

Warm Electromagnetic Forming of AZ31B Magnesium Alloy Sheet

I. Ulacia¹, A. Arroyo², I. Eguia², I. Hurtado¹, M.A. Gutiérrez²

¹ Mondragon Goi Eskola Politeknikoa, Mondragon Unibertsitatea, Mondragon, Spain

² Labein-Tecnalia Research Center, Derio, Spain

Columbus, 09 March, 2010

Introduction and motivation

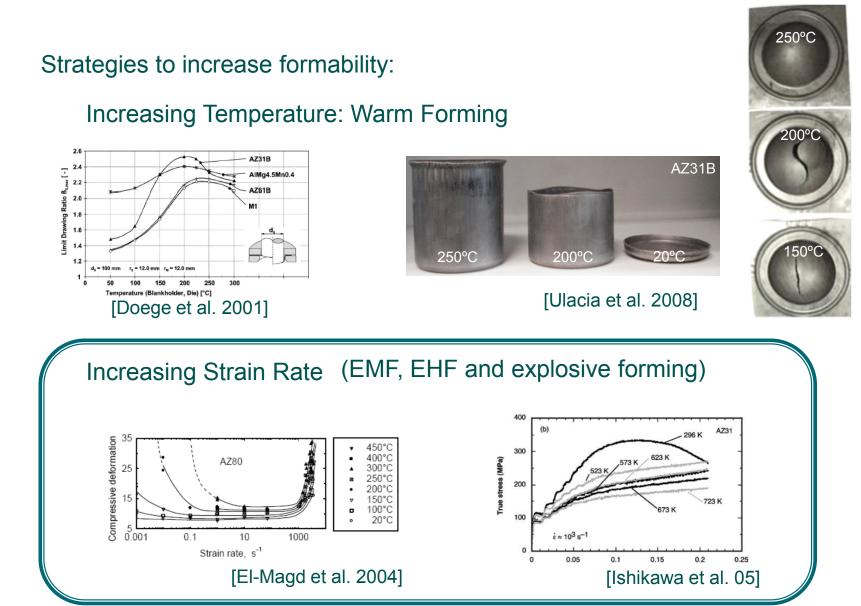
- Electromagnetic forming experiments
 - EMF drawing
 - EMF bending
- Conclusions and ongoing work

There is a clear tendency for weight reduction in automotive and aeronautic industries.

"Cars on a diet"

The use of magnesium parts is expected to increase (e.g. Usamp 2007)

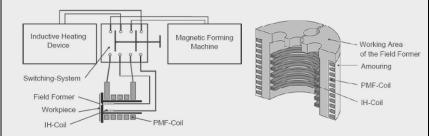
A	2
MAGNE	SIUM
24.30	1.74
649	1090
643	1030


ing and	bys		`		
	AI	Mg	Steel	Ti	
ρ	2.8	1.74	7.83	4.5	-
E	70	45	210	110	
R_m	150-680	100-380	300-1200	910-1190	
$R_m/\rho^{(1)}$	54-243	57-218	38-153	202-264	
$E/\rho^{(2)}$	25.0	25.9	26.8	24.4	
$\sqrt{R_m}/\rho^{(3)}$	9.3	11.2	4.4	7.7	
$\sqrt[3]{E}/\rho^{(4)}$	14.7	20.4	7.6	10.6	[Kleiner et al. 2003]
			/		-

Ma allova

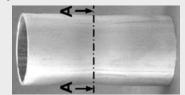
MOTIVATION

4th International Conference on High Speed Forming


Previous work in EMF of Mg alloys:

Tube

TU Berlin, Germany [Uhlmann *et al.* 2004]


A **tool** for combining Inductive Heating and Magnetic Forming was shown.

No deformed parts or values were shown

IUL Dortmund, Germany [Psyk et al. 2006]

Suitability of different **extruded Mg tubes** for EMF was characterised

Sheets

VTT and Helsinki University, Finland [Revuelta *et al.* 2007]

Increase of formability was reported for AZ31B, although deformation values were not shown

Labein and Mondragon Univ., Spain [Ulacia *et al.* 2008]

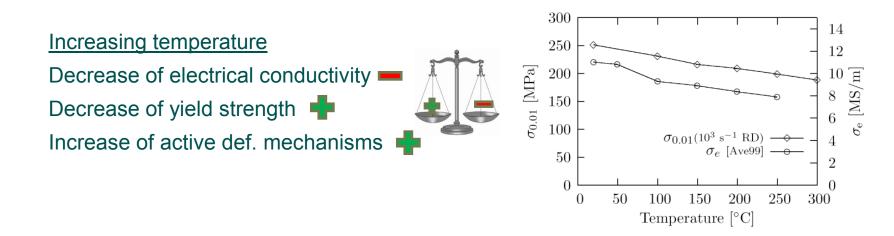
Increase of formability was measured for AZ31B at Room Temp

AIST, Japan [Murakoshi *et al.* 2008]

EMF at different temp.

4th International Conference on High Speed Forming

APPROACH



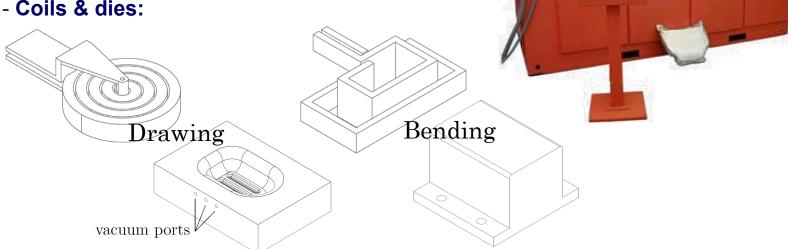
Current research:

Aim: Evaluate the effect of temperature on the electromagnetic forming of Mg AZ31 sheets

AZ31B (commercial). 1 mm thickness. GS=10 μ m

Element	Zn	Al	Si	Cu	Mn	Fe	Ni	Ca	Sn	Others
$\mathrm{wt}\%$	0.96	2.7	0.01	≤ 0.01	0.21	0.002	≤ 0.001	≤ 0.01	0.00	≤ 0.30

1


A Frank

A

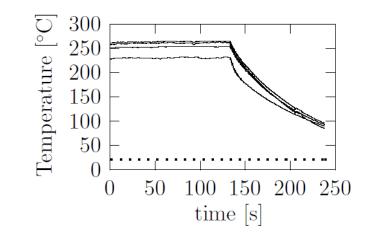
EMF at different temperatures:

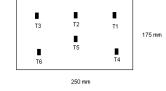
Machine: Maxwell Magneform at Labein-Tecnalia

- **Capacitor bank:** 60kJ (1800 μ f 8.66 kV)
- 40 Tn Hydraulic Press
- Coils & dies:

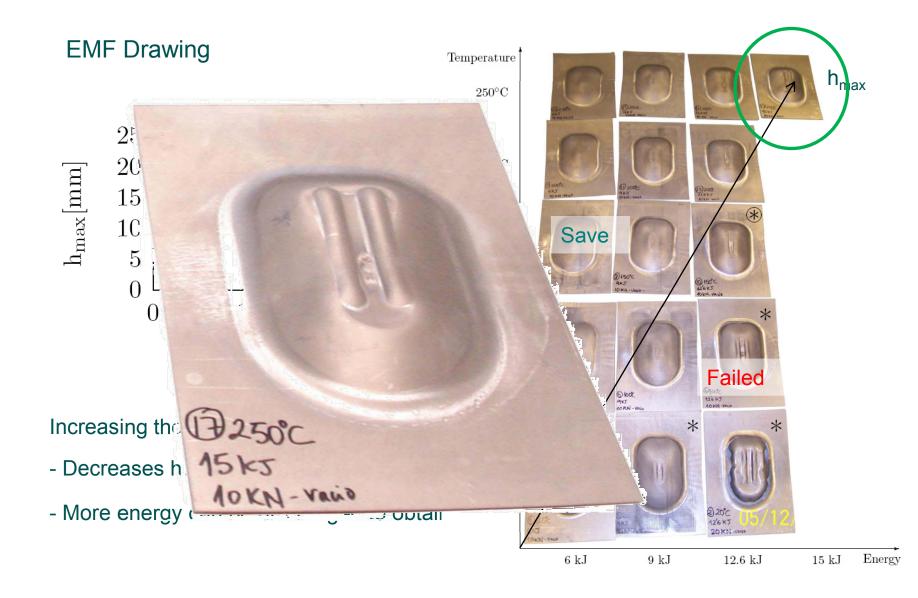
Test conditions:

- -Temperatures: R.T., 100°C, 150°C, 200°C, 250°C
- **Discharged Energies:** 6 kJ 15 kJ (Drawing)
 - 1 kJ 6 kJ (Bending)


EMF at different temperatures:


Heating Strategy: Heating outside the forming position

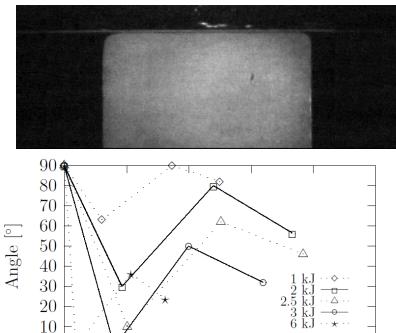
- Step 1. Heating: Temperature was controlled with thermocouples
- Step 2. Automatic Transfer: Temp drop measured (Cooling curves for each Temp)
- Step 3. Closing and EMF discharge: Time for discharging measured \rightarrow Initial Temp.



ICHSF 2010 EXPERIMENTAL RESULTS

ICHSF 2010 EXPERIMENTAL RESULTS

EMF Bending

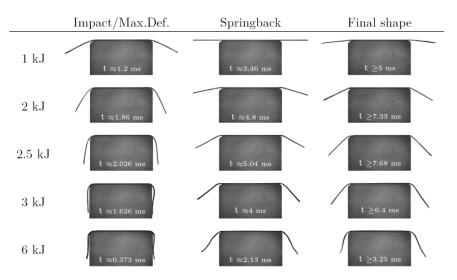

0

0

2

Room temperature

Energy for impact?


4

time [ms]

6

8

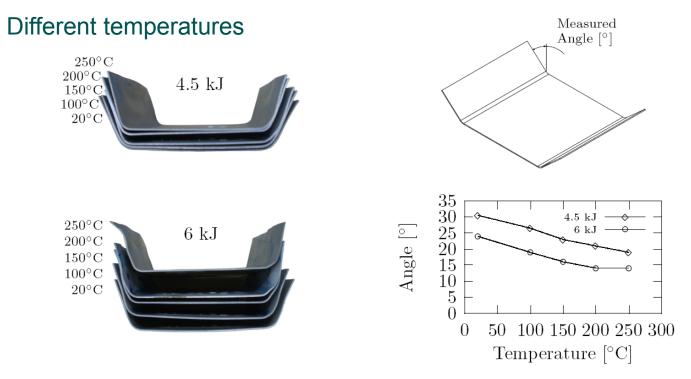
10

- Non-symmetrical deformation (coil)
- Impact in 2.5-3 kJ
- Decrease of springback with increasing energy
- \rightarrow Higher plastic deformation
- \rightarrow High velocity impact

EMF Bending

Different temperatures

For a given energy, if:


Temperature (Elect. Conductivity) \rightarrow Forces (Acceleration) \rightarrow Impact vel.

Then, from the previous results we should expect that:

The final springback will increase with temperature.

EMF Bending

*Non homogeneous deformation in the whole flange

Increasing temperature: final angle is closer to the target angle

→ Reduction of springback due to decrease of yield strength with temperature

Concluding remarks:

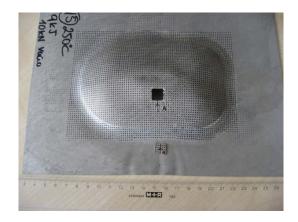
Warm EMF is studied: **Higher deformation** values could be obtained increasing **temperature**

 \rightarrow It could be suitable to form **complex geometries** in Mg parts

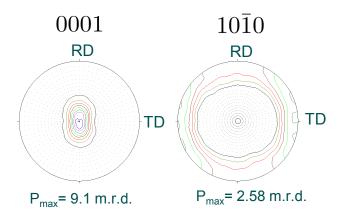
Springback behavior of magnesium sheet at high strain rates was studied (EMF bending experiments). It was shown that:

- Increasing the discharged energy the springback decreases
- Increasing temperature also decreases the springback

It is shown that temperature has different effect depending on the EMF operation:


- The decrease of electrical conductivity is important in drawing operations
- The decrease of yield stress is more important in bending

Material Characterization at high strain rate biaxial loading:


- Microstructure and texture analysis (EBSD & Neutron diff.)

- Compare with uniaxial results

EMF of other Mg alloys (e.g. ZE10)

- Weaker initial texture

Warm Electromagnetic Forming of AZ31B Magnesium Alloy Sheet

GOI ESKOLA POLITEKNIKOA ESCUELA POLITÉCNICA SUPERIOR

Thank you for your attention!

Dr. Ibai Ulacia

Mechanical and Manufacturing Department Mondragon Goi Eskola Politeknikoa Mondragon Unibertsitatea iulacia@eps.mondragon.edu

Columbus, 09 March, 2010