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Abstract

We propose a new class of estimators for Pickands dependence function which is based

on the best L2-approximation of the logarithm of the copula by logarithms of extreme-

value copulas. An explicit integral representation of the best approximation is derived

and it is shown that this approximation satisfies the boundary conditions of a Pickands

dependence function. The estimators Â(t) are obtained by replacing the unknown copula

by its empirical counterpart and weak convergence of the process
√
n{Â(t)−A(t)}t∈[0,1] is

shown. A comparison with the commonly used estimators is performed from a theoretical

point of view and by means of a simulation study. Our asymptotic and numerical results

indicate that some of the new estimators outperform the rank-based versions of Pickands

estimator and an estimator which was recently proposed by Genest and Segers (2009). As

a by-product of our results we obtain a simple test for the hypothesis of an extreme-value

copula, which is consistent against all alternatives with continuous partial derivatives of

first order satisfying C(u, v) ≥ uv.

Keywords and Phrases: Extreme-value copula, minimum distance estimation, Pickands depen-

dence function, weak convergence, copula process, test for extreme-value dependence

AMS Subject Classification: Primary 62G05, 62G32; secondary 62G20

1



1 Introduction

The copula provides an elegant margin-free description of the dependence structure of a random

variable. By the famous theorem of Sklar (1959) it follows that the distribution function H of

a bivariate random variable (X, Y ) can be represented in terms of the marginal distributions

F and G of X and Y , that is

H(x, y) = C(F (x), G(y)),

where C denotes the copula, which characterizes the dependence between X and Y . Extreme-

value copulas arise naturally as the possible limits of copulas of component-wise maxima of

independent, identically distributed or strongly mixing stationary sequences [see Deheuvels

(1984) and Hsing (1989)]. These copulas provide flexible tools for modelling joint extremes in

risk management. An important application of extreme-value copulas appears in the modelling

of data with positive dependence, and in contrast to the more popular class of Archimedean

copulas they are not symmetric [see Tawn (1988) or Ghoudi et al. (1998)]. Further applications

can be found in Coles et al. (1999) or Cebrian et al. (2003) among others. A copula C is an

extreme-value copula if and only if it has a representation of the form

C(u, v) = exp
(

log(uv)A
( log v

log uv

))
, (1.1)

where A : [0, 1] → [1/2, 1] is a convex function satisfying max{t, 1 − t} ≤ A(t) ≤ 1, which

is called Pickands dependence function [see Pickands (1981)]. The representation of (1.1) of

the extreme-value copula C depends only on the one-dimensional function A and statistical

inference on a bivariate extreme-value copula C may now be reduced to inference on its Pickands

dependence function A.

The problem of estimating Pickands dependence function nonparametrically has found con-

siderable attention in the literature. Roughly speaking, there exist two classes of estimators.

The classical nonparametric estimator is that of Pickands (1981) [see Deheuvels (1991) for its

asymptotic properties] and several variants have been discussed. Alternative estimators have

been proposed and investigated in the papers by Capéraà et al. (1997), Jiménez et al. (2001),

Hall and Tajvidi (2000), Segers (2007) and Zhang et al. (2008), where the last-named authors

also discussed the multivariate case. In most references the estimators of Pickands depen-

dence function are constructed assuming knowledge of the marginal distributions. Recently

Genest and Segers (2009) proposed rank-based versions of the estimators of Pickands (1981)

and Capéraà et al. (1997), which do not require knowledge of the marginal distributions. In

general all of these estimators are neither convex nor do they satisfy the boundary restriction

max{t, 1 − t} ≤ A(t) ≤ 1, in particular the condition A(0) = A(1) = 1. Consequently, the

estimators are modified without changing their asymptotic properties, such that they satisfy

the endpoint constraints (or the boundary condition), see e.g. Fils-Villetard et al. (2008).

Before a specific model of an extreme-value copula is selected it is necessary to check this

2



assumption by a statistical test, that is a test for the hypothesis

H0 : C ∈ C (1.2)

where C denotes the class of all copulas satisfying (1.1). Throughout this paper we call (1.2)

the hypothesis of extreme-value dependence. The problem of testing this hypothesis has found

much less attention in the literature. To our best knowledge, the only currently available test of

extremeness was proposed by Ghoudi et al. (1998). It exploits the fact that for an extreme-value

copula the random variable W = H(X, Y ) satisfies the identity

−1 + 8E[W ]− 9E[W 2] = 0. (1.3)

The properties of this test have recently been studied by Ben Ghorbal et al. (2009), who

determined the finite- and large-sample variance of the test statistic. In particular, the test

proposed by Ghoudi et al. (1998) is not consistent against alternatives satisfying (1.3).

The present paper has two purposes. The first is the development of some alternative estima-

tors of Pickands dependence function, which are based on the concept of minimum distance

estimation. More precisely, we propose to consider the best approximation of the logarithm of

the empirical copula by functions of the form

log(uv)A

(
log v

log uv

)
(1.4)

with respect to a weighted L2-distance. It turns out that the minimal distance and the corre-

sponding optimal function can be determined explicitly. On the basis of this result, we derive

new estimators which have a similar structure as the integral representations obtained in Lemma

3.1 of Genest and Segers (2009). By choosing various weight functions in the L2-distance we

obtain an infinite dimensional class of estimators.

The new estimators can be alternatively motivated observing that the identity (1.1) yields the

representation A(t) = logC(y1−t, yt)/ log y for any y ∈ (0, 1). This leads to a simple class of

estimators, i.e.

Ân,δy(t) =
log C̃n(y1−t, yt)

log y
; y ∈ (0, 1),

where δy is the Dirac measure at the point y and C̃n is the slightly modified version of the

empirical copula, such that the logarithm is well defined (see Section 3 for details). By averaging

these estimators with respect to a distribution, say π, we obtain an infinite dimensional class

of estimators of the form

Ân,π(t) =

∫ 1

0

log C̃n(y1−t, yt)

log y
π(dy),

which turn out to coincide with the estimators obtained by the concept of best L2-approximation

described in the previous paragraph.

The second purpose of the paper is to present a new test for the hypothesis of extreme-value

dependence, which is consistent against all alternatives with continuous partial derivatives of
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first order satisfying C ≥ Π, where Π denotes the independence copula. Our approach is based

on an estimator of a minimum L2-distance between the true copula and the class of extreme-

value copulas. To our best knowledge, this method provides the first test in this context which

is consistent against such a general class of alternatives.

The remaining part of the paper is organized as follows. In Section 2 we consider the approxima-

tion problem from a theoretical point of view. In particular, we derive explicit representations

for the minimal L2-distance between the logarithm of the copula and its best approximation

by a function of the form (1.4), which will be the basis for all statistical applications. The new

estimators are defined in Section 3, where we also investigate their asymptotic properties. In

particular, we prove weak convergence of the process {
√
n(Ân,π(t) − A(t))}t∈[0,1] in the space

of uniformly bounded functions on the interval [0, 1] under appropriate assumptions on the

distribution π. Furthermore, we accomplish a theoretical and empirical comparison of the new

estimators with the rank-based estimators proposed in Genest and Segers (2009). In particular,

we demonstrate that some of the “new” estimators have a substantially smaller mean squared

error than the estimators proposed by the last-named authors. In Section 4 we introduce and

investigate the new test of extreme-value dependence. In particular, we derive the asymptotic

distribution of the test statistic under the null hypothesis as well as under the alternative and

study its finite sample properties by means of a simulation study. Finally some technical details

are deferred to an Appendix.

2 A measure of extreme-value dependence

Let A denote the set of all functions A : [0, 1]→ [1/2, 1], and define Π as the copula correspond-

ing to independent random variables, i.e. Π(u, v) = uv. Throughout this paper we assume that

the copula C satisfies C ≥ Π which holds for any extreme-value copula due to the lower bound

for the function A. As pointed out by Scaillet (2005), this property is equivalent to the concept

of positive quadrant dependence, that is

P (X ≤ x, Y ≤ y) ≥ P (X ≤ x)P (Y ≤ y) ∀ (x, y) ∈ R2.

For a copula with this property we define the L2-distance

MC(A) =

∫
(0,1)2

(
logC(u, v)− log(uv)A

(
log v

log uv

))2

h(− log uv) d(u, v), (2.1)

where h : R+ → R+ is a continuous weight function with the following properties

for all K > 0 : sup
x∈[0,K]

|x2h(x)| <∞ (2.2)

h∗(y) ∈ L1(0, 1) or equivalently x3e−xh(x) ∈ L1(0,∞) (2.3)∫ 1

0

h∗(y)(− log y)−1y−λ dy =

∫ 1

0

(log y)2h(− log y)y−λ dy <∞ for some λ > 1 (2.4)
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and the function h∗ is defined by h∗(y) = − log3(y)h(− log y). These conditions are needed in

Sections 3 and 4 to establish weak convergence of an appropriate estimator of arg minAMC(A)

and of an estimator for the minimal distance

min
{
MC(A) | A ∈ A

}
,

respectively. The following result is essential for our approach and provides an explicit ex-

pression for the best L2-approximation of the logarithm of the copula by the logarithm of

an extreme-value copula of the form (1.1) and as a by-product characterizes the function A∗

minimizing MC(A).

Theorem 2.1. Assume that the given copula satisfies C ≥ Π and that the weight function h

satisfies conditions (2.2) and (2.3). Then the function

A∗ = arg min{MC(A) | A ∈ A}

is uniquely determined and given by

A∗(t) = B−1
h

∫ 1

0

logC(y1−t, yt)

log y
h∗(y) dy , (2.5)

where h∗ is defined by h∗(y) = −(log y)3h(− log y) and

Bh =

∫ ∞
0

x3e−xh(x) dx = −
∫ 1

0

(log y)3h(− log y) dy =

∫ 1

0

h∗(y) dy. (2.6)

Moreover, the minimal L2-distance between the logarithms of the given copula and the class of

extreme-value copulas is given by

MC(A∗) =

∫
(0,1)2

(
logC(y1−t, yt)

log y

)2

h∗(y) d(y, t)−Bh

∫ 1

0

(A∗(t))2 dt. (2.7)

Proof. Substituting

(s, t) = g(u, v) = (− log uv,
log v

log uv
)

in the integral (2.1) with inverse g−1(s, t) = (exp(−s(1− t)), exp(−st)) and Jacobian determi-

nant detDg−1(s, t) = se−s yields for the functional MC the representation

MC(A) =

∫ 1

0

∫ ∞
0

(C̄(s, t)− sA(t))2se−sh(s) ds dt,

where C̄(s, t) = − logC(g−1(s, t)). With the notation

A∗(t) =

∫∞
0
C̄(x, t)x2e−xh(x) dx∫∞
0
x3e−xh(x) dx
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it follows by a straightforward calculation and Fubini’s theorem that

MC(A) =

∫ 1

0

∫ ∞
0

(C̄(s, t)− sA∗(t))2se−sh(s) ds dt+

∫ ∞
0

s3e−sh(s) ds

∫ 1

0

(A∗(t)− A(t))2 dt

+ 2

∫ 1

0

∫ ∞
0

(sA∗(t)− C̄(s, t))(sA(t)− sA∗(t))se−sh(s) ds dt

=

∫ 1

0

∫ ∞
0

(C̄(s, t)− sA∗(t))2se−sh(s) ds dt+

∫ ∞
0

s3e−sh(s) ds

∫ 1

0

(A∗(t)− A(t))2 dt,

and we can conclude that A∗(t) is the best approximation of functions A to the copula C with

respect to the distance MC(A). Resubstituting x = − log y we obtain the alternative expression

A∗(t) = −B−1
h

∫ 1

0

logC(y1−t, yt)(log y)2 h(− log y) dy (2.8)

where the constant Bh is defined in (2.6). Observing the definition of h∗ this completes the

proof of Theorem 2.1. 2

Note that A∗(t) = A(t) if and only if C is an extreme-value copula with Pickands dependence

function A. Furthermore, the following Lemma shows that the minimizing function A∗ defined

in (2.5) satisfies the boundary conditions of Pickands dependence functions.

Lemma 2.2. Assume that C is a copula satisfying C ≥ Π. Then the function A∗ defined in

(2.5) has the following properties

(i) A∗(0) = A∗(1) = 1

(ii) A∗(t) ≥ t ∨ (1− t)

(iii) A∗(t) ≤ 1.

Proof. Assertion (i) is obvious. For a proof of (ii) one uses the Fréchet-Hoeffding bound

C(u, v) ≤ u ∧ v and obtains the assertion by a direct calculation. Similarly assertion (iii)

follows from the inequality C ≥ Π. 2

Example 2.3. In the following we discuss two interesting examples for the weight function h,

which will be used for the construction of the new estimators of Pickands dependence function.

(a) For the choice h
(1)
α (x) = x−α α ∈ [0, 2] we obtain B

(1)
hα

= Γ(4− α) and

A∗(t) = −Γ(4− α)−1

∫ 1

0

logC(y1−t, yt)(− log)2−α(y) dy. (2.9)

In particular we have for α = 2

A∗(t) = −
∫ 1

0

log C(y1−t, yt)dy (2.10)

for the best approximation.
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(b) For the choice h
(2)
k (x) = x−2e−kx with k ≥ 0 it follows

B
(2)
hk

=

∫ ∞
0

xe−(k+1)x dx = (k + 1)−2

and

A∗(t) = −(k + 1)2

∫ 1

0

logC(y1−t, yt) yk dy. (2.11)

Again we obtain for k = 0 the representation (2.10). Observing the identity (A ≥ 0)

−
∫ 1

0

log(yA)dy = A =
(∫ 1

0

yA−1dy
)−1

it follows for an extreme-value copula from the identities (1.1) and (2.10) that

A∗(t) =
(∫ 1

0

C(y1−t, yt)

y
dy
)−1

.

This is the integral formula, which motivates the representation of Pickands estimator in

Lemma 3.1 of Genest and Segers (2009).

Example 2.4. In the following we exemplarily calculate the minimal distance MC(A∗) and its

corresponding best approximation A∗ for two copula families. The weight function is chosen as

in Example 2.3 (b), that is h
(2)
1 (x) = x−2e−x. First we investigate the Gaussian copula defined

by

Cρ(u, v) = Φ2(Φ(u), φ(v), ρ),

where Φ is the standard normal distribution function and Φ2(·, ·, ρ) is the distribution function

of two bivariate standard normal distributed random variables with correlation ρ ∈ [0, 1]. For

the limiting cases ρ = 0 and ρ = 1 we obtain the independence and perfect dependence copula,

respectively, while for ρ ∈ (0, 1) Cρ is not an extreme-value copula. The minimal distances are

plotted as a function of ρ in the left part of the first line of Figure 1. In the right part we

show some functions A∗ corresponding to the best approximation of the Gaussian copula by an

extreme-value copula.

In the second example we consider a convex combination of a Gumbel copula with parameter

log 2/ log 1.5 (corresponding to a coefficient of tail dependence of 0.5) and a Clayton copula

with parameter 2, i.e.

Cα(u, v) = αCClayton(u, v) + (1− α)CGumbel(u, v), α ∈ [0, 1].

Note that only the Gumbel copula is an extreme-value copula and obtained for α = 0. The

minimal distances are depicted in the left part of the lower panel of Figure 1 as a function of

α. In the right part we show the functions A∗ corresponding to the best approximation of Cα

by an extreme-value copula.
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Figure 1: Left: Minimal distances MC(A∗)× 105 for the Gaussian copula (as a function of its

correlation coefficient) and for the convex combination of a Gumbel and a Clayton copula (as a

function of the parameter α in the convex combination). Right: Pickands dependence functions

corresponding to the best approximations by extreme-value copulas.
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3 A class of minimum distance estimators

3.1 New estimators and weak convergence

Let (X1, Y1), . . . , (Xn, Yn) denote independent identically distributed bivariate random variables

with copula C and marginals F and G. Observing Theorem 2.1 it is reasonable to define a

class of estimators for Pickands dependence function by replacing the unknown copula in (2.5)

through the empirical copula

Ĉn(u, v) =
1

n

n∑
i=1

I{Ûi ≤ u, V̂i ≤ v}, (3.1)

where

Ûi =
1

n+ 1

n∑
j=1

I{Xj ≤ Xi} and V̂i =
1

n+ 1

n∑
j=1

I{Yj ≤ Yi}

denote the (slightly modified) empirical distribution functions of the samples {Xj}nj=1 and

{Yj}nj=1 at the points Xi and Yi, respectively. The asymptotic properties of the corresponding

estimators will be investigated in this section. For technical reasons we require that the argu-

ment in the logarithm in the representation (2.5) is positive and propose to use the estimator

C̃n = Ĉn∨n−γ where the constant γ satisfies γ > 1/2 and the empirical copula Ĉn is defined in

(3.1). Assuming that the copula C has continuous partial derivatives of first order, it follows

that the process
√
n(C̃n−C) shows the same limiting behavior as the empirical copula process

√
n(Ĉn − C), i.e.

√
n(C̃n − C)

w
 GC , (3.2)

where the symbol
w
 denotes weak convergence in l∞[0, 1]2. Here GC is a Gaussian field on the

square [0, 1]2 which admits the representation

GC(x) = BC(x)− ∂1C(x)BC(x1, 1)− ∂2C(x)BC(1, x2),

where x = (x1, x2),BC is a bivariate pinned C-Brownian sheet on the square [0, 1]2 with covari-

ance kernel given by

Cov(BC(x),BC(y)) = C(x ∧ y)− C(x)C(y)

and the minimum x ∧ y is understood component-wise [see Rüschendorf (1976), Fermanian

et al. (2004) or Tsukahara (2005)]. Observing the representation (2.5) we obtain the estimator

Ân,h(t) = B−1
h

∫ 1

0

log C̃n(y1−t, yt)

log y
h∗(y)dy (3.3)

for Pickands dependence function. Note that this relation specifies an infinite dimensional class

of estimators indexed by the set of all functions h satisfying the conditions (2.2) - (2.4). The

following results specify the asymptotic properties of these estimators.
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Theorem 3.1. If the copula C ≥ Π has continuous partial derivatives of first order and the

weight function h satisfies conditions (2.2) - (2.4) for some λ > 1, then we have for any

γ ∈ (1/2, λ/2) as n→∞

An,h =
√
n(Ân,h − A∗)

w
 AC,h = B−1

h

∫ 1

0

GC(y1−t, yt)

C(y1−t, yt)

h∗(y)

log y
dy (3.4)

in l∞[0, 1].

Note that Theorem 3.1 is also correct if the given copula is not an extreme-value copula. In

other words: it establishes the weak convergence of the process
√
n(Ân,h − A∗) to a centered

Gaussian process, where A∗ denotes the function corresponding to the best approximation of

the copula C by an extreme-value copula. A∗ coincides with Pickands dependence function

if C is an extreme-value copula. Note also that Theorem 3.1 excludes the case h(x) = x−2,

which corresponds to the function h∗(y) = − log y, because condition (2.4) is not satisfied for

this weight function. Nevertheless, under the additional assumption that Pickands dependence

function A is twice continuously differentiable, the assertion of the preceding theorem is still

valid.

Theorem 3.2. Assume that C is an extreme-value copula with twice continuously differentiable

Pickands dependence function A. For the weight function h(x) = x−2 we have for any γ ∈
(1/2, 3/4) as n→∞

An,1/x2 =
√
n(Ân,1/x2 − A)

w
 AC,1/x2 = −

∫ 1

0

GC(y1−t, yt)

C(y1−t, yt)
dy

in l∞[0, 1], where Ân,1/x2(t) = −
∫ 1

0
log C̃n(y1−t, yt) dy.

Remark 3.3.

(a) If the marginals of (X, Y ) are independent the distribution of the random variable AC,1/x2

coincides with the distribution of the random variable AP
r , which appears as the weak limit of

the appropriately standardized Pickands estimator, see Genest and Segers (2009).

(b) A careful inspection of the proof of Theorem 3.1 reveals that the condition C ≥ Π can be

relaxed to C ≥ Πκ for some κ > 1, if one imposes stronger conditions on the weight function.

(c) We note that the estimator depends on the parameter γ which is used for the construction

of the statistic C̃n = Ĉn ∨n−γ. This modification is only made for technical purposes and from

a practical point of view the behavior of the estimators does not change substantially provided

that γ is chosen larger than 2/3.
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3.2 Examples

In this subsection we illustrate the results investigating the two examples discussed at the end

of Section 2. With h
(1)
α (x) = x−α (α ∈ [0, 2]) as defined in Example 2.3(a) we obtain from (2.9)

Â
n,h

(1)
α

(t) = −Γ(4− α)−1

∫ 1

0

log C̃n(y1−t, yt)(− log)2−α(y) dy, (3.5)

as an estimator of Pickands dependence function. Secondly, considering the weight function

h
(2)
k (x) = x−2e−kx with k ≥ 0 corresponding to Example 2.3(b), we obtain

Â
n,h

(2)
k

(t) = −(k + 1)2

∫ 1

0

log C̃n(y1−t, yt) yk dy. (3.6)

Note that for α = 2 and k = 0 we have

Ân,1/x2(t) = −
∫ 1

0

log C̃n(y1−t, yt) dy.

The processes {A
n,h

(1)
α

(t)}t∈[0,1] and {A
n,h

(2)
k

(t)}t∈[0,1] converge weakly in l∞[0, 1] to the process

{A
C,h

(1)
α
}t∈[0,1] and {A

C,h
(2)
k
}t∈[0,1], which are given by

A
C,h

(1)
α

(t) = −Γ(4− α)−1

∫ 1

0

GC(y1−t, yt)

C(y1−t, yt)
(− log y)2−α dy, (3.7)

A
C,h

(2)
k

(t) = −(k + 1)2

∫ 1

0

GC(y1−t, yt)

C(y1−t, yt)
yk dy, (3.8)

respectively. Consequently, for C ∈ C, the asymptotic variances of Â
n,h

(1)
α

and Â
n,h

(2)
k

are

obtained as

Var(A
C,h

(1)
α

(t)) = Γ(4− α)−2

∫ 1

0

∫ 1

0

σ(u, v; t)(uv)−A(t)(− log u)2−α(− log v)2−α du dv, (3.9)

Var(A
C,h

(2)
k

(t)) = (k + 1)4

∫ 1

0

∫ 1

0

σ(u, v; t)(uv)k−A(t) du dv, (3.10)

where the function σ is given by

σ(u, v; t) = Cov
(
GC(u1−t, ut),GC(v1−t, vt)

)
.

In order to find an explicit expression for these variances we assume that the function A is

differentiable and use a similar argument as in Genest and Segers (2009). To be precise, we

introduce the notation

µ(t) = A(t)− tA′(t), ν(t) = A(t) + (1− t)A′(t),

where A′ denotes the derivative of A. Furthermore, the asymptotic variance of A
C,h

(1)
α

(t) involves

the symmetric incomplete beta function, defined by

Bz(a) =

∫ z

0

xa−1(1− x)a−1 dx

11



and B(a) = B1(a). The following results are proved in the Appendix.

Proposition 3.4. For t ∈ [0, 1] let µ̄(t) = 1−µ(t) and ν̄(t) = 1−ν(t). If C is an extreme-value

copula with Pickands dependence function A and if A(t) 6= 1, then the variance of A
C,h

(1)
α

(t) is

given by

1

(3− α)2B(3− α)

{2B 1−A(t)
2−A(t)

(3− α)

(1− A(t))3−α − (µ(t) + ν(t)− 1)2B(3− α)

−
2µ(t)µ̄(t)B t

t+1
(3− α)

t3−α
−

2ν(t)ν̄(t)B 1−t
2−t

(3− α)

(1− t)3−α

+
2µ(t)ν(t)

(1− t)t

∫ 1

0

((1− s)s
(1− t)t

)2−α(
A(s) +

1− s
1− t

+
s

t
− 1
)2α−6

ds

− 2µ(t)

(1− t)t

∫ t

0

((1− s)s
(1− t)t

)2−α(
A(s) +

1− s
1− t

t+
s

t
(1− A(t))

)2α−6

ds

− 2ν(t)

(1− t)t

∫ 1

t

((1− s)s
(1− t)t

)2−α(
A(s) +

1− s
1− t

(1− A(t)) +
s

t
(1− t)

)2α−6

ds
}
,

while for A(t) = 1 the first summand inside the brackets, i.e.

2B 1−A(t)
2−A(t)

(3− α)

(1− A(t))3−α ,

has to replaced by its continuous extension 2
3−α .

Proposition 3.5. For t ∈ [0, 1] let µ̄(t) = 1 − µ(t) and ν̄(t) = 1 − ν(t). If C is an extreme-

value copula with Pickands dependence function A, then the variance of the random variable

A
C,h

(2)
k

(t) is given by

(k + 1)2
{ 2(k + 1)

2k + 2− A(t)
− (µ(t) + ν(t)− 1)2 − 2µ(t)µ̄(t)(k + 1)

2k + 1 + t
− 2ν(t)ν̄(t)(k + 1)

2k + 2− t

+ 2µ(t)ν(t)
(k + 1)2

(1− t)t

∫ 1

0

(
A(s) + (k + 1)

(
1− s
1− t

+
s

t

)
− 1
)−2

ds

− 2µ(t)
(k + 1)2

(1− t)t

∫ t

0

(
A(s) + (k + t)

1− s
1− t

+ (k + 1− A(t))
s

t

)−2

ds

− 2ν(t)
(k + 1)2

(1− t)t

∫ 1

t

(
A(s) + (k + 1− A(t))

1− s
1− t

+ (k + 1− t)s
t

)−2

ds
}
.

It might be of interest to compare the behavior of the new estimators Ân,h(t) with estimators

investigated by Genest and Segers (2009). Some finite sample results will be presented in

the following section for various families of copulas. For a theoretical comparison we restrict

ourselves to the weight functions h
(2)
k and consider the independence copula Π, for which A(t) =

12



1. In the case k = 0 we obtain from Proposition 3.5 the same variance as for the rank based

version of Pickands estimator, that is

Var(A
Π,h

(2)
0

) =
3t(1− t)

(2− t)(1 + t)
,

while the case k > 0 yields

Var(A
Π,h

(2)
k

) =
(3 + 4k)(k + 1)2

2k + 1

t(1− t)
(2k + 2− t)(2k + 1 + t)

.

It is easy to see that Var(A
Π,h

(2)
k

) is decreasing in k with

lim
k→∞

Var(A
Π,h

(2)
k

) =
t(1− t)

2
.

Moreover, a straightforward calculation shows that

Var(A
Π,h

(2)
0

) ≥ Var(A
Π,h

(2)
k

)

for all k ≥ 0 with strict inequality for all k > 0. This means that for the independence copula

all estimators obtained by our approach with weight function h
(2)
k (x) = x−2e−kx, k > 0 have

a smaller asymptotic variances than the rank based version of Pickands estimator. On the

other hand a comparison with the rank based CFG estimator investigated by Genest and Segers

(2009) does not provide a clear picture about the superiority of one estimator. In Figure 2 we

show the asymptotic variances of the rank based CFG estimator and the new estimators for

the choice k = 1, k = 5 and k = 10. We observe that Pickands estimator has the largest

asymptotic variances (which are not displayed in the figure), while the CFG estimator yields

smaller variances than the estimator Â
n,h

(2)
1

, but larger asymptotic variances than the estimators

Â
n,h

(2)
5

and Â
n,h

(2)
10

. Note that for finite sample size an increase in k will decrease the variance

but increase the bias and therefore the asymptotic results can not directly be transferred to

applications. Nevertheless, in the finite sample study presented in the following paragraph the

superiority of the new estimators Â
h
(2)
k

over the rank based Pickands estimator is also observed

for other extreme-value copulas, provided that the parameter k is not chosen as too large.

Moreover, the estimators Â
n,h

(2)
1

and Â
n,h

(2)
2

also yields a smaller mean squared error than the

rank based CFG estimator.

3.3 Finite sample properties

In this subsection we investigate the small sample properties of the new estimators by means of

a simulation study. Especially, we compare the new estimators with the rank-based estimators

suggested by Genest and Segers (2009), which are most similar in spirit with the method

proposed in this paper. All results presented here are based on 5000 simulation runs and the

sample size is n = 100. As estimators we consider the statistics defined in (3.5) and (3.6). It

13
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Figure 2: Asymptotic variances of various estimators of the Pickands dependence function.

turns out that the estimators obtained by the weight function h
(1)
α show a substantially worse

behavior than the estimators Â
n,h

(2)
k

, and for this reason we restrict the investigations to the

latter class. Results for the estimator Â
n,h

(1)
α

are available from the first author. An important

question in the class {Â
n,h

(2)
k
| k ≥ 0} is the choice of the parameter k in order to achieve a

balance between bias and variance. For this purpose, we first study the performance of the

estimator Â
n,h

(2)
k

with respect to different choices for the parameter k and consider the following

four extreme-value copula models.

(i) The symmetric model of Gumbel [see Gumbel (1960)],

A(t) =
(
tθ + (1− t)θ

)1/θ

with parameter θ ∈ [1,∞). Complete dependence is obtained in the limit as θ approaches

infinity. Independence is obtained when θ = 1. The coefficient of tail dependence ρ =

2(1− A(0.5)) is given by ρ = 2− 21/θ.

(ii) The model of Hüsler and Reiss [see Hüsler and Reiss (1989)]

A(t) = (1− t)Φ
(
λ+

1

2θ
log

1− t
t

)
+ tΦ

(
θ +

1

2θ
log

t

1− t

)
,

where θ ∈ (0,∞) and Φ is the standard normal distribution function. The coefficient of

tail dependence is given by ρ = 2(1−Φ(θ)), i.e. independence is obtained for θ →∞ and

complete dependence for θ → 0 .

14



(iii) The asymmetric negative logistic model [see Joe (1990)]

A(t) = 1−
{

(ψ1(1− t))−θ + (ψ2t)
−θ}−1/θ

with parameters θ ∈ (0,∞), ψ1, ψ2 ∈ (0, 1]. For the simulations we set ψ1 = 2/3 and

ψ2 = 1, then the coefficient of tail dependence is given by ρ = 2 (3θ + 2θ)−1/θ and varies

in the interval (0, 2/3).

(iv) The symmetric mixed model [see Tawn (1988)]

A(t) = 1− θt+ θt2

with parameter θ ∈ [0, 1] and ρ = θ/2 ∈ [0, 1/2].

In Figure 3 we display n × MISE of the estimator Â
n,h

(2)
k

as a function of the parameter k

in the weight function h
(2)
k (x) = x−2e−kx for the four copula models with different coefficients

of tail dependence. For each estimator, the empirical version of the mean integrated squared

error,

MISE = E
[∫ 1

0

(Â
n,h

(2)
k

(t)− A(t))2 dt

]
,

was computed by an average over the 5000 samples. The estimators turned out to be

rather robust with respect to the choice of the parameter γ in the definition of

the process C̃n = Ĉn ∨ n−γ provided that γ ≥ 2/3. For this reason we use γ = 0.95

throughout this section. All cases yield a very similar picture and suggest that the “optimal”

k is slightly larger than one for weak tail dependence and at approximately 1.25 in case of

independence. For stronger tail dependence the optimal k turns out to decrease and is close to

0.5 for perfect positive dependence. Based on these observations and further results which are

not shown for the sake of brevity, we recommend to use the value k = 1 or k = 1.25 in practical

applications.

Next we compare the new estimators with rank-based versions of Pickands estimator and the

CFG estimator investigated in Genest and Segers (2009). In Figure 4, the normalized MISE is

plotted as a function of the tail dependence parameter ρ for the four copula models, where the

parameter θ is chosen in such a way, that the coefficient of tail dependence ρ = 2(1 − A(0.5))

varies over the specific range of the corresponding model. For each sample we computed the

rank-based versions of Pickands estimator, the CFG estimator [see Genest and Segers (2009)]

and two of the new estimators Â
n,h

(2)
k

(k = 1, 2). Summarizing all four pictures one can conclude

that in general the best results are obtained for our new estimator based on the weight function

h
(2)
k with k = 1 and k = 2. A comparison of the two estimators Â

n,h
(2)
1

and Â
n,h

(2)
2

shows that

the choice k = 1 performs globally better than the choice k = 2 in the Gumbel, asymmetric

negative logistic and symmetric mixed model. On the other hand the estimator Â
n,h

(2)
2

yields
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Figure 3: 100×MISE of the estimators Â
n,h

(2)
k

defined in (3.6) as a function of k for various

models and coefficients of tail dependence. The sample is size n = 100 and the MISE is

calculated by 5000 simulation runs.
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some advantages in the Hüsler and Reiss model if the coefficient of tail dependence is small.

In all settings, the MISE obtained by Â
n,h

(2)
1

and Â
n,h

(2)
2

is smaller than the MISE of the CFG

and Pickands estimator. On the other hand the latter estimators yield better results than the

estimator Â
n,h

(1)
1

which corresponds to the weight function h
(1)
1 (x) = 1/x (these results are not

depicted). Other scenarios yield similar results which are not displayed for the sake of brevity.

4 A test for an extreme-value dependence

4.1 The test statistic and its weak convergence

From the definition of the functional MC(A) in (2.1) it is easy to see that, for a strictly positive

weight function h with h∗ ∈ L1(0, 1), a copula function C is an extreme-value copula if and

only if

min
A∈A

MC(A) = MC(A∗) = 0,

where A∗ denotes the best approximation defined in (2.5). This suggests to use MC̃n
(Ân,h) as

a test statistic for the hypothesis (1.2), i.e.

H0 : C is an extreme-value copula.

Recalling the representation (2.7)

MC(A∗) =

∫ 1

0

∫ ∞
0

C̄2(s, t)se−sh(s) ds dt−Bh

∫ 1

0

(
A∗(t)

)2
dt

with C̄(s, t) = − logC(g−1(s, t)) and defining C̄n(s, t) := − log C̃n(g−1(s, t)) we obtain the

decomposition

MC̃n
(Ân,h)−MC(A∗)

=

∫ 1

0

∫ ∞
0

(
C̄2
n(s, t)− C̄2(s, t)

)
se−sh(s) ds dt−Bh

∫ 1

0

Â2
n,h(t)−

(
A∗(t)

)2
dt

= 2

∫ 1

0

∫ ∞
0

(
C̄n(s, t)− C̄(s, t)

)
C̄(s, t)se−sh(s) ds dt− 2Bh

∫ 1

0

(Ân,h(t)− A∗(t))A∗(t) dt

+

∫ 1

0

∫ ∞
0

(
C̄n(s, t)− C̄(s, t)

)2

se−sh(s) ds dt−Bh

∫ 1

0

(Ân,h(t)− A∗(t))2 dt

= 2

∫ 1

0

∫ ∞
0

(
C̄n(s, t)− C̄(s, t)

)(
C̄(s, t)− sA∗(t)

)
se−sh(s) ds dt

+

∫ 1

0

∫ ∞
0

(
C̄n(s, t)− C̄(s, t)

)2

se−sh(s) ds dt−Bh

∫ 1

0

(Ân,h(t)− A∗(t))2 dt

=: S1 + S2 + S3,
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Figure 4: 100×MISE for various estimators, models and coefficients of tail dependence, based

on 5000 samples of size n = 100.
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where the last identity defines the terms S1, S2 and S3 in an obvious manner. Note that under

the null hypothesis of extreme-value dependence we have A∗ = A and thus C̄(s, t) = sA∗(t).

This means that under H0 the term S1 will vanish and the asymptotic distribution will be

determined by the large sample properties of the random variable S2+S3. Under the alternative

the equality C̄(s, t) = sA∗(t) will not hold anymore and it turns out that in this case the

statistic is asymptotically dominated by the random variable S1. In order to derive the limiting

distribution of the proposed test statistic under the null hypothesis and the alternative, we

will need the following conditions on the corresponding weight functions. For some function

f : [0, 1]2 → R̄ assume that there exists a function f̄ : [0, 1]→ R̄+
0 such that

∀ ε > 0 : supy∈[ε,1] f̄(y) <∞ (4.1)∫ 1

0
f̄(y)y−λdy <∞ (4.2)

∀ (y, t) ∈ [0, 1]2 : |f(y, t)| ≤ f̄(y) (4.3)

where λ denotes some positive constant which will be specified later.

Theorem 4.1. Assume that the given copula C is an extreme-value copula with continuous

partial derivatives of first order and Pickands dependence function A∗. If the function w(y) :=

(− log y)h(− log y) fulfills conditions (4.1) - (4.3) for some λ > 2 and the weight function h is

strictly positive and satisfies assumptions (2.2) - (2.4) for λ̃ := λ/2 > 1, then we have for any

γ ∈ (1/2, λ/4) and n→∞
nMC̃n

(Ân,h)
w
 Z0,

where the random variable Z0 is defined by

Z0 :=

∫ 1

0

∫ 1

0

(GC(y1−t, yt)

C(y1−t, yt)

)2

w(y) dy dt−Bh

∫ 1

0

A2
C,h(t) dt

with Bh =
∫∞

0
x3e−xh(x) dx and the process {AC,h(t)}t∈[0,1] as defined in Theorem 3.1.

The next theorem gives the distribution of the test statistic MC̃n
(Ân,h) under the alternative.

Note that in this case we have MC(A∗) > 0.

Theorem 4.2. Assume that the given copula C has continuous partial derivatives of first order

and satisfies C ≥ Π and MC(A∗) > 0. If additionally the weight function h is strictly positive

and h and the function w(y) := (− log y)h(− log y) satisfy the assumptions (2.2) - (2.4) and

(4.1) - (4.3) for some λ > 1, respectively, then we have for any γ ∈ (1/2, (1 + λ)/4 ∧ λ/2) and

n→∞ √
n(MC̃n

(Â)−MC(A∗))
w
 Z1,

where the random variable Z1 is defined as

Z1 = 2

∫ 1

0

∫ 1

0

GC(y1−t, yt)

C(y1−t, yt)
v(y, t) dy dt,
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with

v(y, t) = (logC(y1−t, yt)− log(y)A∗(t))(− log y)h(− log y).

Remark 4.3.

(a) Note that the weight functions h
(2)
k (x) = x−2e−kx satisfy the assumptions of Theorem 4.1

and 4.2 for k > 1 and k > 0, respectively.

(b) The preceding two theorems yield a consistent asymptotic level α test for the hypothesis of

extreme-value dependence by rejecting the null hypothesis H0 if

nMC̃n
(Ân,h) > z1−α, (4.4)

where z1−α denotes the (1− α)-quantile of the distribution of the random variable Z0.

(c) By Theorem 4.2 the power of the test (4.4) is approximately given by

P
(
nMC̃n

(Ân,h) > z1−α

)
≈ 1− Φ

(
z1−α√
nσ
−
√
n
MC(A∗)

σ

)
≈ Φ

(√
n
MC(A∗)

σ

)
,

where the function A∗ is defined in (2.5) corresponding to the best approximation of the copula

C by an extreme-value copula, σ is the standard deviation of the distribution of the random

variable Z1 and Φ is the standard normal distribution function. Thus the power of the test

(4.4) is an increasing function of the quantity MC(A∗)σ−1.

(d) In general the distribution of the random variable of the Z0 can not be determined explicitly,

because of its complicated dependence on the (unknown) copula C. For this purpose we propose

to determine the quantiles by the multiplier bootstrap approach as described in Bücher and

Dette (2009). To be precise let ξ1, . . . , ξn denote independent identically distributed random

variables with P (ξ1 = 0) = P (ξ1 = 2) = 1/2, We define ξ̄n = n−1
∑n

i=1 ξi as the mean of

ξ1, . . . , ξn and consider the multiplier statistics

Ĉ∗n(u1, u2) = F̂ ∗n(F̂−n1(u1), F̂−n2(u2)),

where F̂ ∗n(x1, x2) = 1
n

∑n
i=1

ξi
ξ̄n
I{Xi1 ≤ x1, Xi2 ≤ x2} and F̂nj denotes the marginal empirical

distribution functions. If we estimate the partial derivatives of the copula C by

∂̂1C(u, v) :=
Ĉn(u+ h, v)− Ĉn(u− h, v)

2h
,

∂̂2C(u, v) :=
Ĉn(u, v + h)− Ĉn(u, v − h)

2h
,

where h = n−1/2 → 0, then we can approximate the distribution of GC by the distribution of

the process

α̂pdmn (u1, u2) := β̂n(u1, u2)− ∂̂1C(u1, u2)β̂n(u1, 1)− ∂̂2C(u1, u2)β̂n(1, u2), (4.5)
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where β̂n(u1, u2) =
√
n (Ĉ∗n(u1, u2) − Ĉn(u1, u2)). More precisely, it was shown by Bücher and

Dette (2009) that we have weak convergence conditional on the data in probability towards

GC , i.e.

α̂pdmn
P
 
ξ
GC in l∞[0, 1]2.

Since Z0 is a continuous function of (GC , C) we obtain that the distribution of

Ẑ∗0 =

∫ 1

0

∫ 1

0

( α̂pdmn (y1−t, yt)

C̃n(y1−t, yt)

)2

(− log y)h(− log y) dy dt

−B−1
h

∫ 1

0

(∫ 1

0

α̂pdmn (y1−t, yt)

C̃n(y1−t, yt)
(log y)2h(− log y) dy

)2

dt

gives a valid approximation for the distribution of Z0 in the sense that Ẑ∗0
P
 
ξ
Z0. Repeating

this procedure B times yields a sample Ẑ∗0(1), . . . , Ẑ∗0(B) that is approximately distributed

according to Z0 and we can use the empirical (1 − α)-quantile of this sample, say z∗1−α, as an

approximation for z1−α. Therefore rejecting the null hypothesis if

nMC̃n
(Ân,h) > z∗1−α (4.6)

yields a consistent asymptotic level α test for extreme-value dependence.

4.2 Finite sample properties

In this subsection we investigate the finite sample properties of the test for extreme-value

dependence. We generated 1000 random samples of sample size n = 200 from various copula

models and calculated the probability of rejecting the null hypothesis. Under the null hypothesis

we chose the model parameters in such a way that the coefficient of tail dependence ρ varies

over the specific range of the corresponding model. Under the alternative the coefficient of tail

dependence does not need to exist and we therefore chose the model parameters, such that

Kendall’s τ is an element of the set {1/4, 1/2, 3/4}. The weight function is chosen according

to the suggestion in the previous section as h
(2)
1.25(x) = x−2e−1.25x and the critical values are

determined by the multiplier bootstrap approach as described in Remark 4.3 with B = 200

Bootstrap replications. The results are stated in Table 1.

We observe from the left part of Table 1 that the level of test is accurately approximated for most

of the models, if the tail dependence is not too strong. For a large tail dependence coefficient

the bootstrap test is conservative. This phenomenon can be explained by the fact that for

the limiting case of random variables distributed according to the upper Fréchet-Hoeffding the

empirical copula Ĉn does not converge weakly to a non-degenerate process at a rate 1/
√
n,

rather in this case it follows that ||Ĉn − C|| = O(1/n). Consequently, the approximations
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H0-model ρ 0.05 0.1 H1-model τ 0.05 0.1

Independence 0 0.046 0.092 Clayton 0.25 0.693 0.798

Gumbel 0.25 0.066 0.113 0.5 0.988 0.994

0.5 0.044 0.098 0.75 0.992 1

0.75 0.016 0.043 Frank 0.25 0.325 0.427

Mixed model 0.25 0.062 0.117 0.5 0.746 0.842

0.5 0.04 0.099 0.75 0.694 0.831

Asy. Neg. Log. 0.25 0.06 0.123 Gaussian 0.25 0.111 0.189

0.5 0.07 0.123 0.5 0.166 0.246

Hüsler-Reiß 0.25 0.069 0.127 0.75 0.036 0.072

0.5 0.038 0.099 t4 0.25 0.058 0.119

0.75 0.008 0.03 0.5 0.062 0.12

0.75 0.015 0.039

Table 1: Simulated rejection probabilities of the test (4.6) for the null hypothesis of an extreme-

value copula for various models. The first four columns deal with models under the null hypoth-

esis, while the last four are from the alternative.

proposed in this paper, which are based on the weak convergence of
√
n(Ĉn − C) to a non-

degenerate process, are not appropriate for small samples, if the tail dependence coefficient is

large.

Considering the alternative we observe reasonably good power for the Frank and Clayton cop-

ulas, while for the Gaussian or t-copula deviations from an extreme-value copula can not be

detected with a sample size n = 200. In some cases the test (4.6) even underestimates the nom-

inal level. This observation can be explained by the closeness to the upper Fréchet-Hoeffding

bound again. Indeed, we can use the minimal distance MC(A∗) as a measure of deviation from

an extreme-value copula. Calculating the minimal distance MC(A∗) [with Kendall’s τ = 0.5 and

h = h
(2)
1.25] we observe that the minimal distances are about ten times smaller for the Gaussian

and t4 than for the Frank and Clayton copula, i.e.

MC(A∗Clayton) = 6.52× 10−4, MC(A∗Frank) = 3.53× 10−4,

MC(A∗Gaussian) = 9.00× 10−5, MC(A∗t4) = 3.56× 10−5.

Moreover, as explained in Remark 4.3 (b) the power of the tests (4.4) and (4.6) is an increasing

function of the quantity p(copula) = MC(A∗)σ−1. For the four copulas considered in the

simulation study [with τ = 0.5] the corresponding ratios are approximately given by

p(Clayton) = 0.210, p(Frank) = 0.147, p(Gaussian) = 0.075, p(t4) = 0.050,

which provides some heuristic explanation of the findings presented in Table 1. Loosely speak-

ing, if the value MC(A∗)σ−1 is very small a larger sample size is required to detect a deviation
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from an extreme-value copula. This statement is confirmed by further simulations results. For

example, for the Gaussian and t4 copula (with Kendall’s τ = 0.75) we obtain for the sample

size n = 500 the rejection probabilities 0.339 (0.495) and 0.142 (0.244) for the bootstrap test

with level 5% (10%), respectively.
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5 Appendix: Proofs

Many of the proofs that follow are based on a general result which shows weak convergence for

the weigthed integrated process log C̃n = log(Cn ∨ n−γ) where the weight function depends on

y and t.

Theorem 5.1. Denote by w : [0, 1]2 → R̄ some weight function. Assume that the copula C

has continuous partial derivatives of first order, that C ≥ Π and that the function w satisfies

conditions (4.1)-(4.3) for some λ > 1. Then we have for any γ ∈ (1/2, λ/2) as n→∞

√
nWn,w =

√
n

∫ 1

0

log
C̃n(y1−t, yt)

C(y1−t, yt)
w(y, t) dy

w
 WC,w =

∫ 1

0

GC(y1−t, yt)

C(y1−t, yt)
w(y, t) dy (5.1)

in l∞[0, 1].

Proof of Theorem 5.1. Fix λ > 1 as in (4.2) and γ ∈ (1/2, λ/2), then choose some some

α ∈ (0, 1/2) such that λα > γ. Due to Lemma 1.10.2 (i) in Van der Vaart and Wellner (1996),

the process
√
n(C̃n−C) will have the same weak limit (with respect to the

w
 convergence) as

√
n(Ĉn − C).

For i = 2, 3, . . . we consider the following random functions in l∞[0, 1]

Xn(t) =

∫ 1

0

√
n
(

log C̃n(y1−t, yt)− logC(y1−t, yt)
)
w(y, t) dy,

Xi,n(t) =

∫ 1

1/i

√
n
(

log C̃n(y1−t, yt)− logC(y1−t, yt)
)
w(y, t) dy,

X(t) =

∫ 1

0

GC(y1−t, yt)

C(y1−t, yt)
w(y, t) dy,

Xi(t) =

∫ 1

1/i

GC(y1−t, yt)

C(y1−t, yt)
w(y, t) dy,
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We prove the theorem by an application of Theorem 4.2 in Billingsley (1968), adapted to

the concept of weak convergence in the sense of Hoffmann-Jørgensen, see e.g. Van der Vaart

and Wellner (1996). More precisely, we will show in Lemma 6.1 in Section 6 that the weak

convergence Xn
w
 X in l∞[0, 1] follows from the following three assertions

(i) For every i ≥ 2 : Xi,n
w
 Xi for n→∞ in l∞[0, 1],

(ii) Xi
w
 X for i→∞ in l∞[0, 1], (5.2)

(iii) For every ε > 0 : lim
i→∞

lim sup
n→∞

P∗( sup
t∈[0,1]

|Xi,n(t)−Xn(t)| > ε) = 0.

We begin by proving assertion (i). For this purpose set Ti = [1/i, 1]2 and consider the space

DΦ1 defined by DΦ1 = {f ∈ l∞(Ti) : infx∈Ti |f(x)| > 0} ⊂ l∞(Ti). By Lemma 12.2 in Kosorok

(2008) it follows that the mapping

Φ1 :

{
DΦ1 → l∞(Ti)

f 7→ log ◦f

is Hadamard-differentiable at C, tangentially to l∞(Ti), with derivative Φ′1,C(f) = f/C. Since

C̃n ≥ n−γ and C ≥ Π we have C̃n, C ∈ DΦ1 and the functional delta method [see Theorem 2.8

in Kosorok (2008)] yields √
n(log C̃n − logC)

w
 GC/C

in l∞(Ti). Next we consider the operator

Φ2 :

{
l∞(Ti)→ l∞([1/i, 1]× [0, 1])

f 7→ f ◦ ϕ,
(5.3)

where the mapping ϕ : [1/i, 1]× [0, 1]→ Ti is defined by ϕ(y, t) = (y1−t, yt). Observing

sup
(y,t)∈[1/i,1]×[0,1]

|f ◦ ϕ(y, t)− g ◦ ϕ(y, t)| ≤ sup
x∈Ti
|f(x)− g(x)|

we can conclude that Φ2 is Lipschitz-continuous. By the continuous mapping theorem [see e.g.

Theorem 7.7 in Kosorok (2008)] and conditions (4.1) and (4.3) we immediately obtain

√
n
(

log C̃n(y1−t, yt)− logC(y1−t, yt)
)
w(y, t)

w
 

GC(y1−t, yt)

C(y1−t, yt)
w(y, t)

in l∞([1/i, 1]× [0, 1]). The assertion in (i) now follows by continuity of integration with respect

to the variable y.

For the proof of assertion (ii) we simply note that GC is bounded on [0, 1]2 and that

K(y, t) =
w(y, t)

C(y1−t, yt)

is uniformly bounded with respect to t ∈ [0, 1] by the integrable function K̄(y) = w̄(y) y−1.
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For the proof of assertion (iii) recall that we fixed some α < 1/2 at the beginning of the proof,

and consider the decomposition

Xn(t)−Xi,n(t) =

∫ 1/i

0

√
n
(

log C̃n(y1−t, yt)− logC(y1−t, yt)
)
w(y, t) dy = B

(1)
i (t) +B

(2)
i (t), (5.4)

where

B
(j)
i (t) =

∫
I
B
(j)
i

(t)

√
n log

C̃n
C

(y1−t, yt)w(y, t) dy, j = 1, 2 (5.5)

and

I
B

(1)
i (t)

=
{

0 < y < 1/i |C(y1−t, yt) > n−α
}
, I

B
(2)
i (t)

= IC
B

(1)
i (t)
∩ (0, 1/i). (5.6)

The usual estimate

P∗( sup
t∈[0,1]

|Xi,n(t)−Xn(t)| > ε) ≤ P∗( sup
t∈[0,1]

|B(1)
i t)| > ε/2) + P∗( sup

t∈[0,1]

|B(2)
i (t)| > ε/2) (5.7)

allows for individual investigation of both terms, and we begin with supt∈[0,1] |B
(1)
i (t)|. By the

mean value theorem we have

log
C̃n
C

(y1−t, yt) = (C̃n − C)(y1−t, yt)
1

C∗(y, t)
, (5.8)

where |C∗(y, t) − C(y1−t, yt)| ≤ |C̃n(y1−t, yt) − C(y1−t, yt)|. Especially, observing C ≥ Π we

have

C∗(y, t) ≥ (C ∧ C̃n)(y1−t, yt) ≥ y ∧

(
y
C̃n
C

(y1−t, yt)

)
(5.9)

and therefore

sup
t∈[0,1]

|B(1)
i (t)| ≤ sup

t∈[0,1]

∫
I
B
(1)
i

(t)

√
n
∣∣∣(C̃n − C)(y1−t, yt)

∣∣∣× ∣∣∣1 ∨ C

C̃n
(y1−t, yt)

∣∣∣w(y, t) y−1 dy

≤ sup
x∈[0,1]2

√
n|C̃n(x)− C(x)| ×

(
1 ∨ sup

x∈[0,1]2 :C(x)>n−α

∣∣∣ C
C̃n

(x)
∣∣∣)× ψ(i),

with ψ(i) =
∫ 1/i

0
w̄(y) y−1 dy = o(1) for i→∞. This yields for the first term on the right hand

side of (5.7)

P∗( sup
t∈[0,1]

|B(1)
i (t)| > ε)

≤ P∗
(

sup
x∈[0,1]2

√
n|C̃n(x)− C(x)| >

√
ε

ψ(i)

)
+ P∗

(
1 ∨ sup

C(x)>n−α

∣∣∣ C
C̃n

(x)
∣∣∣ >√ ε

ψ(i)

)
.(5.10)
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Since supx∈[0,1]2
√
n|C̃n(x)− C(x)| is asymptotically tight we immediately obtain

lim
i→∞

lim sup
n→∞

P∗
(

sup
x∈[0,1]2

√
n|C̃n(x)− C(x)| >

√
ε

ψ(i)

)
= 0. (5.11)

For the estimation of the second term in equation (5.10) we note that

sup
x∈[0,1]2 :C(x)>n−α

∣∣∣C̃n(x)− C(x)

C(x)

∣∣∣ < nα sup
x∈[0,1]2

|C̃n(x)− C(x)| P∗
−→ 0 (5.12)

which in turn implies

sup
C(x)>n−α

∣∣∣ C
C̃n

(x)
∣∣∣ = sup

C(x)>n−α

∣∣∣1 +
C̃n − C
C

(x)
∣∣∣−1

≤
(

1− sup
C(x)>n−α

∣∣∣C̃n − C
C

(x)
∣∣∣)−1

IAn +
(

sup
C(x)>n−α

∣∣∣1 +
C̃n − C
C

(x)
∣∣∣−1)

IACn
P∗
−→ 1, (5.13)

where An = {supC(x)>n−α

∣∣∣ C̃n−CC
(x)
∣∣∣ < 1/2}. Thus the function max{1, supC(x)>n−α

∣∣∣ C
C̃n

(x)
∣∣∣} can

be bounded by a function that converges to one in outer probability, which implies

lim
i→∞

lim sup
n→∞

P∗
(

1 ∨ sup
C(x)>n−α

∣∣∣ C
C̃n

(x)
∣∣∣ >√ ε

ψ(i)

)
= 0.

Observing (5.10) and (5.11) it remains to estimate the second term on the right hand side of

(5.7). We make use of the mean value theorem again, see equation (5.8), but use the estimate

C∗(y, t) ≥ (C ∧ C̃n)(y1−t, yt) ≥ yλ ∧ yλ C̃n
Cλ

(y1−t, yt) (5.14)

[recall that λ > 1 by assumption (4.2)]. This yields

sup
t∈[0,1]

|B(2)
i (t)| ≤ sup

t∈[0,1]

∫
I
B
(2)
i

(t)

√
n
∣∣∣(C̃n − C)(y1−t, yt)

∣∣∣× ∣∣∣1 ∨ Cλ

C̃n
(y1−t, yt)

∣∣∣w(y, t) y−λ dy

≤ sup
x∈[0,1]2

√
n|C̃n(x)− C(x)| ×

(
1 ∨ sup

x∈[0,1]2 :C(x)≤n−α

∣∣∣Cλ

C̃n
(x)
∣∣∣)× φ(i),

where φ(i) =
∫ 1/i

0
w̄(y)y−λ dy = o(1) for i→∞ by condition (4.2). Using analogous arguments

as for the estimation of supt∈[0,1] |B
(1)
i (t)| the assertion follows from

sup
x∈[0,1]2 :C(x)≤n−α

∣∣∣Cλ

C̃n
(x)
∣∣∣ ≤ sup

x∈[0,1]2 :C(x)≤n−α

∣∣nγCλ(x)
∣∣ ≤ nγ−λα = o(1)

due to the choice of γ and α.

Proof of Theorem 3.1. This is a direct consequence of Theorem 5.1 using the weight

function

w(y, t) := −B−1
h log2(y)h(− log(y)).
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Proof of Theorem 3.2. The proof will also be based on Lemma 6.1 in Section 6 verifying

conditions (i) - (iii) in (5.2). A careful inspection of the previous proof shows that the verification

of condition (i) in (5.2) remains valid. Regarding condition (ii) we have to show that the process
GC
C

(y1−t, yt) is integrable on the interval (0, 1). For this purpose we write

GC(x) = BC(x)− ∂1C(x)BC(x1, 1)− ∂2C(x)BC(1, x2)

and consider each term separately. From Theorem G.1 in Genest and Segers (2009) we know

that for any ω ∈ (0, 1/2) the process

B̃C(x) =

{
BC(x)

(x1∧x2)ω(1−x1∧x2)ω
, if x1 ∧ x2 ∈ (0, 1)

0 , if x1 = 0 or x2 = 0 or x = (1, 1),

has continuous sample paths on [0, 1]2. Considering C(y1−t, yt) ≥ y and using the notation

K1(y, t) = qω(y1−t ∧ yt)y−1 (5.15)

K2(y, t) = ∂1C(y1−t, yt)qω(y1−t)y−1 (5.16)

K3(y, t) = ∂2C(y1−t, yt)qω(yt)y−1 (5.17)

with qω(t) = tω(1 − t)ω it remains to show that there exist integrable functions K∗j (y) with

Kj(y, t) ≤ K∗j (y) for all t ∈ [0, 1] (j = 1, 2, 3). For K1 this is immediate because K1(y, t) ≤
(y1−t ∧ yt)ωy−1 ≤ yω/2−1. For K2, note that ∂1C(y1−t, yt) = µ(t) yA(t)−(1−t), with µ(t) =

A(t)− tA′(t). Therefore

K2(y, t) ≤ µ(t) yA(t)−(1−ω)(1−t)−1 ≤ µ(t) yω/2−1 ≤ 2 yω/2−1, (5.18)

where the second estimate follows from the inequality t ∨ (1 − t) ≤ A(t) ≤ 1 and holds for

ω ∈ (0, 2). A similar argument works for the term K3.

For the verification of condition (iii) we proceed along similar lines as in the previous proof. We

begin by choosing some β ∈ (1, 9/8), ω ∈ (1/4, 1/2) and some α ∈ (4/9, γ ∧ (2− ω)−1) in such

a way that γ < βα. First note that y ≤ 1/(n+ 2)2 implies C̃n(y1−t, yt) = n−γ for all t ∈ [0, 1].

This yields ∫ (n+2)−2

0

√
n(log C̃n − logC)(y1−t, yt) dy = O

( log n

n3/2

)
uniformly with respect to t ∈ [0, 1], and therefore it is sufficient to consider the decomposition

in (5.4) with the sets

I
B

(1)
i (t)

= {1/(n+ 2)2 < y < 1/i |C(y1−t, yt) > n−α}, I
B

(2)
i (t)

= IC
B

(1)
i (t)
∩ (1/(n+ 2)2, 1/i).

We can estimate the term B
(1)
i (t) analogously to the previous proof by

|B(1)
i (t)| ≤

∫
I
B
(1)
i

(t)

√
n
∣∣∣(C̃n − C)(y1−t, yt)

∣∣∣× ∣∣∣1 ∨ C

C̃n
(y1−t, yt)

∣∣∣ y−1 dy.
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Let Fn denote the empirical distribution function of (F1(Xi1), F2(Xi2)), . . . , (F1(Xn1), F2(Xn2)).

By the results in Stute (1984) and Tsukahara (2005) we can decompose
√
n(C̃n−C) =

√
n(Cn∨

n−γ − C) as follows

√
n(C̃n − C)(x) =

√
n(Cn − C)(x) +

√
n(C̃n − Cn)(x)

= αn(x)− ∂1C(x)αn(x1, 1)− ∂2C(x)αn(1, x2) + R̃n(x), (5.19)

where αn(x) =
√
n(Fn − F )(x) and the remainder satisfies

sup
x∈[0,1]2

|R̃n(x)| = O(n1/2−γ + n−1/4(log n)1/2(log log n)1/4) a.s. (5.20)

Note that the estimate of (5.20) requires continuity of all second order partial derivatives of

the copula C. This condition is satisfied provided that the function A is assumed to be twice

continuously differentiable. With (5.19) we can estimate the term |B(1)
i (t)| analogously to

decomposition (5.4) by B
(1)
i,1 (t) + · · ·+B

(1)
i,4 (t), where

B
(1)
i,1 (t) =

∫
I
B
(1)
i

(t)

∣∣αn(y1−t, yt)
∣∣ ∣∣∣1 ∨ C

C̃n
(y1−t, yt)

∣∣∣ y−1 dy,

B
(1)
i,2 (t) =

∫
I
B
(1)
i

(t)

∂1C(y1−t, yt)
∣∣αn(y1−t, 1)

∣∣ ∣∣∣1 ∨ C

C̃n
(y1−t, yt)

∣∣∣ y−1 dy,

B
(1)
i,3 (t) =

∫
I
B
(1)
i

(t)

∂2C(y1−t, yt)
∣∣αn(1, yt)

∣∣ ∣∣∣1 ∨ C

C̃n
(y1−t, yt)

∣∣∣ y−1 dy,

B
(1)
i,4 (t) =

∫
I
B
(1)
i

(t)

∣∣∣R̃n(y1−t, yt)
∣∣∣ ∣∣∣1 ∨ C

C̃n
(y1−t, yt)

∣∣∣ y−1 dy.

The decomposition in (5.19), Theorem G.1 in Genest and Segers (2009) and the inequality

α < γ ∧ (2− ω)−1 may be used to conclude

sup
(y,t):C(y1−t,yt)>n−α

∣∣∣C̃n − C
C

(y1−t, yt)
∣∣∣= oP∗(1),

which in turn implies

1 ∨ sup
(y,t):C(y1−t,yt)>n−α

∣∣∣ C
C̃n

(y1−t, yt)
∣∣∣ = OP∗(1) (5.21)

analogously to (5.13). Together with (5.20) and the inequality
∫ 1/i

(n+2)−2 y
−1 dy ≤ 2 log(n+ 2) we

obtain, for n→∞

sup
t∈[0,1]

B
(1)
i,4 (t) = OP∗(n1/2−γ log n+ n−1/4(log n)3/2(log log n)1/4) = oP∗(1),

which implies

lim
i→∞

lim sup
n→∞

P∗
(

sup
t∈[0,1]

B
(1)
i,4 (t) > ε/4

)
= 0. (5.22)
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Observing that qω(y1−t ∧ yt) ≤ yω/2 the first term B
(1)
i,1 (t) can be estimated by

sup
t∈[0,1]

B
(1)
i,1 (t) ≤ sup

x∈[0,1]2

|αn(x)|
qω(x1 ∧ x2)

×
(

1 ∨ sup
(y,t):C(y1−t,yt)>n−α

∣∣∣ C
C̃n

(y1−t, yt)
∣∣∣)× ψ(i),

where ψ(i) =
∫ 1/i

0
y−1+ω/2 dy = o(1) for i→∞. Using analogous arguments as in the previous

proof we can conclude, under consideration of (5.21) and Theorem G.1 in Genest and Segers

(2009), that limi→∞ lim supn→∞ P∗(supt∈[0,1]B
(1)
i,1 (t) > ε/4) = 0. For the second summand we

note that

sup
t∈[0,1]

B
(1)
i,2 (t) ≤ sup

x1∈[0,1]

|αn(x1, 1)|
qω(x1)

×
(

1 ∨ sup
(y,t):C(y1−t,yt)>n−α

∣∣∣ C
C̃n

(y1−t, yt)
∣∣∣)× sup

t∈[0,1]

∫ 1/i

0

K2(y, t) dy,

where K2(y, t) is defined in (5.16). From (5.18), we have limi→∞ supt∈[0,1]

∫ 1/i

0
K2(y, t) dy = 0.

Again, under consideration of (5.21) and Theorem G.1 in Genest and Segers (2009), we obtain

limi→∞ lim supn→∞ P∗
(

supt∈[0,1]B
(1)
i,2 (t) > ε/4

)
= 0. A similar argument works for B

(1)
i,3 and

from the estimates for the different terms the assertion

lim
i→∞

lim sup
n→∞

P∗( sup
t∈[0,1]

|B(1)
i (t)| > ε) = 0

follows. Considering the term supt∈[0,1] |B
(2)
i (t)| we proceed along similar lines as in the proof

of Theorem 5.1. For the sake of brevity we only state the important differences: in estimation

(5.14) replace λ by β, then make use of decomposition (5.19), calculations similar to (5.18),

and Theorem G.1 in Genest and Segers (2009) again and for the estimation of the remainder

note that
∫ 1/i

1/(n+2)2
y−β = O(n2(β−1)).

Proof of Proposition 3.4 and 3.5. The proof follows by similar lines as given in the

proof of Proposition 3.3 in Genest and Segers (2009). We therefore only deal with the case

hk(x) = x−2e−kx and note that the assertion for the weight function hα(x) = x−α follows by

similar arguments.

Observing that ∂1C(u1−t, ut) = uA(t)+t−1µ(t) and ∂2C(u1−t, ut) = uA(t)−tν(t) we can decompose

σ(u, v; t) into

σ(u, v; t) = σ0(u, v; t) + (uv)A(t)
{ 4∑
l=1

σl(u, v; t)−
8∑
l=5

σl(u, v; t)
}
,

where

σ0(u, v; t) = (u ∧ v)A(t) − (uv)A(t)

σ1(u, v; t) = (ut−1 ∧ vt−1 − 1)µ2(t)

σ2(u, v; t) = (u−t ∧ v−t − 1)ν2(t)

σ3(u, v; t) = (ut−1v−tC(u1−t, vt)− 1)µ(t)ν(t)
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σ4(u, v; t) = (u−tv1−tC(v1−t, ut)− 1)µ(t)ν(t)

σ5(u, v; t) = (u−A(t)vt−1C(u1−t ∧ v1−t, ut)− 1)µ(t)

σ6(u, v; t) = (ut−1v−A(t)C(u1−t ∧ v1−t, vt)− 1)µ(t)

σ7(u, v; t) = (u−A(t)v−tC(u1−t, ut ∧ vt)− 1)ν(t)

σ8(u, v; t) = (u−tv−A(t)C(v1−t, ut ∧ vt)− 1)ν(t)

In view of (3.10) we need to evaluate
∫ 1

0

∫ 1

0
σ0(u, v; t)(uv)k−A(t) du dv and

∫ 1

0

∫ 1

0
σl(u, v; t)(uv)k du dv

for l = 1, . . . , 8. By symmetry, some of these integrals coincide, that is∫ 1

0

∫ 1

0

σl(u, v; t)(uv)k du dv =

∫ 1

0

∫ 1

0

σl+1(u, v; t)(uv)k du dv l = 3, 5, 7.

Considering the remaining integrals straightforward calculations yield∫ 1

0

∫ 1

0

σ0(u, v; t)(uv)k−A(t) du dv =
2

(k + 1)(2k + 2− A(t))
− 1

(k + 1)2
,∫ 1

0

∫ 1

0

σ1(u, v; t)(uv)k du dv =
( 2

(k + 1)(2k + 1 + t)
− 1

(k + 1)2

)
µ2(t),∫ 1

0

∫ 1

0

σ2(u, v; t)(uv)k du dv =
( 2

(k + 1)(2k + 2− t)
− 1

(k + 1)2

)
ν2(t).

Regarding the integral with respect to σ3 we need to evaluate

H1(t) =

∫ 1

0

∫ 1

0

uk+t−1vk−tC(u1−t, vt) du dv =
1

t(1− t)

∫ 1

0

∫ 1

0

C(x, y)x
k+1
1−t−2y

k+1
t
−2 dx dy,

where we have used the substitution u1−t = x and vt = y. Next substitute x = w1−s and

y = ws, then w = xy ∈ (0, 1] and s = log y
log xy

∈ [0, 1], while the Jacobian of the transformation is

given by − logw. One obtains

H1(t) =
1

t(1− t)

∫ 1

0

(
A(s) + (k + 1)

(1− s
1− t

+
s

t

)
− 1
)−2

ds,

where the last equality follows by integration by parts. In consequence,∫ 1

0

∫ 1

0

σ3(u, v; t)(uv)k du dv

=
{ 1

t(1− t)

∫ 1

0

(
A(s) + (k + 1)

(1− s
1− t

+
s

t

)
− 1
)−2

ds− 1

(k + 1)2

}
µ(t)ν(t).

Regarding the integral of σ5 we decompose∫ 1

0

∫ 1

0

uk−A(t)vk+t−1C(u1−t ∧ v1−t, ut) du dv

=

∫ 1

0

∫ v

0

uk−A(t)vk+t−1C(u1−t, ut) du dv +

∫ 1

0

∫ 1

v

uk−A(t)vk+t−1C(v1−t, ut) du dv
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Straightforward calculations show that the first integral equals
(
(k+ 1)(2k+ 1 + t)

)−1
. For the

second integral we substitute v1−t = x and ut = y to obtain

1

t(1− t)

∫ 1

0

∫ y(1−t)/t

0

y
k+1−A(t)

t
−1x

k+1
1−t−2C(x, y) dx dy.

We proceed by the same transformation as for σ3, namely x = w1−s and y = ws. The inequality

x < y(1−t)/t transforms to t > s and in consequence the latter integral equals

− 1

t(1− t)

∫ t

0

∫ 1

0

ws(
k+1−A(t)

t
−1)+(1−s)( k+1

1−t−2)+A(s) logw dw ds

=
1

t(1− t)

∫ t

0

(
A(s) + (k + t)

1− s
1− t

+ (k + 1− A(t))
s

t

)−2

ds,

where the last equality follows by integration by parts. Combining all terms for σ5 we obtain∫ 1

0

∫ 1

0

σ5(u, v; t)(uv)k du dv = µ(t)

{
1

(k + 1)(2k + 1 + t)

+
1

t(1− t)

∫ t

0

(
A(s) + (k + t)

1− s
1− t

+ (k + 1− A(t))
s

t

)−2

ds− 1

(k + 1)2

}
.

For the integrals with respect to σ7 similar calculations yield∫ 1

0

∫ 1

0

σ7(u, v; t)(uv)k du dv = ν(t)

{
1

(k + 1)(2k + 2− t)

+
1

t(1− t)

∫ 1

t

(
A(s) + (k + 1− A(t))

1− s
1− t

+ (k + 1− t)s
t

)−2

ds− 1

(k + 1)2

}
and the conclusion finally follows by assembling all terms.

Proof of Theorem 4.1. Since the integration mapping is continuous, it suffices to establish

the weak convergence Xn(t)
w
 X(t) in l∞[0, 1] where we define

Xn(t) =

∫ 1

0

n
(

log
C̃n(y1−t, yt)

C(y1−t, yt)

)2

w(y) dy − nBh(Ân,h(t)− A∗(t))2,

X(t) =

∫ 1

0

(GC(y1−t, yt)

C(y1−t, yt)

)2

w(y) dy −BhA2
C,h(t).

The proof of this assertion follows along the lines of the proof of Theorem 5.1. For i ≥ 2 we

recall the notation w(y) = (− log y)h(− log y) and consider the following random functions in

l∞[0, 1]

Xi,n(t) =

∫ 1

1/i

n
(

log
C̃n(y1−t, yt)

C(y1−t, yt)

)2

w(y) dy −B−1
h

(∫ 1

1/i

√
n
(

log
C̃n(y1−t, yt)

C(y1−t, yt)

)h∗(y)

log y
dy
)2

,

Xi(t) =

∫ 1

1/i

(GC(y1−t, yt)

C(y1−t, yt)

)2

w(y) dy −B−1
h

(∫ 1

1/i

GC(y1−t, yt)

C(y1−t, yt)

h∗(y)

log y
dy
)2

.
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By an application of Lemma 6.1 in Section 6, it suffices to show the conditions listed in (5.2).

By arguments similar to those in the proof of Theorem 5.1 we obtain

√
n log

C̃n(y1−t, yt)

C(y1−t, yt)

w
 

GC(y1−t, yt)

C(y1−t, yt)

in l∞([1/i, 1]×[0, 1]). Assertion (i) now follows immediately by the boundedness of the functions

w(y) and h∗(y)(− log y)−1 on [1/i, 1] [see conditions (4.1), (4.3) and (2.2)] and the continuous

mapping theorem.

For the proof of assertion (ii) we simply note that G2
C and GC are bounded on [0, 1]2 and

K1(y, t) = w(y)
C2(y1−t,yt)

and K2(y, t) = h∗(y)
C(y1−t,yt)

are bounded uniformly with respect to t ∈ [0, 1]

by the integrable functions K̄1(y) = w(y) y−2 and K̄2(y) = h∗(y)(− log y)−1 y−1.

For the proof of assertion (iii) we fix some α ∈ (0, 1/2) such that λα > 2γ and consider the

decomposition

Xn(t)−Xi,n(t) = B
(1)
i (t) +B

(2)
i (t) +B

(3)
i (t), (5.23)

where

B
(1)
i (t) =

∫
I
B
(1)
i

(t)

n
(

log
C̃n(y1−t, yt)

C(y1−t, yt)

)2

w(y) dy, (5.24)

B
(2)
i (t) =

∫
I
B
(2)
i

(t)

n
(

log
C̃n(y1−t, yt)

C(y1−t, yt)

)2

w(y) dy, (5.25)

B
(3)
i (t) = −B−1

h I(t, 1/i)(2I(t, 1)− I(t, 1/i)), (5.26)

I
B

(1)
i

(t) and I
B

(2)
i

(t) are defined in (5.6) and

I(t, a) =
√
n

∫ a

0

(
log

C̃n(y1−t, yt)

C(y1−t, yt)

)h∗(y)

log y
dy.

By the same arguments as in the proof of Theorem 5.1 we have for every ε > 0

lim
i→∞

lim sup
n→∞

P∗( sup
t∈[0,1]

|I(t, 1/i)| > ε) = 0,

and supt∈[0,1] |I(t, 1)| = OP∗(1), which yields limi→∞ lim supn→∞ P∗(supt∈[0,1] |B
(3)
i (t)| > ε) = 0.

For B
(1)
i (t) we obtain the estimate

sup
t∈[0,1]

|B(1)
i (t)| ≤ sup

t∈[0,1]

∫
I
B
(1)
i

(t)

n
∣∣∣(C̃n − C)(y1−t, yt)

∣∣∣2∣∣∣1 ∨ C2

C̃2
n

(y1−t, yt)
∣∣∣w(y) y−2 dy

≤ sup
x∈[0,1]2

n|C̃n(x)− C(x)|2 ×
(

1 ∨ sup
x∈[0,1]2 :C(x)>n−α

∣∣∣C2

C̃2
n

(x)
∣∣∣)× ψ(i),
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where ψ(i) :=
∫ 1/i

0
w(y)y−2dy, which can be handled by the same arguments as in the proof of

Theorem 5.1. Finally, the term B
(2)
i (t) can be estimated by

sup
t∈[0,1]

|B(2)
i (t)| ≤ sup

t∈[0,1]

∫
I
B
(2)
i

(t)

n
∣∣∣(C̃n − C)(y1−t, yt)

∣∣∣2∣∣∣1 ∨ Cλ

C̃2
n

(y1−t, yt)
∣∣∣w(y) y−λ dy

≤ sup
x∈[0,1]2

n|C̃n(x)− C(x)|2 ×
(

1 ∨ sup
x∈[0,1]2 :C(x)≤n−α

∣∣∣Cλ

C̃2
n

(x)
∣∣∣)× φ(i),

where φ(i) =
∫ 1/i

0
w(y)y−λ dy = o(1) for i → ∞ by condition (4.2). Mimicking the arguments

from the proof of Theorem 5.1 completes the proof.

Proof of Theorem 4.2. With the notation v̄(y) := 2 (log y)2h(− log y) it follows that

|v(y, t)| ≤ v̄(y) and the assumptions on h yield the validity of (4.1)-(4.3) for v(y, t). This

allows for an application of Theorem 5.1 and together with the continuous mapping theorem

we obtain
√
nS1

w
 Z1. Thus it remains to verify the negligibility of S2+S3. For S3 we note that

by Theorem 3.1 and the continuous mapping theorem we have S3 = OP∗(1/n) and it remains to

consider S2. To this end we fix some α ∈ (0, 1/2) such that (1 + (λ− 1)/2)α > γ and consider

the decomposition∫ ∞
0

(
C̄n(s, t)− C̄(s, t)

)2

se−sh(s) ds

=

∫ 1

0

log2 C̃n(y1−t, yt)

C(y1−t, yt)
(− log y)h(− log(y)) dy

=

∫
I
B
(1)
1 (t)

log2 C̃n(y1−t, yt)

C(y1−t, yt)
(− log y)h(− log(y)) dy +

∫
I
B
(2)
1 (t)

log2 C̃n(y1−t, yt)

C(y1−t, yt)
(− log y)h(− log(y)) dy

=: T1(t, n) + T2(t, n)

where the sets I
B

(j)
1 (t)

, j = 1, 2 are defined in (5.6). On the set I
B

(1)
1 (t)

we use the estimate

log2 C̃n(y1−t, yt)

C(y1−t, yt)
≤ |C̃n − C|

2

(C∗)2
(y1−t, yt) ≤ |C̃n − C|

2

C∗
(y1−t, yt)

1

n−α(1 ∧ C̃n(y1−t,yt)
C(y1−t,yt)

)

≤ nα
|C̃n − C|2

C∗
(y1−t, yt)

(
1 ∨ sup

x∈[0,1]2 :C(x)>n−α

C(x)

C̃n(x)

)
where |C∗(y, t)−C(y1−t, yt)| ≤ |C̃n(y1−t, yt)−C(y1−t, yt)|. By arguments similar to those used

in the proof of Theorem 5.1, it is now easy to see that

√
n sup

t
|T1(t, n)| ≤ sup

x∈[0,1]2
nα+1/2|C̃n(x)− C(x)|2 ×

(
1 ∨ sup

x∈[0,1]2 :C(x)>n−α

∣∣∣ C
C̃n

(x)
∣∣∣)2

×K = oP∗(1),

where K :=
∫ 1

0
(− log y)h(− log y) y−1 dy < ∞ denotes a finite constant [see conditions (4.2)

and (4.3)]. Now set β := (λ− 1)/2 > 0. From the estimate

C∗(y, t) ≥ y1+β

(
1 ∧ C̃n

C1+β
(y1−t, yt)

)
= y−βyλ

(
1 ∧ C̃n

C1+β
(y1−t, yt)

)
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we obtain by similar arguments as in the proof of the negligibility of |B(2)
i (t)| in the proof of

Theorem 5.1 (note that on I
B

(2)
1 (t)

we have y ≤ C(y1−t, yt) ≤ n−α )

sup
t∈[0,1]

|T2(t, n)| ≤ log(n)n−βα sup
x∈[0,1]2

√
n|C̃n(x)− C(x)| ×

(
1 ∨ sup

x∈[0,1]2 :C(x)≤n−α

∣∣∣C1+β

C̃n
(x)
∣∣∣)× K̃

where K̃ := γ
∫ 1

0
(1 − log y)(− log y)h(− log y)y−λ dy denotes a finite constant [see conditions

(2.4) and (4.2)] and we used the estimate∣∣∣ log
C̃n(y1−t, yt)

C(y1−t, yt)

∣∣∣2 ≤ (γ log n− log y)
∣∣∣ log

C̃n(y1−t, yt)

C(y1−t, yt)

∣∣∣ ≤ γ log(n)(1− log y)
∣∣∣ log

C̃n(y1−t, yt)

C(y1−t, yt)

∣∣∣,
which holds for sufficiently large n. Finally, we observe that

sup
x∈[0,1]2 :C(x)≤n−α

∣∣∣C1+β

C̃n
(x)
∣∣∣ ≤ sup

x∈[0,1]2 :C(x)≤n−α

∣∣nγC1+β(x)
∣∣ ≤ nγ−(1+β)α = o(1).

Now the proof is complete.

6 An auxiliary result

Lemma 6.1. Let Xn, Xi,n : Ω → D for i, n ∈ N be arbitrary maps with values in the metric

space (D, d) and Xi, X : Ω→ D be Borel-measurable. Suppose that

(i) For every i ∈ N : Xi,n
w
 Xi for n→∞,

(ii) Xi
w
 X for i→∞

(iii) For every ε > 0 : lim
i→∞

lim sup
n→∞

P∗(d(Xi,n, Xn) > ε) = 0.

Then Xn
w
 X for n→∞.

Proof. Let F ⊂ D be closed and fix ε > 0. If F ε = {x ∈ D : d(x, F ) ≤ ε) denotes the

ε-enlargement of F we obtain

P∗(Xn ∈ F ) ≤ P∗(Xi,n ∈ F ε) + P∗(d(Xi,n, Xn) > ε).

By hypothesis (i) and the Portmanteau-Theorem [see Van der Vaart and Wellner (1996)]

lim sup
n→∞

P∗(Xn ∈ F ) ≤ P(Xi ∈ F ε) + lim sup
n→∞

P∗(d(Xi,n, Xn) > ε).

By conditions (ii) and (iii) lim supn→∞ P∗(Xn ∈ F ) ≤ P (X ∈ F ε) and since F ε ↓ F for ε ↓ 0

and closed F the result follows by the Portmanteau-Theorem.
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Jiménez, J. R., Villa-Diharce, E., and Flores, M. (2001). Nonparametric estimation of the de-

pendence function in bivariate extreme value distributions. Journal of Multivariate Analysis,

76:159–191.

Joe, H. (1990). Families of min-stable multivariate exponential and multivariate extreme value

distributions. Statist. Probab. Lett., 9(1):75–81.

Kosorok, M. R. (2008). Introduction to Empirical Processes and Semiparametric Inference.

Springer Series in Statistics, New York.

Pickands, J. (1981). Multivariate extreme value distributions (with a discussion). Proceedings

of the 43rd Session of the International Statistical Institute. Bull. Inst. Internat. Statist.,

49:859–878,894–902.
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