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Chapter 1

Introduction

This work proposes a multi-objective evolutionary algorithm, that preserves diversity in

decision space while also reaching good solutions, even if only few function evaluations can

be calculated. To investigate its performance, the algorithm is evaluated on several test

problems and a real-world mechanical engineering application.

Motivation

The Institute of Machining Technology (ISF) uses 3D models of real objects in both CAD

programs and for simulation purposes. Such a 3D model is obtained using the following

steps:

1. The object is digitized with a 3D scanner. As a result, a large number of points

located on the surface of the object is determined.

2. An e�cient mathematical description based on non-uniform rational B-splines [1]

(NURBS) is calculated from those scan points.

The transformation of the scanned points into a mathematical description (i.e. CAD

model) of the surface is called surface reconstruction [2]. The NURBS surface is to be

optimized regarding several objectives, which represent desirable surface properties com-

mon to many work pieces in mechanical engineering. Because the desirable properties of a

reconstructed surface like quality of the approximation and smoothness of the surface are

(partially) not correlative, there are a lot of formally incomparable, Pareto optimal solu-

tions, which represent surfaces with di�erent control structure and appearance. Presently

two approaches are implemented at the ISF, a single-objective deterministic algorithm

and the multi-objective evolutionary algorithm SMS-EMOA [3]. Regarding the objectives

above, both currently implemented algorithms only cover a small part of the Pareto front.

3



4 CHAPTER 1. INTRODUCTION

In order to achieve a greater variety of surfaces with diverse appearance, the solutions have

to feature di�erent control nets, so the diversity in decision space needs to be improved.

Because there are many scan points required to appropriately describe the surfaces, the

evaluation of the objective functions takes a lot of computation time. Thus, only about

20000 function evaluations can be calculated in a reasonable amount of time and additional

performance enhancements are important to reduce the computation time.

Multi-objective di�erential evolution has proven to be very successful with other ap-

plications, because it combines desirable invariance features with fast convergence towards

good solutions and low computing time. Di�erential evolution is also known to be a good

variation operator for geometrical problems [4]. Applying multi-objective di�erential evo-

lution to surface reconstruction therefore seems promising.

This diploma thesis aims to assess, analyze and enhance the GDE3 algorithm [5] (Gener-

alized Di�erential Evolution version 3) regarding its application to surface reconstruction.

Diversity in decision space on the one hand is increased by creating the initial popula-

tion di�erently and by modifying the selection of GDE3, while performance on the other

hand is improved by using the dominated hypervolume [3] as secondary selection criterion,

employing a superior variation operator and exploring a good set of parameters for the

algorithm designed. The improvements are assessed separately by means of representative

test problems. To �nd out whether the determined performance on the test function is

representative for surface reconstruction as well, the algorithms with

• best performance,

• best diversity and

• worst performance

are analyzed and compared to the starting point GDE3, the previously used SMS-EMOA

and the well known NSGA-II [6] regarding performance on the surface reconstruction

problem.

Structure

Chapter 2 describes the basic principles of evolutionary algorithms, multi-objective op-

timization and (experimental) performance assessment of such algorithms. Also current

approaches for surface reconstruction and the data structures involved are presented. In

the third chapter the proposed enhancements are evaluated on some test problems, while

chapter 4 shows and analyzes the performance of selected algorithms on the problem of

surface reconstruction. The last chapter provides a short summary and some ideas for

further research.



Chapter 2

Related research

2.1 Evolutionary algorithms

2.1.1 Basic idea

Evolutionary algorithms are general, randomized search heuristics inspired by biological

evolution (search heuristics are optimization algorithms, expected to work well on a speci�c

problem in many cases). Three major branches of this kind of strategy have been developed

in the 1960's and coexisted ever since:

• Evolutionary Programming (EP) [7]

• Evolutionary Strategies (ES) [8, 9]

• Genetic Algorithms (GA) [10]

In all three concepts the optimization process consists of three main episodes/phases.

• Variation (reproduction) derives a new solution based upon already known solutions.

• Evaluation assesses the newly created solution regarding an objective.

• Selection decides whether to keep the solution or delete it.

An initial set of solutions is required for the algorithm to work, these initial solutions can

be e.g. determined at random or consist of already known solutions. Analog to biological

evolution, the optimization of an evolutionary algorithm consists of small, progressive en-

hancements and basically implements a learning trial-and-error process. Since evolutionary

algorithms are general search heuristics, they can be employed for numerous optimization

tasks as a black box optimizer, hence with only slight modi�cation e�ort such an algorithm

can be used to solve numerous problems. There is a drawback - as the algorithm itself

does not make use of any special knowledge on the problem it is trying to solve, there is

no guarantee, that it will create decent results in any case. In contrast to the black-box

5
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Initialize
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 g
+

1
Figure 2.1: Work�ow of an evolutionary algorithm

optimization scenario, algorithms tailored for a speci�c problem perform better, because

special knowledge about the problem is incorporated. Evolutionary algorithms should

therefore only be used for tasks, where the problem to solve is not very well understood

and therefore only few knowledge about the structure of the problem is available, which

could lead to an algorithm speci�cally designed for the task at hand or in cases where

the design of a new algorithm is not possible for other reasons (e.g. the developer has

no time to design an entirely new algorithm). For many real-world problems, black-box

optimizers are a reasonable choice according to the given criteria. The way the recombi-

nation phase proceeds is determined by variation operators. A variation operator is the

sub-routine telling the evolutionary algorithm in which way a new, possibly better solution

is created from the set of already known solutions. To optimize an evolutionary algorithm

for a speci�c problem, the variation operator can be (re-)designed using knowledge about

the problem. For problems, where the decision variables are encoded into real numbers,

a variation operating on the manipulation of the bit strings is not feasible. Commonly

used variation operators for these cases are e.g. simulated binary crossover (SBX) [11],

polynomial mutation (PM) [12] and di�erential evolution [13, 14].
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2.2 Multi-objective optimization

If there is only one objective to optimize for, each solution has only one �tness property.

Comparing di�erent solutions means comparing two �tness values, one from each solution.

Given an objective to be minimized, at any time in the optimization process, the best

solution found so far, is always the one with the lowest �tness value. However many real

world problems have (partially) con�icting objectives, and thus no single best, but only

good compromising, Pareto optimal solutions can be found. While any of these compro-

mise solutions are formally incomparable, the user of the algorithm can take other, even

subjective criteria into consideration and choose one or more solutions from the Pareto

set based on the additional information. As motivated above, there can only exist a par-

tial order to compare solutions for multi-objective optimization because some individuals

are incomparable. A commonly employed partial order is the dominance relation, which

compares all corresponding �tness values of two individuals pairwise for each dimension

in objective function space. An individual ~x1 dominates another individual ~x2 i� for all

objective functions the value of the �rst individual is better (<) than the one from the

second individual [5].

Strict dominance relation. If all objectives ~f(~x) = (f1, ..., fM ) are to be minimized:

~x1 ≺ ~x2 ⇔ fi(~x1) < fi(~x2) ∀ objectives fi. [5]
(read: individual ~x1 dominates individual ~x2)

Since individuals that share at least one equal corresponding objective function value can

never be compared regarding the dominance order, the weak dominance relation can be

used instead. Weak dominance has the same meaning as the dominance order, with the ≤
relation instead of the < relation. If individual ~x1 does not dominate individual ~x2 the ⊀
sign is used to describe the relation between the individuals (~x1 ⊀ ~x2).

Weak dominance relation. If all objectives ~f(~x) = (f1, ..., fM ) are to be minimized:

~x1 � ~x2 ⇔ fi(~x1) 6 fi(~x2) ∀ objectives fi. [5]
(read: individual ~x1 weakly dominates individual ~x2)

An individual ~x1 from population P which is not dominated by any other individual ~x2 ∈ P
is classi�ed as non-dominated in P . A set of individuals which are all non-dominated in P

is called a non-dominated set. If such a set contains all non-dominated individuals in P it

forms the �rst front F of that population.

Non-dominance, non-dominated set, �rst Front. A non-dominated individual ~xnd

is an individual from population P :

∀~xi ∈ P : ~xi ⊀ ~xnd.
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Fnd ⊆ P is called a non-dominated set, if:

∀~xi ∈ Fnd : ∀~xj ∈ P : ~xj ⊀ ~xi.

Fronts, non-dominated sorting. A partition F of a set S into subsets Fi (fronts)

F = {F1,F2, ...}

is called non-dominated sorting, with the �rst front F1 ⊆ S:

F1 = {~xi ∈ S | ∀~xj ∈ S : ~xj ⊀ ~xi ∧ ∀~xk ∈ S ∩ F1 : ∃~xi : ~xi ≺ ~xk}

and all fronts Fi ∀i > 1:

Fi = F1 ⊆ S′ where S′ = S \ (F1 ∪ ... ∪ Fi−1)

The �rst front contains all non-dominated individuals and is also called Pareto front [15],

all individuals in that front are Pareto optimal [15]. Individuals ~xi ∈ Fi are considered

"better" than ~xj ∈ Fi+1, because there is at least one ~xi which dominates any ~xj , so

removing an ~xj from the population still leaves the dominating individual in the population

and so the �tness of the population is still the same.

Many multi-objective evolutionary algorithms, like NSGA-II, SMS-EMOA and GDE3,

use the (weak) dominance relation as the �rst criterion to compare solutions to one an-

other and evaluate those individuals, which cannot be compared this way by employing a

secondary criterion. With multi-objective evolutionary algorithms, the second criterion is

usually a measure for the spreading of the solutions along the Pareto front to preserve the

diversity of the population (and solutions). The dominance relation enforces convergence

against the optimum, while the secondary criterion spreads the solutions along the Pareto

front in that optimum. It should be noted, that this only preserves diversity along the

currently found Pareto front. For applications which require a large amount of diversity in

decision space, additional means may be necessary, as all the solutions are likely located

in the same (local) optimum. On the other hand, this behavior can be a desirable feature.

For instance if only very few function evaluations can be performed, hence fast convergence

against an optimum is required.

While there are many stopping criteria possible for evolutionary algorithms, only the

total number of function evaluations are considered in this work, because a function eval-

uation is the most expensive part in surface reconstruction and, thus, all other operations

are negligible as far as computational complexity is concerned. Also with the limitation

to 20000 function evaluations, only smaller population sizes are feasible - otherwise each

individual in the population can only be improved too few times and no individual reaches

a decent performance.
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2.2.1 NSGA-II

The elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) [6] is a very popular

multi-objective evolutionary algorithm proposed by Deb, Agrawal, Pratap and Meyarivan

in 2000. It has since been successfully applied to various problems [16, 17, 18] and has also

served as a basis for other algorithms like GDE3 and SMS-EMOA. It is therefore employed

in this work for comparison purposes as well.

In each generation parents are chosen to breed |P | new children (λ = µ). The children

are created as recombination of their parents, mutated afterwards and �nally appended

to the current population, regardless of their �tness. After all children have been created,

the population size has increased by factor 2. The population size is then reduced to

the original size again to reduce the complexity of the algorithm. If no such measure is

taken, the size of the population doubles in each generation and thus the computational

complexity of the entire algorithm grows exponentially with the number of generations.

First non-dominated sorting partitions the population into fronts. The lower the front

number, the better the solution, hence the fronts are included into the next generation

beginning with the �rst front, until a front is reached that does not completely �t into the

next population. This front can obviously only be included partially, so for any individual

in this front, the crowding-distance [6] is calculated and those individuals with the highest

crowding distance are added to the population until it reaches its normal size again. All

other individuals are deleted.

The crowding-distance value of a solution CD(~f(~xi)) is half the perimeter of the cuboid

including ~f(~xi) limited by the neighbor solutions from the same front. To calculate the

crowding-distance e�ciently, all individuals in the front are sorted by every objective. Re-

garding each objective, the minimal and maximal objective value attained by any member

of the front is determined. The di�erence between these two values is used to normalize the

distances between each individual and its neighbors to consider all objectives equally. The

crowding-distance value for an individual ~xi is then computed as the sum of the normalized

distances between left (fm(~xln)) and right (fm(~xrn)) neighbor regarding every objective m.

Though NSGA-II is not limited to speci�c variation operators, the most commonly ones

used together with NSGA-II are simulated binary crossover (SBX) [11] and polynomial

mutation (PM) [12]. The only parameter the NSGA-II itself uses is the population size µ.

Depending on the variation operator(s), additional parameters may be available, e.g. two

for SBX and PM respectively. The runtime of one generation of this algorithm is governed

by the complexity of non-dominated sorting, hence the NSGA-II can be implemented in

O(µ logM−1 µ) [19].
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f(x1)

f(x2)

Figure 2.2: Graphical perception of the crowding-distance for two objectives

Algorithm 1 Calculating the crowding-distance for front Fi
1: n← |Fi| // number of individuals in front

2: for all ~xj ∈ Fi do // all individuals in front

3: dist[j]← 0 // initialize distance

4: end for

5: for m = 0 to M − 1 do // all objectives

6: Ft ← sort(fm(~x), ≤, Fi) // sort ascending by objective m

7: dist[0]←∞, dist[n− 1]←∞ // boundary points

8: for j = 1 to n− 2 do // all other points

9: ~xln ← Ft[j − 1], ~xrn ← Ft[j + 1] // left and right neighbor

10: ~xmax ← Ft[n− 1], ~xmin ← Ft[0] // min and max value regarding fm

11: dist[j]← dist[j] + (fm(~xrn)− fm(~xln))/(fm(~xmax)− fm(~xmin)) // see �gure 2.2

12: end for

13: end for
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Algorithm 2 NSGA-II

1: g ← 0 // initialize generation counter

2: Pg ← initializePopulation()

3: f ← µ // number of function evaluations performed

4: while f + µ < fmax do // generation loop

5: Ptemp ← Pg

6: for i = 0 to µ− 1 do

7: // breed

8: parentsi ← selectParents(Pg)

9: childi ← recombine(parentsi)

10: childi ← mutate(childi)

11: Ptemp ← Ptemp ∪ childi // add child to intermediate population

12: // evaluate

13: evaluate(childi) // determine �tness

14: end for

15: // select

16: F ← sort(�tness, ≺, Ptemp) // non-dominated-sorting, Fronts F = F1,F2, ...

17: Pg+1 ← ∅ // next generation
18: i← 0

19: while |Pg+1 ∪ Fi| < µ do // append all fronts that �t in completely

20: Pg+1 ← Pg+1 ∪ Fi
21: i← i+ 1

22: end while

23: crowdingDistance(Fi)
24: Fi ← sort(crowdingDistance, ≥, Fi) // sort descending by crowding distance

25: n← µ− |Pg+1|
26: Pg+1 ← Pg+1 ∪ Fi[0 : n[ // add individuals with largest crowding distance

27: end while

2.2.2 SMS-EMOA

SMS-EMOA [3] can be considered a modi�cation of the NSGA-II and therefore o�ers the

same parameters for tuning. NSGA-II uses the same pool of parents for as many function

evaluations as there are individuals in the population (µ+ µ approach). Children created

in the same generation, with potentially better �tness cannot serve as parents until the

generation is complete, later in the same generation bred children can therefore not pro�t

from already created children's (better) �tness, because these are denied parenthood. Also

the crowding-distance is not a very accurate measure for the spreading of the population

along the Pareto front [20].
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To cover for these de�ciencies of NSGA-II, two additional measures were introduced with

SMS-EMOA:

1. a steady-state (µ+ 1) approach in the breeding phase and

2. the hypervolume contribution as secondary selection criterion.

The hypervolume contribution of a point p from a set of points S regarding a reference

point r is de�ned as the S-metric [21] value of S regarding r minus the S-metric value of

S \{p} regarding r. As a quality measure the S-metric features several favorable properties
[22]:

• The S-metric value of a set S1 with S1 ≺ S2 is always higher than the S-metric value

of S2.

• Additional non-dominated solutions do not decrease the S-metric value (monotony).

• Invariance against linear scaling of the objective space [23].

Since the secondary selection criterion needs to be computed once per generation and SMS-

EMOA has to perform more generations because of the µ + 1 approach, it is slower than

NSGA-II. Also calculation of the S-metric is signi�cantly more complex than computation

of the crowding-distance for more than three objectives. However, since only the individual

with the worst hypervolume contribution from the last front is removed during the selection

phase, the S-metric value of the population can only increase, hence the quality of the

solutions can only get better according to the S-metric (monotony). However the premise

for the design of SMS-EMOA was to only run few function evaluations, and the function

evaluations are presumed to be the most expensive operation in the overall computation.

In these cases the slowdown by the measures is negligible. For example, if 1000 function

evaluations require a total computation time of 2 days, the user will not care about an

additional 18 minutes, required by the S-metric calculations.

Due to the additional measures SMS-EMOA has outperformed NSGA-II on a lot of

practical applications. Calculating the S-metric for the hypervolume contribution is the

most expensive operation of SMS-EMOA, if function evaluations are negligible. E�cient

algorithms for calculating the hypervolume contribution are known for the special case

of 2 and 3 objectives, for more objectives the complexity dramatically increases [24, 25].

Given an algorithm calculating the S-metric value, for a set S of n points, the hypervolume

contribution can be determined by running the algorithm n times: each time without one

di�erent point. The hypervolume contribution of a point p equals the di�erence between

the hypervolume covered by S and the hypervolume covered by S \ {p}. For the two-

dimensional case an algorithm is known, which can compute all hypervolume contributions

in O(n log n) [23].
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f(x1)

f(x2)

r

Figure 2.3: Graphical perception of the hypervolume contribution for two objectives

M Hypervolume Hypervolume contribution

2 [23] O(n log n) O(n log n)

3 [25] O(n log n) O(n2 log n)

4+ [25] O(nD−2 log n) O(nD−1 log n)

4+ [24] O(n
D
2 log n) O(n

D
2

+1 log n)

Table 2.1: Computational complexity: hypervolume calculation for n points in RD

2.2.3 GDE3

Di�erential evolution has been very successful in single-objective optimization [13, 26, 27,

14]. Unlike SBX and PM, the variation operator from di�erential evolution is invariant

against the rotation of the search coordinate system and very easy to understand, so

crossing that concept with the already available multi-objective algorithms seems promising

and has been subject to several publications in the past [5, 28, 29, 30]. In 2005 Kukkonen

and Lampinen published the third version of their approach called Generalized Di�erential

Evolution [5]. This algorithm is much like NSGA-II, but uses di�erential evolution from

algorithm 4 as variation operator and has a slightly modi�ed selection. Also constraints

are supported, but since all the applications used in this work do not require constraints,

the GDE3 is presented here without supporting constraints. The breeding phase is the

same as with DynDE, for each child the following is determined:

• a random dimension in decision space

• four mutually di�erent parents, one parent is the predecessor, the other three p1, p2, p3

are chosen at random.
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Algorithm 3 SMS-EMOA

1: g ← 0 // initialize generation counter

2: Pg ← initializePopulation()

3: f ← µ // number of function evaluations performed

4: while f + 1 < fmax do // generation loop

5: Ptemp ← Pg

6: // breed (steady-state)

7: parents← selectParents(Pg)

8: child← recombine(parents)

9: child← mutate(child)

10: Ptemp ← Ptemp ∪ child // add child to intermediate population

11: // evaluate

12: evaluate(child) // determine �tness

13: // select

14: F ← sort(�tness, ≺, Ptemp) // non-dominated-sorting, Fronts F = F1,F2, ...

15: Pg+1 ← ∅ // next generation
16: i← 0

17: while |Pg+1 ∪ Fi| < µ do // append all fronts that �t in completely

18: Pg+1 ← Pg+1 ∪ Fi
19: i← i+ 1

20: end while

21: hypervolumeContribution(Fi)
22: Fi ← sort(hypervolumeContribution, ≥, Fi) // sort descending by HV contribution

23: n← µ− |Pg+1|
24: Pg+1 ← Pg+1 ∪ Fi[0 : n[ // add individuals with largest HV contribution

25: end while

Predecessor. Given a (µ + λ) approach, the predecessor pred from generation g of the

ith child created in generation g + 1 is:

pred =

~xi,g, λ = µ

~xrand(0,µ−1),g, otherwise
(2.1)

For each dimension, the decision variables of the child are then allocated with the corre-

sponding values from the predecessor, except for the dimension that was chosen at random

and those dimensions where a randomly drawn number rand ∈ [0, 1] does not exceed the

parameter CR. For those dimensions the value is computed as crossover from the other

parents according to the following formula: child[d] = p3[d] +F · (p1[d]− p2[d]). This kind

of variation can be tuned in two di�erent ways, by two parameters:
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1. CR, the crossover rate, determines the variation probability of a variable in decision

space, and

2. F , the step size factor, weights the distance of the modi�cation performed.

If the child weakly dominates its predecessor, the child will replace the predecessor in the

next generation. On the other hand, if the predecessor dominates the child, it is deleted.

Otherwise, it is appended to the population. This way the population size can still increase,

but in most cases it does not increase by factor 2, because children can be directly rejected

and some predecessors immediately get replaced. To prune the population, the selection

known from NSGA-II is performed.

Algorithm 4 di�erentialEvolution(parents, pred, drand) (Storn, Price [13])

1: p1, p2, p3 ← parents

2: child← pred // copy from predecessor (equation (2.1))

3: d← drand // start with dimension drand

4: repeat

5: child[d]← p3[d] + F · (p1[d]− p2[d]) // modify

6: d← (d+ 1) mod D // do not stop at last dimension

7: until rand(0,1) > CR

8: return child

Algorithm 5 di�erentialEvolution(parents, pred, drand) (Mendes, Mohais [14])

1: p1, p2, p3 ← parents

2: for d = 0 to D − 1 do // all dimensions

3: if rand(0,1) < CR ∨ d = drand then // modify

4: child[d]← p3[d] + F · (p1[d]− p2[d])

5: else // copy from predecessor

6: child[d]← pred[d]

7: end if

8: end for

9: return child
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Algorithm 6 GDE3 (without constraint support)

1: g ← 0 // initialize generation counter

2: Pg ← initializePopulation()

3: f ← µ // number of function evaluations performed

4: while f + µ < fmax do // generation loop

5: Ptemp ← Pg

6: for i = 0 to µ− 1 do

7: // breed

8: parentsi ← selectParents(Pg)

9: predi ← Pg[i] // predecessor

10: drand ← rand(0,D − 1) // random number from [0, D − 1]

11: childi ← di�erentialEvolution(parentsi, predi, drand)

12: // evaluate

13: evaluate(childi) // determine �tness

14: // select part 1

15: if childi � predi then // child weakly dominates its predecessor

16: Ptemp[i]← childi // replace predecessor with child

17: else if predi ⊀ childi then // predecessor does not dominate child

18: Ptemp ← Ptemp ∪ childi // add child anyway

19: end if

20: end for

21: // select part 2, same as NSGA-II

22: F ← sort(�tness, ≺, Ptemp) // non-dominated-sorting, Fronts F = F1,F2, ...

23: Pg+1 ← ∅ // next generation
24: i← 0

25: while |Pg+1 ∪ Fi| < µ do // append all fronts that �t in completely

26: Pg+1 ← Pg+1 ∪ Fi
27: i← i+ 1

28: end while

29: crowdingDistance(Fi) // calculate crowding distance
30: Fi ← sort(crowdingDistance, ≥, Fi) // sort descending by crowding distance

31: n← µ− |Pg+1|
32: Pg+1 ← Pg+1 ∪ Fi[0 : n[ // add individuals with largest crowding distance

33: end while
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Figure 2.4: Di�erential evolution: location of the child in decision space (F = 1)
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2.3 Test functions

Theoretical results in the area of evolutionary algorithms are still limited to very simple

problems and algorithms [31, 32, 33]. In the area of multi-objective optimization, the

situation is even more complex and, thus, experiments are the common way to analyze

behavior and performance. For real-world applications, however, function evaluations are

usually very expensive. Thus, running many experiments is often not feasible. Instead

the behavior of an algorithm can be analyzed on a set of test problems, which are much

faster to evaluate. If the �tness landscape of the test problem has similar properties as the

real application, the knowledge obtained from the application of the algorithm to the test

function can be transfered to the real application.

Evolutionary algorithms are general search heuristics expected to work on many dif-

ferent problems. Typical behavior of an algorithm can therefore be observed on di�erent

problems. Applying the algorithm on the real application can show whether the observa-

tions from the run on the test problems do also hold. The test problems used in this work

are taken from the test suite developed for the CEC'07 MOEA contest [34].

Test function M D Modality

OKA2 2 3 uni

SYM-PART 2 30 multi

R_ZDT4 2 10 multi

S_DTLZ3 3 30 multi

Table 2.2: Properties of the test functions

OKA2 [35] (equation (2.2)) is a test function which is very easy to describe and im-

plement, but has proven to be very di�cult for evolutionary algorithms. As the decision

space is limited to three dimensions, results can be plotted and the behavior of an algo-

rithm on that function can be easily analyzed in decision space. For other test problems

with a high dimensional decision space this is not the case. The Pareto set of OKA2

(~x = (a, 5 cos a, 5 sin a)T , a ∈ [−π, π]) looks like a spiral.

f1(~x) = x1

f2(~x) = 1− 1

4π2
(x1 + π)2 + |x2 − 5 cosx1|

1
3 + |x3 − 5 sinx1|

1
3

x1 ∈ [−π, π], x2, x3 ∈ [−5, 5]

(2.2)

In 2007 Rudolph et al. proposed a test problem to directly measure the capability of

multi-objective algorithms to preserve diversity in decision space called SYM-PART [36],

most other test functions are designed to only help measure performance in objective space.

Many evolutionary algorithms only take the diversity in the objective function space into

account. The basic idea behind this test function is to take a simple, box constrained
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Figure 2.5: OKA2: Pareto set and front

test problem, rotate it in order to make optimization of the problem more di�cult and

put multiple of these boxes together. As a result the decision space increases in size and

multiple global optima are introduced, one in each box. Rudolph et al. call such a box tile.

Because all global optima o�er equal �tness, only one optimum needs to be found in order

to cover the entire Pareto front. The diversity of high-quality solutions can be determined

by calculating how many of these optima are found and maintained by an algorithm. To

that end the covered sets indicator was developed (see section 2.4.4). Originally SYM-

PART (equation (2.3)) was introduced with only two dimensions in decision space and two

objective functions, but was later [34] extended to 30 and theoretically an unlimited, even

number of dimensions in decision space. Many state-of-the-art algorithms manage to only

cover one optimum [28] of SYM-PART(30D).

f1(~x) = (z1 + a− t1c2)2 + (z2 − t2b)2 + ...+ (zD−1 + a− t1c2)2 + (zD − t2b)2

f2(~x) = (z1 − a− t1c2)2 + (z2 − t2b)2 + ...+ (zD−1 − a− t1c2)2 + (zD − t2b)2

where:

t1 = sgn(z1) ·

⌈
z1 − 1

2c2

c2

⌉
, t2 = sgn(z2) ·

⌈
z2 − 1

2b

b

⌉
a = 1, b = 10, c = 8, c2 = c+ 2a = 10

rotation: ~z = (z1, · · · , zD)T = M~x, ~x ∈ [−20, 20]D

(2.3)

R_ZDT4 is an extended and rotated version of the multi-modal test problem ZDT4.

Because for the ZDT functions the global optimum is located at the bottom or in the center

of the search space, the di�culty of these test functions can be signi�cantly increased by

extending and rotating the search space [34]. This extended and rotated version of ZDT4
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Figure 2.6: SYM-PART: Pareto sets and front

is called R_ZDT4 (equation (2.4)). The major di�culty of ZDT4 is, that it contains a

total of 219 local Pareto optima, in which an algorithm can get stuck prior to �nding the

global optimum. Insu�cient diversity in decision space will most likely cause an algorithm

to stop in a local optimum, whereas, an algorithm performing well on this test function

can handle multi-modality.

f1(~x) =

z′1 + 1, z1 ≥ 0

S(p1)(z′1 + 1), z1 < 0

f2(~x) =


g(x)(1−

√
z′1/g(x)) + 1, all zi ≥ −5

S

(√∑D
i=1 pi

)(
g(x)(1−

√
z′1/g(x)) + 1

)
, otherwise

where:

g(x) = 1 + 10(D − 1) +
∑D

i=2(z′2i − 10 cos(4πz′i))

z′1 =


−λ1z1, z1 < 0

z1, 0 6 z1 6 1,

1− λ1(z1 − 1), z1 > 1

p1 =


−z1, z1 < 0

0, 0 6 z1 6 1

z1 − 1, z1 > 1

z′i =


−5− λi(zi + 5), zi < −5

zi, −5 6 zi 6 5,

5− λi(zi − 5), zi > 5

pi =


−5− zi, zi < −5

0, −5 6 zi 6 5

zi − 5, zi > 5

rotation: ~z = (z1, · · · , zD)T = M~x,

scale factor: ~λ,

stretch function: S(t) =
2

1 + e−t

(2.4)
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f1(~x) =

(1 + g(xM )) cos(z′1π/2)... cos(z′M−2π/2) cos(z′M−1π/2), zi ≥ 0

S(psum1)
(
(1 + g(xM )) cos(z′1π/2)... cos(z′M−2π/2) cos(z′M−1π/2) + 1

)
, otherwise

f2(~x) =

(1 + g(xM )) cos(z′1π/2)... cos(z′M−2π/2) sin(z′M−1π/2), zi ≥ 0

S(psum2)
(
(1 + g(xM )) cos(z′1π/2)... cos(z′M−2π/2) sin(z′M−1π/2) + 1

)
, otherwise

f3(~x) =

(1 + g(xM )) cos(z′1π/2)... cos(z′M−3π/2) sin(z′M−2π/2), zi ≥ 0

S(psum3)
(
(1 + g(xM )) cos(z′1π/2)... cos(z′M−3π/2) sin(z′M−2π/2) + 1

)
, otherwise

where:

g(xM ) = 100
(
|xM |+

∑
xi∈xM

[
(z′i − 1

2)2 − cos(20π(z′i − 1
2))
])

z′i =

zi, zi ≥ 0

−λizi, zi < 0
pi =

0, zi ≥ 0

|zi|/di, zi < 0

shift: ~z = (z1, · · · , zD)T = ~x− ~o,
scale factor: ~λ,

stretch function: S(t) =
2

1 + e−t
(2.5)

S_DTLZ3 (equation (2.5)) is an extended and shifted version of DTLZ3 [37]. It is multi-

modal and supports M ≥ 3 objectives.
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2.4 Performance metrics

Since experiments need to be evaluated, formal criteria are necessary to allow a fair per-

formance assessment and comparison of solutions calculated by di�erent algorithms. To

that end, several unary indicators have been proposed. These metrics do not assess one

individual, but the entire set of solutions compared to an approximation set. Implementa-

tions for all indicators described are available from the PISA [38] performance assessment

toolkit.

2.4.1 Additive ε-indicator

Given an approximation set A and a set of individuals P , the ε-indicator [39] equals the

minimum value Iε the �tness regarding every objective has to be improved so that for

every individual in P , P � A holds (equation (2.6)).

Iε(A,P ) = infε∈R {∀~xi ∈ A : ∃~xj ∈ P : ~xj � ~xi} (2.6)

Figuratively speaking, the ε indicator depicts how far P has to be moved towards A in

objective space until no solution in A is better than all solutions in P [38].

f(x1)

f(x2)

Approx. set

Population

minx1

minx2

Figure 2.8: ε-indicator calculation (two objectives)

2.4.2 Hypervolume-Indicator

The hypervolume-indicator compares the S-metric [21] value of the solutions and a suitable

reference set in objective space. The hypervolume of the reference set is subtracted from

the hypervolume of the solutions. The closer the Pareto front found by an algorithm is

located to the reference set, the smaller the di�erence between both S-metric values gets.

Thus, the smaller the hypervolume indicator value IH , the better the solution.
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Figure 2.9: Hypervolume-indicator calculation (two objectives)

2.4.3 R2-Indicator

The main idea behind the R2-indicator [40] is to transform a multi-objective �tness vector

into a single-objective value via a utility function u(λ). First, for all individuals in A and

P , the utility function values are calculated. The indicator value IR2 is computed as the

weighted sum over the di�erences between the max value u∗ of u from all individuals in A

on the one side and all individual in P on the other side [38].

IR2(A,P ) =

∑
λ∈Λ u

∗(λ,A)− u∗(λ, P )

|Λ|
(2.7)

2.4.4 Covered sets indicator

Calculating the number of covered sets is only supported on the SYM-PART test problem.

As this function possesses several global optima with di�erent location in decision space,

the number of global optima covered by the �nal population can be used as a measure for

the diversity of the solutions in decisions space [36]. An optimum is covered, if at least one

individual is in proximity to the Pareto front in decision space. The more optima covered,

the more diverse the �nal population is. The covered set indicator [36] also evaluates the

performance of the solutions, because in order to cover an optimum, a solution needs to be

almost optimal and also stay in the population until optimization is complete. GDE3 �nds

several of these optima, but drops individuals covering those sets in favor of slightly better

individuals in one set [28]. When the algorithm is done, only one set remains covered. One

major task of this work is to present measures to counteract this behavior.
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2.5 Surface reconstruction

The transformation process of a surface represented by a set of scan points into a CAD

model of the surface is called surface reconstruction [2]. While normally a CAD model of

a work piece is designed before the work piece (prototype) itself, there are occasions where

an accurate CAD model for an object is not available, e.g. due to modi�cation during

machining or because the work piece was designed and manufactured by a third party. A

CAD model can therefore either be generated manually or automatically. Manual design

of a CAD model for a given object is extremely di�cult and time consuming if a high level

of accuracy is required. Therefore, at the institute of machining technology the following

work �ow is employed to automatize the reconstruction:

1. A 3D scanner digitizes the work piece and obtains a highly accurate description of

the surface through a large number of scan points. As this kind of description is very

di�cult to handle for computer systems, because both computational requirements

and memory consumption of such a structure are enormous, a smaller and simpler

mathematical description is preferable.

2. To reduce the workload for the surface reconstruction algorithm, the number of scan

points is reduced. Several algorithms for this step can be found in the PhD thesis

"Evolutionäre Flächenrekonstruktion" by Mehnen [2]. If only a part of the scanned

object needs to be reconstructed, the amount of scan points can be reduced even

further manually by cutting o� all other parts.

3. With a deterministic algorithm a pre-optimized surface representation based upon

NURBS surfaces [1] is computed afterwards as an intermediate solution. This algo-

rithm only takes into account one objective, the proximity between the reconstructed

surface and the �ltered set of scan points.

4. Based upon the pre-optimized surface a multi-objective evolutionary algorithm ob-

tains solutions satisfying multiple objectives, each representing desired features of

reconstructed surfaces. Since multiple objectives are involved in the optimization

process, a set of Pareto optimal solutions is determined for the user to choose from.

Surface reconstruction also is an interesting problem to evaluate and analyze multi-objective

evolutionary algorithms. As in many real-world problems, the dimensionality of the de-

cision space is very high. Usually it is not possible to visualize the decision space with

� 3 dimensions. Since for surface reconstruction each dimension of the decision space

represents a coordinate of a control point in a NURBS surface, the resulting surface and

its properties can be easily visualized, allowing for an easier analysis of the behavior of the

evolutionary algorithm.



2.5. SURFACE RECONSTRUCTION 25

Object Scan surface

Filter scanpoints

SVDIntermediate
solution

MOEASolution

Figure 2.10: Hybrid approach for surface reconstruction

2.5.1 Data structures

The following sections of this chapter are based upon the papers "On the Design of Optimiz-

ers for Surface reconstruction" by Wagner, Michelitsch and Sacharow [41] and "On the Use

of Problem-Speci�c Candidate Generators for the Hybrid Optimization of Multi-Objective

Production-Engineering Problems" by Weinert, Zabel Kersting, Michelitsch and Wagner.

A NURBS (Non-Uniform Rational B-Spline) surface is a mathematical description of a

surface. The data structure involved consists of three parts,

• the order (p,q) (usually p = q = 3),

• a control net with n×m vertices and the corresponding n×m weight matrix and

• two knot vectors u and v.

Important features of NURBS surfaces are various smoothness properties, local support,

compact data structures and numerical stability. [1] o�ers a detailed description on the

construction and the features of NURBS surfaces and the underlying mathematical for-

mulas. The shape of a NURBS surface is de�ned by the net of control points and the

related weight matrix. Modifying the position of the control points can therefore change

the appearance of the surface. Due to the local support property, moving a control point

to another position only a�ects a locally limited area of the surface.

2.5.2 Algorithms

Before the actual optimizers can be understood, the objectives involved in the optimization

need to be de�ned. These objectives mirror desirable features of the surfaces. Ideally

the scan points should lie directly on the surface. Therefore the distance between the
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reconstructed surface and the scan points and/or vice versa is to be minimized. As most

real objects to be reconstructed have a smooth surfaces, an additional objective is the

regularity of the control net. Other desired features, e.g. small distance between surface

and scan points from the border of the original object can be formulated into further

objectives.

To calculate the distance between the NURBS surface and a scan point p, p has to

be projected onto the surface. The distance between p and the projected point p′ equals

the distance between p and the NURBS surface. Unfortunately the projection of a point

onto a NURBS surface is a very expensive operation [42], which has to be computed for all

scan points. Therefore a discrete approximation is used as �rst objective instead. Discrete,

equally distributed points on the NURBS surface are sampled and for each sample point

sij on the NURBS surface the scan point p with the minimal square distance to sij is

determined. The �rst objective is then calculated as the average of all minimal distances

[41]. As second objective the smoothness (regularity) of the NURBS surface is employed.

For each sample point sij , the average squared distance dij between the normal of sij and

the normal of each of the eight direct neighbors sample points around sij in the sample

grid is calculated. The second objective equals the average of all dij .

The deterministic algorithm only optimizes the surface regarding the �rst objective.

A system of linear equations is formulated [41] and solved with singular value decompo-

sition (SVD) [43]. As there are a lot more scan points than control points, the system of

linear equations is overdetermined and therefore, in most cases no exact solution exists.

However, an implementation of SVD, which minimizes the sum of squared errors over all

equations is available [44]. The solution obtained from the deterministic algorithm can

be optimized further by an evolutionary algorithm (SMS-EMOA) to �nd Pareto optimal

solutions regarding multiple objectives. The hybrid approach passes on the results com-

puted by the deterministic to an evolutionary algorithm. As described above, the shape

of a NURBS surface can be modi�ed by changing the positions of one or more control

points. The position of the control points (three coordinates per control point) is encoded

into the allele, thus each individual represents a di�erent control net. Each dimension

in decision space represents a coordinate of one control point, the dimensionality of the

problem is D = 3 ·n ·m. The population is initialized with the solution determined by the

deterministic approach and randomly mutated versions of this solution. Given the expen-

sive operations necessary to evaluate a NURBS surface regarding the described objectives,

only approximately 20000 function evaluations can be computed in a reasonable amount

of time.
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Issues

Both the deterministic and the hybrid approach described above are only able to attain

small parts of the Pareto front. The deterministic algorithm computes only one solution,

the evolutionary algorithm extends this solution with many more Pareto optimal solutions.

The �nal results are still very similar surfaces with good �tness values regarding the �rst

objective, but regarding the regularity all surfaces o�er similar �tness values. The main

problem is lack of diversity in decision space among the solutions. In order to obtain a

greater variety of solutions the diversity in decision space needs enhancement.
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Figure 2.11: Pareto front attained by SMS-EMOA on surface reconstruction
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Chapter 3

Approach

This chapter features the presentation of general enhancement ideas for GDE3. Improve-

ments to both diversity in decision space and the quality of the solutions are incorporated

into GDE3 forming several new algorithms whose behavior is then systematically analyzed

on several test problems.

3.1 Enhancements to GDE3

Because preserving additional diversity in decision space is expected to decrease perfor-

mance of the modi�ed algorithm, it is necessary to develop some improvements to attenuate

this performance impact. Except for the variation operator, GDE3 [5] is very similar to

NSGA-II [6] so it is feasible to adapt improvements already proposed for NSGA-II to

GDE3. The following enhancements originally employed by SMS-EMOA are explored for

potential bene�t to GDE3:

• hypervolume as secondary selection criterion,

• steady-state approach

Unfortunately, none of these measures aim at additional diversity. Further improvements

are required. Since the major task is to improve diversity in decision space, an algorithm

preserving that diversity needs additional information on the structure of the population,

on which it works. Clustering algorithms [45] are made for exactly this purpose: to obtain

information of the structure of the input. Based on a clustering both

• breeding and

• selection

of an evolutionary algorithm can be modi�ed towards better performance and/or more

diversity in decision space.

29
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3.1.1 Modi�ed selection

Preserving diversity in the decision space can be realized in either the breeding and/or

selection phase of an evolutionary algorithm respectively. Thus, two approaches, which

can, if desired, easily be combined, are explored in this work - one in the breeding, the

other in the selection phase. Both approaches make use of a cluster analysis in decision

space.

A cluster analysis or clustering [46, 47] is the creation of a group structure in a set of

objects [48]. Such a group structure partitions the set of objects into groups of objects with

similar properties in each group. In order to assign an object to a group and thus declare it

similar to the other members of that group, a distance measure, e.g. the euclidean distance,

can be used, but depending on which distance measure describes similarities between ob-

jects best, other distance measures, like city-block distance or even statistical operators

can be appropriate as well [49]. The general idea behind clustering is, that if the similarity

between the objects is low, those objects should not be put into the same cluster, while

in the opposite case, when they are much alike, they ought to be. Many standard clus-

tering algorithms are available. Testing all these algorithms would dramatically increase

the number of experiments to conduct so the hierarchical agglomerative clustering method

(HACM) [49] is used because it is very popular, easy to understand/demonstrate and yet

fast and hence an e�cient approach. The HACM algorithm is a heuristic bottom-up ap-

proach, so initially all objects are located in their own cluster. Until a stopping criterion

is reached, the two clusters C1 and C2 with the minimal inter-cluster distance are united.

Such stopping criterion can either be:

• the number criterion, meaning the number of clusters equals a �xed value C, or

• the distance criterion, stopping the algorithm in case the minimal inter-cluster dis-

tance exceeds a �xed value.

For evolutionary algorithms the number criterion has several advantages over the distance

criterion, because it is very intuitive and mostly problem independent, just like evolutionary

algorithms themselves are and it is therefore easy for the user to understand and set a

desired value. If the number of clusters is constant, the evolutionary algorithm behaves

similar from beginning to end making both design and research of the such an algorithm

much easier. Partitioning into multiple clusters is used as a means to enforce preservation of

diversity, the number of clusters gives the user control over how much diversity to preserve

so if, due to the distance criterion, clusters are merged, this mechanism does no longer

function properly. In the worst case, where only one cluster remains, all e�orts towards

preserving diversity have been nulli�ed. On the other hand, having a cluster containing

multiple individuals is required to perform local search (see section 3.1.2). Obviously,

there is at least one cluster with a minimum of four individuals in it, if
µ

C
≤ 4, because
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otherwise the total number of individuals in the population would be < µ. Guaranteeing

the existence of a cluster with enough individuals for local search is not possible if the

distance criterion is used. Given the limitations of the distance criterion and the bene�ts

of the number criterion, only the later seems promising and will therefore be investigated

for use in the proposed algorithms. For the inter-cluster distance also several approaches

can be implemented:

1. single link (equation (3.1)),

2. complete link (equation (3.2)) and

3. average link (equation (3.3))

The single link distance distSL between two clusters C1 and C2 is the minimal distance

between two objects ai ∈ C1 and bj ∈ C2.

distSL(C1, C2) := min(dist(ai, bj)), ∀ai ∈ C1,∀bj ∈ C2 (3.1)

Analog to the single link distance distSL, the complete link distance distCL uses the max-

imum distance between two objects ai ∈ C1 and bj ∈ C2.

distCL(C1, C2) := max(dist(ai, bj)), ∀ai ∈ C1,∀bj ∈ C2 (3.2)

Instead of using the distance between only two objects (one from each cluster), the average

link distance distAL uses the mean pairwise distance between all objects ai ∈ C1 and

bj ∈ C2.

distAL(C1, C2) :=
1

|C1||C2|
∑
ai∈C1

∑
bj∈C2

dist(ai, bj) (3.3)

Given n objects for both distSL and distCL clustering algorithms are known with a compu-

tational complexity of O(n2), for distAL the same computational complexity can only be

achieved under certain conditions [45]. Again because the number of experiments is lim-

ited, only one of the inter-cluster distance methods can be analyzed. This choice is made

in favor of the optimally e�cient and very fast SLINK [50] algorithm. The major disad-

vantage of SLINK is its tendency to build clusters shaped like a chain [45]. However, this

e�ect is bene�cial for the improvement intended, because during optimization evolutionary

algorithms often form chains of individuals in decision space, with the best individuals in

the front of the chain. Children, that are not deleted are located in the direction where
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Figure 3.1: Inter cluster distance

better �tness or at least a better secondary criterion value can be found. This way these

"chains" move forward towards better �tness values as better solutions are obtained and

the worst individuals are deleted. Clustering via SLINK can thus help to build clusters

that support the search of better solutions in di�erent areas of decision space at the same

time and in the same way the unmodi�ed algorithm would do in only one region with-

out the clustering, which is exactly what this enhancement is meant for. Future research

could examine the bene�t of other clustering algorithms than HACM, further inter-cluster

distance methods than distSL and more distance measures. The idea behind increasing

Algorithm 7 HACM (hierarchial agglomerative clustering)

1: n← |Objects|
2: for i = 1 to n do

3: cluster(Objecti) ← Ci // each individual in its own cluster

4: end for

5: repeat

6: for all Ci do // for all cluster Ci

7: for all Cj 6= Ci do // for all cluster Ci 6= Cj

8: dist(Ci, Cj)← interClusterDistance(Ci, Cj)

9: end for

10: end for

11: Ci ← Ci ∪ Cj , where dist(Ci, Cj) 6 dist(Ck, Cl) ∀ cluster Ck, Cl
12: Cj ← ∅
13: until criterion satis�ed

diversity in decision space is to limit the competition in the selection process to a subset of

the population. In order to survive, a child must compete against individuals located in a

similar area of decision space. Since individuals located in the same area in decision space

have similar properties, a child can displace another (similar) solution without decreasing

the diversity in decision space much.
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Below di�erent enhancements to both performance and diversity are discussed. First

measures to improve diversity through a modi�ed selection phase are described. These

measures make use of a cluster analysis in decision space. If the cluster analysis is already

computed, the breeding phase can also be modi�ed to make use of this analysis. Addition-

ally some standard concepts known from other MOEA are considered to further improve

the performance of the GDE3 algorithm.

Replace worse predecessor

Due to the nature of di�erential evolution, a child is in many cases in proximity to its

predecessor, as all unmodi�ed dimensions are a copy of the corresponding dimensions of

the predecessor. So if not many dimensions are modi�ed or the modi�cations in each

dimensions are not too big, the child resides in the same area as the predecessor and can

therefore compete against it. Whoever survives, child or predecessor, the diversity is not

changed by much. The major problem is that, the better the solutions get, the less likely

an individual can dominate its already good predecessor and many children that could have

dominated other individuals in the population are deleted and many function evaluations

are wasted.

Replace worst in cluster

It is very intuitive that a cluster determined by cluster analysis can determine such an area

in decision space to where competition is restricted. The algorithm only has to calculate

into which cluster the child is bred and determine whether its �tness justi�es its survival

the same way as if the contents of the cluster were the entire population. Obviously

good solutions that just reside in a cluster with better solutions can be deleted, while

worse solutions survive in another area in decision space, this change alone is expected to

decrease the performance of the entire population in favor of better diversity. To reduce

the amount of clusterings performed, like in GDE3 the child �rst competes against the

predecessor and only in case it fails the cluster analysis is performed.

3.1.2 Cluster analysis while breeding

NSGA-II, GDE3 and SMS-EMOA choose the parents uniformly distributed at random

because no information on the individuals, that can indicate which parents to mate for

a better child is available and thus the random choice is the only option. However, with

the information from the clustering already available, a more systematic approach can be

implemented to choose parents in order to in�uence the location of the child in decision

space. Mating parents via di�erential evolution from the same area in decision space for

instance results in a child also located in proximity to the parents. If all the parents

are located in completely di�erent regions of the decision space, the child lies somewhere
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entirely di�erent than most of the parents, possibly even in completely unexplored parts of

the decision space. So the algorithm can then perform both a locally limited exploitation

(local search) and an exploration of new areas on a global scale (global search). While local

global search

x1

x2
local search

Figure 3.2: Local and global search (based on a clustering)

search o�ers fast convergence against a local optimum, global search ensures that leaving

that optimum is still possible because not yet searched parts of decision space are also

explored. Finding the right balance between local and global search is crucial to achieve

good performance. An additional parameter L is introduced allowing the user to con�gure

the probability for local and global search.

Di�erential evolution requires four parents. In some situations choosing all parents from

the same cluster for local search may not be possible because there are less than four

individuals in that cluster. The following cases can happen:

• Only one individual in the cluster. This individual is the predecessor, all other

parents are chosen at random from the entire population.

• Two or three individuals are available. In this case one of them is predecessor, while

another is chosen randomly as point of origin for the di�erential evolution (p3). The

di�erence between the other two parents p1 and p2 determines the distance the child

is located away from p3 in the dimensions modi�ed. Since local search is desired,

this di�erence needs to be small. As already explained above, the distance between

two individuals in the same cluster is small, so both p1 and p2 are chosen at random

from another also randomly chosen cluster that contains at least 2 individuals.

If there is only one cluster, this enhancement falls back the di�erential evolution from

GDE3. Please note that di�erential evolution itself is left entirely unchanged, only the way

parents are chosen di�ers in this approach. Thus, invariance properties of this variation

operator remain unchanged.
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3.1.3 Hypervolume vs Crowding-Distance

In NSGA-II and GDE3, the crowding-distance serves as a secondary selection criterion

to evaluate individuals. In many cases several individuals are Pareto optimal and cannot

be compared using the non-dominance relation. However, the target of a multi-criterion

optimization algorithm is to �nd large parts of the Pareto front and ideally provide an

equidistant sampling to not neglect or prefer parts of the front. As an evolutionary algo-

rithm does not have any information on how the entire Pareto front looks like, it can only

try to spread the individuals as fair as possible along the parts of the Pareto front found so

far. However the crowding-distance (see chapter 1) is unable to properly approximate the

crowding of the solutions for more than two objectives [51]. The hypervolume on the other

hand does not su�er from this problem as severe as the crowding-distance does because,

unlike the perimeter, the volume shrinks dramatically if one side of a cube is decreased and

can therefore generate a much more fair distribution in objective function space by prefer-

ring other individuals with a bigger volume contribution in such a case. The downside is,

that complexity of hypervolume calculation is much higher for more than three dimensions

(see table 2.1). As all benchmarks are limited to three dimensions and e�cient algorithms

are known for those cases, the amount of additional workload on the improved algorithm

is minimal, especially for small populations.

3.1.4 Steady-state

Using a steady-state approach like SMS-EMOA is usually an improvement in many ways.

First of all, each generation, only one child is created, so a child from generation g can be

parent from g+1 onwards. If a child survives, it can immediately be chosen as a parent when

the next child is bred. Since the fundamental principle of the success of an evolutionary

algorithm is that better parents can breed even better children, the �tness of the parents

is imperative towards improvements of the solutions. The steady-state approach provides

the best parents available in the population. Also due to the monotony of the S-metric, the

population can only get "better" (according to the S-metric) as only the individual with

the worst hypervolume contribution is removed from the last front, thus the S-metric value

of the overall population cannot decrease but improves with any selected child. A positive

side-e�ect is, that the algorithm's behavior can be analyzed much easier, as with each

generation only one child can (but not necessarily does) replace another individual in the

population and no intermediate state of relevance is to be taken into account. Also for any

other µ+ λ approach it is di�cult, sometimes even impossible to say for sure which child

replaced which individual. For the same reasons as already pointed out for SMS-EMOA

this measure does not have a signi�cant downside for the problems considered.
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3.2 Created algorithms

To �nd out if and how each modi�cation actually improves the algorithm, all enhance-

ments must be tested separately. To limit the number of di�erent algorithms to test, the

steady-state approach is only used on algorithms where it is required for the algorithm

to work and the crowding-distance is only employed as a secondary selection criterion for

algorithms based directly on GDE3. All other algorithms make use of the hypervolume

contribution instead. The assumption behind this is, that hypervolume contribution is by

design a more fair approach for distribution of individuals along the Pareto front, while

the crowding-distance approximates a fair distribution to reduce computational complexity.

All algorithms proposed share a common basic structure (see algorithm 8). The changes

are implemented in the functions selectParents(Pg) and addToCompetition(childi) . In

the unmodi�ed algorithms runCompetitions() represents the unchanged selection.

Algorithm 8 Basic algorithm

1: g ← 0 // initialize generation counter

2: Pg ← initializePopulation()

3: f ← µ // number of function evaluations performed

4: while f + µ < fmax do // generation loop

5: Ptemp ← Pg

6: for i = 0 to µ− 1 do

7: // breed

8: parentsi ← selectParents(Pg)

9: predi ← Pg[i] // predecessor

10: drand ← rand(0,D − 1) // random number from [0, D − 1]

11: childi ← di�erentialEvolution(parentsi, predi, drand)

12: // evaluate

13: evaluate(childi) // determine �tness

14: // select part 1

15: if childi � predi then // child weakly dominates its predecessor

16: Ptemp[i]← childi // replace predecessor with child

17: else if predi ⊀ childi then // predecessor does not dominate child

18: addToCompetition(childi) // child must prove itself against a set of individuals

19: end if

20: end for

21: runCompetitions() // competitions

22: end while
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3.2.1 Naming scheme

To keep the improved algorithms apart, a naming scheme is introduced, splitting the name

into up to 3 parts separated by the "-" character.

• If, like in GDE3, the entire population is used in the selection phase, the name begins

with GDE3, otherwise it starts with DE (for di�erential evolution).

• In case hypervolume contribution is the secondary selection criterion, the middle

name is "SMS" (for S-metric selection), otherwise the middle name is omitted.

• Algorithms, in which in the selection phase an individual only competes with its

predecessor, the last name is "P", where an individuals competes with those in the

same cluster, the last name is "C".

• "D" is appended to algorithms that use clustering during breeding.

Based on GDE3 Otherwise

Base name GDE3 DE

Hypervolume Crowding-distance

Middle name SMS -

Replace predecessor Replace worst in cluster

Last name P C

Table 3.1: Naming scheme for proposed algorithms

3.2.2 Additional parameters

Along with the enhancements, two parameters are introduced to increase �exibility of the

algorithm and allow the user to �ne tune the behavior to the speci�c problem at hand.

Parameter L (equation (3.4)) determines the probability of local search.

search_type =

local, rand(0, 1) < L

global, otherwise
(3.4)

During local search, if possible, all parents are chosen from the same cluster. For global

search on the other hand all parents are picked from a mutually di�erent cluster. The

second additional parameter C is the number criterion for the clustering algorithm and

determines into how many clusters the population is partitioned.
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3.2.3 The algorithms

GDE3-D is the same as GDE3 but with the improved variation operator, which makes use

of clustering. Replacing the crowding distance with hypervolume contribution, results in

the algorithm with the name GDE3-SMS-D. Both algorithms feature the same parameters:

• population size µ

• step size factor F

• crossover probability CR

• local search probability L

• number of clusters C

The modi�ed GDE3 using hypervolume contribution as the secondary selection criterion

is called GDE3-SMS, since no additional parameters are introduced, they are the same as

in GDE3. DE-SMS-P, DE-SMS-C, DE-SMS-PD and DE-SMS-CD integrate the diversity

enhancements. While in DE-SMS-P and DE-SMS-PD a child competes only against its

predecessor, in addition to that it can compete with all members from the same cluster it

would reside in, if it was selected, in DE-SMS-C and DE-SMS-CD. Additionally, DE-SMS-

PD and DE-SMS-CD also use the clustering during the breeding phase and thus combine

both approaches to enhance diversity. Unfortunately in the worst case, the clustering has

to be computed twice for DE-SMS-CD in each generation because if the child is temporarily

added to the population in the selection phase, the output of the clustering can change.

Both DE-SMS-C and DE-SMS-CD should only be implemented as a steady-state algorithm,

because all n children created in one generation can get deleted if the clustering algorithm

puts them together into one separate cluster when they are in close proximity to each other.

The selection would then have to remove the worst n of n children from the cluster. In

DE-SMS-CD this scenario is very likely to happen in small clusters, as during local search

all parents are taken from the same cluster and the child is expected to be located near to

its parents.

The distance matrix, which needs to be calculated by the HACM algorithm does not

change, as only the distances from the child to all other individuals need to be appended.

This can be done in O(µ) instead of O(µ2) to recalculate the entire distance matrix. Be-

cause each entry in the distance matrix still needs to be visited once, the computational

complexity of the clustering algorithm does not decrease with this performance optimiza-

tion. Analog, the same optimization can be performed if the child replaces another individ-

ual. In case the child is dropped, the population remains the same and the same clustering

can be used in the next generation.

SMS-EMOA(DE) is an alias for SMS-EMOA with di�erential evolution as variation

operator. The name is only introduced to tell the algorithm apart from SMS-EMOA using
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SBX and PM in the tables and diagrams. As SMS-EMOA, this algorithm is investigated for

comparison purposes only, as none of the diversity or performance enhancements proposed

in this work are applied (except for the steady-state approach, which is integrated into

SMS-EMOA by default and thus no improvement implemented by the author). To show a

performance improvement of the basic algorithm aside from the variation operator, SMS-

EMOA needs to be benchmarked with the same variation operator as the other algorithms.
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Figure 3.3: Names and features of the algorithms

Algorithm λ Breeding Competition Secondary crit. Parameters

GDE3 µ random all CD µ, F,CR

GDE3-SMS µ random all HV µ, F,CR

SMS-EMOA(DE) 1 random all HV µ, F,CR

GDE3-D µ local/global all CD µ, F,CR,L,C

GDE3-SMS-D µ local/global all HV µ, F,CR,L,C

DE-SMS-P µ random predecessor HV µ, F,CR

DE-SMS-PD µ local/global predecessor HV µ, F,CR,L,C

DE-SMS-C 1 random same cluster HV µ, F,CR,C

DE-SMS-CD 1 local/global same cluster HV µ, F,CR,L,C

Table 3.2: Overview on the created algorithms
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3.3 Parameter optimization

Because of the modi�cations proposed, the new algorithms are expected to behave in a

di�erent way than the original GDE3 or SMS-EMOA. No recommendation can be made

towards what parameter combination is useful and shows good results for which algo-

rithm on what test problem. This section will therefore explore several parameter sets via

experiments on some test problems in a systematic manner to �nd:

1. Which modi�cation or which combination of modi�cations attains the best perfor-

mance on the test problems.

2. Which parameter set is suitable for which algorithm on which test function and which

parameter combination is all right for all problems.

3. Which algorithm can preserve more diversity than SMS-EMOA and GDE3 while also

producing solutions of acceptable quality 1.

3.3.1 Pre-experimental planning

To �nd a good parameter set for each algorithm, �rst the interval for the values of each

parameter to be examined must be de�ned. In a parameter optimization process this is

called the region of interest [52] for this parameter. Due to the di�erent nature of each

parameter, the intervals of course are di�erent and largely depend on what is to optimize

under which circumstances. Of course just guessing a parameter set for each new algorithm

is possible, but neither is it systematic, nor does it give accurate and fair results on the

performance and potential of the new algorithm, so no serious, profound result can be

expected. On the other hand, trying every theoretically possible parameter combination

is impossible, as there is an unlimited number of those combinations, because for most

parameters the region of interest is an interval containing an in�nite number of real values.

Probing a limited number of multiple parameter sets from the space of entire region of

interest from all parameter intervals in a systematic way is therefore the only available

option that can satisfy both scienti�c procedure and quality of the results. In this case

both performance and diversity in decision space are a target to be optimized. The e�ort is

limited by the fact that no more than 20000 function evaluations are allowed. The region

of interest of a parameter, which represents a similar feature several algorithms share, is

the same for all these algorithms.

1acceptable means, the solutions shall be of similar quality to the results calculated by GDE3 and

SMS-EMOA
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Population size µ

Diversity of a population is limited on the lower bound by the population size, performance

is limited on the upper bound. Because parents are chosen uniformly distributed from the

population or a subset thereof, each individual in the population will only be improved a

couple of times if the population size is large. Diversity of a small population is limited by

the small amount of individuals - individuals that are not there cannot contribute to neither

diversity nor performance, even though a small population can be good for performance,

as each individual can be improved by the algorithm more often. A good balance for the µ

parameter has to be a compromise between the described extremes. The minimum required

population size for GDE3 is 4, but for the cluster analysis in the breeding phase to work

there need to be at least four individuals in one cluster for local search and a minimum of

three clusters for global search. To guarantee there are enough individuals in one cluster,

the population size needs to be at least 10 (one cluster with four individuals and the other

ones with three each in the worst case).

Remember: this does not guarantee, that at any time both local and global search are

possible for any predecessor, it only proves there are at least four predecessors for which

both local and global search can be performed.

Given diversity in decision space is the main goal of this work, the absolute minimum of

individuals required is not a wise choice for the lower bound of parameter µ and therefore

the double of the minimum value required by at least one of the algorithms is taken as

minimum value. Large population sizes are also not feasible for a small amount of function

evaluations (see above), the usual value recommended by the authors of GDE3, NSGA-II

and SMS-EMOA is µ = 100. Since with this value the diversity of at least SMS-EMOA and

possibly NSGA-II and GDE3 is too small for surface reconstruction and those algorithms

do not support any direct means of preserving diversity in decision space, a bigger upper

limit is necessary. The triple recommended value (µ = 300) seems a good choice for the

upper bound, initial experiments show beyond µ = 300 none of the algorithms was able to

reach decent solutions on most of the test functions.

Step size factor F , crossover probability CR

For GDE3 the author recommends [53] a low value (e.g. F = 0.2) for multi-objective

optimization, but also notes, that especially for ZDT4 F = 0.5 is suitable because the

local optima are equally distant in decision space on that test problem [54]. Due to the

di�erent breeding in GDE3-D, GDE3-SMS-D, DE-SMS-PD and DE-SMS-CD the interval

F ∈ [0.1, 0.9] is investigated for all algorithms. Analog to F , CR is also taken from the

same interval (CR ∈ [0.1, 0.9]).
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Local search rate L

On adequate values for this entirely new parameter nothing is known, the entire possible

interval between 0 (only global search) and 1 (only local search) is examined.

Number of clusters C

The number of clusters shall not exceed µ
4 to guarantee that local search is possible, the

more clusters there are, the more diversity in decision space is expected in the solution for

DE-SMS-C(D) and too much diversity results most likely in bad quality of the solutions

because for many problems there are only few regions in decision space, where good results

can be found, thus covering large amounts of the rest of the decision space inside local

optima is a bad idea. As for the lower bound, at least one cluster is required, for the

minimal population size µ = 20, C has to be µ
20 . The region of interest is then C ∈ [ µ20 ,

µ
4 ].

Parameters from SBX and PM

To also give NSGA-II and SMS-EMOA a fair chance in this comparison, their parameters

are also optimized. The mutation probability pm, normally recommended D
−1 is examined

between pm ∈ [D−2, D−0.5], the crossover probability pc is taken from pc ∈ [0.5, 1] (usually

used value is pm = 0.9 or pm = 1). As for the distribution indices ηm and ηc, the region

of interest is chosen η ∈ [5, 30]. All parameter intervals were chosen to roughly cover an

area where the authors recommended values or the usually used ones are located in the

middle of that interval, so both increased and decreased values of each parameter can be

evaluated where possible.

Parameter Lower bound Upper bound Recommended

µ 20 300 100

F 0.1 0.9 0.2 or 0.5

CR 0.1 0.9 0.1 or 0.2

L 0 1 -

C µ/20 µ/4 -

pm D−2 D−0.5 D−1

ηm 5 30 20

pc 0.5 1 1

ηc 5 30 15

Table 3.3: Region of interest for the parameters
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Test functions

The benchmark is performed on test problems whose properties can show several desired

features an algorithm has to possess in order to perform successfully on these test problems.

R_ZDT4 is chosen because it is highly multimodal (multiple, in this case 219, local optima

exist), so the ability of an algorithm to deal with this kind of situation can be observed. Test

problem S_DTLZ3 is also multimodal, but uses three objective functions. It is included in

the tests to show whether and how good an algorithm works with more than two objectives

on a multimodal test. Both R_ZDT4 and S_DTLZ3 also leave the algorithms much room

for improvement, because previously existing, evolutionary algorithms like GDE3 require

500000 or more function evaluations to �nd a global optimum, if they even �nd it at all

[28]. While R_ZDT4 (10D) and S_DTLZ3 (30D) use many dimensions in decision space,

OKA2 [35] only has three dimensions in decision space. This makes it easy to analyze

the behavior of an algorithm on that function in decision space by simply plotting and

observing the generations. Despite the low dimension decision space, OKA2 has been

proven to be di�cult for GDE3 [28].

With SYM-PART (see chapter 2.3), a test problem to measure the diversity of the

population via the covered sets indicator is also employed. The covered set indicator

however has a signi�cant disadvantage, it only measures in which of the global optima at

least one solution is approximated, it therefore shows the diversity on a global scale, but

cannot meter the diversity in each local optimum. In the worst case scenario each global

optimum is covered by only one individual, meaning there is a lot of diversity in decision

space, but very few or even no diversity in objective function space. To continuatively

examine the diversity in decision space three additional test functions and two indicators

are introduced to also measure diversity of the solutions in decision space.

Additional test functions

The concept of the created test functions is very similar to that of SYM-PART - a box-

constrained test problem is copied multiple times and the decision space of the copies is

patched together in the �rst two dimensions to form a bigger decision space with multiple

optima. Each part is an exact copy of the original decision space of the underlying test

problem, it contains a global optimum and is called box from now on. Rudolph et al.

name the parts tiles [36] because initially the SYM-PART function only had two dimen-

sions in decision space. The di�culty of the underlying test problem remains the same,

which is why also the performance of an algorithm on these test problems can be analyzed,

even, or especially if only one optimum is found by an algorithm. For this benchmark

S_DTLZ2 (equation (3.7)), S_ZDT1 (equation (3.5)) and S_ZDT2 (equation (3.6)) are

chosen as underlying test problems, mostly because they are unimodal, from the very pop-

ular test suites ZDT [55] and DTLZ [37] and initial tests indicate that the global optimum
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x1

x2

x3

f(x)

Figure 3.4: Multiple boxes forming the decision space

on S_DTLZ2 and S_ZDT1 can be found at least by GDE3 with only 20000 function eval-

uations. S_ZDT2 is also included because it is the concave version of S_ZDT2, the HVset

indicator is expected to be more meaningful (see below). Even though the underlying test

problem is unimodal in all three cases, the created test function is obviously multimodal

because the optimum is copied multiple times. The resulting test functions are named

M_underlying_problem (e.g. M_S_DTLZ2), the "M_" stands for "multiple boxes of".

The �tness values regarding a test function with multiple test problem boxes are calculated

in three steps. For the absolute position in decision space:

1. �nd the box the individual is located in,

2. determine relative position in the box and

3. calculate �tness value for that relative position regarding the underlying test problem.

The relative position in the box is the only important information for calculating the

�tness. For the parameter optimization these test problems are used with a 3x3 box grid

to have the same number of boxes that SYM-PART has tiles, but in general there is no

limit to the total number of boxes as long as they are attached in a rectangle-shaped grid.

Algorithm 9 Calculate �tness value for test problems with multiple boxes

1: for i = 1 to 2 do // box coordinate 1 and 2

2: b← boundshi,i − boundslo,i // size of the box in dimension i

3: m←
⌈

1
b · (xi − boundslo,i)

⌉
// move left/down by m boxes

4: xi ← xi −m · b // relative coordinate in box

5: end for

6: for j = 1 to D do // all objectives

7: fM_,j ← fj(xi) // assign �tness from underlying problem

8: end for
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f1(~x) =

z′1 + 1, z1 ≥ 0

S(p1)(z′1 + 1), z1 < 0

f2(~x) =


g(x)(1−

√
z′1/g(x)) + 1, all zi ≥ 0

S

(√∑D
i=1 pi

)(
g(x)(1−

√
z′1/g(x)) + 1

)
, otherwise

where:

g(x) = 1 + 9
(∑D

i=2 z
′
i

)
/(D − 1)

z′i =

zi, zi 6 0,

−λizi, zi < 0
pi =

0, zi > 0

|zi|/di, zi < 0

shift: ~z = ~x− ~o,
scale factor: ~λ

(3.5)

f1(~x) =

z′1 + 1, z1 ≥ 0

S(p1)(z′1 + 1), z1 < 0

f2(~x) =


g(x)(1− (z′1/g(x))2) + 1, all zi ≥ 0

S

(√∑D
i=1 pi

)(
g(x)(1− (z′1/g(x))2) + 1

)
, otherwise

where:

g(x) = 1 + 9
(∑D

i=2 z
′
i

)
/(D − 1)

z′i =

zi, zi 6 0,

−λizi, zi < 0
pi =

0, zi > 0

|zi|/di, zi < 0

shift: ~z = ~x− ~o,
scale factor: ~λ

(3.6)
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Figure 3.5: Pareto front of M_S_ZDT1 and M_S_ZDT2
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Figure 3.6: Pareto front of M_S_DTLZ2

f1(~x) =

(1 + g(xM )) cos(z′1π/2)... cos(z′M−2π/2) cos(z′M−1π/2), zi ≥ 0

S(psum1)
(
(1 + g(xM )) cos(z′1π/2)... cos(z′M−2π/2) cos(z′M−1π/2) + 1

)
, otherwise

f2(~x) =

(1 + g(xM )) cos(z′1π/2)... cos(z′M−2π/2) sin(z′M−1π/2), zi ≥ 0

S(psum2)
(
(1 + g(xM )) cos(z′1π/2)... cos(z′M−2π/2) sin(z′M−1π/2) + 1

)
, otherwise

f3(~x) =

(1 + g(xM )) cos(z′1π/2)... cos(z′M−3π/2) sin(z′M−2π/2), zi ≥ 0

S(psum3)
(
(1 + g(xM )) cos(z′1π/2)... cos(z′M−3π/2) sin(z′M−2π/2) + 1

)
, otherwise

where:

g(xM ) =
∑

xi∈xM (z′i − 1
2)2

z′i =

zi, zi ≥ 0

−λizi, zi < 0
pi =

0, zi ≥ 0

|zi|/di, zi < 0

shift: ~z = ~x− ~o,
scale factor: ~λ

(3.7)

Evaluating the diversity on the proposed test functions could also be achieved by the

covered sets indicator, however given the limitations discussed above, a similar, more

powerful indicator is desirable, which can measure the diversity on both the global level, like

the covered sets indicator does, while still taking the diversity inside one Pareto optimum

into consideration.

The HVset indicator

Similar to the covered sets indicator, the HVset indicator �rst checks whether an optimum

is covered. Towards that end, for each local optimum a bounding box is placed around

the Pareto front and the hypervolume of the Pareto front in that bounding box is deter-
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mined, all individuals outside a bounding box are removed. The sum of these values is

the maximum coverable hypervolume on this test function in the bounding boxes. Then

the indicator measures the diversity in every optimum separately by computing the hy-

pervolume of the solutions covering the optimum. The sum of these values, divided by

the maximum coverable hypervolume can then show how good and diverse the solutions

are. An indicator value of 0 means no optimum is covered, the bigger the value gets, the

more diverse the solutions are. While the indicator value does not give a total number of

sets covered, it shows what fraction of the maximum coverable hypervolume the solution

attains, information on how this is done is lost.

Given a HVset value of 0.4 for n boxes does not mean that in 0.4 · n boxes the Pareto

front is attained very dense, as e.g. 40% of the maximum coverable hypervolume can also

be achieved by simply covering 40% of the volume in each of the boxes. But a considerably

higher value shows that both diversity and performance of the algorithm are better, for

the same test function the values for di�erent algorithms can easily be compared as long

as the di�erence is signi�cant. If the Pareto front is concave, the hypervolume between

Pareto front and the bounding box border becomes smaller, the space where not optimal

solutions that still get counted can be located is smaller, solutions further from the Pareto

front are discarded, which is why using an underlying test problem with a concave Pareto

front is preferable.
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Figure 3.7: HVset indicator calculation

The div+ indicator

To measure the diversity in decision space regardless of the performance of its individuals,

no special test problem is required. Instead the amount of diversity can be approximated

with the div+ indicator on any population. For each dimension in decision space the
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Algorithm 10 Calculate the HVset value

1: n← #boxes

2: max← n· hypervolume(paretofront) // maximum attainable hypervolume

3: for i = 1 to n do // each box

4: Bi ← �lter(P , i) // only pick the individuals in box i

5: Ai ← �lter(Bi) // set of acceptable solutions in bounding box

6: hvset← hvset+ hypervolume(Ai)

7: end for

8: hvset← hvset/max

9: return hvset

div+ indicator sums up the distance between the maximum and minimum value from any

individual for this dimension. This indicator is very easy to calculate and understand and

yet helpful to measure diversity in many cases. A disadvantage is that only two individuals

are taken into consideration for each dimension, if the di�erence between maximum and

minimum value is large, while the space in between them no other individual is located

and the space is thus empty, the population seems diverse from the value of the indicator,

while all individuals are concentrated in only two regions far apart from each other. If the

indicator shows a very small value the diversity is obviously small, hence the indicator is

accurately mirroring the diversity in decision space. Instead of the sum of the values for

each dimension, one could also use the product, however this div* indicator is not pursued

any further because depending on algorithm and test problem the indicator values tend to

get either very small or big, sometimes beyond computational accuracy. Therefore indicator

values cannot be compared properly if the di�erence between minimum and maximum is

� 1 or� 1 for many dimensions in decision space. For many test problems only one value

is optimal for at least one dimension in decision space, hence the described problem often

occurs.

The All3 indicator

Evaluating solutions with a set of indicators comes with a severe problem: what if indicators

contradict each other in the comparison of two algorithms or two parameter sets of the

same algorithm? While ε-, hypervolume and R2-indicator evaluate similar properties of

solutions, this can easily happen, if the quality of the solutions is not too far apart. Another

problem is that the number of comparisions between algorithms increases linearly with

the number of indicators used to evaluate the results. To not prefer any indicator in

these cases, a helper indicator can be used, which equally combines the value of the three

indicators (ε, hypervolume, R2), resulting in only one new indicator value to compare

- the All3 indicator value. Sorting by the All3 indicator allows the user to �nd the best

solution almost immediately. This indicator value is calculated as follows: Please note: this
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Algorithm 11 Calculate the All3 indicator
1: epsbest ←∞; epsworst ← −∞
2: hypbest ←∞;hypworst ← −∞
3: r2best ←∞; r2worst ← −∞
4: for i = 1 to m do // each parameter combination

5: for j = 1 to n do // each run

6: eps[i]← median(epsilon_ind(Pij))

7: hyp[i]← median(hypervolume_ind(Pij))

8: r2[i]← median(r2_ind(Pij))

9: end for

10: end for

11: epsbest ← min(eps[]); epsworst ← max(eps[])

12: hypbest ← min(hyp[]);hypworst ← max(hyp[])

13: r2best ← min(r2[]); r2worst ← max(r2[])

14: for i = 1 to m do // each parameter combination

15: epsnorm ← (eps[i]− epsbest)/(epsworst − epsbest)
16: hypnorm ← (hyp[i]− hypbest)/(hypworst − hypbest)
17: r2norm ← (r2[i]− r2best)/(r2worst − r2best)
18: all3[i]← (epsnorm + hypnorm + r2norm)/3

19: end for

indicator is not intended to compare its absolute results in di�erent sets of benchmarks

because the value is a relative one, which has to be computed again if results are added,

removed or changed. The All3 indicator was primarily developed to �nd the best parameter

combination for one algorithm on a single test function. Analog the same concept can be

used to �nd the best among several algorithms on a single test function. The value range

of the All3 indicator is between 0 and 1, with 0 being the best and 1 the worst value.

3.3.2 Task

The task of this optimization process is to �nd a recommendable parameter combination

for each algorithm. With this parameter combination the algorithm shall provide good

results on all test problems. Once such a parameter combination is found, the algorithms

can be compared with the optimized parameter combination and the reason for their

performance regarding both diversity and quality of the solutions according to the metrics

can be analyzed. Because only a general recommendation is made, speci�c optimizations

may be required for real applications.
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3.3.3 Setup

For each group of algorithms with exactly the same parameters 50 parameter sets are

explored via the same Latin Hypercube Design [56] (to ensure the parameter combinations

examined are equally distributed among the parameter space). The design �le for each

group can be found in appendix A. To have a reasonable statistical basis, each parameter

combination from the design �le is run 25 times on all test problems

• OKA2,

• R_ZDT4,

• S_DTLZ3 (30D),

• SYM-PART (30D),

• M_S_DTLZ2 (30D),

• M_S_ZDT1 (30D) and

• M_S_ZDT2 (30D).

The total number of runs is therefore:

runs = #algorithms ·#testproblems ·#runs ·#parametersets = 11 · 7 · 25 · 50 = 96250

(3.8)

For all parameter combinations of the same algorithm, the mean, median and standard

deviation value of the

• ε,

• hypervolume and

• R2

indicators are computed and based on these values the All3 indicator value is determined

on all test problems separately to easily compare parameter combinations on one test

problem at a time. A lower All3 indicator value indicates better performance of the corre-

sponding parameter combination, hence the combination with the lowest indicator value is

designated the best combination for this test function found so far. In order to �nd a good

overall combination with which a single algorithm works well on all test problems, for each

parameter combination the sum of squares for all All3 indicator values
∑7

i=1(All3i)
2 (from

each test function) is evaluated. Because all All3 indicator values are from the interval

[0,1], the sum of squares prefers smaller values for each part of the sum, bad performance

on a single test problem is penalized. The combination with the lowest sum of squares of

the All3 indicator values is then declared as good overall parameter combination for the
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algorithm under investigation. The performance of these algorithms with the found param-

eter combination is then analyzed further. Analog to �nding the best overall parameter

combination for a single algorithm, the sum of squares for the All3 indicator values can be

used to determine a ranking among the algorithms (with their best overall parameter com-

bination). To validate the results, a statistical hypothesis test (Kruskal-Wallis test[38] with

parameter α = 0.01) is employed for the best parameter-combinations on each test prob-

lem. In parallel to this analysis, the diversity is measured for all parameter-combination

runs with the div+ indicator. In addition to that, the covered sets indicator on SYM-

PART and the hvset indicator values on M_S_ZDT1, M_S_ZDT2 and M_S_DTLZ2

are compared among the best algorithms to �nd out which of the algorithms can to what

degree preserve diversity.

3.3.4 Results

For comparison purposes, additionally the recommended parameter-combination was eval-

uated for NSGA-II, SMS-EMOA and GDE3. In the following tables these parameter-

combination are marked with a "*". In each table the best indicator value is printed

bold.

Parameters

Algorithm µ F CR L C

DE-SMS-P 28 0.38 0.22 - -

DE-SMS-C 45 0.49 0.14 - 7

DE-SMS-PD 45 0.49 0.14 0.61 7

DE-SMS-CD 45 0.49 0.14 0.61 7

GDE3 101 0.18 0.18 - -

GDE3* 100 0.5 0.1 - -

GDE3-D 163 0.25 0.12 0.65 14

GDE3-SMS 28 0.38 0.22 - -

GDE3-SMS-D 163 0.25 0.12 0.65 14

SMS-EMOA(DE) 34 0.43 0.56 - -

µ pm pc ηm ηc

SMS-EMOA 157 -1.33 0.7 21 5

SMS-EMOA* 100 -1 1 20 15

NSGA-II 157 -1.33 0.7 21 5

NSGA-II* 100 -1 1 20 15

Table 3.4: Best allround parameter set according to min(
∑7

i=1(All3i)
2)
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ε-indicator hyp-indicator R2-indicator All3

Algorithm median mean std median mean std med mean std indicator

DE-SMS-P 0.0621 0.0590 0.0330 0.0319 0.0299 0.0186 0.0147 0.0165 0.0127 0.7215

DE-SMS-C -0.0024 0.0088 0.0309 -0.0048 0.0016 0.0176 -0.0024 0.0014 0.0107 0.0000

DE-SMS-PD 0.0466 0.0452 0.0068 0.0176 0.0193 0.0043 0.0077 0.0090 0.0040 0.4743

DE-SMS-CD -0.0024 0.0290 0.0430 -0.0047 0.0113 0.0224 -0.0024 0.0062 0.0133 0.0002

GDE3 0.0750 0.0738 0.0077 0.0359 0.0359 0.0055 0.0157 0.0156 0.0047 0.8123

GDE3* 0.0806 0.0804 0.0098 0.0421 0.0447 0.0072 0.0189 0.0204 0.0061 0.9176

GDE3-D 0.0408 0.0431 0.0087 0.0196 0.0194 0.0034 0.0104 0.0105 0.0036 0.4991

GDE3-SMS 0.0602 0.0481 0.0341 0.0303 0.0245 0.0202 0.0126 0.0118 0.0105 0.6762

GDE3-SMS-D 0.0418 0.0413 0.0073 0.0181 0.0187 0.0037 0.0094 0.0100 0.0037 0.4800

SMS-EMOA(DE) 0.0466 0.0447 0.0485 0.0226 0.0231 0.0296 0.0075 0.0088 0.0124 0.5051

SMS-EMOA 0.0743 0.0728 0.0130 0.0380 0.0389 0.0069 0.0186 0.0189 0.0062 0.8607

SMS-EMOA* 0.0733 0.0790 0.0191 0.0446 0.0477 0.0130 0.0228 0.0249 0.0095 0.9546

NSGA-II 0.0675 0.0673 0.0083 0.0383 0.0384 0.0046 0.0192 0.0189 0.0040 0.8431

NSGA-II* 0.0721 0.0790 0.0215 0.0456 0.0494 0.0142 0.0235 0.0265 0.0100 0.9656

Table 3.5: Performance with optimized parameter set on OKA2

Figure 3.8: All3 indicator on OKA2

ε-indicator hyp-indicator R2-indicator All3

Algorithm median mean std median mean std med mean std indicator

DE-SMS-P 0.0272 0.0274 0.0053 0.0245 0.0245 0.0051 0.0124 0.0125 0.0022 0.2733

DE-SMS-C 0.0175 0.0177 0.0094 0.0119 0.0160 0.0095 0.0070 0.0077 0.0045 0.0218

DE-SMS-PD 0.0204 0.0224 0.0065 0.0136 0.0152 0.0049 0.0093 0.0094 0.0023 0.0941

DE-SMS-CD 0.0181 0.0210 0.0136 0.0154 0.0173 0.0101 0.0081 0.0090 0.0055 0.0681

GDE3 0.0246 0.0239 0.0094 0.0172 0.0208 0.0089 0.0104 0.0106 0.0042 0.1701

GDE3* 0.0339 0.0355 0.0170 0.0310 0.0317 0.0148 0.0154 0.0160 0.0070 0.4197

GDE3-D 0.0264 0.0292 0.0118 0.0227 0.0256 0.0104 0.0124 0.0129 0.0052 0.2543

GDE3-SMS 0.0171 0.0175 0.0055 0.0176 0.0183 0.0060 0.0079 0.0080 0.0027 0.0710

GDE3-SMS-D 0.0241 0.0246 0.0108 0.0186 0.0217 0.0113 0.0105 0.0110 0.0051 0.1762

SMS-EMOA(DE) 0.0148 0.0176 0.0107 0.0159 0.0180 0.0120 0.0070 0.0081 0.0053 0.0266

SMS-EMOA 0.0288 0.0315 0.0165 0.0315 0.0343 0.0182 0.0137 0.0151 0.0083 0.3552

SMS-EMOA* 0.0561 0.0580 0.0239 0.0615 0.0589 0.0238 0.0275 0.0277 0.0106 1.0000

NSGA-II 0.0260 0.0257 0.0087 0.0273 0.0276 0.0094 0.0124 0.0121 0.0043 0.2829

NSGA-II* 0.0436 0.0462 0.0172 0.0431 0.0478 0.0174 0.0212 0.0221 0.0083 0.6724

Table 3.6: Performance with optimized parameter set on R_ZDT4(10D)
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Figure 3.9: All3 indicator on R_ZDT4

ε-indicator hyp-indicator R2-indicator All3

Algorithm median mean std median mean std med mean std indicator

DE-SMS-P 1.05e-01 1.05e-01 9.87e-03 2.70e-03 5.35e-03 5.78e-03 1.35e-02 1.45e-02 2.74e-03 0.5746

DE-SMS-C 1.32e-02 1.43e-02 5.33e-03 2.12e-05 4.45e-05 6.71e-05 1.93e-03 2.04e-03 7.23e-04 0.0000

DE-SMS-PD 7.57e-02 7.47e-02 8.58e-03 1.44e-03 1.46e-03 2.42e-04 1.02e-02 1.02e-02 6.12e-04 0.3826

DE-SMS-CD 1.57e-02 1.69e-02 4.76e-03 2.59e-05 3.35e-05 2.47e-05 2.32e-03 2.40e-03 6.15e-04 0.0143

GDE3 6.33e-02 6.52e-02 9.83e-03 6.90e-04 7.20e-04 1.97e-04 8.71e-03 8.93e-03 8.79e-04 0.2912

GDE3* 4.84e-02 4.91e-02 7.92e-03 4.19e-04 4.34e-04 1.23e-04 7.26e-03 7.21e-03 7.43e-04 0.2122

GDE3-D 8.27e-02 8.23e-02 7.51e-03 1.37e-03 1.37e-03 1.89e-04 1.12e-02 1.11e-02 5.82e-04 0.4182

GDE3-SMS 1.73e-02 1.70e-02 5.24e-03 6.05e-03 5.68e-03 3.39e-03 3.47e-03 3.58e-03 8.94e-04 0.2823

GDE3-SMS-D 7.62e-02 7.49e-02 1.07e-02 1.17e-03 1.18e-03 2.65e-04 1.05e-02 1.05e-02 8.47e-04 0.3795

SMS-EMOA(DE) 9.90e-02 9.84e-02 1.47e-02 5.95e-03 7.52e-03 5.14e-03 1.53e-02 1.55e-02 2.53e-03 0.7233

SMS-EMOA 1.17e-01 1.18e-01 1.23e-02 5.53e-03 5.45e-03 8.08e-04 1.78e-02 1.77e-02 9.96e-04 0.8043

SMS-EMOA* 1.02e-01 9.31e-02 3.07e-02 2.36e-03 2.59e-03 1.47e-03 1.33e-02 1.26e-02 3.51e-03 0.5497

NSGA-II 1.29e-01 1.30e-01 1.40e-02 6.72e-03 6.87e-03 7.90e-04 1.91e-02 1.92e-02 7.91e-04 0.9090

NSGA-II* 1.34e-01 1.36e-01 2.14e-02 8.31e-03 8.17e-03 2.84e-03 1.98e-02 1.94e-02 2.59e-03 1.0000

Table 3.7: Performance with optimized parameter set on S_DTLZ3(30D)

Figure 3.10: All3 indicator on S_DTLZ3
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ε-indicator hyp-indicator R2-indicator All3

Algorithm median mean std median mean std med mean std indicator

DE-SMS-P 3.29e-04 4.67e-04 3.23e-04 6.19e-04 8.19e-04 5.13e-04 4.83e-05 1.11e-04 1.49e-04 0.0059

DE-SMS-C 6.43e-04 6.73e-04 1.80e-04 1.25e-03 1.23e-03 2.65e-04 1.39e-04 1.43e-04 5.87e-05 0.0135

DE-SMS-PD 2.95e-04 3.16e-04 6.74e-05 5.46e-04 5.50e-04 1.24e-04 8.04e-05 8.06e-05 1.67e-05 0.0056

DE-SMS-CD 5.62e-04 6.26e-04 2.61e-04 9.67e-04 1.15e-03 5.01e-04 9.08e-05 1.47e-04 1.27e-04 0.0106

GDE3 3.56e-04 3.83e-04 8.80e-05 7.17e-04 7.30e-04 1.19e-04 4.73e-05 5.22e-05 1.69e-05 0.0066

GDE3* 2.73e-04 2.73e-04 6.35e-05 4.79e-04 5.06e-04 1.04e-04 3.76e-05 3.72e-05 8.13e-06 0.0045

GDE3-D 4.61e-04 4.61e-04 9.36e-05 9.10e-04 9.10e-04 1.57e-04 1.26e-04 1.29e-04 3.22e-05 0.0097

GDE3-SMS 7.96e-04 1.33e-03 9.72e-04 1.37e-03 2.33e-03 1.71e-03 2.46e-04 5.92e-04 5.46e-04 0.0171

GDE3-SMS-D 4.37e-04 4.55e-04 9.08e-05 8.42e-04 8.76e-04 1.73e-04 1.21e-04 1.25e-04 3.32e-05 0.0091

SMS-EMOA(DE) 7.22e-05 7.35e-05 5.64e-06 5.25e-05 5.45e-05 1.34e-05 1.21e-05 1.22e-05 6.05e-07 0.0000

SMS-EMOA 1.83e-02 1.80e-02 8.67e-03 3.90e-02 3.76e-02 1.84e-02 1.32e-02 1.28e-02 6.49e-03 0.5613

SMS-EMOA* 3.28e-02 3.11e-02 1.60e-02 6.84e-02 6.43e-02 3.27e-02 2.37e-02 2.23e-02 1.16e-02 1.0000

NSGA-II 6.87e-03 7.57e-03 4.46e-03 1.46e-02 1.45e-02 8.55e-03 4.72e-03 4.73e-03 3.00e-03 0.2064

NSGA-II* 2.85e-02 3.09e-02 1.23e-02 5.61e-02 6.08e-02 2.70e-02 1.93e-02 2.11e-02 9.59e-03 0.8352

Table 3.8: Performance with optimized parameter set on SYM-PART(30D)

Figure 3.11: All3 indicator on SYM-PART

ε-indicator hyp-indicator R2-indicator All3

Algorithm median mean std median mean std med mean std indicator

DE-SMS-P 1.10e-02 1.11e-02 8.61e-04 1.73e-04 1.79e-04 5.48e-05 3.73e-04 3.94e-04 7.58e-05 0.0997

DE-SMS-C 9.76e-03 1.71e-02 1.06e-02 1.85e-04 6.78e-04 7.67e-04 2.70e-04 6.61e-04 5.80e-04 0.0782

DE-SMS-PD 8.86e-03 9.06e-03 6.60e-04 2.15e-04 2.25e-04 7.29e-05 2.97e-04 3.04e-04 3.73e-05 0.0792

DE-SMS-CD 9.82e-03 1.56e-02 1.01e-02 2.12e-04 5.79e-04 6.60e-04 2.78e-04 5.96e-04 5.28e-04 0.0862

GDE3 1.22e-02 1.23e-02 2.00e-03 4.48e-04 4.66e-04 2.13e-04 2.93e-04 3.02e-04 7.87e-05 0.1691

GDE3* 1.21e-02 1.26e-02 1.86e-03 7.23e-04 7.78e-04 3.25e-04 4.51e-04 4.81e-04 1.43e-04 0.2524

GDE3-D 1.03e-02 1.06e-02 1.31e-03 4.75e-04 5.07e-04 1.85e-04 3.73e-04 3.73e-04 6.66e-05 0.1648

GDE3-SMS 2.10e-02 2.88e-02 1.44e-02 1.46e-03 1.68e-03 1.45e-03 1.57e-03 1.67e-03 9.69e-04 0.6465

GDE3-SMS-D 6.17e-03 6.38e-03 7.79e-04 9.10e-05 1.20e-04 6.38e-05 1.37e-04 1.44e-04 2.63e-05 0.0035

SMS-EMOA(DE) 9.56e-03 9.61e-03 4.41e-04 1.09e-04 1.16e-04 3.34e-05 2.90e-04 2.91e-04 4.62e-06 0.0601

SMS-EMOA 6.21e-03 6.77e-03 1.40e-03 7.63e-05 9.31e-05 4.35e-05 2.93e-04 3.48e-04 1.54e-04 0.0176

SMS-EMOA* 1.67e-02 1.66e-02 5.25e-03 4.17e-04 4.33e-04 2.03e-04 1.32e-03 1.38e-03 5.99e-04 0.3231

NSGA-II 1.96e-02 1.94e-02 2.42e-03 3.53e-04 3.74e-04 7.78e-05 1.04e-03 1.06e-03 2.43e-04 0.3062

NSGA-II* 3.82e-02 3.74e-02 6.22e-03 1.28e-03 1.24e-03 3.69e-04 3.15e-03 3.04e-03 6.91e-04 0.9572

Table 3.9: Performance with optimized parameter set on M_S_DTLZ2(30D)
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Figure 3.12: All3 indicator on M_S_DTLZ2

ε-indicator hyp-indicator R2-indicator All3

Algorithm median mean std median mean std med mean std indicator

DE-SMS-P 1.24e-02 1.23e-02 3.33e-03 8.38e-03 9.55e-03 3.58e-03 3.13e-03 3.56e-03 1.37e-03 0.0291

DE-SMS-C 5.31e-03 5.45e-03 1.19e-03 1.78e-03 2.11e-03 8.35e-04 5.83e-04 6.63e-04 2.82e-04 0.0000

DE-SMS-PD 8.51e-03 8.69e-03 1.17e-03 5.16e-03 5.16e-03 5.57e-04 1.95e-03 1.94e-03 1.67e-04 0.0144

DE-SMS-CD 5.90e-03 5.83e-03 1.20e-03 2.13e-03 2.42e-03 8.62e-04 6.96e-04 6.92e-04 1.52e-04 0.0018

GDE3 1.38e-02 1.42e-02 5.53e-03 1.15e-02 1.21e-02 5.52e-03 4.50e-03 4.73e-03 2.18e-03 0.0404

GDE3* 5.05e-02 4.98e-02 1.19e-02 4.56e-02 4.63e-02 1.15e-02 1.75e-02 1.73e-02 4.38e-03 0.1903

GDE3-D 4.91e-02 5.81e-02 3.23e-02 4.59e-02 5.41e-02 3.06e-02 1.77e-02 2.04e-02 1.14e-02 0.1891

GDE3-SMS 7.48e-02 8.54e-02 4.50e-02 9.17e-02 1.08e-01 5.54e-02 2.62e-02 3.30e-02 1.86e-02 0.3215

GDE3-SMS-D 2.62e-02 2.85e-02 7.35e-03 2.24e-02 2.48e-02 7.58e-03 8.82e-03 9.78e-03 2.82e-03 0.0899

SMS-EMOA(DE) 5.69e-03 5.90e-03 9.46e-04 2.67e-03 2.79e-03 4.19e-04 1.04e-03 1.04e-03 1.47e-04 0.0034

SMS-EMOA 1.39e-01 1.37e-01 1.18e-02 1.55e-01 1.53e-01 1.44e-02 5.98e-02 5.86e-02 5.53e-03 0.6277

SMS-EMOA* 2.14e-01 2.16e-01 1.92e-02 2.49e-01 2.51e-01 2.41e-02 9.59e-02 9.66e-02 9.43e-03 1.0000

NSGA-II 1.35e-01 1.37e-01 1.65e-02 1.52e-01 1.53e-01 1.97e-02 5.85e-02 5.87e-02 7.56e-03 0.6126

NSGA-II* 2.05e-01 2.07e-01 1.65e-02 2.37e-01 2.39e-01 2.07e-02 9.09e-02 9.18e-02 8.05e-03 0.9515

Table 3.10: Performance with optimized parameter set on M_S_ZDT1(30D)

Figure 3.13: All3 indicator on M_S_ZDT1
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ε-indicator hyp-indicator R2-indicator All3

Algorithm median mean std median mean std med mean std indicator

DE-SMS-P 2.00e-02 2.18e-02 8.82e-03 1.69e-02 1.81e-02 7.73e-03 4.74e-03 5.04e-03 2.44e-03 0.0397

DE-SMS-C 6.57e-03 1.81e-02 2.68e-02 1.44e-02 1.77e-02 1.77e-02 4.47e-03 6.49e-03 7.41e-03 0.0255

DE-SMS-PD 1.13e-02 1.14e-02 1.41e-03 7.91e-03 7.84e-03 8.02e-04 1.99e-03 2.00e-03 1.99e-04 0.0185

DE-SMS-CD 7.23e-03 1.01e-02 1.81e-02 4.20e-03 8.33e-03 1.33e-02 1.04e-03 2.66e-03 5.53e-03 0.0097

GDE3 1.61e-02 1.93e-02 2.06e-02 1.18e-02 1.48e-02 1.55e-02 3.30e-03 4.45e-03 4.94e-03 0.0288

GDE3* 8.39e-04 3.49e-02 6.49e-02 1.84e-03 3.13e-02 5.49e-02 8.47e-04 1.15e-02 1.98e-02 0.0018

GDE3-D 4.54e-02 4.71e-02 4.35e-02 3.49e-02 3.96e-02 4.04e-02 1.09e-02 1.31e-02 1.47e-02 0.0903

GDE3-SMS 4.81e-04 5.67e-02 9.42e-02 1.06e-03 7.31e-02 1.19e-01 4.85e-04 2.39e-02 3.96e-02 0.0000

GDE3-SMS-D 4.08e-02 3.74e-02 3.46e-02 3.10e-02 2.83e-02 2.42e-02 9.51e-03 8.93e-03 7.64e-03 0.0801

SMS-EMOA(DE) 7.09e-04 6.18e-03 1.53e-02 1.56e-03 1.33e-02 3.26e-02 7.16e-04 6.24e-03 1.54e-02 0.0011

SMS-EMOA 2.58e-01 2.66e-01 3.38e-02 2.36e-01 2.43e-01 3.40e-02 9.52e-02 9.84e-02 1.54e-02 0.6289

SMS-EMOA* 3.92e-01 3.87e-01 3.11e-02 3.76e-01 3.71e-01 3.28e-02 1.58e-01 1.56e-01 1.51e-02 1.0000

NSGA-II 2.68e-01 2.67e-01 1.87e-02 2.46e-01 2.44e-01 1.73e-02 9.86e-02 9.88e-02 7.93e-03 0.6529

NSGA-II* 3.78e-01 3.74e-01 2.74e-02 3.59e-01 3.56e-01 2.88e-02 1.51e-01 1.50e-01 1.33e-02 0.9590

Table 3.11: Performance with optimized parameter set on M_S_ZDT2(30D)

Figure 3.14: All3 indicator on M_S_ZDT2
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Covered sets indicator

Algorithm median mean std

DE-SMS-P 1 1.12 0.33

DE-SMS-C 1 1.56 0.96

DE-SMS-PD 6 6.16 0.55

DE-SMS-CD 2 2.48 1.05

GDE3 1 1.00 0.00

GDE3* 1 1.00 0.00

GDE3-D 1 1.00 0.00

GDE3-SMS 1 1.00 0.00

GDE3-SMS-D 1 1.00 0.00

SMS-EMOA(DE) 1 1.00 0.00

SMS-EMOA 1 1.00 0.00

SMS-EMOA* 1 0.96 0.20

NSGA-II 1 1.04 0.20

NSGA-II* 1 1.16 0.37

Table 3.12: Diversity with optimized parameter set on SYM-PART (covered sets indicator)

Figure 3.15: Covered sets on SYM-PART
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HVset-indicator

M_S_DTLZ2 M_S_ZDT1 M_S_ZDT2

Algorithm median mean std median mean std med mean std

DE-SMS-P 0.2108 0.2118 0.0437 0.1626 0.1658 0.0512 0.0505 0.0632 0.0307

DE-SMS-C 0.2823 0.2752 0.0437 0.2856 0.2697 0.0400 0.0054 0.0161 0.0259

DE-SMS-PD 0.3977 0.3952 0.0199 0.6845 0.6702 0.0482 0.2940 0.2926 0.0237

DE-SMS-CD 0.2584 0.2672 0.0485 0.4497 0.4058 0.1314 0.0609 0.0770 0.0799

GDE3 0.3964 0.3860 0.0903 0.1781 0.1867 0.0677 0.0398 0.0372 0.0326

GDE3* 0.4962 0.4866 0.0299 0.1053 0.1184 0.0572 0.0000 0.0019 0.0096

GDE3-D 0.5444 0.5483 0.0161 0.1051 0.0945 0.0678 0.0187 0.0271 0.0295

GDE3-SMS 0.1129 0.1101 0.0181 0.0523 0.0519 0.0172 0.0000 0.0007 0.0021

GDE3-SMS-D 0.5795 0.5801 0.0207 0.1456 0.1573 0.0667 0.0194 0.0216 0.0224

SMS-EMOA(DE) 0.2601 0.2418 0.0466 0.2908 0.2808 0.0267 0.0000 0.0000 0.0000

SMS-EMOA 0.1665 0.1730 0.0400 0.0000 0.0009 0.0014 0.0000 0.0000 0.0000

SMS-EMOA* 0.0952 0.0955 0.0286 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

NSGA-II 0.1321 0.1343 0.0331 0.0000 0.0015 0.0027 0.0000 0.0000 0.0000

NSGA-II* 0.0228 0.0334 0.0220 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 3.13: Diversity with optimized parameter set on M_S_DTLZ2, M_S_ZDT1 and

M_S_ZDT2 (HVset indicator)

Figure 3.16: HVset indicator on M_S_DTLZ2

Figure 3.17: HVset indicator on M_S_ZDT1
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Figure 3.18: HVset indicator on M_S_ZDT2

Due to the vast amount of data generated, some tables and diagrams not displayed in this

chapter have been moved to appendix A for further reference. However, since inclusion of

all tables e.g. for all parameter combinations, algorithms and test problems is not feasible,

the data missing in the appendix is available from the author upon request in an electronic

form.

3.3.5 Observations

As far as performance is concerned, there is no algorithm, which, according to the metrics,

outperforms all other algorithms on all test problems considered. Some modi�cations

enhance performance, while some do not:

• Cluster-based choice of the parents (local and global search) is only better than

random choice if the selection is also modi�ed to enhance diversity. The metric

values for DE-SMS-P are worse than those of DE-SMS-PD. GDE3-D and GDE3-

SMS-D only signi�cantly improve their counterparts on OKA2 (GDE3-SMS-D also

is performing better on M_S_DTLZ2 and M_S_ZDT1). For DE-SMS-C and DE-

SMS-CD the di�erence is not noticeable, though on several test functions DE-SMS-C

computes slightly better results, which supports this hypothesis.

• The best algorithms according to the square sum of the All3 indicators are DE-SMS-C

and DE-SMS-CD, so the most important improvement seems to be the cluster-based

selection (together with the hypervolume contribution).

• Comparing GDE3 and GDE3-SMS is di�cult because the parameter combinations

dramatically di�er, but from the comparison between GDE3-D and GDE3-SMS-D,

hypervolume contribution also seems to improve GDE3.
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Several interesting patterns can be observed regarding which parameter combinations turns

out to be good:

• Algorithms with modi�ed selection to increase diversity all need a small population

size (µ approx. 30-45) and a similar step size F ∈ [0.4, 0.5]. The number of clusters

C for either clustering during breeding or for modi�ed selection is always the same

(C = 7) for these algorithms.

• About 60% local search and 40% global search seem to be promising.

• All algorithms directly derived from GDE3 on the other hand perform well with a

bigger population size (µ ∈ [100, 160]) and a smaller parameter F ∈ [0.1, 0.2].

• GDE3-D and GDE3-SMS-D have the same optimized parameter set.

• Even though for GDE3-SMS a di�erent parameter set than for GDE3 is calculated,

it should be noted that the same parameter combination recommended for GDE3

also works good on GDE3-SMS and the other way around.

• With the exception of SMS-EMOA(DE), the crossover probability is always small

(CR ∈ [0.1, 0.2]). For DE-SMS-EMOA a high value seems to be necessary (CR ∈
[0.5, 0.6]).

• The optimized parameters for NSGA-II and SMS-EMOA are both the same, in con-

trast to the recommendations from the authors of those algorithms, the population

size is slightly higher and both the crossover probability and the mutation probability

are much lower. Also the ηc value is much smaller indicating a larger step size, but

with a decreased probability.

As far as the diversity in decision space is concerned, the diversity preserving algorithms

seem to work just �ne, especially if the enhancement is applied to both breeding and

selection:

• DE-SMS-PD is the superior algorithm on SYM-PART, M_S_ZDT1 and M_S_ZDT2.

• DE-SMS-CD performs much better than DE-SMS-C and DE-SMS-PD is also superior

to DE-SMS, which indicates that as far as diversity is concerned the combination of

both diversity enhancement measures is crucial.

• On M_S_DTLZ2 all algorithms with a population size > 100 attain a very good

diversity.

For both additional diversity in decision space and performance in objective function space

DE-SMS-CD is a good compromise, because its performance is the second best algorithm,

very close to the best according to the metrics used for evaluation. Calculated solutions

also signi�cantly improve the amount of diversity in the population.
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3.3.6 Discussion

Qualitative evaluation

In this section the reasons for good or bad performance of the modi�cations are discussed

separately from the algorithms that incorporate them on a qualitative level. Just from the

metric values no detailed analysis can be conducted, thus a closer look at the behavior of

the algorithms involved is necessary. Because of the clear patterns described above, the

nature of the enhancements can be immediately transfered to the algorithms that make

use of those enhancements.

Breeding based on clustering

Surprisingly the separation into local and global search alone does neither enhance perfor-

mance nor diversity on R_ZDT4, S_DTLZ3, SYM-PART, M_S_DTLZ2 and M_S_ZDT1.

During the approx. 60% local search, the distance of a child from its predecessor is smaller

on average than with random choice of the parents. The idea is, that with shorter distance

the probability of the child being good enough to be accepted for the next generation

increases signi�cantly, so less function evaluations are wasted. In fact this behavior can

be observed on all the functions, where the improvement does not work. Two factors are

responsible for the increased probability:

1. In all �tness landscapes of the test problems good solutions are not located in a

single peak in the landscape but rather surrounded by other good (and possibly

better) solutions, otherwise, due to their nature, evolutionary algorithms would be

reduced to randomly probing the decision space and could not be used on the problem

successfully. If the children are bred in close proximity to their predecessor in decision

space, their �tness is also expected to be similar because the transition from good to

bad �tness is smooth on most test problems.

2. Di�erential evolution uses the di�erence between individuals to �nd a way to a better

optimum than currently reached. The di�erence can therefore be seen as an estima-

tion where to travel next based upon the previous travel path. If a child is created

and its �tness is better, the di�erence between this child and other individuals can be

used to go further into the same direction to hopefully �nd even better �tness. But

the greater the distance, the less probable this concept works. Figuratively speaking,

it is like a blind sailor trying to navigate a boat on a river. He knows what direc-

tion he comes from and can try to estimate where to go next along the river based

upon that information. The information where the search was oriented previously is

encoded in the di�erence between the individuals. The prediction which orientation

the river is �oating towards is less accurate the further away from his local horizon

the navigator tries to estimate the direction he has to steer. Also he might pick
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the correct direction, but would run ashore by trying to leave the river in order to

continue - leaving the river is analog to bad �tness.

Sailor1

S
ai

lo
r 

2

Target

Figure 3.19: Two blind sailors navigating a river

There are also two general major downsides of this measure:

1. Global search is rarely successful, because it probes new parts of the decision space,

often areas with bad �tness.

2. Though local search is more often successful, the steps taken are smaller.

Exemplary table 3.14 shows the probability of a child being transfered into the next gener-

ation between GDE3 and GDE3-D. For OKA2, GDE3-D performs better than GDE3. On

Problem GDE3 GDE3-D Improvement in %

OKA2 4347 6433 47.99

R_ZDT4 4402 8126 84.6

S_DTLZ3 2953 3639 23.23

SYM-PART 6309 7833 24.16

M_S_DTLZ2 8257 8066 -2.31

M_S_ZDT1 10264 10035 -2.23

M_S_ZDT2 10397 10605 2

Table 3.14: Success probability of a child bred in GDE3 and GDE3-D

this test problem most of the population of GDE3 gets caught in the local optima, located

on the left and right border of decision space, while only few solutions attain the global

optimum. With local search GDE3-D can �nd other points on the Pareto front (the spiral

curve) much easier. On the other hand, despite an 84.6% increased success probability of
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Figure 3.20: GDE3 vs. GDE3-D on OKA2 (decision space)

any child to survive the initial generation it is created in, GDE3-D cannot perform better

on R_ZDT4, because R_ZDT4 has so many local optima. While GDE3 can jump from

minimum to minimum with larger steps, GDE3-D makes several improvements in each

minimum �rst (by �nding better solutions inside the minimum) before actually leaving it.

The overall result is, that the increased probability cannot compensate for the downsides,

Figure 3.21: Small vs. big steps

the algorithm without clustering can progress faster. Additional runs with higher local

search probability indicate better results, so more research regarding this parameter is

necessary.

Secondary selection criterion

The di�erence between the selection criteria crowding distance and hypervolume contribu-

tion can be analyzed by comparing GDE3-SMS-D and GDE3-D. Again, GDE3 and GDE3-
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SMS are di�cult to compare, because the population size di�ers by approximately factor

6. On OKA2, R_ZDT4, S_DTLZ3 and SYM-PART only a small improvement in the ab-

solute indicator values can be observed while the di�erence is much bigger on M_S_ZDT1

and M_S_DTLZ2. The reason is simple: for the later group of test problems at least one

global optimum is detected, the modi�ed algorithm can fully pro�t from the change while

on the other test functions, the search is stopped in a local optimum. A stronger impact

can be seen on the M_S_DTLZ2, due to its three objectives, the Pareto front is a surface

which can only be allocated very sparsely by the solutions of both algorithms, the position

of each individual becomes more important than in two dimension objective function space,

where the Pareto front is a curve for which allocation is possible more densely, given the

same amount of individuals. From the graphical point of view, there are bigger holes in

the population covering the Pareto front when using the crowding-distance.
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Figure 3.22: Objective space attained on M_S_DTLZ2

Diversity through selection

Two di�erent types of selection were examined:

1. a child only has to compete against its predecessor (DE-SMS-P and DE-SMS-PD),

and

2. a child has to prove itself against either predecessor, or if that fails, the individuals

of the cluster it is located in (DE-SMS-C and DE-SMS-CD).

If a child replaces its predecessor, it has to either weakly dominate the predecessor or at

least have a higher hypervolume contribution otherwise it is deleted even if some or even all

other individuals in the population are worse according to the same criteria. As a result,

the probability of a child being accepted is much lower than without this modi�cation,

thus decreasing the speed of convergence of the entire algorithm. No positive impact on
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diversity can be observed via the covered set or HVset indicators. The quality of the

solutions computed by DE-SMS-P in most regions is too low to be accepted by the HVset

and covered sets indicators, only one set is counted covered and the HVset value on the

other diversity test problems is worse than the one computed for GDE3.

As far as the quality of solutions is concerned, the population size µ is only set to 28,

per individual in the population more children are bred and more improvements per indi-

vidual are possible. On OKA2 and the multimodal function R_ZDT4 and S_DTLZ3, the

success probability of a child in DE-SMS-P is less than a third of the corresponding value

from GDE3, therefore many potentially better children are deleted and the performance

decreases, e.g. on OKA2 and R_ZDT4 less than 5% of the function evaluations DE-SMS-P

are actually used to improve the population, more than 95% are wasted because the child

is immediately dropped. In many cases child and predecessor are not in close proximity to

each other - if the child replaces the predecessor, it does no longer represent the area its

predecessor did and thus diversity can be lost if several of those areas are merged. As we

will see later, this behavior turns out to be a desirable feature of DE-SMS-C(D).

We have established above no signi�cant performance improvement and no increased

diversity could be achieved by the modi�ed breeding phase alone. With an addition-

ally modi�ed selection phase however this no longer holds. Compared to DE-SMS-P, the

Problem DE-SMS-P DE-SMS-PD Improvement in %

OKA2 791 1667 110.75

R_ZDT4 867 1409 62.51

S_DTLZ3 1286 1602 24.57

SYM-PART 1830 3778 106.45

M_S_DTLZ2 4323 4380 1.32

M_S_ZDT1 4495 4461 -0.76

M_S_ZDT2 4936 5344 8.27

Table 3.15: Success probability of a child bred in DE-SMS-P and DE-SMS-PD

counterpart with modi�ed breeding phase DE-SMS-PD is much better regarding both per-

formance and diversity. There are two reasons as to both improvements work well together:

1. the success probability of a child improves signi�cantly on the test problems where

DE-SMS-P performs badly and

2. the created children are in closer proximity to their predecessor, which helps preserv-

ing diversity.

The �rst feature increases the quality of the solutions, while the second improves diversity

in decision space, both together result in diverse solutions of good quality, counteracting
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the two downsides of additional diversity in selection phase. DE-SMS-PD is the algorithm

that by far outperforms all other tested algorithms on SYM-PART(30D) with 6 covered

sets. Similar behavior can be observed on M_S_ZDT1 and M_S_ZDT2 regarding the

HVset value. On M_S_ZDT1 the HVset indicator value is almost 3 times (284%) as big

for DE-SMS-PD as for GDE3 and more then 3 times (321%) the value of DE-SMS-P. On

M_S_ZDT2 the di�erence is even bigger. An exception is M_S_DTLZ2, where all other

algorithms reach a much higher HVset indicator value. This test function has a design �aw:

almost the entire objective function space of a box is part of a global minimum, hence the

minima are almost directly attached to each other like an egg carton. On such a function

the most important factor to a good HVset value is a big population size because the more

individuals there are, the more space can be covered.

An interesting fact is also that, according to the All3 indicator, DE-SMS-PD outper-

forms GDE3 regarding quality of the solutions on all test problems but S_DTLZ3, even

though it signi�cantly o�ers a more diverse set of solutions, the quality of these solutions

is better. At �rst sight, this seems contradicting, because preserving diversity was only

expected to be available at the cost of additional function evaluations. A more detailed

look at the properties of DE-SMS-PD discloses the reason. To properly work, any success-

Parameter GDE3 DE-SMS-PD

µ 101 45

F 0.18/0.5 0.49

CR 0.18/0.1 0.14

L - 0.61

Table 3.16: Comparison of parameter values: GDE3 vs DE-SMS-PD

ful evolutionary algorithm needs a to some degree diverse population, because otherwise

the variation operators cannot exploit structural properties of the �tness landscape by

combining individuals. DE-SMS-PD keeps the diversity up with additional measures, the

number of individuals required in the population to maintain this minimum amount of di-

versity is signi�cantly lower, thus the algorithm can further optimize each individual in the

population more often. In this case the population of DE-SMS-PD is only 45, statistically

each individual is enhanced more than twice as much as in GDE3, where µ is ≈ 100. To

compensate and progress faster in the beginning with a bigger population, many MOEA

(i.e. NSGA-II) use a binary tournament selection [57] to neglect parents with bad �tness

in the breeding process, however GDE3 does not make use of such a feature.

Another important point is, that DE-SMS-PD makes smaller steps in a local area

around the predecessor, but, due to the 1.5 times bigger F value, each step is weighted

more. The e�ect resulting from this behavior is, that search is still local, which is good to
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preserve diversity, but with bigger steps than GDE3-D and GDE3-SMS-D employ. This

behavior can be compared to a music company contracting a lot of musicians. If from

many of those contracts no or only few money can be harnessed because customers do

not buy many of their CDs, those musicians that actually have success need to bring the

company a lot of money, in order to keep the companies balance sheet up.

DE-SMS-CD and DE-SMS-C show a similar behavior like DE-SMS-PD (because the

of the common concept). There are however some di�erences to be discussed. One big

disadvantage of DE-SMS-PD is still, that too many children are dropped prematurely.

To reduce this e�ect towards better performance, while still preserving diversity, those

children are given a second chance to prove their �tness in a contest against all individuals

located in the same cluster. The amount of diversity in the entire population is reduced

by this measure, while performance regarding the quality of the solutions increases. The

Problem DE-SMS-PD DE-SMS-CD Improvement in %

OKA2 1667 11362 581.58

R_ZDT4 1409 5853 315.4

S_DTLZ3 1602 4201 162.23

SYM-PART 3778 5031 33.17

M_S_DTLZ2 4380 6474 47.81

M_S_ZDT1 4461 6838 53.28

M_S_ZDT2 5344 11638 117.78

Table 3.17: Success probability of a child bred in DE-SMS-P and DE-SMS-PD

reasons for improvement over DE-SMS-PD are obvious: the success probability of a child is

increased. The steady-state approach also introduced with this algorithm further improves

the performance (see section 3.1.4). In DE-SMS-P(D) the predecessor represents a region

in decision space to be searched. Of course these regions are not all entirely separated but

some regions can merge into a bigger region. This region is now extended to the entire

cluster, the amount of regions available for search is therefore decreased to the number

of clusters, the number of individuals in that region however increases to the number of

individuals in the cluster. The positive e�ect is that now via parameter C the amount of

regions can be con�gured towards the users needs.

Typically DE-SMS-C(D) forms few big clusters in decision space with many individuals

in it, in these clusters most of the performance improvements occur. The individuals in

smaller clusters, which often contain dominated solutions, are kept to enhance diversity and

explore other areas in decision space. While those dominated solutions do not improve the

�tness of the set of solutions, they can serve as parents for global search if one of the bigger

clusters gets stuck in a local optimum. If the cluster contains at least two individuals, even
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local improvements via local search is possible. During the optimization process individuals

in a small cluster might not improve further for a long time. Small clusters that contain

only one individual can be easily dissolved or migrated to another area in decision space

with better �tness if the individual is chosen as a predecessor and the �tness of the child

has a better �tness. If the child is located somewhere entirely di�erent, the cluster is either

moved or can even be merged with another cluster in close proximity. This way clusters

containing individuals with bad �tness are slowly, but automatically either migrated and

the individuals in it improved or the cluster is decreased by one individual at a time as

the optimization progresses and areas with better �tness are explored. This feature is very

important, because it prevents the algorithm from keeping lots of individuals with bad

�tness and thereby decreasing the �exibility of the algorithm.

The main di�erence in methodology between DE-SMS-CD and DE-SMS-C is, that

without local search, the algorithm tends to form clusters closer to one another, hence the

lower div+ indicator value. The overall area searched is decreased, so is diversity of the

population, but on the other hand, faster progress is possible because of the bigger steps.

Results are therefore slightly better. This behavior can be understood by looking at the

div+ indicator curves (see �gure 3.24). For all test problems, the div+ indicator value of

DE-SMS-C is smaller than the value of DE-SMS-CD.

x1

x2

Figure 3.23: Search pattern of DE-SMS-C(D) in decision space

Development of diversity

The development of the div+ indicator values over the number of function evaluations is

only useful under some conditions. Among the algorithms tested DE-SMS-PD achieves

the greatest diversity in decision space from the beginning, the gradient of the curve is

the lowest. The div+ indicator seems to indicate, GDE3 is able to preserve the diversity

longer than DE-SMS-C(D) on S_DTLZ3 and M_S_ZDT1. This is due to the signi�cantly
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better performance of DE-SMS-C(D) on these test problems. DE-SMS-CD is �guratively

speaking multiple steps ahead as far as the quality of the solutions is concerned. When

GDE3 reaches the same quality the div+ indicator value is actually lower. The same

argument holds for SMS-EMOA(DE) on S_DTLZ3.
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Figure 3.24: Development of the div+ indicator value over function evaluations

SMS-EMOA(DE)

Using di�erential evolution from GDE3 on SMS-EMOA also reveals some interesting re-

sults.

• SBX and PM seem to create only very small improvements with each generation.

• Because the DE variation operator is invariant against the rotation of the search

coordinate system, it also performs much better on rotated functions like SYM-PART

and R_ZDT4.

• Parameter CR = 0.56 is in contrast to all other algorithms 2-3 times as big. Such

a big value is necessary because given the small population size, the diversity of

the population is very low and the algorithm therefore has to create more diverse

individuals at any time to prevent it from getting stuck in a local optimum.
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In order to determine a ranking among the algorithms the sum of squares of the six All3

indicator values can be used the same way as to �nd a good allround parameter set for

each algorithm. As can be seen from the sum of squares of the All3 Indicator, there are

Algorithm SumAll3 Sum2
All3 CSmean SumHV set Sum2

HV set Rank

DE-SMS-C 0.1390 0.0074 1.56 0.5733 0.1613 1

DE-SMS-CD 0.1910 0.0125 2.48 0.7690 0.2727 2

DE-SMS-D 1.0688 0.3871 6.16 1.3763 0.7132 3

GDE3-SMS-D 1.2183 0.4200 1 0.7445 0.3574 4

GDE3-D 1.6256 0.5599 1 0.6682 0.3078 5

SMSEMOA(DE) 1.3196 0.7827 1 0.5510 0.1523 6

GDE3 1.5186 0.8047 1 0.6144 0.1905 7

DE-SMS-P 1.7439 0.9378 1.12 0.4239 0.0734 8

GDE3-SMS 2.0145 1.0635 1 0.1652 0.0155 9

GDE3* 1.9985 1.1632 1 0.6015 0.2573 10

NSGA-II 3.8131 2.5551 1.04 0.1321 0.0174 11

SMS-EMOA 3.8558 2.6188 1 0.1665 0.0277 12

SMS-EMOA* 5.8273 5.3177 0.96 0.0952 0.0091 13

NSGA-II* 6.3407 5.8231 1.16 0.0228 0.0005 14

Table 3.18: Ranking among the algorithms based upon the sum of squares of the All3 indicator

values

some contradictions to statements made above. The most notable is, that GDE3-D has a

better rank than GDE3. This is only because for GDE3 the indicator value on OKA2 is

much worse than for GDE3-D. The sum of squares penalizes bigger values, hence GDE3-

D seems better according to the sum of squares. The diagram above also shows which

improvements are most important. Regarding the performance, algorithms can be roughly

separated into three groups:

1. DE-SMS-C and DE-SMS-CD

2. All other algorithms using di�erential evolution

3. NSGA-II and SMS-EMOA

In each group, the performance is similar, while the di�erence in performance among the

groups is signi�cant. From the di�erence between the algorithms in the groups, the major

improvements to the algorithm can immediately be identi�ed.

1. Di�erential evolution is an improvement over SBX and PM.

2. Additionally selection based on clustering signi�cantly improves overall performance.
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Figure 3.25: Ranking among the algorithms

As far as diversity is concerned, the rank can also be divided into two groups, one group

which members signi�cantly preserve diversity (DE-SMS-C, DE-SMS-CD, DE-SMS-PD)

on the one side and all remaining algorithms on the other. A good compromise between

performance and diversity should therefore be chosen from the �rst group. The best com-

promise between performance and diversity is in the authors opinion DE-SMS-CD, because

compared to GDE3 and SMS-EMOA it o�ers signi�cantly more diversity in decision space

and better performance according to the metrics. If more diversity is required, DE-SMS-

PD is the alternative to be considered, if the focus lies on performance alone, DE-SMS-C

is a good option.
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Chapter 4

Application

In this chapter some of the algorithms evaluated in the previous chapter are applied to

surface reconstruction to see which of the algorithms performs best regarding both diversity

and quality of the solutions.

4.1 Pre-experimental planning

Due to time constraints, only some algorithms can be investigated. Therefore, the most

promising algorithms are chosen to measure quality and diversity of the solutions and

some algorithms are examined for reference and comparison to previous results. DE-

SMS-CD is used because regarding performance it is almost as good as the best DE-

SMS-C in the previous experiments, but signi�cantly performs better as far as diversity

in decision space is concerned. The algorithm performing best concerning diversity, DE-

SMS-PD, is also included into the test set. GDE3 served as the basic template for all

algorithms, NSGA-II is a commonly established and well-known algorithm often used for

comparisons in the area of multi-objective optimization and SMS-EMOA was previously

used for surface reconstruction, hence these three algorithms are investigated as well to see

if any improvement can be achieved from the application of DE-SMS-CD and DE-SMS-PD.

4.1.1 Problem-speci�c optimizations

Even though standard genetic algorithms are black-box optimizers that do not make use

of any special knowledge on the task they perform, their performance can be improved

by incorporating knowledge on the structure of the problem into the variation operators.

Also the process of generating the initial population is crucial, since the path towards a

good solution can be much shorter if the algorithm can already start half-way towards the

optimum, saving many function evaluations for the second half (assuming the algorithm

can �nish the second half equally fast). Clearly, diversity is also an issue. Entirely random

distribution in decision space will demand more function evaluations, with too few diversity

73
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the algorithm is likely going to get stuck in a local optimum prematurely and the solutions

might not meet the user's quality constraints. If possible, both a good variation operator

and a good set of initial individuals are desirable if a genetic algorithm is to be employed

on a practical application.

Variation operator

As already stated above, the design of a suitable variation operator depends on knowledge

about the structure of the problem. Typically, genetic algorithms are applied to problems

that are not fully understood (yet), but even in those cases there is information available,

e.g., on how the problem description is encoded into the individual's allele or what data

structure is used to represent the solution. For surface reconstruction an individual repre-

sents a surface, which is described by the net of control points of a NURBS surface [1] (see

chapter 2.5). While little is known on the process of surface reconstruction, enough infor-

mation is available on NURBS and their properties. The most prominent reason NURBS

are often chosen as representation of the surface consists in local support. Local support

means that the modi�cation of one control point only a�ects a limited area near the con-

trol point, while the rest of the NURBS is entirely una�ected by the change. A genetic

algorithm can thus vary parts of the surface separately and an improvement in the a�ected

area will not result in a deterioration somewhere else on the surface.

Standard variation operators

Both the di�erential evolution used in GDE3 and simulated binary crossover are unsuitable

for surface reconstruction. Di�erential evolution, which only picks entries in the allele at

random, creates many, small and locally di�erent changes. This is not a good idea, because

an improvement in one area might be counteracted by a worsening somewhere else, leading

to rejection of the child. The algorithm does not make use of the previously discussed

local support feature of the surface representation. Since the variation is comprised of cal-

culating the di�erence between two corresponding control points of two di�erent surfaces,

the result is not as bad as it may seem, but there is obviously room for improvement.

Polynomial mutation (PM) introduces a major problem into the process of surface recon-

struction, because it causes too large, punctual and completely random changes. Mutated

surfaces may indeed have a good �tness value with the objectives used, but also show other

properties which disqualify them for practical use. A typical shape disorder are "nibbled

edges" resulting from a control point at the border of the control net being moved outside

the original object. Such a surface looks as if someone had nibbled o� parts of its border.
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Figure 4.1: Nibbled edges

This can happen with di�erential evolution as well, but the e�ect is much less dramatic

there, as the distance a border control point is moved is a lot smaller and not entirely

random, because it happens to be moved only for the di�erence between the position of the

corresponding control point of two (other) surfaces. The opposite can of course also happen,

the resulting edges can appear like a saw. Even with small mutation probabilities pm, as

recommended for the NSGA-II and SMS-EMOA, the calculated surfaces often contain at

least either disorder. So if polynomial mutation is to be used at all, border control points

should be excluded from mutation. As an alternative an additional objective could be

employed to penalize moving border control points too far away from the scan points.

As value for the modi�ed dimensions of the children, simulated binary crossover (SBX

[58]) basically uses the weighted mean of the corresponding values from the parents. In

decision space, the children are always located somewhere in between the parents, de-

pending on the distribution of the initial population, using the SBX operator alone can

therefore limit the search space (see below). In NSGA-II and SMS-EMOA polynomial mu-

tation is introduced to counteract this problem, with the described side-e�ects for surface

reconstruction. Polynomial mutation constantly increases the diversity of the population

if the mutated children are selected. Simulated binary crossover cannot counteract the

side-e�ects from polynomial mutation, because the parameter combinations indicate, PM

a�ects a few (pm ≤ 1
D ), random dimensions in a dramatic way, while SBX replaces values

in a lot of dimensions at once (pc ≈ 1). The standard variation operators are only em-

ployed to show the improvement of di�erential evolution, thus both mutation and binary

crossover are left unchanged; none of the ideas proposed for their enhancement or di�erent

parameter combinations are tested.

Di�erential evolution for NURBS surfaces

A common approach to repairing your broken computer at home is to �nd out what is wrong

and then �x it. Fixing hardware is often di�cult, especially if you do not know anything

about computers, but identifying which hardware component is damaged is simple, by
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trial and error - replace all components, one at a time and see if it works again. A very

naive approach to �x two broken computers without special knowledge is to randomly

switch two corresponding hardware components between the two PCs and check if one

of them works again. Given that each essential component works in at least one of the

computers, eventually one of them will be functioning. Delegated to surface reconstruction:

the basic idea for a better variation operator for NURBS surfaces is to choose one local

area at random for each act of recombination and apply the operator only there. From

now on this area will be called recombination area. This area needs to ful�ll the following

requirements:

• variable size, to allow for recombining small and big areas,

• border of the area is de�ned by control points, since the only thing we modify are

control points and

• simple shape.

A square shape ful�lls all the requirements and is chosen because it is easy to understand

and implement. The recombination area is determined as a sequence of control points,

which are covered by that area:

1. Choose one control point at random. This control point will be designated the center

of the recombination area and the point of origin of the sequence.

2. Go from control point to control point in a spiral around the center, at each position

draw a random number wrand ∈ [0, 1], stop i�

(a) wrand < CR or

(b) all control points from the surface are in the sequence.

If the sequence reaches the border of the control net and would normally leave the

control net, it simply continues on virtual helper control points until it reaches the

next control point that really exists and only then decides whether to continue or

not by drawing another wrand.
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Figure 4.2: Sequence of control points

Once the recombination area is determined, di�erential evolution can be employed on all

the control points in that area. This variation operator is called di�erential evolution for

NURBS surfaces, short: DE_NURBS.

Please note, that while it is possible to do a binary crossover only in the recombination

area, this is not pursued any further as this work is focused on di�erential evolution and

such a variation operator would still su�er from the issues appointed. Among the features

of DE_NURBS are:

• local support,

• great variety of recombination areas and

• less dimensions in decision space.

DE_NURBS can also be seen as classic di�erential evolution [13], but instead of going

from index to index in a linear manner, it simply uses a spiral walk among the control

points.

Initial Population

Because the number of function evaluations is limited to 20000, function evaluations are

a precious resource. Thus, an e�ective way to create an initial population, that already

o�ers acceptable �tness and is as diverse as necessary to allow the evolutionary algorithm

further optimization, is needed.

Interpolation

Weinert et al. [59] propose a linear interpolation between a pre-optimized surface surfpre

with good �tness regarding proximity to the control points and a �at surface surfflat to

create intermediate solutions surfi to �ll the gaps in the Pareto front. Interpolation is a

good means to get intermediate solutions as this way a lot of surfaces can be created very

fast and yet recombination between two surfaces can result in better children (e.g. because
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Figure 4.3: Initial �tness values through interpolation [59]

Algorithm 12 Interpolation between two surfaces

1: P0[0]← surfpre // �rst individual

2: P0[µ− 1]← surfflat // last individual

3: for i = 1 to µ− 2 do // all interpolated individuals

4: n = i
µ−2 // weight factor

5: surfi ← surfpre + n · (surfflat − surfpre) // component-wise interpolation
6: P0[i]← surfi

7: end for

one parents contribution smooths parts of the surface that are not �at enough to get a

good �tness value). While the approach o�ers a great deal of diversity to begin with, the

�tness of the initial population could still be improved and the design of another surface is

required. Even with the same approach, it is possible to get slightly better initial results

by minimizing the average distance of the points to surfflat, thus �nding an optimal initial

position for the second surface for interpolation. Interpolation is a simple means to get

solutions covering the entire spectrum from proximity to the scan points to smoothness of

the surface, however in most cases only parts of the Pareto front generated this way contain

usable surfaces, but the basic idea to interpolate between two surfaces seems a good means

to generate additional initial individuals because no additional function evaluations are

required during the generation.

Filter

surfpre is expected to have a good �tness value regarding the proximity to the scan points,

what it lacks is smoothness. Instead of using an additional surface for interpolation, one
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can therefore smooth the pre-optimized surface with a simple spatial �lter e.g. the well

known mean �lter from digital image processing [60]. The mean �lter uses an operator

window that is moved through an image from the beginning to the end pixel by pixel,

calculating the mean value of all the pixels in the operator window and assigning this

mean value to the pixel it is calculated for. The �lter reduces the di�erence in intensity

between pixels and their neighbors in the image and makes the picture look smoother in

the process.

Instead of reducing the di�erence in intensity, the same �lter will smoothen the control

net, that is reducing the distance variation of the control points and their neighbors in

each direction. The result is a smoother surface than the pre-optimized one. If necessary

this �lter can be applied multiple times in a row in order to get an even smoother second

surface. Various operator windows are common, but as the whole point of using NURBS
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Figure 4.4: Smoothening iterations
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is to have only a small number of (control) points to save, e.g. a 16x16 net, as used in the

experiments later on, a small operator window is preferable. A bigger operator window will

in most cases smooth the net too fast and that is often not desirable for reasons discussed

below. The smallest useful operator window is composed of the control point and its left,

right, upper and lower neighbor (if available).

Figure 4.5: Operator window for the mean �lter

Complications

When applying the �lter some things need to be taken care of, in order to not alienate the

surface too far. Too much di�erence will load a lot of additional work on the evolutionary

algorithm, and since that work is expensive, the less left to do the better. The mean �lter

must not be applied to the border points of the control net. The most important reason

is, that these points lack one neighbor, corner points in the control net even lack two

neighbors. This is a problem, because a border point will move either into or out of the

current pre-optimized surface when the mean value is calculated, shrinking or extending

the surface in the process. This e�ect is cumulative, the more often the �lter is applied,

the smaller (bigger) the surface gets. Because of the reason above, the border points will

stay the same for the pre-optimized surface, the second smoothed surface and all surfaces

interpolated in between. Di�erential evolution is then not be able to change any of the

border points, for if the values for all parents are the same, the di�erence between any

of the parents will always be zero. To avoid this the border points need to be modi�ed

another way after the smoothing process is complete.

In order to add diversity and still preserve the basic shape of the surfaces one can move

each border point of one surface a portion of the distance into the direction it would have

been moved during the last smoothing iteration and move the border point of the other

surface the same distance into the opposite direction. Interpolation between the surface

will then result in values in between. It is obvious that this will most likely decrease the

�tness of the pre-optimized surface, so the portion needs to be small while still adding

enough diversity to the border points. The more border points there are, the smaller the

distance can be since the created surfaces di�er at more points. Initial experiments show

that 1/16 seems to be a decent value for a 16x16 control net, smaller control nets will

probably need a bigger value. Please note, that there is no need to actually decrease the
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performance of the pre-optimized surface and loose �tness in the process, but rather add

a copy of the surface and interpolate between that copy and the smoothed surface.

Advantages

The comparison between the two types of interpolation shows that the use of smoothing

results in a far superior initial population than interpolation alone does achieve on the

considered surface. Also the number of iterations chosen has an impact on the quality of

the initial population. The more iterations, the worse the initial population is, but on the

other hand the more iterations employed, the smoother the second surface becomes and the

more of the Pareto front will be covered. Even with smoothing and interpolation a better

Pareto front can be constructed by interpolating between surfaces surfi and surfi+1. This

can be done without a single function evaluation, as long as none of those surfaces are

evaluated. Since the mean �lter only calculates the value for each of the D control points

once based on a constant operator window, a smoothing iteration can be calculated in

O(D).

4.1.2 Recommended approach

The creation of the initial population as described in the section above can be tuned to

suit the users needs. Therefore, the following systematic approach is suggested:

1. Run deterministic algorithm to optimize the proximity of the NURBS surface to the

control points.
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Figure 4.6: Fitness values attainable by the �lter approach
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2. Run smoothing for n iterations with n ∈ {1, 2, 3, ...} without evaluating these sur-

faces. Usually no more than 16 iterations should be necessary. This requires no

function evaluations.

3. Look at the surfaces created by interpolation. Find the region you wish to investigate

further by choosing two surfaces the following way:

(a) Choose as �rst surface the one that seems good enough with respect to the �rst

objective and still looks good enough to be used as a �nal solution. Usually this

will be the pre-optimized surface.

(b) Choose the second surface by looking at the smoothness of the candidates. Take

the one that in your opinion is smooth enough but still o�ers a good �tness value

for the second objective and would be a candidate if it were a little improved

in some areas. In most cases this will be the one that was smoothed once. If

you do not know which surface to choose, use the surface created by the �rst

iteration.

The space between the two surfaces chosen is the users region of interest and the task

of the evolutionary algorithm will be to search for good solutions in that area. If

this region is signi�cantly limited by the user, the entire function evaluations can be

concentrated to improve the solutions in that area, so no function evaluations will be

wasted by calculating solutions in a region that will be entirely dismissed anyway and

more useful results will be o�ered when the algorithm has �nished the optimization.

4. Do linear interpolation between the two surfaces to �ll the population. This step is

available at no additional cost since a population needs to be generated anyway. If

one of the surfaces already is good enough for the user, there is no need to continue.

5. Run evolutionary algorithm for 20000 function evaluations.

6. One can also try to interpolate solutions between the generated solutions to get a

wider variety of solutions (optional). This however will only work, if the surfaces

chosen for interpolation reside in the same local optimum.

7. Choose the best solution from the Pareto front.
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4.2 Experiments

4.2.1 Task

The task of the following experiments is to �nd out which algorithm is best suited for

surface reconstruction and to check whether the rank established from the experiments

on the test problems is preserved. If the test problems were representative for surface

reconstruction, then the rank among the algorithms should be the same. As secondary

objective is to determine, whether the new variation operator DE_NURBS outperforms

the di�erential evolution variant from GDE3 and to validate.

4.2.2 Setup

Parameters

Algorithm µ F CR L C

DE-SMS-PD 45 0.49 0.14 (0.9) 0.61 7

DE-SMS-CD 45 0.49 0.14 (0.9) 0.61 7

GDE3 101 0.18 0.18 (0.9) - -

µ pm pc ηm ηc

SMS-EMOA 157 -1.33 0.7 21 5

SMS-EMOA* 100 -1 1 20 15

NSGA-II* 100 -1 1 20 15

Table 4.1: Parameter combinations for surface reconstruction

Common setup

Each algorithm is run for 20000 function evaluations 25 times with the same parameter

combination. Like in chapter 3.3.3 for every run of an algorithm the ε-, hypervolume-

R2-indicator are calculated. From the median of these three values the All3 indicator is

computed for easier comparison. These three indicators require a reference set for com-

puting the results. Additionally the diversity is measured via the div+ indicator. As the

div+ indicator measures diversity aside any quality concerns, the diversity is determined

from the entire population, even if some individuals are not located in the region solutions

are accepted from. To see whether the results are statistically relevant, a Kruskal-Wallis

test is performed.
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Initial population

For all algorithms, the initial population is interpolated between the pre-optimized surface

surfpre and the �rst �ltering iteration surff1, because on the one hand, the quality of

surff1 is not very good regarding the proximity to the scan points and every later iteration

would be even worse. On the other hand, compared to the other methods, this initialization

already creates better results according to metrics without a single function evaluation. To

analyze the improvement, 25 runs of SMS-EMOA with the default parameter combination

are run with a randomly initialized population and additional 25 runs with the interpolation

alone as proposed by Weinert et al. [59].

Variation operator

DE-SMS-PD, DE-SMS-CD and GDE3 are run with both the standard variation operator

from GDE3 and DE_NURBS separately to examine the impact of the new variation opera-

tor. The parameter CR requires a di�erent value for DE_NURBS because the dimensions

are picked in an entirely di�erent way than in the ordinary GDE3. Since CR = 0.9 is

often recommended for di�erential evolution [13] and DE_NURBS and di�erential evolu-

tion proposed by Storn and Price create the sequence of dimensions to mutate in a similar

way (the stopping criterion is the same), a similar value can also be expected to work for

DE_NURBS, especially because the number of control points is high. As 25 runs of each

algorithm take approximately 24 hours, no optimization of this parameter is feasible.

The surface

The scan of the top of a piston is reconstructed in the experiments. This surface features

several di�erent properties the algorithms have to deal with, like a circular shaped foun-

dation, �at areas and a steep peak and is therefore considered di�cult to reconstruct. The

control net is setup with 256 control points in a 16x16 grid, surfpre is obtained via the

SVD approach (see chapter 2.5.2). The position of the control points is optimized for:

1. average distance over all minimal distances between the NURBS surface and the

control points.

2. regularity of the NURBS surface.

The �rst objective is chosen because it represents the proximity to the surface adequately

and is yet relatively fast to evaluate. The second objective is employed because it is

(partially) not correlative to the �rst objective and prefers smoother surfaces. Many real

objects to be reconstructed feature smooth areas, hence the second objective punishes

control nets where the corresponding NURBS surface is irregular in those areas.
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(a) The piston (b) Result from the scan

(c) Filtered scan points (d) Pre-optimized surface

Figure 4.7: Steps leading to the pre-optimized surface in the hybrid approach. Pictures: c© 2009
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Figure 4.8: Approximation set for the surface
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As no suitable reference set is available for the surface, the non-dominated set of all

computed solutions is used instead. Before the ε-, hypervolume- and R2 indicators are

calculated, solutions with a worse �tness value than surff1 regarding the �rst objective

and solutions with a worse �tness value than surfpre regarding the second objective are

removed. It may not seem fair to compare interpolation alone and interpolation with

additional �ltering in the (limited) area between surfpre and surff1, as the strength of

the approach by Weinert at al. is to cover the entire bandwidth between regularity and

proximity to the scan points. However, since the large areas of the Pareto set are not useful

for practical purposes on the given surface, taking solutions into consideration which do

not meet quality constraints of the user anyway, is not feasible.

4.2.3 Results

In the experiments, some algorithms have been used which only di�er in the variation

operator. Algorithms employing DE_NURBS are denoted with the index "N" in the

tables below. SMS-EMOA is analyzed in di�erent types of initialization and with two

di�erent parameter combinations. To tell these apart an index is appended as well. Index

"B" denotes the best overall parameter combination determined in chapter 3, "D" marks

the recommended (default) parameter combination, "R" labels the initial population was

initialized randomly and "W " means the interpolation proposed by Weinert et al. [59] was

used instead.

ε-indicator hyp-indicator R2-indicator All3

Algorithm median mean std median mean std med mean std indicator

DE-SMS-CDN 0.0390 0.0459 0.0202 0.0384 0.0383 0.0077 0.0103 0.0105 0.0027 0.0000

DE-SMS-PDN 0.0425 0.0443 0.0064 0.0449 0.0458 0.0063 0.0118 0.0121 0.0018 0.0071

DE-SMS-CD 0.0532 0.0687 0.0488 0.0489 0.0534 0.0170 0.0128 0.0154 0.0085 0.0151

GDE3 0.0459 0.0473 0.0039 0.0571 0.0582 0.0037 0.0153 0.0155 0.0010 0.0199

DE-SMS-PD 0.0511 0.0556 0.0110 0.0697 0.0694 0.0082 0.0179 0.0184 0.0026 0.0324

GDE3N 0.0691 0.0677 0.0054 0.0828 0.0828 0.0035 0.0224 0.0222 0.0011 0.0530

SMS-EMOAD 0.0871 0.0866 0.0030 0.1068 0.1064 0.0028 0.0277 0.0276 0.0013 0.0810

NSGA-II 0.1070 0.1078 0.0043 0.1345 0.1344 0.0048 0.0333 0.0335 0.0017 0.1123

SMS-EMOAB 0.1130 0.1132 0.0014 0.1555 0.1557 0.0014 0.0412 0.0409 0.0010 0.1364

Initial1 0.1159 0.1649 0.0436 0.1459

SMS-EMOAW 0.6665 0.6565 0.0274 0.5199 0.5204 0.0092 0.2397 0.2360 0.0096 0.8144

SMS-EMOAR 0.8263 0.8264 0.0125 0.5987 0.5988 0.0126 0.3018 0.3019 0.0063 1.0000

Table 4.2: Performance on surface reconstruction
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Figure 4.9: All3 indicator on surface reconstruction

Figure 4.10: All3 indicator on surface reconstruction
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div+ indicator

Algorithm median mean std

DE-SMS-CDN 850.70 853.93 42.19

DE-SMS-PDN 900.73 903.19 25.59

DE-SMS-CD 995.58 977.90 70.38

GDE3 805.05 806.43 15.56

DE-SMS-PD 975.59 976.28 25.82

GDE3N 729.78 730.30 13.72

SMS-EMOAD 1958.18 1952.36 57.06

NSGA-II 1518.80 1517.68 46.11

SMS-EMOAB 1127.59 1129.96 27.15

Initial1 648.94

SMS-EMOAW 4225.55 4204.49 81.93

SMS-EMOAR 491.30 480.69 86.45

Table 4.3: Diversity on surface reconstruction (div+ indicator)

Figure 4.11: div+ indicator on surface reconstruction

1from SMS-EMOAB
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Figure 4.12: div+ indicator on surface reconstruction

4.2.4 Observations

From the results several expected patterns can be noticed:

• The biggest improvement of all is achieved by the smart creation of the initial pop-

ulation.

• The new variation operator DE_NURBS is better on DE-SMS-CD and DE-SMS-PD

than the standard di�erential evolution from GDE3. In GDE3 itself the situation is

reverse.

• The di�erential evolution from GDE3 is a better variation operator for surface re-

construction then SBX and PM, hence DE-SMS-CD, DE-SMS-PD and GDE3 are

preferable to NSGA-II and SMS-EMOA.

Surprisingly also some unexpected results can be observed from the data:

• More diversity in decision space is maintained through both DE-SMS-CD and DE-

SMS-PD compared to GDE3 according to the div+ indicator, though the di�erence

in div+ indicator values between the algorithms is smaller than expected from the

experiments in chapter 3.

• Algorithms using the SBX and PM variation operators reach a higher diversity than

algorithms using di�erential evolution regarding the div+ indicator.

• Without the new variation operator, GDE3 performs better than DE-SMS-PD ac-

cording to the All3 indicator.

• SMS-EMOAB doesn't seem to achieve a signi�cant improvement.
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No. Expected rank Rank (new variation) Rank

1 DE-SMS-CD DE-SMS-CD DE-SMS-CD

2 DE-SMS-PD DE-SMS-PD GDE3

3 GDE3 GDE3 DE-SMS-PD

4 SMS-EMOA SMS-EMOAD

5 SMS-EMOAD NSGA-II

6 NSGA-II SMS-EMOA

Table 4.4: Expected ranking and ranking determined from the experiments

• In the area examined, interpolation alone improves performance only slightly com-

pared to interpolation and �ltering.

As far as the rank is concerned the situation is inconsistent (table 4.4). If only the algo-

rithms using DE_NURBS are considered, the ranking is maintained as determined in the

previous chapter with the exception that the best parameter combination for SMS-EMOA

does not work very well at all and therefore only reaches the last rank. If the algorithms

using the standard variation operator from GDE3 are taken into account, also GDE3 and

DE-SMS-PD switch positions.

4.2.5 Discussion

In this section a more detailed analysis of the observations is given, with emphasis on

the practical use of the algorithm which turned out to be the best. The behavior of all

algorithms is analyzed and the implications for surface reconstruction, derived from the

behavior, are explained.

The initial population is the key

With the right initialization (mean �lter and interpolation), every algorithm investigated

outperforms SMS-EMOAI and SMS-EMOAR according to the metrics used in the experi-

ments. Since the initial population already o�ers better indicator values than SMS-EMOAI

and SMS-EMOAR can calculate with 20000 function evaluations, this is no surprise. But

the di�erence in performance shows how important a good initial population for surface

reconstruction is. Problem-speci�c knowledge can additionally be encoded into the way

the initial population is created. Future research could investigate other real-world prob-

lems for potential improvement regarding the use of problem-speci�c knowledge to create

the initial population. Most objects which can be adequately described by a NURBS

surface contain smooth parts. Approximation to the scan points via the SVD approach

does not care about regularity, which is why the additional objective is introduced into
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the evolutionary algorithm. The variation in the surface does not adequately describe

the surface, but nevertheless the surface happens to show a good proximity to the scan

points. The linear interpolation between surfpre and surfflat creates surfaces lying fairly

distributed between the interpolated surfaces in objective function space. With each step

from the surfpre to surfflat all areas of the interpolated surface almost equally decrease

performance regarding the �rst objective and increase performance regarding the second

objective. By using the mean �lter, areas of the surface with bigger variation are smoothed

with one or few �ltering iterations without decreasing the proximity to the points as far

as interpolation alone does. The mean �lter literally "irons" the surface. The obtained

surface surff1 can then be used for interpolation as usual, the only di�erence is, that its

�tness is much better than surfflat and so are the interpolated solutions.

Best algorithm for surface reconstruction

According to the the All3 indicator the best algorithm is DE-SMS-CD using the DE_NURBS

variation operator (DE-SMS-CDN in the tables). The Pareto fronts of DE-SMS-CD and

DE-SMS-CDN show the standard variation operator is unable to �nd better solutions re-

garding the �rst objective than surfpre already o�ers, improvements are only obtained

between the two interpolation points. The reason is simple. Most areas of the surface

surfpre already feature a good approximation of the desired surface regarding the proxim-

ity between surface and scan points, only some small areas need to be adjusted. Uniformly

distributed choice of many dimensions in decision space selects less likely control points

from a region that can be improved, than it selects control points from a region, where an

improvement can be expected. On average more harm is done than improvement achieved

as far as the �rst objective is concerned in the upper left part of the Pareto front. Due to

the locally restricted choice of control points DE_NURBS is able to improve a region that

needs improvement without downsides elsewhere on the surface.

By applying the mean �lter to surfpre and interpolating additional solutions between

surfpre and surff1 solutions are generated with a worse �tness regarding the �rst objective.

The closer to surff1 the solution is, the worse its �tness as far as proximity to the scan

points is concerned. Almost in all areas of the surface, the proximity to the scan points

can be improved, thus the standard variation operator can improve multiple parts of the

surface at the same time without too many deteriorations elsewhere on the surface.

Regarding the second objective the standard variation operator slightly outperforms

DE_NURBS in the right part of the Pareto front. As the crossover parameter CR is set to

0.14, on average approximately every 7th of the 768 dimensions (≈ 110) in decision space

is recombined during every function evaluation. The probability DE_NURBS modi�es

exactly n control points is CRn(0.9n), therefore the probability
⌊

110
3

⌋
control points are
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modi�ed equals CRb
110
3 c = 0.936 = 0.0225. Thus, on average a much smaller amount of

control points is modi�ed by DE_NURBS (see below).

Nevertheless children bred by the DE_NURBS variation operator have a much greater

chance of success than those created via di�erential evolution from GDE3. For DE-SMS-CD

almost three times as many children survive, for DE-SMS-PD the increase is even higher

(approx. 3.5 times). For GDE3 almost twice as many children survive when DE_NURBS

is used. GDE3 cannot pro�t from the better variation operator. The parents are chosen

uniformly distributed from the entire population, hence the distance between the parents

is often too great. As a result the area is modi�ed too far into the right direction and

the child therefore features worse �tness regarding both objectives. GDE3-DN and GDE3-

SMS-DN breed the same way as DE-SMS-CD does and should show a similar behavior as

DE-SMS-CD. Those two algorithms can therefore be investigated in the future regarding

their performance in surface reconstruction. Due to the smaller population size, per

Algorithm #Children

DE-SMS-CD 2209

DE-SMS-CDN 5994

DE-SMS-PD 1316

DE-SMS-PDN 4782

GDE3 1549

GDE3N 3013

NSGA-II 1869

SMS-EMOAD 6519

SMS-EMOAB 8342

SMS-EMOAW 7735

SMS-EMOAI 11680

Table 4.5: Number of children surviving the generation they were bred in

Figure 4.13: Areas, where the distance between surface and scan points needs improvement

individual in the population, more optimizations than in GDE3 are possible. Usually one
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CP Modi�ed dimensions Probability

1 3 0.1

2 6 0.19

3 9 0.27

4 12 0.34

5 15 0.41

7 21 > 0.5

14 42 > 0.75

22 66 > 0.90

29 87 > 0.96

44 132 > 0.99

Table 4.6: Probability less than CP control points are modi�ed by DE_NURBS (with CR = 0.9)
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Figure 4.14: Comparison: standard vs new variation operator
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Figure 4.15: Interpolation of new solutions from the �nal population of DE-SMS-CDN

of the downsides of a smaller population size is the smaller number of solutions to choose

from when the optimization process is complete. For surface reconstruction this does

not hold since the same way the initial population was generated, additional solutions

can be interpolated, where desired, between neighbors in objective function space. If

these solutions are not evaluated, no additional function evaluation is required. DE-SMS-

PD behaves analog to DE-SMS-CD. Since DE-SMS-PD is more restrictive concerning the

selection, the performance is slightly worse and the div+ indicator value is slightly better.

All algorithms using simulated binary crossover and polynomial mutation can be con-

sidered inferior to the algorithms using di�erential evolution. For example, after less than

6500 function evaluations DE-SMS-CDN attains the same hypervolume indicator value as

SMS-EMOAD. The reasons have been described in the motivation for the development of

DE_NURBS, basically simulated binary crossover only creates marginally improved chil-

dren, while mutation is the dominant variation operator. Unfortunately polynomial mu-

tation also favors the generation of malformed surfaces (see section 4.1.1). The parameter

set of SMS-EMOAB practically disables polynomial mutation (pm = 0.000145) in surface

reconstruction. Approximately only one child in 10 is mutated in one dimension. As we

established above, mutation is causing most of the improvements in SMS-EMOA on sur-

face reconstruction, almost disabling mutation it is therefore not feasible. The previously

determined best overall parameter set is therefore not useful for surface reconstruction.

Though both algorithms use the same parameter combination, SMS-EMOAD outperforms

NSGA-II mostly due to the steady-state approach. More interesting than their perfor-

mance is the diversity attained by those algorithms. For SMS-EMOAD the div+ indicator

value is more than twice as high as for the algorithms using di�erential evolution. At
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Figure 4.16: Development of the indicator values

�rst sight this seems a desirable feature despite the performance issues SMS-EMOA su�ers

from, especially as preserving additional diversity is the major goal of this work. A more

detailed analysis of how this diversity is attained shows, the diversity is indeed higher,

but in the case of surface reconstruction not desirable. Again polynomial mutation is the

problem: large, punctual changes in the surfaces cause the di�erence between the indi-

viduals to grow, thus the diversity increases and the div+ indicator detects this correctly.

However many of the mutations cause an unwanted shape-disorder, like "nibbled edges"

or "blister". Figuratively speaking the additional diversity is bought at the cost of mostly

unusable surfaces and thus neither desirable nor a feature.

To recapitulate the results, the combination of the established hybrid approach (see

chapter 2.5.2) with DE-SMS-CDN is a huge improvement for surface reconstruction. The

most important factors for the improvement are

1. the enhanced initial population,

2. the improved variation operator for NURBS surfaces in combination with the cluster

analysis during breeding.
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Chapter 5

Summary and future work

5.1 Summary

The �rst two chapters introduced the basic algorithms and methods used to create an

improved algorithm for surface reconstruction and described state-of-the-art approaches

for the reconstruction of a surface from a huge number of scan points. A hybrid approach

between numerically solving a set of linear equations to determine a surface with good

�tness values regarding proximity to the scan points and a multi-objective evolutionary

algorithm to �nd solutions additionally satisfying regularity of the surface, computes ac-

ceptable results in a reasonable amount of time.

In chapter 3 several enhancements to the algorithm GDE3 [5] for performance diversity

were proposed. The performance related improvements included known tweaks for evolu-

tionary algorithms, like S-metric selection and the steady-state selection scheme used in

SMS-EMOA [3]. Signi�cant changes to the selection of parents were investigated. Based

on a cluster analysis the population can be partitioned into groups of parents with similar

properties. By choosing similar or totally di�erent parents, the search can be divided into

local and global search. This improvement alone turned out not to be successful. To attain

more diversity the selection was modi�ed as well. The main idea behind the modi�cations

was to systematically limit the group of individuals a child can replace. If a child only can

replace similar individuals, the population remains more diverse than if always the worst

individual is deleted. Combined with the cluster-based choice of parents this approach

showed good performance on test problems and was able to search the decision space more

widely.

Some of the algorithms were applied to surface reconstruction to see if any improvement

regarding diversity and performance can be achieved during the multi-objective optimiza-

tion part. To increase performance problem-speci�c knowledge was employed to create

the initial population. With a pre-optimized surface already available, several other also

very good solutions can be obtained by �rst smoothing the control net from the surface
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already available with a mean �lter and then linearly interpolate between the original and

the smoothened surface. Using this measure alone dramatically improved the results.

Additionally the variation operator DE_NURBS (di�erential evolution for NURBS

surfaces), which exploits the local support of NURBS surfaces, was designed to improve

shortcomings of the variation operators simulated binary crossover and polynomial muta-

tion. If used together with cluster-based breeding, DE_NURBS is able to also signi�cantly

improve the performance of a multi-objective evolutionary algorithm for surface recon-

struction. Both the general enhancements from chapter 3 and the special optimizations to

surface reconstruction turned out to work well together. Even though the improvements to

surface reconstruction are explicit, it remains hard to put reliable numbers to the overall

performance gain.

5.2 Future work

During this thesis a lot of new ideas came up which cannot be covered by this work alone.

The algorithms developed o�er a great deal of opportunities for further enhancement,

both for multi-objective evolutionary algorithms in general and optimizers for surface re-

construction. The most important new ideas are brie�y discussed below.

General

As only the behavior of the algorithms for 20000 function evaluations was investigated,

parameter combinations for more or less function evaluations cannot be recommended. A

full parameter optimization [52] may prove useful before applying the algorithm to other

real-world problems. But even for 20000 function evaluations the parameter L can be

improved. Some tests on the function evaluations indicate L = 0.8 is a better choice,

but a more profound analysis is required to support this claim. Porting back some of

the improvements to single-objective di�erential evolution could be explored to further

enhance single-objective algorithms.

Clustering

One type of cluster analysis (HACM with number criterion) with one distance measure (eu-

clidean distance) was implemented and tested. However clustering can be done in various

di�erent ways, future research should hence compare suitable clustering algorithms for use

in evolutionary algorithms. The C clustering library [49] already o�ers implementations of

various algorithms and distance measures.
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Variation operator

Even though cluster-based breeding alone did not outperform uniformly distributed choice

of the parents in the experiments on the test functions, the concept of dividing into local

and global search o�ers opportunities for further upgrades. For instance, a dynamic step-

size can be integrated into the parameter F . For each cluster the value of F can be stored

and updated dynamically (e.g. implementing the 1/5th rule by Rechenberg [61]) according

to common approaches. If local search is performed, the F value is determined from the

cluster the parents are chosen from, if all parents are chosen from di�erent clusters, the

mean value of the F values from the clusters containing ~x1 and ~x2 is computed. Such

an approach could improve convergence while global search prevents the algorithm from

getting stuck in a local optimum prematurely.

Other problems

There are also lots of other test and real-world problems, evolutionary algorithms are

applied to, where e.g. DE-SMS-CD can promise improvements because of its major fea-

tures. One step to further acceptance of this algorithm could be to attend MOEA contests

(assuming it is able to attain decent performance on the test problems involved).

Surface reconstruction

As far as surface reconstruction is concerned, the performance of DE-SMS-CDN on other

surfaces needs to be evaluated. Additional or other objectives can be used and also more

than two objectives should be tested. Interpolation with three or more objectives also

needs modi�cations. A parameter optimization for DE-SMS-CD on surface reconstruc-

tion can also lead to additional performance improvements. Since the variation operator

DE_NURBS was proven successful and exploits the local support feature of NURBS sur-

faces, determining areas of a surface, where the most improvement can be achieved, seems

the next logical step towards better performance of the evolutionary algorithm within the

hybrid approach. Once these areas are determined, the focus of the variation operator can

be limited or at least more often applied there.
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Appendix A

Data from experiments

A.1 Latin Hypercube Designs

GDE3(-SMS), DE-SMS-P Algorithms with clustering NSGA-II, SMS-EMOA

µ CR F µ CR F L C/µ µ t(pm = Dt) pc ηm ηc

22 0.65 0.41 22 0.62 0.67 0.73 0.12 22 -1.54 0.9 20 25

28 0.38 0.22 28 0.4 0.3 0.49 0.07 28 -1.24 0.87 20 6

34 0.43 0.56 34 0.76 0.27 0.53 0.18 34 -1.21 0.61 15 28

39 0.77 0.65 39 0.46 0.41 0.09 0.17 39 -0.64 0.78 25 23

45 0.28 0.8 45 0.14 0.49 0.61 0.15 45 -1.9 0.67 18 15

50 0.2 0.38 50 0.36 0.78 0.19 0.1 50 -0.76 0.75 6 15

56 0.57 0.82 56 0.28 0.86 0.57 0.2 56 -1.06 0.55 17 9

62 0.64 0.17 62 0.43 0.48 0.85 0.24 62 -1.63 0.92 8 13

67 0.86 0.25 67 0.65 0.64 0.29 0.25 67 -1.36 0.74 30 12

73 0.17 0.61 73 0.41 0.19 0.93 0.14 73 -1.57 0.56 6 18

79 0.48 0.31 79 0.72 0.4 0.07 0.08 79 -0.7 0.99 16 16

84 0.83 0.83 84 0.86 0.7 0.23 0.15 84 -0.88 0.89 12 29

90 0.61 0.52 90 0.27 0.14 0.43 0.21 90 -1.66 0.68 29 26

95 0.41 0.7 95 0.83 0.32 0.69 0.07 95 -1.15 0.76 17 17

101 0.18 0.18 101 0.25 0.73 0.77 0.06 101 -0.58 0.73 23 8

107 0.88 0.54 107 0.2 0.35 0.05 0.09 107 -1.81 0.81 8 27

112 0.35 0.48 112 0.78 0.43 0.97 0.16 112 -1.87 0.94 24 14

118 0.73 0.33 118 0.73 0.84 0.75 0.21 118 -0.94 0.54 28 21

123 0.46 0.1 123 0.19 0.56 0.17 0.23 123 -0.52 0.59 15 21

129 0.15 0.78 129 0.38 0.72 0.99 0.16 129 -1.12 0.93 29 24

135 0.67 0.73 135 0.7 0.17 0.11 0.22 135 -1.78 0.66 9 7

140 0.44 0.88 140 0.57 0.11 0.41 0.12 140 -0.91 0.88 9 5

146 0.12 0.43 146 0.49 0.52 0.45 0.1 146 -1.69 0.51 27 12

152 0.78 0.14 152 0.48 0.88 0.13 0.19 152 -1.93 0.57 18 27

157 0.52 0.36 157 0.75 0.8 0.37 0.05 157 -1.33 0.7 21 5

163 0.33 0.27 163 0.12 0.25 0.65 0.09 163 -0.97 0.64 5 28

168 0.49 0.62 168 0.52 0.51 0.51 0.19 168 -1.45 1 13 22

174 0.27 0.67 174 0.6 0.12 0.79 0.22 174 -1 0.69 22 30

180 0.7 0.51 180 0.11 0.76 0.35 0.14 180 -1.03 0.98 26 9

185 0.9 0.35 185 0.16 0.36 0.89 0.2 185 -1.27 0.52 16 19

191 0.85 0.72 191 0.84 0.75 0.87 0.11 191 -1.84 0.86 23 29

197 0.69 0.9 197 0.88 0.46 0.59 0.23 197 -1.39 0.8 5 16

202 0.22 0.12 202 0.51 0.44 0.95 0.08 202 -0.55 0.84 10 20

208 0.72 0.28 208 0.89 0.38 0.21 0.12 208 -0.85 0.6 7 10

213 0.31 0.44 213 0.3 0.81 0.67 0.24 213 -1.75 0.91 14 6

219 0.23 0.86 219 0.56 0.65 0.01 0.1 219 -0.61 0.77 28 20

225 0.56 0.15 225 0.44 0.89 0.63 0.11 225 -1.96 0.72 25 13

230 0.62 0.69 230 0.64 0.57 0.03 0.22 230 -1.3 0.79 19 18

236 0.1 0.59 236 0.24 0.28 0.15 0.16 236 -0.73 0.53 22 11

241 0.39 0.64 241 0.54 0.22 0.25 0.06 241 -1.99 0.85 12 19

247 0.14 0.3 247 0.81 0.2 0.81 0.13 247 -1.18 0.71 30 10

253 0.54 0.39 253 0.22 0.6 0.33 0.06 253 -0.82 0.96 21 26

258 0.82 0.49 258 0.8 0.83 0.39 0.18 258 -1.72 0.58 7 22

264 0.51 0.85 264 0.32 0.33 0.47 0.24 264 -1.42 0.83 11 30

270 0.8 0.77 270 0.17 0.62 0.83 0.13 270 -0.67 0.82 19 7

275 0.36 0.2 275 0.59 0.54 0.91 0.2 275 -1.48 0.62 27 25

281 0.75 0.23 281 0.35 0.16 0.71 0.14 281 -1.6 0.95 26 17

286 0.25 0.75 286 0.67 0.24 0.31 0.18 286 -1.09 0.97 10 14

292 0.3 0.46 292 0.68 0.59 0.55 0.08 292 -1.51 0.63 14 8

298 0.59 0.57 298 0.33 0.68 0.27 0.17 298 -0.79 0.65 13 23

Table A.1: LHS design �le for parameter optimization
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A.2 Kruskal-Wallis test results

The parameter α was set to 0.01 for all problems. The tables contain the p-values for each

pair of algorithms Arow, Acolumn for the alternative hypothesis (= the indicator values of

Acolumn are signi�cantly better than the ones of Arow).
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