

GOI ESKOLA POLITEKNIKOA ESCUELA POLITÉCNICA SUPERIOR

Texture Evolution of AZ31 Mg Alloy Sheet at High Strain Rates

<u>I. Ulacia¹</u>, S. Yi², M.T. Pérez-Prado³, N.V. Dudamell³, F. Gálvez⁴, D. Letzig² and I. Hurtado¹

¹ Mondragon Goi Eskola Politeknikoa, Mondragon Unibertsitatea, Mondragon, Spain
² GKSS Research Center, Geesthacht, Germany
³ Madrid Institute for Advanced Studies in Materials, IMDEA Materials, Madrid, Spain
⁴ ETS Ingenieros de Caminos, Universidad Politécnica de Madrid, Madrid, Spain

Ingeniamos el futuro

Columbus, 09 March, 2010

Introduction and motivation

- High strain rate material characterization
 - Mechanical testing
 - Microstructure and texture analysis
- Conclusions and ongoing work

Magnesium alloys are attractive for weight reduction in vehicles and other structures.

Bringing Mg parts to the market requires:

- To decrease anisotropy in order to improve formability
- To enhance corrosion behaviour

- To optimize the behaviour of Mg alloys under **crash** conditions (e.g. Easton et al., 2008)

INTRODUCTION

Deformation mechanisms in Mg

Quasi-static strain rates:

Limited slip systems at room temperature

Increasing temp, CRSS decreases and slip in other planes become active

Deformation Twinning

- Polar nature (depending on c/a ratio)
- Reorientation (further slip)

 $\begin{array}{ll} \{10\bar{1}2\} \text{ Tensile Twin } & \{10\bar{1}1\} \text{ Compression Twin} \\ & (86.3^{\circ}) \ \langle 1\bar{2}10 \rangle & (56.2^{\circ}) \ \langle 1\bar{2}10 \rangle \end{array}$

It is generally accepted*: CRSS_{basal} < CRSS_{twinning} < CRSS_{prismatic}< CRSS_{pyramidal}

* At room temperature and quasi-static loading conditions [Barnett et al. 2003, Agnew et al. 2005, Lou et al. 2007]

ICHSF 2010

MOTIVATION

High strain rate tension/compression behaviour of rolled Mg alloys is still **unknown**

Strongly Textured

Interesting not only for metal forming operations but also for any kind of high strain rate event (e.g. crashworthiness)

APPROACH

Current research:

- Uniaxial tensile and compression tests at high strain rates
- Microstructure and texture analysis (EBSD & Neutron diff.)

Initial material:

AZ31B (commercial). Grain Size = $10\mu m$

Element	Zn	Al	Si	Cu	Mn	Fe	Ni	Ca	Sn	Others
$\mathrm{wt}\%$	0.96	2.7	0.01	≤ 0.01	0.21	0.002	≤ 0.001	≤ 0.01	0.00	≤0.30

Uniaxial tension and compression tests at different strain rates and temperatures:

Technique	Strain rates	Temperatures			
Conventional load frame	0.001 s⁻¹ , 0.01 s ⁻¹ , 0.1 s ⁻¹	20 , 100, 150, 200, 250°C			
Hopkinson Pressure Bar	500 s ⁻¹ , 1000 s⁻¹ and 1500 s ⁻¹	20 , 100, 150, 200, 250°C			

I. Ulacia et al. Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates, Acta Mater. (2010).

Results

- At high strain rates, tension: higher flow stress (YS and UTS).

compression: similar YS (tensile twinning), higher UTS

- Increasing temperature, flow stress decreases (@ both strain rate ranges)
- Tension/Compression asymmetry is also observed at high strain rates (\forall Temp)

EBSD: Orientation Mapping

* EBSD measurements were performed close to the broken tip

EBSD: Misorientation maping

 $0.001 \ s^{-1}$

* EBSD measurements were performed close to the broken tip

Misorientation angles:

Secondary twin formation

66°: $\{10\overline{1}2\}$ tensile twin **56°:** $\{10\overline{1}1\}$ compression twin **38°±** 7°: $\{10\overline{1}1\} - \{10\overline{1}2\}$ secondary twin

Increase of secondary twins in high strain rate samples

The contribution of secondary twins to global texture:

• Parent grain

- **Primary** $\{10\overline{1}1\}$ compression twin
- $\blacktriangle \{10\overline{1}1\} \{10\overline{1}2\} \text{ secondary twin}$

Texture (Neutron diffraction analysis):

Recrystallization phenomena (Kernel average misorientation maps)

Recrystallization study

Discrete orientations of the recrystallized grains

Rotational Dynamic Recrystallization:

- Some RX small grains are not strain free
- c-axis of some grains is tilted away from ND

Concluding remarks

At high strain rates, comparing with quasi-static rates:

- Increase of flow stress (YS and UTS)
- Strain hardening behaviour (\forall Temp) \rightarrow Absence of generalized DRX
- Increase of secondary twins (their contribution to global texture).
- Prismatic slip to be active is suggested even at high temperature
- At 250°C : Splitting of max. intensities in basal P.F. \rightarrow <c+a> pyramidal slip Localized RX grains (RDRX)

Ongoing work

- Evolution of texture (def. mech.) with strain and temp.

<mark>∩mi∃</mark>

Ongoing work

- Evolution of texture (def. mech.) with strain and temp.

nmi3

FRM II Forschungs-Neutronenquelle Heinz Maier-Leibnitz second order $\langle \mathbf{c} + \mathbf{a} \rangle$ pyramidal slip ?

Texture Evolution of AZ31 Mg Alloy Sheet at High Strain Rates

GOI ESKOLA POLITEKNIKOA ESCUELA POLITÉCNICA SUPERIOR

nmið

Dr. Ibai Ulacia

Mechanical and Manufacturing Department Mondragon Goi Eskola Politeknikoa Mondragon Unibertsitatea iulacia@eps.mondragon.edu

Columbus, 09 March, 2010