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1
Introduction

In 1925 A. Einstein predicted the manifestation of the wave nature of matter
on a macroscopic scale [1], i.e. the macroscopic occupation of the ground state
of a system, well know as Bose-Einstein condensation (BEC). The experimen-
tal realization, however, took about 70 years until the first condensates in
dilute atomic vapors were realized [2, 3] in the the mid-’90s. Since then strong
efforts were undertaken to demonstrate the phase transition to a condensate
also in solid state systems and finally in recent years a few reports on Bose-
Einstein condensation for several condensed matter quasi-particle excitations
have been published, e.g. spin waves (magnons) in magnetic semiconductors
[4], indirect excitons in coupled quantum wells [5] and mixed excitations of
photon and exciton (polaritons) in semiconductor microcavities [6, 7].

In particular the latter system attracts a lot of attention since it promises
the optical control of the condensate. Though very interesting results have
been demonstrated, condensate-like phenomena in these systems are most
likely driven externally and far from equilibrium [8] due to rather short carrier
lifetimes of only a few ps. Moreover, highly sophisticated nanofabrication
is required for these microcavities and the interparticle interaction is very
strong compared to the weak interactions in atomic gases.

This work continues the study of the prototype systems of quasi-particle
BEC, whose condensation has already been predicted in 1962 [9], excitons
in a bulk semiconductor. Though excitons are made up of an electron and
hole, both fermions bound by Coulomb interaction, they behave as bosons
for moderate densities. For high densities, however, interparticle interaction
leads to a loss of the bosonic character and the formation of a fully ionized
electron-hole plasma [10].

The first excitons were discovered in cuprous oxide (Cu2O) [11, 12, 13]
and still, the lowest exciton transitions in Cu2O most likely fulfill the require-
ments for a quasi-equilibrium excitonic BEC. These excitons are extremely
stable complexes due to their large binding energy of 150 meV. This allows
high particle densities without dissociation and formation of an electron-hole
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CHAPTER 1. INTRODUCTION

plasma.
The lowest excitons of the so-called yellow series consist of the threefold

orthoexciton, which is only quadrupole allowed, and the paraexciton, which
is optically forbidden. The orthoexciton is split off from the paraexciton by
12 meV to higher energy due to isotropic electron-hole exchange and by high
resolution spectroscopy it was shown that the orthoexciton is split up into
three components by anisotropic electron-hole exchange [14, 15].

In most experiments concerning BEC in Cu2O either non-resonant or res-
onant excitation of the orthoexcitons were studied [16, 17, 18]. The orthoex-
citons decay on a ns-timescale to paraexcitons [19]. Due to the energy shift
of 12 meV, this excitation scheme leads to hot paraexcitons, which have to
cool down by exciton-exciton and/or acoustic phonon interaction to exhibit
at high densities BEC with a macroscopic population at k = 0.

In contrast, direct excitation of the paraexciton by absorption at k = k0

(photon wave number) yields ultra-cold excitons. Paraexciton absorption
spectra can be measured by high resolution experiments in a magnetic field
as was first shown in Ref. [20]. By high resolution spectroscopy in high
quality samples at 10 T and 1.2 K an absorption coefficient of about 80 cm−1

with an extremely small linewidth of 80 neV for a bulk semiconductor was
demonstrated. Due to the high resolution of the absorption measurements
it was possible to measure directly a blue-shift and an increase of linewidth
that point to an onset of repulsive interaction [21], a necessary prerequisite
for a phase transition of the exciton gas to a condensate.

The studies presented in this work concentrate on a deeper understanding
of the 1S excitons in Cu2O, in particular on acoustic and optical phonon
scattering processes within the 1S exciton sublevels. The thesis is divided in
7 chapters.

The following Chapter 2 introduces fundamental material and optical
properties and supplies the reader with sufficient knowledge of the relevant
interactions that is necessary to understand the experiments. The third
chapter presents the optical setup and the advantages of high resolution
spectroscopy. The following Chapters 4 to 6 deal with the experiments and
their interpretation.

In Chapter 4 resonant optical phonon scattering to the 1S excitons is
investigated. This is motivated by the fact that the spectral dependence
of the phonon assisted luminescence can be interpreted as a replica of the
exciton population. It is expected that a macroscopic occupation of the
ground state at k = 0 would show up precisely in this luminescence.

In Chapter 5 the long lasting question about the exciton mass is solved by
means of two-phonon excitation spectroscopy. Since for a weakly interacting
Bose gas of excitons, the critical density nc depends only on the product of
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exciton mass M and critical temperature Tc, the exciton mass is the decisive
parameter to calculate a BEC phase diagram. Furthermore two-phonon spec-
troscopy is also applied to the orthoexciton sublevels in order to investigate
the k2-dependent exchange parameters.

Chapter 6 focuses on stimulated Brillouin scattering by resonant exci-
tation. Scattering processes are analyzed and the possibility to excite and
stimulate orthoexcitons with arbitrary wave vector is demonstrated.

Finally, in Chapter 7 a summary of this study, implications and possible
future projects are presented.
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2
Basic considerations

In this chapter a short introduction of the material system Cu2O is presented.
It starts with a description of the crystal structure, followed by a discussion
of acoustic and optical phonon modes, the band structure and the exciton
series. Finally, the yellow 1S exciton series is examined in more detail with
respect to various interactions.

2.1 Material properties

2.1.1 Crystal structure

Cuprous oxide (Cu2O), which among mineralogist is also known as cuprite or
as copper-I-oxide, is a translucent dark red to conchineal red semiconductor
crystal. Naturally it is found, e.g. in Arizona or in Namibia. Cu2O can also
be grown artificially via the oxidation of copper [22], but much better quality
is found in natural samples.

Cu2O is a cubic crystal that crystallizes in the unusual cuprite structure
and cleaves on (111) and more rarely on (001). The unit cell consists of four
copper and two oxygen atoms with a lattice constant of a0 = 4.27 Å [23].
The copper atoms form a fcc-lattice shifted by 1/4 of the body-diagonal of
the bcc-lattice formed by the oxygen atoms as shown in Figure 2.1. Thus
Cu2O condenses in a simple cubic structure with a center of inversion around
each copper atom and is described by the octahedral pointgroup Oh.

2.1.2 Acoustic and optical phonons in Cu2O

Cu2O has six atoms per unit cell and thus 3×6 = 18 phonon modes are found,
three acoustic and 15 optical phonons. The sound velocities of the three
acoustic phonons can be calculated with the help of classical elasticity theory
assuming the wavelength λ to be long enough to ignore dispersion (λ� a0).
In the following the medium is modeled as continuous but anisotropic.
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CHAPTER 2. BASIC CONSIDERATIONS

Figure 2.1: Crystal structure of Cu2O. The small blue spheres represent
oxygen atoms forming a bcc-lattice while the larger red spheres represent
copper atoms forming an fcc-lattice.

The strain ε in a solid is defined in terms of spatial derivatives of the
lattice atom displacement u(x) at position x = (x1, x2, x3), and hence the
change in the local displacement is given by

δul =
∂ul
∂xm

δxm = εlmδxm.
�� ��2.1

In a generalized statement of Hooke’s Law the stress tensor σ is related
to the strain tensor ε by a fourth rank elasticity tensor

σij = cijlmεlm.

Not all elastic constants are independent and for cubic crystal symmetry, like
Cu2O, only three independent parameters define the nonzero elements of the
elasticity tensor (Voigt contraction):

ciiii = C11, ciijj = C12, cijij = C44.

The equation of motion for a small volume element of a crystal of mass
density ρ is the wave equation

ρ
∂2ui
∂t2

=
∂σij
∂xj

= cijlm
∂2ul

∂xj∂xm
.

The plain wave solution u = u0pe
(q·x−ωt) with the amplitude u0, the po-

larization vector p, the wave vector q, and the angular frequency ω of the
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2.1. MATERIAL PROPERTIES

acoustic wave leads to an eigenvalue equation

(cijlmqjqm − ρω2δil)pl = 0.
�� ��2.2

By introducing the phase velocity v = ω/|q| and the Christoffel tensor Dij =
(1/ρ)cijlmnjnm with the wave normal n = q/|q| the eigenvalue equation 2.2
becomes

(Dij − v2δil)pl = 0.
�� ��2.3

The phase velocity can be obtained by solving the characteristic equation of
2.3.

det(Dij − v2δil) = 0.
�� ��2.4

This cubic equation yields three solutions vα, one corresponding to the
longitudal sound velocities (vLA) and two corresponding to the slow and the
fast transversal sound velocities vSTA/vFTA, which can be identified via the
respective polarization vector obtained by solving equation 2.3 with the roots
vα from equation 2.4. One should note that not in all crystallographic di-
rections the phonon polarization is purely longitudinal or purely transversal.
For convenience, however, the phonons are labeled as LA, STA and FTA
throughout this thesis.

In order to calculate the sound velocities in Cu2O at low temperatures the
room temperature measurements (vLA = 4.56 ·103 ms−1 from Ref. [24]) were
used taking into account the temperature dependence of the elastic constants
[25]. Additionally, small corrections arise due to the results of the Brillouin
scattering experiments presented in Chapter 6. The solution of equation 2.4
for Cu2O is shown in Figure 2.2 with ρ = 6.09 g/cm3 [26] and the calculated
low temperature elastic constants1 C11 = 123.5 GPa, C12 = 107.0 GPa and
C44 = 12.9 GPa. The blue solid line represents the LA sound velocity vLA,
the red dotted line the FTA vFTA and the green dashed line the STA sound
velocity vSTA for different crystallographic directions. Along [100] the LA
sound velocity has its lowest value and rises till its maximum along [111]. In
[110] direction STA and FTA phonons are degenerate, thus having the same
sound velocity. Towards [110] the degeneracy for STA and FTA phonons is
lifted. Finally, in [111] direction the TA phonons are degenerate again.

The 15 zone-center optical phonons have the following symmetry classi-
fication:

1Γ−2 ⊕ 2Γ−3 ⊕ 2× 3Γ−4 ⊕ 3Γ−5 ⊕ 3Γ+
5 .

The 1Γ−2 and the double degenerate 2Γ−3 and the triply degenerate phonons
are 3Γ−5 silent modes (in dipole approximation), the two sets of triply degen-

1The elastic constants for Cu2O determined by room temperature neutron scattering
can be found in Ref. [27].
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Figure 2.2: Sound velocities in Cu2O as calculated by equation 2.4 in differ-
ent crystallographic directions. The blue solid line represents the LA sound
velocity vLA, the red dotted line the FTA vFTA and the green dashed line the
STA sound velocity vSTA.

erate 3Γ−4 phonons are infrared active modes while the 3Γ+
5 is a Raman-active

mode.

2.1.3 Energy bands and exciton series

The conduction band of the direct band-gap semiconductor Cu2O is formed
by copper 4s-orbitals and separated by the gap energy Eg = 2.173 eV [28]
from the upper valence band that is formed by copper 3d-orbitals [29]. Taking
into account the electron spin, the lowest conduction band has 2Γ+

6 symmetry
while the highest valence bands are split into a 2Γ+

7 and a ≈ 0.13 µeV lower
4Γ+

8 band (spin-orbit interaction, Figure 2.3). The yellow 1S exciton series,
studied in this thesis, is formed by a hole of the 2Γ+

7 valence and an electron
of the 2Γ+

6 conduction band and named after the color of the light absorbed
or emitted by its optical transition. The next higher one is the green series
(4Γ+

8 → 2Γ+
6 , Eg,green = 2.304 [30]) followed by the blue (2Γ+

7 → 4Γ−8 , Eg,blue =
2.624 [31] and the indigo (4Γ+

8 → 4Γ−8 , Eg,indigo = 2.755 [31]) series. The
symmetry represention of the excitons is given by the direct product of the
representation of the conduction band ΓC , the valence band ΓV and the
envelope function of the exciton Γenv

Γex = Γenv ⊗ ΓV ⊗ ΓC .
�� ��2.5
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Figure 2.3: Band structure of Cu2O near the Γ point.

The coupling of excitons to light can be understood by expanding the matrix
element 〈β|HEx−R|α〉 of the exciton-radiation coupling Hamiltonian HEx−R

〈β|HEx−R|α〉 = A0〈β|e · p|α〉+ iA0〈β|(k · r) (e · p)|α〉+ . . .
�� ��2.6

where A0 is a constant amplitude, k the wave vector, e the polarization
vector and r and p position and momentum of the exciton. The first term
corresponds to a dipole transition and has 3Γ−4 symmetry. The following
higher order term can be written in a symmetric form

(k · r) (e · p) =
1

2
k(k · p + p · r)e +

1

2
(k× e) · (r× p)

�� ��2.7

that is the sum of the electric quadrupole with 3Γ+
5 and 2Γ+

3 symmetry plus
the magnetic dipole moment of 3Γ+

4 symmetry. Near the resonance of the
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CHAPTER 2. BASIC CONSIDERATIONS

yellow 1S exciton, the appropriate term linear in k is a quadrupole transition
of 3Γ+

5 symmetry [32, 33].
Due to parity conservation, the first energetically lowest excitons that

couple to light in dipole approximation are the yellow P-excitons via their
3Γ−4 component. It has been shown that these yellow excitons display a
perfect hydrogenic series

En = Eg −Rex/n
2, (n ≥ 2),

�� ��2.8

where Rex = 97.43 meV is the excitonic Rydberg constant, and n the princi-
pal quantum number [34, 35].

2.2 1S excitons of the yellow series

In case of the yellow 1S excitons the hydrogenic model is no longer applicable.
This is caused by the fact that the exciton Bohr radius for the 1S excitons is
extremely small aB = 0.8 nm [36] and comparable to the lattice constant2.
Hence, the excitons can not be described as weakly bound Mott-Wannier
excitons anymore and approach the case of Frenkel excitons. Corrections
arise due to the non-parabolicity of the bands since the extend of the exciton
wave function is in the order of 1/aB. Furthermore, the localized 1S excitons
are screened by the dielectric function at higher momenta and the effective
Coulomb interaction is stronger than for higher excited exciton states. The
above corrections are known as “central-cell corrections” [37] and lead to an
increased binding energy of 150 meV [38] of the yellow 1S exciton, which is
substantially larger than Rex.

As the 1S excitons are formed from a double degenerate 2Γ+
6 and a double

degenerate 2Γ+
7 band they decompose into a 1Γ+

2 and a triply degenerate 3Γ+
5

representations (compare equation 2.5 with Γenv = 1Γ+
1 ).

1Γ+
1 ⊗ 2Γ+

6 ⊗ 2Γ+
7 = 1Γ+

2 ⊕ 3Γ+
5 .

The triply degenerate 3Γ+
5 orthoexciton states have a total angular momen-

tum of J = 1 and include pure spin singlet states, while the single 1Γ+
2

paraexciton has total angular momentum J = 0 and consists only of pure
spin triplet states. Short range electron-hole exchange interaction only ef-
fects pure spin singlet states and splits off the orthoexciton states from the
paraexciton by ε = 12.12 meV [39]. The paraexciton is optically forbidden,
for an electric transition to all orders since J = 0, but the photon spin is 1.

2Since the exciton Bohr radius scales with the square of the principal quantum number,
the effect is mostly important for n = 1.
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2.2. 1S EXCITONS OF THE YELLOW SERIES

Dipole excitation of the orthoexciton is also forbidden since it has even par-
ity (〈3Γ+

5 |3Γ−4 |1Γ+
1 〉 = 0). However, in quadrupole approximation it becomes

allowed (〈3Γ+
5 |3Γ−5 |1Γ1〉 6= 0).

In contrast to the dipole operator, the quadrupole operator depends on
the wave vector k relative to the lattice and the light polarization vector e.
The amplitude of the quadrupole transition AQ in the basis of the Cartesian
representation of the three orthoexciton states Γ+

5yz, Γ+
5zx and Γ+

5xy can be
calculated with the symmetric vector product of k and e:

AQ =
1

|k|

 eykz + ezky
ezkx + exkz
exky + eykx

 .
�� ��2.9

Hence the relative oscillator strength of a given orthoexciton state Ψ
(i)
O (B,k)

with i = 1, 2, 3 is given by

f (i)
r (B,k) = AQ ·Ψ(i)

O (B,k)
�� ��2.10

where Ψ
(i)
O can depend on a magnetic field B and k as it is shown below. The

absolute oscillator strength of the orthoexciton is rather small fO = 3.7 ·10−9

[40] compared, for example, to the dipole transition of the 2P exciton (fP =
3× 10−6) [28].

2.2.1 Exciton-photon interaction

Though the exciton-photon coupling is only weak, the orthoexciton disper-
sion exhibits a characteristic polariton structure with an upper and a lower
polariton branch that represents mixed modes of photon and exciton [41].
The polariton character of the orthoexciton is directly seen by quantum beat
spectroscopy [41, 42]. This was shown for the paraexciton as well [43, 44].

The repulsion of the exciton and the photon state at the intersection
(k0, E0) of the exciton dispersion

Ex(k) = Ex(0) +
h̄2k2

2Mx

,
�� ��2.11

where Mx = mxm0 is the exciton mass (m0 is the bare electron mass), and
photon dispersion

Eγ(k) =
h̄ck√
εb

�� ��2.12

with the speed of light c and the background dielectric constant εb = 8.76
leads to the polariton dispersion

Eγ(k)

E2
= 1 +

Ω2
R(k, e)

Ex(k)2 − E2
.

�� ��2.13
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The Rabi energy is given by

ΩR(k, e) =
√
f(k, e)Eγ(k).

�� ��2.14

Solving equation 2.13 for E yields two solutions, the upper polariton
branch EUP and the lower polariton branch ELP as shown in Figure 2.4
around the orthoexciton resonance (k0, E0). The upper polariton branch
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Eγ
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Figure 2.4: Orthoexciton polariton dispersion around the resonance (k0, E0):
upper blue curve, upper polariton branch EUP ; lower red curve, lower
polariton branch ELP , magenta dashed line, uncoupled light dispersion;
green dashed line, uncoupled exciton dispersion; arrow marks Rabi energy
ΩR = 124 µeV at the orthoexciton resonance (k0, E0).

EUP starts at E = Ex(0) for k → 0. For E →∞ the upper polariton branch
EUP approaches asymptotically the light line Eγ. In contrast, the lower po-
lariton branch approaches asymptotically Eγ for E → −Ex(0) and follows
the exciton dispersion Eex for k →∞. Since the polariton is a superposition
of photon and exciton, it can be decomposed into a photon and an exciton
contribution depending on k and E. The photon contribution increases and
the exciton contribution decreases while the states approach the light line
(ELP → −Ex(0) and EUP− >∞) until they are completely photon like. On
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2.2. 1S EXCITONS OF THE YELLOW SERIES

the other hand, the photon contribution decreases while the exciton contri-
bution increases (k → 0 and k → ∞) until they are completely excitonic.
At the resonance k0 both polariton states on the upper and lower polariton
branch are 50% photon and 50% exciton like. The energetic splitting of the
two states reaches its minimum at the resonance wave vector k0 and corre-
sponds to the Rabi energy ΩR = EUP (k0) − ELP (k0) (black arrow), which
scales with the square root of the oscillator strength f (equation 2.14). The
extremely small Rabi energy of ΩR = 124 µeV leads to a weak radiative
broadening of the 1S excitons and in high quality samples with low impurity
concentrations a very narrow absorption can be expected. (compare section
2.2.4).

2.2.2 Exciton-acoustic phonon interaction

The lattice distortion by acoustic phonons introduces potential energy changes
that can cause interconversion between ortho- and paraexcitons as well as
transitions between orthoexciton sublevels. The strain induced by the acous-
tic phonon can be expressed in terms of irreducible representations of the oc-
tahedral group and classified into uniform compression (1Γ+

1 ), pure rotation
(3Γ+

4 ), and shear strain (2Γ+
3 and 3Γ+

5 ).

These symmetries can be identified in the decomposition of equation 2.1
into a symmetric and an antisymmetric part:

δul =
1

2

(
∂ul
∂xm

+
∂um
∂xl

)
δxm −

1

2

(
∂um
∂xl
− ∂ul
∂xm

)
δxm

⇒ δul = εlmδxm − wlmδxm.
�� ��2.15

The symmetric part εlm of equation 2.15, is associated with deformation of the
crystal by compression and shear strain. In Cu2O uniform compression causes
an increase of the band gap while shear strain removes the degeneracy of the
top of the valence band states. With the hydrostatic and shear deformation
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potentials Ξ0, Ξxx, Ξxy the strain Hamiltonions has the form [45]

H1 = Ξ0

 εxx + εyy + εzz 0 0
0 εxx + εyy + εzz 0
0 0 εxx + εyy + εzz

 ,
�� ��2.16

H3 = Ξzz

 2εxx − εyy − εzz 0 0
0 2εyy − εyy − εzz 0
0 0 2εzz + εxx + εyy

 ,
�� ��2.17

H5 = Ξxy

 0
√

3εxy
√

3εxz√
3εyx 0

√
3εyz√

3εzx
√

3εzy 0

 ,
�� ��2.18

in the basis of the Cartesian representation of the three orthoexciton states
Γ+

5yz, Γ+
5zx and Γ+

5xy. The paraexciton is only affected by the hydrostatic
strain H1 since it is composed in equal parts of yz, xz and xy holes. The
experimentally measured deformation potentials are given by Ξ0 = −1.68 eV,
Ξzz = −0.29 eV and Ξxy = 0.18 eV [46, 47, 48].

The antisymmetric part wlm of equation 2.15 contains the axial vector

wlm =
1

2
(∇× u)|lm,

�� ��2.19

which is associated with pure rotation (3Γ+
4 ). Hence, it is not a deformation

and cannot change any energy level. However, it can change the orbital
momentum L leading to a spin-orbit Hamiltonian of the form

H4 =
α

3
(∇× u)× L · Sh =

α

3
(L× Sh) · (∇× u),

�� ��2.20

where α = 131 meV is the spin-orbit splitting energy and Sh the angular
momentum operator of the hole spins [49].

To sum up the above, the uniform compression (1Γ+
1 ) is a dominant scat-

tering channel (mobility, diffusion, and thermalization) whereas shear strain
(2Γ+

3 , 3Γ+
5 ) mediates interconversion processes between orthoexciton sublevels

[50]. However, all of the above mentioned deformations can not participate
in any spin-flip process. Pure rotations, however, can flip the spin and were
identified as the ortho-para down-conversion mechanism [49].

It should be noted that external strain, originating from the sample
mounting, or intrinsic strain due to imperfections of the lattice structure,
cutting and polishing during the sample preparation, or thermal stress can
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be described by the same interaction matrices. It has been shown, that in-
trinsic strain is of the same order of magnitude as k2-dependend exchange
interaction [51, 15] that is discussed in the following section.

2.2.3 k2-dependent exchange interaction

In section 2.2 it has already been mentioned that wave vector independent
exchange interaction splits off the orthoexciton from the paraexciton. High
resolution spectroscopy experiments, however, show that the orthoexciton
exhibits a wave vector dependent fine structure. This fine structure can
be explained by taking into account higher order terms of the electron hole
exchange interaction up to the order of k2 [14, 15].

Due to the inversion symmetry of the lattice, terms linear in k vanish
in the expansion of the exchange interaction. To the order of k2 the short
range exchange Hamiltonian of 1Γ+

1 symmetry is proportional to the product
of the electron and hole spin operators (3Γ+

4 ⊗ 3Γ+
4 ) and k ·k (3Γ−4 ⊗ 3Γ−4 ) and

therefore decomposes into 1Γ+
1 ⊕ 2Γ+

3 ⊕ 3Γ+
4 ⊕ 3Γ+

5 invariant representations.
Algebraic calculation of the matrix elements yields three interaction matrices
for the short range exchange in the basis of the Cartesian representation of
the three orthoexciton states Γ+

5yz, Γ+
5zx and Γ+

5xy while the 3Γ+
4 electron hole

exchange vanishes:

J1 = ∆1k
2 · 1,

�� ��2.21

J3 = ∆3

 3k2
x − k2 0 0

0 3k2
y − k2 0

0 0 3k2
z − k2

 ,
�� ��2.22

J5 = ∆5 ·

 0 kxky kykz
kxky 0 kykz
kxkz kykz 0

 �� ��2.23

with the exchange parameters ∆1, ∆3, ∆5. Since J1 scales with k2, it alters
the isotropic effective mass of the orthoexcitons.

The matrix representation of the long range exchange is given by

JQex = ∆Q ·
1

k2

 k2
zk

2
y k2

zkxky k2
ykzkx

k2
zkxky k2

zk
2
x k2

xkykz
k2
ykzkx k2

xkykz k2
xk

2
y

 .
�� ��2.24
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with the constant long range quadrupole-quadrupole exchange parameter
∆Q.

Apparently, the k2 dependent exchange interaction lifts the degeneracy
of the orthoexcitons and the new eigenstates are linear combinations of the
three orthoexciton states of Γ+

5yz, Γ+
5zx and Γ+

5xy symmetry.

The exchange parameters ∆3 = −1.3 µeV, ∆5 = 2 µeV and ∆Q = 5 µeV
were determined by measuring the energies of the three orthoexciton states
in absorption in dependence of the k-direction of the exciting laser relative
to the crystal lattice [14, 15]. By this method, however, ∆1 could not be
determined since J1 is independent of the k-direction.

2.2.4 Zeeman splitting

The degeneracy of the orthoexcitons can also be lifted by perturbation such
as strain [47, 52, 53] or a magnetic field [54]. These perturbations do not
only lift the degeneracy, but also mix the paraexciton with the orthoexcitons
and thus, quadrupole oscillator strength is transfered from the orthoexcitons
to the paraexciton.

The experiments presented in this thesis, make use of a magnetic field to
optically excite and detect the paraexciton. The magnetic field interaction
of the paraexciton and the three orthoexciton states can be expressed by the
following matrix in the basis of the 1Γ+

2 paraexciton and the Γ+
5x, Γ+

5y and Γ+
5z

orthoexciton states:

HB =


−ε iαBx iαBy iαBz

−iαBx 0 −iβBz iβBy

−iαBy iβBz 0 −iβBx

−iαBz −iβBy iβBx 0

 .
�� ��2.25

Here Bx, By and Bz denote the Cartesian components of the magnetic field
and ε represents the k independent short range exchange interaction. The
magnetic field dependent coupling of para- and orthoexciton is described by
the Zeeman parameter α = 92.5 µeV/T while the interaction of the orthoex-
citon components is described by the Zeeman parameter β = 47.7 µeV/T
[55]. Diagonalization of the above matrix for the three orthoexciton states
yields three new eigenstates, which are denoted as M±1 and M=0.

The 1Γ+
2 paraexciton state mixes only with the M=0 component of the

orthoexciton. The admixture can be described by the field induced admixture
coefficient [21]

aO =
αB√

(αB)2 + ε2
≈ αB

ε
.

�� ��2.26
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2.2. 1S EXCITONS OF THE YELLOW SERIES

Due to this admixture the paraexciton gains oscillator strength from the
quadrupole allowed orthoexciton:

fP =

(
αB

ε

)2

fO = 5.8 · 10−5/T fO B
2,

�� ��2.27

where fP is the paraexciton and fO the oscillator strength of the orthoexciton.
Equation 2.27 shows that even at B = 10 T, the paraexciton oscillator
strength is only 6 h of the orthoexciton oscillator strength.
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3
Experimental technique

A resolution of several µeV is usually sufficient for spectroscopy of excitons
since lines are homogeneously and inhomogeneously broadened. In the case of
Cu2O, however, high resolution spectroscopy opened up new aspects. This
method e.g. allowed the investigation of the k2-dependent exchange inter-
action [14] or revealed in high purity samples paraexciton resonances with
spectral widths of 80 neV [21]. In this chapter the main aspects of a high
resolution setup are presented, followed by an overview of the samples used
and their properties.

3.1 Experimental setup

The crucial element of the setup is the single frequency dye laser (Coherent
899-29). The dye (Rhodamin 6G) is pumped by a 10 W frequency doubled
Nd:YVO4 laser (Coherent Verdi V-10) at λpump = 532 nm. The emission
wavelength of the laser (550 to 630 nm with Rhodamin 6G) is roughly selected
by means of a birefringent filter. The bandwidth of the emission is lowered
down to about 40 neV by an intra-cavity etalon assembly. A fraction of the
beam is coupled into an external reference cavity, connected to an electronic
servo loop, which stabilizes the emission bandwidth down to 5 neV. The
frequency control allows to scan the laser over a frequency range of 30 MHz
and to change the frequency in steps of 10 MHz ≈ 41 neV.

About 10% of the laser light is coupled into a 300 MHz scanning Fabry-
Perot spectrum analyzer (Coherent Model 216, FP) and a fiber into a waveme-
ter with an absolute accuracy of 30 MHz (HighFinesse WSU-30, FC). Spec-
trum analyzer, wavemeter and a beam profile analyzer (Vision 1024 digital
imaging camera Laser 2000, BA) form a diagnostic setup that ensures sta-
ble excitation at the resonance wave vector k = k0 of ortho- or paraexciton
with a TEM00 Gaussian mode. While the spectrum analyzer with a finesse
of more than 200 (line width less than 1.5 MHz) allows to align the laser
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3.1. EXPERIMENTAL SETUP

for best wave length stability, any jump in laser wavelength is immediately
recognized by the wavemeter (resolution 30 MHz), which is extremely useful
in excitation spectroscopy measurements.

The light beam passes a bandpass filter (F1) to suppress amplified spon-
taneous emission (ASE) from the laser and an attenuation filter (A) to set
the desired excitation intensity. Suppression of ASE is crucial since in the
spectral region of the measured phonon-assisted luminescence the intensity
of the observed luminescence is in the same order of magnitude as the in-
tensity of the ASE. The appropriate excitation polarization is set via a half
wave plate (λ

2
) and a polarizer (P1). The laser beam is focused by the lens

L1 (19 cm) to a spot of 30 µm on the sample (S).

The samples are immersed in liquid 4He inside a variable temperature
insert (VTI) of a split coil cryostat (Oxford Spectromag). All measurements
presented in this thesis were performed in superfluid Helium at about 1.5 K.
The low temperature is achieved by pumping on the VTI with an oil-pump
(50 m3/h) and a Roots pump (150 m3/h). The temperature is monitored
with a Cernox sensor mounted on the sample holder.

The split-pair superconducting coils of the cryostat are made out of Ni3Sn
and allow magnetic fields up to 11 T in Faraday k ‖ B and Voigt k ⊥ B
configuration.

The emission or the transmitted beam is collimated by the lens L2 (19 cm).
With a movable mirror the light can be directed on a photodiode (New Fo-
cus 2031) for transmission/absorption measurements. The photodiode is
connected to an 1.5 GHz oscilloscope (LeCroy 9362). By scanning the laser
through the exciton resonance the transmission was always monitored prior
to the luminescence measurement for two reasons: i) selection of a strain-
free part of the sample with narrow resonance; ii) tuning into resonance for
maximum absorption.

By the lens L4 the emitted light is focused on the entrance slit of a double
monochromator (Spex) with a focal length of 0.85 m or on a camera (SVX-
H9, pixel size 6 µm, CCD1). The camera allows to take spatially resolved
images of the sample. In order to illuminate the sample a diverging lens is
put temporarily in front of the cryostat.

The ratio of the selected focal lengths of L2 and L3 leads to two times
enlarged images of the sample on the entrance slit of the double monochro-
mator. A cylindrical lens (L4) in front of the entrance slit corrects for the
astigmatism of the monochromator. An half wave plate (λ

2
) in front of the

entrance slit allows to rotate the polarized luminescence into the preferred
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CHAPTER 3. EXPERIMENTAL TECHNIQUE

polarization plane of the monochromator1. A low frequency pass filter (F2)
is used to suppress scattered laser light.

The gratings used in the Cerny-Turner type monochromator have a size
of 110 mm × 110 mm and a grating constant of g = 1200/mm. To in-
crease the resolution and because of the a grating blaze wavelength of 1 µm
the monochromator is operated in second order. The theoretical resolution
E/∆E of the monochromator is calculated from the product of the number
of grating lines times the operation order. Therefore at E = 2 eV one obtains
∆E = 3.8 µeV.

Two objectives (O1, O2) behind the exit slit of the monochromator yield
a four times magnified image of the plane of the exit slit on the nitrogen
cooled camera (Roper Scientific, pixel size 25 µm, CCD2). With an entance
slit width of 40 µm a resolution of about 10 µeV in second order was achieved.

3.2 Samples

All samples used in this thesis were cut from one natural piece of Cu2O from
the Tsumeb mine in Namibia, which is renowned for a wealth of rare and
unusual minerals. It had turned out that natural crystals of Cu2O are clearly
superior compared to artificial ones. With the aid of X-ray orientation the
samples were cut along major crystaline axes and the surfaces were polished.
All samples used are mounted strain free in specially designed holders. In
these holders the samples are surrounded by a spacer and sandwiched be-
tween two brass plates. The spacers are a little bigger than the samples and
allow the samples to move slightly.

The orientations and the thicknesses of the four samples examined in
this thesis are listed in Tab. 3.1. For a mounted crystal holder ez is always

Sample ez ex ey w[µm]

H12 [11̄0] [001] [110] 514
H13 [11̄0] [001] [110] 252
H15 [111] [11̄0] [112̄] 474
H35 [001] [110] [11̄0] 502

Table 3.1: Samples used: ez, ex, ey, orientation; w, thickness.

perpendicular to the sample and along k of the incoming laser light. In

1Horizontal linear polarization yield a factor of 8 more transmission through the double
monochromator than vertical linear polarization
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3.2. SAMPLES

Faraday and Voigt configuration the magnetic field is oriented along ez and
ex, respectively.

In order to characterize the samples spatially resolved images of the crys-
tal can be taken with the camera CCD1. Fig. 3.1 shows such images of
the H12 sample in a magnetic field of 10 T for different excitation energies
around the paraexciton resonance. From one image to the another the laser
energy is increased from 2.0205958 eV to 2.0205974 eV in steps of 10 MHz
(41 neV). The absorption of the paraexciton moves from the lower right
corner to the upper left corner. Apparently, already in this small energy
reange of only 1.64 µeV the paraexciton absorption depends strongly on the
excitation position on the sample. It is therefore important to find a uniform
spot on the sample and a compulsory task prior to each measurement.
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CHAPTER 3. EXPERIMENTAL TECHNIQUE

Figure 3.1: Spatially resolved transmission images of the H12 sample in
a magnetic field of B = 10 T while tuning the laser energy through the
paraexciton resonance from 2.0205958 eV to 2.0205974 eV in steps of 10 MHz
(41 neV).
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4
Resonant optical phonon

scattering

Resonant optical phonon (LO and TO) scattering from orthoexcitons in
Cu2O was extensively studied in the past [56, 57]. Acoustic and optical
phonon scattering in high magnetic fields were reported [55]. It was shown
that longitudinal acoustic (LA) as well as transverse acoustic (TA) phonon
scattering have to be considered to analyze the rich spectrum of inter- and
intraband processes. Recently, LO phonon scattering to the paraexciton in
very high magnetic fields up to 32 T was observed [58].

These LO phonon scattering processes are of special interest because the
almost dispersionless optical phonons allow to study the thermal distribution
directly in the search for Bose-Einstein condensation (BEC) of excitons [16].
A macroscopic occupation of the ground state k = 0 of the excitons is anti-
cipated to manifest as a peak at lowest energies of the thermal distribution.
Furthermore, temperature and chemical potential can be deduced from the
phonon assisted luminescence.

Since the paraexciton, as the most promising candidate for Bose-Einstein
condensation of excitons, is optically forbidden to all orders, it was, up to
now, populated through relaxation from higher lying states. Hence, only non-
resonant optical phonon scattering of the paraexcitons has been observed. In
this chapter it will be demonstrated that direct resonant optical injection of
ultra-cold excitons can be obtained through a magnetic field induced sym-
metry breaking. Due to this symmetry breaking not only the 3Γ−5 phonon
but also other optical phonons (1Γ−2 , 2Γ−3 , 2 × 3Γ−4 ) become allowed. The
experiments presented in this chapter show phonon assisted luminescence to
the paraexciton from all these phonons with pronounced Raman resonances
for the first time. In connection with the observation of BEC of paraexcitons
there is hope that the high resolution setup allows to distinguish between
resonant Raman scattering from k = k0 and a macroscopic occupation due
to a BEC at k = 0.
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CHAPTER 4. RESONANT OPTICAL PHONON SCATTERING

4.1 Scattering mechanism

Raman scattering denotes inelastic scattering of a photon and an optical
phonon. The energy of the scattered photon h̄ωout differs from the energy of
the incident photon h̄ωin by the energy of the involved optical phonon h̄ωPh.
In case of an absorption of a phonon, the process is called anti-Stokes scatter-
ing (h̄ωout = h̄ωin + h̄ωPh), while Stokes scattering is considered as emission
of a phonon (h̄ωout = h̄ωin−h̄ωPh). When the energy of the ingoing (h̄ωin) or
of the outgoing photon (h̄ωout) is resonant with an electronic transition the
scattering cross section is expected to be enhanced and the phenomenon is
called resonant Raman scattering. In case of an ingoing resonance the width
of the Raman cross section is expected to be proportional to the width of the
electronic state γX for γX < ωin. For an outgoing resonance the Raman cross
section should reflect the phonon width γPh and the width of the electronic
state γX [59].

Figure 4.1 illustrates the mechanism of ingoing resonant optical phonon
scattering in case of the paraexciton and a 3Γ−5 phonon. Resonant excitation
at k0 creates ultra-cold paraexcitons with the kinetic energy E0 = 13.2 µeV
above the band minimum which corresponds in thermal equilibrium to a
temperature of 0.15 K. Stokes scattering from (k0,E0) with an optical phonon
leads to a pronounced Raman peak in the phonon assisted luminescence (red
curve on the right hand side in Figure 4.1) one phonon energy (10.58 meV
for the 3Γ−5 phonon) below the excitation energy.

Unlike quadrupole emission, which is only allowed at the intersection of
the light line and the exciton dispersion at k0, optical phonon scattering is
allowed from any k. As the dispersion of the 1Γ−2 , 2Γ−3 , 3Γ−5 optical phonons
and the longitudinal component of the 3Γ−4 phonon can be neglected close
to the zone center, the optical phonon luminescence exhibits directly the
thermal distribution of paraexcitons NP (E). For the transversal components
of the dipole allowed 3Γ−4 phonon, however, the dispersion (phonon polariton
branches) has to be taken into account. In the simplest case of thermal
equilibrium at low temperatures NP (E) should reflect a Bose distribution

NP (E) ∝
√
E

e(Ep−µ)/kbT − 1

�� ��4.1

with the chemical potential µ, the exciton temperature T and the Boltzmann
constant kb. Both Raman peak and Bose distribution are shown exemplarily
in red in Figure 4.1.

Due to their symmetry the phonons involved in the scattering process
obey distinct polarization selection rules. As it has been shown in section
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Figure 4.1: Scheme of resonant optical phonon scattering. Blue parabola,
exciton dispersion; red solid line, light line; dotted arrows, optical phonon
scatterin process; red curve, exciton population replica.

2.2.3, the k2-dependent exchange interaction leads to a splitting of the three-
fold degenerate orthoexciton. In high magnetic fields, however, the perturba-
tion due to this interaction can be neglected since it is only 5 µeV compared
to the splitting ∆E±1 = 954 µeV of M=±1 at 10 T. The diagonalization of
the matrix (equation 2.25) yields the new eigenstates Ψ(B).

For a given polarization e of the light h̄ωout the relative intensity χ(j) for
optical phonon emission is given by:

χ(j) =

gj∑
i=1

|eT σ̂
(j)
i Ψ(B)|2.

�� ��4.2

gj denotes the degeneracy of the optical phonon j (j = 2, 3, 4, 5) and σ̂
(j)
i

the coupling matrix of the phonon. The component of the paraexciton wave
function Ψ(B) with 1Γ+

2 symmetry can only couple to a 3Γ−5 phonon, whereas
the orthoexciton admixture of 3Γ+

5 symmetry (M=0 component) can couple
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also to the other phonons (1Γ−2 , 2Γ−3 and 3Γ−4 ). The polarization selection
rules for 2Γ−3 , 3Γ−4 and 3Γ−5 phonon emission for the orthoexciton (M=0 com-
ponent) are given in Ref. [55]. Since the coupling matrix between the 3Γ+

5

states (M=0 component of the orthoexciton) and the dipole operator (3Γ−4 )
via the 1Γ−2 phonon is diagonal [60], the polarization selection rules of the
1Γ−2 phonon replica are the same as for the Γ+

5i (i = x, y, z) components of
the quadrupole excited M=0 state.

The matrix element for non-polar optical phonon emission is given by:

|M (j)
op |2 =

h̄D2
j

2ρE
(j)
op V

χ(j) (1 + fex)(1 + fop)
�� ��4.3

with the exciton (fex) and optical phonon (fop) occupation number, the vol-

ume V , the energy of the optical phonon E
(j)
op and the optical phonon de-

formation potential Dj in units of eV/cm. For an allowed phonon emission
process and constant phonon dispersion no phonon wave vector (q) depen-
dence of equation 4.3 is expected. For forbidden processes, however, equation
4.3 is proportional to q2. By observing the exciton cooling rate due to op-
tical phonon emission to the orthoexciton D5 χ

(5) = 0.17 ± 0.02 eV/Å was
determined [61]. Since the emission rate of optical phonons is proportional to
the square of the deformation potential (equation 4.3) divided by the phonon
energy, the deformation potentials of the 2Γ−3 and 3Γ−4 are about 0.7 times
the deformation potential of the 3Γ−5 phonon as it can be deduced from rel-
ative intensities of resonant Raman spectroscopy [56]. The optical phonon
emission to the paraexciton is expected to be much weaker.

4.2 2Γ−3 /3Γ−5 optical phonon assisted luminescence

4.2.1 Magnetic field induced symmetry breaking

Without external perturbation only the 3Γ−5 phonon couples with a photon
(3Γ−4 dipole) to the paraexciton (1Γ+

2 ⊗ 3Γ−5 = 3Γ−4 ). In this process a nearby
green P exciton state of 3Γ−4 symmetry serves as an intermediate state. The
1Γ−2 ,

2Γ−3 ,
3Γ−4 phonon emission is forbidden (1Γ+

2 ⊗(1Γ−2 ,
2Γ−3 ,

3Γ−4 ) 6= 3Γ−4 ). In
a magnetic field, however, they become allowed by the admixture (coefficient
aO equation 2.26) of the M=0 component of the 3Γ+

5 orthoexciton into the
paraexciton (3Γ−4 is contained in 3Γ+

5 ⊗(1Γ−2 ,
2Γ−3 ,

3Γ−4 )). In order to study the
B-field dependence of the 2Γ−3 phonon emission of the paraexciton, the laser
was set to the orthoexciton resonance (M=0 component), since orthoexcitons
convert to paraexcitons [49] and the orthoexciton absorption is expected to
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be independent of the magnetic field. The inset in Figure 4.2 shows the
dependence of the ratio of the integrated luminescence intensity of the 2Γ−3
and 3Γ−5 phonon replica on the magnetic field. The experimental data follow
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Figure 4.2: 2Γ−3 and 3Γ−5 phonon replica of paraexciton for resonant excita-
tion of paraexciton at 10 T in Faraday configuration (k ‖ [11̄0]) and 1.2 K
measured on the H12 sample; Note: factor 10 enlargement of 3Γ−5 replica.
Inset: ratio 2Γ−3 /

3Γ−5 of integrated luminescence of phonon replica 2Γ−3 , 3Γ−5 ;
solid line: B2-dependence.

a B2-dependence, as expected from equation 2.26. The ratio

2Γ−3 /
3Γ−5 = A

χ(3)

χ(5)

�� ��4.4

deduced from equation 4.2 yields a factor of A = 5.8 ·103 higher emission rate
for the coupling of the 2Γ−3 phonon to the 3Γ+

5 component of the paraexciton
than the coupling of the 3Γ−5 to the 3Γ+

5 and the 1Γ+
2 component of the

paraexciton where the latter coupling process is independent of the magnetic
field. An explanation for the greater strength of the emission of a 2Γ−3 needs
a consideration of the individual electronic steps involved in the transitions
[62]. The probability for the scattering of an electron from a valence band
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state |V 〉 to a conduction band state |C〉 via an intermediate state |α〉 under

emission or absorption of an optical phonon of the energy E
(i)
op is proportional

to [63]:

∑
α

[
〈C|e · p|α〉〈α|He−ph|V 〉

EV − Eα ± E(i)
op

+
〈C|He−ph|α′〉〈α′|e · p|V 〉

EC − Eα ∓ E(i)
op

]
,

�� ��4.5

where He−ph refers to the electron-phonon interaction and EV and EC to the
energy of the valence band and conduction band, respectively. Disregarding
the spin (2Γ+

6 ) in the following consideration, the nearest conduction band
has 1Γ+

1 symmetry. Therefore the first term in equation 4.5 is only non zero,
if the intermediate state |α〉 is a 3Γ−4 state. A deep valence band of this
symmetry is found 5.6 eV below the highest valence band [64], but since
the state is so far off in energy, the denominator of the first term is large
and hence the transition probability is low. With the same argument, the
electron-phonon interaction Hamiltonian He−ph in the second term has to
have the same symmetry as the intermediate state |α′〉 in order to obtain a
non-zero matrix element. While neglecting the spin again, the next higher
conduction band has 2Γ−3 symmetry. The next band with 3Γ−5 symmetry is
a very high lying conduction band [64]. This explains the greater emission
strength of the 2Γ−3 compared to the 3Γ−5 phonon.

4.2.2 Raman cross section

The 2Γ−3 and 3Γ−5 phonon replica of the paraexciton for excitation in the
paraexciton resonance at 10 T are shown in Figure 4.2. Subtracting the
thermal distribution from the spectrum yields resonances (Figure 4.3), which
are interpreted as a resonance Raman effect (ingoing resonance at k = k0).

E = 0 corresponds to E(0) − E(i)
op , i = 3, 5 with an uncertainty of ±5µeV

showing that the resonances are not at k = 0 but at k = k0. The resonances
can be fitted by Lorentzians of width γi, (i = 3, 5) of the corresponding
phonon emission convolved with a slit function to account for the finite spec-
tral resolution of 10µeV. As shown in Figure 4.3, the width γ3 ≈ 21µeV of
the 2Γ−3 phonon emission is a factor 2.5 larger than the width γ5 ≈ 8 µeV of
the 3Γ−5 phonon emission. The energies of the two phonons are determined

to E
(3)
op = 13.49 meV and E

(5)
op = 10.58 meV.

Initially one may think that the width of the phonon emission peak corre-
sponds to the width of the resonance since it is an ingoing resonance Raman
scattering process (see section 4.1). In the following paragraphs, however, it
will be shown that the width of the resonance is < 1 µeV. Nor the emission
width represents the width of the optical phonon since the data obtained by
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Figure 4.3: Resonance Raman lines from Figure 4.2 after subtraction of
thermal distribution: Full line and squares, 3Γ−5 phonon; dashed line and

triangles, 2Γ−3 phonon. E = 0 corresponds to E(0) − E
(i)
op , i = 3, 5; solid

(i = 5) and dashed (i = 3) line: fit to data by Lorentzians of width γi and
corrected for finite spectral resolution (10 µeV). Left inset: Dependence of
2Γ−3 Raman peak on laser energy. Full dots: experimental results; dashed
line: fit to data by a Lorentzian; full line: absorption spectrum measured on
the same sample. Right inset: Dependence of the 2Γ−3 Raman peak on laser
energy; solid line: fit to data by a line with slope 1.

excitation spectroscopy presented in the next chapter reveal that the actual
width of the 3Γ−5 phonon is at least a factor of two smaller1. The measured
width of the phonon may be explained by a high occupation of states around
k0 due to the quasi-equilibrium created by the cw-excitation (hot lumines-
cence).

Nevertheless, since the width of the 3Γ−5 peak is still small and the kinetic
energy E(k0) is 13.2 µeV [21] above E(0), it should allow to identify an extra
peak due to a phonon emission from a BEC at k = 0. Up to now, however,

1The observed emission width of the 3Γ−
5 phonon is not determined by the finite spectral

resolution of the detection system since the laser line still shows a smaller width on the
camera.
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CHAPTER 4. RESONANT OPTICAL PHONON SCATTERING

there is no evidence for such a scenario.

The left inset in Figure 4.3 shows the intensity dependence of the 2Γ−3
Raman peak on laser energy. The solid line represents an absorption spec-
trum measured on the same sample. Apparently, the absorption profile is
reproduced by the ingoing resonance of the Raman effect.There are devia-
tions between the absorption and emission data mainly in the tails which
might be due to different spots on the sample in the absorption and emission
experiments. Tuning the energy of the exciting laser shows a linear depen-
dence of the energetic position of the 2Γ−3 Raman peak on the laser energy as
it is expected for a Raman transition (right inset in Figure 4.3). Both, the
intensity depence of the peak and the linear dependence of the peak energy
on laser energy confirm the interpretation of the peak as a resonance Raman
effect.

4.3 1Γ−2 /3Γ−4 optical phonon assisted luminescence

Besides the 2Γ−3 and 3Γ−5 phonon replica it was possible to measure the
1Γ−2 (Figure 4.4) and the 3Γ−4 (Figure 4.5) phonon emission. The nar-
row line LI at −42.72 meV (Figure 4.4) is probably due to a bound exciton
emission. From the data one obtains for the energy of the 1Γ−2 phonon

E
(2)
op = 43.31 meV, which agrees well with Ref. [46]. The width of the 1Γ−2

phonon emission was determined to γ2 ≈ 26 µeV.

The 3Γ−4 phonon has to be considered as a polariton because it is dipole al-
lowed. Thus, one expects a splitting into a single longitudinal
(E

(4)
LO = 18.90 meV) and doubly degenerate transversal components (E

(4)
TO =

18.59 meV). The data confirms the splitting of 0.31 meV [56]. The width
of the low energy component of the 3Γ−4 phonon emission was determined to
γ4 ≈ 37 µeV.

The inset in Figure 4.4 shows phonon-assisted luminescence from the high
energy 3Γ−4 to the orthoexciton. For this measurement the entrance slit of
the monochromator had to be opened because the signal was to weak to be
measured with fully closed slit. Due to the resulting reduction of resolution no
Raman peak is visible. However, the energetic positions of E

(4)
LO,2 = 82.5 meV

and E
(4)
TO,2 = 78 meV and the splitting of 4.5 meV [46, 56] can be confirmed.

This phonon assisted process could not be observed as a Raman process to
the paraexciton since this low energy emission is superimposed by vacancy
emission in the same spectral region [29].

No 3Γ+
5 (E

(5+)
op = 63.9 meV [46]) phonon assisted luminescence to the 1S

excitons can be observed. Due to its positive parity the phonon transition is
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Figure 4.4: 1Γ−2 phonon-assisted luminescence of paraexciton for resonant
excitation of the paraexciton at 10 T in Voigt configuration, k ‖ [001], and
1.3 K (H35 sample). Inset: High energy 3Γ−4 phonon-assisted luminescence to
the orthoexciton for resonant excitation of the orthoexciton measured with
increased monochromator slit width (H35 sample).

not dipole allowed for resonant excitation (quadrupol) and the next higher
order emission, the quadrupole emission is too weak.

4.4 Two optical phonon assisted luminescence

With the method of resonant excitation of paraexcitons it is even possible
to detect two-phonon processes. Figure 4.6 shows two-phonon sidebands of
the paraexciton at 10 T. From the energy shift of 24.2 meV and 27.2 meV
these resonances can be assigned to (2Γ−3 + 3Γ−5 ) and 2 × 2Γ−3 processes,
respectively. Although a two-phonon Raman process is forbidden due to
parity, one observes a luminescence signal. The scattering becomes allowed
with increasing k since the distance to the zone center increases and parity
is no longer conserved (see section 4.1).

As discussed previously, for a forbidden process the matrix element (equa-
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Figure 4.5: Low energy 3Γ−4 phonon-assisted luminescence of paraexciton
for resonant excitation of paraexciton at 10 T (k ‖ [111]) and 1.3 K (H15
sample).

tion 4.3) is proportional to the square of the phonon wave vector q. The
phonon wave vector q is the difference of the exciton wavevector and the
wave vector of the final scattering state on the light line. Hence scattering
from large exciton wave numbers k is favored compared to scattering from
k = k0 and one does not observe a Raman resonance.

The two phonon lines can be distinguished from excitons bound to impu-
rities by variation of the excitation intensity. For high excitation intensities
I = 3 kW/cm2 impurity lines are saturated (solid line in Figure 4.6) whereas
for low excitation intensities I = 1 W/cm2 (dotted line in Figure 4.6) the
phonon replica are much weaker compared to the impurity lines.
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Figure 4.6: Two-phonon assisted paraexciton luminescence at 10 T and
1.2 K for two different excitation intensities; I = 3 kW/cm2, solid line;
I = 1 W/cm2, dashed line.

4.5 Summary

It has been shown that exciting the orthoexciton the ratio of the integrated
intensity of the paraexciton 2Γ−3 and 3Γ−5 phonon replica depends quadrat-
ically on the magnetic field. The emission rate of the 2Γ−3 phonon assisted
luminescence to the paraexciton was found to be a factor of A = 5.8 · 103

higher than the emission rate of the 3Γ−5 phonon assisted luminescence to the
paraexciton.

By excitation in the orthoexciton or at even higher energy (phonon side-
band of the orthoexciton or band to band transitions), the thermal distribu-
tion of paraexcitons was observed in former experiments only via the emis-
sion of 3Γ−5 phonons [65, 52]. Resonant excitation yields in addition a Raman
peak, which can be clearly resolved by high resolution spectroscopy for the
1Γ−2 , 2Γ−3 , 3Γ−4 and 3Γ−5 optical phonons. As expected, the 3Γ−4 phonon replica
shows a splitting of 0.31 meV into a longitudinal and transversal components.
All phonons exhibit a different emission width of the resonance Raman peaks
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which is summarized in Tab. 4.1. For the narrow 3Γ−5 emission (γ5 = 11µeV)

Phonon E
(i)
op [meV] γi [µeV]

3Γ−5 10.58 8
2Γ−3 13.49 21

3Γ−4,TO 18.59 −
3Γ−4,LO 18.90 37

1Γ−2 43.32 26
3Γ−4,TO/2 78 −
3Γ−4,LO/2 82.5 −

Table 4.1: Measured phonon energies E
(i)
op and phonon emission widths γi for

different optical phonons.

the resolution of about 10 µeV should allow to detect a population of paraex-
citons at k = 0 caused by BEC. Up to now, however, there is no evidence for
such a scenario.

The results of this chapter have been published in Ref. [66].
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5
Two-phonon excitation

spectroscopy

For a weakly interacting Bose gas of excitons, the critical density nc depends
only on the product of exciton mass Mx and critical temperature Tc:

nc = g ζ(3/2)

(
Mx kb Tc

2πh̄2

)3/2

,
�� ��5.1

where g denotes the degeneracy and ζ(3/2) the Riemann ζ function. The
exciton mass is therefore an important parameter to calculate a BEC phase
diagram.

In the literature, however, there is a long lasting debate about the mass of
the 1S excitons. Since the extend of the exciton wave function in momentum
space leads to a contribution of non-zone center areas of the Brillouin zone
(compare section 2.2), the effective mass of the excitons is increased compared
to the yellow P excitons series, which is given by the sum of the electron
me = 0.99m0 and hole mh = 0.69m0 masses [67]. Experimentally, for the
orthoexciton masses between 2.7m0 [68] and 3.0m0 [69, 61] were found, and
for the paraexciton values of 2.2m0 [70] and 2.7m0 [71] were claimed.

The high resolution in excitation of the setup and the possibility to ex-
cite the paraexciton directly offers the unique possibility to clarify this is-
sue unambiguously as shown in the following paragraphs. The merit of the
high resolution setup is the narrow laser band width of only a few neV that
is particularly interesting in an excitation spectroscopy experiment since it
determines the resolution of the measurement. The idea of the following ex-
periment is to use this high resolution in order to analyze the optical phonon
assisted absorption to the para- and orthoexciton with respect to additional
second order acoustic phonon scattering.

By taking advantage of energy and momentum conservation of LA scat-
tering processes with paraexcitons, simple formulas can be derived that allow
the determination of the paraexciton mass MP , refractive index n, and the
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CHAPTER 5. TWO-PHONON EXCITATION SPECTROSCOPY

kinetic energy E0 with the LA sound velocity as the only input parame-
ter. As demonstrated in the last part of this chapter, the situation for the
orthoexciton is far more complex due the k2-dependent exchange interac-
tion induced splitting and anisotropic selection rules of acoustic and optical
phonon scattering processes.

5.1 Determination of the paraexciton mass

In order to determine the paraexciton mass MP the laser was tuned one opti-
cal 3Γ−5 phonon above the paraexciton resonance. The H13 sample (k ‖ [11̄0])
was cooled in superfluid helium to the temperature T = 1.2 K in a magnetic
field of 10 T in Faraday configuration. The monochromator wavelength was
centered around the paraexciton resonance and the paraexction quadrupole
emission intensity was monitored in dependence of increasing laser energy
EL = EP +E

(5)
op +E, where EP and E

(5)
op are the paraexciton and 3Γ−5 optical

phonon energy, respectively. Here the wavemeter serves as a reliable refer-
ence for the exact laser energy. Figure 5.1 shows the resulting two-phonon
excitation spectrum.

The Stokes Raman transition to paraexcitons with kinetic energy (k0,E0)
is centered around E = 0 and, for reference, normalized to 1. For 0 < E <
E1 excitons are excited by the a 3Γ−5 phonon emission and are monitored
after relaxation by quadrupole emission of the paraexciton. Since it is a
dipole excitation process, the phonon couples not only to the admixed 3Γ+

5

component but also to the 1Γ+
2 component (3Γ−4 ⊗ 3Γ−5 = 1Γ+

2 ⊕ 2Γ+
3 ⊕ 3Γ+

4 ⊕
3Γ+

5 ). The polarization of the exciting laser light is chosen perpendicular
to the polarization of the quadrupole emission, which is actually favored
by selection rules and easily allows a good suppression of scattered laser
light with an analyzer in front of the monochromator set to the quadrupole
emission polarization.

The optical phonon assisted absorption is expected to follow
√
E + E0

due to the density of states of the paraexciton [62]. As shown in the inset,
at E = E1 the emission of an additional longitudinal acoustic phonon sets
in, stays up to E = E2 and thus leads to the enhanced quadrupole emission.

The whole spectrum can be fitted with the function

f(x, γ) = A1

∞∫
−E0

√
ξ + E0 · (γ/2)2

(γ/2)2+(ξ−x)2
dξ

+A2
(γ/2)2

(γ/2)2+x2

+A3

E2∫
E1

(γ/2)2

(γ/2)2+(x−ξ)2dξ.

�� ��5.2
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Figure 5.1: Two-phonon excitation spectrum at 1.2 K monitored as
quadrupole emission of paraexciton at EP = 2.020598 eV. E = 0 corre-
sponds to a laser energy EL = EP + E

(5)
op = 2.031178 eV. Full dots, ex-

perimental points; solid line is a fit to a Lorentzian (FWHM= 4.5 µeV ) for
the LO-phonon resonant process, a square-root dependent background and
a plateau for the region of LO and LA phonon processes. Inset: schemat-
ics of the LO- and LA-phonon scattering; blue parabola exciton dispersion;
red curve, possible energy and momentum hypersurface for LA scattering to
k0 (magenta arrow); black arrow, LO phonon scattering; dotted line, light
dispersion.

In the first term, the density of states of the paraexciton is convoluted with
a Lorentzian with the width γ of the 3Γ+

5 phonon to consider the optical
phonon assisted absorption. The second term is caused by the Stokes Raman
transition, which is described by a Lorentzian of width γ. The third term, a
simple plateau, expressed by an integral over a Lorentzian of width γ, takes

41



CHAPTER 5. TWO-PHONON EXCITATION SPECTROSCOPY

into account the additional LA phonon scattering. All terms are weighted
with an appropriate scaling factor Ai.

For the optical and as well for the acoustic phonon scattering no selection
rule dependence on the scattering wave vector and hence on the scattering
energy is expected. The paraexciton is fully isotropic and the anisotropy
of the admixed M=0 orthoexciton component can be neglected since the
k2-dependent exchange interaction is of no relevance at high magnetic fields.
Nevertheless, a slight deviation is observed for the LA scattering process that
seems to depend on the scattering energy. Moreover f(x, γ) underestimates
the data on the high energy side of the spectrum. One has to keep in mind
that it was important to keep the experimental conditions like laser energy,
laser power, and in particular the temperature in the VTI, as stable as pos-
sible. The experiments are time consuming and when the helium level in
the VTI runs low the temperature drops slightly. Thus, the intensity of the
quadrupole emission deviates from its former value. In order to compensate
for this effect the measurement was performed several times.

Due to the high quality of the data the rise and fall of the LA scattering
plateau are determined with errors of only a few µeV to E1 = (453± 3)µeV
and E2 = (820±3)µeV. The analysis of the kinematics yields simple expres-
sions1 for the paraexciton mass MP , the kinetic energy E0 and the refractive
index n:

MP =
1

4m0c2

(
c

vLA

)2

(E2 + E1),

n =
1

4EP

(
c

vLA

)
(E2 − E1),

�� ��5.3

E0 =
1

8

(E2 − E1)2

(E2 + E1)
.

The equation of the kinetic energy is particularly interesting since it solely
depends on the sum and on the difference of the energy readings. The deter-
mination of the exciton mass apparently needs no additional input parameter
but the sound velocity. For the velocity of sound vLA = 4.63 · 103 ms−1 was
used. This value2 is calculated from the room temperature measurements
(vLA = 4.56 · 103 ms−1) from Ref. [24]) taking into account the temperature
dependence of the elastic constants [25]. From equation 5.3 one derives the
following values: MP = 2.61±0.04, n = 2.94±0.05 and E0 = (13.2±0.2)µeV.

1The derivation of the formulas can be found in the appendix A.
2This value of the sound velocity was used in Ref. [21]. The small corrrections that

arise due to the Brillouin scattering experiments presented in the next chapter are within
the stated errors.
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The errors are calculated from the errors of E1, E2 and a 1% error of vLA. It
should be noted that this method allows to determine E0 and thus n2/MP

solely from E1 and E2. With an independent measurement of n one can thus
determine MP without knowledge of vLA and therefore even measure vLA.

Additionally to the determination of the paraexciton mass, the measure-
ment allows statements about the optical phonon. The resonance at E = 0 is
broadened because of the finite lifetime of the phonon. The width obtained
by the fit with a Lorentzian is determined to a full width at half maximum
of 4.5 µeV. In contrast to the Raman process discussed in section 4.2.2 this
resonant Raman process has an outgoing resonance and therefore its width
represents the width of the optical phonon and the electronic state which can
be neglected (80 neV for the paraexciton).

Furthermore, from the reading of the high precision wavemeter of the
paraexciton resonance EP and the laser reading at the phonon-assisted res-
onance (EP + E

(5)
op ), one gets a very accurate value for the phonon energy

E
(5)
op = (10.58± 0.01) meV.

5.2 Two-phonon excitation of the orthoexciton

The results of the last section motivate to perform an analog experiment on
the orthoexciton. As k2-dependent exchange interaction lifts the degeneracy
and leads two different anisotropic masses of the orthoexciton states, the
spectrum is expected to be far more rich and complicated.

Figure 5.2 shows such a spectrum obtained by tuning the laser one 3Γ−5
optical phonon above the orthoexciton resonance with the photon wave vector
k ‖ [11̄0]. Like in the case of the paraexciton, the sharp peak at E = 0
corresponds to the Raman transition with the 3Γ−5 phonon to k0.

Contrary to the paraexciton, a fit with a Lorentzian yields a peak width
γz ≈ 10 µeV that is by about a factor of two larger than the width of the
optical 3Γ−5 phonon. For explanation one has to take into account that there

are three final states Ψ
(1)
O , Ψ

(2)
O and Ψ

(3)
O with distinct kinetic energies E

(1)
O ,

E
(2)
O and E

(3)
O (see energy level diagram in the right hand inset of Figure

5.2), the second of which (Ψ
(2)
O ) is the only one that is quadrupole allowed

in emission whereas the others (Ψ
(1)
O , Ψ

(3)
O ) have no oscillator strength. Be-

sides the emission selection rules, the dipole excitation selection rules have
to be taken into account, too. They are calculated in the same way as the
optical phonon emission selection rules χ(j) (equation 4.2). Both, quadrupole
oscillator strength and 3Γ−5 optical phonon selection rules, are shown in the
lower left and middle panel of Figure 5.3, respectively. For the calculation a
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Figure 5.2: Two-phonon excitation spectrum at 1.2 K monitored as
quadrupole emission of orthoexciton at EO = 2.032786 eV. E = 0 cor-
responds to a laser energy EL = EO + E

(5)
op = 2.043366 eV. Full dots,

experimental points; red solid line / violet dashed line, theoretical curve
as explained in the text; gray arrows, energy range for LA scattering from
Ψ

(j)
O ; left hand inset, used coordinate system; right hand inset, energy level

diagram for k ‖ [11̄0].

spherical coordinate system (angles φ and θ) is introduced. As shown in the
left hand inset of Figure 5.2, the angle φ marks rotations around ey while the
angle ψ marks rotations around the optical axis ez. For φ = 0 the angle θ is
equivalent to the orientation ψ of the linear polarization (e) of the exciting
laser.

The 3Γ−5 selection rules for excitation k ‖ [11̄0] are calculated for ψ = 900

since this was the linear polarization orientation during the experiment. In
contrast to the oscillator strength, for φ = 0, which is fixed by momentum
conservation, the two states Ψ

(1)
O and Ψ

(3)
O are dipole allowed while Ψ

(2)
O can

not be excited via an optical 3Γ−5 phonon. Hence, excitons that are detected
via quadrupole emission must have undergone inelastic scattering processes
from E

(1)
O , E

(3)
O to E

(2)
O . The probability for such scattering is rather high
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Figure 5.3: Left panels, quadrupole oscillator strength; middle panels, 3Γ−5
optical phonon selection rules, right panels, LA scattering matrix element;
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(1)
O state; green

line, Ψ
(2)
O state, red line, Ψ

(3)
O state; solid lines, θ = 0◦; dashed lines, θ = 20◦.

since the energy difference is less than two µeV. This superposition of two
resonances, separated by the difference in energy of E

(3)
O − E

(1)
O ≈ 4.2 µeV,

therefore leads to a broadened resonance peak with a width of about 10 µeV.

The small subsequent plateau, which is absent in the paraexciton exper-
iment, can be attributed to TA phonon scattering. TA scattering is allowed
from ETA ≈ 30 µeV up to ETA ≈ 90 µeV and is fitted with a convolution of
Lorentzians. The signal, however, is weak and will not be further investigated
here. The following rise of the signal is due to the density of states of the
orthoexcitons like in the paraexciton experiment and again can be fitted by a
convolution of a square root dependence and a Lorentzian with a width of γz.
The onset of the LA scattering process around E ≈ 351 µeV is not as steep
as in the paraexciton experiment, but still significant. Apparently, the en-
ergy dependency of the LA scattering process deviates from a simple plateau.
Therefore, in the following a model including selection rules, kinematics and
LA scattering probability is derived trying to explain the observed features.

5.2.1 Kinematical analysis

The anisotropic masses of the orthoexciton states lead to a pronounced en-
ergy dependence of the LA phonon scattering energy on the direction in
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k-space.
Although the excitation with a 3Γ−5 optical phonon is along k ‖ [11̄0], i.e.

θk = 0, φk = 0, due to its flat dispersion the optical phonon can contribute
with any k, and hence the initial orthoexciton state E

(j)
O (θk, φk) is charac-

terized by the angles θk, φk. The final scattering state, however, is fixed at
E

(i)
O (0, 0). Contributions from θk 6= 0 and φk 6= 0 can be neglected since the

numerical aperture NA ≈ 0.1. Energy and momentum conservation lead to

E
(j)
O (θk, φk)− E(i)

O (0, 0) = h̄vLA(θq, φq)q, i, j = 1, 2, 3
�� ��5.4

with θk,q in [0◦, 90◦] and φk,q in [0◦, 180◦]. q denotes the absolute value of the
phonon wave vector and θq, φq its orientation. The final states are close in
energy, and therefore the dependence of scattering between to different final
states (j 6= i) is negligible and hence omitted (i = j) in the calculation of
the phonon scattering energy (but not in the calculation of the LA scattering
probability).

Since without a magnetic field the Hamiltonian is quadratic in k, the
slopes fj(θk, φk) of the exciton parabolas are given by

fj(θk, φk) = E
(j)
O (θk, φk)/k

2
0.

Inserting these relations and q =
√
k2 − 2 k0 cosφk + k2

0 into equation 5.4
and squaring the resulting expression leads to the quartic equation

fj(θk, φk)k
4 − [h̄vLA(θq, φq)

2 + 2fj(θk, φk)fj(0, 0)k2
0] k2

+2h̄vLA(θq, φq)k0k cosφ+ fj(0, 0)2k4
0 − h̄vLA(θq, φq)

2k2
0 = 0

that is solved analytically for k with vLA(θk, φk). Only a few iterations with
vLA(θq, φq) along the new obtained (θq, φq) direction leads to stable solutions
shown in Figure 5.2.1 as function of φ = φk for different θ = θk and crystal
orientiations (H13 and H35, see Tab. 3.1). As it has been mentioned in sec-
tion 2.2.2, the shifts of the orthoexciton energy levels due to intrinsic strain
are in the same order of magnitude as the k2-dependent exchange interac-
tion. However, the shifts can be discriminated from the exchange interaction
since they do not depend on k but are fixed to the lattice. Therefore this
perturbation only gives a small offset to the orthoexciton parabolas and can
be neglected.

5.2.2 Acoustic phonon scattering probability

Compared to the Raman transition, the inclusion of an acoustic phonon in
the scattering process loosens momentum conservation and the phonons can
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Figure 5.4: Calculated phonon scattering energies for two different crystal
orientations (left figure H13, right figure H35). Blue lines, Ψ

(1)
O state; green
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(2)
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(3)
O state; solid lines, θ = 0◦; dashed lines,

θ = 20◦; dashed lines, θ = 50◦ in the left hand figure, θ = 70◦ in the right
hand figure.

have any q direction. Therefore any state in k-space can be excited via the
optical phonon, and the optical selection rules depend on φ and θ as shown in
the middle panels of Figure 5.3 for two different crystal orientations k ‖ [11̄0]
and k ‖ [001]. Direct excitation of the allowed emitting orthoexciton states

(Ψ
(2)
O for k ‖ [11̄0] and Ψ

(1)
O , Ψ

(2)
O for k ‖ [001]) becomes allowed for finite φ

or θ. This direct process is mediated by hydrostatic compression via the LA
phonon. But also for fixed φ or θ scattering between different orthoexciton
sublevels can take place due to shear strain. The probability for LA scattering
is therefore a function of φ and θ, which can be calculated using the matrices
H1, H3, H4 and H5 that have been introduced in section 2.2.2. The squared
matrix element for acoustic phonon scattering [72] from Ψ

(i)
O to Ψ

(j)
O via

deformation potential interaction is given by

|〈Ψ(j)
O |Hk|Ψ(i)

O 〉|2 '
h̄q

2ρV vl
χ

(k)
i→j Ξ2

k(1 + 2fq,l)
�� ��5.5

with k = 1, 2, 3, the sound velocity vl of the phonon l = LA, STA,FTA and
fq,l the q-dependent occupation number of the phonon. The dimensionless

factor χ
(k)
i→j depends on the direction of the phonon wave vector, on the
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polarization and the states i, j. For the H4 interaction the deformation
potential Ξk has to be substituted by the spin-orbit splitting energy α/3.
Since the phonon occupation number fq,l � 1, it can be omitted and the LA

phonon scattering probability from Ψ
(i)
O to Ψ

(j)
O becomes

Wi→j ∼
q

vLA

∑
k

χ
(k)
i→j Ξ2

k.
�� ��5.6

Assuming that coherent scattering is favored compared to e.g. exciton-exciton
scattering, equation 5.5 is multiplied by the relative oscillator strength f

(j)
r

of the final scattering state Ψ
(j)
O . Summation over all final states j yields the

scattering-emission probability

Wi ∼
q

vLA

3∑
j=1

∑
k

f (j)
r χ

(k)
i→j Ξ2

k

�� ��5.7

from the dipole excited state Ψ
(i)
O . The calculated scattering-emission prob-

ability is shown in the right panels of Figure 5.3 in dependence of φ for the
two different crystal orientations and two different θ.

5.2.3 Sampling of the scattering spectrum

Including the optical phonon and scattering-emission selection rules in de-
pendence of the scattering direction (θ, φ), a scattering probability can be

assigned to each phonon energy E
(i)
LA(θ, φ) from the kinematical analysis. In

order to obtain a scattering spectrum, E
(i)
LA(θ, φ) is sampled with a reso-

lution of 1◦ in φ and assigned to energy bins of a width of 0.1µeV. The
corresponding bin is weighted with the optical phonon excitation selection
rule χ(i) multiplied by the scattering-emission probability Wi.

Since ELA(θ, φ) is a function of varying slope, the bins are not equally oc-
cupied. Therefore unoccupied bins are filled with the mean value of adjacent
non-zero bins. The bins are summed up over the three excited orthoexciton
states (i) and the angle θ in steps of 1◦. Finally the spectrum is convo-
luted with a Lorentz with the width γz and added to the sum of a Raman
Lorentz and a square root dependence like in the preceeding section 5.1 for
the paraexciton two-phonon excitation spectrum.

5.2.4 Discussion

The red line in Figure 5.2 shows the calculated two-phonon scattering for
the H13 crystal configuration according to the model described above with
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the k2-dependent exchange parameters from Ref. [14] and ∆1 = 0. The

gray arrows mark the possible energetic scattering range from the state Ψ
(j)
O

(compare Figure 5.2.1). At first glance the curve is in qualitative agreement,
and, in particular, the striking peak around 700 µeV is reproduced. A closer
look shows that the model deviates in certain aspects from the measured
data. Especially the rise of the scattering signal around 351 µeV is steeper
in the model and shows a double structure due to the two states Ψ

(1)
O and

Ψ
(2)
O .

The experiments presented in Ref. [14] lead to values for ∆3, ∆5 and
∆Q. A value for ∆1, however, was not accessible. But here it certainly can
have an impact on the spectrum. To fit the rise of the scattering signal the
energetic separation of E

(2)
LA(θ, φ) − E

(1)
LA(θ, φ) at φ = 0, θ = 0 has to be

decreased. This can be done by shifting both energies with ∆1 = 0.19 µeV
to lower energies and decreasing ∆Q (compare energy level separation in the
right hand inset of Figure 5.2). To get rid of the steep rise, ∆Q has to be
omitted, which is not in agreement with the experiments of Ref. [14]. The
resulting spectra with ∆1 = 0.19 µeV, ∆3 = −1.3 µeV, ∆5 = 1.8 µeV and
∆Q = 0 is shown as violet dashed curve. At this point one can conclude
that the exchange parameters given in Ref. [14] are reasonable and certainly
0 µeV < ∆1 < 0.5 µeV.

The interpretation becomes even more complicated looking at a two-
phonon excitation spectrum for the H35 crystal configuration (k ‖ [001]),
as shown in Figure 5.5. The experiment was performed in the same way as
the above experiment but with excitation and detection polarizations rotated
by 90◦. Actually a quick look on the quadrupole and excitation selection rules
(Figure 5.3) reveals that both excitation polarizations work since kx and ky
are interchangeable.

Firstly, it has to be noted that the width of the Raman peak is wider
than in the k ‖ [11̄0] experiment, namely γz′ ≈ 16 µeV. Following the
above arguments, the width of the Raman peak should be comparable to
the superposition of two Lorentzians separated by the energetic difference
δE of the quadrupole allowed states. For k ‖ [110] this corresponds to
δE = 3∆3 ≈ 4 µeV (inset in Figure 5.5). Apparently, this is too small
to explain a width of 16 µeV. Additional intrinsic strain of only a few
µeV explains such a broadening since it can split the orthoexciton parabolas
further apart.

The spectrum shown by the red curve is calculated again with the k2-
dependent exchange parameters from Ref. [14] and ∆1 = 0. The agreement
with the data is obviously less satisfying than in the k ‖ [11̄0] experiment.
Again the obvious peak with the step like rise at 600 µeV is reproduced quite
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Figure 5.5: Two-phonon excitation spectrum at 1.2 K monitored as
quadrupole emission of orthoexciton at EO = 2.032785 eV. E = 0 cor-
responds to a laser energy EL = EO + E

(5)
op = 2.043369 eV. Full dots,

experimental points; red solid line / violet dotted line, theoretical curve as

explained in the text; gray arrows, energy range for LA scattering from Ψ
(j)
O ;

inset, energy level diagram for k ‖ [001].

well. The step like flank arises from the fact that even though Ψ
(3)
O initially

is not or only weakly allowed by selection for small angles, the LA phonon
scattering energy stays almost constant around 600 µeV up to φ ≈ 50◦.
In contrast to the obvious peak, the slow rise of the scattering signal at
about 300 µeV is not reproduced but starts at higher energies (380 µeV).
From the kinematical point of view with the above given exchange and mass
parameters no signal below 380 µeV should be observable and it can not
be reproduced with a reasonable set of exchange parameters. Again, small
possible offsets of the orthoexciton parabolas due to intrinsic strain can not
explain this large shift of the rise to lower energy. One should note tuning
the laser to higher energies leads to different output intensities. Before each
measurement the intensity was checked with great care. Nevertheless, there
can be a difference in intensity of 5% that has an impact on the spectra.
It is therefore important to achieve more stable experimental conditions.
As shown by the dotted line, with the preliminary fit parameters from the
k ‖ [11̄0] measurement the model deviates even more from the measured
spectrum. Apparently, there are still several obstacles to overcome on the
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way to a convincing fit of the two-phonon orthoexciton spectra.

5.3 Summary

The novel method of two-phonon excitation spectroscopy provides reliable
value of the paraexciton mass and solves a long lasting discussion [70]. The
importance of central-cell corrections as discussed in Ref. [37] is thus con-
firmed. The higher background refractive index of 2.94 as compared to 2.55
[14, 20, 40] leads to detail corrections of the polariton dispersion and the
anisotropic orthoexciton mass values [14, 73]. The main advantage of the
method lies in the fact that reliable values of the exciton mass are obtained
by a merely kinematical analysis, the accuracy of which is determined by the
accuracy of the laser energy and the sound velocity.

In first experiments the method was applied to the orthoexciton, which
yielded rich and complex spectra. In order to fit the spectra, a model was
derived that is based on a kinematical analysis and selection rules of optical
and acoustic phonons and quadrupole emission. For one crystal configuration
qualitative agreement could be achieved with the exchange parameter from
Ref. [14]. For the ∆1 parameter, which was previously not accessible, a range
of 0 µeV < ∆1 < 0.5 µeV is derived.

The results of the first part of this chapter have been published in Ref.
[21].
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6
Resonant Brillouin scattering

In chapter 4 inelastic scattering of optical phonons (Raman scattering) and
the optical phonon assisted luminescence of the paraexciton have been ex-
amined. The possibilty of orthoexciton excitation with an optical and an
additional longitudinal acoustic phonon has been studied in the preceding
chapter with respect to the exciton mass and the k2-dependent exchange
parameters. This chapter deals with orthoexcitons excited resonantly in a
magnetic field, where a fine-structure in the 2Γ−3 and 3Γ−5 optical phonon as-
sisted emission of orthoexcitons shows up that can be attributed to intra- and
interband resonant Brillouin scattering (RBS) within the orthoexciton sub-
bands with longitudinal acoustic (LA) and transverse acoustic (TA) phonons
[55].

As shown first for GaAs [74], Brillouin scattering between exciton po-
laritons can be observed directly. Later Brillouin scattering was observed in
CdS via the additional emission of an optical phonon [75]. The observation
of acoustic phonons scattered by 2-phonon processes (LA/TA and LO) has
at least two advantages: First, the additional energy shift by emission of
an optical phonon makes it easy to suppress scattered laser light. Second,
the dispersionless LO-phonon allows the observation of final k-states, whose
probability for emission of photons tends to zero because the photon contri-
bution of the final polariton state tends to zero. In Cu2O Brillouin scattering
from the 1S excitons can only be observed by a two-phonon process because
the final state has even parity and thus can only be detected by the ad-
ditional emission of an optical phonon of odd parity [55]. These Brillouin
scattering processes can be stimulated for sufficiently high light intensities.
The processes are connected with a pronounced line narrowing compared to
the spontaneous scattering.

Yet the reader knows that the yellow 1S excitons in Cu2O consist of
the threefold quadrupole allowed orthoexcitons of 3Γ+

5 symmetry split off
by 12.12 meV to higher energy from the optically forbidden paraexciton of
1Γ+

2 symmetry by isotropic exchange. As shown in the introduction (sec-
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tion 2.2.4) in a magnetic field, the orthoexciton splits into the three states
M=0, M=±1 whose energetic separation is determined by the magnetic field
strength. k2-dependent exchange interaction yields anisotropic masses for
the three orthoexciton states. Exciting the highest state M=+1 resonantly
at k0 leads to intra- and interband scattering with LA and TA phonons to the
lower lying M=0 and M=-1 orthoexcitons. A small occupation created by
spontaneous scattering occupation is the source for stimulated Brillouin scat-
tering between the orthoexciton states. A detailed analysis of the kinematics
is presented in this chapter showing that these scattering processes strongly
depend on the applied magnetic field. Besides the prerequisite of energy and
momentum conservation, the possibility for stimulated Brillouin scattering is
additionally governed by selection rules and deformation potentials leading
to a pronounced k-dependence. The analysis reveals the possibility to excite
a state in the lowest orthoexciton subband with arbitrary k and in particular
with k = 0 for three distinct field strengths. A pronounced asymmetric reso-
nance dependence within a few µeV increases the relevant parameter space
even more.

6.1 Scattering mechanism

Sound velocities in Cu2O depend strongly on k-direction, i.e. the TA phonon
is degenerate along k ‖ [001] and splits into a slow TA (STA) phonon and
a fast TA (FTA) phonon along [11̄0] (see Figure 2.2). Possible inter- and
intraband scattering along k ‖ [11̄0] with STA and LA phonons within the
orthoexciton subbands for excitation of the M=+1 orthoexciton is illustrated
in Figure 6.1 for a field strength of 4 T in Voigt configuration. The red solid
lines (TA phonon sound velocity vSTA = 1.14 · 103 ms−1) represent forward
and backward scattering of the STA phonon, the blue solid lines (LA phonon
sound velocity vLA = 4.60 ·103 ms−1) forward and backward scattering of the
LA phonon along k ‖ [11̄0].

The selection rules for these intra- and interband scattering processes can
be derived from the exciton-acoustic phonon interaction Hamiltonian, which
contains four terms H1, H3, H4 and H5 of 1Γ+

1 , 3Γ+
3 , 3Γ+

4 and 3Γ+
5 symmetry,

respectively (section 2.2.2).
For STA phonons along k ‖ [11̄0], only H3 6= 0 and H4 6= 0, whereas

for fast TA phonons (FTA), only H4 6= 0 and H5 6= 0. Calculation of the

matrix elements |〈Ψ(M ′)
O |Hi|Ψ(M)

O 〉|2 leads to selection rules for the acoustic

phonons with the excited orthoexciton state |Ψ(M)
O 〉 (here M=+1) and the

final orthoexciton state |Ψ(M ′)
O 〉 (M’=0,-1). They show that for STA phonons

scattering is allowed only from M=+1 to the M=-1, whereas for the FTA
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phonons only scattering to the M=0 state is possible. Comparing the scat-
tering probabilities calculated from H3 and H5 shows that the probability
for TA-phonons with 2Γ+

3 symmetry is by an order of magnitude higher than
for TA-phonons with 3Γ+

5 symmetry. The spin-orbit interaction described by
H4 is much weaker and thus omitted. Therefore only STA phonon scattering
from M=+1 to M=-1 is considered as sketched in Figure 6.1. In contrast the
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Figure 6.1: Inter- and intraband Brillouin-scattering within the orthoexciton
parabolas for k ‖ [11̄0] and B = 4 T in Voigt configuration: upper parabola,
M=+1 dispersion; dashed parabola, M=0 dispersion; lower parabola, M=-1
dispersion; solid red arrows, interband scattering of STA-phonons; dashed
blue arrows, intraband scattering of LA phonons; E = 0 µeV corresponds
to the resonance of the M=+1 orthoexciton at k0. For the wavenumber
x = h̄ck/

√
εb with εb = 8.64 is used. The magenta dotted lines indicate the

measured energy of the Brillouin scattering lines. Inset: calculated wavenum-
ber dependence of the scattering on the magnetic field; red solid lines, STA
phonon interband scattering (M=+1 to M=-1); blue dashed lines, LA intra-
band scattering within M=-1.

interband scattering by TA phonons, LA phonon scattering is the dominating
scattering process for intraband scattering due to a large 1Γ+

1 contribution
to the scattering probability. Intraband scattering of LA-phonons within the
M=-1 orthoexciton starting from a state to which the TA-phonon scatters
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from M=+1, is shown in Figure 6.1. For the different scattering processes
the dependence of the final wave vector on the magnetic field strength is
shown as an inset.

An overview of the selection rules for k ‖ [11̄0] in Voigt and Faraday
configuration is shown in Tab. 6.1. The relevant symmetry contributions of

the Hamiltonian and the corresponding matrix elements |〈Ψ(M ′)
O |Hi|Ψ(M)

O 〉|2
are listed for LA, STA and FTA Brillouin scattering. Note that the selection
rules depend also on the wavevector k, which is not shown here. Additionally
any dependence on the absolute value of the phonon wave vector q has been
neglected since it’s contribution is considered to be small.

6.2 Scattering along k ‖ [11̄0]

With k ‖ [11̄0] and the magnetic field in Voigt configuration the M=±1
quadrupole oscillator strength is 1/2, whereas the M=0 can not be excited.
Only the two excitable states have a non-zero matrix element for optical
phonon emission. In the experiment a spot on the sample was selected that
showed a narrow absorption line and the laser was tuned to the M=+1 res-
onance. The phonon assisted emission via 3Γ−5 and 2Γ−3 optical phonons was
monitored by the CCD camera behind the double monochromator. The addi-
tional shift of the Brillouin resonances due to the optical phonons (10.58 meV
for 3Γ−5 phonons, 13.45 meV for 2Γ−3 phonons) and the use of optical low pass
filters (613 nm) allows an excellent suppression of scattered laser light. A
tilted bandpass (611 nm) was used to suppress amplified spontaneous emis-
sion (ASE) of the laser.

Figure 6.2 and Figure 6.3 show the 2Γ−3 and 3Γ−5 phonon assisted emission
of the orthoexciton, respectively. The zero-point of the energy scale is shifted
to the Stokes-Raman-transition of the corresponding optical phonon.

Additionally to the Raman peak at E = 0 µeV, one observes Stokes
and anti-Stokes lines due to inter- and intraband Brillouin scattering. The
anti-Stokes lines around 150 µeV and 510 µeV (marked by arrows in Figure
6.2) can be attributed to TA phonon interband scattering and LA phonon
intraband scattering, respectively. These lines show a very weak dependence
on excitation intensity. On the Stokes-side of the spectrum one observes for
low excitation intensities two Brillouin lines besides the Raman line. With
increasing excitation intensity the emission intensity of these lines increases
with respect to the Raman line. For high excitation intensities there is a
strong nonlinear intensity increase of these Brillouin lines, and each of them
splits into two narrow lines.

Due to the smaller width of the 3Γ−5 optical phonon emission (γ5 = 8 µeV)
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Figure 6.2: 2Γ−3 phonon assisted emission of orthoexcitons for different exci-
tation intensities (B = 4 T in Voigt configuration). E = 0 µeV corresponds
to the resonance of the M=+1 orthoexciton shifted to lower energy by the
energy of the 2Γ−3 LO-phonon (13.45 meV). Inset: dependence of emission
intensity on laser intensity; blue squares, TA forward scattering; green trian-
gles, TA backward scattering; red empty dots, TA+LA scattering. Arrows
mark anti-Stokes Brillouin scattering of LA phonons.

as compared to the width of the 2Γ−3 optical phonon emission (γ3 = 21 meV,
see section 4.2.2) these scattering processes and, in particular, the splitting
of the energetically lower lying scattering lines, are resolved more clearly in
the 2Γ−5 phonon assisted emission (note the different energy scales of Figure
6.2 and Figure 6.3).

A kinematical analysis shows that the first line at E+
STA = −92.9 µeV

(Figure 6.3) corresponds to forward, the second one at E−STA = −131 µeV
to backward interband scattering along k ‖ [11̄0] with STA phonons be-
tween M=+1 and M=-1 orthoexcitons. The third and the fourth line at
E−LA = −310 µeV and E+

LA = −330 µeV can be identified as backward and
forward intraband scattering of LA phonons within the M=-1 subband. The
2Γ−3 data (Figure 6.2) show the same results, as far as the fine-structure can
be resolved. The derivation of the formulas from energy and momentum
conservation are given in Appendix B.
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Figure 6.3: 3Γ−5 phonon assisted emission of orthoexcitons for different exci-
tation intensities (B = 4 T in Voigt configuration). E = 0 µeV corresponds
to the resonance of the M=+1 orthoexciton shifted to lower energy by the
energy of the 3Γ−5 LO-phonon (10.58 meV). Note: The range of the energy
scale is reduced by a factor of two in comparison to the one in Figure 6.2.
Inset: dependence of emission intensity on laser intensity; blue squares, TA
forward scattering; green triangles, TA backward scattering; red empty dots,
TA+LA forward scattering; magenta solid dots, TA+LA backward scatter-
ing.

6.2.1 Intensity dependence

The intensity dependence of the Brillouin scattering as shown in the insets of
Figure 6.2 and 6.3 shows a nonlinear increase of the Brillouin scattering peaks
with excitation intensity indicating a stimulated character of the scattering
processes. The stimulation starts at a threshold of about 2 kW/cm2 and
saturates above 16 kW/cm2. This threshold-like behavior and the saturation
for high excitation intensities are typical for stimulated Brillouin scattering
[76].

For low excitation intensities Brillouin scattering takes place in k-di-
rections determined by energy and momentum conservation leading to a
“plateau” from E+

TA/LA up to E−TA/LA in the phonon assisted emission. As
soon as the stimulation threshold is reached the “plateau” splits into two
peaks that can be attributed to forward and backward scattering. This can
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be understood easily considering two waves: one for the phonon and one for
the exciton. As the interference of two waves is maximized for parallel or
antiparallel propagating waves, there is a preference for forward/backward
stimulated scattering [77]. Since the LA phonon scattering processes do not
simply copy the occupation generated by stimulated TA scattering but set in
at higher excitation intensities, it is conclusive that the LA scattering process
itself is stimulated with a slightly higher threshold. As the temperature of the
exciton gas obtained from a fit of the spectra in Figure 6.2 is approximately
the bath temperature (< 2 K), a possible increased occupation of acoustic
phonons due to heating can be excluded. Though an increased occupation of
acoustic phonons leads to a higher intensity of the Brillouin scattering lines,
it does not give rise to a preferential scattering into forward and backward
direction as stimulated Brillouin scattering does.

6.2.2 Magnetic field dependence

The dotted lines in Figure 6.1 represent the energetic positions E
+/−
STA and

E
+/−
LA of the measured peaks that quantitatively match the inter- and intra-

band scattering processes discussed before. The positions of the lines depend
strongly on the magnetic field as shown in Figure 6.4, since the splitting of
the orthoexciton subbands increases linearly with the magnetic field. The
solid lines represent the calculated kinematics for STA-interband scattering
from M=+1 to M=-1, the dashed lines represent LA intraband scattering
within the M=-1 orthoexciton. In Figure 6.4 one recognizes a threshold for
LA intraband scattering at 2.25 T.

The sound velocities have been determined from the kinematical analysis
(Figure 6.4) and agree well with data in the literature [21, 24, 25]. Especially
the dependence of the TA scattering energies on the magnetic field is very
sensitive to the TA sound velocity. This leads to small corrections to the
elastic constants for low temperatures but is still consistent with the deter-
mination of the paraexciton mass in section 5.1 since it is within the stated
errors. Moreover a slight change of the mass of approx. 1% does not have a
noteable effect on the kinematical analysis.

With increasing field strength the stimulation gain decreases. The scatter-
ing processes at higher field strength involve acoustic phonons with higher
energy since the splitting of the orthoexciton subbands increases with the
magnetic field. These “high”-energy phonons, however, are only weakly oc-
cupied at low temperatures yielding a higher stimulation threshold.

As seen in the inset of Figure 6.1 the kinematics allows final scattering
states in the lowest exciton subband with arbitrary wave vector k, which
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Figure 6.4: Energetic positions of Brillouin scattering lines. E = 0 µeV
corresponds to the Raman transition; red solid lines, TA scattering; blue
dashed lines, TA+LA scattering; blue squares, measured TA scattering; read
dots, measured TA+LA scattering. Inset: 3Γ−5 - phonon assisted emission at
8.25 T. Arrow marks TA+LA scattering to k = 0 within the M=-1 subband.

is achieved by simply tuning the magnetic field. For three distinct field
strengths this final wave vector vanishes (k = 0): i) at B ≈ 8.25 T and
B ≈ 8.75 T by two-phonon (STA/LA) forward and backward scattering,
respectively (inset Figure 6.1, and ii) at ≈ 0.1 T by a one-phonon process
(STA-backward scattering) The inset in Figure 6.4 shows an example of stim-
ulated scattering at 8.25 T, where the wave vector of the final scattering state
vanishes.

Figure 6.5 shows stimulated Brillouin scattering for k ‖ [11̄0] in Faraday
configuration at B = 6 T. Although at first glance it looks similar to the
previously shown scattering in Voigt configuration the underlying processes
are different. The exciting laser was tuned to the M=0 resonance and Bril-
louin scattering was observed via STA phonons from the M=0 to the M=-1
orthoexciton. Considering exclusively STA interband scattering the same
argument is valid as in case of Voigt configuration (see Tab. 6.1) thus jus-
tifying the use of the selection rules. Again, LA intraband scattering takes
place within the M=-1 orthoexciton. The power dependence of the Brillouin
scattering processes presented in the inset of Figure 6.5 shows a more pro-
nounced rise and saturation than in the measurements in Voigt configuration
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Figure 6.5: 3Γ−5 phonon assisted emission of orthoexcitons for different excita-
tion intensities (B = 6 T in Faraday configuration). E = 0 µeV corresponds
to the resonance of the M=0 orthoexciton shifted to lower energy by the
energy of the 3Γ−5 LO-phonon (10.58 meV). Inset: dependence of emission
intensity on laser intensity; blue squares, TA forward scattering; green trian-
gles, TA backward scattering; red empty dots, TA+LA forward scattering;
magenta solid dots, TA+LA backward scattering.

and spans over three orders of magnitude.

6.2.3 Resonance dependence

By tuning the laser through the orthoexciton resonance one observes a strong
resonance dependence as presented in Figure 6.6 for k ‖ [11̄0] and B = 4 T
in Voigt configuration. Shown are the stimulated Brillouin scattering inten-
sities relative to the Raman transition, whose resonance dependence follows
the absorption. While approaching the resonance from lower energies the
stimulated Brillouin scattering intensity drops abruptly, particularly for the
case of TA and subsequent LA scattering. Tuning the laser to higher en-
ergies the scattering intensities increase slowly again. Due to this strong
asymmetric resonance dependence the highest Brillouin scattering intensi-
ties are observed by tuning the laser slightly off-resonant. A peculiarity can
be observed, if the laser is tuned directly in resonance. In this case the stim-
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Figure 6.6: Resonance dependence of the Brillouin scattering lines as derived
from the 3Γ−5 phonon assisted luminescence at B = 4 T in Voigt configura-
tion.

ulation signal not just vanishes but decreases with increasing intensity with
respect to the Raman. One could presume that the resonance dependence is
connected to the polaritonic character of the orthoexciton. The wave vector
dependence of the two polariton branches, however, is negligible and more-
over fully symmetric around the resonance. Summarizing, one has to admit
that the origin of this asymmetric resonance dependence is still unclear.

6.3 Scattering along other crystallographic direc-
tions

Stimulated Brillouin scattering was also observed in other crystallographic
directions (e.g. k ‖ [112]). The strength of the Brillouin scattering signal,
however, varies from sample to sample, which does not allow to compare
absolute scattering intensities.

For samples oriented along [001], however, it was not possible to observe
any stimulated Brillouin scattering signal. Figure 6.7 presents two spectra
measured on such a sample (H35) with k ‖ [001] for low and high excitation
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intensity. The blue line shows the spectrum taken at low excitation inten-
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Figure 6.7: 3Γ−5 phonon assisted emission of orthoexcitons (B = 4 T in Voigt
configuration, k ‖ [001]) for two different excitation intensities (blue line, low
intensity; red lines two orders of magnitude higher intensity). E = 0 µeV cor-
responds to the resonance of the M=+1 orthoexciton shifted to lower energy
by the energy of the 3Γ−5 LO-phonon (10.58 meV). Inset: Intra- and inter-
band Brillouin-scattering within the orthoexciton parabolas: upper parabola,
M=+1 dispersion; dashed parabola, M=0 dispersion; lower parabola, M=-1
dispersion; solid red arrows, intraband scattering with STA-phonons; dashed
blue arrows, interband scattering with LA phonons; E = 0 µeV corre-
sponds to the resonance of the M=+1 orthoexciton. For the wavenumber
x = h̄ck/

√
εb with εb = 8.64 is used.

sity while the red line shows the spectrum taken at two orders of magnitude
higher excitation intensity. Apparently, at the expected scattering energies,
indicated by the red hatchings, the signal remains constant with respect to
the Raman peak. Nevertheless, at distinct scattering energies the signal is in-
creased and certain scattering directions seem to be favored. However, these
can not be assigned umambigiously to forward or backward scattering along
[001]. As shown in the inset in Figure 6.7 the energy range marked by the
red hatching from −56 µeV to 157 µeV is assigned to TA scattering (upper
two red arrows) from the M=+1 to the two other orthoexciton states. The
energy range marked by the red hatching from −259 µeV to 293 µeV can be
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identified with TA scattering from the M=0 (lower red arrows). Exactly at
the M=0 resonance a striking peak shows up, which is comparable in inten-
sity with the intensity of the Raman peak1. An emission at this resonance
becomes plausible if one considers interband LA scattering as indicated by
the blue dashed lines in the inset in Figure 6.7. The underlying scattering
process could be identified as LA phonon scattering from the M=1 resonance
to the “backward” M=0 resonance. The process has to be mediated by off di-
agonal shear deformation (3Γ−5 ) since the eigenstates are orthogonal and thus
the contribution by compression (1Γ−1 ) vanishes. In contrast to the experi-
ments along [11̄0], in [001] direction M±1 and M=0 quadrupole excitation
and 3Γ−5 optical phonon emission from all three states are allowed. Due to
the strong M=0 resonance enhancement, the LA scattering from M=+1 to
M=0 becomes probable even though it is only mediated by shear strain.

6.4 The influence of phonon focusing

The occurrence of particularly favored scattering directions of acoustic phon-
ons motivates the consideration of so called phonon focusing - the anisotropy
in phonon flux2.

In the general case the phonon wave vector q and the group velocity
vg are not collinear. The construction of the locus of the wave vector for a
constant frequency leads to a “slowness surface” with the slowness vector s =
q/ω. The radial dimension of the slowness surface in a particular direction
is inversely proportional to the phase velocity v in that direction:

s = |q|/ω = 1/v.
�� ��6.1

Since the group velocity vg is the gradient of the constant frequency surface
in q-space, vg = ∇k ω(k), for a given wave vector q, pointing from the origin
to the surface, the group velocity vg is always perpendicular to the surface at
that point. This is indicated by the arrows in Figure 6.8 which shows cross
sections of the slowness surfaces for Cu2O in the (110) plane calculated with
the phase velocities for LA, STA and FTA phonons (equation 2.4) . The
phonon flux is parallel to the group velocity, and hence an isotropic distri-
bution of q vectors is transformed into a distinctly anisotropic distribution
of group velocities. Thus, phonon energy is focused or defocused depending
on the sign of the curvature of the slowness surface. This is the basic idea

1Due to selection rules the M=0 resonance peak exceeds the Raman peak in the 2Γ−
3

phonon assisted emission.
2A detailed review on phonon focusing and phonon imaging can be found in Ref. [78].
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Figure 6.8: Intersections of slowness surfaces with the (001) plane for the
three acoustic phonon modes in Cu2O (blue line, LA phonon; green line, FTA
phonon, red line, STA phonon). The dotted arrow marks the [111] direction
with the conic contact of the FTA and STA slowness surface. Group velocities
vg are normal to the surface (solid arrows) and generally not collinear with
q (dashed arrows).

of phonon focusing, which was first introduced in Ref. [79, 80] and further
developed in Ref. [81].

Figure 6.8 shows that slowness surfaces for different modes may touch
each other either tangentially or conically at a point. Along the [001] direc-
tion the STA and the FTA surface meet tangentially, along [111] (indicated
by the dotted arrow) they meet conically in a point. Out of this point, in
a cross section taken slightly out of the (110) plane, the two surfaces are
separated. A striking peculiarity of this conical point is the cone centered
around the [111] axis inside of which no FTA group velocities are present, an
effect known as internal conical refraction [82, 83].

To quantify the angular variation of phonon flux, one can define an en-
hancement factor A, which is the variation of energy flux for a given propa-
gation [81]

A =

∣∣∣∣∆Ωq

∆Ωv

∣∣∣∣ ,
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where ∆Ωq is an infinitesimal solid angle of wave vector and ∆Ωv the corre-
sponding solid angle of group velocities. The enhancement factor A relates
the two dimensional q-space (θq, φq) to the two dimensional vg-space (θv,
φv) and the ratio of the elemental areas in these spaces corresponds to the
Jacobian determinant3 J of the functions f and g

dΩv = d(cos θv)dφv = Jd(cos θq)dφq = JΩq

with

J =
∂f

∂ cos θq

∂g

∂φk
− ∂g

∂ cos θq

∂f

∂φk
.

Hence the enhancement factor can be expressed by the inverse of the dimen-
sionless Jacobian

A =

∣∣∣∣∆Ωq

∆Ωv

∣∣∣∣ =

∣∣∣∣ 1J
∣∣∣∣ .

Three dimensional illustrations of the slowness surfaces and the enhance-
ment factors for the three acoustic phonons are shown in Figure 6.9. The
surfaces have been calculated in spherical coordinates, where the radius of
the wave vector is given by the inverse of the phase velocity 1/v(θq, φq). The
enhancement factors are shown as a false color representation and have been
calculated according to Ref. [84] with the input parameters (θq, φq) and the
elastic constants. The slowness surfaces can either have a convex, concave or
saddle like Gaussian curvature. At the folds, where the sign of the curvature
of the slowness surface changes from positive to negative (inflection points),
sharp singularities in flux (caustics) occur, which can be observed for the
STA and FTA phonons. Since the slowness surface of the LA phonon has a
totally convex topology, no inflection points can be found. Note that there
is almost no enhancement for the LA phonon (A ≈ 1).

Tab 6.2 summarizes the calculated enhancement factors A and the phase
velocity v for the three acoustic phonons in Cu2O along [001] and [110].

LA STA FTA
[001] [110] [001] [110] [001] [110]

v [km/s] 4.50 4.60 1.49 1.14 1.49 1.49
A 0.70 1.10 62.6 0.16 62.6 3.75

Table 6.2: Calculated enhancement factors Ai and phase velocity v for the
three acoustic phonons in Cu2O along two major crystallographic directions.

3The Jacobian determinant is related to the Gaussian curvature K of the slowness
surface by J = K|q|2 cos ξ, where ξ is the angle between q and vg.
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6.5. SUMMARY

In the context of transversal Brillouin scattering along [001] and [11̄0],
Tab. 6.2 and especially the enhancement factor shown on the slowness surface
in Figure 6.9 demonstrate that enhancement of the scattering lines along
these directions due to phonon focusing can be considered as negligible. This
is in particular the case for STA phonon scattering along [110], where the
enhancement is actually < 1. For the STA phonon and for the FTA phonon
the enhancement of phonon flux is increasing as soon as the direction q
deviates slightly from [001] and approaches [110]. Yet, a correlation with the
absence of a stimulation signal in the [001] measurments is not clear.

6.5 Summary

In conclusion, it has been shown that orthoexcitons in Cu2O are ideal candi-
dates to investigate stimulated Brillouin scattering within exciton subbands.
It has been demonstrated that resonant excitation of 1S orthoexcitons in
Cu2O in a magnetic field leads to a fine-structure in the 2Γ−3 and 3Γ−5 optical
phonon assisted emission which can be attributed to intra- and interband
resonant Brillouin scattering (RBS). For increasing power a strong nonlinear
enhancement of the intensity of this fine-structure can be observed. This
intensity dependence of the Brillouin scattering lines exhibits a stimulation
threshold for rather low excitation intensities. Beyond this threshold each
line splits into two lines. The emission becomes highly directional parallel
and antiparallel to the exciting laser. The energetic positions of the stimu-
lated Brillouin scattering lines in Voigt- and Faraday configuration are con-
firmed by the use of a detailed kinematic model and an estimation of the
relevant scattering probability with the help of deformation potential theory.
A strong asymmetric resonance dependence is observed, although its origin
is still unclear. Resonant Brillouin scattering with orthoexciton sublevels
has been confirmed in different crystals and along different crystallographic
directions. However, some samples do not show RBS scattering at all. It is
tempting to speculate on “seeding” a state in the lowest orthoexciton with
k = 0 and bypass the relaxation bottleneck [85]. However, condensation
is unlikely since it is not feasible to create the critical density. The mayor
obstacle is the short orthoexciton lifetime and the lifetime shortening effect
with increasing exciton density [86].

The results presented in this chapter have been published in Ref. [66].
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There are two possible out-
comes: if the result confirms
the hypothesis, then you’ve
made a measurement. If the
result is contrary to the hy-
pothesis, then you’ve made a
discovery.

Enrico Fermi (1901-1954)

7
Conclusions

The present studies contribute to the long search for a Bose-Einstein con-
densation of excitons in cuprous oxide with a deeper understanding of the 1S
excitons in Cu2O. It became apparent that only high resolution spectroscopy
made the necessary detailed analysis of the 1S excitons possible.

Since optical phonon assisted emission to the 1S excitons is considered
as a replica of the population of the corresponding exciton state, phonon
assisted emission processes have been examined in detail considering their
emission width, strength and feasibility to detect a Bose-Einstein condensa-
tion at k = 0. Except the 3Γ+

5 phonon, all optical phonons in Cu2O could be
identified, and the 3Γ−5 phonon assisted luminescence turned out as most ap-
propriate for this scenario due to its narrow emission width. Even though it
has only a small emission intensity compared to the emission intensity of the
wider 2Γ−3 optical phonon in a high magnetic field, the high resolution setup
is by far sensitive enough to observe this phonon with an impressive statis-
tics. Up to now, however, there is no evidence for a significant population at
k = 0.

With the help of two phonon excitation spectroscopy the long lasting
question about the paraexciton mass could be solved. A detailed, merely
kinematical analysis yielded, besides an accurate value of the paraexciton
mass, the refractive index and the kinetic paraexciton energy with only the
longitudinal acoustic sound velocity as an input parameter. Furthermore it
proved the importance of the central cell corrections.

The same technique allows the examination of the orthoexciton sublevels
with the high resolution of the laser. Even though the spectra became rather
complex due to k-space dependent scattering probabilities and selection rules,
a limit for the previously unaccessible isotropic exchange parameter ∆1 was
derived.

Furthermore, this work shows that resonant Brillouin scattering within
orthoexciton sublevels is highly directional, parallel and antiparallel to the
exciting laser and exhibits a strong non-linear enhancement of the Brillouin
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scattering intensity. A detailed kinematical analysis of the magnetic field de-
pended scattering peaks allowed the precise determination of the STA sound
velocity along [110]. A strong asymmetric resonance dependence is observed,
but its origin is still unclear. Although the technique opens the possibility
to stimulate orthoexcitons with arbitrary k values, seeding of k = 0 orthoex-
citons to create a BEC is considered to be not feasible to reach the critical
density.

The major obstacle on the way to condensation of the 1S excitons, and
in particular the paraexcitons, seems to be the lifetime limiting two-body
decay process that impedes the creation of a critical exciton density. Since
the critical density is proportional to the temperature T 3/2, lowering the bath
temperature may help. For this venture a 4He cryostat is not suitable since
even with powerfull pumps, the bath temperature won’t drop below 1 K.
A solution is offered by a 3He cryostat or 3He/4He dilution cryostat with
temperatures in the mK regime. First experiments with a 3He insert for the
cryostat, however, showed that the cooling power of 3He is not sufficient at
high excitation intensities to keep the exciton temperature below 1 K. Fur-
thermore paraexciton beat experiments [44] revealed that the thermalization
of the exciton gas with the phonon bath becomes inefficient at these low
temperatures.

A promising attempt to reach the condensation of excitons seem to be a
confinement of excitons in a potential trap since a confinement is anticipated
to relax the conditions for a BEC significantly. In particular, a reduction
of the critical density by several orders of magnitude and of the bimolecular
exciton decay is expected. The confinement can be realized by a Hertzian
contact [87], e.g. by the use of a lens with a small radius of curvature as
a plunger that is pressed on the sample. The appearance of condensation
of excitons in the trap can be proved either spatially, as proposed in [88],
spectrally via phonon assisted emission, or by measuring the coherence of
the relevant emission. An unambiguous proof of an excitonic BEC would
include all three manifestations of a BEC. In this context it is tempting to
resolve the discretized levels in the trap with the high resolution laser.

Despite the fact that numerous experiments and futile attempts to proof
BEC of excitons in Cu2O have been performed, Cu2O is still a fascinating
material. Though the Bose-Einstein condensation of excitons has not been
proved unambiguously up to now, on the way to this objective interesting
and surprising discoveries were made and are still expected.
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A. KINEMATICAL ANALYSIS I

A Kinematical analysis I

The analysis of the kinematics of the paraexciton two-phonon excitation spec-
troscopy yields simple expressions for the paraexciton mass mp, the kinetic
energy E0 at k0 and the refractive index n as shown in the following para-
graph. Starting from energy and momentum conservation

Ei = Ex(ki)− Ex(k0), i = 1, 2

k2
i = k2

0 + q2 + 2 k0 q cosφ, φ1 = 0◦, φ2 = 180◦

with the exciton dispersion Ex(k) = h̄2k2

2Mpm0
, the LA phonon wavevector q and

the two states of the rise and the fall of the plateau (ki, Ei) one obtains

�
�
�
��h̄2k2

0

2Mpm0

+
h̄2q2

2Mpm0

± h̄2koq

2Mpm0

−
�

�
�

��h̄2k2
0

2Mpm0

= Ei, i = 1, 2

where the (+)-sign corresponds to i = 1 and the (-)-sign to i = 2. The phonon
wavevector can be expressed by q = Ei/h̄vLA with the LA sound velocity
vLA, the wavevector of the kinetic energy is given by k0 =

√
2Mpm0E0/h̄

and hence

E2
i

2Mpm0v2
LA

± 2h̄2(
√

2Mpm0E0/h̄)Ei

2Mpm0vLA
= Ei

⇒ Ei
2Mpm0v2

LA

± h̄
√

2Mpm0E0

Mpm0vLA
= 1.

�� ��1

Adding up over i
1

2Mpm0v2
LA

(E1 + E2) = 2
�� ��2

and expanding with c2 leads finally to the equation

Mp =
1

4m0c2

(
c

vLA

)2

(E2 + E1).

From the difference of E1 and E2 in Eq. 1 one obtains

1

2Mpm0v2
LA

(E1 − E2) = −2

√
2Mpm0E0

Mpm0vLA
,

�� ��3

1

4v2
LA

(E2 − E1)2 = 4(2Mpm0E0)
�� ��4
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and by dividing Eq. 4 by Eq. 2

2Mpm0v
2
LA

4v2
LA

(E2 − E1)2

(E2 + E1)2
=

4(2Mpm0E0)

2

E0 =
1

8

(E2 − E1)2

(E2 + E1)

a simple expression for the kinetic energy E0 of the paraexciton is derived
depending only on the sum and the difference of the energy readings of E1

and E2.
From

h̄2k2
0

2Mpm0

= E0 and
h̄ck0√
εb

= EP

with the paraexciton resonance energy Ep follows√
2Mpm0E0 = n

Ep
c
.

�� ��5

By inserting Eq. 5 into Eq. 4 one obtains for the refractive index

n =
1

4EP

(
c

vLA

)
(E2 − E1).

B Kinematical analysis II

This appendix shows the derivation of the Brillouin scattering energies for TA
and subsequent LA scattering exemplarily from M=+1 to M=-1 and for the
wavevector k ‖ [11̄0] and the magentic field B ‖ [001] (Voigt configuration).

Starting from the eigenvalue equation

H(k,B)|ΨO〉 = E
(M)
O (k,B)|ΨO〉

with the Hamiltonian H including the k2-dependent exchange interaction
J1,J3,J5,JQ, and Zeeman pertubation HB yields the dispersion for the three
orthoexciton states. From a parabolic fit of the dispersion one obtains the
slope ηB in µeV/(eV)2 of the M=-1 parabola (red line in Fig. 1) and the
energetic separation δB of the M=+1 at k = k0 and M=-1 at k = 0 or-
thoexcitons (blue line in Fig. 1). For convenience the the TA phonon energy
ETA = ṽTA(x − x0) can be expressed with the dimensioneless sound veloc-
ity ṽTA =

√
εbc
−1vTA · 106 and the wavevector x = h̄ck/

√
εB in eV. The

intersection of the phonon line with the exciton dispersion

∓ṽTA(x− x0) = ηBx
2 + δB
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Figure 1: Magnetic field dependence of the slope of the exciton parabola ηB
(M=-1) in µeV/(eV)2 (red line) and the energy separation δ(B) of the M=+1
at k = k0 and M=-1 at k = 0 orthoexciton states (blue line) for k ‖ [11̄0],
B ‖ [001].

describes the TA phonon scattering for x0 on the M=+1 state (− sign cor-
responds to forward (fw), the + sign backward (bw) scattering) to exciton
wavevectors on the M=-1 parabola which are given by the solution of the
quadratic equation

x
(fw/bw)
TA = ∓ ṽTA

2ηB
±
√
ṽ2
TA

4η2
B

± 1

ηB
[ṽTAx0 ± δB].

Analogous, the intersections of the LA phonon line starting from the derived
TA scattering energy and wavevector within the M = −1 exciton parabola

±ṽTA(xTA − x0)∓ ṽLA(x0) = ηBx
2 − δB

yields the exciton wavevector in which the TA phonon scatters

x
(fw/bw)
LA = ∓ ṽLA

2ηB
±

√
ṽ2LA

4η2B
± 1

ηB
[ṽTA(x

bw/fw
TA − x0) + ṽLAx

bw/fw
TA ∓ δB ].

Finally the scattering energies are simply given by

E
fw/bw
TA/LA = ηBx

fw/bw
TA/LA.
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