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Abstract

We model the pricing of public debt in a quantitative macroeconomic model with gov-

ernment default risk. Default occurs if a shift in the state of the economy leads to a

build-up of debt that exceeds the government�s ability to repay. Investors are unwilling

to engage in a Ponzi game and withdraw lending in this case and thus force default at an

endogenously determined fractional repayment rate. Interest rates on government bonds

re�ect expectations of this event. There may exist multiple bond prices compatible with a

rational expectations equilibrium. At high debt-to-output ratios, small changes in funda-

mentals lead to steeply rising risk premia. Key determinants of the level of indebtedness

at which this occurs are the perceived amount of aggregate risk, the feasibility of revenue

maximizing tax rates, and the maturity of bonds.
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1 Introduction

The recent �nancial crisis has turned into a �scal crisis in several European countries.

An unusually large adverse shock has reduced tax revenues and lead to higher government

spending in an attempt to mitigate the consequences of the shock for aggregate output and

employment. The resulting boost in public de�cits has produced unprecedented levels of

government debt, which are already above 100% of yearly GDP in some countries and are

predicted to rise to even higher levels in the near future. Sizeable yield spreads between

government bonds of member countries of the European Monetary Union have emerged,

and for some countries (in particular for Greece and Portugal), yield spreads increased

dramatically in the �rst quarter of 2010. While these spreads arguably re�ect the risk

that governments default on their debt obligations, the magnitude and the dynamics of

bond spreads are hardly understood.

According to conventional wisdom, sovereign default risk premia should increase with

the level of public debt, which is also found by several empirical articles that study the

relation between interest rate spreads of public bonds over some risk-free benchmark to the

level of a sovereign issuer�s indebtedness (e.g. Manganelli and Wolswijk, 2009, Codogno

et al., 2003, Bernoth et al., 2006, Akitobi and Stratmann, 2008, Schuknecht et al., 2008).

However, there is a stunning variation in the relation between levels of government debt

and observed interest rate spreads on public bonds. For instance, in the last quarter of

2009, Greece had a debt-to-gdp ratio of 115% and its bonds in the �rst quarter of 2010 paid

an interest rate spread over German bonds of 3.06 percentage points. At the same time,

public debt was 96.8% of gdp in Belgium with Belgian bonds yielding only 0.23 percentage

points above German ones.3 Thus the question arises why similar levels of public indebt-

edness can lead to wildly divergent levels of risk premia that manifest themselves in large

di¤erences in interest rate spreads. Moreover, recent events, in particular in Greece, have

shown that spreads can rise strongly and very rapidly, without much short-run change in

fundamentals, if investors fear impending default. Another question thus is what drives

the dynamics in risk spreads and why they may virtually explode at some point.

In this paper, we argue that empirical government bond price movements can be inter-

preted as being driven by shifts in expectations, where the ultimate source of these shifts

can be either non-fundamental or fundamental events. In particular, our point is that

investors�willingness to lend, and thus to roll over debt, is essential for the expectations of

sovereign default. Hence, if �for any reason �default is expected to be very likely, lenders

demand a high interest rate premium to be compensated for default risk, which raises the

3The spreads data pertain to ten year government bond yields, OECD main economic indicators, while
the debt-to-gdp �gures are from Eurostat.
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debt burden even more such that the probability of default actually increases. Phrased

di¤erently, default expectations can be self-ful�lling. On the other hand, the probability of

default �and thereby risk premia �also depend on fundamentals and expectations thereof.

A government�s debt repayment capacity increases with the present value of government

surpluses, such that its credibility to raise future revenues is essential for the perceived

probability of default. Lenders�expectations about a government�s capacity to repay debt

out of current and future surpluses are decisive for the premia they demand as a compen-

sation for the risk of sovereign default. Likewise, if future macroeconomic developments

are more uncertain, the perceived default probability and risk premia increase.

The paper presents a simple model which accounts for these mechanisms. We apply a

dynamic general equilibrium framework and consider an indebted government that fails to

guarantee repayment of debt in all periods, while it nevertheless aims at avoiding default

as far as possible. Speci�cally, we consider a government that levies a proportional tax

on labor income (there are no lump-sum taxes available). It issues non-state contingent

one-period debt contracts to �nance a given stream of real government expenditures, while

uncertainty is due to aggregate productivity shocks.4 The government repays its debt as

far as possible. In case of default, lenders can just seize current net revenues from the

government (a situation that di¤ers from private credit relations where the lender may

become a claimant on future pro�t streams).5

What determines sovereign default and risk premia in this model? Consider an adverse

productivity shock. If the shock makes the present value of future surpluses fall short of

covering the level of outstanding debt, even if the revenue maximizing tax rate �which is

well de�ned here, because with only labor income taxation there is a tax La¤er curve with

an interior maximum �, is levied for the entire future, the government�s debt repayment

capacity is exceeded. A potential household-lender who realizes that he would support

a Ponzi game if he invested in government bonds will stop lending to the government.

In this case, default becomes inevitable and current surpluses are distributed to bond

holders, who therefore experience only a partial redemption of their investments. Each

individual lender assesses the probability that this event will occur in the next period

and consequently demands a default risk premium as a compensation for expected losses.

Concisely, default occurs if current debt exceeds the debt repayment capacity, while the

repayment rate is residually determined by available revenues of the government that

cannot roll over debt. This may give rise to self-ful�lling price expectations: if investors

4Section 4.4 also studies the changes that arise if the government issues debt of longer maturity.
5The only risk associated with investments in public debt is default risk, since we assume that bonds

are real so that debt revaluations via price level shifts (which are the focus in the �scal theory of the price
level, see Woodford, 1994, Sims, 1994, or Niepelt, 2004) are impossible.
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assign a higher probability to sovereign default, they demand a higher risk premium, which

raises debt servicing costs and indeed tends to lower the repayment rate.

Our approach to model sovereign default is related to Uribe�s (2006) �Fiscal Theory of

Sovereign Default�. He considers nominal debt and exogenous surpluses in an endowment

economy to demonstrate that default is inevitable under certain monetary-�scal policy

regimes. Apart from these details, our strategy to determine default substantially di¤ers

from his approach. As shown in Schabert (2010), the intertemporal budget constraint is

not su¢ cient as a criterion to determine the default rate, i.e. the fractional rate of repay-

ment of outstanding debt in the case of default. For the case which is most closely related

to our set-up, Uribe (2006) introduces an additional ��scal policy constraint restricting

the behavior of the default rate�(p. 1869), which allows to uniquely determine the equi-

librium interest rate. For example, he considers a policy rule whereby the government

decides to default if the tax-to-debt ratio falls below a certain threshold. In the present

paper, in contrast, we instead introduce the assumption that investors stop lending in the

case where a government Ponzi-game becomes inevitable, which allows us to determine

an entire sequence of default rates without any additional restriction on the government�s

behavior.6

Our approach to model default risk further di¤ers from a large body of theoretical

literature on sovereign default that focuses on external debt in open economies. In this

literature, default is modelled as an optimal decision of the government that trades o¤costs

and bene�ts of not serving external debt (see Eaton and Gersovitz, 1981, or Arellano, 2008,

among others). While this assumption has proven to be useful for the case of external debt

of emerging market economies, we view it as less suited to explain risk premia in economies

where governments have not been observed defaulting on their debt in the recent past.7

The main results are as follows. Generally, there exist multiple equilibrium prices

for government debt. In particular, two interest rates on government bonds can exist in

equilibrium: both a combination of high interest rates, high default risk, and high public

debt, as well as one of low interest rates, low default risk, and low public debt can be

compatible with the expected rate of return of investors and with the government�s demand

for external funds. Default immediately occurs if the lenders coordinate their expectations

on a high risk equilibrium, thereby imposing an unsustainable �nancing burden on the

government through high risk premia in the period of maturity. The mechanism that links

6Without such an assumption or Uribe�s (2006) �scal closing rules, default rates (and rational expec-
tations thereof) can only be determined in the initial period, as shown in Schabert (2010). Bi (2010),
who also applies Uribe�s framework, assumes that the default rate is a policy choice variable and sets it
exogenously.

7Our approach can further be motivated by the empiricial evidence in Reinhart and Rogo¤ (2008), who
�nd that in surprisingly many cases default does not involve external debt.
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high interest rate premia due to default expectations to the actual default probability is

similar to the one in Calvo (1988), with the di¤erence that in our model the government

does not default voluntarily.

Furthermore, even abstracting from self-ful�lling default expectations, we show that

under certain conditions the government�s maximum debt repayment capacity may be so

stringent that default becomes inevitable for fundamental reasons. When we focus on

the low equilibrium interest rate, which exhibits plausible comparative static properties,

default premia are monotonically increasing in the initial debt level and depend negatively

on productivity, as expected. We analyze the model�s predictions with respect to default

premia in terms of the implied equilibrium bond pricing curve that gives the relation

between the beginning-of-period debt level and the interest rate that market participants

demand over the risk free interest rate in equilibrium. We show that this equilibrium

pricing curve can be extremely steep above certain critical levels of debt to gdp.

For the baseline parameterization of the model, in which parameters are chosen to

capture some relevant quantitative features of the average of European Monetary Union

member countries in a stylized way, we show that non-negligible interest rate spreads

would emerge only for very high levels of debt around 200% of gdp. For the average

Eurozone country, thus, the model predicts that �scal spare capacity is ample, and thus

that risk premia should be negligible at observed debt-to-gdp levels, which is consistent

with empirical evidence. However, we also demonstrate the in�uences on the equilibrium

pricing curve, and hence the factors that lower the critical debt levels above which risk

spreads begin to rise steeply. In particular, we point out three such in�uences.

The �rst is the perceived amount of aggregate risk. If investors believe that aggregate

risk increases in the future, the perceived probability that a future adverse shock forces

government default is higher, all else equal, such that investors will claim higher risk pre-

mia. Second, the level of debt that market participants consider to entail a non-negligible

default risk depends on investors�perception of the political ability of the government to

raise distortionary taxes. If the politically feasible tax rate is perceived to be substantially

lower than the revenue maximizing tax rate, there can be high default risk premia even

at relatively low levels of debt to gdp. The third in�uence is the maturity of debt. In

the baseline model, all government debt is in the form of one period debt. In practice,

however, governments typically issue bonds with longer maturity. These are subject to de-

fault risk in several periods ahead and are thus more vulnerable in the presence of serially

correlated productivity shocks. We show that in an example with two period government

bonds, spreads on annualized yields are higher than in the case of one period bonds only.

We use these theoretical results to ask what our model can contribute to the under-
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standing of movements in risk premia on Eurozone government bonds as recently observed.

Speci�cally, we parameterize the model to capture some essential empirical properties of

�scal policy and of aggregate risk in Greece. We �nd that risk premia at the level of

several dozens of basis points that have been observed in Greece prior to and well into

2008 can be explained by the model, if we take into account the severity of the recent

recession and the fact that bonds with a maturity of several years are common. However,

the extreme rise in risk premia that have very recently been observed must be blamed on,

according to the logic of our model, either a loss of con�dence in the political ability of

the Greek government to raise taxes su¢ ciently, or even non-fundamentally induced shifts

in expectations.

The remainder is organized as follows. Section 2 introduces the model. Section 3

describes the determination of equilibrium bond prices. Section 4 presents quantitative

results and section 5 concludes.

2 The model

In this section we present a simple real dynamic general equilibrium model where the

government levies income taxes and issues non-state contingent one period debt. Labor

supply is endogenous, which gives rise to a La¤er curve that bounds equilibrium tax

revenues. We consider the case where �scal policy does not guarantee that the government

never runs a Ponzi-game.8 Households are assumed to stop lending to the government

when they realize that a Ponzi scheme is inevitable. Without further access to credit,

the government defaults while lenders can seize current net revenues. Households know

that this event is possible when adverse productivity shocks lead to a build-up of public

debt. They form expectations of the future fractional rate of repayment of government

debt. Accordingly, in an arbitrage-free equilibrium risk premia exist that compensate

household-lenders for the risk of government default.

2.1 The private sector

There exists a continuum of in�nitely lived and identical households of mass one. Their

utility increases in consumption ct and decreases in working time lt, the latter variable

being bounded by a unit time endowment such that lt 2 (0; 1). The objective of a repre-
sentative household is given by

maxEs

1X
t=0

�t
�
ln ct+s +

1� lt+s



�
; with � 2 (0; 1); 
 > 0, (1)

8This assumption is analoguous to the �scal policy speci�cation in Uribe (2006) and in the �scal theory
of the price level (see Sims, 1994, and Woodford, 1994). In contrast to these studies, in our purely real
model the price level is irrelevant.
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where � denotes the discount factor. Households borrow and lend among each other via

one-period private debt contracts. Private debt is introduced here to de�ne a risk free

interest rate Rrft . Let dt�1 denote the beginning of period net private asset position and

1=Rrft the period-t-price for a payo¤ of one unit of output in period t+1. We restrict our

attention to the case where private debt contracts are enforceable and households satisfy

the borrowing constraint

lim
t!1

�
dt+s=R

rf
t+s

� tY
i=1

1=Rrfs+i�1 � 0: (2)

Utility maximization subject to the borrowing constraint (2) requires the following �rst

order condition for borrowing and lending in terms of private debt (i.e. the consumption

Euler equation) to be satis�ed

c�1t = Rrft �Et
�
c�1t+1

�
; (3)

as well as the transversality condition

lim
t!1

Es

�
dt+s=R

rf
t+s

� tY
i=1

1=Rrfs+i�1 = 0. (4)

Households can further invest in one-period government bonds bt, subject to b�1 > 0 and

bt � 0. The government o¤ers one-period debt contracts at the price 1=Rt in period t that
promise to deliver one unit of output in period t+1. In contrast to private borrowers, the

government does not guarantee full debt repayment. In case of default the lenders will

proportionally be served with current net revenues. It should be noted that this di¤ers

from the case of lending to a �rm, where default typically leads to lenders�taking over the

�rm as a claimant on future pro�t streams through a debt-to-equity swap.

If current and discounted future surpluses are expected to be large enough to repay

outstanding debt, the household optimality condition for investment in government bonds

would be the analogue to the Euler equation (3), namely, c�1t = Rt�Et
�
c�1t+1

�
. The

requirement bt � 0 further requires that in the household optimum the transversality

condition

lim
t!1

Es (bt+s=Rt+s)

tY
i=1

1=Rrfs+i�1 = 0; (5)

holds, where Rt+s = Rrft+s when the government fully services its debt obligations. If

beginning-of-period public debt exceeds a level that is too high to be repayable even for

the maximum present value of budget surpluses (see section 2.2 for a de�nition), the

government runs into a Ponzi game, which would be inconsistent with the households�

transversality condition (5). In this case, households are assumed to stop lending to the
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government, which necessarily implies that the government defaults in period t, i.e. can

honor only a fraction of its debt obligations out of current surpluses.

Since households are assumed to have rational expectations, they realize the possibility

of partial default on government bonds and account for the probability of default (of course,

since households are atomistic, an individual investor does not take into consideration the

in�uence of his behavior on the probability of default). Let 1 � �t denote the fraction of
government bonds that is redeemed and �t 2 [0; 1] the default rate. The household �ow
budget constraint then reads

ct + (bt=Rt) +
�
dt=R

rf
t

�
� (1� � t)wtlt + (1� �t) bt�1 + dt�1 + �t;

where �t are �rms�pro�ts, and labor income wtlt (with the real wage rate wt) is subject

to a proportional tax rate � t 2 (0; 1). The household optimum is characterized by the �rst
order conditions (3),

ct= 
 (1� � t)wt; (6)

c�1t =Rt�Et
�
c�1t+1 (1� �t+1)

�
; (7)

and the transversality conditions (4) and (5). Note that the Euler equation for risky

government debt, (7), di¤ers from the one for risk-free private debt (3), in that the pricing

of government bonds is a¤ected by the fact that repayment is expected to be only partial

because of possible future default.

If debt bt+s�1 at the beginning of some period t+s is too large such that a Ponzi game

becomes inevitable, households do not lend to the government, i.e. the end of period debt

equals zero, bt+s = 0, and the government defaults. Lending may resume, however, in the

subsequent periods, when partial default has ameliorated the �scal position.

Perfectly competitive �rms produce the output good yt with a simple linear technology

yt = atlt; (8)

where labor productivity at is generated by

at = �at�1 + (1� �)a+ "t; (9)

here a > 0 is a constant long-run average productivity level, the coe¢ cient of autocorre-

lation is �, and "t is an i.i.d. zero mean random variable. Labor demand satis�es

wt = at: (10)
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2.2 The public sector

The government does not have access to lump-sum taxation. It raises revenues by issuing

debt and taxing labor income, and purchases an exogenously given amount gt of the

�nal good in each period. Throughout, we assume government spending to be constant,

gt = g > 0. The underlying assumption is that political constraints make a certain amount

of government spending inevitable. The �ow budget constraint is given by

btR
�1
t + st = (1� �t) bt�1; (11)

where the surpluses st equal tax revenues net of expenditures,

st = � twtlt � g: (12)

The government does not guarantee to fully service debt. We assume that the government

does not preclude that public debt might evolve on a path that implies a Ponzi scheme.

Since households are not willing to engage in such schemes, they may stop lending and

(temporarily) disrupt the government from access to credit.

To see this, consider, for a moment, the default free case, i.e. presume the non-

repayment rate �t+k were equal to zero for all k � 0. In this case, one would obtain

by iterating the government �ow budget constraint (11) forward and taking expectations,

�t+k = 0 8k � 0)

bt�1 = Et

1X
k=0

st+k

kY
i=1

(1=Rt+i�1) + lim
k!1

Etbt+kR
�1
t+k

kY
i=1

1

Rt+i�1
: (13)

Now suppose that outstanding debt bt�1 exceeds the present value of future surpluses, i.e.

the �rst term on the right hand side of (13). Then, the limit term would exceed zero,

limk!1Etbt+kR
�1
t+k

Qk
i=1 1=Rt+i�1 > 0. By de�nition, the government would then run

into a Ponzi game. But this, together with Rt+k = R
rf
t+k 8k � 0 for �t+k = 0 (see 3 and

7) would be inconsistent with the households�transversality condition (5). As mentioned

above, we assume that households will then stop lending to the government, such that

bt = 0 in that period. The only way for the government budget constraint (11) to be

satis�ed in this case is through default in the sense �t > 0.

As a speci�c way to implement a �scal policy that entails default risk in this sense,

we assume that the government keeps the tax rate constant, � t = � . This is a prominent

example of a large class of �scal rules that do not incorporate enough self-corrective

behavior on the part of the government as to avoid Ponzi schemes in each period of time.9

9This assumption rules out the debt stabilizing behavior that has been found by Bohn (1998) to char-
acterize US �scal policy empirically.
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However, it can also be viewed as a natural benchmark in this framework: if government

bonds were state contingent, it is well-established that in this type of model an optimal

income tax rate under commitment (and without default) would have to be constant

and su¢ ciently large to �nance initial outstanding debt and future expenditures (see e.g.

Ljungqvist and Sargent, 2004). In this paper, government bonds are however non-state

contingent, which implies that this type of tax policy is in general not consistent with a

set of �measurability constraints� for each period that relate the present value of future

surpluses to the beginning of period stock of public debt to rule out Ponzi games (see

Ayiagari et al., 2002). The choice of a constant tax rate can thus, besides being a simple

example, be seen as the strategy of a government that ignores this subtle di¤erence and

sets the tax rate as if debt was state contingent.

Note that there exists a maximum value for the present value of future surpluses, which

we call the maximum debt repayment capacity. The latter is the maximum amount of debt

that the government would be able to repay if it imposed the revenue maximizing tax rate

for the entire future. A well de�ned revenue maximizing tax rate, ��, exists because with

proportional labor income taxation there is a tax La¤er curve with an interior maximum

(see section 3 for an explicit derivation). We denote the period t value of the maximum

debt repayment capacity by 	t, de�ned as

	t = Et

1X
k=0

s�t+k

kY
i=1

1=Rrft+i�1: (14)

Here, s�t+k = �
�w�t+kl

�
t+k�g is the maximum period surplus that is obtained if the revenue

maximizing tax rate �� is applied. This leads to corresponding levels of labor income

denoted w�t+kl
�
t+k and the risk free rate R

rf
t+k is applied for discounting.

10 Note that

households will account for the maximum debt repayment capacity for their lending de-

cision in equilibrium. We thereby allow for the case where the current tax rate di¤ers

from the revenue maximizing tax rate, which could in principle be implemented by future

governments.

The maximum initial debt level that can be expected to be repaid without default

is thus characterized by bt�1 = 	t. The government will fully serve debt obligations if

bt�1 � 	t. As long as this is the case, no government default occurs. Default, however,

10Note that the maximum debt repayment capacity bears a resemblance to Aiyagari�s (1994) natural
debt limit for consumers. Private households cannot accumulate more debt than would be expected to
be repaid by pledging the entire stream of future incomes. While households are assumed to respect the
natural private debt limit (as a borrowing constraint), the government is not constrained in an analogous
way, which is why default may occasionally occur in our model.
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becomes inevitable if the current stock of debt exceeds the maximum repayment capacity:

bt�1 > 	t: (15)

If this is the case, tax rates are not able to generate enough current and future revenues

to enable full repayment of outstanding debt.

In the case where (15) is satis�ed, (13) with Rt+k = Rrft+k 8k � 0 is inconsistent

with the transversality condition (5) and no individual household is willing to lend to

the government. The consequence is that aggregate lending to the government comes

to a halt, such that end-of-period debt equals zero, bt = 0, in the current period. The

government is then unable to fully honor its obligations and redeems as much as possible

of its outstanding debt out of current surpluses. As a consequence, repayment will only

be partial. The non-repayment or default rate �t in the case (15) satis�es (see 11):

�t = 1� st=bt�1 (16)

To sum up, if beginning-of-period debt bt�1 is smaller than 	t, households are willing

to lend to the government according to (7), while the government does not default in

period t, �t = 0, and borrows to balance its budget such that end-of-period debt equals

bt = (bt�1 � st)Rt. The price of debt, 1=Rt, then re�ects the probability of default in t+1.
If, however, beginning-of-period debt is too high such that (15) is satis�ed, households

stop lending. The government then has to default and repays debt as far as possible,

with a default rate given by (16). In the period subsequent to a default event, the stock of

government debt is zero and default is not possible in the next period, such that households

are again willing to lend to the government.

2.3 Equilibrium

In equilibrium, prices adjust to clear markets for goods, labor, and assets and the net

stock of risk-free private debt dt is zero in the aggregate. Households�initial asset endow-

ments are assumed to be positive, i.e. the government is initially indebted. A rational

expectations equilibrium is a set of sequences fct; lt 2 [0; 1]; yt; wt, bt � 0, �t 2 [0; 1]; Rrft ,
Rt; stg1t=0 satisfying (3), (6), (7), (8), (10), (12) and

yt= ct + gt; (17)

bt=

(
(bt�1 � st)Rt if 	t � bt�1

0 if 	t < bt�1
; (18)

�t=

(
0 if 	t � bt�1

1� st=bt�1 if 	t < bt�1
, (19)
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(4), (5), and (14), a �scal policy setting � 2 [0; 1], given fatg1t=0, g > 0, and initial debt
b�1 > 0.

The equilibrium allocation is not directly a¤ected by public debt and the (expected)

default rate. The �rst property is due to the fact that the labor income tax is assumed

not to be contingent on the �scal stance. The second property follows from the fact that

default does not lead to resource losses or distortions. Of course, the price of government

bonds will depend on the expected default rate, which can be seen from the asset pricing

equation (7). This re�ection of the probability of future default in the interest rate on

government bonds is our main object of study.

The equilibrium sequences of consumption, working time, output, the wage rate, the

risk free rate and government surpluses fct; lt; yt; wt, Rrft , stg1t=0 are determined for given
g and fatg1t=0 by (6), (8), (10), (12) and (17), which can be summarized by

ct= c (at; �) := 
 (1� �) at (20)

lt= l (at; �) := (c (at; �) + g) =at (21)

st= s (at; �) := �c (at; �)� (1� �)g (22)

Rrft = c (at; �)
�1 ��1=Et

�
c (at+1; �)

�1
�

(23)

as well as wt = at and yt = atl (at; �).11

While the equilibrium sequences fct; lt; yt; wt, stg1t=0 are not a¤ected by sovereign
default, these variables are of course correlated with the default rate �t due to changes in

the state at. In any case, they will be stationary, given that the state at is stationary.

With the above solutions, we can easily identify a time-invariant tax rate to compute

the maximum debt repayment capacity (14). We look for a feasible tax rate �� 2 (0; 1)
that maximizes tax revenues for the case where the state equals its mean (at = a), �wl =

� [
 (1� �) a + g]. This tax rate satis�es F (��) := g + a
 (1� 2��) = 0, such that the

unique tax rate �� that maximizes tax revenues is given by

�� =
1

2
+

g

2a

:

In order to determine the bond prices we need to compute expectations about future

defaults. As can be seen from (36), the maximum debt repayment capacity is solely a

function of (policy and preference) parameters and of the current and future exogenous

states of the economy. Given that it contains expectations of a non-linear function of

future states, we apply a second order approximation of 	t. Though public debt might

11 If default occurs (�t = 1 � st=bt�1) the budget constraints imply ct = (1 � � t)wtlt + (1� �t) bt�1 =
(1� � t)wtlt + st and thus yt = atlt = ct + g.

11



not be stationary, we can exploit the fact that the exogenous state variable at is stationary

and apply a local approximation of 	t at the unconditional mean a. In appendix 7.1, we

show that 	t can be approximated by:

	(at; �"; �; �
�) ' 
 (1� ��) at �

�
f(a)

1� � +
f 0 (a)

1� ��(at � a) (24)

+
1
2f
00 (a)

1� �2

 �
�2"
1� � �

�2"
1� ��2

�
+

�
1� �2

�
(at � a)2

1� ��2

!)
:

According to (24), 	t is a function only of today�s state and time invariant parameter

values. Due to this property we can easily compute equilibrium values for the expected

default rate, public debt, and the bond price.

The expected default rate, public debt, and the bond price have to be determined

simultaneously using the equilibrium conditions (7), (18), and (19). In order to identify

these solutions, we have to consider the probabilities of the two distinct cases 	t � bt�1
and 	t < bt�1.

Let a�t be the productivity level that leads to a maximum debt repayment capacity 	t

that exactly equals beginning-of-period debt bt�1,

a�t : 	 (a
�
t ; �"; �; �

�) = bt�1: (25)

Thus, a�t is the minimum productivity level that allows full debt repayment and thus pre-

cludes default; we will refer to this as the productivity threshold. Further, let �t (at+1) =

� (at+1jat) be the probability of a particular value at+1 conditional on at. Then, the

probabilities of default and of non-default in t+ 1 conditional on the information in t are

prob (	t+1 < btjat; bt) =
Z a�t+1

�1
�t (at+1) dat+1;

prob (	t+1 � btjat; bt) =
Z 1

a�t+1

�t (at+1) dat+1:

We use the asset pricing equation (7), which includes the expectation term Et
�
c�1t+1 (1� �t+1)

�
.

We thereby account for the possibility that consumption and the default rate are not in-

dependent. According to the assumptions in section 2.2, the default rate �t+1 equals zero

if 	t+1 � bt, and �t+1 = 1� st+1=bt if 	t+1 < bt. Hence, Et
�
c�1t+1 (1� �t+1)

�
is given by

Et
�
c�1t+1 (1� �t+1)

�
=

Z a�t+1

�1
�t (at+1)

�
c�1t+1 � (st+1=bt)

�
dat+1 +

Z 1

a�t+1

�t (at+1)
�
c�1t+1 � (1� 0)

�
dat+1

12



Using the solutions (20) and (22), the asset pricing equation (7) can thus be written as

1=Rt =
�

c�1t

24b�1t R a�t+1
�1 �t (at+1)

h
c (at+1; �)

�1 s (at+1; �)
i
dat+1

+
R1
a�t+1

�t (at+1)
h
c (at+1; �)

�1
i
dat+1

35 : (26)

Risk premia can be computed as follows (further details can be found in appendix 7.2):

At the beginning of period t, bt�1 is known and the shock to at realizes. We get solutions

fct,stg from (20) and (22). Then, we can compute the maximum debt repayment capacity
using (24). If 	t < bt�1, the government defaults, while bonds are not traded. For

	t � bt�1, the government does not default in period t. The bond price 1=Rt, end-of-

period debt bt, and the productivity threshold a�t+1 then simultaneously solve (26), the

updated version of (25) which reads bt = 	
�
a�t+1; �"; �; �

��, and the government�s �ow
budget identity

bt=Rt = bt�1 � st. (27)

After the equilibrium bond price 1=Rt is derived, we compute the sovereign risk premium

using Rt �Rrft (using 23), which is non-zero only if 	t � bt�1.

3 Multiple Equilibrium Bond Prices

In this section we examine the determination of bond prices and show that multiple equi-

librium bond prices can exist. For this, we apply a simpli�ed version of the model. To

lighten the notation in this section, we drop the time index and de�ne a = at, a0 = at+1,

a� = a�t+1 for all a 2 (al; ah), where al and ah are positive constants. We assume that the
innovations " are uniformly distributed between al�a and ah�a and that the productiv-
ity level is not serially correlated (� = 0). To further simplify the derivation of analytical

results, we assume that only the �rst-order terms of the maximum debt capacity (24) are

non-negligible.

With these assumptions, consumption, surpluses, and maximum repayable debt are

linear functions of the current exogenous state a:

	(a) = (1� ��)
�

�� � a�1g

�
(1� �)�1 a = �1a; (28)

c (a) = 
 (1� �) a = �2a; (29)

s (a) = �
 (1� �) a� (1� �)g = �3a� �4; (30)

where in each line the second equality sign de�nes the composite parameters �1;2;3;4 > 0.

Further, end of period debt satis�es b = 	(a�) = �1a
� (see 25), and the government

budget (27) demands 1=R = (b�1 � s) =b = (b�1 � �3a+ �4) =�1a�. The asset pricing

13



equation (26) can then be written as

1=R = �a

(
(�1a

�)�1

"
�3

Z a�

al

�
�
a0
�
da0 � �4

Z a�

al

�
�
a0
� �
1=a0

�
da0

#
+

Z ah

a�
�
�
a0
� �
1=a0

�
da0

)
:

With uniformly distributed productivity levels, we get the asset pricing equation

1=R = �
a

ah � al

(
�3
�
b��11 � al

�
� �4 (log b� log �1 � log al)

b
+ (log ah � log b� log �1)

)
;

(31)

where we used that the solvency threshold is de�ned as a� = b=�1 (see 28).

Thus, condition (31), which can be interpreted as a credit supply condition, describes

the bond price 1=R as a function of end-of-period debt b for a given exogenous state a.

Further, the government�s demand for credit is described by the period budget constraint

(27), which reads b=R = (b�1 � s) or using (30), it can be written as

1=R = (b�1 � �3a+ �4) =b: (32)

Credit supply (31) and demand (32) provide two conditions that determine the price 1=R

and the quantity of debt b issued in period t. It can be shown that there are either no or

two equilibrium bond prices, which is summarized in the following proposition.

Proposition 1 Suppose that � ! 1. Then, two equilibrium bond prices 1=R can exist.

Proof. De�ne the RHS of (31) as G(b), such that 1=R = G(b). The derivatives of G(b)

are given by G0(b) = ��f1 + (�1a�)�1 (�4 ln al � �4 ln a� � �3al + �4)gb�1 and G00(b) =
�f1+(�1a�)�1 [�4�2 (�3al � �4)+2�4 (ln al � ln a�)]gb�2, where � = a�= (ah � al). Given
that � ! 1) �1 ! 0 (see 28), G0(b) < 0 and G00(b) > 0 if � ! 1. De�ne the RHS of (32)

as H(b), such that 1=R = H(b), where H 0(b) < 0 and H 00(b) > 0. Since both functions are

G(b) and H(b) are decreasing and convex, they generally exhibit two or no intersections.

Credit demand (32) implies end-of-period debt to be proportional to the interest rate for a

given stock of debt at the beginning-of-period b�1 and the exogenous state a, which re�ects

the fact that the government has to issue more debt if the interest rate is higher. At the

same time, credit supply (31) is also upward sloping, since future surpluses that su¢ ce to

repay debt become less likely for higher thresholds a� (= b=�1), which tends to reduce the

expected return from bonds (since it increases the probability of default) and investors to

demand a higher interest rate for compensation. Yet, with higher end-of-period debt levels

the interest rate increases more than proportionally. Hence, equilibrium credit demand

(32) and credit supply (31) imply that two equilibrium interest rates can exist.

14
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Figure 1: Multiple equilibrium bond prices

Depending on how investors coordinate their expectations, a high or a low equilibrium

bond price can emerge and self-ful�lling default expectations are possible. The mechanism

is that if lenders fear default, they will demand high risk premia as a compensation, which

adds to the government�s �scal burden and may indeed force default. The argument is

analogous to the one made with respect to an optimizing government in Calvo (1988). Self-

ful�lling default expectations are thus one way to explain recent empirical developments

where risk premia in some European countries surged very quickly and coincident with

the lowering of ratings for government bonds.

To illustrate the emergence of multiple equilibrium bond prices, we apply the parameter

values � = 0:38, g=y = 0:35, � = 0:99, and 
 = 0:35, and we assume that the uniform

distribution for the productivity level is characterized by ah = 1:99 and al = 0:01. These

parameters are merely illustrative examples; see the next section for a parameterization

intended to match certain characteristics of European data in the context of a more realistic

speci�cation of the process governing aggregate risk. We choose initial debt levels to match

a debt-to-gdp ratio (at the mean of the productivity level) equal to 1, 2 and 3, respectively.

For these parameter values we plot the interest rate R as a function of the end-of-period

debt level b (which equals �1a�) in �gure 1, using the pricing equation (31) (the solid line)

and the budget constraint R = (b�1 � s)�1 b (the dashed lines correspond to the three

15



initial debt levels considered).

As �gure 1 shows, the lower equilibrium interest rate increases with a higher stock of ini-

tially outstanding debt b�1. In contrast, the high equilibrium interest rate decreases with

higher initial debt. Given this implausible comparative static property of the high equilib-

rium rate, we will focus on the lower equilibrium interest rate throughout the subsequent

analysis.12 Thus, assuming that capital market participants coordinate their expectations

on low equilibrium interest rates, we will examine how the sovereign risk premium behaves

in response to a change in the state of the economy. This will give rise to an implied equi-

librium pricing rule, which gives the interest rate spread on risky government bonds as a

function of the beginning-of-period ratio of debt to output. As �gure 1 suggests, the risk

premium increases monotonically in the debt to output ratio. Yet, risk premia implied by

the uniform productivity distribution are extremely large (by empirical standards). We

will therefore drop the simplifying assumption of a uniform productivity distribution in

the next section.

4 Quantitative Results

In this section, we calibrate the model to derive quantitative results. In particular, we

consider normally distributed productivity shocks. We will further examine the role of

expectations about aggregate risk and the maximum feasible tax rate for default risk

premia. Later in this section, we consider the case of two-period bonds to assess the

in�uence of the maturity of debt on default risk premia.

4.1 The calibrated model version

We relax the simpli�cations made in the previous section and solve the model numerically

for a more realistic parametrization. We will concentrate on the lower equilibrium interest

rate and show under which conditions risk spreads can emerge and reach high levels

without a self-ful�lling expectation of a switch to the higher interest rate equilibrium.

We assume that the productivity process in (9) can be serially correlated, � > 0, and

that innovations "t are normally distributed. The parameters are chosen as follows. We

interpret one period as a year. The discount rate is therefore set at � = 0:97 to match a

standard average value for a risk free annual real interest rate. The tax rate � and the

share of government spending in output g=y are parameterized based on empirical averages

of data from the 16 countries currently forming the Eurozone (EURO-16). The data are

obtained from the European Commission�s Annual Macroeconomic Database (AMECO)

and cover the time span from 1995 (the earliest period for which all data are available)

12 In simulations, we found that the realization of the high equilibrium interest rate would immediately
force default (see Juessen et al., 2009).
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to 2009. We measure the tax rate � as the ratio of the total tax burden (including actual

and excluding imputed social security contributions) over gdp at current market prices.

Likewise, we calculate g=y as the ratio of total current expenditure (excluding interest

payments) of the general government over gdp at current market prices (thus, our measure

of government expenditure includes transfers). Calculating averages of these variables over

the sample period, we arrive at � = 0:404 and g=y = 0:405 for the EURO-16. For later

use, we also calculate the corresponding values for Greece as a particularly interesting

example; the results are �GR = 0:326 and (g=y)GR = 0:345.

Further, we set the mean working time share equal to l = 1=3 (and adjust 
 accord-

ingly). To calibrate the standard deviation of productivity shocks, we regress the log of

annual real gdp for the EURO-16 countries on a constant and a linear time trend.13 The

estimated standard deviations of real output range from �y = 3:9% for the Netherlands

to �y = 15:7% for Greece, with an average of 7:3%. For the benchmark case, we choose

the innovation variance in our model such that for � = 0:9, which accords to the average

of the autocorrelation in the sample of countries, the standard deviation of byt = log (yt=y)
from stochastically simulated model runs conforms with this average value.

Figure 2 shows the model�s pricing rule for government bonds for the benchmark

(EURO-16) parameterization, as a relation between the interest rate spread of risky gov-

ernment bonds over the riskless interest rate and the beginning-of-period ratio of debt

to output.14 The solid line displays risk premia for the steady state productivity level

(a = 1). The �gure shows that with normally distributed and autocorrelated productivity

levels, sizeable risk spreads would only occur for extremely high debt ratios exceeding

about 200% of gdp. However, productivity realizations below the mean lead to higher

premia that occur at somewhat lower debt ratios, as can be seen from the dotted line in

the �gure which represents a situation where productivity is ten percent below its steady

state value (a = 0:9). In this case, which corresponds to a particularly severe adverse

state, risk spreads rise strongly if debt exceeds about 170% of gdp. Furthermore, the

equilibrium pricing rule is extremely steep, suggesting that above a certain critical value

�that itself depends on the current aggregate state of the economy a �even small further

increases in debt can lead to rapidly increasing risk spreads.

Thus, the benchmark model predicts that market participants become extremely sen-

sitive to changes in debt at high debt-to-gdp ratios. Large risk premia will occur as a

consequence of a cyclical downturn that reduces the debt capacity and thus shifts the

13Data are from the European Commission�s AMECO database; the time span covered is 1960-2008 for
11 out of the 16 countries, but shorter for Malta, Cyprus, Slovakia, Slovenia, and uni�ed Germany, due to
data availability.
14Appendix 7.2 presents details on the computation of equilibrium bond prices.
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Figure 2: Default risk spreads, benchmark parameterization.

equilibrium pricing curve to the left. This is rationally anticipated by households who are

thus willing to lend to the government at or very close to the risk free interest rate, unless

the debt-to-gdp ratio becomes very high. Thus, the model�s predictions are so far con-

sistent with evidence for the average of EURO-16 countries, where current debt-to-gdp is

far below the levels of debt at which non-negligible yield spreads arise according to �gure

2.15 In the following sections, we explore the factors that would lead to sizeable spreads

emerging at lower debt-to-output ratios.

4.2 Perceived risk

We start by �rst considering investors to believe in future aggregate risk that is higher

than measured in historical data, �py > �y: Figure 3 shows risk spreads in relation to

the debt-to-output ratio for a variance of the productivity process that is larger than

the one underlying the preceding �gure 2. Note that the variance of productivity shocks

assumed in �gure 2 above was chosen to match the average historical European Monetary

Union experience. Twice this value, which is depicted in �gure 3, is roughly the historical

volatility value for the most strongly �uctuating economy in the sample, namely Greece.

The dashed and dotted lines in �gure 3 show that a higher variance of shocks can

15According to Eurostat data, the average debt-to-gdp ratio of EURO-16 countries was roughly 66% in
2009.
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Figure 3: Default risk spreads, high aggregate risk parameterization.

substantially lower the critical debt value above which premia become sizeable (both lines

in the �gure are drawn for a = 1; of course, the equilibrium pricing curves would shift

still further to the left in the case of a cyclical downturn a < 1). While the debt levels

at which sizeable yield spreads occur are still higher than what is currently observed for

the average Eurozone country, the analysis shows that, for sizeable risk premia to emerge,

it is su¢ cient that perceived aggregate risk increases. The reason is that higher cyclical

volatility leads to a larger probability of a series of serially correlated adverse shocks that

make the �scal position unsustainable in the future.

4.3 Maximum tax rates

So far, we have assumed that when assessing the maximum debt repayment capacity

investors use the revenue maximizing tax rate ��, which is the tax rate that delivers tax

revenues at the peak of the La¤er curve. In our benchmark parameterization, this revenue

maximizing tax rate equals �� = 0:703 and is thus substantially higher than tax rates that

have hitherto been observed even in the most indebted countries. It might therefore be

the case that investors do not believe that the government has enough political strength

to claim a tax rate this high. As a consequence, investors might use a di¤erent, lower

maximum feasible tax rate, �p say, that is below the revenue maximizing rate, but which

is for example the maximum politically feasible rate or the maximum rate that would be
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Figure 4: Default risk spreads, lower maximum tax rate.

compatible with the survival of the government in future elections.

The di¤erence between �p and �� is thus an indicator of the perceived ability of the

government to conduct a strict austerity program. How does this di¤erence in�uence the

pricing of government debt? Figure 4 shows bond prices for the cases where the debt

capacity is based on tax rates equal to 90% and 80% of the La¤er curve maximizer ��

(the dashed and dotted lines, respectively). For the volatility of productivity innovations,

we have used the baseline value underlying �gure 2. Comparing this with the results from

the benchmark model that uses the revenue maximizing tax rate, see the solid line in

�gure 4, one can see that risk premia start to emerge for substantially lower debt levels, as

expected. The reason is that the maximum debt capacity directly depends on the taxing

ability of the government; if the taxing ability is low because extremely high tax rates are

not credible, a given debt level entails a higher risk of non-repayment, such that interest

rate premia must be larger in equilibrium.

4.4 Two period debt

In this section, we examine how default premia are a¤ected when the maturity of gov-

ernment debt exceeds one period. For simplicity, we consider the case where the gov-

ernment issues two-period bonds only. Its period-by-period budget constraint then reads

bt;t+2R
�1
t;t+2 + st = (1� �t) bt�2;t, where bt;t+2 denotes bonds issued in t maturing in t+ 2
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and R�1t;t+2 its period t price. Households invest in government bonds and trade non-

maturing bonds issued in t� 1 among each other at the period t price qt�1;t. The market
value of total current debt, i.e. maturing and outstanding, can then be written as

ebt = bt�2;t + qt�1;tbt�1;t+1: (33)

Like in the one-period bonds case, we apply the intertemporal budget constraint as a

criterion for default: If total debt, as de�ned in (33), exceeds the maximum repayment

capacity 	t = Et
P1
k=0 s

�
t+k

Qk
i=1 1=R

rf
t+i�1, debt cannot be repaid and household stop

lending. Thus, default occurs if ebt > 	t. Consistent with this criterion, we assume

that the government defaults equally on maturing and outstanding bonds, where the

latter are priced according to their current market value. Hence, the default rate is then

endogenously determined by

ebt > 	t : (1� �t)ebt = st: (34)

while �t = 0 if ebt � 	t. Like in the one-period debt case, households take into account that
the government might default, which is now relevant not only for the period of maturity

but also one period before. Thus, the period t price of a two-period bond R�1t;t+2 (which

matures in t+ 2) depends on the probabilities of default in t+ 2 and in t+ 1. As before,

we introduce a lower bound for the productivity level a�t at which the government does

not default ebt = 	(a�t ). Further, let � (at+1jat) denote the period t probability of at+1
and � (at+2jat+1) the probability of at+2 given at+1. Thus, an investor will demand the
price of two-period bonds R�1t;t+2 to satisfy

c�1t
Rt;t+2

= �2

"Z a�t+1

�1
� (at+1jat) (1� �t+1) dat+1 +

Z 1

a�t+1

� (at+1jat) dat+1

#
(35)

�
"Z a�t+2

�1
�
�
at+2jat+1 � a�t+1

�
(1� �t+2) c�1t+2dat+2 +

Z 1

a�t+2

�
�
at+2jat+1 � a�t+1

�
c�1t+2dat+2

#
:

Hence, the risk premium on bonds maturing in t+2 tends to rise also with the probability

of default in t+ 1. It should be noted that the default rates �t+1 and �t+2 depend on the

market value of total debt (see 34), and thereby on future prices of non-maturing debt. In

appendix 7.3, we fully characterize the determination of the price for two-period bonds.

Figure 5 shows the impact of the maturity structure of debt. While the solid line is the

same as in the benchmark model, compare �gure 216, the dashed line gives the resulting

default risk premia � computed as the annualized interest rate spread over the riskless

16The pricing curves in �gure 5 have been calculated for a smaller number of grid points than in �gure 2,
because with two period debt, two rather than one critical productivity thresholds have to be determined.
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Figure 5: Default risk spreads, two period vs one period bonds.

rate �if all debt is issued in the form of two period bonds (the �gure assumes that half

the outstanding debt matures in the current period, while the other half matures in the

following period).

As �gure 5 shows, if the government issues debt of longer maturity, the default risk

premium is higher at any given level of total outstanding debt. In the context of our

model, this implies that investors�risk associated with government debt increases. Since

productivity levels are serially correlated, an adverse shock in period t+1 can lead to low

productivity levels also in t + 2 such that the probability of default in either of the two

periods increases. Hence, lenders will demand higher risk premia if governments use longer

term maturities. As a consequence, since the higher risk premia add to the �scal burden,

default becomes more likely in this case. The model thus states that government �nances

may in practice, i.e. taking into account the higher risk through longer term maturities,

be substantially more vulnerable than the above arguments based on one period bond

�nancing suggested.

4.5 Fiscal stance

Finally, we examine how a �scal stance (� , g=y) that di¤ers from the benchmark case

a¤ects pricing of government bonds. The exercise can be viewed as an attempt to explain

the recent dynamics in Greek bond prices. According to o¢ cial statistics, Greece had a
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Figure 6: Default risk spreads, two period bonds, Greek parameterization.

substantial primary de�cit on average over the past decade. When we calculate average

tax rates and government spending shares for Greece using the same methods and data

sources as before for the EURO-16 average, we get parameters values �GR = 0:326 and

(g=y)GR = 0:345, respectively. As mentioned above, macroeconomic �uctuations in Greece

have been more severe historically, implying about twice the level of aggregate risk than

for the Eurozone average.

Figure 6 shows that our model would predict non-negligible default risk premia to

emerge for two period bonds at debt-to-gdp ratios higher than about 100% or 120%,

respectively. Both lines in �gure 6 are based on the revenue maximizing tax rate ��; the

solid line is for the mean productivity level, while the dashed line is computed for the

case of a severe recession a = 0:9. To put these results in perspective, it is instructive to

look at empirical risk premia. Figure 7 shows annualized yield spreads between Greek and

German government bonds with maturities of three and ten years.17 While the spreads

are slightly larger for ten year bonds, the overall patterns are similar. From 2005 to 2008,

spreads have been less than 20 basis points, and in the �rst half of 2008 at around 40 basis

points. Thereafter, yield spreads increased to more than 200 basis points, returned to lower

17Data are from the websites of the Bank of Greece and the Bundesbank. Maturities of two years that
would exactly �t our theoretical model were not available; we used three year maturities instead.

23



2005 2006 2007 2008 2009 2010 2011
0

100

200

300

400

500

600

700

in
 b

as
is

 p
oi

nt
s

three year gov. bond interest rate spread
ten year gov. bond interest rate spread

Figure 7: Empirical Spreads on Greek vs. German Government Bond Yields

levels in the second half of 2009, and went up heavily to several hundred basis points in

the �rst quarter of 2010. At that time, Greek government debt stood at about 115% of

gdp. Hence, our model is roughly consistent with the spreads observed before mid-2008.

However, the extremely high risk premia in 2009 and 2010 cannot be rationalized with

fundamentals alone. Thus, the analysis suggests that shifts in expectations as suggested

in sections 4.2 and 4.3, or even a coordination of expectations on the high risk equilibrium

were responsible for these developments.

5 Conclusion

This paper has asked how the dynamic behavior of risk premia on public bonds can be

understood under the assumption that the government is committed to repay its debt as

far as possible. We have presented a model where sovereign default is the result of lenders�

withdrawal of funding to the government when the government�s maximum debt capacity

is exceeded. The risk premium on public bonds depends on the expected probability of

this event and on the expected rate of partial repayment in the case of the government�s

inability to fully repay debt.

We have shown that the generic existence of two equilibrium bond prices can give

rise to self-ful�lling default expectations, since the probability of default depends on the
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�scal burden of interest payments, which themselves depend on the expected probability

of default. Furthermore, even in the case where lenders expect the lower interest rate

equilibrium, sizeable risk premia can arise. Crucially, the maximum debt repayment

capacity depends on fundamental factors. In particular, we have pointed out that the

perceived level of aggregate risk, the existence of longer-term maturities of public bonds,

and the possible infeasibility of revenue maximizing tax rates increase the default risk

premium. The model provides a rationale why di¤erent economies with similar levels of

government debt in relation to gdp have experienced very di¤erent risk premia on their

public bonds. Importantly, one implication is that risk premia may be very sensitive to

small changes in debt at high debt-to-gdp ratios.

When we ask in how far the model helps in explaining the recent surge in risk spreads

in some Eurozone member countries, the answer is mixed. On the one hand, yield spreads

below 50 basis points, as experienced for example by Greece prior to autumn 2008, are

very much in line with what the model predicts for a country that is characterized by

Greece�s �scal stance. On the other hand, the recent explosion of risk premia in this

country can only be explained by either a loss of con�dence in the political ability of the

Greek government to raise taxes su¢ ciently, or by non-fundamentally induced shifts in

expectations. In the latter case, there is obviously a useful role of interventions in the

market for public debt that steers expectations away from a high default risk equilibrium.

6 References

Aiyagari, S. R., 1994, "Uninsured Idiosyncratic Risk and Aggregate Saving," Quarterly

Journal of Economics, 109, 659-684.

Aiyagari, S. R., A. Marcet, T. J. Sargent, and J. Seppälä, 2002, "Optimal Taxation without

State-Contingent Debt," Journal of Political Economy 110, 1220-1254.

Akitobi, B., and T. Stratmann, 2008, "Fiscal Policy and Financial Markets," Economic

Journal 118, 1971-1985.

Arellano, C., 2008, "Default Risk and Income Fluctuations in Emerging Economies,"

American Economic Review, 98, 690-712.

Bernoth, K., L. Schuknecht, and J. von Hagen, 2004, "Sovereign Risk Premia in the

European Bond Market," CEPR Discussion Papers 4465.

Bi, H., 2010, "Sovereign Default Risk Premia, Fiscal Limits, and Fiscal Policy", manu-

script, Indiana University.

Bohn, H., 1998, "The Behavior Of U.S. Public Debt And De�cits," Quarterly Journal of

Economics, 113, 949-963.

Calvo, G.A., 1988, "Servicing the Public Debt: The Role of Expectations", American

25



Economic Review, 78, 647-661.

Codogno, L., C. Favero, and A. Missale, 2003, "EMU and Government Bond Spreads,"

Economic Policy, 18, 503�532.

Eaton, J. and M. Gersovitz, 1981, "Debt with Potential Repudiation: Theoretical and

Empirical Analysis," Review of Economic Studies, XLVII, 289-309.

International Monetary Fund, 2009, The State of Public Finances: Outlook and Medium-

Term Policies After the 2008 Crisis, Manuscript, IMF Fiscal A¤airs Department.

Juessen, F., L. Linnemann, and A. Schabert, 2009, Default Risk Premia on Government

Bonds in a Quantitative Macroeconomic Model, Tinbergen Discussion Paper 2009-102/2.

Ljungqvist, L. and T. J. Sargent, 2004, Recursive Macroeconomic Theory, Cambridge,

MIT Press.

Manganelli, S. and G.Wolswijk, 2009, "What Drives Spreads in the Euro Area Government

Bond Market?," Economic Policy, 58, 191-240.

Niepelt, D., 2004, "The Fiscal Myth of the Price Level," Quarterly Journal of Economics,

119, 276-299.

Reinhart, C., and K. Rogo¤, 2008, "The Forgotten History of Domestic Debt", manuscript,

Harvard University.

Schabert, A., 2009, "Monetary Policy Under a Fiscal Theory of Sovereign Default," forth-

coming Journal of Economic Theory.

Sims, C., 1994, "A Simple Model for the Study of the Determination of the Price Level

and the Interaction of Monetary and Fiscal Policy," Economic Theory, 4, 381-399.

Tauchen, G., 1986, "Finite State Markov-Chain Approximation to Univariate and Vector

Autoregressions," Economics Letters, 20, 177-181.

Trabandt, M. and H. Uhlig, 2009, "How Far Are We From The Slippery Slope? The La¤er

Curve Revisited," NBER Working Papers 15343.

Uribe, M., 2006, "A Fiscal Theory of Sovereign Risk," Journal of Monetary Economics,

53, 1857-1875.

Woodford, M., 1994, "Monetary Policy and Price Level Determinacy in a Cash-in-Advance

Economy," Economic Theory, 4, 345-380.

7 Appendix

7.1 Local approximation of the maximum debt capacity

In this appendix, we apply a second order approximation of the maximum debt capacity

(14). For this, we transform 	t in the following way. The surpluses in (14) refer to the no-

default case �t+k = 0 8k � t, where the Euler equation reads 1=Rrft+k = �Et
�
c�1t+k+1=c

�1
t+k

�
.
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Further, using the law of iterated expectations �ki=1(1=R
rf
t+i�1) = (1=Rrft )(1=R

rf
t+1)::: =

�Et
�
c�1t+1=c

�1
t

�
�Et+1

�
c�1t+2=c

�1
t+1

�
::: = �kEt

�
c�1t+k=c

�1
t

�
, we can write

	t = Et

1X
k=0

�k
c��1t+k

c��1t

s�t+k;

where c�t = c (at; �
�) denotes consumption as a function of the state and the revenue

maximizing tax rate ��. Using the solutions for consumption and government surpluses

(20) and (22), we have

	t = c (at; �
�)Et

1X
k=0

�kc (at+k; �
�)�1 s (at+k; �

�) ;

and summarizing terms we get

	t=	(at; �"; �; �
�) = 
 (1� ��) atEt

1X
k=0

�kf(at+k); (36)

where f(at+k) = �
� � a�1t+k


�1g:

Using that the exogenous state variable at is generated by a stationary process, we apply

a second order Taylor expansion of Etf(at+k) at a, which yields

Etf(at+k) ' f(a) + f 0 (a)Et (at+k � a) +
1

2
f 00 (a)Et (at+k � a)2 ; (37)

where Etf(at+k) = Et
�
�� � a�1t+k
�1g

�
and

f(a) = �� � a�1
�1g; f 0(a) = a�2
�1g, f 00(a) = �2a�3
�1g.

Next, we use that at+k can be written as

at+k = �at+k�1 + (1� �)a+ "t+k = �kat +
k�1X
i=0

�i(1� �)a+
k�1X
i=0

�i"t+k�i

= �kat + a
�
1� �k

�
+
k�1X
i=0

�i"t+k�i: (38)

Hence, the mean and the variance of at+k conditional on information in period t, Etat+k

and vartat+k = Et[(at+k)
2]� [Etat+k]2 are given by

Etat+k = �
kat + a

�
1� �k

�
(39)

vartat+k =Eta
2
t+k �

h
�kat + a

�
1� �k

�i2
: (40)
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The term in (40) can, by substituting out at+k with (38), be simpli�ed to

vartat+k =Et

24 �kat + a�1� �k�+ k�1X
i=0

�i"t+k�i

!235� h�kat + a�1� �k�i2

=
h
�kat + a

�
1� �k

�i2
+ Et

 
k�1X
i=0

�i"t+k�i

!2
�
h
�kat + a

�
1� �k

�i2
=Et

 
k�1X
i=0

�i"t+k�i

!2
=
1� �2k
1� �2 �

2
":

Using (39), we rewrite (37) as

Etf(at+k) ' f(a)+f 0 (a)Et
�
�kat + a

�
1� �k

�
� a
�
+
1

2
f 00 (a)

�
Eta

2
t+k � 2aEtat+k + a2

�
:

Further, using Eta2t+k = vartat+k+
�
�kat + a

�
1� �k

��2
= 1��2k

1��2 �
2
" +
�
�kat + a

�
1� �k

��2
,

we can simplify Etf(at+k) to

Etf(at+k)' f(a) + f 0 (a)Et
�
�kat + a

�
1� �k

�
� a
�

+
1

2
f 00 (a)

�
1� �2k
1� �2 �

2
" +

h
�kat + a

�
1� �k

�i2
� 2a

h
�kat + a

�
1� �k

�i
+ a2

�
= f(a) + f 0 (a) �k(at � a) +

1

2
f 00 (a)

�
1� �2k
1� �2 �

2
" + �

2k (at � a)2
�
: (41)

Summing up the discounted values of Etf(at+k) for k = 0 to 1, and using (41), we get
1X
k=0

�kEtf(at+k)'
1X
k=0

�kf(a) +
1X
k=0

�kf 0 (a) �k(at � a)

+
1X
k=0

�k
1

2
f 00 (a)

1� �2k
1� �2 �

2
" +

1X
k=0

�k
1

2
f 00 (a) �2k (at � a)2

=
1

1� � f(a) + f
0 (a) (at � a)

1X
k=0

�k�k

+
1
2f
00 (a)�2"
1� �2

 1X
k=0

�k �
1X
k=0

�k�2k

!
+
1

2
f 00 (a) (at � a)2

1X
k=0

�k�2k

Since � and � lie inside the unit circle, the in�nite sums converge to �nite values:

1X
k=0

�kEtf(at+k)'
1

1� � f(a) +
f 0 (a)

1� ��(at � a)

+
1
2f
00 (a)

1� �2

�
�2"

�
1

1� � �
1

1� ��2

�
+
1� �2
1� ��2 (at � a)

2

�
:
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Hence, the maximum debt capacity 	 can be approximated as

	(at; �"; �; g; �
�)

' 
 (1� ��) at �
�

1

1� � f(a) +
f 0 (a)

1� ��(at � a)

+
1
2f
00 (a)

1� �2

�
�2"

�
1

1� � �
1

1� ��2

�
+
1� �2
1� ��2 (at � a)

2

�)
:

7.2 Computation of equilibrium bond prices

We replace the original problem presented in sections 2 and 3 by a discrete valued problem,

i.e. we assume that the model�s state space consists of a �nite number of discrete points.

Choose the following parameters of the model:

Parameter Description Benchmark Calibration

Preferences
�l Labor in steady state 1/3

� Discount factor 0.97


 Preference parameter
��
1� g

y

�
�l
�
= (1� �) = 0:3324

Productivity process

and state space

� Autocorrelation 0.9

�" Std. of productivity shocks 0.0550

�a Unconditional mean of TFP 1

n Number of TFP states 4001

m Number of initial debt states 4001

Government

g=y Government share 0.4053

� Tax rate 0.4037

g Level of government exp. y� � (g=y) = 0:1351
�� La¤er curve maximizer 0:5 + g=(2�a
) = 0:7032

We use Tauchen�s (1982) algorithm to approximate the continuous valued AR(1)-process

for productivity (see (9)) by a discrete valued Markov chain. We provide the size of the

interval Ia = [a1; an] and the number of grid points, n: Tauchen�s algorithm then delivers
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the exogenous state space of the model18

S = fa1; a2; :::; ang ; ai < ai+1; i = 1; 2; :::; n� 1;

and the associated transition probability matrix P = (pij) ; whose row i and column j

element is the probability of moving from state ai state to state aj : Given �; the interval

Ia is chosen to include �4 standard deviations of the productivity process.
For a given combination of initial debt bt�1 and current productivity level at; the

equilibrium interest rate spread on government bonds is determined as follows:

1. At the beginning of a period t, the initial debt level, bt�1, and the current pro-

ductivity level, at; are given. Current consumption ct = c (at; 
; �) ; surpluses

st = s (at; 
; �) ; and the maximum debt repayment capacity of the current period,

	t = 	
�
at; �

2
"; �; 
; �

�� are known (see (20) ; (22) ; and (24)).
2. Calculate the risk free rate, which is given by

Rrft =
c�1t

�Etc
�1
t+1

:

In this expression, the conditional expectation Etc�1t+1 is calculated as

Etc
�1
t+1 =

nX
j=1

pij � c (aj ; 
; �)�1 ;

where i denotes the index number for today�s stochastic state, at:

3. Check whether the government defaults in period t or not.

(a) If 	t < bt�1; the government defaults, end-of-period debt equals zero, bt = 0;

and the algorithm ends.

(b) If 	t > bt�1; the government does not default in period t and the algorithm

continues with step 4.

4. If the government does not default in period t (case 3b applied), the bond price 1=Rt

and end-of-period debt bt have to be solved simultaneously. Replacing the integrals

in (26) by sums over the �nite number of states, the asset pricing equation reads

bt�1 � st
bt

=
�

c�1t

24b�1t Pa�t+1
at+1=a1 �t (at+1)

h
c (at+1)

�1 s (at+1)
i

+
Pan
at+1=a�t+1

�t (at+1)
h
c (at+1)

�1
i 35 (42)

18We use equally spaced points � = ai+1 � ai for all i = 1; 2; :::; n� 1:
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Use the updated version of (25) bt = 	
�
a�t+1; �"; �; 
; �

�� to replace bt in (42) :
bt�1 � st =

	
�
a�t+1; �"; �; 
; �

���
c�1t

(43)

�

24	 �a�t+1; �"; �; 
; ����1Pa�t+1
at+1=a1 �t (at+1)

h
c (at+1)

�1 s (at+1)
i

+
Pan
at+1=a�t+1

�t (at+1)
h
c (at+1)

�1
i 35 :

5. Equation (43) is solved for the unknown productivity threshold in the next period,

a�t+1, which is its only unknown. If there are multiple solutions for a
�
t+1 we choose

the lower value a�t+1 as our solution. This equilibrium corresponds to the low interest

rate equilibrium (see the discussion on multiple equilibria in section 3).

6. Given the solution for a�t+1; next-period�s debt level bt and the asset price 1=Rt are

determined by

bt = 	
�
a�t+1; �"; �; 
; �

��
and

1

Rt
=

�

c�1t

24	 �a�t+1; �"; �; 
; ����1Pa�t+1
at+1=a1 �t (at+1)

h
c (at+1)

�1 s (at+1)
i

+
Pan
at+1=a�t+1

�t (at+1)
h
c (at+1)

�1
i 35

7. The risk premium on government bonds for given states bt�1 and at is calculated as

Rt �Rrft :

7.3 The case of two-period debt

The period t price of two-period debt issued in period t, 1=Rt;t+2, depends on the expected

pay-o¤ in period t+2, which is a function of the default rate �t+2 and on the termination

value of the debt contract in t + 1 for the case where the government defaults in period

t + 1 (see 35). Hence, determination of the period t price 1=Rt;t+2 requires the joint

determination of (expected) default rates in period t + 1 and t + 2, �t+1 and �t+2. The

default rate further depend on the market value of total debt in both periods, ebt+1 andebt+2, and thus on the prices for outstanding debt, qt;t+1 and qt+1;t+2, and the price of debt
newly issued in t+ 1, 1=Rt+1;t+3. Speci�cally, the default rates satisfy

�t+1=1� st+1=ebt+1 (44)

�t+2=1� st+2=ebt+2 (45)
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while the market values of total debt in t+1 and t+2, de�ned as ebt+1 = bt�1;t+1+qt;t+1bt;t+2
and ebt+2 = bt;t+2 + qt+1;t+2bt+1;t+3 are given by
ebt+1= bt�1;t+1 + qt;t+1Rt;t+2 (bt�2;t � st) (46)

ebt+2=Rt;t+2 (bt�2;t � st) +( qt+1;t+2Rt+1;t+3 (bt�1;t+1 � st+1) for ebt+1 � 	t+1
0 for ebt+1 > 	t+1 (47)

where we used the government budget constraints bt;t+2=Rt;t+2 = bt�2;t�st and bt+1;t+3=Rt+1;t+3 =
bt�1;t+1 � st+1. Given that outstanding debt is traded within a period before the default
is realized, the outstanding debt in t+ 1 and t+ 2 is priced according to

qt;t+1= �

0B@
R a�t+2
�1 �

�
at+2jat+1 � a�t+1

�
(1� �t+2)

c�1t+2
c�1t+1

dat+2

+
R1
a�t+2

�
�
at+2jat+1 � a�t+1

� c�1t+2
c�1t+1

dat+2

1CA (48)

qt+1;t+2= �

Z 1

�1
�
�
at+3jat+2 � a�t+2; at+1 � a�t+1

� c�1t+3
c�1t+2

dat+3 (49)

where we assumed, for simplicity, that investors neglects the possibility of default in period

t+ 3. Given this assumption, debt issued in t+ 1, is priced according to

1

Rt+1;t+3
(50)

= �2

0@R a�t+2�1 �
�
at+2jat+1 � a�t+1

�
ct+1 (1� �t+2)

R1
�1 � (at+3jat+2) c

�1
t+3dat+3dat+2

+
R1
a�t+2

�
�
at+2jat+1 � a�t+1

�
ct+1

R1
�1 � (at+3jat+2) c

�1
t+3dat+3dat+2

1A
Hence, in each period, after the exogenous state is realized, the unknowns �t+1, �t+2,ebt+1, ebt+2, Rt;t+2, qt;t+1, qt+1;t+2 and Rt+1;t+3 can be determined by (44)-(50) where

ct = c (at; �) and st = s (at; �) and a�t+1 and a
�
t+2 are de�ned as

ebt+1 = 	 �a�t+1� and ebt+2 = 	 �a�t+2� (51)

given a sequence fatg1t=0, and the predetermined endogenous state variables bt�2;t > 0 and
bt�1;t+1 > 0.

Substituting out �t+1, �t+2, qt;t+1, qt+1;t+2, 1=Rt+1;t+3, ebt+1, and ebt+2 with (44), (45),
(48), (49), (50), and (51) in (35), (46), and (47), and conditioning on period t information,

we end up with the following system in a�t+1; a
�
t+2 and Rt;t+2

c�1t
Rt;t+2

= �2

"Z a�t+1

�1
� (at+1jat)

�
st+1=	

�
a�t+1

��
dat+1 +

Z 1

a�t+1

� (at+1jat) dat+1

#
(52)

�

24R1a�t+1 � (at+1jat)�R a�t+2�1 � (at+2jat+1)
�
st+2=	

�
a�t+2

��
c�1t+2dat+2

�
dat+1

+
R1
a�t+1

� (at+1jat)
�R1
a�t+2

� (at+2jat+1) c�1t+2dat+2
�
dat+1

35
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�
a�t+1

�
= bt�1;t+1 + (53)

�

Z 1

�1
� (at+1jat)

0B@
R a�t+2
�1 �

�
at+2jat+1 � a�t+1

� �
st+2=	

�
a�t+2

�� c�1t+2
c�1t+1

dat+2

+
R1
a�t+2

�
�
at+2jat+1 � a�t+1

� c�1t+2
c�1t+1

dat+2

1CARt;t+2 (bt�2;t � st) dat+1
	
�
a�t+2

�
= Rt;t+2 (bt�2;t � st) + (54)Z 1

a�t+1

� (at+1jat)
� (bt�1;t+1 � st+1)

R1
a�t+2

� (at+2jat+1)
R1
�1 � (at+3jat+2)

c�1t+3
c�1t+2

dat+3dat+2

�2

0@R a�t+2�1 � (at+2jat+1) ct+1
�
st+2=	

�
a�t+2

�� R1
�1 � (at+3jat+2) c

�1
t+3dat+3dat+2

+
R1
a�t+2

� (at+2jat+1) ct+1
R1
�1 � (at+3jat+2) c

�1
t+3dat+3dat+2

1Adat+1

where ct = c (at; �) and st = s (at; �), given a sequence fatg1t=0, and bt�2;t > 0 and

bt�1;t+1 > 0.

Computation of bond prices based on (52)-(54) To �nd the equilibrium price of

two-period bonds R�1t;t+2; we have to solve the system (52)-(54) in a�t+1; a
�
t+2 and Rt;t+2.

We do so numerically. At the beginning of a period t; the exogenous state at and the

endogenous states bt�2;t > 0 and bt�1;t+1 > 0 are given. For a given at, the maximum debt

repayment capacity 	(a�t ; �"; �; 
; �
�), consumption ct; and surpluses st are determined.

To �nd the equilibrium price R�1t;t+2, we evaluate the system of equations (52)-(54) for

all possible combinations of productivity thresholds in periods t+1 and t+2, respectively,

from the productivity grid S. This means that we evaluate the system of equations using

all combinations of candidate (still unknown) values for a�t+1 and a
�
t+2 that result from

the given productivity grid. Thereby, we use equation (52) to substitute for Rt;t+2 in

equations (53) and (54) so that the system reduces to two equations in the two unknowns

a�t+1 and a
�
t+2:

When evaluating the two equations at the candidate values for a�t+1 and a
�
t+2; the

integrals are replaced by sums over the �nite number of states (as in the case of one-

period debt, see above). Accordingly, the nested integrals in (52)-(54) are calculated as

nested sums. As before, the conditional probabilities � are replaced by the respective

entries in the transition probability matrix P = (pij).

For a given combination of candidate solutions for the two productivity thresholds,

we substract the left-hand side from the right-hand side in equations (53) and (54), re-

spectively, square the respective values, and add them. We repeat this calculation for all

possible candidate solutions for a�t+1 and a
�
t+2 on the grid and store the respective residu-

als. The equilibrium values a�t+1 and a
�
t+2 are the ones for which the residual is closest to

zero.

As in the case of one-period debt, there may be multiple equilibria. We choose the
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equilibrium that is associated with the smallest values for a�t+1 and a
�
t+2. This equilibrium

corresponds to the low interest rate equilibrium. The solution for R�1t;t+2 is recovered from

equation (52), given the equilibrium values for a�t+1 and a
�
t+2: The annualized two-period

interest rate is given by the square root of Rt;t+2:

The risk-free rate for the two-period case is calculated as

Rrft;t+2 =
c�1t

�2Etc
�1
t+2

:

In this expression, the conditional expectation Etc�1t+2 is calculated as

Etc
�1
t+2 =

nX
j=1

~pij � c (aj)�1 ;

where i denotes the index number for today�s stochastic state, at, and ~pi is the ith row

of the two-period transition probability matrix ~P = P � P: The annualized interest rate
spread is then given by

p
Rt;t+2 �

q
Rrft;t+2.
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