Impact Welding in a Variety of Geometric Configurations

Yuan Zhang

Sudarsanam Suresh Babu

Glenn S. Daehn

Department of Materials Science and Engineering The Ohio State University

- Introduction of Impact Welding
- Motivation and Objective
- Different Configurations for MPW
- Process Parameter Measurement
- Joint Property and Microstructure Study
- Conclusion
- Acknowledgement

Roadmap

Configuration

Plate to Plate Lap JointFlanging and WeldingTube to Rod Lap Joint

Process

Primary Current-RogoswkiImpact Velocity-PDVImpact Angle-Multiple PDV

Property

- •Lap Shear Test
- •Peeling Test
- •Microhardness Test
- •Nanoindentation Test

Multi-scale Characterization

SEM

FIB

TEM

3DAP

Impact Welding Mechanism

[Isao Masumoto et.al. 1985; Bahrani A.S. et. al. 1967; Ezra A.A., 1973]

Different Impact Welding Systems*

[*Y. Zhang et.al., 2010; **G. Daehn and John Lippold, 2009]

Motivation and Challenge

- Motivation
 - No significant heat affected zone (HAZ)
 - Able to bond both similar and dissimilar materials
 - Joint having greater strength than base metals
 - Fast welding process
 - Flexible to weld geometry
 - High reliability/reproducibility
- Objective:
 - Weld dissimilar materials
 - Apply impact welding for smaller length scale
 - Use impact welding to typical manufacturing environment

- Primary electromagnetic (EM) field in actuator induces secondary EM field inside of nearby metal workpiece (flyer plate).
- Primary and secondary EM fields are parallel but in opposite direction.
- Repelling force accelerates flyer plate colliding against stationary target plate to make lap joint in high impact velocity.

[*Courtesy to Gregg K. Fenton, TMS 2008]

Circular Actuator for Axis Symmetrical Welding

Bar Actuator for Plate-to-Plate Welding

Literature Research

Double layer, H-shaped flat coil*

One layer, E-shaped flat coil*

[T. Aizawa, M. Kashani, and K.Okagawa, welding Journal 2007, Vol. 86]

Bar Actuator for Plate-to-Plate Welding

Magnet[®] Simulated Current Density

Fixture Die with Insulator Tape

Bar Actuator for Plate-to-Plate Welding

2nd Generation

Variation of Initial Launch Angle

Narrow leg

Assembled Actuator

Uniform Pressure Actuator for Plate-to-Plate Welding

Welded Sample

Bar Actuator for Flanging and Welding

Experimental Setup

Measurement of Velocity and Current

Photon Doppler Velocimetry (PDV)

Plug in Rogowski Coil

Probes of Fiber Optic Lens

14

Impact Angle Calculation

Assume flyer plate is rigid before collision and then calculate impact angle:

$$\alpha = tg^{-1} \frac{\Delta h}{\Delta x}$$

In which, flyer relative moving distance:

$$\Delta h = \int v_{II} dt_{II} - \int v_{I} dt_{II}$$

Note: $v \sim t$ data is measured by PDV and Δx is known.

Build up Joining Map

Joining map for Cu110 joints of 0.254mm thick plates

• Effective welding requires proper combination of impact velocity and impact angle.

Mechanical Test: Microhardness

- Improved microhardness along welded interface.
- Width of hardened region scales with impact energy density.

		· •	
	EXW	MPW	LIW
Hardened Region (µm)	250	50	20
Energy Density (kJ/m ²)	6944	747	53

Mechanical Test: Nanoindentation

•Indenters transverse interface with $5\mu m$ spacing in $50\mu m$ wide range on either side of the welded interface.

•Hardened region is symmetrical with w.r.t. welded interface. $10\mu m$ wide regions on either side have extreme hardness.

Mechanical Test: Lap Shearing

Mechanical Test: Peeling

Peeling Test Setup

Peeled Sample

Fracture Surface@5.6kJ

Flyer/Target	Cu110/Cu110			
Impact Energy (kJ)	4.0	4.8	5.6	
Joint Peel Strength (N/mm)	0.9	>10.3	>11.4	
Failure Mode	through	through	through	
	interface	base metal	base metal	

Impact Welded Interface Morphology

- Feasible for all length scales with proper impact angle and impact velocity.Can be used for dissimilar materials joining.
- •Wavy length and wavy amplitude is proportional to impact energy density.

Interfacial Grain Refinement

- Adiabatic heat and impact pressure make grains along interface undergo severe refinement.
- The average AA6061 grain size is $\sim 40 \mu m$; the average Cu101 grain size is $\sim 10 \mu m$. And the average interfacial grain size falls into nanometer scale.

- Similar to EXW, MPW joining map is also dependent on impact angle and impact velocity.
- Impact welding generates wavy interface. Wave length and amplitude scale with plate thickness and impact energy density.
- Mechanical test indicates impact joint has greater microhardness and shear strength.
- High velocity impact generates ultra fine grain structure along welded interface.

- Thanks to electromagnetic forming (EMF) group at OSU, especially Geoff Taber's help on welding experiments.
- Thanks to Pierre L'Eplattenier and Mike Burger's help on LS-DYNA simulation.
- Thanks for graduate student fellowship support from AWS.
- Thanks for SHaRE program at ORNL/DOE.
- Thank you for your attention.