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DRIFT ESTIMATION FOR A PERIODIC MEAN REVERSION PROCESS

HEROLD DEHLING, BRICE FRANKE, AND THOMAS KOTT

Abstract. In this paper we propose a periodic, mean-reverting Ornstein-Uhlenbeck pro-
cess of the form

dXt = (L(t)− α Xt) dt + σ dBt, t ≥ 0,

where L(t) is a periodic, parametric function. We apply maximum likelihood estimation
for the drift parameters based on time-continuous observations. The estimator is given
explicitly and we prove strong consistency and asymptotic normality as the observed number
of periods tends to infinity. The essential idea of the asymptotic study is the interpretation
of the stochastic process as a sequence of random variables that take values in some function
space.

1. Introduction

The ordinary Ornstein-Uhlenbeck process is defined as solution to the stochastic differen-
tial equation

dXt = α(µ−Xt)dt+ σdBt, t ≥ 0,

where α and σ are positive constants, µ ∈ R and where X0 with E(X2
0 ) <∞ is a real-valued

random variable which is independent of the standard Brownian motion (Bt)t≥0. Originally
introduced by Ornstein and Uhlenbeck (1932) as a model for particle motion in a fluid,
this process is now widely used in many areas of application. The main characteristic of
the Ornstein-Uhlenbeck process is the tendency to return towards the long-term equilibrium
µ. This property, known as mean-reversion, is found in many real life processes, e.g. in
commodity and energy price processes, see e.g. Geman (2005).

In many real-life applications, however, the assumption of a constant mean level is not
adequate due to seasonality patterns or a long-term trend of the process. Thus we want to
consider the more general process satisfying the stochastic differential equation

(1) dXt = (L(t)− αXt)dt+ σdBt, t ≥ 0,

where L(t) is a time-dependent mean reversion level and where α, σ are positive constants.
Note that model (1) differs from the original Ornstein-Uhlenbeck process in the position of α
within the drift term. However, model (1) can easily be transformed to a process with drift
term α(L̃(t)−Xt)dt where L̃(t) = L(t)/α. The advantage of (1) compared with the process
provided with the drift α(L(t)−Xt)dt is the simplification of the study of the estimators.

In this paper we make a parametric model for the mean reversion function L(t). We
assume that

(2) L(t) =

p∑
i=1

µiϕi(t),
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2 H. DEHLING, B. FRANKE, AND T. KOTT

where the basis functions ϕ1(t), . . . , ϕp(t) are known and µ1, . . . , µp and α are unknown
parameters. In contrast, the diffusion parameter σ is assumed to be known which is a
common assumption in the field of drift parameter estimation for a time-continuous diffusion.
This is due to the fact that the measures corresponding to different diffusion parameters are
singular so that σ can be computed, rather than estimated, from a single continuous-time
observation path.

The conditions on the drift coefficient, here

(3) S(θ, t,Xt) =

p∑
i=1

µiϕi(t)− αXt, θ = (µ1, . . . µp, α)t,

that ensure existence and uniqueness of a solution of equation (1) are well known, see Kuo
[4] (Theorem 10.3.5, p. 192), for example. Due to the linear form of S(θ, t, ·) the global Lip-
schitz condition is satisfied in our setting such that there exists at most one solution of (1).
If the basis functions ϕ1(t), . . . , ϕp(t) are bounded on compact sets in R, for instance, then
the linear growth condition which implies the uniqueness of an existing solution is fulfilled.

Drift parameter estimation for time-continuously observed diffusion processes is a well-
established area of research, for which a variety of techniques has been proposed. For ex-
ample, Kutoyants [5] investigates several estimation techniques for the drift term of ergodic,
time-homogenous diffusion processes. The analysis of asymptotic properties of drift esti-
mates for time-inhomogeneous diffusion models has been paid much less attention. Among
some other authors, Bishwal [1] studies the maximum likelihood estimator for a time-
inhomogeneous diffusion provided with drift function f(θ, t,X) defined on Θ×[0, T ]×C[0, T ],
where Θ is the parameter space and C[0, T ] is the space of all continuous, real-valued func-
tions on [0, T ]. Note that our model presented above belongs to this class of diffusion
processes and that our results comply with Bishwal’s findings. However, in order to ap-
ply Bishwal’s results directly, one has to verify the required conditions, among others the
convergence of

(4)
1

mT

∫ T

0

(
∂

∂θ
f(θ, t,Xt)

)2

dt

where mT is an increasing, non-random sequence, see Bishwal [1] condition (A6) on p. 65.
The verification of this condition does not go without saying in our model and requires some
auxiliary ideas and results. In contrast to Bishwal’s general setting, we obtain an explicit
representation of the estimator which is used for the study of its asymptotic behavior. By
investigating this representation, the convergence of the multi-dimensional version of (4) is
shown, see Proposition 4.5 where 1

T
QT is the analog to the term in (4).

2. maximum likelihood estimator

Let us denote by PX the measure induced by the observable realizations XT = {Xt, 0 ≤
t ≤ T} on the measurable space (C[0, T ],B[0, T ]), C[0, T ] being the space of continuous,
real-valued functions on [0, T ] and B[0, T ] the associated Borel σ-field. Moreover, let PB be
the measure generated by the Brownian motion on (C[0, T ],B[0, T ]). Then the likelihood
function of observations XT of the process with stochastic differential (1) is defined as

L(θ,XT ) :=
dPX

dPB
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where dPX/dPB is the Radon-Nikodym derivative. The maximum likelihood estimator is
defined as the maximum of the functional θ 7→ L(θ,XT ), i.e.

θ̂ML := arg max
θ
L(θ,XT ).

A corollary to Girsanov’s theorem, see Theorem 7.6 on p. 246 in [7] by Lipster and
Shiryayev, gives an explicit expression of the likelihood function of a diffusion process pro-
vided that

(5) P

(∫ T

0

S(θ, t,Xt)
2dt <∞

)
= 1

for all 0 ≤ T <∞ and all θ.

Lemma 2.1. Let L(θ,XT ) denote the likelihood function of observations XT = {Xt, 0 ≤
t ≤ T} of the process introduced in (1) provided with the mean reversion function (2). If the
drift term given in (3) satisfies condition (5) then

θ̂ML = Q−1
T PT .

The objects QT ∈ R(p+1)×(p+1) and PT ∈ Rp+1 are defined as

QT =

(
GT −aT

−at
T bT

)
,

PT =

(∫ T

0

ϕ1(t)dXt, . . . ,

∫ T

0

ϕp(t)dXt −
∫ T

0

Xt dXt

)t

where GT = (
∫ T

0
ϕj(t)ϕk(t)dt)1≤j,k≤p ∈ Rp×p, aT = (

∫ T

0
ϕ1(t)Xt dt, . . . ,

∫ T

0
ϕp(t)Xt dt)

t and

bT =
∫ T

0
X2

t dt.

Proof. The likelihood function of a diffusion process of the form

dXt = S(θ, t,Xt)dt+ σdBt, 0 ≤ t ≤ T,

is given by

(6) L(θ,XT ) =
dPX

dPB

= exp

(
1

σ2

∫ T

0

S(θ, t,Xt)dXt −
1

2σ2

∫ T

0

S(θ, t,Xt)
2dt

)
if condition (5) is fulfilled, see Lipster and Shiryayev [7] (Theorem 7.6, p. 246). The partial
derivatives of the logarithm of this functional are

(7)
∂

∂θi

ln(L(θ,XT )) =
1

σ2

∫ T

0

∂

∂θi

S(θ, t,XT )dXt −
1

σ2

∫ T

0

S(θ, t,Xt)
∂

∂θi

S(θ, t,Xt)dt.

The drift function of our mean reversion model is given in (3) and the derivatives are

∂

∂θi

S(θ, t,Xt) =

{
ϕi(t), i = 1 . . . , p;
−Xt, i = p+ 1.

Setting the partial derivatives of the log-likelihood function in (7) equal zero gives a system
of linear equations which yields the assertion.

�

Remark 1. Note that the matrix QT introduced in the previous lemma is not a priori in-
vertible. However, we will see later that it is invertible for T large enough in the periodic
mean reversion model, see Remark 3 for more details on that.
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Remark 2. The maximum likelihood estimator introduced above can be motivated by an
alternative derivation: Interpreting Euler’s discretization of the stochastic differential equa-
tion (1) as a linear model and applying the ordinary least squares estimation method to this

discrete version provides an estimator θ̂∆t
T containing Riemann and Itô sums. It can be then

seen that θ̂∆t
T → θ̂ML as ∆t→ 0.

3. maximum likelihood Estimation for a Periodic Mean Reversion Function

In many applications, the data display regular seasonal effects. These can be modeled by
assuming that the mean-reversion function L(t) is periodic, i.e. that

(8) L(t+ ν) = L(t)

where ν is the period observed in the data. The resulting stochastic process exhibits a
cyclical evolution due to the periodicity of this mean reversion mechanism. Combining the
assumption of periodicity with the parametric model (2) leads to the requirement

(9) ϕj(t+ ν) = ϕj(t).

By applying Gram-Schmidt orthogonalization, we may assume without loss of generality
that ϕ1(t), . . . , ϕp(t) form an orthonormal system in L2([0, ν],

1
ν
dλ), i.e. that

(10)

∫ ν

0

ϕj(t)ϕk(t)dt =

{
ν, j = k
0, j 6= k.

In the rest of this paper we will assume that we observe an integral multiple of the period
length, i.e. that

T = N ν,

for some integer N . Moreover, we will assume without loss of generality that ν = 1.
Under the above assumptions, the matrix QT , defined in (6), simplifies to

(11) QT =

(
T Ip −aT

−at
T bT

)
where Ip denotes the (p × p)-identity matrix. The inverse of a matrix of this special form
can be explicitly computed by the following lemma.

Lemma 3.1. The inverse of the matrix QT , given in (11), is given by

(12) Q−1
T =

1

T

(
Ip + γT ΛT Λt

T −γT ΛT

−γT Λt
T γT

)
where

ΛT,i =
1

T

∫ T

0

ϕi(t)Xtdt, i = 1, . . . , p(13)

γT =

(
1

T

∫ T

0

X2
t dt−

p∑
i=1

Λ2
T,i

)−1

(14)

and ΛT = (ΛT,1, . . . ,ΛT,p)
t.
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Proof. We make use of the following formula for the inverse of a partitioned matrix which
can be deduced from the Frobenius matrix inversion formula, cf. Gantmacher [2], p. 73.
Alternatively the formula can also be verified directly. We have for a ∈ Rp, b ∈ R

(15)

(
Ip a

at b

)−1

=

(
Ip + 1

b−‖a‖2aa
t − 1

b−‖a‖2a

− 1
b−‖a‖2a

t 1
b−‖a‖2

)
,

where ‖ · ‖ denotes the usual Euclidean norm on Rp. With the notation introduced above,
we can write QT as follows,

QT = T

(
Ip −ΛT

−Λt
T

1
T

∫ T

0
X2

t dt

)
and thus apply the above formula for the calculation of Q−1

T . �

Remark 3. Note that the Frobenius matrix inversion formula holds if and only if the entries
of the matrix on the right hand side of (15) are well-defined. We will see in the proof of
Proposition 4.5 that the limit of 1

T
Q−1

T is well defined since we show that the limit of γT

denoted by γ is greater than zero. Consequently, 1
T
Q−1

T exists almost surely if T is large
enough.

We can now formulate our main results about the asymptotic behavior of the maximum
likelihood estimator in the periodic Ornstein-Uhlenbeck model.

Theorem 1. Let {Xt, 0 ≤ t ≤ T} be observations of the periodic mean reversion process as
introduced in (2), satisfying (9) and (10). Then the maximum likelihood estimator given in
Lemma 2.1 is consistent, i.e.

θ̂ML → θ, almost surely,

as T →∞.

For the description of the asymptotic distribution of θ̂ML, we have to introduce the (p +
1)× (p+ 1) matrix

(16) C =

(
Ip + γΛΛt −γΛ
−γΛt γ

)
where the entries are defined by

Λi =

∫ 1

0

ϕi(t)h̃(t)dt, i = 1, . . . , p(17)

γ =

(∫ 1

0

(h̃(t))2dt+
σ2

2α
−

p∑
i=1

Λ2
i

)−1

(18)

and Λ = (Λ1, . . . ,Λp)
t. Here, the function h̃ : [0,∞) → R is defined by

h̃(t) = e−αt

p∑
j=1

µj

∫ t

−∞
eαsϕj(s)ds.(19)
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Theorem 2. Let {Xt, 0 ≤ t ≤ T} be observations of the periodic mean reversion process as
introduced in (2), satisfying (9) and (10). Then the maximum likelihood estimator given in
Lemma 2.1 is asymptotically normal. More precisely,

√
Tσ−1(θ̂ML − θ) → N(0, C),

where C is defined as in (16).

The proofs of these theorems require a number of auxiliary results, which will be given in
the next two sections.

4. Proof of Theorem 1

The proofs of Theorem 1 and Theorem 2 make use of a representation of the maximum
likelihood estimator that will be established in the following proposition.

Proposition 4.1. The maximum likelihood estimator θ̂ML, defined in Lemma 2.1, can be
written as

(20) θ̂ML = θ + σQ−1
T RT ,

where

(21) RT :=


∫ T

0
ϕ1(t)dBt

...∫ T

0
ϕp(t)dBt

−
∫ T

0
XtdBt

 ,

and where QT is defined in Lemma 2.1.

Proof. By definition, we have

θ̂ML = Q−1
T PT ,

where QT and PT are defined as in Lemma 2.1. We rewrite this by making use of (1). In
fact, the stochastic integrals in PT are understood in accordance to

dXt =
( p∑

j=1

µjϕj(t)− αXt

)
dt+ σdBt

as∫ T

0

ϕi(t)dXt =

p∑
j=1

µj

∫ T

0

ϕi(t)ϕj(t)dt− α

∫ T

0

ϕi(t)Xtdt+ σ

∫ T

0

ϕi(t)dBt, i = 1, . . . , p,

∫ T

0

XtdXt =

p∑
j=1

µj

∫ T

0

Xtϕj(t)dt− α

∫ T

0

X2
t dt+ σ

∫ T

0

XtdBt.

Hence, it follows that

PT =


∫ T

0
ϕ1(t)dXt

...∫ T

0
ϕp(t)dXt

−
∫ T

0
XtdXt

 = QT θ + σRT

so that θ̂ML = θ + σQ−1
T RT . �
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In what follows, we will show that Q−1
T RT converges to zero almost surely, as T →∞. In

order to do so, we write

Q−1
T RT =

(
T Q−1

T

)( 1

T
RT

)
.

We will show that T Q−1
T converges almost surely to a finite limit and that 1

T
RT converges

almost surely to zero. Both of these results require some auxiliary results which will be
proved first.

Lemma 4.2. The solution of the stochastic differential equation (1) has the explicit repre-
sentation

(22) Xt = e−αtX0 + h(t) + Zt,

where

h(t) = e−αt

∫ t

0

eαsL(s)ds = e−αt

p∑
i=1

µi

∫ t

0

eαsϕi(s)ds

and

Zt = σe−αt

∫ t

0

eαsdBs.

Proof. The Itô lemma states for Yt = g(t,Xt) that

dYt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt)(dXt)

2

which reduces for g(t, x) = eαtx to

dYt = αeαtXtdt+ eαtdXt.

Plugging (1) in this equation gives

dYt = eαt(L(t)dt+ σdBt).

Integrating and multiplying by e−αt finishes the proof of the lemma. �

The process (Xt)t≥0 is not stationary, since we have chosen an arbitrary initial random
variable. Thus we are unable to apply the ergodic theorem. In order to solve this problem,
we will next introduce a stationary solution to the stochastic differential equation (1) for
t ∈ R instead of t ≥ 0. We define the process

(23) X̃t = h̃(t) + Z̃t

where h̃(t) is defined in (19) and Z̃t is defined as

(24) Z̃t = σe−αt

∫ t

−∞
eαsdB̃s

where (B̃s)s∈R denotes a bilateral Brownian motion, i.e.

B̃s := Bs1R+(s) + B̄−s1R−(s)

with (Bs)s≥0 and (B̄s)s≥0 two independent standard Brownian motions. Thereby, 1A denotes
the indicator function of the set A.

In the following lemma we take the process introduced above as a sequence of function-
valued random variables. This method originates from probability theory on Banach spaces.
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Lemma 4.3. The sequence of C[0, 1]-valued random variables

(25) Wk(s) := X̃k−1+s, 0 ≤ s ≤ 1, k ∈ N

is stationary and ergodic.

Proof. We denote by h̃0 the restriction of the function h̃ to [0, 1]. Since the function h̃ is
periodic, we have the decomposition

Wk(t) = h̃(k − 1 + t) + σe−α(k−1+t)

∫ k−1+t

−∞
eαsdB̃s

= h̃0(t) + σe−α(k−1+t)

∫ k−1+t

k−1

eαsdB̃s + σ

k−1∑
l=−∞

e−α(k−1+t)

∫ l

l−1

eαsdB̃s.

Making use of the time shifted Brownian motion

B̃(l)
s := B̃s+l

yields

Wk(t) = h̃0(t) + σe−αt

∫ t

0

eαsdB̃(k)
s + σ

k−1∑
l=−∞

e−α(k−l+t)

∫ 1

0

eαsdB̃(l)
s

= h̃0(t) + σe−αt

∫ t

0

eαsdB̃(k)
s + σ

0∑
j=−∞

e−α(1+t−j)

∫ 1

0

eαsdB̃(j+k−1)
s .

Consequently, this can be written as

Wk(·) = h̃0(·) + F0(Yk) +
0∑

l=−∞

eα(j−1)F (Yj+k−1)

where we used the a.s. defined functionals

F0 : C[0, 1] → C[0, 1]; ω 7→
(
t 7→ σe−αt

∫ t

0

eαsdω(s)

)
,

F : C[0, 1] → C[0, 1]; ω 7→
(
t 7→ σe−αt

∫ 1

0

eαsdω(s)

)
and the C[0, 1]-valued random variables

Yl = (s 7→ B̃(l)
s − B̃

(l)
0 , 0 ≤ s < 1).

The series (Yl)l∈Z consists of independent and identically distributed random variables. This
implies that (Wk)k∈N is stationary and ergodic since each element of this sequence can be
represented as a measurable function G : (C[0, 1])N → C[0, 1] of elements of the iid sequence
(Yl)l∈Z, i.e.

Wk = G(Yk, Yk−1, . . .).

�

Lemma 4.4. As t→∞ one has

(26)
∣∣∣X̃t −Xt

∣∣∣→ 0, a.s.
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Proof. We have∣∣∣X̃t −Xt

∣∣∣ ≤ e−αt|X0|+
∣∣∣h̃(t)− h(t)

∣∣∣+ ∣∣∣Z̃t − Zt

∣∣∣
≤ e−αt|X0|+ e−αt

p∑
i=1

µi

∫ 0

−∞
eαs|ϕi(s)|ds+ e−αt

∫ 0

−∞
eαsdB̃s.

Obviously, the three terms on the right side converge toward zero as t→∞. �

Proposition 4.5. As T →∞, we have

T Q−1
T → C, almost surely,

where C is the matrix defined in (16).

Proof. We first consider the entries of the vector ΛT , i.e. 1
T

∫ T

0
Xtϕj(t)dt. From Lemma 4.4

we may conclude that

1

T

∫ T

0

X̃tϕj(t)dt−
1

T

∫ T

0

Xtϕj(t)dt→ 0,

almost surely. Moreover, we get by the ergodic theorem

1

T

∫ T

0

X̃tϕj(t)dt =
1

T

T∑
k=1

∫ k

k−1

X̃tϕj(t)dt −→ E

(∫ 1

0

X̃tϕj(t) dt

)
=

∫ 1

0

h̃(t)ϕj(t)dt.

Thus we have established convergence of ΛT,j, 1 ≤ j ≤ p. In order to determine the limit of

γT , it suffices to consider the term 1
T

∫ T

0
X2

t dt. Due to representation (22) it holds that

(27) lim sup
T→∞

1

T

∫ T

0

Xtdt = lim sup
T→∞

1

T

∫ T

0

e−αtX0 + h(t) + Zt dt <∞,

almost surely, since h(t) is bounded and X0 and Zt are bounded almost surely, compare the
proof of Lemma 4.6. It follows from (27) and Lemma 4.4 that

1

T

∫ T

0

X̃2
t dt−

1

T

∫ T

0

X2
t dt =

1

T

∫ T

0

(X̃t +Xt)(X̃t −Xt)dt→ 0.

Consequently, again by the ergodic theorem, we get

1

T

∫ T

0

X̃2
t dt =

1

T

T∑
k=1

∫ k

k−1

X̃2
t dt

→ E

(∫ 1

0

X̃2
t dt

)
= E

(∫ 1

0

(h̃(t) + Z̃t)
2dt

)
= E

(∫ 1

0

(h̃(t))2dt+ 2

∫ 1

0

h̃(t)Z̃tdt+

∫ 1

0

Z̃2
t dt

)
=

∫ 1

0

(h̃(t))2dt+ E(Z̃1)
2 =

∫ 1

0

(h̃(t))2dt+
σ2

2α
.
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By Bessel’s inequality, we have
p∑

i=1

Λ2
i ≤

∫ 1

0

(h̃(t))2dt

and thus (
∫ 1

0
(h̃(t))2dt+E(Z̃1)

2−
∑p

i=1 Λ2
i ) ≥ E(Z̃1)

2 = σ2

2α
> 0. This proves the assertion of

the proposition. �

Lemma 4.6. The sequence 1√
T
RT is bounded in L2.

Proof. Note that

1√
T

∫ T

0

ϕi(t)dBt

is L2-bounded because

(28) Var

(
1√
T

∫ T

0

ϕi(t)dBt

)
= Var

(
1√
T

∫ T

0

ϕi(t)dBt

)
=

1

T

∫ T

0

ϕ2
i (t)dt = 1.

For the last entry of 1√
T
RT we have to prove the boundedness of

Var

(
1√
T

∫ T

0

XtdBt

)
=

1

T
E

(∫ T

0

X2
t dt

)
=

1

T
E

(∫ T

0

e−αtX0h(t) + e−αtX0Zt + e−2αtX2
0 + h(t)Zt + h(t)2 + Z2

t dt

)
.

Since Zt is a zero-mean random variable the expectation of the second and fourth term is
zero. Moreover, the variance

E(Z2
t ) =

σ2

2α
(1− e−2αt)

is bounded and justifies

sup
T≥0

1

T
E

(∫ T

0

Z2
t dt

)
<∞.

Moreover, the function

h(t) = e−αt

p∑
i=1

µi

∫ t

0

eαsϕi(s)ds

is bounded due to the periodicity of ϕi(t), i = 1, . . . , p. The boundedness of h(t) gives

sup
T≥0

1

T
E

(∫ T

0

e−αtX0h(t)dt

)
<∞

and

sup
T≥0

1

T
E

(∫ T

0

h(t)2dt

)
<∞.

This finishes the proof of the L2-boundedness of 1√
T
RT . �
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Proposition 4.7. As T →∞, we have

(29) lim
T→∞

1

T
RT = 0, almost surely.

Proof. Observe that RT is a martingale; thus we get by using Doob’s maximal inequality for
submartingales that for any ε > 0

P ( sup
2k≤T≤2k+1

1

T
|RT | ≥ ε) ≤ P ( sup

2k≤T≤2k+1

|RT | ≥ ε2k)

≤ 4

ε222k
E |R2k+1|2 = O(2−k).

Applying the Borel-Cantelli theorem, we obtain lim supT→∞
1
T
|RT | ≤ ε, almost surely, and

thus we have shown that RT/T → 0. �

Proof of Theorem 1. This follows directly from Proposition 4.5 and Proposition 4.7. �

5. Proof of Theorem 2

In the proof of Theorem 2 we use again the representation (20), i.e. θ̂ML − θ = σQ−1
T RT ,

which we rewrite as

√
T
θ̂ML − θ

σ
=
√
TQ−1

T RT = (TQ−1
T )

1√
T
RT .

By Proposition 4.5, TQ−1
T converges almost surely to the matrix C. Then, by Slutsky’s

theorem, Theorem 2 is an immediate corollary of the following proposition. Note that
Σ−1

0 = C by applying the same formula as in the proof of Lemma 3.1 to Σ0. �

Proposition 5.1. Under the assumptions of Theorem 2, we have, as T →∞,

1√
T
RT

D−→ N(0,Σ0),

where the (p+ 1)× (p+ 1) matrix Σ0 is defined as

Σ0 =

(
Ip Λ
Λt ω

)
where ω =

∫ 1

0
(h̃(t))2dt+ σ2

2α
. The entries of the vector Λ are specified in (18).

The remaining part of this section is devoted to the proof of this proposition. Recall that

1√
T
RT =


1√
T

∫ T

0
ϕ1(t)dBt

...
1√
T

∫ T

0
ϕp(t)dBt

− 1√
T

∫ T

0
XtdBt

 .

Since the basis functions ϕ1, . . . , ϕp are orthonormal, the first p entries of the vector 1√
T
RT

are independent, normally distributed random variables with mean zero and variance 1.
Thus it remains to investigate the asymptotic distribution of the last entry

1√
T

∫ T

0

XtdBt,
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and its joint distribution with the first p components.
By Lemma 4.2, the process (Xt)t≥0 can be expressed as

Xt = e−αtX0 + h(t) + σe−αt

∫ t

0

eαsdBs,

and thus we have

(30)
1√
T

∫ T

0

XtdBt =
X0√
T

∫ T

0

e−αtdBt +
1√
T

∫ T

0

h(t)dBt + σ
1√
T

∫ T

0

∫ t

0

eα(s−t)dBsdBt.

The first term on the right hand side converges to 0 in probability, as

Var

(
1√
T

∫ T

0

e−αtdBt

)
=

1

T

∫ T

0

e−2αtdt −→ 0.

The second term is normally distributed with mean zero and variance

1

T

∫ T

0

(h(t))2dt −→
∫ 1

0

(h̃(t))2dt.

The asymptotic distribution of the third term, as well as its joint distribution with any

stochastic integral
∫ T

0
ϕ(t) dBt, will be evaluated next.

Proposition 5.2. Let ϕ : [0,∞) → R be an L2-function, for which

σ2
ϕ := lim

T→∞

1

T

∫ T

0

(ϕ(t))2dt

exists. Then, as T →∞,

1√
T

(∫ T

0

∫ t

0

eα(s−t)dBsdBt,

∫ T

0

ϕ(t)dBt

)
D−→ N(0,

(
1
2α

0
0 σ2

ϕ

)
),

where N(0, A) denotes a bivariate normal distribution with mean vector 0 and covariance
matrix A.

Proof. Application of the time change formula for stochastic integrals twice, cf. Øksendal
[8] (Theorem 8.5.7, p. 148), for g(τ) := Tτ , g′(τ) = T , results in

1√
T

∫ T

0

∫ t

0

eα(s−t)dBsdBt =

∫ 1

0

∫ t

0

eα(s−Tt)dBsdB
(T )
t

=
√
T

∫ 1

0

∫ t

0

eαT (s−t)dB(T )
s dB

(T )
t

where B
(T )
t = 1√

T
BTt. Therefore, it is sufficient to study the asymptotic distribution of

√
T

∫ 1

0

∫ t

0

eαT (s−t)dWsdWt

where (Wt)t≥0 denotes a Brownian motion with the same distribution as (B
(T )
t )t≥0. The

symmetrization theorem for double Wiener integrals, cf. Kuo [4] (Theorem 9.2.8, p. 154),
provides the identity

(31)
√
T

∫ 1

0

∫ t

0

eαT (s−t)dWsdWt =

√
T

2

∫ 1

0

∫ 1

0

e−αT |s−t|dWsdWt.
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By Lemma 5.3 we obtain

(32)
√
T

∫ 1

0

∫ 1

0

e−αT |s−t|dWsdWt
D
=

∞∑
j=1

λT,j(ξ
2
T,j − 1)

where (λT,j)j∈N is the set of eigenvalues of the integral operator with kernel fT (s, t) =√
T e−α T |s−t| and where ξT,j =

∫ 1

0
eT,j(t)dWt. Here we denote by eT,j(t) the eigenfunction

associated to the eigenvalue λi. By Lemma 5.4 the eigenvalues have the properties

lim
T→∞

∞∑
j=1

λ2
T,j =

1

α

lim
T→∞

max
j≥1

|λT,j| = 0.

Define ξT := 1√
T

∫ T

0
ϕ(t)dBt. Note that ξT , ξT,j, j ≥ 1 are jointly normally distributed and

that (ξT,j)j≥1 are iid standard normally distributed random variables. Projecting ξT onto
the space spanned by the random variables (ξT,j)j≥1, we can write

ξT = ξT,0 +
∞∑

j=1

αT,jξT,j,

where ξT,0 is independent of (ξT,j)j≥1. Define σ2
T := 1

T

∫ T

0
ϕ2(t)dt and σ2

T,0 := Var(ξT,0) and
note that

σ2
T = σ2

T,0 +
∞∑

j=1

α2
T,j −→ σ2

ϕ.

We will now apply the Cramér-Wold device to prove convergence of the joint distribution of
ξT and

∑∞
j=1 λT,j(ξ

2
T,j − 1). Let µ1, µ2 ∈ R; we will show that

µ1ξT + µ2

∞∑
j=1

λT,j(ξ
2
T,j − 1)

D−→ N(0, µ2
1σ

2
ϕ + 2µ2

2

1

α
).

In order to do so, we compute the characteristic function of the left hand side and note that

µ1ξT + µ2

∞∑
j=1

λT,j(ξ
2
T,j − 1) = µ1ξT,0 +

∞∑
j=1

(µ1αT,jξT,j + µ2λT,j(ξ
2
T,j − 1)).

If Z is standard normally distributed, the characteristic function of aZ + b (Z2− 1) is given
by

ψ(t) = (1− 2itb)−1/2 exp

(
−ibt− a2t2

2(1− 2ibt)

)
.

Thus the characteristic function of µ1ξT,0 +
∑∞

j=1(µ1αT,jξT,j + µ2λT,j(ξ
2
T,j − 1)) equals

ψT (t) = e−
1
2
µ2

1σ2
T,0t2

∞∏
j=1

{
(1− 2iµ2λT,jt)

−1/2 exp

(
−iµ2λT,jt−

(µ1αT,j)
2 t2

2(1− 2iµ2λT,jt)

)}
.



14 H. DEHLING, B. FRANKE, AND T. KOTT

Taking logarithms and using Taylor expansion, we obtain

logψT (t) = −1

2
µ2

1σ
2
T,0t

2 −
∞∑

j=1

(
1

2
log(1− 2iµ2λT,jt) + iµ2λT,jt+

µ2
1α

2
T,jt

2

2(1− 2iµ2λT,jt)

)

= −1

2
µ2

1σ
2
T,0t

2 −
∞∑

j=1

(µ2
2λ

2
T,j +

1

2
µ2

1α
2
T,j)t

2 + o(1)

= −1

2

(
µ2

1σ
2
T,0 +

∞∑
j=1

µ2
1α

2
T,j + 2

∞∑
j=1

µ2
2λ

2
T,j

)
t2 + o(1)

→ −1

2

(
µ2

1σ
2
ϕ + µ2

2

2

α

)
t2.

Note that the right hand side is the logarithm of the characteristic function of a normal
distribution with mean 0 and variance µ2

1σ
2
ϕ + µ2

2
2
α
. �

Lemma 5.3. Let f : [0, 1]2 → R be a symmetric continuous kernel and let (λi)i≥1 and
(ei(t))i≥1 denote the set of eigenvalues and corresponding eigenfunctions of the integral op-

erator Gf : L2[0, 1] → L2[0, 1] with kernel f , i.e. Gfg(x) =
∫ 1

0
g(y)f(x, y)dy. Then∫ 1

0

∫ 1

0

f(s, t)dWsdWt =
∞∑
i=1

λi(ξ
2
i − 1),

where

ξi =

∫ 1

0

ei(t)dWt.

The random variables (ξi)i∈N are independent and standard normally distributed random
variables.

Proof. Since the kernel f is continuous and symmetric the operator Gf is self-adjoint and
compact. By Mercer’s Theorem it holds that the kernel can be represented as

(33) f(s, t) =
∞∑
i=1

λiei(s)ei(t)

where λi and ei, i ∈ N, are the eigenvalues and eigenfunctions of the integral operator GT ,
i.e. ∫ 1

0

f(s, t)ei(s)ds = λiei(t), i ∈ N.

Moreover, it holds that the functions ei, i ∈ N, form an orthonormal basis of L2[0, 1]. Define
the random variables

ξi :=

∫ 1

0

ei(t) dWt, i ∈ N,

and note that (ξi)i≥1 is an iid sequence of standard normally distributed random variables.
It follows by (33) that∫ 1

0

∫ 1

0

f(s, t)dWsdWt =
∞∑
i=1

λi

∫ 1

0

∫ 1

0

ei(s)ei(t)dWsdWt =
∞∑
i=1

λi(ξ
2
i − 1).
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The last equality follows by Itô’s Theorem which states that∫ 1

0

∫ 1

0

ei(s)ei(t)dWsdWt = H2

(∫ 1

0

ei(t) dWt

)
,

where H2 is the second Hermite polynomial, i.e. H2(x) = x2 − 1. �

We now consider the kernel fT : [0, 1] → R, defined by

(34) fT (s, t) =
√
Te−αT |s−t|, s, t ∈ [0, 1].

Lemma 5.4. Let (λT,i)i≥1, denote the set of eigenvalues of the integral operator with kernel
(34). Then we have

lim
T→∞

∞∑
i=1

λ2
T,i =

1

α
(35)

lim
T→∞

max
i≥1

|λT,i| = 0.(36)

Proof. Note that the operator GfT
is self-adjoint and bounded so that its eigenvalues are

real-valued, and

max
i≥1

λ2
T,i = sup

g∈L2[0,1]:‖g‖=1

‖GfT
g‖2

where ‖ · ‖ denotes the standard L2-norm on L2[0, 1]. By an equality in Lax [6] (Theorem 2,
p. 176) we get

sup
g∈L2[0,1]:‖g‖=1

‖GfT
g‖ ≤ sup

t∈[0,1]

∫ 1

0

|fT (s, t)|ds.

Simple integration yields∫ 1

0

|fT (s, t)|ds =

∫ 1

0

√
Te−αT |s−t|ds =

1

αT
(2− e−αTt − e−αT (1−t)),

and thus it follows that

(37) max
i∈N

λT,i ≤
2

αT
→ 0 as T →∞.

The assertion of Mercer’s Theorem given in (33) and the orthonormality of the eigenvalues
provide the identity

∞∑
i=1

λ2
i =

∫ 1

0

∫ 1

0

fT (s, t)2dsdt =
1

2α

(
2 +

1

T α
(e−2αT − 1)

)
where the last equality is obtained by simple integration. �
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