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Abstract

Hormesis is a widely observed phenomenon in many branches of life sciences

ranging from toxicology studies to agronomy with obvious public health and risk

assessment implications. We address optimal experimental design strategies for

determining presence of hormesis in a controlled environment using the recently

proposed Hunt-Bowman model. We propose alternative models that have an im-

plicit hormetic threshold, discuss their advantages over current models, construct

and study properties of optimal designs for (i) estimating model parameters, (ii)

estimating the threshold dose, and (iii) testing for the presence of hormesis.

We also determine maximin optimal designs that maximize the minimum of the

design efficiencies when we have multiple design criteria or there is model uncer-

tainty where we have a few plausible models of interest. We apply our optimal

design strategies to a teratology study and show our proposed designs outperform

the implemented design by a very wide margin for many situations.

KEY WORDS: continuous design, dose-response, Hunt-Bowman model, logistic

model, maximin design, quadratic-logistic model, weibull model
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1 Introduction

Hormesis is a dose-response relationship which is characterized by low dose stimulation

(beneficial effect) and high dose inhibition (destructive intoxication). Hormetic effects

mean that there might actually be a reduced risk of exhibiting toxic effects at low ex-

posure levels. Hormetic effects are observed in pharmacology (Hardman, Limbird and

Gilman, 2001), toxicology (Eaton and Klaassen, 2001; Hayes, 2001) and radiation ex-

periments (Calabrese and Baldwin, 2002). Calabrese and Baldwin (2003) reported that

hormetic effects are also observed in non-toxicological fields: experimental psychology,

plant biology and chemotherapy. In such areas, hormetic effects may mean enhanced

longevity or decreased disease incidence. The presence of hormesis was clearly shown

in Haseman (1983), where a reduction in the background tumor incidence was observed

in an analysis of 25 cancer studies in the National Toxicology Program.

Hormesis implies the existence of a threshold dose level which is defined as the

maximum nonzero exposure level below which no adverse events above background

response occur. In particular, the background response occurs at this threshold dose

level. This definition is widely accepted, see for example, Hunt and Bowman (2004),

Hatch (1971), Cox (1987). However, despite the wide spread existence of hormesis and

discussion in scientific circles, the subject of hormesis is not without controversy, see

Thayer et al. (2006), Cook and Calabrese (2006a, 2006b), for example.

Hunt and Bowman (2004) characterized the overall dose-response relationship by

a piecewise function that consists of a quadratic u-shape curve at dose levels that are

lower than the threshold and a shifted logistic curve at dose levels that are higher than

the threshold. The Hunt-Bowman model has advantages over several threshold models

but retains two drawbacks common to many threshold models; the derivative is not

continuous at the hormesis threshold dose level and the u-shape is symmetric at low

dose levels. To overcome the disadvantages, we propose smooth analytic models that

do not possess the threshold dose level parameter explicitly. Specifically, we model the

overall dose-response relationship by a sum of an exponential decay and a sigmoidal

curve that may include, for example, the logistic or Weibull curve.

There are many papers in various disciplines that discuss the existence and esti-

mation issues for a threshold model. Some examples are Pastor and Guallar (1998),

Ulm (1991), Slob (1999), Goetghebeur and Pocock (1995), and Rodricks (2003), to

name a few. However, optimal experimental strategies for detecting hormesis have

not been studied. We believe that this paper is the first serious attempt to address

design issues for detecting hormesis in an experiment using a variety of techniques.

Our study focusses on locally optimal designs where we assume nominal values of the

model parameters are available. These optimal designs typically require the least effort

to find and usually represents a first step in searching for more complicated designs

later on. Specifically, we construct locally optimally designs for (i) estimating model

parameters, (2) estimating the threshold and (3) testing presence of hormesis. Because

optimal designs can perform inefficiently under another criteria, it is desirable to have
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designs that are robust under a variation of criteria, see for example, Wong (1994)

and Moerbeek (2005). To this end, we also construct maximin optimal designs that

maximize the minimal efficiency across the multiple criteria. The resulting maximin

optimal design provides some assurance that the design can deliver reasonable efficien-

cies for a few optimality criteria at the same time. We also provide similar applications

of maximin optimal designs to the situations when there is uncertainty in the model

assumptions and we wish to design for a few plausible models at the same time.

2 Approximate Design and Design Criteria

An experimental design ξ is a discrete probability measure defined on a pre-selected

dose interval Ω = [0, d̄]. We denote such a design by ξ={d0, d1, . . . , dk;w0, w1, . . . , wk},
where k is the number of distinct doses and di ∈ Ω = [0, d̄]. The weights wi are non-

negative numbers that sum to unity and wi represents the relative proportion of the

total number of observations allocated to the ith dose, i = 1, 2, . . . , k. In practice, if

N is the pre-determined sample size for the study, the number of animals allocated to

dose di is Nwi, i = 1, . . . , k, subject to Nw0 +Nw1 · · · +Nwk = N . Such designs are

frequently referred to as continuous designs. They are easier to find and study than

exact designs (Kiefer, 1959). The design problem is to find the optimal number of dose

levels (k), where these doses (di’s) are and what proportion (wi’s) of observations to

take at each of these doses.

Given a model with mean response function µ, the threshold dose level is the

maximum nonzero exposure level below which no adverse events above the background

response occur and there is the background response at this level, that is

τ = τ(θ) = max{ d ∈ Ω : µ(d, θ) ≤ µ(0, θ)}.

Let τ̂ be the least squares estimator (LSE) of τ . The optimality criterion for the

most precise estimation of the threshold level requires us to minimze Var(τ̂) over all

continuous designs on Ω. By the δ-method we have that Var(τ̂) is approximately

proportional to bT (θ)M−1(ξ, θ)b(θ), where

M(ξ, θ) =
∑
i

f(di, θ)f
T (di, θ)wi, f(d, θ) =

∂

∂θ
µ(d, θ), b(θ) =

∂

∂θ
τ(θ).

The matrix M(ξ, θ) is the information matrix obtained from design ξ for θ in the model

yj = µ(dj, θ) + εj

where the y′js are outcomes and errors ε′js are independently identically distributed

random values with zero mean and finite variance. Designs with a singular information

matrix are called singular designs. Such designs do not permit all parameters in the

models to be estimated.
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Following convention (Silvey, 1980, Pukelsheim, 1993), our design criteria are for-

mulated as functions of the information matrix. For a nonlinear model, the information

matrix depends on the model parameters that we want to estimate. Consequently, nom-

inal values of the parameters are required to construct an optimal design. Typically

nominal values come from experts’ opinion or results from similar experiments. Once

nominal values for the model parameters are available, we assume that they are true

values of the model parameters so that the information matrix is now free of unknown

parameters. Upon optimization, we obtain an optimal design, which we use to produce

the next set of estimates for the model parameters. Usually, these estimates stabilize

after a few iterations and the optimal design does not change anymore. These locally

optimal designs are easier to find and they usually form the basis for constructing de-

signs that are more robust to model assumptions or designs that can meet the multiple

objectives in the study, see Section 2.3 and Section 4.

There are a few design criteria for studying hormesis. If we are interested in the

precise estimation of the threshold dose level, an appropriate design is a locally τ -

optimal design that minimizes bT (θ)M−1(ξ, θ)b(θ) where b(θ) is given near the definition

of the information matrix. This criterion is a particular case of the widely used c-

optimality criterion discussed in design monographs (Silvey, 1980, Pukelsheim, 1993).

For our purpose here, we take c = b(θ). For estimating model parameters in the mean

function, D-optimality is appropriate. A D-optimal design minimizes the volume of

the confidence ellipsoid for the parameter θ and so we have the most precise estimates

of the parameters. Techniques for finding c and D-optimal designs are well known and

are described in design monographs mentioned above.

A more challenging design question is how to design a study specifically for detecting

the existence of hormesis. Depending on the context, hormesis may exhibit a J-shaped,

U-shaped or an inverted U-shaped dose response, see Rodricks (2003) for details. We

assume that the mean response as a function of the dose is differentiable and to fix

ideas, assume that when hormesis exists, its derivative is negative at the zero dose and

nonnegative otherwise. Consequently, the hypothesis for the existence of hormesis is

H0 : µ′(0, θ) ≥ 0 vs H1 : µ′(0, θ) < 0

where µ′(d, θ) = ∂µ(d, θ)/∂d. An optimal design that maximizes the power of hypoth-

esis testing is a design that minimizes Var(µ′(0, θ̂)). By the δ-method, we have

Var(µ′(0, θ̂)) ≈ hT (0, θ)M−1(ξ, θ)h(0, θ)

where h(d, θ) = ∂f(d, θ)/∂d. This implies that we want a locally optimal design that

minimizes hT (θ)M−1(ξ, θ)h(θ) where h(θ) = h(0, θ). This criterion is also a special

case of c-optimality and for convenience, we call the criterion h-optimality and designs

that minimize the criterion h-optimal. Because these designs minimize the variance

of the estimate of the derivative of the mean response at 0, they remain optimal for

detecting other types of hormesis when we reverse the null and alternative hypotheses.
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Throughout, we measure the worth of a design by its efficiency. This number is

between 0 and 1 and is typically the ratio of the criterion values from the current design

and the optimal design and reported as a percentage after multiplying by 100%. A

design with 50%-efficiency means that it has to be replicated twice to do as well as the

optimal design. For D-efficiency, we work with the p-root of the ratio to maintain this

interpretation, where p is the number of parameters of interest.

In the next section, we focus on the Hunt-Bowman model and construct a variety

of optimal designs for the model. In Section 4, we propose alternative models that

do not have explicit threshold parameter and present a variety of optimal designs for

these models. Robust designs are discussed in Section 5. These designs ensure the

constructed designs have the best possible efficiencies under various design criteria or

different model assumptions. Justifications for all the optimal designs are quite similar

and we sketch the key ideas in Lemma 1 and Lemma 2 in the appendix.

3 The Hunt-Bowman Model

Hunt and Bowman (2004) proposed modeling the mean response µ(d) at dose d using

the piecewise quadratic-logistic function

µ(d) = µ(d, c1, τ, β0, β1) =

c1d
2 + c2d+ κ 0 ≤ d ≤ τ

1
1+eβ0−β1(d−τ) d ≥ τ

(1)

with two restrictions on the six parameters c1, c2, κ, τ, β0, β1: µ(0) = µ(τ) and µ(τ−) =

µ(τ+). The former follows from the definition of the hormesis threshold and the

latter follows from the continuity of the dose-response curve. These restrictions imply

κ = 1
1+e−β0

and c2 = −c1τ . The parameter τ is the threshold dose and the vector of

model parameters for the Hunt-Bowman model is θ = (c1, τ, β0, β1)
T with 4 independent

parameters. Here and throughout, µ(d) is the mean response at dose d and sometimes,

we write the mean response as µ(d, θ) to emphasize its dependence on θ.

Hunt and Bowman (2004) used model (1) to fit data from a study that measured

developmental effects of the chemical diethylhexyl phthalate on mice. In the experi-

ment, the pregnant animals were exposed to one of five dose levels including the control

dose at d = 0. Here, a dose level corresponds to administering the drug as a percentage

of the animal’s diet. The number of affected fetuses was recorded for each animal and

analysis results from Hunt and Bowman (2004) showed a u-shape dose response at low

dose levels. Figure 1 in Section 4 shows the mean function of the Hunt-Bowman model

for various sets of values for θ and also the fitted mean response function from the

exp+log model to be discussed.

3.1 Locally Optimal Designs for the Hunt-Bowman model

We now investigate the locally τ -optimal design, the locally D-optimal design and the

locally h-optimal design for the Hunt-Bowman model. If θ = (c1, τ, β0, β1)
T , a direct
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calculation shows the regression vector f(d, θ) for the model is

f(d, θ) =


(
d2 − τd,−c1d,− eβ0

(1+eβ0 )2
, 0
)T

0 ≤ d ≤ τ,(
0,−β1

eβ0−β1(d−τ)

(1+eβ0−β1(d−τ))2
,− eβ0−β1(d−τ)

(1+eβ0−β1(d−τ))2
, (d−τ)eβ0−β1(d−τ)

(1+eβ0−β1(d−τ))2

)T

d ≥ τ.

Table 1 shows the locally D-optimal design constructed using the nominal values

similar to those given in Hunt and Bowman (2004). The dose interval here and in the

rest of the paper is Ω = [0, 0.15] for our application. We observe that all the locally D-

optimal designs for different nominal values have 4 doses and require equal proportions

of observations at the doses. All include the zero dose in the design.

The table also shows the D-efficiency of the design

ξu = {0, 0.025, 0.05, 0.1, 0.15; 1/5, . . . , 1/5}

that closely approximates the one implemented in the developmental toxicity study of

diethylhexl phthalate (DEHP) reported in Hunt and Bowman (2004). In what is to

follow, we refer ξu as the implemented design for convenience. There was no rationale

provided for the choice of ξu in their paper but we note that the design resembles a

somewhat uniform design with equal weights over a set of log-uniformly spaced doses in

Ω. Such designs may be intuitively appealing but it can be very inefficient, depending

on the aims of the study. For example, row 1 in Table 1 lists the locally optimal design

when the the nominal value is θ(0) = (170, 0.04, 1.46, 40) and shows that its D-efficiency

for estimating the threshold dose is only 34.6%. The D-efficiency of the ξu for estimating

the model parameters is 80% so this design is 20% less efficient than the design ξ0. As

Table 1 shows the D-efficiencies of ξu can drop to 61% for other neighboring values of

θ0. Even when there is good rationale for a uniform design, the choice for the number

of design points can also be problematic (Wong and Lachenbruch, 1996).

Because locally optimal design depends on nominal values of the parameters, it is

instructive to study the problem of the mis-specification of the true values of param-

eters. To this end, we calculate the D-efficiency of the design ξ0 = ξ∗D(θ
(0)) which is

D-optimal for θ(0) = (170, 0.04, 1.46, 40) and compute its efficiency for other values

in the neighborhood of θ(0). Table 1 shows the locally D-optimal design is relatively

robust to small mis-specification of the nominal values displayed in the table. The

biggest drop in D-efficiency occurs when τ was over-specified by 0.1 unit and the nom-

inal values are given in the third row in Table 1. Even then the D-efficiency is still

70% for the range of nominal values shown in the table. Such sensitivity analysis is

useful because in practice we do not know the true values of the model parameters and

mis-specification in the nominal values can result in unacceptable loss in efficiency.

The locally optimal designs for estimating τ were determined from Lemma 2 in the

appendix. Table 1 shows the D and τ -efficiencies of the design ξu. The τ -efficiencies

are uniformly low, implying that the implemented design in the DEHP study does not

estimate the threshold value well at all. The second and third last columns also show
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Table 1: Locally D-optimal designs {d0 = 0, d1, d2, d3; 1/4, 1/4, 1/4, 1/4} for the Hunt-

Bowman model for different nominal values. The D-and τ -efficiencies of the design ξu
are given, along with the D-efficiencies of ξ0 = ξ∗D(θ

(0)) and θ0 = (170, 0.04, 1.86, 40)T .

c1 τ β0 β1 d1 d2 d3 effD(ξu) effD(ξ0) effτ (ξu)

170 0.04 1.46 40 0.020 0.04 0.0991 0.80 1 0.346

170 0.03 1.46 40 0.015 0.0404 0.0926 0.61 0.93 0.583

170 0.05 1.46 40 0.025 0.05 0.1090 0.86 0.70 0.405

170 0.04 1.26 40 0.020 0.0454 0.0976 0.81 0.98 0.420

170 0.04 1.66 40 0.020 0.04 0.1026 0.77 0.99 0.279

170 0.04 1.46 30 0.020 0.04 0.1188 0.75 0.94 0.205

170 0.04 1.46 50 0.020 0.0483 0.0901 0.76 0.88 0.541

the D-optimal designs are generally more robust to mis-specification of the nominal

values than the implemented design.

Our numerical locally h-optimal designs have 3 dose levels and all have the form

{0, τ/2, τ ;w0, 0.5, 0.5 − w0} for the nominal values displayed in Table 2. More de-

sign points are possible; for example, when θ(0) = (170, 0.04, 1.86, 40)T , the locally

h-optimal design is ξ∗h(θ
(0)) = {0, 0.020, 0.0479, 0.125; 0.3174, 0.5029, 0.1644, 0.0153}.

For the same set of nominal values, we also observe that the implemented design ξu al-

ways has lower than 50% efficiencies for estimating the presence of hormesis and when

θ = (170, 0.03, 1.46, 40)T , this efficiency is only 16.4%.

Table 2: Locally h-optimal designs {d0 = 0, d1, d2;w0, w1, w2} for the Hunt-Bowman

model and h-efficiencies of the design ξu for various nominal values.

c1 τ β0 β1 d1 d2 w0 w1 w2 effh(ξu)

170 0.04 1.46 40 0.020 0.040 0.359 0.5 0.141 0.474

170 0.03 1.46 40 0.015 0.030 0.367 0.5 0.133 0.164

170 0.05 1.46 40 0.025 0.050 0.327 0.5 0.173 0.499

170 0.04 1.26 40 0.020 0.040 0.378 0.5 0.123 0.463

170 0.04 1.66 40 0.020 0.040 0.342 0.5 0.158 0.486

170 0.04 1.46 30 0.020 0.040 0.315 0.5 0.185 0.489

170 0.04 1.46 50 0.020 0.040 0.389 0.5 0.111 0.459

3.2 Criterion-robust Designs for the Hunt-Bowman Model

It is well known that optimal designs constructed under one criterion can perform

poorly under another (Wong, 1994, Moerbeek, 2005). Consequently, it is always desir-

able to have a design that is robust under different criteria. This is especially so when

there are explicit multi-objectives at the onset of the study. In this subsection, we first
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construct a criterion-robust design that provides relatively high efficiency for our first

two criteria: D- and τ -efficiencies. Formally, a criterion-robust design maximizes the

minimum of D- and τ -efficiencies, that is

min{effD(ξ), effτ (ξ)} → max
ξ

. (2)

Generalization of this robust criterion to 3 or more objectives are possible; in our case,

we may want to maximize the minimum of the efficiencies across all three criteria, i.e.

min{effD(ξ), effτ (ξ), effh(ξ)} → max
ξ

. (3)

We call (2) and (3) criterion (2) and criterion (3) respectively. Here and throughout,

the following iterative algorithm is used to compute maximin or robust designs. First,

we maximize the optimality criterion within the class of all s-point designs where the

initial value of s we choose is the number of parameters in the model. The resulting

design is a s-point maximin optimal design. Such designs are typically easier to find

numerically than maximin optimal designs, which have no restriction on the number

of design points in the optimization problem. For optimization, we employ the Nelder-

Mead algorithm in the matlab package. After the optimal s-point maximin design

is found, we consider the class of all (s + 1)-point designs and find an optimal design

within this class and repeat the procedure. At each iteration, we increase the number of

points by one, until there is no change in the criterion value. Maximin optimal designs

are found when further search within the class of designs with more points results in a

design that has zero weight at some of the predetermined number of points.

Our numerical results show that the criterion-robust design for criterion (2) is

{0, 0.020, 0.040, 0.098, 0.104; 0.381, 0.099, 0.419, 0.097, 0.004} and its D and τ -efficiencies

are both equal to 0.799. The criterion (3) involves D, h and τ -optimality and the

criterion-robust design is {0, 0.021, 0.040, 0.098, 0.112; 0.389, 0.249, 0.329, 0.031, 0.001}.
Its D, h and τ -efficiencies are all equal to 0.714, and both optimal designs have 5-points.

4 Alternative Models

There are two drawbacks of the Hunt-Bowman model. First, it has a derivative that

is not continuous at the hormesis threshold dose level and second, its u-shape curve,

by definition, has symmetry at low dose levels. The second restriction can be a serious

limitation because non-symmetry may be an important feature in some applications;

see, for example, Figure 4 in Calabrese and Baldwin (2003). When hormesis is not

present in the single-agent/response scenario, the Hunt-Bowman model simplifies to

the simpler Schwartz’s threshold model (Schwartz, el at., 1995):

µ(d) = µ(d, β0, β1, τ) =

 1
1+eβ0

0 ≤ d ≤ τ,

1
1+eβ0−β1(d−τ) d ≥ τ.

(4)
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Dette el at. (2008) considered a variety of models and constructed optimal designs for

obtaining the best estimates for several characteristics in a dose-finding study. They

showed that more flexible models can improve parameter estimateion. As alternatives,

we propose smooth analytic models that do not possess a threshold dose level parameter

explicitly. Specifically, we use a mean function that is a sum of an exponential decay

curve and a sigmoidal curve. In particular, we propose two models: one has the form

µ(d) = µ(d, c0, c1, β0, β1) = c0e
−c1d +

1

1 + eβ0−β1d
, (5)

which is a sum of an exponential decay model and a logistic model, and the other is

µ(d) = µ(d, c0, c1, β0, β1, β2) = c0e
−c1d +

(
1− β0e

β1dβ2
)
, (6)

which is a sum of an exponential decay model and a Weibull model. The Weibull model

was suggested by Chen and Kodell (1989) for describing dose-response relationship in

toxicity studies. Other possible sigmoidal growth models that may be used are the

Gomperts, Richards and Morgan-Mercer-Flodin models given respectively by

β0e
−β1e−β2d ,

β0

(1 + β1e−β2d)β3
,

β1 + β0d
β3

β2 + dβ3
, (β0 = 1).

Still another model is the Chen-Kodell’s model that assumes an increasing response

µ(d) = µ(d, β0, β1, β2) = 1− eβ0−β1dβ2 . (7)

Several such dose-response relationships are displayed in Figure 1. We observe

that models (5) and (6) are quite flexible for practical applications and do not have

the drawbacks noted for the Hunt-Bowman model. The hormesis threshold for these

models is an implicit parameter and the vector b(θ) required in the c-optimality design

criterion can be directly obtained from the implicit function theorem and shown to be

b(θ) = − ∂µ(d, θ)

∂θ

/∂µ(d, θ)

∂d

∣∣∣∣
d=τ(θ)

.

The resulting c-optimal design minimizes the asymptotic variance of the estimated

implicit threshold parameter in the model.

We fit some of the above models to the teratology data set digitized from Figure 1 in

Hunt and Bowman (2004). For convenience, we refer to models given in (5) and (6) as

the exp+log and the exp+weib models respectively. Figure 2 displays the dose-response

curves for these models and the observed proportions for each dose group.

Table 3 shows the estimates for the expected response probability at each dose level

for the exp+log, exp+weib, Hunt-Bowman, Chen-Kodell and Schwartz’s models. We

note that sum of squares of error (SSE) from the exp+log model is roughly the same as

that from the Hunt-Bowman model, suggesting that smooth models can fit such data

as well as threshold models. Other goodness of fit measures show similar results.
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Figure 1: Dose-response curves for the piecewise quadratic-logistic for different nominal

values of θ: θ = (834, 0.035, 1.45, 38)T (dotted), θ = (164, 0.04, 1.5, 44)T (light gray),

θ = (294, 0.037, 1.48, 44)T (dark gray). The black solid line corresponds to the fitted

response from the exp+logistic model when θ = (0.15, 85, 3.4, 45)T .
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Figure 2: The Hunt-Bowman, Schwartz, Chen-Kodell and the exp+log models have

similar fits for their mean responses based on the teratology data.

Table 3: Observed and fitted response probability µ(di) at the dose level di, i =

0, 1, 2, 3, 4 using various models.

dose number of Hunt-Bowman Chen-Kodell Schwartz observed

litters exp+weib exp+log proportions

(6) (5) (1) (7) (4)

d0 = 0.000 30 0.1889 0.1889 0.1889 0.1554 0.1552 0.1889

d1 = 0.025 26 0.1162 0.1181 0.1162 0.1647 0.1552 0.1162

d2 = 0.050 26 0.2514 0.2423 0.2435 0.2407 0.2435 0.2514

d3 = 0.100 24 0.6961 0.7114 0.7115 0.6974 0.7115 0.6961

d4 = 0.150 25 0.9816 0.9504 0.9497 0.9823 0.9497 0.9816

SSE 4.6636 4.6958 4.6963 4.7614 4.7700
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4.1 Locally Optimal Designs for the Exponential+Logistic Model

The regression vector for the exp+log model is

f(d, θ) =

(
e−c1d,−c0de

−c1d,− eβ0−β1d

(1 + eβ0−β1d)2
,

deβ0−β1d

(1 + eβ0−β1d)2

)T

.

Table 4 shows the locally D-optimal designs for the exp+log model and the relative

efficiencies of the implemented design ξu in the DEHP study for various nominal val-

ues. The locally D-optimal design does not depend on the parameter c0 because this

parameter enters linearly in the mean response function. Numerical calculation shows

that the locally D-optimal design has 4 points and always contains the zero dose. The

table shows the D-efficiencies of the locally D-optimal design ξ0 = ξ∗D(θ)|θ=(0.15,89,3.2,41)

when other nominal values are used. These D-efficiencies indicate how sensitive the de-

sign ξ0 is to mis-specification of the nominal values. For the nominal values we looked

at, all are at least 82% suggesting that ξ0 is robust to mis-specification of the nominal

values. The corresponding D-efficiencies for the design ξu range from 57% to 72%,

suggesting that this design is more costly to use when nominal values are misspecified.

The last two columns shows the estimated threshold τ and the maximum efficiency of

the implemented design ξu for estimating τ is 36.5% for the nominal values considered.

Table 4: Locally D-optimal design {d0 = 0, d1, d2, d3; 1/4, 1/4, 1/4, 1/4} for the

exp+log model for different nominal values. The D-efficiencies of designs ξu and

ξ0 = ξ∗D(θ)|θ=(0.15,89,3.2,41) and the estimated threshold τ are given at the penultimate

last 3 columns. The last column shows the τ -efficiencies of the design ξu.

c0 c1 β0 β1 d1 d2 d3 effD(ξu) effD(ξ0) τ effτ (ξu)

0.15 89 3.2 41 0.0109 0.0558 0.1051 0.65 1 0.042 0.306

0.15 70 3.2 41 0.0134 0.0579 0.1063 0.72 0.99 0.041 0.333

0.15 110 3.2 41 0.0090 0.0543 0.1043 0.57 0.99 0.042 0.285

0.15 89 2.4 41 0.0103 0.0433 0.0893 0.60 0.92 0.028 0.274

0.15 89 4.0 41 0.0112 0.0727 0.1233 0.65 0.90 0.058 0.230

0.15 89 3.2 30 0.0112 0.0734 0.1422 0.72 0.82 0.058 0.281

0.15 89 3.2 50 0.0106 0.0472 0.0870 0.59 0.90 0.034 0.365

Hormesis is ascertained via the hypothesis testing framework after identifying the

vector h(θ)n in Section 2. This vector is complicated for the exp+log model and the

exp+weib model and we do not display it. Table 5 shows selected locally h-optimal

designs for the exp+log model and the h-efficiencies of ξ0 and ξu. Again, for the nominal

values we investigated, the table shows these efficiencies for the implemented design ξu
are unacceptably low, ranging from 10.7% to 29.6%; in contrast, the locally D-optimal

design has at least 83.9% for estimating the presence of hormesis in the study. Tables

4 and 5 show that the implemented design ξu estimates both the threshold dose and
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the presence of hormesis poorly. The τ -efficiencies range from 23% to 36.5% and the

h-efficiencies range from 10.5% to 29.6%. The locally τ -optimal design for the exp+log

model is singular and takes all observations at τ , that is ξ∗τ (θ) = {τ(θ); 1}.

Table 5: Locally h-optimal design {d0 = 0, d1, d2, d3;w0, w1, w2, w3} for the exp+log

model for different nominal values. The last two columns show that h-efficiencies of

designs ξu and ξ0 = ξ∗h(θ)|θ=(0.15,89,3.2,41).

c0 c1 β0 β1 d1 d2 d3 w0 w1 w2 w3 effh(ξu) effh(ξ0)

0.15 89 3.2 41 0.0108 0.0526 0.1187 0.371 0.501 0.087 0.041 0.193 1

0.15 70 3.2 41 0.0129 0.0564 0.1206 0.370 0.491 0.090 0.049 0.296 0.956

0.15 110 3.2 41 0.0091 0.0492 0.1174 0.372 0.508 0.085 0.035 0.107 0.954

0.15 89 2.4 41 0.0096 0.0430 0.1034 0.364 0.475 0.104 0.056 0.166 0.777

0.15 89 4.0 41 0.0118 0.0651 0.1362 0.377 0.528 0.066 0.029 0.216 0.943

0.15 89 3.2 30 0.0113 0.0648 0.1500 0.372 0.511 0.087 0.030 0.221 0.939

0.15 89 3.2 50 0.0103 0.0457 0.0986 0.370 0.493 0.089 0.048 0.186 0.839

4.2 Locally Optimal Designs for the Exponential+Weibull Model

The regression vector for the exp+weib model is

f(d, θ) =
(
e−c1d,−c0de

−c1d,−eβ0−β1dβ2 , dβ2eβ0−β1dβ2 , β1d
β2 ln(d)eβ0−β1dβ2

)T

.

The locally D-optimal design for this model does not depend on parameters c0 and

β0 because they appear linearly in the mean function. Consequently, we do not vary

their nominal values in Table 6 that shows selected locally D-optimal designs and the

D-efficiencies of the implemented design ξu. We observe that for the nominal values

in the table, the locally D-optimal designs have 5 doses and always include the two

extreme doses. The table shows locally D-optimal designs have at least 82% efficiencies

for estimating the model parameters compared with at least 72% D-efficiencies for the

implemented design ξu. Further, efficiency of ξu for estimating τ can be as low as 2.9%,

suggesting that the implemented design ξu is a poor design to use for the study.

Table 7 shows the locally h-optimal designs for the exp+weib model. These design

have larger weights at the low dose levels and appear to be sensitive to the parameter

β2 and not sensitive to other parameters. Again it is clear from the table that locally

D-optimal designs outperform the implemented design ξu by a wide margin in terms

of assessing the presence of hormesis. Additional results not shown here also show τ -

efficiencies of the design ξu for estimating the threshold are generally low and average

about 40%. These 2 tables show ξu estimate τ and the presence of hormesis quite poorly.

As in the exp+log model, our results show that the locally τ -optimal design for the

exp+weib model requires that we take all observations at τ , that is ξ∗τ (θ) = {τ(θ); 1}.
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Table 6: Locally D-optimal designs {d0 = 0, d1, d2, d3, d4 = 0.15; 1/5, . . . , 1/5} for the

exp+weib model for different nominal values. The D-efficiencies of designs ξu and

ξ0 = ξ∗D(θ)|θ=(0.9,10.5,0.55,65,1.8) and the estimated τ are given in the last 3 penultimate

columns. The last column shows the D-efficiencies of the design ξu for estimating τ .

c0 c1 β0 β1 β2 d1 d2 d3 effD(ξu) effD(ξ0) τ effτ (ξu)

0.9 10.5 0.55 65 1.8 0.0161 0.0535 0.1047 0.92 1 0.040 0.297

0.9 7.5 0.55 65 1.8 0.0160 0.0537 0.1050 0.92 0.99 0.028 0.244

0.9 13.5 0.55 65 1.8 0.0159 0.0532 0.1042 0.92 0.99 0.050 0.202

0.9 10.5 0.55 45 1.8 0.0167 0.0565 0.1092 0.91 0.99 0.059 0.166

0.9 10.5 0.55 85 1.8 0.0151 0.0509 0.0998 0.92 0.99 0.029 0.270

0.9 10.5 0.55 65 1.5 0.0091 0.0361 0.0827 0.72 0.82 0.007 0.029

0.9 10.5 0.55 65 2.1 0.0222 0.0665 0.1167 0.87 0.94 0.085 0.191

Table 7: Locally h-optimal design {d0 = 0, d1, d2, d3, d4 = 0.15;w0, w1, w2, w3, w4} for

the exp+weib model for different nominal values of the parameters. The h-efficiencies

of designs ξu and ξ0 = ξ∗D(θ)|θ=(0.9,10.5,0.55,65,1.8) are shown in the last 2 columns.

c0 c1 β0 β1 β2 d1 d2 d3 w0 w1 w2 w3 w4 effh(ξu) effh(ξ0)

0.9 10.5 0.55 65 1.8 0.0129 0.0534 0.1105 0.299 0.389 0.146 0.109 0.056 0.424 1.000

0.9 7.5 0.55 65 1.8 0.0129 0.0535 0.1108 0.303 0.393 0.145 0.106 0.052 0.419 0.999

0.9 13.5 0.55 65 1.8 0.0127 0.0531 0.1101 0.296 0.382 0.145 0.114 0.063 0.431 0.997

0.9 10.5 0.55 45 1.8 0.0133 0.0565 0.1150 0.296 0.386 0.147 0.113 0.058 0.403 0.984

0.9 10.5 0.55 85 1.8 0.0121 0.0499 0.1054 0.302 0.391 0.143 0.107 0.057 0.431 0.968

0.9 10.5 0.55 65 1.5 0.0071 0.0354 0.0859 0.290 0.386 0.157 0.108 0.058 0.148 0.218

0.9 10.5 0.55 65 2.1 0.0185 0.0667 0.1214 0.319 0.404 0.137 0.096 0.044 0.398 0.726

5 Robust Designs

In this section we construct criterion-robust and model-robust designs that offer some

protection when we change the design criterion and model assumptions. We first

present designs that are robust to two and three optimality criteria for the exp+log

model and the exp+weib model before we construct designs that are robust to model

assumptions. All of these designs have to be determined numerically.

We recall that Criterion (2) concerns estimating all model parameters and the

threshold parameter. Criterion (3) additionally estimates the existence of horme-

sis. For the exp+log model with θ = (0.15, 89, 3.2, 41)T , the criterion robust design

for criterion (2) is {0, 0.13, 0.049, 0.109; 0.106, 0.137, 0.632, 0.125}. Both the D and τ -

efficiencies are 71%. For criterion (3), {0, 0.13, 0.048, 0.117; 0.172, 0.272, 0.510, 0.046}
is the corresponding criterion robust design. Its D-efficiency is 66.8% and both its τ

and h-efficiencies are 57.8%.

For the exp+weib model with θ = (0.9, 10.5, 0.55, 65, 1.8)T , the criterion robust

design for criterion (2) is {0, 0.19, 0.043, 0.105, 0.150; 0.089, 0.129, 0.604, 0.091, 0.088}
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and both its D and τ -efficiencies are 65.7%. The corresponding criterion robust design

for criterion (3) is {0, 0.018, 0.044, 0.108, 0.150; 0.134, 0.244, 0.532, 0.061, 0.029}. Its D-
efficiency is 60% and both its τ and h-efficiencies are 59.3%. For the cases considered

here, the criterion-robust designs for the exp+log model has 4 points and the criterion-

robust designs for the exp+weibull model has 5 points, regardless of the number of

criteria involved. As expected, efficiencies always drop when an additional criterion is

introduced because of more stringent demands on the design.

In developmental studies, there are several plausible dose-response models for de-

scribing the binary outcomes. Consequently, it is desirable to design the study so

that we have efficient estimates no matter which one of a few plausible models holds.

For this purpose, we construct robust designs that maximizes the minimal D- and τ -

efficiency for models for a few competing models and the maximization is either over a

set of designs with a pre-determined of points or over the set of all continuous designs.

The resulting design will ensure that we have the best possible efficiency for estimating

model parameters and the presence of hormesis as long as the true model is correctly

identified as one of the plausible models. Specifically, we want to find a design that

has the following property:

R(ξ|I) := min
i∈I

min{eff(i)
D (ξ), eff(i)

τ (ξ)} → max
ξ

where I is a set of models. We are primarily concerned with two choices of I: I2 is the

set consisting 2 plausible models: the Hunt-Bowman and exp+log models and I3 is the

set consisting 3 plausible models: the Hunt-Bowman, exp+log and exp+weib models.

In what is to follow, the following nominal values for the parameters in these

models are assumed: θ = (170, 0.04, 1.46, 40)T for the Hunt-Bowman model, θ =

(0.15, 89, 3.2, 41)T for the exp+log model, θ = (0.9, 10.5, 0.55, 65, 1.8)T for the exp+Weib

model. Again, all the maximin robust designs are found numerically and they de-

pend on the set where the maximization is taken. For example, we found that the

robust design that maximizes R(ξ|I3) among all 5-point designs is the design that

takes observations at dose levels 0, 0.024, 0.045, 0.107 and 0.150 with weights given by

0.268, 0.174, 0.477, 0.055 and 0.026. The minimal efficiency of this design is 56.6%. If we

maximize the set of all designs with 6 points, the maximin optimal design now takes

observations at dose levels 0, 0.016, 0.040, 0.044, 0.103 and 0.150 with weights given

by 0.230, 0.084, 0.247, 0.337, 0.060 and 0.041. The minimal efficiency of this design is

59.6%. If we further enlarge this set to all designs with 7 or more points, the resulting

maximin robust design will not provide a larger minimal efficiency and we conclude

that this is also the maximin robust design. The corresponding maximin robust design

for the case when we wish to maximize R(ξ|I2) requires doses at 0, 0.015, 0.046 and

0.108 with weights given by 0.288, 0.072, 0.572 and 0.068. The minimal efficiency of

this design is 62.5%. Not surprisingly, this efficiency is higher than the two previous

efficiencies because there are fewer competing models under consideration.
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6 Conclusions

In this work, we discussed design issues for assessing hormetic effects and provided

optimal designs for estimating threshold value, model parameters and whether hormesis

exists. We proposed smooth models that are competitive with models that have an

explicit threshold and found designs that are robust under a variation of design criteria

and model assumptions. When we compared our designs with a design similar to the

one implemented in a study reported by Hunt and Bowman (2004), our designs have

uniformly higher efficiencies for attaining the experimental goals. Our proposed designs

therefore can rein in cost, reduce the number of animals used in the study and at the

same time provide more accurate statistical inference.

Unlike the Hunt-Bowman model, some of our proposed optimal designs also enjoy

invariant properties that allow us to deduce how the locally optimal design changes

when the dose interval is changed in a meaningful way. For example consider the

exp+log model with parameter θ = (c0, c1, β0, β1)
T on the dose interval [0, T ] and we

wish to determine how the optimal designs change when we expand the dose inter-

val from [0, T ] to [0, γT ] and γ is a user-selected positive number. To this end, let

t∗i (c0, c1, β0, β1, T ) be the ith design point of the D-, τ - or h-optimal design on [0, T ]

with corresponding weight w∗
i (c0, c1, β0, β1, T ). It can be shown that the optimal design

on the interval [0, γT ] has the following design points and weights:

γt∗i (c0, c1, β0, β1, T ) = t∗i (c0, c1/γ, β0, β1/γ, γT ),

w∗
i (c0, c1, β0, β1, T ) = w∗

i (c0, c1/γ, β0, β1/γ, γT ).

The corresponding results for the exp+weib model when the dose interval is changed

from [0, T ] to [0, γT ] are

γt∗i (c0, c1, β0, β1, β2, T ) = t∗i (c0, c1/γ, β0, β1/γ
β2 , β2, γT ),

w∗
i (c0, c1, β0, β1, β2, T ) = w∗

i (c0, c1/γ, β0, β1/γ
β2 , β2, γT ).

We close with a note that a common critique of optimal designs is that they have

too few points to be useful in practice. For example, some of our optimal designs do

not have enough points to detect lack of fit in the model. We remind readers that

one of the main uses of optimal designs is to calibrate the worth of any design. If the

researcher likes to have more design points and change the weights at some points, the

researcher can use the optimal design as a guide how to adjust the design. Absent this

guidance, practitioners tend to frequently use designs without good rationale resulting

in waste of resources, as we demonstrated here with the use of the implemented design

ξu reported in Hunt and Bowman (2004). In general, the selected design should be

selected carefully and not stray too far away from the optimum where its efficiencies

become unacceptable.
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7 Appendix

The following technical result is helpful for our present work. It is a reformulation of

the equivalence theorem for c-optimality given in Pukelsheim (1993).

Lemma 1. If f1(d), . . . , fm(d) are linearly independent continuous functions on

the interval [0, d̄], the design ξ is c-optimal if and only if there exists a vector q ∈ Rm,

such that the generalized polynomial qTf(d) satisfies the following conditions for some

ν > 0:

(i) qTf(di) = (−1)i i = 1, . . . ,m

(ii) |qTf(d)| ≤ 1 for all d ∈ [0, d̄]

(iii) Fw = νc,

where F = ((−1)jfi(dj))
m,k
i,j=1 and w = (w1, . . . , wk). Moreover, cTM−(ξ)c = 1/ν2.

The next lemma describes locally optimal designs for the Hunt-Bowman model.

Lemma 2: For the Hunt-Bowman model defined on the dose interval [0, d̄],

(i) the locally τ -optimal design is singular and has design points points at 0 and τ ,

that is ξ∗τ (θ) = {0, τ(θ); 1/2, 1/2};

(ii) the locally D-optimal design does not depend on the parameter c1 and it has at

most 3 design points on [0, τ ] and at most 2 points on [τ, d̄].

(iii) the locally h-optimal design has at least 3 design points.

Proof. Since τ is a component of the vector θ, we have b(θ) = (0, 1, 0, 0)T . Part

(iii) of Lemma 2 holds because νb(θ) = f(0, θ)/2− f(τ, θ)/2 and ν = c1τ . If we let q =

(0,−2/(τc1),
(1+eβ0 )2

eβ0
, q4), we have q

Tf(d) = 2d/τ−1 on the interval [0, τ ]. Note that q4
can be chosen to ensure the inequality max |qTf(d)| < 1 holds on [τ, d̄]. Consequently,

parts (i) and (ii) of Lemma 1 hold. This justifies case (i) of the proposition.

To prove case (ii) of Lemma 2, we note that the locally D-optimal design does not

depend on parameter c1 because theD-optimality criterion has the form c−2
1 detM(ξ, θ).

Further, we note that the function fT (d)M−1(ξ)f(d) is a linear combination of mono-

mials 1, d, d2, d3, d4 on the interval [0, τ ]. Consequently, this function can have at most

3 local maxima. By the equivalence theorem (Kiefer, Wolfowitz, 1960) it follows that

the locally D-optimal design has at most 3 design points on [0, τ ]. Similarly, the lo-

cally D-optimal design can have at most 2 design points on [τ, d̄] because the function

fT (d)M−1(ξ)f(d) has at most 2 local maxima on the interval [τ, d̄].
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To prove the case (iii) of Lemma 2, we obtain directly that h(θ) = (−τ,−c1, 0, 0)
T .

By inspection, part (iii) of Lemma 1 cannot hold for any 1 or 2-point designs and so

the locally h-optimal design has at least 3 design points.

�
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