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Abstract

We propose an interpretation of modal logic through stochastic relations, providing a prob-
abilistic complement to the usual nondeterministic interpretations using Kripke models. A
simple temporal logic and a logic with a countable number of diamonds illustrate the ap-
proach. The main technical result of this paper is a probabilistic analogon to the well-known
Hennessy-Milner Theorem characterizing models that have the same theories for their states
and bisimilarity as equivalent properties. This requires the study of congruences for stochas-
tic relations that underly the interpretation, for which a general bisimilarity result is also
established. The results depend on the existence of semi-pullbacks for stochastic relations
over analytic spaces.
Keywords: Stochastic relations, stochastic Kripke models, congruences, bisimulations, modal
logic, Hennessy-Milner Theorem.
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1 Introduction

Modal logics are usually interpreted through relations: given the modal operator � of arity
n > 0, a relation R� ⊆ S×Sn over the state space S defines that satisfaction relation. A move
can be made to a state s with s |= �(ϕ1, . . . , ϕn) from states s1, . . . , sn such that s1 |= ϕ1, ...,
sn |= ϕn provided s and s1, . . . , sn are related through R�, thus provided 〈s, s1, . . . , sn〉 ∈ R�
holds. This paper proposes an interpretation of modal logics through stochastic relations.
Working in a countable state space, we could assign � a discrete transition probability p�
from S to Sn; the probability for s |= �(ϕ1, . . . , ϕn) can then be described as∑

s1|=ϕ1,...,sn|=ϕn
p�(s)(s1, . . . , sn).

This entails in particular a description of s not satisfying the formula at all (when the latter
probability in zero) or of s satisfying it properly (when the probability is one).
Finite or countable state spaces are rather special cases, and we discuss state spaces in general.
A probabilistic interpretation of a given modal logic assigns then to each modal operator � a
stochastic relation K� of a suitable arity, in addition we cater for the validity of propositional
variables which are being taken care of through suitable measurable subsets of the state space.
We first study the relationship between probabilistic and nondeterministic interpretations
and argue that a stochastic interpretation K is usually more precise than its nondeterministic
cousin R, since R only provides binary arguments (a formula holds in a state or it does not)
whereas K adds quantitative information (a state can satisfy a formula with a probability
of more than, say, 0.7). This leads to the notion of probabilistic refinement: K refines R iff
each state that satisfies an arbitrary formula from the negation free part of the logic proba-
bilistically does satisfy it also nondeterministically. With K comes a coarser nondeterministic
interpretation: we simply list all possibilities offered by K and package it as an interpretation.
The converse does also hold. We can find under some suitable and quite natural assumptions
a stochastic interpretation K for the nondeterministic interpretation R refining R: we col-
lect all states that we want to have assigned positive probability and construct a stochastic
relation from it.
These simple arguments need to be refined, of course, because in a general probabilistic
setting it is difficult to make the notion of possibilities offered by a probability or positive
probability precise. That can be done provided a topological assumption of the state space is
added: we assume that the state space is Polish, i.e., a topological space that can be made
into a complete metric space and that has a countable dense subset (the reals R yield an
important instance). Polish spaces are a natural generalization of finite and countable spaces,
and permit most of the constructions which are necessary in the context described here.
The main technical result of this paper is a probabilistic analogon of the Hennessy-Milner
Theorem [3, Theorem 2.24]. It relates two models of a given modal logic through bisimulation:
they are bisimilar iff given a state in one model one can find another state in the other one
having the same theory, and vice versa. This has been known essentially for the special case of
a countable number of unary modal operators under different probabilistic assumptions [4, 9,
7, 8]. One cornerstone in all these constructions is the existence of semi-pullbacks in categories
of stochastic relations. This could be established in [7, 8] for Polish and for analytic spaces as
the spaces underlying these relations. The other cornerstone is the factorization of a direct
sum after a suitable equivalence relation.
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The equivalence relation for factorization arises naturally from the logic: two states are said
to be equivalent iff they satisfy exactly the same formulas, i.e., iff they have the same theory.
When analyzing this relation it turns out that its most important property is its having a
countable generator: there exists a countable family of measurable sets such that two states
are equivalent iff either both are in each set or both are outside each set. The theory of Borel
sets (see e.g. [16]) calls equivalence relations like that smooth. These relations have a number
of pleasant properties, among others, that their factor space is an analytic space, hence is not
too ill-behaved. Since we work with a probabilistic interpretation with stochastic relations
between two sets, we have to deal in general with pairs of smooth equivalence relations. This
leads to the notion of a congruence for stochastic relation, which is studied here briefly: a
congruence (α, β) for a stochastic relation K between the Polish spaces X and Y is a smooth
equivalence relation α on X and β on Y such that α-equivalent inputs to X behave in exactly
the same way on the β-invariant subsets of Y . This is just what we need when we want
to establish a probabilistic analogon of the Hennessy-Milner Theorem. But it is not yet
enough: we need a characterization for equivalent states which have the same theory. This is
formulated in a more general way, and leads to the notion of equivalent congruences, which in
turn permit the description of the same behavior. Two congruences are equivalent if, roughly
speaking, they may generate each other, and if they display the same behavior.
Congruences are briefly studied, the factor space is constructed (hereby leaving the realm of
Polish and entering the world of analytic spaces), it is shown that each morphism gives rise
to a congruence. Given two stochastic relations with equivalent congruences, we show how
to construct a morphism from each relation to the factor space constructed from the sum,
which then leads to the existence of a semi-pullback. When dealing with modal logics, a
stochastic interpretation may be viewed as a family of stochastic relations, thus the notion
of morphism between relations carries over, and equivalent models are bisimilar. This is
a direct translation of the result for stochastic relations. It does not entail, however, the
reverse statement: bisimilar models are equivalent. Strengthening the notion of a morphism
by introducing a condition of uniformity then gives the desired version of the Hennessy-Milner
Theorem for stochastic Kripke models.

Related Work Larsen and Skou introduce in their seminal paper [13] the notion of a prob-
abilistic interpretation for a Hennessy-Milner logic. The interpretation is based on discrete
probability spaces. This was generalized in [4] to analytic spaces with universally measurable
transition probabilities and in [7, 8] to Polish resp. analytic spaces with Borel measurable
transition probabilities. All these different notions of measurability have to do with the possi-
bility of establishing the existence of semi-pullbacks in the corresponding categories. The work
so far concentrates on probabilistic interpretations of different aspects of the Hennessy-Milner
logic as a modal logic with a countable number of unary modal operators. [5] introduces the
notion of a congruence (called bisimulation there) for labelled Markov transition systems
and investigates approximations through suitable chosen domains. These congruences are,
however, not investigated from an algebraic point of view.

Organization Section 2 introduces stochastic relations and collects some measure theoretic
results that are useful, an interpretation of modal logic through stochastic Kripke models is
proposed in 3, and is illustrated through two well-known logics. Section 4 relates nonde-
terministic and stochastic Kripke models through refinements, and it is shown under which
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conditions a nondeterministic Kripke model has a stochastic refinement. Smooth equivalence
relations are introduced in Section 5, and factor spaces are introduced there, too; this Section
also defines the important notion of equivalent congruences. Section 6 investigates morphisms,
and a first bisimulation result is established. Section 7 establishes the paper’s main result,
Section 8 wraps it all up and indicates some directions for further work.

2 Stochastic Relations

This Section defines stochastic relations and collects some basic facts from topology and
measure theory for the reader’s convenience and for later reference.
A Polish space (X,G) is a topological space which is second countable, i.e., which has a
countable dense subset, and which is metrizable through a complete metric. A measurable
space (X,A) is a set X with a σ-algebra A. The Borel sets B(X,G) for the topology G is the
smallest σ-algebra on X which contains G. Given two measurable spaces (X,A) and (Y,B),
a map f : X → Y is A− B-measurable whenever

f−1 [B] ⊆ A
holds, where

f−1 [B] := {f−1[B]|B ∈ B}
is the set of inverse images

f−1[B] := {x ∈ X|f(x) ∈ B}
of elements of B. Note that f−1 [B] is a σ-algebra, provided B is one. If the σ-algebras are
the Borel sets of some topologies on X and Y , resp., then a measurable map is called Borel
measurable or simply a Borel map. The real numbers R carry always the Borel structure
induced by the usual topology which will usually not be mentioned explicitly when talking
about Borel maps.
The product (X1 × X2,A1 ⊗ A2) of two measurable spaces (X1,A1) and (X2,A2) is the
Cartesian product X1 ×X2 endowed with the σ-algebra

A1 ⊗A2 := σ ({A1 ×A2|A1 ∈ A1, A2 ∈ A2}) .
This is the smallest σ-algebra which contains all the measurable rectangles A1 × A2, and it
is the smallest σ-algebra E on X1 × X2 which makes the projections πi : X1 × X2 → Xi

E − Ai-measurable for i = 1, 2. Given finite measures µi on Ai, there exists a unique finite
measure µ1 ⊗ µ2 on A1 ⊗A2 such that

(µ1 ⊗ µ2) (A1 ×A2) = µ1(a1) · µ2(A2)

holds for each A1 ∈ A1, A2 ∈ A2.
An analytic set X ⊆ Z for a Polish space Z is the image f [Y ] of a Polish space Y for some
Borel measurable map f : Y → Z. Endow X with the trace A of B(Z) on X, i.e.,

A = B(Z) ∩X := {B ∩X|B ∈ B(Z)},
the elements of which still being called Borel sets. A measurable space (X ′,A′) which is Borel
isomorphic to (X,A) is called an analytic space (a Borel isomorphism is a Borel measurable
and bijective map the inverse of which is also Borel measurable).
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When the context is clear, we will write down topological or measurable spaces without their
topologies and σ-algebras, resp., and the Borel sets are always understood with respect to
the topology under consideration.
Given two measurable spaces (X,A) and (Y,B), a stochastic relation K : (X,A)� (Y,B) is a
Borel map fromX to the set S (Y,B), the latter denoting the set of all subprobability measures
on (Y,B) which carries the weak*-σ-algebra. This is the smallest σ-algebra on S (Y,B) which
renders all maps µ 	→ µ(D) measurable, where D ∈ B. Hence K : (X,A) � (Y,B) is a
stochastic relation iff

1. K(x) is a subprobability measure on (Y,B) for all x ∈ X,

2. x 	→ K(x)(D) is a measurable map for each measurable set D ∈ B.

We will deal usually with stochastic relations between Polish or between analytic spaces.
Accordingly, we call then (X,Y,K) a Polish respectively an analytic object.
An A − B- measurable map f : X → Y between the measurable spaces (X,A) and (Y,B)
induces a map S (f) : S (X,A) → S (Y,B) upon setting

S (f) (µ)(D) := µ(f−1[D])

(for µ ∈ S (X,A) ,D ∈ B). It is easy to see that S (f) is measurable.

3 Interpretations of Modal Logic

We show in this section how a probabilistic interpretation of a general modal logic can be
constructed, generalizing the well-known interpretation given for the Hennessy-Milner logic
through labelled Markov transition systems which are introduced formally in Example 2.
Let P be a countable set of propositional letters which is fixed throughout, O 
= ∅ is a set of
modal operators. Following [3], τ = (O, ρ) is called a modal similarity type iff O 
= ∅, and if
ρ : O → N is a map, assigning each modal operator � its arity ρ(�) ≥ 1. We will not deal
with modal operators of arity zero, since as modal constants they do not have to be dealt
with in an interpretation. The similarity type τ will be fixed.
We define three modal languages based on τ and P . The formulas of the basic modal language
Modb(τ, P ) are given by the syntax

ϕ ::= p | 
 | ϕ1 ∧ ϕ2 | ¬ϕ | �(ϕ1, . . . ϕρ(�)),

where p ∈ P . Omitting negation defines the formulas in the negation free basic modal language
Mod1(τ, P ). Finally the extended modal language Mods(τ, P ) is defined through the syntax

ϕ ::= p | 
 | ϕ1 ∧ ϕ2 | ¬ϕ | �q(ϕ1, . . . ϕρ(�)),

where q ∈ Q ∩ [0, 1] is a rational number, and p ∈ P is a propositional letter.
A nondeterministic τ - Kripke model R = (S,Rτ , V ) consists of a state space S, a family Rτ =
((R�)�∈O) of set valued maps R� : S → P (Sρ(�)

)
and a set valued map V : P → P (S) .

The satisfaction relation for a nondeterministic τ -Kripke model R is defined as usual for
Modb(τ, P ):

• R, s |= p⇔ s ∈ V (p)
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• R, s |= ¬ϕ⇔ R, s 
|= ϕ

• R, s |= ϕ1 ∧ ϕ2 ⇔ R, s |= ϕ1 and R, s |= ϕ2

• R, s |= �(ϕ1, . . . , ϕρ(�)) ⇔ ∃〈s1, . . . , sρ(�)〉 ∈ R�(s) : R, si |= ϕi for 1 ≤ i ≤ ρ(�).

Denote by [[ϕ]]R := {s ∈ S|R, s |= ϕ} the set of states for which formula ϕ in valid, and by

ΛR,s := {ϕ ∈ Modb(τ, P )|R, s |= ϕ}
the theory of state s in R.
An easy calculation shows that

R, s |= �(ϕ1, . . . , ϕρ(�)) ⇔ R�(s) ∩ [[ϕ1]]R × . . .× [[ϕρ(�)]]R 
= ∅.
In analogy, a stochastic τ -Kripke model K = (S,Kτ , V ) has a state space S which is endowed
with a σ-algebra, a family Kτ = (K�)�∈O of stochastic relations K� : S � Sρ(�) and a set
valued map V : P → P (S) such that V (p) is always a measurable set (we leave the σ-algebra
on the state space anonymous to avoid cluttering the notation; note that Sρ(�) carries the
product σ-algebra).
The interpretation of formulas in Mods(τ, P ) for a stochastic τ -Kripke model K is fairly
straightforward, the interesting case arising when a modal operator is involved:

K, s |= �q(ϕ1, . . . , ϕρ(�))

holds iff there exists measurable subsets A1, . . . , Aρ(�) of S such that K, si |= ϕi holds for all
si ∈ Ai for 1 ≤ i ≤ ρ(�), and

K�(s)(A1 × . . .×Aρ(�)) ≥ q.

Arguing from the point of view of state transition systems, this interpretation of validity
reflects that upon the move indicated by �q, a state s satisfies �q(ϕ1, . . . , ϕρ(�)) iff we
can find states si satisfying ϕi with a K�-probability exceeding q. Note that the usual
operators � and ∇ are replaced by a whole spectrum of operators �q which permit a finer
and probabilistically more adequate notion of satisfaction (see [13]).
Again, let [[ϕ]]K be the set of all states for which ϕ ∈ Mods(τ, P ) is satisfied under K, and

ΛK,s := {ϕ ∈ Mods(τ, P )|K, s |= ϕ}
the state’s theory.
It turns out that the sets [[ϕ]]K are measurable, so that they may be used as arguments for
the stochastic relations we are working with:

Lemma 1 [[ϕ]]K is a measurable subset of S for each ϕ ∈ Mods(τ, P ).

Proof The proof proceeds by induction on ϕ. If ϕ = p ∈ P , then [[ϕ]]K = V (p) holds, which is
measurable by assumption. Since the measurable sets are closed under complementation and
intersection, the only interesting case is again the one in which a modal operator is involved.
Since

[[�q(ϕ1, . . . , ϕρ(�)]]K = {s ∈ S|K�(s)([[ϕ1]]K × . . .× [[ϕρ(�)]]K) ≥ q},
the assertion follows from the induction hypothesis and the fact that K� is a stochastic
relation. �

A stochastic relation on the state space induces a stochastic τ -Kripke model. This is illustrated
through the following example:
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Example 1 Let K : S � S be a stochastic relation on the state space S, and define for
s ∈ S and for the modal operator �

K�(s) :=
ρ(�)⊗
i=1

K(s),

then K� : S � Sρ(�) is a stochastic relation. If V (p) ⊆ S is a measurable subset of S, then

KK,V := (S, (K�)�∈O, V )

is a stochastic τ -Kripke model such that

KK,V , s |= �q(ϕ1, . . . , ϕρ(�)) ⇔ K(s)([[ϕ1]]KK,V ) · . . . ·K(s)([[ϕρ(�)]]KK,V ) ≥ q.

Thus the arguments to each modal operator are stochastically independent. —

The concepts of stochastic interpretation introduced above are illustrated with two well known
sample logics.

Example 2 Suppose that L is a countable alphabet of actions. Each action a ∈ L is associated
with a unary modal operator 〈a〉, so put τ := (O, ρ) with O := {〈a〉| a ∈ L} and ρ(〈a〉) := 1.
A nondeterministic τ -Kripke model is based on a labelled transition system (S, (→a)a∈L)
which associates with each action a a unary relation →a⊆ S × S. Thus

s |= 〈a〉ϕ ⇔ ∃s′ : s→a s
′ ∧ s′ |= ϕ.

A stochastic τ -model is based on a labelled Markov transition system [13, 4, 7] (S, (ka)a∈L)
which associates with each action a a stochastic relation ka : S � S Thus

s |= 〈a〉qϕ⇔ ka(s)([[ϕ]]) ≥ q,

hence making a transition is replaced by a probability with which a transition can happen.
Variants of the logic Mods(τ, P ) with P = ∅ were investigated in [13, 4] with a reference
to the logic investigated by Hennessy and Milner; we refer to them also as Hennessy-Milner
logic. —

Example 3 The basic temporal language has two unary modal operators F (forward) and B
(backward), so that O = {F,B}. A nondeterministic τ -Kripke model interprets the forward
operator F through a relation R ⊆ S ×S and the backward operator B through the converse
R�, so that

s |= Bϕ⇔ ∃t ∈ S : 〈t, s〉 ∈ R ∧ t |= ϕ

holds.
A probabilistic interpretation interprets F through a stochastic relation K : S � S, so that

s |= Fqϕ⇔ K(s)([[ϕ]]) ≥ q

The backward operator B is interpreted through the converse K�
µ : S � S, provided the

state space S is Polish and an initial probability µ is given (the converse K�
µ of K given µ is

the stochastic relation L : S � S such that∫
S
K(s)({s′|〈s, s′〉 ∈ B}) µ(ds) =

∫
S
L(s′)({s|〈s, s′〉 ∈ B}) µ(ds′)
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holds for each Borel set B ⊆ S × S, see [1] for algebraic and [6] for relational and measure
theoretic properties of the converse). Thus

s |= Bqϕ⇔ K�
µ (s)([[ϕ]]) ≥ q.

An easy calculation shows that

s |= B1F1ϕ ⇔ K�
µ (s)

({s′| K(s′)([[ϕ]]) = 1}) = 1

⇔
∫
S
K(s′)([[ϕ]]) K�

µ (s)(ds′) = 1

Note that the definition of the converse requires an initial probability (this is intuitively clear:
if the probability for a backward running process is described, one has to say where to start).
It is also noteworthy that a topological assumption has been made; if the state space is not a
Polish space, then the technical arguments permitting the definition of the converse are not
available. —

4 Refinements

Given a nondeterministic and a stochastic interpretation, we want to compare both. Intu-
itively, the stochastic interpretation is more precise than its nondeterministic cousin: whereas
nondeterministically we can only talk about possibilities, we can assign weights to these pos-
sibilities using probabilities. To say that after a certain input the output put will be a, b or
c conveys certainly less information than saying that the probabilities for these outputs will
be, respectively, p(a) = 1/100, p(b) = 1/50 and p(c) = 97/100.
Since negation has its own problems, we will restrict ourselves to the negation free logic
Mod1(τ, P ), and we will deal with stochastic relations which are based on probabilities (so
that the whole space is always assigned probability one).

Definition 1 Let R and K be a nondeterministic and a stochastic τ -Kripke model, and as-
sume that K�(s)(S × . . . × Sρ(�)) = 1 holds for each s ∈ S (we will call these models
probabilistic). K is said to refine R (K � R) iff

∀ϕ ∈ Mod1(τ, P ) : [[ϕ]]K ⊆ [[ϕ]]R.

Consequently, given the interpretations K and R, we have R � K if R, s |= ϕ holds only if
K, s |= ϕ is true for each formula ϕ in the negation free part of the logic.
We will investigate here the relationship between nondeterministic and stochastic satisfaction
by showing that for each stochastic interpretation K we can find a nondeterministic one R
with K � R by simply taking all possible state changes and making it into a Kripke model.
Conversely, we will look into the possibility of refining a given nondeterministic Kripke model
into a stochastic model. This requires some topological assumptions (for otherwise the notion
all possible states cannot be made precise). Thus from now on the state space S is a Polish
space with its Borel sets as σ-algebra.
The set of all states possible for a probability µ on a Polish space X is captured through the
support of a probability µ: Define supp(µ) as the smallest closed subset F ⊆ X such that
µ(F ) = 1, thus

supp(µ) =
⋂

{F ⊆ X|F is closed and µ(F ) = 1}.
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It can be shown that µ(supp(µ)) = 1, and x ∈ supp(µ) iff µ(U) > 0 for each neighborhood U
of x. So this is exactly what we want.

Proposition 1 Let K =
(
S, (K�)�∈O , V

)
be a probabilistic τ -Kripke model. Define for the

modal operator � ∈ O the set valued map

RK
�(s) := supp(K�(s)).

Put
RK :=

(
S,
(
RK

�
)
�∈O , V

)
,

then K is a probabilistic refinement of RK.

Proof The proof proceeds by induction on the structure of the formulas. Assume that � is
a modal operator, and that we know

[[ϕi]]K ⊆ [[ϕi]]RK

for 1 ≤ i ≤ ρ(�). Now suppose

RK
�, s 
|= �1(ϕ1, . . . , ϕρ(�))

for some state s. Thus

RK
�(s) ∩ [[ϕ1]]RK × . . . × [[ϕρ(�)]]RK = ∅,

and, consequently, by the hypothesis,

RK
�(s) ∩ [[ϕ1]]R × . . . × [[ϕρ(�)]]R = ∅.

But this means
K�(s)([[ϕ1]]R × . . .× [[ϕρ(�)]]R) < 1,

hence
K, s 
|= �1(ϕ1, . . . , ϕρ(�)).

�

Thus each probabilistic Kripke model carries a nondeterministic one with it, and it refines
this companion (one is tempted to perceive this as a nondeterministic shadow : a shadow as a
coarser, black-and-white image of a probably more colorful, picturesque and graphic original).
It will be shown now that the converse of Proposition 1 is also true: Given a nondeterministic
Kripke model, there exists a stochastic one refining it. Intuitively, and in the finite case, one
simply assigns a uniform weight as a probability to all possible outcomes. This is basically
what we will do here, too, but we have to be a bit more careful since in an uncountable setting
this idea requires some additional underpinning.
Measurable relations will provide a link between non-deterministic and stochastic systems, as
we will see. Let us fix some notations first. Assume that Y is a measurable, and that Z is
a Polish space. Consider a set valued map R : Y → P (Z) . If R(y) always takes closed and
non-empty values, and if the (weak) inverse

(∃R)(G) := {y ∈ Y |R(y) ∩G 
= ∅}
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is a measurable set, whenever G ⊆ Z is open, then R is called a measurable relation on Y ×Z.
Since Z is Polish, R is a measurable relation iff the strong inverse

(∀R)(F ) := {y ∈ Y |R(y) ⊆ F}

is measurable, whenever F ⊆ Z is closed [10, Theorem 3.5].
It is immediate that the support yields a measurable relation for a probabilistic relation
K : Y � Z: put

RK := {〈y, z〉 ∈ Y × Z|z ∈ supp(K(y))},
then

(∀RK)(F ) = {y ∈ Y |K(y)(F ) = 1}
is true for the closed set F ⊆ Z, and

(∃RK)(G) = {y ∈ Y |K(y)(G) > 0}

holds for the open set G ⊆ Z. Both sets are measurable.
It is also plain that

(∗) ∀y ∈ Y : R(y) = supp(K(y))

implies that R has to be a measurable relation.
Given a set-valued relation R, a probabilistic relation K with (∗) can be found. For this, R
has to take closed values, and a condition of measurability is imposed. We obtain from [6]
the following existential statement (which depends on the existence of a sufficient number of
measurable selectors for a measurable relation).

Lemma 2 Let R ⊆ Y ×Z be a measurable relation for Z Polish. There exists a probabilistic
relation K : Y � Z such that R(y) = supp(K(y)) holds for each y ∈ Y .

Thus we can find a probabilistic Kripke structure refining a given nondeterministic one,
provided we impose a measurability condition:

Proposition 2 Suppose R :=
(
S, (R�)�∈O , V

)
is a nondeterministic τ -Kripke model such

that

1. V (p) ∈ B(S) for all p ∈ P ,

2. R� is a measurable relation on S × Sρ(�) for each � ∈ O.

Then there exists a probabilistic τ -Kripke model K =
(
S, (K�)�∈O , V

)
with K � R.

Proof Applying Lemma 2, find for each modal operator � ∈ O a transition probability
K� : S � Sρ(�) such that

∀s ∈ S : R�(s) = supp(K�(s))

holds. The argumentation in the proof of Lemma 1 establishes the claim. �

It is clear that the probabilistic τ -Kripke model is underspecified by merely requiring to be a
refinement to a nondeterministic one. This is supported through the following observation:

October 15, 2003



Page 10 Stochastic Relations Interpreting Modal Logic

Corollary 1 Let R be a nondeterministic τ -Kripke model satisfying the conditions of Propo-
sition 2. Assume that Ki =

(
S, (K�,i)�∈O , V

)
is a probabilistic τ -Kripke model with Ki � R

for each i ∈ N. Let (αi)i∈N be a sequence of positive real numbers such that
∑

i∈N
αi = 1, and

define for � ∈ O the stochastic relation

K�(s) :=
∑
i∈N

αi ·K�,i(s).

Then (
S, (K�)�∈O , V

)
� R.

Proof 1. Let (µi)i∈N be a sequence of probability measures. Since all αi are positive, the
definition of the support function yields that

supp(
∑
i∈N

αi · µi) =

(⋃
i∈N

supp(µi)

)cl

holds, (·)cl denoting topological closure. Thus R� equals supp(K�).
2. The assertion now follows from Proposition 2. �

5 Smooth Equivalence Relations

We will begin in this section a discussion of smooth equivalence relations that will lead us to
the definition of congruences and of factor objects. In order to keep a probabilistic grip on
the equivalence relations, we require them to be compatible with the Borel structure. The
natural way to do this is to have a countable set of Borel measurable generators. We will show
that the equivalence relation coming from a modal logic in which two states are equivalent
iff they satisfy exactly the same formulas has this property. This leads to the definition
of equivalent congruences, which will be studied in Section 6 for bisimulations of general
stochastic relations, and in Section 7 for stochastic τ -Kripke models where we mainly focus
on the special case of the equivalence of bisimulation and satisfaction of the same formulas
for a given modal logic.
We fix for this section a Polish space X with its Borel σ-algebra B(X).

Definition 2 An equivalence relation α ⊆ X ×X is called smooth iff one of the following
equivalent conditions is satisfied:

1. there exists a Polish space Y and a Borel measurable map f : X → Y such that

x α y ⇔ f(x) = f(y),

2. there exists a sequence (An)n∈N of Borel sets in X such that

x α y ⇔ ∀n ∈ N : [x ∈ An ⇔ y ∈ An] .
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It follows immediately that a smooth equivalence relation is a Borel subset of X×X, see [16,
Exercise 5.1.10]. The equivalence classes can be expressed in terms of the sequence (An)n∈N:

[x]α =
⋂

{An|x ∈ An} ∩
⋂

{X \ An|x /∈ An},

hence each class is a Borel subset of X.
Smooth relations arise naturally in the context of stochastic τ -Kripke models. We will deal
with it later on.

Example 4 Let K be a stochastic τ -Kripke model. Two states s, s′ are equivalent iff ΛK,s =
ΛK,s, hence iff K, s |= ϕ⇔ K, s′ |= ϕ holds for all ϕ ∈ Mods(τ, P ). This equivalence relation
is smooth since Mods(τ, P ) is countable. —

A set A ⊆ X is called α-invariant iff x ∈ A and x α y implies y ∈ A, thus A is α-invariant iff

A =
⋃

{[x]α |x ∈ A}

holds. The α-invariant Borel subsets of X form a σ-algebra Aα. Blackwell’s Lemma charac-
terizes the invariant Borel sets:

Lemma 3 Let α be a smooth equivalence relation, and (An)n∈N be the sequence of Borel sets
that define α according to Definition 2. Then Aα = σ ({An| n ∈ N}) . Thus a Borel set A is
α-invariant iff A ∈ σ ({An| n ∈ N}) .

Proof [16, Lemma 5.1.16]. �

This Lemma implies that a smooth relation does not depend on the specific sequence of
generators (as Definition 2 and the representation of the equivalence classes seem to suggest)
but rather on the σ-algebra induced by them. In fact, it is not difficult to see that the relation
x ∈ A ⇔ y ∈ A extends from a generator of a σ-algebra to the σ-algebra itself [16, Lemma
3.1.6]. Lemma 3 has moreover the pleasant consequence that it permits the identification of
smooth equivalence relations and countably generated sub-σ-algebras of B(X), as is shown
in [8, Proposition 1]:

Lemma 4 α 	→ Aα is a order anti-isomorphism between the set MX of smooth equivalence
relations on X and set ZX of all the countably generated sub-σ-algebras of B(X), where the
order is given in each case through inclusion. MX has in particular a smallest and a largest
element, and is closed under countable intersections.

Smoothness is preserved through finite products:

Lemma 5 Let α and β be smooth equivalence relations on the Polish spaces X respectively
Y . Define

〈x, y〉(α × β)〈x′, y′〉 ⇔ xαx′ ∧ yβy′.
Then

1. α× β is a smooth equivalence relation over X × Y ,

2. Aα×β = Aα ⊗Aβ.
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Proof Let {An|n ∈ N} and {Bn|n ∈ N} be the generator for Aα and Aβ, resp. Then
{An ×Bn|n ∈ N} generates Aα ⊗Aβ, and

〈x, y〉(α × β)〈x′, y′〉 ⇔ ∀n ∈ N :
[〈x, y〉 ∈ An ×Bn ⇔ 〈x′, y′〉 ∈ An ×Bn

]
�

The atoms of Aα for a smooth equivalence relation α are the equivalence classes [x]α (recall
that an atom A in Aα has the property that A 
= ∅, and that each subset of A in Aα is either
empty or equals A): let ∅ 
= B ⊆ [x]α and B ∈ Aα. Thus B is α-invariant by Lemma 3, and
we see that y ∈ B implies y α x, hence [x]α = [y]α ⊆ B.
We will use Lemma 4 for switching between smooth equivalence relations and countably gen-
erated sub-σ-algebras of B(X). Denote for D ∈ ZX by αD the smooth equivalence generated
by D.

Definition 3 Let K : X � Y be a stochastic relation, where X and Y are Polish spaces.
Then (α, β) is called a congruence for (X,Y,K) iff

1. α and β are smooth equivalence relations on X, and Y , resp.

2. x1 α x2 implies K(x1)(D) = K(x2)(D) for all D ∈ Aβ.

Thus a congruence relates the inputs, and, separately, the outputs for K : X � Y so that
α-equivalent inputs display the same behavior on β-invariant output-sets.
Let (Dn)n∈N be a sequence of Borel sets determining β, and define

F :

{
X → [0, 1]N

x 	→ (K(x)(Dn))n∈N
,

then (α, β) is a congruence for (X,Y,K) iff α ⊆ αF , where αF is the smooth equivalence
relation induced by F ; an equivalent characterization is to say that DF ⊆ Aα with DF as the
σ-algebra induced by αF .
It is noted that for each D ∈ D the map x 	→ K(x)(D) is actually Aα-measurable. In fact, if
S ⊆ R is a Borel set, then

A0 := {x ∈ X|K(x)(D) ∈ S}
is a Borel set in X, and it is α-invariant by the definition of a congruence. Using Lemma 3
we see now that A0 ∈ C.
The following example illustrates the generation of congruences through countably generates
σ-algebras on the target space of a stochastic relation; it works because a finite measure is
uniquely determined on a set of generators which is closed under finite intersection.

Example 5 Let K : X � Y be a stochastic relations over the Polish spaces X and Y , and
assume that B ⊆ B(Y ) is a countably generated sub-σ-algebra of the Borel sets of Y . Put for
x, x′ ∈ X

x α x′ ⇔ ∀B ∈ B : K(x)(B) = K(x′)(B),

then (α,αB) is a congruence for K. —

Fix a Polish object (X,Y,K) and a congruence (α, β) for it. We will investigate now the
factorization of (X,Y,K) by (α, β), following essentially the construction outlined in [4].
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Definition 4 Let α be a smooth equivalence relation. Then

X/α := {[x]α |x ∈ X}
is the set of all equivalence classes, and B(X)/α is the largest σ-algebra on X/α that makes
the natural injection

ηα : x 	→ [x]α
measurable.

This yields a canonic construction which, however, leaves the category of Polish spaces as the
base category for construction of stochastic relations.

Proposition 3 Let α and β be smooth equivalence relations on the Polish space X resp. Y .
Then

1. (X/α,B(X)/α) is an analytic space,

2. If (α, β) is a congruence for the stochastic relation K : X � Y , define

Kα,β([x]α)(D) := K(x)(η−1
β [D])

for D ∈ B(Y )/β. Then Kα,β : X/α� Y/β is a stochastic relation such that

Kα,β ◦ ηα = S (ηβ) ◦K
holds.

Proof That (X/α,B(X)/α) is an analytic space is shown exactly as in the proof of [4,
Proposition 9.4] using Souslin’s Theorem for analytic sets [16, Theorem 4.4.3] together with
the Unique Structure Theorem for Borel sets [2, Theorem 3.3.5]. The proof proper is done as
in [8, Section 3], following closely the pattern laid out in [4, Section 9]. �

We will use these factor objects over and over later on, so they are given their own name and
symbol:

Definition 5 Endow X/α and Y/β with the σ-algebras B(X)/α and B(Y )/β, respectively,
and denote these analytic spaces for short by Xα and Yβ, resp. The analytic object

(X,Y,K) /(α,β) := (X/α, Y/β,Kα,β)

is called the factor object for (X,Y,K) and the congruence (α, β) .

An example for congruences and factor spaces of interest is furnished through equivalent
congruences.
As a preparation we will have a quick look at how the atoms of a countably generated σ-
algebra are characterized through the generators.

Lemma 6 Let E = σ({En|n ∈ N}) be a countably generated σ-algebra over a set E. Define
A1 := A,A0 := E \ A for A ⊆ E. Then

{
⋂
n∈N

Eα(n)
n |α ∈ {0, 1}N}

are exactly the atoms of E.
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Proof The proof to [16, 3.1.15] establishes this representation. �

Definition 6 Let α1 and α2 be smooth equivalence relations on the Polish spaces X1 resp.
X2, and assume that T : X1/α1 → X2/α2 is a map between the equivalence classes. We say
that α1 spawns α2 via (T,A0) iff A0 is a countable generator of Aα1 such that

1. A0 is closed under finite intersections,

2. {TA|A ∈ A0} is a generator of Aα2 , where TA :=
⋃{T ([x]α1

) |x ∈ A},
3. [x1]α1

= [x2]α1
implies the equality of

⋂
{TA|x1 ∈ A ∈ A0} ∩

⋂
{X2 \ TA|x1 /∈ A ∈ A0}

and ⋂
{TA|x2 ∈ A ∈ A0} ∩

⋂
{X2 \ TA|x2 /∈ A ∈ A0}.

Thus if α1 spawns α2, then the measurable structure induced by α1 on X1 is all we need to
construct the measurable structure induced by α2 on X2: map T can be made to carry over
the generator A0 from Aα1 to Aα2 and — in the light of Lemma 6 — to transport the atoms
from one σ-algebra to the other. This is of particular interest since the atoms constitute the
equivalence classes. Hence α1 together with T and the generator A0 is all we may care to
know about α2.
The first condition reflects a measure-theoretic precaution: we will need to make sure e.g. in
the construction of the direct sum of stochastic relations that measures are uniquely deter-
mined by their values on a generator. This, however, can only be done if the generator is
stable against taking finite intersections. Note that TA1∩A2 = TA1 ∩ TA2 also holds, so that
closedness under intersections is inherited through T .
We are now in a position to define equivalent congruences through proportional ones:

Definition 7 Let (X,Y,K) and (X ′, Y ′,K ′) be Polish objects with congruences (α, β) and
(α′, β′), respectively.

1. Call (α, β) proportional to (α′, β′) (symbolically (α, β) ∝ (α′, β′)) iff α spawns α′ via
(Q,A0), β spawns β′ via (T,B0) such that

∀x ∈ X∀x′ ∈ Q([x]α)∀B ∈ B0 : K(x)(B) = K ′(x′)(TB).

2. Call these congruences equivalent iff both (α, β) ∝ (α′, β′) and (α′, β′) ∝ (α, β) hold.

Thus equivalent congruences behave in exactly the same way. The same behavior is exhibited
on each atom, i.e., equivalence class, as far as the input is concerned, and the respective
invariant output sets. It becomes clear now that a characterization of equivalent behavior
through congruences requires the double face of congruences: it is certainly necessary to use
the equivalence relation on the input spaces; but since the behavior on the output spaces is
modelled through probabilities, we need also the invariant Borel sets for a characterization.
We will show now how equivalent congruences on stochastic relations give rise to a factor
object built on their sum. This construction will be of use in Section 7 for investigating the
bisimilarity of stochastic τ -Kripke models.
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Assume that (α, β) and (α′, β′) are equivalent congruences on the Polish objects (X,Y,K),
and (X ′, Y ′,K ′), respectively. Construct for (X,Y,K) and (X ′, Y ′,K ′) the direct sum

(X,Y,K) ⊕ (X ′, Y ′,K ′) :=
(
X +X ′, Y + Y ′,K ⊕K ′) ,

where the only non-obvious construction is K ⊕K ′: put for the Borel set E ⊆ Y + Y ′

(K ⊕K ′)(z)(E) :=

{
K(z)(E ∩X), if z ∈ X

K ′(z)(E ∩X ′), if z ∈ X ′,

then clearly K ⊕K ′ : X +X ′ � Y + Y ′. Define on X +X ′ resp. Y + Y ′ the σ-algebras

G := {C + C ′|C ∈ Aα, C
′ ∈ Aα′}

H := {D +D′|D ∈ Aβ,D
′ ∈ Aβ′},

then G and H are countable generated sub-σ-algebras of the respective Borel sets. Let γ and χ
be the respective smooth equivalence relations (so that G = Aγ and H = Aχ both hold), then
we need to show that (γ, χ) is a congruence on the sum (X +X ′, Y + Y ′,K ⊕K ′) . Assume
α spawns α′ via (Q, {Cn|n ∈ N}). One first establishes that

G = σ({Cn +QCn |n ∈ N}).

This is so since F ⊆ X+X ′ is a member of the sum G iff both F ∩X ∈ Aα and F ∩X ′ ∈ Aα′

hold, and since Aα′ = σ({QCn |n ∈ N}) due to the properties of Q and {Cn|n ∈ N}. Similarly,
χ may be represented through β and T , if β spawns β′ via (T, {Dn|n ∈ N}). Because the
σ-algebras in question are countably generated, so is their sum, and because the congruences
are equivalent, we claim that z γ z′ implies that (K ⊕K ′)(z)(F ) = (K ⊕K ′)(z′)(F ) holds for
all F ∈ H. To establish this, let z ∈ X, z′ ∈ X ′, and consider

S := {F ∈ H|(K ⊕K ′)(z)(F ) = (K ⊕K ′)(z′)(F )}.

This is a σ-algebra containing the generator {Dn + TDn |n ∈ N}, since the congruences are
equivalent. Since the generator is closed under finite intersections, measures are uniquely
determined. This implies H ⊆ σ(S).
Denote the congruence constructed in this way from (α, β) and (α′, β′) by (α + α′, β + β′).
The factor object (

X +X ′, Y + Y ′,K ⊕K ′) /(α+α′,β+β′)

will be investigated more closely in Proposition 5 for establishing that (X,Y,K) and (X ′, Y ′,K ′)
are bisimilar, provided they have equivalent congruences.

6 Morphisms

This section introduces morphisms more formally and shows that each morphism gives rise
to a congruence in a rather natural way by imitating the usual construction of obtaining
congruences from homomorphisms. It turns out that the factor space for a morphism is itself
Polish whenever both source and target are Polish objects, whereas we usually end up with
analytic factor spaces. Bisimulations are introduced as spans of morphisms, and we have a
brief look at the congruence induced by a bisimulation on the mediating object.
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The category Stoch has as objects stochastic relations (X,Y,K) for measurable spaces X,Y
and K : X � Y . A morphism

(φ,ψ) : (X1, Y1,K1) → (X2, Y2,K2)

between the objects (Xi, Yi,Ki) is a pair of surjective measurable maps φ : X1 → X2 and
ψ : Y1 → Y2 such that

K1 ◦ φ = S (ψ) ◦K2

holds, i.e., the diagram

X1
φ � X2

S (Y1)

K1

�

S (ψ)
� S (Y2)

K2

�

is commutative.
We did encounter morphisms already when constructing the factor object:

Example 6 Let (α, β) be a congruence on the Polish object (X,Y,K) . Then

(ηα, ηβ) : (X,Y,K) → (X,Y,K) /α,β

is a morphism. This follows from

S (ηβ) ◦K = Kα,β ◦ ηα,

see Proposition 3. —

We will usually investigate morphisms for stochastic relations based on Polish or analytic
spaces, but it does not hurt to define them generally. Recall an object (X,Y,K) of Stoch

is dubbed Polish or analytic iff X and Y are Polish, and analytic spaces, respectively. Ac-
cordingly we denote by P − Stoch and by A − Stoch the full subcategories having Polish
respectively analytic objects as their objects.
Under suitable conditions we can make a pair of surjective and measurable maps into mor-
phisms: Let M : A � B be a stochastic relation between the measurable spaces A and B,
assume B is separable, and that X and Y are Polish spaces with measurable and surjective
maps φ : X → A,ψ : Y → B. Then there exists a stochastic relation K : X � Y such that

(φ,ψ) : (X,Y,K) → (A,B,M)

is a morphism.
This was shown in [8] helping to establish the existence of semi-pullbacks.
We note for later use [8, Theorem 2]:

Theorem 1 Both P − Stoch and A − Stoch have semi-pullbacks the underlying object of
which is Polish.
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Each morphism spawns a congruence in a rather natural way. Suppose φ : X1 → X ′
1 is a

measurable map, and define
xαφx

′ ⇔ φ(x) = φ(x′)

as the equivalence relation associated with φ.

Lemma 7 Let
(φ,ψ) : (X1, Y1,K1) → (X2, Y2,K2)

be a morphism for the stochastic relations K1 : X1 � Y1 and K2 : X2 � Y2, where the spaces
involved are all Polish. Then (αφ, αψ) is a congruence for (X1, Y1,K1).

Proof 1. The equivalence relation αφ is smooth by definition, so is ψ. It is not difficult to
see that Aαφ = φ−1 [B(X2)] , similarly for αψ.
2. Now let xαφx′, and let D1 ∈ Aαψ = ψ−1 [B(Y2)] be arbitrary, so we can find a Borel set
D2 ∈ B(Y2) with D1 = ψ−1 [D2] . Thus

K1(x)(D1) = K1(x)
(
ψ−1 [D2]

)
= (S (ψ) ◦K1) (x)(D2)
= (K2 ◦ φ) (x)(D2)
= K2(φ(x))(D2)
= K2(φ(x′))(D2)
= K1(x′)(D1).

This establishes the assertion. �

Call a congruence (α, β) on (X1, Y1,K1) adapted to the morphism (φ,ψ) iff

x α x′ ⇒ φ(x) = φ(x′)
y βy′ ⇒ ψ(y) = ψ(y′),

then the congruence constructed in Lemma 7 is the largest congruence on (X1, Y1,K1) that
is adapted to the morphism, as the proof for the Lemma shows.
As expected, morphisms which are compatible with congruences factor through the factor
object:

Proposition 4 Assume that (α, β) is a congruence on the Polish object (X,Y,K), and let
for the analytic object (X1, Y1,K1)

(φ,ψ) : (X,Y,K) → (X1, Y1,K1)

be a morphism which is adapted to (α, β). Then (φ,ψ) factors uniquely in A − Stoch through
(X,Y,K) /(α,β).

Proof 1. Because (φ,ψ) are adapted to (α, β) , the maps

φα([x]α) := φ(x),
ψβ([y]β) := ψ(y)
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are well defined. Since φ is B(X)−B(X1)-measurable, and since B(X)/α is the final σ-algebra
on Xα with respect to ηα, B(X)/α − B(X1)-measurability of φα is inferred: we can write

Aα = {A ⊆ Xα|η−1
α [A] ∈ B(X)},

thus φ−1
α [B1] ∈ Aα for B1 ∈ B(X1), since η−1

α

[
φ−1
α [B1]

]
= φ−1 [B1] ∈ B(X) due to the

measurability of φ. A similar argument is used for ψβ. Clearly, these maps are onto.
2. It remains to show that (φα, ψβ) is a morphism. In fact, let D1 ⊆ Y1 be a Borel set, then

K1(φα([x]α))(D1) = K1(φ(x))(D1)
= K(x)(ψ−1 [D1])
= Kα,β([x]α)(ψ

−1
β [D1]),

because ψ−1 [D1] = η−1
β

[
ψ−1
β [D1]

]
, and because (ηα, ηβ) is a morphism. Consequently,

K1 ◦ φα = S (ψβ) ◦Kα,β

has been established. Uniqueness of the morphism is obvious. �

It turns out that the factor spaces associated with morphisms are Polish.

Corollary 2 Denote under the conditions of Lemma 7 by

(X1, Y1,K1) /(φ,ψ)

the factor space associated with the largest congruence (αφ, αψ) which is adapted to the mor-
phism (φ,ψ). Then (X1, Y1,K1) /(φ,ψ) is a Polish object and isomorphic to (X2, Y2,K2).

Proof The factor morphism constructed in Proposition 4 is composed of bijections. Since
each morphism in Stoch is an epi, and since injective maps are underlying exactly the monos,
the assertion follows. �

Bisimilarity is introduced as a span of morphisms [11, 15, 7]. For coalgebras based on the
category of sets, this definition agrees with the one through relations, originally given by
Milner, see [15]. In [5] the authors call a bisimulation what we have introduced as congruence,
albeit that paper restricts itself to labelled Markov transition systems, thus technically to
stochastic relations S � S for some state space S. It seems conceptually to be clearer to
distinguish spans of morphisms from equivalence relations, thus we make this distinction
here. Later we will see that there are some close connections: equivalent congruences induce
bisimilarity, as we will establish in Proposition 5.
The stochastic relations (X1, Y1,K1) and (X2, Y2,K2) are called bisimilar iff there exists a
span of Stoch-morphisms

(X1, Y1,K1) �(φ1, ψ1) (A,B,M)
(φ2, ψ2)� (X2, Y2,K2)

with a suitable stochastic relation (A,B,M); the latter object is said to be mediating. If we
deal with Polish spaces X1,X2, Y1, Y2, then we postulate that A and B are Polish spaces, too.
A bisimulation yields the familiar commutative diagram

X1
� φ1

A
φ2 � X2

S (Y1)

K1

�
�
S (ψ1)

S (B)

M

�

S (ψ2)
� S (Y2)

K2

�
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In terms of measures, this translates to

K1(φ1(a))(D1) = M(a)(ψ−1
1 [D1])

K2(φ2(a))(D2) = M(a)(ψ−1
2 [D2])

for all a ∈ A and all Borel sets Di ⊆ Yi.
Recall from Lemma 4 that the set of all smooth equivalence relations is a lower semi-lattice.
Denote the infimum of α1 and α2 in this semi-lattice by α1 � α2 and note that

Aα1�α2 = σ (Aα1 ∪ Aα2)

holds.

Lemma 8 Suppose that

(X1, Y1,K1) �(φ1, ψ1) (A,B,M)
(φ2, ψ2)� (X2, Y2,K2)

is a bisimulation where all spaces involved are Polish, and assume that (αi, βi) is a congruence
on (Xi, Yi,Ki) which is adapted to (φi, ψi) for i = 1, 2. Then the congruence (α1�α2, β1�β2)
is adapted to both (φ1, ψ1) and (φ2, ψ2) .

Proof 1. We demonstrate first that (α1 � α2, β1 � β2) is a congruence for (A,B,M). It
is enough to show that M(x)(D) = M(x′)(D) holds for each D ∈ σ (Aβ1 ∪ Aβ2) , provided
x (α1 � α2) x′. Let

S0 := {D ∈ σ (Aβ1 ∪Aβ2) |M(x)(D) = M(x′)(D)}

be the σ-algebra of sets for which the assertion is true. Since in particular x α1 x
′ holds,

we see that Aβ1 ⊆ S0 because (α1, β1) is a congruence. Similarly we establish Aβ2 ⊆ S0,
thus σ (Aβ1 ∪Aβ2) ⊆ S0 follows from the fact that S0 is a σ-algebra. This establishes the
properties of a congruence.
2. From Lemma 4 it is immediate that the congruence under consideration is adapted to both
(φ1, ψ1) and (φ2, ψ2) . �

Corollary 3 Under the assumptions of Lemma 8, the congruence

(αφ1 � αφ2 , αψ1 � αψ2)

is the largest congruence on (A,B,M) which is adapted to both (φ1, ψ1) and (φ2, ψ2) .

Stochastic relations can have only equivalent congruences when they are bisimilar. This is a
rather far-reaching generalization of the by now well-known characterization of bisimilarity
of labelled Markov transition systems through mutually equivalent states:

Proposition 5 If (αi, βi) are equivalent congruences on the Polish objects (Xi, Yi,Ki) for
i = 1, 2, then (X1, Y1,K1) and (X2, Y2,K2) are bisimilar.
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Proof 1. Construct the sum (X1 +X2, Y1 + Y2,K1 ⊕K2) of the two objects as at the end of
Section 5, and let (κi, λi) be the corresponding injections, which are, however, no morphisms.
Let

(ηα1+α2 , ηβ1+β2) : (X1 +X2, Y1 + Y2,K1 ⊕K2)
→ (X1 +X2, Y1 + Y2,K1 ⊕K2) /(α1 + α2, β1 + β2)

be the canonical injection, then

(ηα1+α2 ◦ κi, ηβ1+β2 ◦ λi)

constitutes a morphism (Xi, Yi,Ki) → (X1 +X2, Y1 + Y2,K1 ⊕K2) /(α1 + α2, β1 + β2), as
will be shown now. The crucial step is establishing surjectivity.
2. We will first give a representation of the equivalence classes for the equivalence relations
associated with α1 + α2 and β1 + β2. This will then imply that the injections into the sums
composed with the factor maps are indeed onto.
Fix a generator {An|n ∈ N} for Aα1 , and assume that α1 spawns α2 via (Q, {An|n ∈ N}).
Then {QAn |n ∈ N} is a generator for Aα2 , and

Aα1 + Aα2 = σ({An +QAn |n ∈ N})

holds. We claim that each equivalence class a ∈ (X1 +X2)/(α1 + α2) can be represented as

a = [x1]α1
+ [x2]α2

for some suitably chosen x1 ∈ X1, x2 ∈ X2. In fact, suppose a = [x1]α1+α2
for some x1 ∈ X1.

Then
[x1]α1

=
⋂

{An|x1 ∈ An} ∩
⋂

{X1 \An|x1 /∈ An}
holds (see the remark following Definition 2). Consequently,

Q([x1]α1
) =

⋂
{QAn |x1 ∈ An} ∩

⋂
{X2 \QAn |x1 /∈ An}

= [x2]α2

for some x2 ∈ X2 by Lemma 6. This is so since we know that the atoms of Aα2 are exactly
the classes [·]α2

. Consequently, we have for each n ∈ N that x1 ∈ An holds iff x2 ∈ QAn is
true. Since x1 ∈ X1, x2 ∈ X2, and X1 ∩X2 = ∅, we have established

x1 ∈ An +QAn ⇔ x2 ∈ An +QAn

But this means x1 (α1 + α2) x2. Thus we have shown that indeed

a = [x1]α1
+ [x2]α2

holds. If a = [x2]α1+α2
for some x2 ∈ X2, the same conclusion would have been reached by in-

terchanging the roles of X1 and X2, which is possible because we have equivalent congruences.
It is obvious that [x1]α1

+ [x2]α2
for xi ∈ Xi forms a α1 + α2-class.

In the same way we show that each equivalence class b ∈ (Y1 +Y2)/β1 + β2 can be represented
as

b = [y1]β1
+ [y2]β2
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for suitably chosen y1 ∈ Y1, y2 ∈ Y2, and that the sum of classes is a class again.
3. The pullback of the pair of morphisms with a joint target constructed in the first step is
a Polish object which has the desired properties. �

This is the first cut at investigating congruences for stochastic relations. Much is to be done,
in particular it is not yet known whether or not there are counterparts to the factorizations
from classical algebra. This will be investigated in due course, but not in this paper. We will,
however, apply congruences to stochastic interpretations of modal logic.

7 Bisimulations for Kripke Models

This Section investigates morphisms for stochastic τ - Kripke models; we want to know whether
bisimilarity and mutually identical theories are equivalent also for this general case. To this
end we first discuss morphisms that are based on morphisms for stochastic relations (a τ -
Kripke model contains a family of stochastic relations, after all), indicate that this notion of
morphism is not adequate for our purposes and propose the notion of a strong morphism. We
show that strong morphisms are suitable for our purposes.
Fix a modal similarity type τ = (O, ρ). Assume first that the set P of propositional letters
is empty, rendering the discussion a bit less technical. Then a stochastic τ -Kripke model
K := (S, (K�)�∈O)) is determined through the Polish state space S and the family K� :
S � Sρ(�) of stochastic relations. A morphism

Φ : (S, (K�)�∈O)) → (
S′, (K ′

�)�∈O)
)

for stochastic τ -Kripke models is then a family

Φ = ((φ�, ψ�)�∈O)

of morphisms
(φ�, ψ�) : (S, Sρ(�),K�) → (S′, (S′)ρ(�),K ′

�)

for the associated relations.
Fix a modal operator �. The σ-algebra A� generated by

{[[ϕ1]]K × . . .× [[ϕρ(�)]]K| ϕ1, . . . , ϕρ(�) ∈ Mods(τ, P )}

is evidently countably generated, thus gives rise to a smooth equivalence relation β� on Sρ(�),
and the relation

sα�s′ ⇔ ∀B ∈ A� : K�(s)(B) = K�(s′)(B)

is smooth due to A� being countably generated. Consequently, (α�, β�) is a congruence for
K� : S � Sρ(�).

Let K′ =
(
S′, (K ′

�)�∈O)
)

be another τ -Kripke model which is equivalent to the first one in
the sense that for the states the corresponding theories mutually coincide, to be more precise:

Definition 8 The stochastic τ -Kripke models K and K′ are said to be equivalent (K ∼ K′)
iff given s ∈ S there exists s′ ∈ S′ such that ΛK,s = ΛK′,s′ and vice versa.
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Construct for K′ the congruence (α′
�, β

′
�) for each modal operator � as above, then it can

be shown that K ∼ K′ implies that the congruences (α�, β�) and (α′
�, β

′
�) are equivalent.

From Proposition 5 we see that K� and K ′
� are bisimilar for each modal operator�, so that

there exists a span of morphisms

(S, Sρ(�),K�) �(φ�, ψ�)
(A�, B�,M�)

(φ′�, ψ
′
�)
� (S′, (S′)ρ(�),K ′

�)

This is rather satisfying from the point of view of stochastic relations, but not when consid-
ering stochastic τ -Kripke models. This is so since in general ((A�, B�,M�)�∈O) fails to be
such a model, because there is no way to guarantee that all A� coincide with, say, a Polish
space T , and that B� equals T ρ(�).
Consequently, we have to strengthen the requirements for a morphism in order to achieve
some uniformity. This will be done now, and we admit propositional letters again.
The basic idea is to have just one map φ between the state spaces so that

K ′
�(φ(s))(A) = K�(s)({〈s1, . . . , sρ(�)〉|〈φ(s1), . . . , φ(sρ(�))〉 ∈ A}

holds for each state s ∈ S and each Borel set A ⊆ (S′)ρ(�), making the diagram

S
φ � S′

S
(
Sρ(�)

)
K�

�

S
(
φρ(�)

)� S
(
(S′)ρ(�)

)
K ′

�
�

commutative (where φn : 〈x1, . . . , xn〉 	→ 〈φ(x1), . . . , φ(xn)〉 distributes φ into the compo-
nents), and we want to have s ∈ V (p) iff φ(s) ∈ V ′(p) for each propositional letter. This
leads to

Definition 9 Let K := (S, (K�)�∈O), V ) and K′ :=
(
S′, (K ′

�)�∈O), V ′
)

be stochastic τ -
Kripke models. A strong morphism φ : K → K′ is determined through a measurable and
surjective map φ : S → S′ so that these conditions are satisfied:

1. ∀p ∈ P : V (p) = φ−1 [V ′(p)] ,

2. for each modal operator �,

K ′
� ◦ φ = S

(
φρ(�)

)
◦K�

holds.

Thus, if φ : K → K′ is a strong morphism, then

(φ, φρ(�)) : (S, Sρ(�),K�) → (S′, (S′)ρ(�),K ′
�)

is a morphism between the corresponding stochastic relations for each modal operator � ∈ O.
Note that we take also the propositional letters into account.
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It is clear that the stochastic τ -Kripke models over general measurable spaces form a category
pKripke with this notion of morphism, because the composition of strong morphisms is again
a strong morphism, and because the identity is a strong morphism, too. Furthermore, each
modal operator � induces a functor F� : pKripke → Stoch which forgets all but K�. We will
below make (rather informal) use of this functor.
Because we work on the safe grounds of a category, we have bisimulations at our disposal,
which can be defined again as spans of strong morphisms:

Definition 10 The stochastic τ -Kripke models K and K′ are called strongly bisimilar iff
there exists a mediating stochastic τ -Kripke model M and strong morphisms

K � φ M ψ � K′.

We will show that K ∼ K′ iff K and K′ are strongly bisimilar, provided the models are
based on Polish spaces. Fix the stochastic τ -Kripke models K := (S, (K�)�∈O), V ) and

K′ :=
(
S′, (K ′

�)�∈O), V ′
)
.

It is well known that morphisms preserve theories for the Hennessy-Milner logic [4]. This is
true in general:

Lemma 9 If φ : K → K′ is a strong morphism, then

ΛK,s = ΛK′,φ(s)

holds for all states s ∈ S.

Proof 1. We show by induction on the formula ϕ ∈ Mods(τ, P ) that

K, s |= ϕ⇔ K′, φ(s) |= ϕ

holds; putting it slightly different, we want to show

(∗) [[ϕ]]K = [[ϕ]]K′

for all these ϕ.
2. If ϕ = p ∈ P , this follows from V (p) = φ−1 [V ′(p)]. The interesting case in the induction
step is the application of a n-ary modal operator �q with rational q. Suppose the assertion
is true for [[ϕ1]]K, . . . , [[ϕn]]K, then

K, s |= �q(ϕ1, . . . , ϕn) ⇔ K�(s)([[ϕ1]]K × . . .× [[ϕn]]K) ≥ q

⇔ K�(s)((φn)−1 [[[ϕ1]]K′ × . . .× [[ϕn]]K′ ]) ≥ q (a)
⇔ (S (φn) ◦K�) (s)([[ϕ1]]K′ × . . .× [[ϕn]]K′) ≥ q

⇔ K ′
�(φ(s))([[ϕ1]]K′ × . . . × [[ϕn]]K′) ≥ q (b)

⇔ K′, φ(s) |= �q(ϕ1, . . . , ϕn)

In (a) we use reformulation (∗) for the induction hypothesis, in (b) we make use of the defining
equation of a (strong) morphism. �

Define the equivalence relation α on state space S through

s1 α s2 ⇔ ΛK,s1 = ΛK,s2,
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thus two states are α-equivalent iff they satisfy exactly the same formulas in Mods(τ, P ); in
a similar way α′ is defined on S′. Because we have at most countably many formulas, α and
α′ are smooth equivalence relations. Define the equivalence relation β� on Sρ(�) through

〈s1, . . . , sρ(�)〉 β� 〈t1, . . . , tρ(�)〉 ⇔ s1 α t1 ∧ · · · ∧ sρ(�) α tρ(�),

then β� is smooth, and we know that the σ-algebra of β-invariant sets can be written in
terms of the α-invariant sets, viz., Aβ� =

⊗ρ(�)
i=1 Aα (see Lemma 5). Similarly, β′� is defined.

The equivalence of K and K′ makes these relations into equivalent congruences:

Lemma 10 (α, β�) and (α′, β′�) are equivalent congruences on the stochastic relations F�(K)
and F�(K′).

Proof 1. The equivalence relations involved are all smooth, so it first has to be demonstrated
that each pair forms indeed a congruence. Assume that s1αs2 holds, then

K�(s1)([[ϕ1]]K × . . .× [[ϕρ(�)]]K) = K�(s2)([[ϕ1]]K × . . . × [[ϕρ(�)]]K)

follows (otherwise we could find a rational number q with K, s1 |= �q(ϕ1, . . . , ϕρ(�)) but
K, s2 
|= �q(ϕ1, . . . , ϕρ(�)) or vice versa). Because

B0 := {[[ϕ1]]K × · · · × [[ϕρ(�)]]K|ϕ1, . . . , ϕρ(�) ∈ Mods(τ, P )}

forms a generator for Aβ� =
⊗ρ(�)

i=1 Aα, we see that (α, β�) is a congruence for F�(K). The
same arguments show that also (α′, β′�) is a congruence for F�(K′).
2. A0 := {[[ϕ]]K|ϕ ∈ Mods(τ, P )} is a countable generator of the σ-algebra Aα, and since the
logic is closed under conjunction, A0 is closed under finite intersections. Given s ∈ S there
exists s′ ∈ S′ such that ΛK,s = ΛK′,s′ holds; define Q([s]α) := [s′]α′ , then Q : S/α → S′/α′ is
well defined, and Q[[ϕ]]K = [[ϕ]]K′ holds. Consequently, {QA|A ∈ A0} generates Aα′ , and the
construction implies that⋂

{QA|s ∈ A ∈ A0} ∩
⋂

{S′ \QA|s 
∈ A ∈ A0} =
[
s′
]
α′ .

Hence α spawns α′ via (Q,A0).
3. The construction of β� implies that[〈s1, . . . , sρ(�)〉

]
β�

= [s1]α × . . .× [sρ(�)

]
α

holds. An argument very similar to that used above shows that β� spawns β′� via (T,B0),
where

T :
[〈s1, . . . , sρ(�)〉

]
β�

	→ Q([s1]α) × . . .×Q(
[
sρ(�)

]
α
),

and B0 is defined above.
4. An argumentation very close to the first part of the proof shows that ΛK,s = ΛK′,s′ for
s ∈ S, s′ ∈ S′ implies for all formulas ϕ1, . . . , ϕρ(�) that

K�(s)([[ϕ1]]K × . . .× [[ϕρ(�)]]K) = K ′
�(s′)([[ϕ1]]K′ × . . . × [[ϕρ(�)]]K′)

(cp. part 2 of the proof of Lemma 9). Thus (α, β�) ∝ (α′, β′�), and in the same way,
interchanging the roles of K and K′, we infer (α′, β′�) ∝ (α, β�). �
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Accordingly, we know from Proposition 5 that for equivalent Kripke models K and K′ and
for each modal operator � the stochastic relations F�(K) and F�(K′) are bisimilar. All
the mediating relations can be collected to form a mediating Kripke model. This requires,
however, that we know a wee bit about the internal structure of the semi-pullback which is
constructed along the way.
The Hennessy-Milner Theorem for stochastic τ -Kripke models may be established now:

Theorem 2 Assume that K and K′ are stochastic τ -Kripke models over Polish spaces, then
the following statements are equivalent:

1. K and K′ are strongly bisimilar,

2. K ∼ K′.

Proof 1. Since “1 ⇒ 2” follows from Lemma 9, we may concentrate on the proof for
“2 ⇒ 1”.
2. Since K ∼ K′, we know from Lemma 10 that the congruences (α, β�) and (α′, β′�) are
equivalent for each modal operator �. Let M� = (M�, N�, L�) be the mediating stochastic
relation, which exists by Proposition 5. An analysis of the proof of [7, Theorem 1] shows that
(n := ρ(�))

M� = {〈s, s′〉 ∈ S × S′| s (α+ α′) s′〉},
N� = {〈s1, s′1, . . . , sn, s′n〉 ∈

(
S × S′)n | si (α+ α′) s′i for 1 ≤ i ≤ n},

These may be made into Polish spaces. Note that S′′ := M� does not depend at all on the
modal operator, and that N� depends only on its arity. Furthermore, we may infer for the
P − Stoch-morphisms

F�(K) �(φ�, ψ�) M�
(φ′�, ψ

′
�)
� F�(K′)

that
φ� = π1, ψ� = πn1 , φ

′
� = π2, ψ

′
� = πn2

holds, where the π denote the projections. Now define for the propositional letter p ∈ P

W (p) := {〈s, s′〉 ∈M�| s ∈ V (p), s′ ∈ V ′(p)},

then it is immediate that the equations

W (p) = π−1
1 [V (p)] = π−1

2

[
V ′(p)

]
hold. Consequently, M := (S′′, (L�)�∈O,W ) is a stochastic τ -Kripke model with

K � π1 M π2 � K′

in pKripke. �
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8 Conclusion and Further Work

The main technical result of this paper is establishing a Hennessy-Milner Theorem for stochas-
tic interpretations of modal logic. This paper proposes these contributions:

1. Stochastic Kripke models are introduced as a generalization of the well-known labelled
Markov transition systems for general modal logics. A refinement relation between these
models and their nondeterministic counterparts is investigated.

2. Properties of stochastic relations applicable to stochastic Kripke models (which are
essentially families of these relations indexed through the modal operators) are investi-
gated, in particular congruences, morphisms and their mutual relationship.

3. The notion of equivalent congruences is introduced and studied; equivalent congru-
ences arise in a natural way in modal logic through states which have the same theory.
Stochastic relations having equivalent congruences are shown to be bisimilar.

4. For stochastic Kripke models we propose the notion of a strong morphism, and, corre-
spondingly, of strong bisimulations. A stochastic version of the Hennessy-Milner Theo-
rem of the equivalence of bisimilarity and mutually identical theories is established.

Examples show how two popular logics are interpreted through a stochastic Kripke model,
and this opens the avenue for further research. It should be interesting to see how other modal
logics are interpreted. A prime candidate is PDL with its rich interaction among the modal
operators that would have to be reflected in a suitable structure for the stochastic relations
interpreting it. Investigating the interrelationship between a probabilistic interpretation,
Kozen’s semantics of probabilistic programs [12] and probabilistic predicate transformers [14]
are expected to give new insights into PDL as well as probabilistic program semantics and,
incidentally, the algebraic properties of stochastic relations.

Acknowledgements Georgios Lajios provided helpful comments which improved the pa-
per.
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