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Abstract

We investigate the OLS-based estimator s2 of the disturbance variance in an error component
linear panel regression model when the disturbances are homoskedastic, but spatially correlated.
Although consistent (Song and Lee, Econ. Lett. 2008), s2 can be arbitrarily biased towards zero in
finite samples.
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1 Introduction and Model

We consider the following standard linear panel regression model

yit = X ′itβ + uit, i = 1, . . . , N ; t = 1, . . . , T (1)

where i indexes units and t indexes time. The dependent variable yit is affected by the (for simplicity

fixed) K × 1 regressor vector Xit through the unknown K × 1 vector β and the error uit. The errors

follow the one-way error component structure

uit = µi + εit, i = 1, . . . , N ; t = 1, . . . , T

where the individual-specific effect µi is i.i.d. with mean 0 and variance σ2
µ. In matrix notation, (1)

can be written as y = Xβ + u, where the observations are stacked such that y, u = µ ⊗ ιT + ε and

ε = (ε′1, . . . , ε
′
T )′ are NT × 1 (ιT is a T × 1-vector of ones), while X is NT × K with rank K and

µ = (µ1, . . . , µN )′ is N × 1. The idiosyncratic error εt = (ε1t, . . . , εNt)′ is generated by a first-order

spatial autoregressive process

εt = ρWεt + νt, (2)
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where ρ is the scalar spatial autoregressive coefficient and the elements of ν = (ν ′1, . . . , ν
′
T )′ =

(ν11, . . . , νN1, . . . , νNT )′ are i.i.d. with (0, σ2
ν). The N × N -matrix W has known nonnegative spa-

tial weights with wii = 0 (i = 1, . . . , N). Such patterns of dependence are often entertained when the

objects under study are positioned in some “space,” whether geographical or sociological, and account

for spillovers from one unit to its neighbors, whichever way “neighborhood” may be defined. They

date back to Whittle [1954] and have become quite popular in econometrics recently. See Anselin

[2001] for a survey of this literature.

The coefficient ρ in (2) measures the degree of correlation, which can be both positive and negative.

Below we focus on the empirically more relevant case of positive disturbance correlation, where 0 6

ρ 6 1/λmax and where λmax is the Frobenius-root of W (i.e. the unique positive real eigenvalue such

that λmax > |λi| for arbitrary eigenvalues λi).

Under (2), u satisfies u = (IN ⊗ ιT )µ+ (B−1⊗ IT )ν, with IM the identity matrix of dimension M and

B = IN − ρW . Furthermore, the variance-covariance matrix of u becomes

E(uu′) =: Ω = σ2
µ

[
IN ⊗ JT

]
+σ2

ν

[
(B′B)−1 ⊗ IT

]
, (3)

where JT is a T × T matrix of ones. The pooled OLS estimate for β is β̂ = (X ′X)−1X ′y, and the

OLS-based estimate for σ2 := Var(uit) is

s2 =
1

NT −K
(y −Xβ̂)′(y −Xβ̂) =

1
NT −K

u′Mu, (4)

where M = I − X(X ′X)−1X ′. The present paper shows that, while consistent, s2 can still be arbi-

trarily biased. Of course, for our analysis to make sense, the main diagonal of Ω should be constant,

i.e. Ω = σ2Σ, where Σ is the correlation matrix of u. It is therefore important to clarify that many,

though not all, spatial autocorrelation schemes imply homoskedasticity of Ω. Consider for instance

the following popular specification for W known as “one ahead and one behind:”

W̃ :=



0 1 0 · · · 0 1

1 0
. . . 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . 0
. . . 0

0 · · · 0 1 0 1
1 0 · · · 0 1 0


and renormalize the rows such that the row sums are 1, i.e. take W̃/2. Then it is easily seen that

E(u2
it) is independent of i and t, and analogous results hold for the more general “j ahead and j

behind” weight matrix W which has non-zero elements in the j entries before and after the main di-

agonal, with the non-zero entries equal to j/2. This specification has been considered by, for instance,
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Kelejian and Prucha [1999] and Krämer and Donninger [1987]. The condition is also met if W is the

equal-weight matrix (see, e.g., Kelejian and Prucha [2002], Lee [2004] or Case [1992]) WEW , defined by

WEW = (wEWij ) =

{
1

N−1 for i 6= j

0 for i = j
.

Our results therefore hold for both W = WEW and W = W̃/2, among others. In the sequel, we work

with W = WEW for brevity, following Song and Lee [2008].

It has long been known that s2 is in general (and contrary to β̂) biased for σ2 whenever Ω is no

longer a multiple of the identity matrix. Krämer [1991] and Krämer and Berghoff [1991] show that

this problem disappears asymptotically for certain types of temporal correlation such as stationary

AR(1)-disturbances in a standard linear regression model, although it is clear from Kiviet and Krämer

[1992] that the relative bias of s2 might still be substantial for any finite sample size. Recently, Song

and Lee [2008] prove consistency of s2 for σ2 also under the panel model (1), for W = WEW . We

extend their results to the finite-sample case by showing that s2 can nevertheless be arbitrarily biased

for σ2.

2 The relative bias of s2 in finite samples

We have

E

(
s2

σ2

)
= E

(
1

σ2(NT −K)
u′Mu

)
=

1
σ2(NT −K)

tr(MΩ)

=
1

NT −K
tr(MΣ). (5)

Watson [1955] and Sathe and Vinod [1974] derive the (attainable) bounds

mean of NT −K smallest eigenvalues of Σ

6 E

(
s2

σ2

)
6 (6)

mean of NT −K largest eigenvalues of Σ,

which shows that the bias can be both positive and negative, depending on the regressor matrix X,

whatever Σ may be. Finally, Dufour [1986] points out that the inequalities (6) amount to

0 6 E

(
s2

σ2

)
6

NT

NT −K
(7)

when no restrictions are placed on X and Σ. Again, these bounds are sharp and show that underes-

timation of σ2 is more likely than overestimation.
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The problem with Dufour’s bounds is that they are unnecessarily wide when extra information on Ω

is available. Here we assume Ω to satisfy (3) and show that the relative bias of s2 depends crucially

on the interplay between X and W . In particular, irrespective of N and of the weighting matrix

W , there is always a regressor matrix X such that E(s2/σ2) becomes as close to zero as desired. To

see this, note that the above W are symmetric. Hence, we can write W =
∑N

i=1 λiωiω
′
i, the spectral

decomposition of W , with the eigenvalues λi in increasing order and ωi the corresponding orthonormal

eigenvectors. We directly obtain from (5) that

lim
ρ→1/λN

E
(
s2/σ2

)
= 0 (8)

whenever limρ→1/λN
tr(MΣ) = 0. Since M is constant w.r.t. ρ and the trace is continuous, we need

limρ→1/λN
Σ to investigate the limiting bias.

Lemma 1. Let ω̃i = ωi ⊗ ek, with ek an eigenvector of IT , and ω̃2
i1 the (1, 1)-element of ω̃iω̃′i (under

homoscedasticity, we could select any diagonal element of ω̃iω̃′i). When ρ→ 1/λN , Σ tends to

Σ̃ :=

∑NT
i=T (N−1)+1 ω̃iω̃

′
i∑NT

i=T (N−1)+1 ω̃
2
i1

Proof. Using symmetry of W , write

Ω = σ2
µ

[
IN ⊗ JT

]
+σ2

ν

[
(IN − ρW )−2 ⊗ IT

]
From e.g. Lütkepohl [1996, Sec. 5.2.1], (IN − ρW )−2 ⊗ IT has eigenvalues (1− ρλi)−2 with multiplicity T each,
as λj(IT ) = 1, t = 1, . . . , T and using standard results on eigenvalues of Kronecker products [e.g. Abadir and
Magnus, 2005, 10.10]. Hence, we can write

Ω = σ2
µ

[
IN ⊗ JT

]
+σ2

ν

[
NT∑
i=1

1
(1− ρλi)2

ω̃iω̃
′
i

]
,

again using standard results on eigenvectors of Kronecker products [e.g. Abadir and Magnus, 2005, 10.11]. Note
σ2 = σ2

µ + σ2
ν

[∑NT
i=1

1
(1−ρλi)2

ω̃2
i1

]
. Hence

Σ =
σ2
µ

σ2
µ + σ2

ν

[∑NT
i=1

1
(1−ρλi)2

ω̃2
i1

][IN ⊗ JT ]+ σ2
ν

σ2
µ + σ2

ν

[∑NT
i=1

1
(1−ρλi)2

ω̃2
i1

] [NT∑
i=1

1
(1− ρλi)2

ω̃iω̃
′
i

]

Multiplying numerator and denominator by (1− ρλN )2 yields

Σ =
σ2
µ(1− ρλN )2

σ2
µ(1− ρλN )2 + σ2

ν

[∑NT
i=1

(1−ρλN )2

(1−ρλi)2
ω̃2
i1

][IN ⊗ JT ]

+
σ2
ν

σ2
µ(1− ρλN )2 + σ2

ν

[∑NT
i=1

(1−ρλN )2

(1−ρλi)2
ω̃2
i1

] [NT∑
i=1

(1− ρλN )2

(1− ρλi)2
ω̃iω̃

′
i

]

Now, as the T largest eigenvalues of
[
(IN − ρW )−2 ⊗ IT

]
are equal to λN , we have limρ→1/λN

= (1−ρλN )2

(1−ρλi)2
= 1

for i = i = T (N − 1) + 1, . . . , NT and 0 else. Thus,

lim
ρ→1/λN

Σ =
0

0 + σ2
ν

[∑NT
i=T (N−1)+1 ω̃

2
i1

][IN ⊗ JT ]

+
σ2
ν

0 + σ2
ν

[∑NT
i=T (N−1)+1 ω̃

2
i1

]
 NT∑
i=T (N−1)+1

ω̃iω̃
′
i
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Figure I—The relative bias of s2 as a function of ρ and N , X = ιN ⊗ I2

Remark 1. The result, and by extension the Proposition below, also holds if σ2
µ = 0, i.e. if the if the

individual-specific effects are homogenous.

We now demonstrate that s2 can be arbitrarily biased for σ2.

Proposition 1. For any W such that σ2 is constant over i and t, there always exists an X such that

limρ→1/λN
E
(
s2/σ2

)
= 0.

Proof. Choose IT as eigenvectors for IT . The largest eigenvalue λN of a row-normalized matrix such as
W̃/2 or WEW is 1. (This follows immediately from Theorem 8.1.22 of Horn and Johnson [1985].) Hence,
ωN = aιN for some a ∈ R \ {0}. ωN then also is the eigenvector corresponding to the largest eigenvalue of
B−2, (1− ρ)−2. (This follows because, for e.g. WEW , B−2 = (δ1JN + δ2IN )2 = (Nδ21 + 2δ1δ2)JN + δ22IN , where
δ1 = ρ/[(N − 1 + ρ)(1− ρ)], δ2 = (N − 1)/(N − 1 + ρ), is a matrix with constant on- and off-diagonal elements.
Then, aB−2ιN is a vector with identical elements aN [Nδ21 + 2δ1δ2)] + δ22 . Some algebra shows this to be equal
to a(1 − ρ)−2.) Hence, (ω̃i)i=T (N−1)+1,...,NT = (aιN ) ⊗ IT . Thus, the numerator of Σ̃, Ω̃, can be written as
a matrix in which the jth column, j = 1, T + 1, . . . , T (N − 1) + 1 is (a2, 0′T−1, a

2, 0′T−1, . . . , a
2, 0′T−1)′. The

adjacent t′ = 1, . . . , T − 1 columns start on t′ zeros before the sequence a2, 0′T−1, a
2, 0′T−1, . . . sets in. E.g., for

T = 2, Ω̃ is

Ω̃ :=
NT∑

i=T (N−1)+1

ω̃iω̃
′
i =



a2 0 a2 · · · a2 0
0 a2 0 a2

a2 0
. . . . . . 0

...
. . . . . . . . .

...

a2 . . . a2 0
0 a2 0 · · · 0 a2


Hence tr(Ω̃) = NTa2. Now, take X = ιN ⊗ IT . Then, INT −M = (ιN ⊗ IT )[(ιN ⊗ IT )′(ιN ⊗ IT )]−1(ιN ⊗

IT )′ = N−1(JN ⊗ IT ). We have N−1 diag
(
(JN ⊗ IT )Ω̃

)
= N−1(NT/Ta2, . . . , NT/Ta2)′ = (a2, . . . , a2)′, whence

N−1 tr
(
(JN ⊗ IT )Ω̃

)
= NTa2. Thus, tr(M Ω̃) = tr(M Σ̃) = 0, which, by continuity of tr, completes the proof.
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Figure II—The relative bias of s2 as a function of ρ and N , X = ιNT

Figure I illustrates Theorem 1 for X = ιN ⊗ I2 for N = 5, 10, . . . , 250 and W = WEW . We see that

(8) holds for any given N . Also, pointwise in ρ, the relative bias vanishes as N → ∞, as one would

expect. To highlight that not all X matrices produce a limiting relative bias of zero, Figure II reports

the case X = ιN ⊗ ιT . Although the bias still is substantial, it is clearly bounded away from zero.

(One can show that E(s2/σ2)→ NT
2(NT−K)ω̃a

2 in this case, where ω̃ :=
∑NT

i=T (N−1)+1 ω̃
2
i1. As NT

NT−K is

slightly larger than one and ω̃ = a2, a limiting bias slightly above 1/2 obtains for N <∞.)
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Krämer, Walter, and Christian Donninger, 1987, Spatial autocorrelation among errors and the relative efficiency
of ols in the linear regression model, Journal of the American Statistical Association 82(398), 577–579.

6
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