

Characterization and Simulation of Processes

M. Engelhardt¹, H. von Senden genannt Haverkamp¹, Y.Kiliclar², M. Bormann¹, F.-W. Bach¹, S. Reese²

¹ Institute of Materials Science, Leibniz University Hannover, Hannover, Germany
² Institute of Applied Mechanics, RWTH Aachen University, Aachen, Germany

Subjects

Institut für Werkstoffkunde Prof. Dr.-Ing. habil. Dr.-Ing. E.h. Dr. h.c. Fr.-W. Bach

Leibniz Universität

Hannover

102

– Motivation

- Characterization
 - Dynamic hardening effects
 - High-speed forming limits

- Simulation

- Development of a new material model
- Gauss point investigation
- Simulation of large dynamic hardening effects
- Summary and Outlook

Motivation

Combination of Quasi Static & High-speed Forming Processes

Enhancement of process limits

Processes

- Deep Drawing Processes
- Magnetic Pulse Forming

Characterization of combined forming

processes

Experiments

- Dynamic material properties
- High-speed forming limits

Simulation

- Enhancement of material model
- Consideration of dynamic effects and forming limits
- Simulation of combined processes

Leibniz Universität Hannover

Combined deep drawing and magnetic pulse forming Cooperation between

Institute of Materials Science, Hannover

Institute of Applied Mechanics, Aachen

Dynamic Materials Properties

Problem

Thin sheets

- Only few experience and references
- Tend to buckle under compression
- No standardized measuring system available

Solution

Miniaturization

- Reduced unsupported length ightarrow No buckling

Leibniz Universität Hannover

Only small forces needed

SEM

Optical measurement of small geometries possible

Micro tensile testing device (left) and dimensions of micro specimens in mm (right)

Dynamic Materials Properties

Institut für Werkstoffkunde Prof. Dr.-Ing. habil. Dr.-Ing. E.h. Dr. h.c. Fr.-W. Bach

Cyclic tension- compression

test

Miniaturized specimens

- No buckling
- No lateral support required

Test parameters

- Pulsating load
- 0 to +300 µm clamp displacement

Optical evaluation with SEM

Measurement of real elongation

Leibniz Universität

Hannover

00

Test needs to be stopped while measuring

Cyclic tension-compression test

Load displacement (left) and stress strain curve (right)

Dynamic Materials Properties

Institut für Werkstoffkunde Prof. Dr.-Ing. habil. Dr.-Ing. E.h. Dr. h.c. Fr.-W. Bach

Cyclic tension- compression

test

Miniaturized specimens

- No buckling
- No lateral support required

Test parameters

- Pulsating load
- 0 to +300 µm clamp displacement

Optical evaluation with SEM

Measurement of real elongation

Leibniz Universität Hannover

00

• Test needs to be stopped while measuring

Load displacement (left) and stress strain curve (right)

High-speed forming limits

Institut für Werkstoffkunde Prof. Dr.-Ing. habil. Dr.-Ing. E.h. Dr. h.c. Fr.-W. Bach

 Electro-hydraulic sheet metal testing machines only suitable for quasi-static forming tests (punch speed up to 5mm/s)

Leibniz Universität Hannover

- High-speed forming tests equivalent to magnetic pulse process require punch speeds of 100m/s and more
- A new measuring method and device suitable for high punch speeds needs to be developed
- ⇒A testing device was developed using conservation of momentum for speed

© Leibniz Universität Hannover, IW

High-speed forming limits

Drop tower for crash-tests

- Up to 300 kg drop weight Up to 6 m drop height
- Up to 12,5 m/s drop speed

Feasibility testing of Impact device

- Punch weight app. 900 g
- 3 m drop height
- 90 kg drop weight

→ 91 m/s punch speed at impact

Leibniz Universität Hannover

Fig. 3: impact device (left) and drop tower (top)

High-speed forming limits

Drop tower for crash-tests

Up to 300 kg drop weight Up to 6 m drop height Up to 12,5 m/s drop speed

Feasibility testing of Impact device

- Punch weight app. 900 g
- 3 m drop height
- 90 kg drop weight
- → 91 m/s punch speed at impact

Leibniz Universität Hannover

00

Impact device during testing inside drop tower

Institut für Werkstoffkunde Prof. Dr.-Ing. habil. Dr.-Ing. E.h. Dr. h.c. Fr.-W. Bach

High-speed forming limits

Drop tower for crash-tests

Up to 300 kg drop weight Up to 6 m drop height Up to 12,5 m/s drop speed

Feasibility testing of Impact device

- Punch weight app. 900 g
- 3 m drop height
- 90 kg drop weight
- → 91 m/s punch speed at impact

Leibniz Universität Hannover

Punch displacement in slow-motion (high-speed camera @ 12.5kHz \rightarrow 0,08 x10-³ sec/step)

Nakajima-Test: Results

Experimental setup

- 4 geometries equivalent to
- Deep drawing
- Uniaxial tensile testing
- Plain strain
- Stretch drawing

Materials

EN AW 6082 T6

(AIMgSi1, solution heat treated and artificially aged)

3-layer composite sheet

(AI-Ti-AI & AI-St-AI)

Simple teflonspray lubrication

Results

- ⇒ Cracks occur near center
- ⇒ Lubrication seems to have less influence
- ⇒ Testing possible for all geometries
- ⇒ Composite sheets to complex for evaluation

Research Training Group 1378: "Manufacture, machining and qualification of hybrid material systems"

Leibniz Universität Hannover

Tested specimens

Simulation

Institut für Werkstoffkunde Prof. Dr.-Ing. habil. Dr.-Ing. E.h. Dr. h.c. Fr.-W. Bach

 Development of a new module for realistic and numerically robust simulation, with focus on material and contact modeling

Leibniz Universität

Hannover

00

- Development of a new efficient finite-element-technology
- Implementation of a new material and damage model
- A new eight-node solid-shell finite element based on reduced integration with hourglass stabilization
- A finite strain constitutive model which combines nonlinear kinematic and isotropic hardening

Unconstrained bending

Institut für Werkstoffkunde Prof. Dr.-Ing. habil. Dr.-Ing. E.h. Dr. h.c. Fr.-W. Bach

Leibniz Universität Hannover

00

Unconstrained bending

comparison with experiments:

Leibniz Universität Hannover

00

© Leibniz Universität Hannover, IW

Institut für Werkstoffkunde

Prof. Dr.-Ing. habil. Dr.-Ing. E.h. Dr. h.c. Fr.-W. Bach

Unconstrained bending

Institut für Werkstoffkunde Prof. Dr.-Ing. habil. Dr.-Ing. E.h. Dr. h.c. Fr.-W. Bach

springback prediction:

Θ [deg]	min exp	$\max \exp$	simulation
before springback	19.1	21.3	21.0
after springback	52.8	54.2	54.2

angle between points E and F:

ϕ [deg] at stroke	min exp	max exp	simulation]
7 mm	8.9	29.3	22.1	
14 mm	60.0	74.7	66.3	
$21\mathrm{mm}$	108.0	125.3	114.2	
$28.5\mathrm{mm}$	153.3	176.0	161.2	sul

Leibniz Universität

Hannover

10

Material modeling unconstrained bending

- •Multiplicative split:
- Deformation gradient:
- Helmholtz free energy:
- Elastic right Cauchy-Green tensor:
- Plastic right Cauchy-Green tensor:
- Clausius-Duhem inequality:

 $F_{p} = F_{pe} F_{pi}$ $F = F_{e} F_{p}$ $\psi = \psi_{e}(C_{e}) + \psi_{kin}(C_{pe}) + \psi_{iso}(\kappa)$ $C_{e} = F_{e}^{T} F_{e} = F_{p}^{-T} C F_{p}^{-1}$ $C_{pe} = F_{pe}^{T} F_{pe} = F_{pi}^{-T} C F_{pi}^{-1}$ $-\dot{\psi} + S \cdot \left(\frac{1}{2}\right) \dot{C} \ge 0$

Leibniz Universität

Hannover

Relation for second Piola-Kirchhoff stress tensor S

an

Constitutive equations in reference configuration

Institut für Werkstoffkunde Prof. Dr.-Ing. habil. Dr.-Ing. E.h. Dr. h.c. Fr.-W. Bach

Stress tensors:

$$S = 2F_p^{-1}\frac{\partial \psi_e}{\partial C_e}F_p^{-T}, \quad X = 2F_{pi}^{-1}\frac{\partial \psi_{kin}}{\partial C_{pe}}F_{pi}^{-T}, \quad Y = CS - C_pX, \quad Y_{kin} = C_pX$$

Ilam

Leibniz Universität

Hannover

102

Evolution equations:

$$\dot{C}_p = 2\dot{\lambda} \frac{Y^D C_p}{\sqrt{Y^D \cdot (Y^D)^T}}, \quad \dot{C}_{pi} = 2\dot{\lambda} \frac{b}{c} Y^D_{kin} C_{pi}, \quad \dot{\kappa} = \sqrt{\frac{2}{3}} \dot{\lambda}$$

•Yield function:

$$\Phi = \sqrt{Y^D \cdot (Y^D)^T} - \sqrt{\frac{2}{3}} (\sigma_y - R), \quad R = -Q(1 - e^{-\beta\kappa})$$

Kuhn-Tucker conditions:

$$\dot{\lambda} \ge 0, \ \Phi \le 0, \ \dot{\lambda} \Phi = 0$$

Gauss point investigation

Institut für Werkstoffkunde Prof. Dr.-Ing. habil. Dr.-Ing. E.h. Dr. h.c. Fr.-W. Bach

Fitting the material parameters by separating isotropic and kinematic hardening

Leibniz Universität

Hannover

00

Isotropic hardening

 $\sigma_y = 296 MPa$ Q = 0 MPa $\beta = 0$ c = 2000 MPab = 70

Gauss point investigation

Institut für Werkstoffkunde Prof. Dr.-Ing. habil. Dr.-Ing. E.h. Dr. h.c. Fr.-W. Bach

Combining both hardening effects

Leibniz Universität Hannover

00

The material model is very suitable for simulating large deformation problems

Summary and Outlook

Institut für Werkstoffkunde Prof. Dr.-Ing. habil. Dr.-Ing. E.h. Dr. h.c. Fr.-W. Bach

• A new method for testing dynamic material properties of thin sheets was established

Leibniz Universität Hannover

- Strain measurement needs further improvement
- \rightarrow New optical measurement systems for strain measurements are needed (test stage)
- A novel high-speed Nakajima testing device using conservation of momentum has been developed
- Punch speeds of 91m/s have been proved, higher punch speeds are possible
- Composite sheets cannot be tested satisfactorily due to the complex failure mechanisms
- → Further testing at different speeds and evaluation of optimal penetration depth as well as strain analysis and temperature analysis with an optical measurement system is needed
- A new material model including isotropic and kinematic hardening was developed
- · The simulation shows good correspondence to experimental data

 \rightarrow Need of more complex experiments with optimized measurement to fully validate the