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Abstract

We discuss congruences for stochastic relations, stressing the equivalence of smooth equiva-
lence relations and countably generated σ-algebras. Factor spaces are constructed for congru-
ences and for morphisms. Semi-pullbacks are needed when investigating the interplay between
congruences and bisimulations, and it is shown that semi-pullbacks exist for stochastic rela-
tions over analytic spaces, generalizing a previous result and answering an open question.
Equivalent congruences are investigated, and it is shown that stochastic relations that have
equivalent congruences are bisimilar. The well-known equivalence relation coming from a
Hennessy-Milner logic for labelled Markov transition systems is shown to be a special case in
this development.

Keywords: Stochastic relations over Polish and analytic spaces, bisimulation, semi-pullbacks,
congruences, factorization.
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1 Introduction

The characterization of bisimulation for labelled Markov transition systems through accep-
tance of the same formulas in a simple negation free Hennessy-Milner logic in [4] and subse-
quently in [10] used as an essential property the fact that the underlying equivalence relation
is countably generated. Take two such transition systems over the state spaces S and S′,
resp., then the states s ∈ S and s′ ∈ S′ are equivalent iff

∀ϕ ∈ Φ : s |= ϕ⇔ s′ |= ϕ

Here Φ is the countable set of all formulas for the logic. Satisfaction of formula ϕ translates
to the Borel set {s ∈ S|s |= ϕ} of states that satisfy ϕ, and these sets in turn generate the
σ-algebra C(Φ, S) of measurable sets which are invariant under the equivalence relation just
mentioned. C(Φ, S) is thus a countably generated sub-σ-algebra of the Borel sets of the state
space, the atoms of which are just the equivalence classes for the equivalence relation; it is
related to the transition system since equivalent states display the same behavior on each of
its members.
Searching a suitable model for characterizing equivalent behavior for stochastic relations, it
turns out that those properties of the equivalence relation that are not too closely tied to
a labelled Markov transition system may be used to formulate a congruence. An additional
property has to be taken into account: while a Markov system operates on a state space,
a stochastic relation operates between two spaces: a Markov process may be characterized
through a family (ka)a∈L of transition probabilities ka : S � S, and an equivalence needs
only be formulated on S characterizing changes of state, a stochastic relation K : X � Y is a
transition probability between an input space X and an output space Y , so the counterpart
of such an equivalence relation ought to characterize equivalent input behavior reflected by
equivalent output behavior. Thus technically two equivalences are needed.
This paper proposes the characterization of congruences for stochastic relations through two
equivalence relations. Roughly speaking, equivalent inputs lead to equivalent outputs. While
the equivalence of inputs is easily formulated, the equivalence of outputs is more difficult to
capture, since it is usually not sensible to assign a probability to single points of the output
space. This is so since there may be uncountably many of them. Here the characterization
of equivalences through countably generated sub-σ-algebras comes in handy, since equivalent
behavior can then be modelled through being assigned the same probability on the corre-
sponding σ-algebra. This leads to the description of a congruence for a stochastic relation
K : X � Y as a pair 〈≈,A〉 consisting of a countably equivalence relation ≈ on the input
space X and a countably generated σ-algebra A on the output space so that

x ≈ x′ ⇒ ∀A ∈ A : K(x)(A) = K(x′)(A)

holds. Thus the congruence models identical behavior on a well-defined subset of the universe
to be described. We can characterize congruences more uniformly through a pair of count-
ably generated σ-algebras by providing transfer statements between these two forms for the
representation of a countably generated σ-algebra. The case of Markov transition systems is
thus captured as a special case.
This paper studies these congruences in order to provide some algebraic background to the
study of stochastic relations. These relations are the counterpart to their better known
cousins, nondeterministic relations, with which the share some properties. It is well known,
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for example, that nondeterministic relations are closely related to the Kleisli construction for
the powerset monad in the category of sets; Giry’s work shows that a similar construction
can be carried out for the functor that assigns each measurable space the set of all probability
measures. In both cases the relational product is the Kleisli product associated with the
corresponding monad [12, 17, 8]. Probabilistic relations have a converse [1, 9] in much the
same way nondeterministic ones have one; a demonic product can be formulated for them [7]
with similar properties as for their nondeterministic counterpart [6], and finally their similarity
is so strong that a common monadic formulation can be found for a rather popular software
architecture [9].
On the algebraic side, however, their theory is not that elaborate as in the nondeterministic
case, as a mere glimpse at the survey [3] on relation algebras indicates. Constructions which
can be carried out readily for nondeterministic relations turn out to be rather cumbersome
for the stochastic case. This is indicated by the amount of Measure Theory necessary for
constructing the converse of a relation, and it becomes evident when it comes to think about
semi-pullbacks. Recall that in a category the semi-pullback of a pair of morphisms f : a →
b, g : c → b with the same target is a pair of morphisms p : s → a, q : s → c with a common
domain which makes the diagram

s
q � c

a

p

�

f
� b

g

�

commutative. It can be shown that a pullback exists in the category of nondeterministic
relations (which is a much stronger property than a mere semi-pullback), and it can also be
shown that semi-pullbacks exists in the category of stochastic relations, provided the base
spaces are Polish, i.e., are second countable topological spaces which can be metrized through
a complete metric. But it can also be shown that this does not go much further algebraically:
an example shows that weak pullbacks (and hence pullbacks) do not exist in this category [10].
Bisimulations and congruences are closely related also for stochastic relations, as we know
from [4, 10]. The links between them is provided through semi-pullbacks, so that a study of
congruences suggests also studying this weak form of pullback. Because the factor space of a
congruence usually is an analytic space, i.e., the image of a Polish space under a measurable
map, is seems worthwhile to study pullbacks also for analytic spaces. Generalizing a previous
result we can show that semi-pullbacks also exist in the category of stochastic relations over
analytic spaces. This result seems to be new, the technique for obtaining it is quite closely
related to the one proposed in [10] which uses the existence of measurable selectors for set
valued maps. Given this result, we can show that stochastic relations for which equivalent
congruences exist are bisimilar. Congruences are equivalent if they essentially describe the
same behavior, essentially meaning that the corresponding σ-algebras are isomorphic.

Overview The paper is organized as follows: we give the necessary background from Mea-
sure Theory in Section 2, Section 3 shows how to extend a particular semi-pullback of mea-
sures. This is a central technical result for establishing the existence of semi-pullbacks for
categories of stochastic relations over a variety of base spaces, most notably over Polish and
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over analytic spaces in Section 6. Semi-pullbacks require the notion of morphism which is
introduced and studied in Section 5; this Section introduces also bisimilarity and studies
congruences together with morphisms. Congruences are introduced in Section 4, here also
the relations between congruences and countably generated σ-algebras emanating mainly
from Blackwell’s Theorem are formulated. It is shown in particular that there is an anti-
isomorphism between smooth equivalence relations and these σ-algebras. Section 6 also con-
tains construction providing a bisimulation for equivalent congruences.

Acknowledgement The author thanks Georgios Lajios for his critical comments. Michael
Ershov (Essen) was helpful in pointing out a way simplifying the approach to the measure
extension in Section 3, leading ultimately to a much more general solution than the author
originally had in mind.
The diagrams in this paper were typeset using Paul Taylor’s wonderful diagrams package.

2 Polish Spaces, Measures and All That

This Section collects some basic facts from topology and measure theory for the reader’s
convenience and for later reference.
A Polish space (X,T ) is a topological space which is second countable, i.e., which has a
countable dense subset, and which is metrizable through a complete metric, a measurable
space (X,A) is a set X with a σ-algebra A. The Borel sets B(X,T ) for the topology T is the
smallest σ-algebra on X which contains T . A Standard Borel space (X,A) is a measurable
space such that the σ-algebra A equals B(X,T ) for some Polish topology T on X. Although
the Borel sets are determined uniquely through the topology, the converse does not hold, as
we will see in a short while. Given two measurable spaces (X,A) and (Y,B), a map f : X → Y
is A− B-measurable whenever

f−1 [B] ⊆ A

holds, where
f−1 [B] := {f−1[B]|B ∈ B}

is the set of inverse images
f−1[B] := {x ∈ X|f(x) ∈ B}

of elements of B. Note that f−1 [B] is in any case an σ-algebra. If the σ-algebras are the Borel
sets of some topologies on X and Y , resp., then a measurable map is called Borel measurable
or simply a Borel map. The real numbers R carry always the Borel structure induced by
the usual topology which will usually not be mentioned explicitly when talking about Borel
maps.
The product (X1 × X2,A1 ⊗ A2) of two measurable spaces (X1,A1) and (X2,A2) is the
Cartesian product X1 ×X2 endowed with the σ-algebra

A1 ⊗A2 := σ ({A1 ×A2|A1 ∈ A1, A2 ∈ A2}) .

This is the smallest σ-algebra which contains all the measurable rectangles A1 ×A2, and it is
incidentally the smallest σ-algebra E on X1 ×X2 which makes the projections

πi : X1 ×X2 → Xi
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E − Ai-measurable for i = 1, 2.
An analytic set X ⊆ Z in a Polish space Z is the image f [Y ] of a Polish space Y for some
Borel measurable map f : Y → Z. Endow X with the trace A of B(Z) on X, i.e.,

A = B(X) ∩ Z := {B ∩X|B ∈ B(Z)}.

We also call the elements of B(X) ∩ Z the Borel sets of X in a slight misuse of language. A
measurable space (X ′,A′) which is Borel isomorphic to (X,A) is called an analytic space (a
Borel isomorphism is a Borel measurable and bijective map the inverse of which is also Borel
measurable).
A map f : X → Y between the topological spaces (X,T ) and (Y,S) is T − S-continuous iff
the inverse image of an open set from S is an open set in T . Thus a continuous map is also
measurable with respect to the Borel sets generated by the respective topologies.
When the context is clear, we will write down topological or measurable spaces without their
topologies and σ-algebras, resp., and the Borel sets are always understood with respect to
the topology under consideration.
The following statement will be most helpful in the sequel. It implies that, given a measurable
map between Polish spaces, we can find a finer Polish topology on the domain, which has the
same Borel sets, and which renders the map continuous.

Proposition 1 Let (X,T ) be a Polish space, (Y,T ′) be a second countable metric space. If
f : X → Y is a Borel measurable map, then there exists a Polish topology T0 on X such that
T0 is finer than T (hence T ⊆ T0), T and T0 have the same Borel sets, and f is T0 − T ′

continuous.

Proof [20, Cor. 3.2.5, Cor. 3.2.6] �

Given two measurable spaces (X,A) and (Y,B), a stochastic relation K : (X,A)� (Y,B) is a
Borel map fromX to the set S (Y,B), the latter denoting the set of all subprobability measures
on (Y,B). The latter set carries the weak*-σ-algebra. This is the smallest σ-algebra on S (Y,B)
which renders all maps µ �→ µ(D) measurable, where D ∈ B. Hence K : (X,A)� (Y,B) is a
stochastic relation iff

1. K(x) is a subprobability measure on (Y,B) for all x ∈ X,

2. x �→ K(x)(D) is a measurable map for each measurable set D ∈ B.

We will deal usually with stochastic relations between Polish spaces or between analytic
spaces. Accordingly, we call then 〈X,Y,K〉 a Polish respectively an analytic object.
Let Y be a metric space, then S (Y ) is usually equipped with the topology of weak convergence.
This is the smallest topology on S (Y ) which makes the map µ �→

∫
Y f dµ continuous for each

continuous and bounded f : Y → R. It is well known that for second countable X this
topology is also second countable, and that X Polish implies that S (X) is also Polish [18,
Theorems II.6.3, II.6.5]. Moreover, the Borel sets for the topology of weak convergence is
just the weak*-σ-algebra [16, Theorem 17.24]. If X is a Standard Borel space, then S (X)
is also one: select a Polish topology T on X which induces the measurable structure, then
T will give rise to the Polish topology of weak convergence on S (X) which in turn has the
weak-*-σ-algebra as its Borel sets.
An A − B- measurable map f : X → Y between the measurable spaces (X,A) and (Y,B)
induces a map

S (f) : S (X,A) → S (Y,B)
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upon setting (µ ∈ S (X,A) ,D ∈ B)

S (f) (µ)(D) := µ(f−1[D])

It is easy to see that S (f) is measurable, and we will see in a moment that under not too
restrictive conditions S (f) : S (X,A) → S (Y,B) is onto, provided f : X → Y is. If f is
continuous, S (f) is, too. Denote by P (X,A) the subspace of all probability measures on
(X,A).
Let F(X) be the set of all closed and non-empty subsets of the Polish space X, and call for
Polish Y a relation, i.e., a set-valued map F : X → F(Y ) C-measurable iff for a compact set
C ⊆ Y the weak inverse

∃F (C) := {x ∈ X|F (x) ∩C 
= ∅}
is measurable. A selector s for such a relation F is a single-valued map s : X → Y such that
s(x) ∈ F (x) holds for each x ∈ X. C-measurable relations have Borel selectors:

Proposition 2 Let X and Y be Polish spaces. Then each C-measurable relation F has a
measurable selector.

Proof Since closed subsets of Polish spaces are complete, the assertion follows from [21,
Theorem 4.2, (e)]. �

Postulating measurability for ∃F (C) for open or for closed sets C leads to the general notion
of a measurable relation. These relations are a valuable tool in such diverse fields as stochastic
dynamic programming [21] and descriptive set theory [16]. Overviews are provided in [20,
Chapter 5] and [13, 21].
We will need surjectivity of S (f), when f : X → Y is measurable and onto. When applying
a selection argument we need to be sure that the set-valued map we are working takes indeed
non-empty values. For establishing this, the concept of universal measurability is needed.
Let µ ∈ S (X,A) be a subprobability on the measurable space (X,A), then A ⊆ X is called
µ-measurable iff there exist M1,M2 ∈ A with M1 ⊆ A ⊆ M2 and µ(M1) = µ(M2). The
µ-measurable subsets of X form a σ-algebra Mµ(A). The σ-algebra U (A) of universally
measurable sets is defined by

U (A) :=
⋂

{Mµ(A)|µ ∈ S (X,A)}

(in fact, one considers usually all finite or σ-finite measures, but these definitions lead to the
same universally measurable sets). If f : X1 → X2 is an A1-A2-measurable map between
the measurable spaces (X1,A1) and (X2,A2), then it is well known that f is also U (A1)-
U (A2)-measurable; the converse does not hold, and one usually cannot conclude that a map
g : X1 → X2 which is U (A1)-A2-measurable is also A1-A2-measurable.

Lemma 1 Let X be a Polish, and Y a second countable metric space. If f : X → Y is a
surjective Borel map, so is S (f) : S (X) → S (Y ) .

Proof 1. From [2, Theorem 3.4.3] we find a map g : Y → X such that f ◦ g = idY and g is
U (B(Y )) − U (B(X))-measurable.
2. Let ν ∈ S (Y ), and define µ := S (g) (ν), then µ ∈ S (X,U (B(X))) by construction.
Restrict µ to the Borel sets on X, obtaining µ0 ∈ S (X,B(X)) . Since we have for each set
B ⊆ Y the equality g−1

[
f−1 [B]

]
= B, we see that for each B ∈ B(Y )

S (f) (µ0)(B) = µ0(f−1 [B]) = µ(f−1 [B]) = ν(g−1
[
f−1 [B]

]
) = ν(B)
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holds. �

Call a measurable space (X,A) separable iff the σ-algebra A has a countable set (An)n∈N of
generators which separates points, i.e. given x, x′ ∈ X with x 
= x′ there exists An which
contains exactly one of them. A Polish space is separable as a measurable space, so is an
analytic space.
Sometimes second countable metric spaces are called separable, and this analogy is justified:

Observation 1 For a separable measurable space (X,A) there exists a second countable met-
ric topology T on X such that B(X,T ) = A.

Proof The assertion follows from [20, Proposition 3.3.2 and Remark 3.3.3]. �

This innocent looking statement has some remarkable consequences for our context, as we
will see in due course. Just for starters:

Corollary 1 Let (Y,B) be a separable measurable space. Then

1. The diagonal is measurable in the product, i.e.,

∆Y×Y := {〈y, y〉|y ∈ Y } ∈ B ⊗ B.

2. If fi : Xi → Y is Ai − B- measurable, where (Xi,Ai) is a measurable space (i = 1, 2),
then

f−1
1 [B] ⊗ f−1

2 [B] = (f1 × f2)−1 [B ⊗ B] ,

3. If X is a Polish space and f : X → Y is B(X) − B−measurable and onto, then S (f) :
S (X,B(X)) → S (Y,B) is also surjective.

Proof Apply Observation 1 for 1 and 2. Assertion 3 follows from Lemma 1. �

We will need to make precise statements regarding the measurability of a Borel map; for easy
reference, the technical statement below is recorded:

Proposition 3 Let X be a Polish space, (Y,B) be a separable measurable space, and assume
that g : X → Y is B(X) − B-measurable and onto. If f : X → Y is B(X) − B-measurable
such that f is constant on the atoms of g−1 [B] , then f is g−1 [B] − B -measurable.

Proof Separability implies that {y} ∈ B for all y ∈ Y . The atoms of g−1 [B] are just the
inverse images g−1[{y}] of the points y ∈ Y , because these sets are clearly atomic in that
σ-algebra, and since they form a partition of X. Now let B ∈ B be a measurable set, then
by assumption f−1[B] is a Borel set in X which is the union of atoms of g−1 [B] . Thus the
assertion follows from the Blackwell-Mackey-Theorem [20, Thm. 4.5.7]. �

3 Extending Semi-Pullbacks of Measures

The main argument in establishing the existence of a semi-pullback in the category of stochas-
tic relations will be a selection argument: we will show that a certain set-valued map will
have a (measurable) selector. This will require that this map always takes non-empty values.
This section will be devoted to establishing a property of semi-pullbacks for measure spaces
which in turn will be crucial in proving non-emptiness. Since it is rather technical in nature,
it is convenient to encapsulate this development into a separate section.

July 7, 2003



Page 7 Congruences for Stochastic Relations

We will consider the category P of probability spaces which has as objects tuples 〈X,A, µ〉
with µ ∈ P (X,A) for the measurable space (X,A). ψ : 〈X,A, µ〉 → 〈Y,B, ν〉 is a morphism
in P if ψ : X → Y is a surjective and A − B-measurable map which is measure preserving,
i.e., ν = P (µ) holds. P contains for two objects 〈X,A, µ〉 and 〈Y,B, ν〉 their product 〈X ×
Y,A⊗ B, µ⊗ ν〉, with µ⊗ ν as the product measure which is uniquely determined through

(µ⊗ ν) (A×B) = µ(A) · ν(B).

We fix for the discussion the Polish spaces X1 and X2 with the respective Borel sets as σ-
algebras. (Z, C) is assumed to be a separable measurable space. Denote for a measurable
space (X,A) by F (X,A) the linear space of all A-measurable and bounded real-valued maps
g : X → R. Note that A ⊆ B implies that F (X,A) is a linear subspace of F (X,B) .
Now let

〈X1,B(X1), µ1〉
ψ1� 〈Z, C, ν〉 �ψ2 〈X2,B(X2), µ2〉

be a pair of morphisms in P with a common target, and assume that

〈S,A, θ〉 π2� 〈X2,B(X2), µ2〉

(∗)

〈X1,B(X1), µ1〉

π1

�

ψ1

� 〈Z, C, ν〉

ψ2

�

is a semi-pullback diagram in P with

S := {〈x1, x2〉|ψ1(x1) = ψ2(x2)} ∈ ψ−1
1 [C] ⊗ ψ−1

2 [C]
A := S ∩

(
ψ−1

1 [C] ⊗ ψ−1
2 [C]

)
= S ∩ (ψ1 × ψ2)

−1 [C ⊗ C]

The πi are again the projections. The equality for A holds by Observation 1; thus A is the
smallest σ-algebra on S which makes

ψ1 × ψ2 : 〈x1, x2〉 �→ 〈ψ1(x1), ψ2(x2)〉
measurable.
S is a Borel set, and the crucial step in the technical development will consist in “lifting“ this
pullback so that the object 〈S,B(S), µ〉 for some suitable µ ∈ P (S,B(S)) stands in the upper
left corner of the diagram. The essential difference is in the σ-algebras on S: starting with
the initial σ-algebra with respect to ψ1 × ψ2 we claim that we can find a measure µ on the
Borel sets of S so that the properties of a semi-pullback will be preserved. This is clearly a
problem of extending the probability measure θ.

Proposition 4 The semi-pullback (∗) in P may be extended to a semi-pullback

〈S,B(S), µ〉 π2� 〈X2,B(X2), µ2〉

〈X1,B(X1), µ1〉

π1

�

ψ1

� 〈Z, C, ν〉

ψ2

�
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in P.

This entails essentially an extension process, extending θ ∈ P (S,A) to a suitable µ ∈
P (S,B(S)) . We establish the existence of this extension in two steps. The first step will
assume that X1 and X2 are compact Polish spaces, and the second will show how to reduce
the general case to the compact one.
Proof for the compact case
0. The line of attack will be as follows: we will construct a linear subspace of F (S,B(S))
which contains F (S,A) and some other functions of interest to us, and we will extend the
positive linear functional f �→

∫
S f dθ linearly to this subspace. A further extension brings

us to a positive linear functional Λ on F (S,B(S)) which then can be represented through a
measure µ ∈ P (S,B(S)) , so that

Λ(f) =
∫
S
f dµ

holds. Clearly, µ extends θ and is the measure we are looking for.
The commutativity of the diagram entails by standard arguments from measure theory that
(i = 1, 2)

∀fi ∈ F
(
Xi, ψ

−1
i [C]

)
:
∫
Xi

fi dµi =
∫
S
fi ◦ πi dθ

holds, and by the same token it is sufficient to find an extension µ ∈ P (S,B(S)) to θ ∈ P (S,A)
such that (i = 1, 2)

∀fi ∈ F (Xi,B(Xi)) :
∫
Xi

fi dµi =
∫
S
fi ◦ πi dµ

holds.
1. Put for i = 1, 2

Di := {fi ◦ πi|fi ∈ F (Xi,B(Xi))},

then Di ⊆ F (S,B(S)) , and

Λo(fi ◦ πi) :=
∫
Xi

fi dµi.

Then Λ0 : D1 ∪ D2 → R is well defined.
In fact, let g ∈ D1 ∩ D2, thus there exist fi ∈ F (Xi,B(Xi)) with

g = f1 ◦ πi = f2 ◦ π2.

We claim that f1 is constant on the atoms of ψ−1
1 [C] . Take x1, x

′
1 ∈ X1 with ψ1(x1) = ψ1(x′1),

then there exists x2 ∈ X2 such that 〈x1, x2〉 ∈ S, 〈x′1, x2〉 ∈ S. Hence

f1(x1) = g(x1, x2) = f2(x2) = g(x′1, x2) = f1(x′1).

Thus f1 is ψ−1
1 [C]-measurable by Proposition 3, and consequently,∫

s
g dθ =

∫
S
f1 ◦ πi dθ

=
∫
X1

f1 dµ1.
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Similarly, ∫
s
g dθ =

∫
X2

f2 dµ2

is established. This implies that Λ0 is well defined.
2. Let the linear functional Λ1 : F (S,A) → R be defined through

Λ1(f) :=
∫
S
f dθ.

We will look for a joint extension of Λ0 and Λ1 to the linear space spanned by F (S,A) ∪ D,
where D := D1∪D2. This requires both functionals yielding the same value on the intersection
F (S,A) ∩ (D1 ∪ D2) . Assume first that g ∈ F (S,A) ∩ D1, thus g = f1 ◦ π1 for some f1 ∈
F (X1,B(X1)) . Since g does not depend on the second component, we may infer from the
definition of A that f1 is even ψ−1

1 [C]− measurable, hence

Λ1(g) =
∫
S
g dθ

=
∫
S
f1 ◦ π1 dθ

=
∫
X1

f1 dµ1

= Λ0(g).

The argumentation for g ∈ F (S,A) ∩ D2 is similar.
Let Λ2 be the joint linear extension of Λ1 on F (S,A) and of Λ0 on D to the linear space
spanned by F (S,A) and D.
From the construction it is clear that Λ2(1) = 1 holds, and that Λ2 is monotone.
3. The Hahn-Banach Theorem for ordered linear spaces [14, Lemma IX.1.4] gives a positive
linear operator

Λ : F (S,B(S)) → R

that extends Λ2. Since each continuous and bounded map f : X1 × X2 → R becomes a
member of F (S,B(S)) when restricted to S, we obtain a positive linear operator

Λ′(f) := Λ(f |S)

on the linear space of all continuous maps X1 ×X2 → R. Because X1 ×X2 is compact, the
famous Riesz Representation Theorem yields a probability measure

µ′ ∈ P (X1 ×X2,B(X1 ×X2))

with

Λ′(f) =
∫
X1×X2

f dµ′

=
∫
S
f dµ′

for each f ∈ F (X1 ×X2,B(X1 ×X2)) . Define forB ∈ B(S) the measure µ through restricting
µ′ to B(S), thus

µ(B) := µ′(B ∩ S),
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then µ ∈ P (S,B(S)) will now be shown the measure we are looking for.
4. Let f ∈ F (S,A) , then ∫

S
f dθ = Λ1(f)

= Λ2(f)
= Λ′(f)

=
∫
S
f dµ,

thus µ extends θ. Let fi ∈ F (X1,B(Xi)) , then fi ◦ πi ∈ Di ⊆ D, hence∫
Xi

fi dµi = Λ0(fi ◦ πi)

= Λ2(fi ◦ πi)
= Λ′(fi ◦ πi)

=
∫
S
fi ◦ πi dµ,

rendering the diagram commutative.
�

The compactness assumption was used in the proof only to establish the existence of a mea-
sure, given a suitable linear functional on the space of continuous functions. In the general
case we do not have the Riesz Representation Theorem directly at our disposal, but compact-
ness may nevertheless be capitalized upon since each Polish space may be embedded into a
compact metric space as a measurable subspace.
Proof for the general case
0. The famous characterization of Polish spaces due to Alexandrov [20, Remark 2.2.8] states
that a topological space is Polish iff it is homeomorphic to a Gδ-subset of [0, 1]N. In particular,
a Polish space is a measurable and dense subset of a compact metric space. We will capitalize
on this: X1 and X2 will be embedded into compact metric spaces, and this embedding
will take ψ1, ψ2 and the measure θ with it. We then apply the extension procedure for the
compact case. Restricting what we got from there to the original scenario we conclude that
the assertion holds also fr the non-compact case.
1. Xi is a dense measurable subset of a compact metric space �Xi by [16, Theorem 4.14], and
ψi : Xi → Z may be extended to a Borel measurable map �ψi : �Xi → Z by [20, Proposition
3.3.4].
Define for Bi ∈ B(�Xi)

�µi(Bi) := µi(Bi ∩Xi),

and put
S0 := {〈x1, x2〉 ∈ �X1 × �X2|�ψ1(x1) = �ψ2(x2)}.

Then
S0 = (�ψ1 × �ψ2)

−1 [∆�X1×�X2 ] ,

thus

S0 ∈ (�ψ1 × �ψ2)
−1 [B(Z × Z)]

= �ψ1
−1 [C] ⊗ �ψ2

−1 [C] .

July 7, 2003



Page 11 Congruences for Stochastic Relations

Since Xi ∈ �ψi
−1 [C], and since S = S0 ∩ (X1 ×X2), we see that

S ∈ �ψ1
−1 [C] ⊗ �ψ2

−1 [C] .

Now put for E ∈ �ψ1
−1 [C] ⊗ �ψ2

−1 [C]

�θ(E) := θ(E ∩ S),

then �θ(S0 \ S) = 0, hence �θ is concentrated on S.
2. The construction shows that

〈S0,A0,
�θ〉

�π2� 〈�X2,B(�X2),�µ2〉

〈�X1,B(�X1),�µ1〉

�π1

�

�ψ1

� 〈Z, C, ν〉

�ψ2

�

commutes, where
A0 :=

(
�ψ1

−1 [C] ⊗ �ψ2
−1 [C]

)
∩ S0.

The compact case applies, hence we can find an extension �µ ∈ P (S0,B(S0)) for �θ ∈
P (S0,A0) which makes this diagram commute:

〈S0,B(S0),�µ〉
�π2� 〈�X2,B(�X2),�µ2〉

〈�X1,B(�X1),�µ1〉

�π1

�

�ψ1

� 〈Z, C, ν〉

�ψ2

�

3. We now roll back compactification. Put for the Borel set B ⊆ S

µ(B) := �µ(B ∩ S),

then µ ∈ P (S,B(S)) , since

�µ(S0 \ S) = �θ(S0 \ S) = 0.

The other properties are obvious, so that we are done with the general case, too. �

The crucial point in this argumentation has been to prevent any mass from vanishing, i.e.,
to see that µ(S) = 1 holds, which in turn could be established from the fact that �µ extends
�θ, and for which the incorporation of F (S,A) into the extension process was responsible.
We reformulate Proposition 4 in terms of probability distributions. It states that there exists
sometimes a common distribution for two random variables with values in a Polish space
with preassigned marginal distributions. This is a cornerstone for the construction leading to
the proof of Theorem 1, it shows in particular where Edalat’s work could enter the present
discussion.
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Proposition 5 Let X1, and X2 be Polish spaces, (Z, C) a separable measurable space, and
assume that

ζi : Xi → Z (i = 1, 2)

are measurable and surjective maps. Define

S := {〈x1, x2〉 ∈ X1 ×X2|ζ1(x1) = ζ2(x2)},

and let ν1 ∈ P (X1) , ν2 ∈ P (X2) , ν ∈ P (Z, C) such that

∀Ei ∈ ζ−1
i [C] : P (πi) (ν)(Ei) = νi(Ei) (i = 1, 2)

holds, where π1 : S → X1, π2 : S → X2 are the projections; S carries the trace of the product
σ-algebra. Then there exists µ ∈ P (S) such that

∀Ei ∈ B(Xi) : P (πi)(µ)(Ei) = νi(Ei) (i = 1, 2)

holds.

Proof This is a diagram free representation of Proposition 4. �

In important special cases, there are other ways of establishing the Proposition, as will be
discussed briefly.
Remark: 1. If Z is also a Polish space, and if ζi : Xi → Z are bijections, then the Blackwell-
Mackey Theorem [20, Thm. 4.5.7] shows that ζ−1

i [C] = B(Xi). In this case the given measure
ν ∈ P (S) is the desired one.
2. The maps ζi : Xi → Z are morphisms in Edalat’s category of probability measures on
Polish spaces [11], provided Z is a Polish space. The assertion can then be deduced from
tracing the development in [11, Cor. 5.4]. The proof given above applies to Edalat’s situation
as well, but it should be clear that our proof is independent of Edalat’s. The development
for the latter one depends very heavily on the theory of regular conditional probabilities
on analytic spaces, so that the impression might arise that the existence of the measure in
question depends on these probabilities, too. The proof for Proposition 4 shows that this is
not the case, that rather a straightforward proof can be given. Hence we are in the lucky
position of having two independent proofs. Which one is preferred is largely a matter of taste:
Edalat’s proof working in analytic spaces, or the one proposed here depending on the Hahn-
Banach Theorem as a classical tool in analysis (but making use of the sometimes dreaded
Axiom of Choice). —
We will need an extension theorem for stochastic relations in order to secure the existence
of semi-pullbacks for analytic spaces. We begin with a statement on the extension of a
probability measure on a sub-σ-algebra. Note that we do not claim the uniqueness of the
extension. This is different from the usual measure extensions in Measure Theory.

Lemma 2 Let A be a sub-σ-algebra of the Borel sets of a Polish space X, and assume that
θ is a probability measure on A. Then θ can be extended to a probability measure on all of
B(X).

Proof 0. We need only sketch the proof, since the main work has already been done in
the proof of Proposition 4. Although the assertion is a bit different, the pattern of the
argumentation is very similar to the one presented already.
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1. First X is assumed to be compact, then a combination of the Hahn-Banach-Theorem and
the Riesz Representation Theorem yields the existence of the desired measure.
2. If X is not compact, it is embedded as above as a measurable subset into a compact metric
space. There the existence of an extension ist established, and exactly the same technique as
above moves that measure to the Borel sets of X. �

The application interesting us here is the possibility to establish an extension to probabilistic
relations.

Proposition 6 Let X and Y be Polish spaces, assume that B ⊆ B(Y ) is a countably generated
σ-algebra, and let K0 : (X,B(X)) � (Y,B) be a stochastic relation. Then K0 can be extended
to a stochastic relation K : (X,B(X))� (Y,B(Y )).

Proof 0. We will construct a probability measure on the product B ⊗ B(Y ), extend this
measure and then obtain the desired extension to the probabilistic relation through disinte-
gration.
1. Let µ be a probability measure on B(X), and define for D ∈ B ⊗ B(Y ) the measure

µ0(D) :=
∫
X
K0(x)(Dx) µ(dx),

where, as usual, Dx := {y ∈ Y |〈x, y〉 ∈ D}, and by standard arguments Dx ∈ B for any
D ∈ B ⊗ B(Y ). Let µ1 be an extension of µ0 to all of B(X × Y ). This extension exists by
Lemma 2. Since µ1 is a measure on the product of two Polish spaces, there exists a stochastic
relation K1 : (X,B(X))� (Y,B(Y )) such that

µ1(D) =
∫
X
K1(x)(Dx) µ(dx)

holds for all D ∈ B(X×Y ). This follows from the existence of regular conditional distributions
on Polish spaces [18, Theorem V.8.1]. It is well known that K1 is unique up to sets of µ-
measure zero.
2. Let B0 := {Bn|n ∈ N} be a countable generator of the σ-algebra B; we may and do assume
that B0 is closed under finite intersections (otherwise form all finite intersections of elements
of B0, then this is still a countable generator which is closed under finite intersections). Now
let E ∈ B, then

µ0(E × Y ) = µ1(E × Y )

holds by the construction of this extension, thus there exists for each E ∈ B a setN(E) ∈ B(X)
with µ(N(E)) = 0 such that

∀x ∈ X \N(E) : K0(x)(E) = K1(x)(E).

Now put
N :=

⋃
n∈N

N(Bn)

as the set of all possibly violating x, then N ∈ B(X), and µ(N) = 0 holds.
4. We claim that for any x ∈ X \N the equality K0(x)(E) = K1(x)(E) holds for every Borel
set E ∈ B. In fact, put

E := {E ∈ B|∀x ∈ X \N : K0(x)(E) = K1(x)(E)},
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then B0 ⊆ E by construction, E contains Y , and E is closed under complementation and
disjoint countable unions. Thus E = B is inferred by the π − λ-Theorem [16, Theorem
10.1.iii]. Now let µ2 be an arbitrary probability measure on B(Y ), and define the stochastic
relation K by cases as follows:

K(x)(D) :=



K1(x)(D), x /∈ N,D ∈ B(Y )
K0(x)(D), x ∈ N,D ∈ B
µ2(D), x ∈ N,D /∈ B.

This relation has the desired properties. �

4 Smooth Equivalence Relations

We will begin in this section a discussion of smooth equivalence relations that will lead us to
the definition of congruences and of factor objects. In order to keep a probabilistic grip on
the equivalence relations, we require them to be compatible with the Borel structure. The
natural way to do this is to have a countable set of Borel measures generate them; we will
show that the equivalence relation coming from the Hennessy-Milner logic, in which two states
are equivalent iff they satisfy exactly the same formulas has this property. When we want to
compare equivalence relations on different spaces, it turns out that the associated σ-algebra
is very versatile. This leads to the definition of equivalent congruences, which will be studied
in Section 6 from the point of bisimulations, where we show also that the equivalence between
bisimulation and satisfaction the same formulas may be treated as a special case.
We fix for this section a Polish space X with its Borel σ-algebra B(X).

Definition 1 An equivalence relation ρ ⊆ X × X is called smooth iff one of the following
equivalent conditions is satisfied:

1. there exists a Polish space Y and a Borel measurable map f : X → Y such that

xρy ⇔ f(x) = f(y),

2. there exists a sequence (An)n∈N of Borel sets in X such that

xρy ⇔ ∀n ∈ N : [x ∈ An ⇔ y ∈ An] .

It follows immediately that a smooth equivalence relation is a Borel subset of X×X, see [20,
Exercise 5.1.10]. The equivalence classes can be expressed in terms of (An):

[x]ρ =
⋂

{An|x ∈ An} ∩
⋂

{X \ An|x /∈ An},

hence each class is a Borel subset of X.
Smooth relations arise naturally in the context of labelled Markov transition systems and the
Hennessy-Milner logic:

Example 1 Let 〈S, (ka)a∈L〉 be a labelled Markov transition system, i.e., for each ka : S � S
is a stochastic relation for each a ∈ L, where L is an at most countable set of actions, and S
is a state space. S is assumed to be Polish.
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Syntax and semantics of the Hennessy-Milner logic L are defined as usual (cf. [4, 10]). The
syntax is given by

� | φ1 ∧ φ2 | 〈a〉qφ
Here a ∈ L is an action, and q is a rational number. Satisfaction of a state s for a formula
φ is defined inductively. This is trivial for � and for formulas of the form φ1 ∧ φ2. The
more complicated case is making an a-move: s |= 〈a〉qφ holds iff we can find a measurable set
A ⊆ S such that ∀s′ ∈ A : s′ |= φ and ka(s,A) ≥ q both hold. Intuitively, we can make an
a-move in a state s to a state that satisfies φ with probability greater than q.
Denote by Φ the set of all formulas, and put [[ϕ]] := {s ∈ S|s |= φ} as usual as the set of
states that satisfy formula φ.
Two states are equivalent iff both satisfy exactly the same formulas. Thus the equivalence ≈

is defined through
s ≈ s′ iff ∀φ ∈ Φ :

[
s |= φ⇔ s′ |= φ

]
.

Since s |= φ iff s ∈ [[ϕ]] , and since Φ is countable, we see that ≈ is smooth. —

A set A ⊆ X is called ρ-invariant iff x ∈ A and xρy implies y ∈ A, thus A is ρ-invariant iff

A =
⋃

{[x]ρ |x ∈ A}

holds. The ρ-invariant subsets of X form a σ-algebra Aρ. If ρ is smooth, then this σ-algebra
is generated by (An)n∈N, when the latter sequence determines ρ. In fact, it can be said more:

Lemma 3 Let ρ be a smooth equivalence relation. Then the Borel set A ⊆ X is ρ-invariant
iff A ∈ Aρ.

Proof [16, Exercise 14.16]. �

This Lemma implies that a smooth relation does not depend on the specific sequence of
generators (as Definition 1 and the representation of the equivalence classes seem to suggest)
but rather on the σ-algebra induced by them. It has moreover the pleasant consequence
that it permits the identification of smooth equivalence relations and countably generated
sub-σ-algebras of B(X):

Lemma 4 ρ �→ Aρ is a order anti-isomorphism between the set MX of smooth equivalence
relations on X and set ZX of all the countably generated sub-σ-algebras of B(X), where the
order is given in each case through inclusion. MX has in particular a smallest and a largest
element, and is closed under countable intersections.

Proof Let ρ, τ ∈ MX with ρ ⊆ τ . Then

[x]τ =
⋃

{[y]ρ |yτx},

thus each τ -invariant subset is also ρ-invariant, hence Aτ ⊆ Aρ is inferred. From this obser-
vation the assertions follow easily. �

As a consequence of Lemma 4 we see that whenever (ρn)n∈N is a sequence of smooth equiva-
lence relations, then

⋂
n∈N

ρn is also smooth (which is not difficult to establish directly), and
that

A⋂
n∈N

ρn
= σ

(⋃
n∈N

Aρn

)
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holds.
The atoms of Aρ for a smooth equivalence relation ρ are the equivalence classes [x]ρ (recall
that an atom A in Aρ has the property that A 
= ∅, and that each subset of A in Aρ is either
empty or equals A): let ∅ 
= B ⊆ [x]ρ and B ∈ Aρ. Thus B is ρ-invariant by Lemma 3, and
we see that y ∈ B implies yρx, hence [x]ρ = [y]ρ ⊆ B.
We will use Lemma 4 for switching between smooth equivalence relations and countably gen-
erated sub-σ-algebras of B(X). Denote for D ∈ ZX by ρD the smooth equivalence generated
by D.

Definition 2 Let K : X � Y be a stochastic relation, where Y is a Polish space. Then
〈C,D〉 is called a congruence for 〈X,Y,K〉 iff

1. C and D are countably generated sub-σ-algebras of the Borel sets on X, and Y , resp.

2. x1ρCx2 implies that K(x1)(D) = K(x2)(D) holds for all D ∈ D.

Intuitively, a congruence is an equivalence relation on the inputs and a σ-algebra on the
outputs such that equivalent inputs spawn the same sub-probability on the σ-algebra. Let
(Dn)n∈N be a sequence of Borel sets generating D, and define

F :

{
X → [0, 1]N

x �→ (K(x)(Dn))n∈N
,

then 〈C,D〉 is a congruence for 〈X,Y,K〉 iff ρC ⊆ ρF , where ρF is the smooth equivalence
relation induced by F ; an equivalent characterization is to say that DF ⊆ C with DF as the
σ-algebra induced by ρF .
It may be noted that for each D ∈ D the map x �→ K(x)(D) is actually C−B(R)- measurable.
In fact, if S ∈ B(R), then

A0 := {x ∈ X|K(x)(D) ∈ S}

is a Borel set in X, and it is ρC-invariant by the definition of a congruence. Using Lemma 3
we see now that A0 ∈ C.
Fix a Polish object 〈X,Y,K〉 and a congruence 〈C,D〉 for it. We will show now how to factor
〈X,Y,K〉 by 〈C,D〉. In constructing this factor objects, we follow essentially the construction
outlined in the proof of Proposition 9.4 in [4]. The factor space XC is the set of all equivalence
classes [x]C and is equipped with the largest σ-algebra AC that makes the natural projection
ηC : x �→ [x]C measurable. Then (XC ,AC) is an analytic space [2, Corollary 3.3.5.2]. It turns
out that the Borel sets of XC are generated by

C1 := ηC [C0] ,

where C0 := {Cn|n ∈ N} is a countable generator for C. First, each ηC [Cn] is an analytic set,
since ηC is measurable. On the other hand, XC \ ηC [Cn] = ηC [X \ Cn] : Since if x /∈ Cn, the
ρC-invariance of Cn implies that [x]C ∩ Cn = ∅, thus the non-trivial inclusion is established.
Consequently, ηC [Cn] is also coanalytic, hence is a Borel set by Souslin’s Theorem [20, Theo-
rem 4.4.3]. By the definition of ρC , C1 separates points, for, if [x]C 
= [x′]C we can find Cn with,
say , x ∈ Cn, x

′ /∈ Cn. Consequently, [x]C ∈ ηC [Cn] , [x′]C /∈ ηC [Cn] . The Unique Structure
Theorem [2, Theorem 3.3.5] now implies that σ(C1) equals the Borel sets of XC .
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We note for later use that

ηC [Cn ∩ Cm] = ηC [Cn] ∩ ηC [Cm]

holds. Take [x]C ∈ ηC [Cn]∩ηC [Cm] thus there exist x1 ∈ Cn, x2 ∈ Cm such that xρCx1, xρCx2

The invariance of the elements of C yields then [x]C ⊆ Cn ∩ Cm, which in turn implies the
non-trivial inclusion.
The same construction can be carried out for YD.
Assume that the generator D0 := {Dn|n ∈ N} for D is closed under finite intersections. Define

KC,D ([x]C) (ηD [Dn]) := K(x)(Dn),

then KC,D is well-defined on XC ×D0. This follows from the assumption that 〈C,D〉 is a con-
gruence for 〈X,Y,K〉. Since ηD [D0] generates the Borel sets on YD, and since this generator is
closed under finite intersections, KC,D ([x]C) extends unique to a finite measure on the Borel
sets on YD. Moreover, for each Borel set D ⊆ YD the map q �→ KC,D(q)(D) is AC − AD-
measurable. This is so since the set of all Borel sets for which this statement is true contains
D0 by construction (and by the remarks following Definition 2) forms a σ-algebra. We can
say even a little bit more. Because η−1

D [ηD [D]] = D holds for each D ∈ D, we find that

K(x)(η−1
D [E]) = KC,D(ηC(x))(E)

holds for each Borel set E ⊆ YD, rendering the diagram

X
ηC � XC

S (Y )

K

�

S (ηD)
� S (YD)

KC,D

�

commutative.

Definition 3 Endow XC and YD with the σ-algebras AC and AD, respectively, and denote
these analytic spaces for short by XC and YD, resp. The analytic object

〈X,Y,K〉/C,D := 〈XC , YD,KC,D〉

is called the factor object for 〈X,Y,K〉 and the congruence 〈C,D〉.

Another example for congruences and factor spaces of interest is furnished through equivalent
congruences.
As a preparation we will have a quick look at how the atoms of a countably generated σ-
algebra are characterized through the generators.

Lemma 5 Let E = σ({En|n ∈ N}) be a countably generated σ-algebra over a set E. Define
A1 := A,A0 := E \ A for A ⊆ E. Then

{
⋂
n∈N

Eα(n)
n |α ∈ {0, 1}N}

are exactly the atoms of E.
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Proof The proof to [20, 3.1.15] establishes this representation. �

Definition 4 Let C and D be countably generated σ-algebras over set X resp. Y , assume
that C0 is a countable generator for C, and that Θ : C0 → D is a map. We say that C spawns
D via (Θ, C0) iff

1. {Θ(C)|C ∈ C0} generates D,

2. [x1]C = [x2]C implies the equality of⋂
{Θ(C)|x1 ∈ C ∈ C0} ∩

⋂
{Y \ Θ(C)|x1 /∈ C ∈ C0}

and ⋂
{Θ(C)|x2 ∈ C ∈ C0} ∩

⋂
{Y \ Θ(C)|x2 /∈ C ∈ C0}.

The first condition makes sure that the information needed to generate D and hence the
equivalence ρD is already contained in C (and consequently in ρC) and can be transported via
Θ. The second condition will permit later on a comparison between the equivalence relations
ρC and ρD. It permits mapping equivalence classes, since it makes sure that

[x]C �→
⋂

{Θ(C)|x ∈ C ∈ C0} ∩
⋂

{Y \ Θ(C)|x /∈ C ∈ C0}

is a well defined map between the atoms of C and D (which are exactly the equivalence classes
for ρC and ρD). We will reuse the name of the map on generators to denote this map.
This permits the definition of equivalent congruences through proportional ones:

Definition 5 Let 〈X,Y,K〉 and 〈X ′, Y ′,K ′〉 be Polish objects with congruences 〈C,D〉 and
〈C′,D′〉, respectively.

1. Call 〈C,D〉 proportional to 〈C′,D′〉 (symbolically 〈C,D〉 ∝ 〈C′,D′〉) iff there exist count-
able generators C0 for C and D0 for D with maps Υ : C0 → C′ and Ω : D0 → D′ such
that

(a) C spawns C′ via (Υ, C0), D spawns D′ via (Ω,D0),
(b) ∀x ∈ X∀x′ ∈ Υ([x]C)∀D0 ∈ D0 : K(x)(D0) = K ′(x′)(Ω(D0)) holds.

2. Call these congruences equivalent iff both 〈C,D〉 ∝ 〈C′,D′〉 and 〈C′,D′〉 ∝ 〈C,D〉 holds.

Thus equivalent congruences behave in exactly the same way since the same behavior is
exhibited on each atom, i.e., equivalence class.
We will show now how equivalent congruences on stochastic relations give rise to a factor
object built on their sum. This construction will be of use in Section 6 for showing that
stochastic relations having equivalent congruences are bisimilar.
Assume that 〈C,D〉 and 〈C′,D′〉 are equivalent congruences on the Polish objects 〈X,Y,K〉,
and 〈X ′, Y ′,K ′〉, respectively. Construct for 〈X,Y,K〉 and 〈X ′, Y ′,K ′〉 the direct sum

〈X,Y,K〉 + 〈X ′, Y ′,K ′〉 := 〈X +X ′, Y + Y ′,K +K ′〉,

where the only non-obvious construction is K +K ′: put for the Borel set E ⊆ Y + Y ′

(K +K ′)(z)(E) :=

{
K(z)(E ∩X), if z ∈ X

K ′(z)(E ∩X ′), if z ∈ X ′,
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then clearly K +K ′ : X +X ′ � Y + Y ′. Define

C + C′ := {C + C ′|C ∈ C, C ′ ∈ C′}
D + D′ := {D +D′|D ∈ D,D′ ∈ D′},

then 〈C+C′,D+D′〉 is a congruence on the sum 〈X+X ′, Y +Y ′,K+K ′〉. Assume C spawns
C′ via (Υ, {Cn|n ∈ N}). One first establishes that

C + C′ = σ({Cn + Υ(Cn)|n ∈ N}).

This is so since F ⊆ X+X ′ is a member of the sum C+C′ iff both F ∩X ∈ C and F ∩X ′ ∈ C′

hold, and since C′ = σ({Υ(Cn)|n ∈ N}) due to the properties of Υ. Similarly, D +D′ may be
represented through D and Ω, if D spawns D′ via (Ω, {Dn|n ∈ N}). Because the σ-algebras in
question are countably generated, so is their sum, and because the congruences are equivalent,

zρC+C′z′ ⇒ ∀F ∈ D + D′ : (K +K ′)(z)(F ) = (K +K ′)(z′)(F )

holds. To establish this, let z ∈ X, z′ ∈ X ′, and consider

G := {F ∈ D + D′|(K +K ′)(z)(F ) = (K +K ′)(z′)(F )}.

This is a σ-algebra containing the generator {Dn + Ω(Dn)|n ∈ N}, since the congruences are
equivalent. This implies D + D′ ⊆ σ(G).
The factor object

〈X +X ′, Y + Y ′,K +K ′〉/C+C′,D+D′

will be used in Proposition 8 for establishing that 〈X,Y,K〉 and 〈X ′, Y ′,K ′〉 are bisimilar,
provided they have equivalent congruences.

5 Morphisms

This section introduces morphisms more formally and shows that each morphism gives rise
to a congruence in a rather natural way. This is done by imitating the usual construction of
obtaining congruences from homomorphisms. It turns out that the factor space for a mor-
phism is itself Polish whenever both source and target are Polish objects, whereas we usually
end up with analytic factor spaces. Bisimulations are introduced as spans of morphisms, and
we have a brief look at the congruence induced by a bisimulation on the mediating object.
The category Stoch has as objects stochastic relations 〈X,Y,K〉 for measurable spaces X,Y
and K : X � Y . A morphism 〈φ,ψ〉 : 〈X1, Y1,K1〉 → 〈X2, Y2,K2〉 between the objects
〈Xi, Yi,Ki〉 is a pair of surjective measurable maps φ : X1 → X2 and ψ : Y1 → Y2 such that

K1 ◦ φ = S (ψ) ◦K2

holds, i.e., the diagram

X1
φ � X2

S (Y1)

K1

�

S (ψ)
� S (Y2)

K2

�
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is commutative.
We did encounter morphisms already when constructing the factor object:

Example 2 Let 〈C,D〉 be a congruence on the Polish object 〈X,Y,K〉. Then

〈ηC , ηD〉 : 〈X,Y,K〉 → 〈X,Y,K〉/C,D

is a morphism. This follows from

S (ηD) ◦K = KC,D ◦ ηC

established just before Definition 3. —

We will usually investigate morphisms for stochastic relations based on Polish or analytic
spaces, but it does not hurt to define them generally. Recall an object 〈X,Y,K〉 of Stoch

is dubbed Polish or analytic iff X and Y are Polish, and analytic spaces, respectively. Ac-
cordingly we denote by P − Stoch and by A − Stoch the full subcategories having Polish
respectively analytic objects as their objects.
Under suitable conditions we can make a pair of surjective and measurable maps into mor-
phisms.

Lemma 6 Let M : A� B be a stochastic relation between the measurable spaces A and B,
assume B is separable, and that X and Y are Polish spaces with measurable and surjective
maps φ : X → A,ψ : Y → B. Then there exists a stochastic relation K : X � Y such that

〈φ,ψ〉 : 〈X,Y,K〉 → 〈A,B,M〉

is a morphism.

Proof Let B the σ-algebra on B, then ψ−1 [B] is a countably generated sub-σ-algebra of
B(Y ). Define for x ∈ X and D ∈ B

K0(x)(ψ−1 [D]) := M(φ(x))(D),

thenK0 : (X,B(X))� (Y, ψ−1 [B]) is a stochastic relation which can be extended to a stochas-
tic relation K : (X,B(X)) � (Y,B(Y )) by Proposition 6. It is plain from the construction
that

S (ψ) ◦K = M ◦ φ
holds. �

This construction will help when it comes to investigate semi-pullbacks for analytic spaces.
Each morphism spawns a congruence in a rather natural way:

Lemma 7 Let
〈φ,ψ〉 : 〈X1, Y1,K1〉 → 〈X2, Y2,K2〉

be a morphism for the stochastic relations K1 : X1 � Y1 and K2 : X2 � Y2, where the spaces
involved are all Polish. Then

〈φ−1 [B(X2)] , ψ−1 [B(Y2)]〉

is a congruence for 〈X1, Y1,K1〉.
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Proof Because X2 and Y2 are Polish spaces, the σ-algebras φ−1 [B(X2)] and ψ−1 [B(Y2)] are
countably generated. Abbreviate φ−1 [B(X2)] by A, then

xρAx′ ⇔ φ(x) = φ(x′),

indicating that ρA is smooth. This is so since we may choose a countable base (Vn)n∈N for
the topology as a generator for B(X2); this base separates points, thus

xρAx′ ⇔ ∀n ∈ N :
[
φ(x) ∈ Vn ⇔ φ(x′) ∈ Vn

]
⇔ φ(x) = φ(x′)

The same argument applies for ψ.
Now let xρAx′, and let D1 ∈ φ−1 [B(X2)] be arbitrary, so that there exists D2 ∈ B(Y2) with
D1 = ψ−1 [D2] . Thus

K1(x)(D1) = K1(x)
(
ψ−1 [D2]

)
= (S (ψ) ◦K1) (x)(D2)
= (K2 ◦ φ) (x)(D2)
= K2(φ(x))(D2)
= K2(φ(x′))(D2)
= K1(x′)(D1).

This establishes the assertion. �

Call a congruence 〈C,D〉 on 〈X1, Y1,K1〉 adapted to the morphism 〈φ,ψ〉 iff

xρCx′ ⇒ φ(x) = φ(x′)
yρDy′ ⇒ ψ(y) = ψ(y′),

then the congruence constructed in Lemma 7 is the largest congruence on 〈X1, Y1,K1〉 that
is adapted to the morphism, as the proof for the Lemma shows.
As expected, morphisms which are compatible with congruences factor through the factor
object:

Proposition 7 Assume that 〈C,D〉 is a congruence on the Polish object 〈X,Y,K〉, and let
for the analytic object 〈X1, Y1,K1〉

〈φ,ψ〉 : 〈X,Y,K〉 → 〈X1, Y1,K1〉

be a morphism which is adapted to 〈C,D〉. Then 〈φ,ψ〉 factors uniquely in A − Stoch through
〈X,Y,K〉/C,D.

Proof 1. Because 〈φ,ψ〉 are adapted to 〈C,D〉, the maps

φC([x]C) := φ(x),
ψD([y]D) := ψ(y)

are well defined. Since φ is B(X)−B(X1)-measurable, and since AC is the final σ-algebra on
XC with respect to ηC , AC − B(X1)-measurability of φC is inferred: we can write

AC = {A ⊆ XC |η−1 [A] ∈ B(X)},
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thus φ−1
C [B1] ∈ AC for B1 ∈ B(X1), since η−1

C
[
φ−1
C [B1]

]
= φ−1 [B1] ∈ B(X) due to the

measurability of φ. A similar argument is used for ψD. Clearly, these maps are onto.
2. It remains to show that 〈φC , ψD〉 is a morphism. In fact, let D1 ⊆ Y1 be a Borel set, then

K1(φC([x]C))(D1) = K1(φ(x))(D1)
= K(x)(ψ−1 [D1])
= KC,D([x]C)(ψ

−1
D [D1]),

because ψ−1 [D1] = η−1
D
[
ψ−1
D [D1]

]
, and because 〈ηC , ηD〉 is a morphism. Consequently,

K1 ◦ φC = S (ψD) ◦KC,D

has been established. Uniqueness of the morphism is obvious. �

It turns out that the factor spaces associated with morphisms are Polish.

Corollary 2 Denote under the conditions of Lemma 7 by

〈X1, Y1,K1〉/〈φ,ψ〉

the factor space associated with the largest congruence 〈φ−1 [B(X2)] , ψ−1 [B(Y2)]〉 which is
adapted to the morphism 〈φ,ψ〉. Then 〈X1, Y1,K1〉/〈φ,ψ〉 is a Polish object and isomorphic to
〈X2, Y2,K2〉.

Proof The factor morphism constructed in Proposition 7 is composed of bijections. Since
each morphism in Stoch is an epi, and since injective maps are underlying exactly the monos,
the assertion follows. �

Bisimilarity is introduced as a span of morphisms [15, 19, 10]. For coalgebras based on
the category of sets, this definition agrees with the one through relations, originally given by
Milner, see [19]. In [5] the authors call a bisimulation what we have introduced as congruence,
albeit that paper restricts itself to labelled Markov transition systems, thus technically to
stochastic relations S � S for some state space S. It seems conceptually to be clearer to
distinguish spans of morphisms from equivalence relations. Later we will see that there are
some close connections: equivalent congruences induce bisimilarity, as we will establish in
Proposition 8.
The stochastic relations 〈X1, Y1,K1〉 and 〈X2, Y2,K2〉 are called bisimilar iff there exists a
span of morphisms

〈X1, Y1,K1〉 �〈φ1, ψ1〉 〈A,B,M〉 〈φ2, ψ2〉� 〈X2, Y2,K2〉

with a suitable stochastic relation 〈A,B,M〉; the latter object is said to be mediating. If we
deal with Polish spaces X1,X2, Y1, Y2, then we postulate that A and B are Polish spaces, too.
A bisimulation yields the familiar commutative diagram

X1
� φ1

A
φ2 � X2

S (Y1)

K1

�
�
S (ψ1)

S (B)

M

�

S (ψ2)
� S (Y2)

K2

�
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In terms of measures this translates to

K1(φ1(a))(D1) = M(a)(ψ−1
1 [D1])

K2(φ2(a))(D2) = M(a)(ψ−1
2 [D2])

for all a ∈ A and all Borel sets Di ⊆ Yi.

Lemma 8 Suppose that

〈X1, Y1,K1〉 �〈φ1, ψ1〉 〈A,B,M〉 〈φ2, ψ2〉� 〈X2, Y2,K2〉

is a bisimulation where all spaces involved are Polish, and assume that 〈Ci,Di〉 is a congruence
on 〈Xi, Yi,Ki〉 which is adapted to 〈φi, ψi〉 for i = 1, 2. Then the congruence

〈σ (C1 ∪ C2) , σ (D1 ∪ D2)〉

is adapted to both 〈φ1, ψ1〉 and 〈φ2, ψ2〉.

Proof 1. We demonstrate first that

〈σ (C1 ∪ C2) , σ (D1 ∪ D2)〉

is a congruence for 〈A,B,M〉. We know from Lemma 7 that

ρσ(C1∪C2) = ρC1 ∩ ρC2 .

Now let x (ρC1 ∩ ρC2) x
′, then we have to show that

∀D ∈ σ (D1 ∪D2) : M(x)(D) = M(x′)(D)

holds for each. Let

D0 := {D ∈ σ (D1 ∪ D2) |M(x)(D) = M(x′)(D)}

be the σ-algebra of sets for which the assertion is true. Since in particular xρC1x
′ holds,

we see that D1 ⊆ D0 because 〈C1,D1〉 is a congruence. Similarly we establish D2 ⊆ D0,
thus σ (D1 ∪ D2) ⊆ D0 follows from the fact that D0 is a σ-algebra. Consequently we have
established the properties of a congruence.
2. From Lemma 4 it is immediate that the congruence under consideration is adapted to both
〈φ1, ψ1〉 and 〈φ2, ψ2〉. �

Corollary 3 Under the assumptions of Lemma 8, the congruence〈
σ
(
φ−1

1 [B(X1)] ∪ φ−1
2 [B(X2)]

)
, σ
(
ψ−1

1 [B(Y1)] ∪ ψ−1
2 [B(Y2)]

)〉
is the largest congruence on 〈A,B,M〉 which is adapted to both 〈φ1, ψ1〉 and 〈φ2, ψ2〉.

We are now in a position to introduce semi-pullbacks, to investigate their existence, and to
apply this knowledge to congruences.
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6 Semi-Pullbacks

We will show now that semi-pullbacks exist in a rather general setting, generalizing the
construction in [10] and in [11]. This will ultimately lead to showing that semi-pullbacks exist
for analytic objects, and it will be shown that the object underlying such a semi-pullback is
Polish. A special case in this discussion is furnished by factor objects generated from the sum
of Polish objects having equivalent congruences. Here we use semi-pullbacks to establish the
bisimilarity of these objects. The Hennessy-Milner congruence can be subsumed, as we will
demonstrate.

Theorem 1 Let 〈Xi, Yi,Ki〉 be Polish objects, and assume that X,Y are separable measurable
spaces with a stochastic relation K : X � Y. In Stoch each diagram

〈X1, Y1,K1〉
〈ϕ1, ψ1〉� 〈X,Y,K〉 �〈ϕ2, ψ2〉 〈X2, Y2,K2〉

has a semi-pullback

〈X1, Y1,K1〉 �〈ζ1, ξ1〉 〈A,B,M〉 〈ζ2, ξ2〉� 〈X2, Y2,K2〉

with a Polish object 〈A,B,M〉.

The proof is a variant of the one given for [10, Theorem 1]. It requires, however, some
variations due to the fact that we deal now with separable measurable spaces as the common
target of the morphisms. Hence we give it nearly in full here, in order to render the paper
self-contained.
Proof 1. In view of Observation 1 we may and do assume that the respective σ-algebras on
X and Y are the Borel sets of second countable metric spaces. Because of Proposition 1 we
may assume that the respective σ-algebras on X1 and X2 are obtained from Polish topologies
which render ϕ1 and K1 as well as ϕ2 and K2 continuous. These topologies are fixed for the
proof. Put

A := {〈x1, x2〉 ∈ X1 ×X2|ϕ1(x1) = ϕ2(x2)},
B := {〈y1, y2〉 ∈ Y1 × Y2|ψ1(y1) = ψ2(y2)},

then both A and B are closed, hence Polish. αi : A→ Xi and βi : B → Yi are the projections,
i = 1, 2. The diagrams

X1
ϕ1 � X � ϕ2

X2

S (Y1)

K1

�

S (ψ1)
� S (Y )

K

�
�
S (ψ2)

S (Y2)

K2

�

are commutative by assumption, thus we know that for xi ∈ Xi

K(ϕ1(x1)) = S (ψ1) (K1(x1))
K(ϕ2(x2)) = S (ψ2) (K2(x2))
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both hold. The construction implies that

(ψ1 ◦ β1)(y1, y2) = (ψ2 ◦ β2)(y1, y2)

is true for 〈y1, y2〉 ∈ B, and ψ1 ◦ β1 : B → Y is surjective.
2. Fix 〈x1, x2〉 ∈ A. Separability of the target spaces now enters: Corollary 1 shows that the
image of a surjective map under S is onto again, so that there exists µ ∈ S (B) with

S (ψ1 ◦ β1) (µ) = K(ϕ1(x1)),

consequently,
S (ψi ◦ βi) (µ) = S (ψi) (Ki(xi)) (i = 1, 2).

But this means

∀Ei ∈ ψ−1
i [B(Y )] : S (βi) (µ)(Ei) = Ki(xi)(Ei) (i = 1, 2).

Put
Γ(x1, x2) := {µ ∈ S (B) |S (β1) (µ) = K1(x1) ∧ S (β2) (µ) = K2(x2)},

then Proposition 5 shows that Γ(x1, x2) 
= ∅.
3. Since K1 and K2 are continuous,

Γ : A→ F(S (B))

is easily established. It is shown exactly as in the proof of [10, Theorem 1] that Γ is C-
measurable. From Proposition 2 it is now inferred that there exists a measurable map N :
A→ S (B) such that

N(x1, x2) ∈ Γ(x1, x2)

holds for every 〈x1, x2〉 ∈ A. Thus N : A� B is a stochastic relation with

K1 ◦ α1 = S (β1) ◦N,
K2 ◦ α2 = S (β2) ◦N

Hence 〈A,B,N〉 is the desired semi-pullback. �

This Theorem includes several interesting special cases:

Corollary 4 Semi-pullbacks exist in the category of stochastic relations over Polish spaces.

Proof This follows immediately, it was proved first in [10]. �

Corollary 5 Suppose that in the diagram of Theorem 1 the target object 〈X,Y,K〉 is an
analytic object. Then a Polish semi-pullback of that diagram exists in Stoch.

Proof This also follows immediately from Theorem 1. �

Corollary 5 appears to be new. Edalat’s Theorem on the existence of semi-pullbacks re-
quires universally measurable transition probability functions, i.e., in the parlance preferred
by the present paper, stochastic relations for the semi-pullback, so Corollary 5 seems to be a
structural improvement.
This Corollary has an interesting application to the characterization of bisimulations for
labelled Markov transition systems. It could be shown that two such systems are bisimilar iff
they satisfy the same formulas under the following constraints:
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1. the spaces involved are analytic, the stochastic relations are universally measurable.
This case was discussed in [4],

2. the spaces involved are Polish, the morphisms used are measurable and onto, and one
of the processes is small, i.e. the equivalence induced by satisfaction of formulas has a
Borel section. This case was discussed in [10].

Using Corollary 5, the problem can be solved now in full generality, i.e., without imposing
any restrictions concerning either the morphisms or the transition systems. We will adopt
another angle of view, however, when discussing bisimilarity of Markov transition systems.
In Proposition 9 this discussion will be entered into again.
Now suppose that we have an analytic object 〈A,B,M〉, then we can find a Polish object
〈X,Y,K〉 and a morphism

〈γ, χ〉 : 〈X,Y,K〉 → 〈A,B,M〉
by Lemma 6. This is so since analytic spaces are surjective images of Polish spaces under
measurable maps, and since analytic spaces are — as measurable spaces — separable. This
observation has as an interesting consequence that semi-pullbacks do exist for analytic spaces:

Corollary 6 Let 〈Ai, Bi,Mi〉 be an analytic object for i = 1, 2 and assume that M : A� B
is a stochastic relation for the separable measurable spaces A,B. For the pair

〈A1, B1,M1〉
〈φ1, ψ1〉� 〈A,B,M〉 �〈φ2, ψ2〉 〈A2, B2,M2〉

exist both a Polish object 〈X,Y,K〉 and surjective Borel measurable maps

〈A1, B1,M1〉 �〈f1, g1〉 〈X,Y,K〉 〈f2, g2〉� 〈A2, B2,M2〉

as a semi-pullback.

Proof We can find Polish objects 〈Xi, Yi,Ki〉 and morphisms in Stoch extending the diagram

〈X1, Y1,K1〉 〈X2, Y2,Ki〉

〈A1, B1,M1〉

〈γ1, χ1〉

� 〈φ1, ψ1〉� 〈A,B,M〉 �〈φ2, ψ2〉 〈A2, B2,M2〉

〈γ2, χ2〉

�

Now, using Theorem 1, find a semi-pullback

〈X1, Y1,K1〉 �〈θ1, ρ1〉 〈X,Y,K〉 〈θ2, ρ2〉� 〈X2, Y2,K2〉

for the diagram

〈X1, Y1,K1〉
〈φ1 ◦ γ1, ψ1 ◦ χ1〉� 〈A,B,M〉 �〈φ2 ◦ γ2, ψ2 ◦ χ2〉 〈X2, Y2,Ki〉

Here 〈X,Y,K〉 is a Polish object, and 〈θ1, ρ1〉, 〈θ2, ρ2〉 are morphisms in Stoch. Putting

fi := γi ◦ θi,
gi := χi ◦ ρi

for i = 1, 2 will establish the claim. �

Thus we have in particular established:
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Theorem 2 The category A − Stoch of stochastic relations over analytic spaces has semi-
pullbacks.

This has some consequences:

Corollary 7 Bisimilarity is transitive both in Stoch and A − Stoch.

Proof The proof proceeds exactly as in [19, Theorem 5.4] �

Suppose two Polish objects have equivalent congruences. Then they are bisimilar, as we will
show now as a final application for the existence of semi-pullbacks.

Proposition 8 If 〈Ci,Di〉 are equivalent congruences on the Polish objects 〈Xi, Yi,Ki〉 for
i = 1, 2, then 〈X1, Y1,K1〉 and 〈X2, Y2,K2〉 are bisimilar.

Proof 1. Construct the sum 〈X1 +X2, Y1 + Y2,K1 +K2〉 of the two objects as at the end of
Section 4, and let 〈κi, λi〉 be the corresponding injections, which are, however, no morphisms.
Let

ηC+C′ , ηD+D′ : 〈X1 +X2, Y1 + Y2,K1 +K2〉 → 〈X1 +X2, Y1 + Y2,K1 +K2〉/C+C′,D+D′

be the canonical injection, then

〈ηC+C′ ◦ κi, ηD+D′ ◦ λi〉

constitutes a morphism 〈Xi, Yi,Ki〉 → 〈X1+X2, Y1+Y2,K1+K2〉/C+C′,D+D′, as will be shown
now. The crucial step is establishing surjectivity.
2. We will first give a representation of the equivalence classes for the equivalence relations
associated with C1 + C2 and D1 + D2. This will then imply that the injections into the sums
composed with the factor maps are indeed onto.
Fix a generator {An|n ∈ N} for C1, and assume that C1 spawns C2 via (Υ, {An|n ∈ N}). Then
{Υ(An)|n ∈ N} is a generator for C2, and

C1 + C2 = σ({An + Υ(An)|n ∈ N})

holds. We claim that each equivalence class a ∈ (X1 +X2)/C1+C2 can be represented as

a = [x1]C1
+ [x2]C2

for some suitably chosen x1 ∈ X1, x2 ∈ X2. In fact, suppose a = [x1]C1+C2
for some x1 ∈ X1.

Then
[x1]C1

=
⋂

{An|x1 ∈ An} ∩
⋂

{X1 \An|x1 /∈ An}

holds (see the remark following Definition 1). Consequently,

Υ([x1]C1
) =

⋂
{Υ(An)|x1 ∈ An} ∩

⋂
{X2 \ Υ(An)|x1 /∈ An}

= [x2]C2

for some x2 ∈ X2 by Lemma 5. This is so since we know that the atoms of C2 are exactly the
classes [·]C2

. Consequently, we have for each n ∈ N that x1 ∈ An holds iff x2 ∈ Υ(An) is true.
Since x1 ∈ X1, x2 ∈ X2, and X1 ∩X2 = ∅, we have established

x1 ∈ An + Υ(An) ⇔ x2 ∈ An + Υ(An)
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But this means x1 ρC1+C2 x2. Thus we have shown that indeed

a = [x1]C1
+ [x2]C2

holds. If a = [x2]C1+C2
for some x2 ∈ X2, the same conclusion would have been reached by in-

terchanging the roles of X1 and X2, which is possible because we have equivalent congruences.
It is obvious that [x1]C1

+ [x2]C2
for xi ∈ Xi forms a ρC1+C2-class.

In the same way we show that each equivalence class b ∈ (Y1 + Y2)/D1+D2 can be represented
as

b = [y1]D1
+ [y2]D2

for suitably chosen y1 ∈ Y1, y2 ∈ Y2, and that the sum of classes is a class again.
3. The pullback of the pair of morphisms with a joint target constructed in the first step is
a Polish object which has the desired properties. �

Let us see how the bisimulation of labelled Markov transition systems from Example 1 fits
in. Assume that 〈S, (ka)a∈L〉 and 〈S′, (k′a)a∈L〉 are such systems for Polish spaces S and S′.
Morphisms (and consequently bisimulations) are defined so that the corresponding properties
hold for each action; for example, φ : 〈S, (ka)a∈L〉 → 〈S′, (k′a)a∈L〉 is a morphism iff φ : S → S′

is a surjective measurable map such that

∀a ∈ L : k′a ◦ φ = S (φ) ◦ ka

holds. A bisimulation is then a span of morphisms; a semi-pullback is then a span for a
co-span. Congruences are defined in the same manner.
Define as in Example 1 the sets [[ϕ]]S := {s ∈ S|s |= ϕ} and similarly [[ϕ]]S′ . Then

C(Φ, S) := σ({[[ϕ]]S |ϕ ∈ Φ})

is a countably generated σ-algebra on S, similarly, C(Φ, S′) is defined on S′. Both σ-algebras
are countably generated, since the set Φ of all formulas is countable. It is clear that C(Φ, S)
is a congruence on 〈S, (ka)a∈L〉, since

s ≈ s′ ⇒ ∀a ∈ L∀ϕ ∈ Φ : ka(s)([[ϕ]]S) = ka(s′)([[ϕ]]S)

holds (cf. [4] or [10]).
Now assume that these transition systems are equivalent in the following sense:

〈S, (ka)a∈L〉 ∼ 〈S′, (k′a)a∈L〉

iff
∀s ∈ S∃s′ ∈ S′ : s ≈ s′ and ∀s′ ∈ S′∃s ∈ S : s′ ≈ s,

where ≈ is defined in Example 1. This entails that equivalent labelled Markov transition
systems satisfy exactly the same formulas.
Define for ϕ ∈ Φ

Υ([[ϕ]]S) := [[ϕ]]S′ .

We claim that C(Φ, S) spawns C(Φ, S′) via (Υ, {[[ϕ]]S |φ ∈ Φ}). From the construction it is clear
that Υ maps generators to generators, hence the condition that {Υ([[ϕ]]S)|φ ∈ Φ} generates
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C(Φ, S′) is satisfied. Now assume that s1ρC(Φ,S)s2 for s1, s2 ∈ S, then we know that we can
find s′1, s

′
2 ∈ S′ with s1 ≈ s′1, s2 ≈ s′2. Since[

s′1
]
C(Φ,S′) =

⋂
{Υ([[ϕ]]S)|s1 |= φ} ∩

⋂
{S′ \ Υ([[ϕ]]S)|s1 
|= φ},

and since we have by transitivity of ≈[
s′1
]
C(Φ,S′) =

[
s′2
]
C(Φ,S′) ,

the second condition in Definition 4 is also satisfied. Consequently, C(Φ, S) spawns C(Φ, S′)
via (Υ, {[[ϕ]]S |φ ∈ Φ}). We find even that C(Φ, S) ∝ C(Φ, S′), because we obtain from
〈S, (ka)a∈L〉 ∼ 〈S′, (k′a)a∈L〉 that for each a ∈ L

∀s ∈ S∀s′ ∈ Υ([s]S)∀φ ∈ Φ : ka(s)([[ϕ]]S) = k′a(s
′)([[ϕ]]S′)

holds. Interchanging the roles of S and S′, we find C(Φ, S′) ∝ C(Φ, S), thus both congruences
are equivalent. An application of Proposition 8 yields:

Proposition 9 The labelled Markov transitions systems 〈S, (ka)a∈L〉 and 〈S′, (k′a)a∈L〉 accept
the same formulas of the Hennessy-Milner logic iff they are bisimilar.

Note that this Proposition works, in contrast to the corresponding statements in [4] or [10],
without any restrictions either on the transition functions or on the transition system itself.

7 Conclusion and Further Work

We discuss congruences for stochastic relations, capitalizing on the equivalence of smooth
equivalence relations and countably generated σ-algebras. This opens up the avenue of in-
vestigating factor spaces, and some algebraic legwork has to be done in order to put this
development into the right perspective. In particular the question arises under which condi-
tions the semi-pullback for a span of morphisms in the category of stochastic relations does
exist. It is known that it exists if the underlying spaces are Polish, and it is shown in this
paper that even for analytic spaces the existence of semi-pullbacks can be proven.
At the heart of the proof for this statement lies a measure extension problem: it can be shown
that a measure defined on a sub-σ-algebra of the Borel sets of a product of two Polish spaces
can be extended to the Borel sets, respecting some prescribed distributions. Varying the
sub-σ-algebra within certain not too narrow limits permits some variations of the existence
proof for semi-pullbacks which follows an established pattern through the application of some
selection theorems from Operations Research. Thus we see an example of proof reuse by
establishing the existence of the same construction under different conditions.
The paper’s contributions are the following:

1. the existence of semi-pullbacks is established for stochastic relations over analytic spaces,

2. congruences are defined, and it is shown how factor spaces for these congruences can
be constructed; the interplay of congruences and smooth equivalence relations is inves-
tigated,

3. equivalent congruences are investigated, and it is shown that stochastic relations that
have equivalent congruences are bisimilar.
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Equivalent congruences arise for example when considering labelled Markov transition sys-
tems. Two states are equivalent iff they satisfy the same formulas of a very simple negation
free Hennessy-Milner logic: the congruences are equivalent iff each state in one system finds
an equivalent state in the other system, and vice versa. It was shown in [4, 10] that such
an equivalence exists iff the transition systems are bisimilar. We show that this is actually a
special case of the theory developed here.
The congruences investigated in the present paper are all defined over Polish spaces, and the
natural question to ask is whether this development can be carried over to stochastic rela-
tions over analytic spaces. This would enable us to investigate factor structures arising from
congruences much more closely (the present paper remains a bit of a torso in this respect).
Another question is whether equivalent congruences can be constructed from bisimilar rela-
tions, which would then permit giving a necessary and sufficient conditions on the existence
of bisimulations. This would then indicate a nice parallel between labelled Markov transi-
tion systems and these relations on one hand, and between stochastic and non-deterministic
relations on the other hand.
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