 6σ, 12σ}) of outliers. The results are illustrated in Figure 2. We
use a logarithmic scale for the ordinate since we want to visualise differences
among good estimators. Lowess performs best, followed by DWMTM. The
median smoothers and MMH also give acceptable results, while the mean
smoothers and LMH are much worse. 75%-LTS- and L1-CV give the best
results for all methods.

Calculating ζ̄e for the same outlier situations, but with a smaller sample
size of n = 40, DWMTM and Lowess with 75%-LTS- and L1-CV again give
the best results. For this sample size the MMH seems to be a better choice
than the median smoothers. 75%-LTS-CV again leads to better results than
Median-CV for all estimators, but for some of the smoothers it is outper-
formed by L1-CV. For n = 100, the results are in between those for n = 40
and n = 200.

Summarizing, in data situations with one small jump and at most 15%
outliers, Lowess and DWMTM with L1- or 75%-LTS-CV are to be recom-
mended, for all sample sizes considered here. For all smoothers, L1- or 75%-
LTS-CV seem to be better choices than their three competitors.

10



4.2 Results for a few outliers and several jumps

The same kind of comparison can be made for different situations with level
shifts, fixing the percentage outliers at π = 0.01 and their magnitude at
γ = 3σ. We calculate ζ̄e from the η̃ = 9 factor combinations with differ-
ent numbers (m ∈ {1, 2, 5}) and magnitudes (s ∈ {1σ, 3σ, 6σ}) of jumps,
see Figure 3. For n = 200, generally, all smoothers show their best perfor-

Figure 3: Average loss in MASE for different jump situations and a sample
size n = 200 (left) and n = 40 (right).

mance here, if L2-CV is used, followed by L1-CV and 75%-LTS-CV, which
again delivers better results than median-CV for all smoothers. The run-
ning median performs best, followed by DWMTM. The nearest neighbour
median performs worse than the moving window median, irrespective of the
CV-method used. This is due to the jump preserving property of the me-
dian, which needs the number of observations left and right of the jump used
for the estimation to be equal. While for the moving window median this
property is fulfilled, for the nearest neighbour version this is not necessarily
the case in a random design. Lowess and the mean smoothers do not really
perform well here, irrespective of the CV-criterion used.
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For the smaller sample size n = 40 and the same jump situations the
running median with L1-CV performs best, but it delivers good results also
with any of the other four CV-methods. For most of the smoothers L1-CV
is now better than L2-CV. 75%-LTS-CV delivers better results than L2-CV
for LMH, MMH and DWMTM, and better results than median-CV for all
smoothers. For n = 100, the results are again in between those for n = 40
and n = 200 and the running median with L1- or L2-CV performs best.

In data situations without large outliers, but jumps in f , the running
median with L1- or L2-CV seems preferable to the other smoothers and L1-
CV and L2-CV give better results than their robust competitors for most of
the estimators. 75%-LTS-CV gives again better results than Median-CV.

4.3 Overall analysis

Figure 4: Loss in MASE averaged over very easy and very difficult situations
(left) and averaged over all outlier situations up to 45% (right).

Since the results for outliers and level shifts differ, one is interested,
which method performs best in general. We take the most difficult situa-
tions each with outliers (largest percentage rate and largest magnitude) and
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jumps (largest number and largest height) from the first and the second
comparison. As a third scenario we consider the data situation, where each
factor stands on its easiest level, i.e. a large sample with n = 200 from an
uniform design with one small jump and a small percentage outliers with a
small magnitude.

W.r.t. ζ̄e, the results from Figure 4 (left) are: The worst estimators
are again all versions of mean smoothers, followed by the LMH. DWMTM,
Lowess and the running median (in this ordering), all with 75%-LTS-CV,
give the best overall performance. Again, for all CV-methods the running
median performs better than the nearest neighbour median.

We also considered a discrete design as an alternative to the uniform one.
This discrete design was generated by drawing n points from the discrete
support {0, 0.01, . . . , 0.99, 1} with replacement. We did not find important
differences to the results for the uniform design. All statements from the
previous sections are confirmed for this alternative design type.

4.4 Situations with a large number of outliers

To examine the performance of the procedures in case of an increasing per-
centage of outliers more closely, we do some additional simulations. Only
the case of n = 200 data points from a uniform design and one jump with
height 1σ is considered. 1000 data sets are generated for each combination
of percentage π ∈ {0, 0.05, . . . , 0.4, 0.45} and magnitude γ ∈ {3σ, 6σ, 12σ}
of outliers. If we include all thirty arising data situations in the calculation
of ζ̄e from the realised MASE-values, the best values of ζ̄e correspond to
estimators which deliver good estimations irrespective of the percentage and
the magnitude of the outliers, see Figure 4 on the right. W.r.t. ζ̄e, the MMH
with median-CV performs best, followed by the DWMTM with median-CV
and the MMH with 50%-LTS-CV. The DWMTM smoothers with any other
CV-criterion except L2-CV come next. The running median with median-,
75%-LTS- and L1-CV also performs well. The mean smoothers, the LMH
and Lowess do not perform well for any CV-criterion.

For a more detailed look at these results we divide the situations into
three groups with different percentages of outliers π ∈ {0, 0.05, 0.1}, π ∈
{0.15, 0.2, 0.25} and π ∈ {0.3, 0.35, 0.4, 0.45} for each outlier magnitude γ ∈
{3σ, 6σ, 12σ}. The reason is that there is no CV-method, which performs well
for both small and large percentages of outliers. We identify in each group for
each smoother the CV-criterion which delivers the smallest value of ζ̄e and
compare all smoothers for each magnitude γ, by plotting the logarithmic
MASE-values for each percentage of outliers for γ = 3σ and γ = 12σ in
Figure 5. The three informations in brackets give the CV-criteria, which
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deliver the smallest relative loss in MASE for the three groups above for
each smoother.

Figure 5: MASE-values for an increasing percentage of outliers.

For data sets with small outliers of size γ = 3σ, DWMTM with L1-CV
is to be recommended if the percentage π is small. For a larger percentage
π DWMTM with 75%-LTS-CV should be used. The differences to other
smoothers with their case by case best CV do not seem to be large here, but
DWMTM is the only smoother which is among the best for all π. 75%-LTS-
CV delivers better results than Median-CV for all smoothers and all π, but
is mostly outperformed by L1- or L2-CV.

Considering the large magnitude γ = 12σ Lowess with 75%-LTS-CV per-
forms best if π ≤ 0.25. For π > 0.25, Lowess becomes one of the worst
smoothers and the MMH-smoother with Median-CV is to be recommended.
75%-LTS-CV loses its good behaviour for π > 0.25 and a large γ. Median-CV
and 50%-LTS-CV deliver the best results for robust smoothers then. We only
show the cases γ ∈ {3σ, 12σ}, as the case γ = 6σ looks similar to γ = 12σ.
The only difference is the performance of DWMTM, which outperforms the
other smoothers for π ∈ {0.20, 0.25, 0.30, 0.35} then.
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Figure 6: MASE-values for an increasing magnitude of outliers, averaged
over different sample sizes and percentages of outliers.

We also consider the effect of huge outliers. We take again only one small
jump and average over the different sample sizes n ∈ {40, 100, 200} and
percentages of outliers π ∈ {0.01, 0.05, 0.15}. Figure 6 illustrates the results
for the running median (left) and the DWMTM (right). It shows that the
advantage of 75% LTS-CV increases for very large outlier sizes γ ∈ {24σ, 48σ}
over all four competitors. The results can be transferred to the nearest
neighbour Median, the MMH and Lowess, while the mean smoothers and
the LMH are not robust and so even one large outlier affects the estimation
irrespectively of the CV used.

5 Conclusions

Jumps and outliers are challenges for smoothers. From the methods consid-
ered here, the running median with L2- or L1-cross-validation (CV) is to be
recommended, if situations with jumps are considered and outliers are not
really relevant.
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In situations where outliers instead of jumps play a dominant role, we
get the following findings: For small outliers, DWMTM with L1- or 75%-
LTS-CV gives the best results. For large outliers with a magnitude of 12σ
Lowess with 75%-LTS CV is best, if at most 25% outliers occur, but it loses
its goodness for higher percentages of outliers. The MMH with Median-CV
is to be recommended in case of more than 25% large outliers.

Since the percentage and the size of of outliers is often unknown in prac-
tice, a tentative recommendation is to use DWMTM in combination with
L1-CV or 75%-LTS-CV as a generally reliable default smoothing method in
the presence of outliers and jumps. Given the good performance of L2-CV
in the presence of only a few outliers, of 75% LTS-CV in the presence of a
moderate percentage of outliers and of 50% LTS-CV in the presence of a large
percentage of outliers, it seems worthwhile to investigate LTS-criteria with
an adaptive percentage of trimming to be constructed along similar lines as
the adaptive LTS estimator of Hofmann et al. (2010).

An explanation of the good performance of the LTS-CV is that it fits
the squared distance measure used for the evaluation of the methods. If
we use absolute distances in form of an Averaged Absolute Error (AAE)
instead of the ASE, 75%-LTS-CV looses its superiority in some cases. For
the median smoothers and Lowess it is outperformed by the L1-CV in the
two outlier situations considered in Figure 2. But it is still second best and
so a better robust criterion than Median-CV. It can be speculated whether a
least trimmed absolute deviation criterion would perform even better then.

Acknowledgements. This work has been supported in part by the
Collaborative Research Center ”Statistical modeling of nonlinear dynamic
processes” (SFB 823) of the German Research Foundation (DFG).

References

[1] Cleveland, W.S., 1979. Robust locally weighted regression and smooth-
ing scatterplots. Journal of the American Statistical Association 74, 829–
836.

[2] Donoho, D.L., Huber, P.J., 1983. The notion of breakdown point, in:
Bickel, P.J., Doksum, K., Hodges, J.L. (Eds.), A Festschrift for Erich
Lehmann. Wadsworth, Belmont, CA, pp. 157–184.

[3] Fried, R., Bernholt, T., Gather, U., 2007. Repeated median and hybrid
filters. Computational Statistics and Data Analysis 50, 2313–2338.

16



[4] Gather, U., Fried, R., Lanius, V., 2006. Robust detail-preserving sig-
nal extraction, in: Schelter, B., Winterhalder, M., Timmer, J. (Eds.),
Handbook of Time Series Analysis. Wiley, Weinheim, pp. 131–157.
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