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Abstract

In this paper we are concerned with inference on the correlation parameter ρ of two Brownian
motions, when only high-frequency observations from two one-dimensional continuous Itô semi-
martingales, driven by these particular Brownian motions, are available. Estimators for ρ are
constructed in two situations: Either when both components are observed (at the same time),
or when only one component is observed and the other one represents its volatility process and
thus has to be estimated from the data as well. In the first case it is shown that our estimator
has the same asymptotic behaviour as the standard one for i.i.d. observations, whereas a feasible
estimator can still be defined in the second framework, but with a slower rate of convergence.
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1 Introduction

Recent years have seen a considerable progress in the statistics of processes observed at high
frequency. For financial data, it is standard nowadays to assume that the underlying process,
or a log transformed version, is given by a, possibly multidimensional, semimartingale X, and
so natural issues both from a theoretical and an econometric perspective are the estimation of
its quadratic (co)variation or of parts thereof, where particular interest has been turned towards
inference on the integrated (co)volatility of the process, which plays a key role in important problems
of mathematical finance (see [2], [4] or [9] among others). The proposed methods typically work
for arbitrary Itô semimartingales, and they are model-free in the sense that neither a parametric
setting for the diffusion coefficients is necessary nor that any properly rescaled limiting distribution
depends on any of the coefficients involved.

On the other hand, when one turns towards statistical problems for a multidimensional semi-
martingale, and in particular when one inspects stochastic volatility models, there is one paramater
that typically shows up in all of these models, namely the correlation coefficient between the driv-
ing Brownian motions. Since it is well-known that one is not able to draw inference about all
coefficients of the underlying semimartingale at high frequency (most prominent is the drift part,
which cannot be estimated apart from some special cases), it becomes a natural question, whether
inference on this correlation parameter is in principle possible or not. Also, when one is concerned
with applying such models in practice, both model calibration and model validation become im-
portant, and in this context estimation of correlation is obviously a standard issue as well. Hence,
the aim of this paper is to provide simple (but feasible) estimators for the correlation structure of
the underlying multidimensional Brownian motion, and for simplicity we restrict ourselves to the
two-dimensional setting only, since its extension to similar frameworks in arbitrary dimensions is
straight-forward.

Thus let us start with the following setting: Suppose, we are given a two-dimensional Itô
semimartingale of the form(

Xt

Yt

)
=

∫ t

0

(
as
bs

)
ds+

∫ t

0

(√
1− ρ2σs ρσs

0 τs

)
d

(
W 1
s

W 2
s

)
,

where (W 1,W 2)T is a two-dimensional standard Brownian motion, a, b, σ and τ are appropriate
stochastic processes, and −1 ≤ ρ ≤ 1 plays the role of a correlation coefficient between the Brownian
motions that drive the one-dimensional processes X and Y . This is visible from the alternative
representation

Xt = X0 +

∫ t

0
as ds+

∫ t

0
σs dWs and Yt = Y0 +

∫ t

0
bs ds+

∫ t

0
τs dVs, (1.1)

where W and V are jointly Brownian with Corr(W,V ) = ρ. We are interested in finding an
estimator for ρ (and in deriving its asymptotic properties), and we assume first that we are able to
observe X and Y at the synchronous times 0, 1/n, . . . , 1 both. Of course, there is one restriction to
be made, since ∫ t

0
σs dWs and

∫ t

0
(−σs) dWs =

∫ t

0
σs d(−W )s
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follow the same distribution and thus identifiability becomes an issue. This problem can be over-
come by assuming that σ and τ are both almost surely positive, which is standard in finance.
Nevertheless, in a more general setting only inference on |ρ| is possible.

It turns out that it is indeed possible to obtain consistent estimates for ρ in this framework, and
under some mild additional assumptions we are able to prove an associated central limit theorem
as well. The main idea behind the concept proposed in this paper is that increments of X in
a neighbourhood of some time i/n can typically be approximated by the product of σ i

n
with the

corresponding increment of W . For this reason it is promising to divide the entire interval [0, 1] into
subintervals of length kn/n for some appropriately chosen sequence of integers kn. On each of these
subintervals one computes the standard empirical correlation coefficient for mean zero observations
based on increments ofX and Y , which gives a local estimate for the correlation. The final estimator
ρ̃ for ρ will then be given as the average of all local empirical coefficients. Surprisingly, we obtain
a similar asymptotic behaviour of ρ̃ as for the empirical correlation coefficient for i.i.d. bivariate
samples, namely

√
n
(
ρ̃− ρ

)
w−→ N (0, v2)

with v2 = (1− ρ2)2, which is the key result of this work.

But as indicated before, the typical situation for continuous Itô semimartingales in which infer-
ence about the correlation coefficient between two Brownian motions becomes important is when
one investigates stochastic volatility models. In this case, one assumes that X is given by (1.1) as
before, but that there is an additional source of randomness that drives the volatility process σ2

(or σ). Thus a natural model is that σ2 is an Itô semimartingale itself with the representation

σ2t = σ20 +

∫ t

0
bs ds+

∫ t

0
τs dVs, (1.2)

say, and where W and V are jointly Brownian with Corr(W,V ) = ρ as before. In standard models
both b and τ come from specific parametric families, and most popular among these is the Heston
model in which the volatility process is mean reverting and (X,σ2)T satisfies

Xt = X0 +

∫ t

0

(
µ− σ2s

2

)
ds+

∫ t

0
σs dWs and σ2t = σ20 + κ

∫ t

0
(α− σ2s) ds+ ξ

∫ t

0
σs dVs (1.3)

for some suitable parameters µ, κ, α and ξ (besides [7] see e.g. [8], [14] or [15] for other stochastic
volatility models having continuous paths). In this context, ρ is used to reproduce the well-known
leverage effect of a (typically negative) correlation between stock returns and volatility.

For reasons of model building it is obvious that one may be interested in estimating any of
the parameters involved, which is why we propose a general method for estimating the correlation
between W and V in such stochastic volatility models. Since σ2 is typically not observable and
one can hardly assess the distribution of X (or its increments) apart from special cases, one has to
proceed in a different way as before. In contrast to [1], who propose to estimate the volatility process
from observed option prices (and stock prices, of course), we will use a local volatility estimator
from the stock price data only and plug those values into the estimator ρ̃, as if σ2 were completely
observable. Using this procedure we are able to prove a central limit theorem as well, but for which
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the rate of convergence becomes extremely low. Nevertheless, we provide some empirical examples
in the section on simulations, which demonstrate that the proposed method has a reasonable finite
sample behaviour in special cases as well, particularly when the correlation is zero.

Let us mention finally that our models neither deal with jumps in the processes nor take
microstructure issues into account, which may seem to be a serious restriction. Note however,
that in the last decade several methods have been developed to make inference about volatility
processes even in the presence of jumps and noise possible, and straight-forward modifications of
the presented statistics will lead to similar results as in the simpler models (1.1) and (1.2), but
possibly with (further) losses in the rate of convergence. For details we refer to [5], [12], [16], [3] or
[10].

This paper is organised as follows: Section 2 deals with the estimation of ρ in model (1.1),
whereas we discuss the more pronounced case for model (1.2) in Section 3. A small simulation
study is presented in Section 4. All proofs are gathered in an Appendix.

2 Inference for two discretely observed processes

In this paragraph we discuss the case, in which the two continuous Itô semimartingales can be
observed simultaneously. Precisely, suppose that we are given two one-dimensional continuous
processes X and Y , which are defined on the same filtered probability space (Ω,F , (Ft)t≥0,P).
Furthermore, we assume that both semimartingales have a representation as in (1.1), thus they can
be written as

Xt = X0 +

∫ t

0
as ds+

∫ t

0
σs dWs and Yt = Y0 +

∫ t

0
bs ds+

∫ t

0
τs dVs,

where the two-dimensional Brownian motion (W,V ) satisfies Corr(W,V ) = ρ and where both drift
processes a and b are left continuous with right limits (and thus locally bounded). Furthermore,
suppose that σ is a continuous Itô semimartingales itself of the form

σt = σ0 +

∫ t

0
vs ds+

∫ t

0
ϑ1s dWs +

∫ t

0
ϑ2s dVs +

∫ t

0
ϑ3s dUs, (2.4)

where U is independent of W and V , and that the processes above are chosen in such a way that
σ is almost surely positive. Additional technical assumptions are that the drift process v is locally
bounded and that the volatility processes ϑi are continuous Itô semimartingales as in (2.4) as well.
Similar conditions are assumed to hold for τ . As noted before, the interpretation in this situation
is that X and Y represent the (log) price processes for two assets and that a practitioner might be
interested in an analysis of their dependence structure in terms of the driving Brownian motions.

Throughout this section we assume further that we are able to observe both processes on the
regular grid t = 0, 1/n, . . . , 1. When one assumes that both X and Y denote the price of some
stock, this condition does not seem to be too restrictive, even though price processes of different
assets are typically not observed at the same time. Nevertheless, there are ways to cope with this
problem in practice (see e.g. [6]). The case, where Y is the volatility process itself (and thus not
observable), will be discussed in the following section.
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Our aim in this section is to define an estimator for the correlation parameter ρ and to prove an
associated central limit theorem. In order to do so we introduce an auxiliary sequence of integers
kn satisfying

kn = cnγ + o(nγ) with
1

4
< γ <

1

2
and c > 0 (2.5)

which provides the size of the windows on which the local estimation of ρ takes place. Explicitly,
setting ∆n

j T = T j
n
− T j−1

n
for any adapted process T , we define

Zni =
1
kn

∑(i+1)kn
j=ikn+1

√
n∆n

jX
√
n∆n

j Y√
1
kn

∑(i+1)kn
j=ikn+1(

√
n∆n

jX)2 1
kn

∑(i+1)kn
j=ikn+1(

√
n∆n

j Y )2

for i = 0, . . . b nkn c − 1, which is the local version of the empirical correlation coefficient in case of a
known mean zero. Setting

ρ̃ =
kn
n

b n
kn
c−1∑

i=0

(
Zni +

Zni (1− (Zni )2)

2(kn − 3)

)
(2.6)

we obtain the following theorem, which is the main result of this section:

Theorem 2.1 Under the assumptions stated above we have

√
n
(
ρ̃− ρ

)
w−→ N (0, v2)

with v2 = (1− ρ2)2 and where
w−→ denotes convergence in law.

Remark 2.2 Theorem 2.1 looks familiar, since it is well known that the empirical correlation
coefficient

ρ̄ =
1
n

∑n
i=1XiYi√

1
n

∑n
i=1X

2
i
1
n

∑n
i=1 Y

2
i

, (2.7)

where the (Xi, Yi) are i.i.d. bivariate normally distributed random variables with E[Xi] = E[Yi] = 0
and covariance matrix

Σ =

(
1 ρ
ρ 1

)
,

satisfies
√
n(ρ̄− ρ)

w−→ N (0, v2) as well. Nevertheless, the difference between this standard coeffi-
cient ρ̄ and our estimator ρ̃ is substantial, mainly for two reasons:

First, we are forced to estimate ρ locally, since otherwise we do not know how to get rid of the
dependence on the volatilities σ and τ . So the intuition behind Zni is that we have both

√
n∆n

jX = σ ikn
n

√
n∆n

jW +Op

(√kn
n

)
and

√
n∆n

j Y = τ ikn
n

√
n∆n

j V +Op

(√kn
n

)
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for j close to ikn, thus Zni becomes a local estimator for the correlation between W and V , as
in this case the volatilities σ ikn

n
and τ ikn

n
cancel out. Afterwards, we use an average over all time

points ikn/n to obtain a global estimator for ρ.

Note further that the correlation coefficient from (2.7) is not unbiased for ρ. For this reason
we have to introduce the extra term in (2.6), which wipes out the first order term of the bias.
Using this transformation is crucial for ρ̃ to achieve the same rate of convergence (and the same
asymptotic distribution) as in the case of i.i.d. observations.

To summarize, the main idea behind Theorem 2.1 is the following: Setting

Uni =

1
kn
σ ikn

n
τ ikn

n

∑(i+1)kn
j=ikn+1

√
n∆n

jW
√
n∆n

j V√
1
kn

∑(i+1)kn
j=ikn+1 σ

2
ikn
n

(
√
n∆n

jW )2 1
kn
τ2ikn

n

∑(i+1)kn
j=ikn+1(

√
n∆n

j V )2

=
1
kn

∑(i+1)kn
j=ikn+1

√
n∆n

jW
√
n∆n

j V√
1
kn

∑(i+1)kn
j=ikn+1(

√
n∆n

jW )2 1
kn

∑(i+1)kn
j=ikn+1(

√
n∆n

j V )2
, (2.8)

it can be shown from our choice of kn that both

√
n
kn
n

b n
kn
c−1∑

i=0

(Zni − Uni ) = op(1) (2.9)

and

1√
n

b n
kn
c−1∑

i=0

(
(Zni )3 − (Uni )3

)
= op(1) (2.10)

hold. Thus

√
n
kn
n

b n
kn
c−1∑

i=0

{
Zni +

Zni (1− (Zni )2)

2(kn − 3)
−
(
Uni +

Uni (1− (Uni )2)

2(kn − 3)

)}
= op(1)

follows, and we are left to prove

√
n
(kn
n

b n
kn
c−1∑

i=0

(
Uni +

Uni (1− (Uni )2)

2(kn − 3)

)
− ρ
)

w−→ N (0, v2), (2.11)

which brings us back to the familiar case of (a family of) empirical correlation coefficients for i.i.d.
random variables. 2

For |ρ| 6= 1, Fisher’s z-transformation makes a feasible version of Theorem 2.1 available. Thus,
one can construct an asymptotic test for a given correlation coefficient ρ0 with −1 < ρ0 < 1 easily.

Corollary 2.3 With h(t) = artanh(t) = 1
2 log

(
1+t
1−t

)
we obtain

√
n
(
h(ρ̃)− h(ρ)

)
w−→ N (0, 1)

for −1 < ρ < 1.
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Remark 2.4 When the correlation coefficient ρ equals 1 (or −1), the asymptotic behaviour of ρ̃
becomes fundamentally different from the one of the standard estimator ρ̄ for i.i.d. normal variables
with mean zero and unit variance from (2.7). In fact, the latter statistic is almost surely constant
and equal to +1 (or −1). For the estimator in our setting however, we only have the convergence
in probability

√
n
(
ρ̃− ρ

)
P−→ 0,

due to the fact that ρ̃ contains additional randomness coming from the volatility, which is negligible
at rate n−

1
2 , but nevertheless present. In terms of Uni from (2.8): For any choice of kn we have

√
n
kn
n

b n
kn
c−1∑

i=0

((
Uni +

Uni (1− (Uni )2)

2(kn − 3)

)
− ρ
)

= 0

almost surely, whereas

√
n
kn
n

b n
kn
c−1∑

i=0

{
Zni +

Zni (1− (Zni )2)

2(kn − 3)
−
(
Uni +

Uni (1− (Uni )2)

2(kn − 3)

)}
= op(1)

only under certain restrictions on kn as stated above. This suggests a possibility to derive a central
limit theorem even in this case by choosing kn in such a way that the difference between Zni and
Uni drives the asymptotics, but an explicit investigation of this idea is beyond the scope of this
paper. 2

3 Inference for stochastic volatility models

Recall model (1.1) and assume again that X can be observed on the grid t = 0, 1/n, . . . , 1. In the
second case discussed in this paper, Y is the process σ2 (or σ, which does not make a big difference)
itself, and we assume that it takes the form

σ2t = σ20 +

∫ t

0
bs ds+

∫ t

0
τs dVs,

where its volatility process τ is given as in (2.4).

Remark 3.1 Note that σ (which is the volatility process of X) does not have to satisfy (2.4) in
general, but a localised version does. In fact, when the continuous process σ2 is almost surely
positive (which reduces to Feller’s condition 2κα > ξ2 for the Heston model (1.3)), the stopping
times Tk = inf{t > 0 : σ2t ≤ 1/k} converge to infinity almost surely. However, for each k there
exists a smooth mapping φk that coincides with x 7→

√
x on (1/k,∞), and thus σs1[0,Tk)(s) =

φk(σ
2
s)1[0,Tk)(s) is of the form (2.4) from Itô’s formula. As we are only interested in the process σ

on [0, 1], this is sufficient for our purposes. 2
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For a proper calibration of such a stochastic volatility model it is important to know about the
correlation between W and V . In contrast to the previous setting the volatility process σ2 cannot
be observed directly, and as we need to know about the local behaviour of it at time k/n, say,
we propose to use some local estimators for it. Among several estimators, the most natural one
appears to be the following: For an auxiliary sequence mn of integers, we set

σ̂2k
n

=
n

mn

mn∑
j=1

(X j+k
n
−X j+k−1

n
)2 (3.12)

for any k = 0, . . . , n −mn. This definition is again justified by the fact that the volatility process
does not fluctuate too much on a small interval and so (∆n

jX)2 becomes roughly σ2kmn
n

(∆n
jW )2.

Precisely, we obtain the following result:

Lemma 3.2 For any sequence mn we have

σ̂2k
n

− σ2k
n

= Op(
√
mn/n+

√
1/mn), (3.13)

uniformly in i. The optimal choice is given for mn = O(
√
n).

Sometimes we are interested in estimating σ2k
n

using increments from the left. In this case, one

would use ˆ̄σ2k
n

= σ̂2k−mn
n

, for which a result similar to Lemma 3.2 holds.

Remark 3.3 Heuristically, it makes sense that one has to choose a moderate size for mn to obtain
the optimal order in (3.13), as we have two competing sources of error. On one hand, we use
an approximation of σ2s by σ2imn

n

, whose error can be shown to be of order
√
mn/n, so it becomes

smaller the smaller mn is. On the other hand, after replacing σ2s by σ2imn
n

, the estimate σ̂2imn
n

−σ2imn
n

becomes an average of mn terms with mean zero each, so its error is roughly
√

1/mn, and it becomes
smaller the larger mn is. 2

There are several ways to construct a version of ρ̃, which takes into account that the volatility
has to be estimated at certain time points. All of these have in common that their main structure
is the same as before: We need increments of the process X, we need estimated increments of the
process σ2, and we need local estimators for the correlation coefficient. Therefore one has to define
some auxiliary sequences of integers again, and we propose to use an estimator for which three (in
general different) ones will be used: First, the sequence mn is used to define the local estimators
from (3.12) for the volatility process σ2, and we will go with the optimal choice from Lemma 3.2,
that is

mn = bn
1
2 + o(n

1
2 ) with b > 0. (3.14)

A further difference to the previous section arises from the fact that we need a second auxiliary
sequence ln which governs the length of the intervals, on which the increments of X and σ̂2 are
computed. As we have to estimate increments of σ2 (which are naturally of order

√
ln/n) by
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increments of σ̂2, we have to choose the sequence ln in such a way that the approximation error
due to the estimation of σ2 (which is of order

√
mn/n) is not dominating. It turns out that one

can indeed take ln and mn to be equal, if one is only interested in a consistent estimation of ρ,
whereas we choose ln to be

ln = dn
2
3 + o(n

2
3 ) with d > 0 (3.15)

in order to obtain a central limit theorem. Finally, we still call kn the number of increments from
which each local correlation coefficient is calculated, but its order will be different from the one in
(2.5). Precisely, we set

kn = c̃
( n
ln

)γ̃
+ o
(( n

ln

)γ̃)
with

1

4
< γ̃ <

1

2
and c̃ > 0, (3.16)

thus of a similar order as the original from (2.5), but with the new effective sample size n/ln.

The reason for this choice of kn is that we focus in this paper on a specific estimator ρ̂, for
which we split the entire interval [0, 1] into disjoint subintervals of length ln/n. The data from
each of these subintervals are used either for the estimation of σ2 or to define an increment of the
process X. This ensures a type of ”conditional independence”, which will be used in the proof of
the central limit theorem later. Precisely, the construction goes as follows: Starting from zero we
define blocks of size 3ln/n, and on each block we compute three quantities:

(i) ˆ̄σ2(3t−2)ln
n

, which serves as an estimator for σ2(3t−2)ln
n

,

(ii) X (3t−1)ln
n

−X (3t−2)ln
n

,

(iii) σ̂2(3t−1)ln
n

, which serves as an estimator for σ2(3t−1)ln
n

.

Here we have t = 1, . . . , b n3ln c. As noted before, these quantities are all defined on non-overlapping
intervals.

Now we are able to construct an analogue of Zni , in which by construction everything happens
on a different time scale as before. Since we use an interval of length 3ln/n to compute X (3k−1)ln

n

−
X (3k−2)ln

n

and σ̂2(3k−1)ln
n

− ˆ̄σ2(3k−2)ln
n

on, the effective number of intervals will drop from n in the

completely observable case to n/(3ln). This explains our choice of kn, and thus we define Ẑin for
i = 0, . . . , b n

3knln
c − 1 as follows:

Ẑin =

1
kn

∑kn
j=1

n
ln

(X (3ikn+3j−1)ln
n

−X (3ikn+3j−2)ln
n

)(σ̂2(3ikn+3j−1)ln
n

− ˆ̄σ2(3ikn+3j−2)ln
n

)√
n

knln

∑kn
j=1(X (3ikn+3j−1)ln

n

−X (3ikn+3j−2)ln
n

)2 n
knln

∑kn
j=1(σ̂

2
(3ikn+3j−1)ln

n

− ˆ̄σ2(3ikn+3j−2)ln
n

)2
.

As before, we obtain an estimator for ρ by setting

ρ̂ =
3knln
n

b n
3knln

c−1∑
i=0

(
Ẑni +

Ẑni (1− (Ẑni )2)

2(kn − 3)

)
. (3.17)

We come to the result on the asymptotic behaviour of ρ̂.
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Theorem 3.4 Suppose that the assumptions stated above hold and that ln coincides with mn from
(3.14). Then we have

ρ̂
P−→ ρ,

where
P−→ denotes convergence in probability. Furthermore, if ρ = 0 and ln is defined as in (3.15),

the central limit theorem √
n

3ln
ρ̂

w−→ N (0, 1) (3.18)

holds.

Remark 3.5 It is obvious that the variance in the central limit theorem above coincides with v2

from Theorem 2.1 for ρ = 0. Furthermore, one can prove that the relation√
n

3ln

(
ρ̂− ρ

)
= Op(1)

holds, even if the condition ρ = 0 is not satisfied. In this case it should also be possible to derive a
central limit theorem, but typically a non-vanishing bias will show up. 2

Remark 3.6 We have already seen that the rate of convergence in the central limit theorem has
dropped from n−

1
2 in the completely observable case to (ln/n)−

1
2 in this context, as it is governed

by the number of increments from which the estimator for ρ is constructed. However, it is not only
the rate of convergence that becomes poor in this general framework. For finite samples the bigger
problem appears to be the fact that the number of summands within ρ̂ is of order n/(knln), thus
being of magnitude smaller than n1/4, which means that it is at most about 10 for any reasonable
choice of n. Nevertheless, we will see in the simulation study that the approximation from the
central limit theorem still works quite well for finite samples. 2

4 Simulation study

In this section we provide a small simulation study assessing the finite sample properties of the
estimators ρ̃ and ρ̂. In order to have comparable results, we use the Heston model from (1.3) with
the parameters µ = 0.05/252, κ = 5/252, α = 0.04/252 and ξ = 0.5/252 in both situations. All
results are based on 10000 simulation runs.

We start with the first case, which means that we are in the situation that both the price
process X and the volatility process σ2 can be observed at times 0, 1/n, . . . , 1 (which is unrealistic
in practice, of course). For the simulation study we define the sample sizes n to be cubic, thus kn
can and will simply be taken as kn = n1/3, which is in line with (2.5). For the sake of brevity we
discuss the properties of the z-transformed statistic from Corollary 2.3 only, as the results for

√
n(ρ̃− ρ)

1− ρ̃2
w−→ N (0, 1)



Estimation of correlation for continuous semimartingales 11

from Theorem 2.1 (for −1 < ρ < 1) are similar.

[INSERT TABLE 1 ABOUT HERE]

We see from Table 1 that the approximation of the lower quantiles is satisfactory, even for
moderate sample sizes. Note however that they appear to be slightly underestimated for a smaller
value of ρ, whereas they become larger for a growing ρ. These findings are supported by additional
simulations not reported here and are probably due to the special form of the volatility process in
the Heston model. The approximation of the upper quantiles shows a similar picture, we is why
we do not provide them explictly. Table 2 indicates that the proposed test has a high power even
for small sample sizes, and that it is able to detect alternatives which are reasonably close to the
null hypothesis. The results for a larger n are omitted, as each null hypothesis is rejected in almost
any case.

[INSERT TABLE 2 ABOUT HERE]

In the second situation, in which the price process X is observed but the volatility is (as usual)
not, we have more parameters to pick. We start with the consistency result from Theorem 3.4, and
as this claim relies not only on mn = O(n1/2), but also on kn → ∞ and n

mnkn
→ ∞, we choose

mn in general smaller than n1/2. Reasonable values for any of the latter two quantities can only
be obtained for large sample sizes, and we depict the precise choices for both sequences in Table
3. The simulation results show that the approximation of ρ works in general well. Note however
that the standard deviation is quite large in all cases, since both the correlation parameter and
its estimator lie within [−1, 1] and thus the latter cannot deviate too much by construction. This
explains also, why the standard deviation becomes smaller for a bigger absolute value of ρ, as a
large deviation to one side becomes unlikely.

[INSERT TABLE 3 ABOUT HERE]

Finally, we investigate the finite sample performance of the z-transformed version of (3.18),
and for the same reasons as before we set neither mn close to n1/2 nor ln close to n2/3. Also, as
we do not want to throw away data and we only need intervals containing mn observations for
the estimation of σ2 (instead of ln data points as suggested implicitly in the definition of ρ̂), we
change ρ̂ in the straight-forward way, making the effective sample size n

ln+2mn
. The exact choice

for any of these auxiliary quantities is given in Table 4. We see that the lower quantiles tend to be
overestimated (the same holds for the upper quantiles, which are again not reported), but that this
effect becomes smaller for a larger sample size, in which case the procedure yields passable results.

[INSERT TABLE 4 ABOUT HERE]

5 Appendix

As usual, standard localisation procedures as in [9] allow us to assume that any locally bounded
process is actually bounded. Furthermore, we may also assume that the processes σ2 and τ2 are
bounded away from zero, so in particular we have σ2 > K and τ2 > K for some K > 0, which is
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fixed throughout the rest of this paper. Universal constants are denoted by C or Cr, if we want to
emphasize their dependencies on an additional parameter r.

Proof of Theorem 2.1 Recall the definition of Uni in (2.8). Following Remark 2.2 we proceed in
three steps. First, we show that we may replace Zni by the simpler Uni , which is (2.9) and (2.10),
and later on we conclude with (2.11), which is obviously the easier part of the proof.

We divide the proof of (2.9) into two parts, by setting Zni − Uni = Ani +Bn
i with

Ani =

n
kn

∑(i+1)kn
j=ikn+1

(
∆n
jX∆n

j Y − σ ikn
n
τ ikn

n
∆n
jW∆n

j V
)

√
n
kn

∑(i+1)kn
j=ikn+1(∆

n
jX)2 n

kn

∑(i+1)kn
j=ikn+1(∆

n
j Y )2

and

Bn
i =

n
kn
σ ikn

n
τ ikn

n

∑(i+1)kn
j=ikn+1 ∆n

jW∆n
j V√

n
kn

∑(i+1)kn
j=ikn+1(∆

n
jX)2 n

kn

∑(i+1)kn
j=ikn+1(∆

n
j Y )2

−
n
kn

∑(i+1)kn
j=ikn+1 ∆n

jW∆n
j V√

n
kn

∑(i+1)kn
j=ikn+1(∆

n
jW )2 n

kn

∑(i+1)kn
j=ikn+1(∆

n
j V )2

.

Lemma 5.1 We have

√
n
kn
n

b n
kn
c−1∑

i=0

Ani
P−→ 0.

Proof of Lemma 5.1 Before we start with the proof, we have to introduce some additional
notation. First, for any 1 ≤ i ≤ b nkn c we set

µni =
n2

k2n

(i+1)kn∑
j=ikn+1

(∆n
jX)2

(i+1)kn∑
j=ikn+1

(∆n
j Y )2, χni =

n2

k2n
σ2ikn

n

τ2ikn
n

(i+1)kn∑
j=ikn+1

(∆n
jW )2

(i+1)kn∑
j=ikn+1

(∆n
j V )2. (5.19)

For later reasons, observe that the decomposition

∆n
jX∆n

j Y − σ ikn
n
τ ikn

n
∆n
jW∆n

j V =
(

∆n
jX − σ ikn

n
∆n
jW

)
∆n
j Y +

(
∆n
j Y − τ ikn

n
∆n
j V
)
σ ikn

n
∆n
jW

for each ikn+ 1 ≤ j ≤ (i+ 1)kn holds, and we need approximations for both quantities on the right
hand side. (2.4) suggests that a reasonable estimate for the first one is given by

Mn
j = τ ikn

n
(V j

n
− V j−1

n
)

∫ j
n

j−1
n

(
ϑ1ikn

n

(Ws −W ikn
n

) + ϑ2ikn
n

(Vs − V ikn
n

) + ϑ3ikn
n

(Us − U ikn
n

)
)
dWs, (5.20)

and a similar term Lnj can be defined for the second quantity as well. We write Ani = Pni +Qni with

Pni =
n

kn

(i+1)kn∑
j=ikn+1

{(
∆n
jX∆n

j Y − σ ikn
n
τ ikn

n
∆n
jW∆n

j V
)
− (Lnj +Mn

j )
}

(5.21)
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and Qni defined implicitly. The proof will now consist of four steps: Once we have shown

P
(

min
i

√
µni < K − δ

)
→ 0 for any 0 < δ < K, (5.22)

kn√
n

b n
kn
c−1∑

i=0

E[|Pni |]→ 0, (5.23)

kn√
n

b n
kn
c−1∑

i=0

Qni√
χni

P−→ 0 and (5.24)

kn√
n

b n
kn
c−1∑

i=0

( Qni√
µni
− Qni√

χni

)
P−→ 0, (5.25)

Lemma 5.1 follows from the following simple argument: For any ε > 0 and some arbitrary but fixed
0 < δ < K we have

P
( kn√

n

∣∣∣ b
n
kn
c−1∑

i=0

Ani

∣∣∣ > ε
)
≤ P

( kn√
n

∣∣∣ b
n
kn
c−1∑

i=0

Pni√
µni

∣∣∣ > ε

2

)
+ P

( kn√
n

∣∣∣ b
n
kn
c−1∑

i=0

Qni√
µni

∣∣∣ > ε

2

)

≤ P
( kn√

n

b n
kn
c−1∑

i=0

|Pni |√
µni

>
ε

2
, min

i

√
µni ≥ K − δ

)
+ P

(
min
i

√
µni < K − δ

)

+ P
( kn√

n

∣∣∣ b
n
kn
c−1∑

i=0

Qni√
µni

∣∣∣ > ε

2

)
.

Now, the second term in the last display above converges to zero from (5.22), whereas the third
one is small following (5.24) and (5.25), so we are left to focus on the first one. Note however that

P
( kn√

n

b n
kn
c−1∑

i=0

|Pni |√
µni

>
ε

2
, min

i

√
µni ≥ K − δ

)
(5.26)

≤ P
( kn√

n

b n
kn
c−1∑

i=0

|Pni |
K − δ

>
ε

2

)
= P

( kn√
n

b n
kn
c−1∑

i=0

|Pni | >
ε(K − δ)

2

)
→ 0

from Markov’s inequality and (5.23), and thus we are done.

Step 1 : In the first step we prove (5.22). Recall the definition of µni from (5.19) and note that

P
(

min
i

√
µni < K − δ

)
= P

(
min
i
µni < (K − δ)2

)
≤ P

(
min
i

n

kn

(i+1)kn∑
j=ikn+1

(∆n
jX)2 < K − δ

)
+ P

(
min
i

n

kn

(i+1)kn∑
j=ikn+1

(∆n
j Y )2 < K − δ

)
.

We will only prove

P
(

min
i

n

kn

(i+1)kn∑
j=ikn+1

(∆n
jX)2 < K − δ

)
→ 0, (5.27)



Estimation of correlation for continuous semimartingales 14

as the second result can be obtained similarly. Observe that

P
(

min
i

n

kn

(i+1)kn∑
j=ikn+1

(∆n
jX)2 < K − δ

)
≤
b n
kn
c−1∑

i=0

P
( n
kn

(i+1)kn∑
j=ikn+1

(∆n
jX)2 < K − δ

)

≤
b n
kn
c−1∑

i=0

P
( n
kn

(i+1)kn∑
j=ikn+1

(σ ikn
n

∆n
jW )2 < K − δ/2

)

+

b n
kn
c−1∑

i=0

P
(∣∣∣ n
kn

(i+1)kn∑
j=ikn+1

(
(∆n

jX)2 − (σ ikn
n

∆n
jW )2

)∣∣∣ > δ/2
)
,

and using K < σ2 < C we conclude from Markov’s inequality

P
( n
kn

(i+1)kn∑
j=ikn+1

(σ ikn
n

∆n
jW )2 < K − δ/2

)
≤ P

(∣∣∣ 1

kn

(i+1)kn∑
j=ikn+1

σ2ikn
n

((
√
n∆n

jW )2 − 1)
∣∣∣ > δ/2

)

≤ C
(2

δ

)r
k−r/2n E

[∣∣∣ 1√
kn

(i+1)kn∑
j=ikn+1

(
(
√
n∆n

jW )2 − 1
)∣∣∣r]

for any r > 0. From the classical central limit theorem we know that the expectation on the right
hand side of the last display is bounded by a constant which only depends on r, and thus

b n
kn
c−1∑

i=0

P
( n
kn

(i+1)kn∑
j=ikn+1

(σ ikn
n

∆n
jW )2 < K − δ/2

)
→ 0

follows, since kn = cnγ and r can be chosen arbitrarily large. It remains to show

b n
kn
c−1∑

i=0

P
(∣∣∣ n
kn

(i+1)kn∑
j=ikn+1

(
(∆n

jX)2 − (σ ikn
n

∆n
jW )2

)∣∣∣ > δ/2
)
→ 0. (5.28)

For the proof of (5.28) we use Itô’s formula:

(∆n
jX)2 − (σ ikn

n
∆n
jW )2 = 2

∫ j
n

j−1
n

(Xs −X j−1
n

)as ds+

∫ j
n

j−1
n

(
σ2s − σ2ikn

n

)
ds (5.29)

+2

∫ j
n

j−1
n

{
(Xs −X j−1

n
)σs − (Ws −W j−1

n
)σ2ikn

n

}
dWs.

Let r be an integer. From Hölder’s inequality, E[|∆n
i X|2r] ≤ Cn−r and the boundedness of a one

can conclude

E
[∣∣∣ n
kn

(i+1)kn∑
j=ikn+1

∫ j
n

j−1
n

(Xs −X j−1
n

)as ds
∣∣∣2r] ≤ Cn−r. (5.30)
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Since σ is a continuous Itô semimartingale by assumption, we know from Itô’s formula that σ2 is
of the same form. Therefore we have

E[|σ2s − σ2ikn
n

|2r] ≤ C
(kn
n

)−r
for

ikn
n
≤ s ≤ (i+ 1)kn

n
,

and the same argument as before gives

E
[∣∣∣ n
kn

(i+1)kn∑
j=ikn+1

∫ j
n

j−1
n

(
σ2s − σ2ikn

n

)
ds
∣∣∣2r] ≤ C(kn

n

)r
. (5.31)

Finally, note that

E
[∣∣∣(Xs −X j−1

n
)σs − (Ws −W j−1

n
)σ2ikn

n

∣∣∣r]
≤ Cr E

[∣∣∣σs ∫ s

j−1
n

au du
∣∣∣r +

∣∣∣(σs − σ ikn
n

)

∫ s

j−1
n

σu dWu

∣∣∣r +
∣∣∣σ ikn

n

∫ s

j−1
n

(σu − σ ikn
n

) dWu

∣∣∣r].
For ikn

n ≤ s ≤
(i+1)kn

n various applications of Burkholder’s and Hölder’s inequality give

E
[∣∣∣σs ∫ s

j−1
n

au du
∣∣∣r] ≤ Cr( 1

n

)r
, E

[∣∣∣(σs − σ ikn
n

)

∫ s

j−1
n

σu dWu

∣∣∣r] ≤ Cr(kn
n

)r/2( 1

n

)r/2
,

E
[∣∣∣σ ikn

n

∫ s

j−1
n

(σu − σ ikn
n

) dWu

∣∣∣r] ≤ Cr(kn
n

)r/2( 1

n

)r/2
,

thus with

gin(s) =
n

kn

(i+1)kn∑
j=ikn+1

1[ j−1
n
, j
n
](s)

{
(Xs −X j−1

n
)σs − (Ws −W j−1

n
)σ2ikn

n

}
we have

E
[
|gin|r(s)

]
=

nr

krn

(i+1)kn∑
j=ikn+1

1[ j−1
n
, j
n
](s) E

[∣∣∣(Xs −X j−1
n

)σs − (Ws −W j−1
n

)σ2ikn
n

∣∣∣r]

≤ Cr

( n
kn

)r(kn
n

)r/2( 1

n

)r/2 (i+1)kn∑
j=ikn+1

1[ j−1
n
, j
n
](s) = Crk

− r
2

n 1
[ ikn

n
,
(i+1)kn

n
]
(s)

for any r > 2. Now

n

kn

(i+1)kn∑
j=ikn+1

∫ j
n

j−1
n

{
(Xs −X j−1

n
)σs − (Ws −W j−1

n
)σ2ikn

n

}
dWs =

∫ (i+1)kn
n

ikn
n

gin(s) dWs,

and from the same inequalities as before we conclude

E
[∣∣∣ ∫ (i+1)kn

n

ikn
n

gin(s) dWs

∣∣∣r] ≤ CrE
[∣∣∣ ∫ (i+1)kn

n

ikn
n

|gin|2(s) ds
∣∣∣r/2]

≤ Cr

(kn
n

)(r−2)/2
E
[ ∫ (i+1)kn

n

ikn
n

|gin|r(s) ds
]
≤ Crn−

r
2 . (5.32)
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Putting together (5.30), (5.31) and (5.32), we obtain

b n
kn
c−1∑

i=0

P
(∣∣∣ n
kn

(i+1)kn∑
j=ikn+1

(
(∆n

jX)2 − (σ ikn
n

∆n
jW )2

)∣∣∣ > δ/2
)
≤ C

(δ
2

)−2r n
kn

(kn
n

)r
from Markov’s inequality, which converges to zero for r large enough. This proves (5.28), so (5.22)
as well.

Step 2 : Now, we turn to the nominator of Ani . From (5.20) we know that for proving (5.23) it
suffices to show

√
n

b n
kn
c−1∑

i=0

E
[∣∣∣ (i+1)kn∑
j=ikn+1

{(
∆n
jX − σ ikn

n
∆n
jW

)
∆n
j Y −Mn

j

}∣∣∣]→ 0, (5.33)

as the related claim involving Lnj is easier to prove. Note that we have

(
∆n
jX − σ ikn

n
∆n
jW

)
∆n
i Y =

(∫ j
n

j−1
n

as ds+

∫ j
n

j−1
n

(σs − σ ikn
n

) dWs

)(∫ j
n

j−1
n

bs ds+

∫ j
n

j−1
n

τs dVs

)
by definition of Y and X. Proving

√
n

b n
kn
c−1∑

i=0

E
[∣∣∣ (i+1)kn∑
j=ikn+1

{(
∆n
jX − σ ikn

n
∆n
jW

)∫ j
n

j−1
n

bs ds
}∣∣∣] ≤ C√kn

n
→ 0

is simple, and we have the decomposition∫ j
n

j−1
n

as ds

∫ j
n

j−1
n

τs dVs =
3∑
l=1

ζ(l)ni,j

with

ζ(1)ni,j =
1

n
a ikn

n
τ ikn

n
∆n
j V, ζ(2)ni,j =

∫ j
n

j−1
n

(as − a ikn
n

) ds τ ikn
n

∆n
j V,

ζ(3)ni,j =

∫ j
n

j−1
n

as ds

∫ j
n

j−1
n

(τs − τ ikn
n

) dVs.

We have E[ζ(1)ni,j ] = 0 and E[|ζ(1)ni,j |2] ≤ Cn−3 by successive conditioning. Thus,

√
n

b n
kn
c−1∑

i=0

E
[∣∣∣ (i+1)kn∑
j=ikn+1

ζ(1)ni,j

∣∣∣] ≤ √n b
n
kn
c−1∑

i=0

E
[( (i+1)kn∑

j=ikn+1

ζ(1)ni,j

)2] 1
2 ≤ C 1

k
1/2
n

→ 0.
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The second term satisfies

√
n

b n
kn
c−1∑

i=0

(i+1)kn∑
j=ikn+1

E[|ζ(2)ni,j |] ≤ C
1√
n

b n
kn
c−1∑

i=0

(i+1)kn∑
j=ikn+1

(∫ j
n

j−1
n

E[(as − a ikn
n

)2] ds
) 1

2

≤ C

√
kn
n

b n
kn
c−1∑

i=0

( (i+1)kn∑
j=ikn+1

∫ j
n

j−1
n

E[(as − a ikn
n

)2] ds
) 1

2

≤ C
( b n

kn
c−1∑

i=0

∫ (i+1)kn
n

ikn
n

E[(as − a ikn
n

)2] ds
) 1

2
= CE

[ ∫ 1

0
(as − a knb ns

kn
c

n

)2 ds
] 1

2
+ o(1) (5.34)

after various applications of Hölder’s inequality. a is left-continuous by assumption, so the integrand
in the last display converges pointwise in s to zero. Since a is also bounded, an application of
Lebesgue’s theorem gives convergence to zero of the entire term as well. As before,

E[|ζ(3)ni,j |] ≤ C
√
kn
n2

, thus
√
n

b n
kn
c−1∑

i=0

∣∣∣ (i+1)kn∑
j=ikn+1

∫ j
n

j−1
n

as ds

∫ j
n

j−1
n

τs dVs

∣∣∣ P−→ 0,

and it remains to show

√
n

b n
kn
c−1∑

i=0

∣∣∣ (i+1)kn∑
j=ikn+1

∫ j
n

j−1
n

(σs − σ ikn
n

) dWs

∫ j
n

j−1
n

τs dVs −Mn
j

∣∣∣ P−→ 0 (5.35)

to obtain (5.33). Recall (2.4). Using Hölder’s and Burkholder’s inequality again, we obtain

√
n

b n
kn
c−1∑

i=0

(i+1)kn∑
j=ikn+1

E
[∣∣∣ ∫ j

n

j−1
n

(∫ s

ikn
n

vr dr
)
dWs

∫ j
n

j−1
n

τs dVs

∣∣∣] ≤ C kn√
n
,

which converges to zero by assumption on kn. At last,∫ j
n

j−1
n

(∫ s

ikn
n

ϑ1r dWr +

∫ s

ikn
n

ϑ2r dVr +

∫ s

ikn
n

ϑ3r dUr

)
dWs

∫ j
n

j−1
n

τs dVs −Mn
j

can be decomposed into a sum of several quantities, each of which is of order kn/n
2 from the same

arguments as before. Since kn/
√
n→ 0, this finishes the proof of (5.33).

Step 3 : In this step we prove (5.24), and as before it suffices to show the result for the summand
involving Mn

j only. The main idea is to decompose Mn
j into the sum of three terms, which can be

written as a product of an F ikn
n

-measurable random variable and a functional of some multidimen-

sional Brownian motion each. We only discuss the first one,

κnj =
ϑ1ikn

n

σ ikn
n

∫ j
n
j−1
n

(Ws −W ikn
n

) dWs (V j
n
− V j−1

n
)√

1
kn

∑(i+1)kn
j=ikn+1(

√
n∆n

jW )2 1
kn

∑(i+1)kn
j=ikn+1(

√
n∆n

j V )2
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for ikn + 1 ≤ j ≤ (i+ 1)kn, thus we are left to prove

√
n

b n
kn
c−1∑

i=0

(i+1)kn∑
j=ikn+1

κnj
P−→ 0.

Now, recall that the inverse of a (central) chi-square distribution with v degrees of freedom has
finite moments for all integers w < v/2. Precisely, a simple computation shows that if Nv ∼ χ2

v,
then

E[N−wv ] =
(12)w

(v2 − 1) · . . . · (v2 − w)
∼ 1

vw
(5.36)

for v →∞. Therefore we may from Hölder’s and Burkholder’s inequality plus (5.36) that

E[|κnj |2] ≤ k2nE[N−4kn ]1/2E
[( ∫ j

n

j−1
n

(Ws −W ikn
n

) dWs ∆n
j V
)4]1/2

< C
kn
n3

(5.37)

for n large enough. Summarizing, κnj has finite first two moments for n large enough, and it is also
easy to see that ”the Brownian part” of κnj (just as the one of the other two terms not reported

here) is an odd functional in (U, V,W ). Since (U, V,W )
D
= −(U, V,W ), this implies E[κnj |F ikn

n
] = 0.

Therefore, (5.37) and the assumptions on ϑ1 and σ give

E
[(√

n

b n
kn
c−1∑

i=0

(i+1)kn∑
j=ikn+1

κnj

)2]
≤ Cn

b n
kn
c−1∑

i=0

E
[( (i+1)kn∑

j=ikn+1

κnj

)2]
= Cn

b n
kn
c−1∑

i=0

(i+1)kn∑
j,l=ikn+1

E[κnj κ
n
l ]→ 0

and this finishes the proof of (5.24).

Step 4 : We are left to focus on (5.25), which finally implies Lemma 5.1. Our aim is to prove

kn√
n

b n
kn
c−1∑

i=0

( Qni√
χni
− Qni√

µni

)
=

kn√
n

b n
kn
c−1∑

i=0

Qni (µni − χni )√
µni
√
χni (
√
µni +

√
χni )

P−→ 0,

and we can easily deduce

P (min
i

√
µni < K − δ)→ 0 and P (min

i

√
χni < K − δ)→ 0 (5.38)

for any 0 < δ < K from (5.22) and its proof. So with the same argument as in (5.26) it is sufficient
to establish

kn√
n

b n
kn
c−1∑

i=0

E[|Qni (µni − χni )|]→ 0.

We have

µni − χni =
n

kn

(i+1)kn∑
j=ikn+1

σ2ikn
n

(∆n
jW )2

( n
kn

(i+1)kn∑
j=ikn+1

(
(∆n

j Y )2 − τ2ikn
n

(∆n
j V )2

))
(5.39)

+
n

kn

(i+1)kn∑
j=ikn+1

(∆n
j Y )2

( n
kn

(i+1)kn∑
j=ikn+1

(
(∆n

jX)2 − σ2ikn
n

(∆n
jW )2

))
=: Rni + Sni ,
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and without loss of generality we will prove

kn√
n

b n
kn
c−1∑

i=0

E[|Qni Sni |]→ 0 (5.40)

only. Several applications of Hölder’s and Burkholder’s inequality give

E[|Qni |p] ≤ Cp
(kn
n

)p/2
and E

[∣∣∣ n
kn

(i+1)kn∑
j=ikn+1

(∆n
j Y )2

∣∣∣q] ≤ Cq,
for any two positive reals p and q, and for an arbitrary positive r we have

E
[∣∣∣ n
kn

(i+1)kn∑
j=ikn+1

(
(∆n

jX)2 − σ2ikn
n

(∆n
jW )2

)∣∣∣r] ≤ Cr(kn
n

) r
2

(5.41)

from (5.30), (5.31) and (5.32) as well. Using the generalized version of Hölder’s inequality we obtain

kn√
n

b n
kn
c−1∑

i=0

E[|Qni Sni |] ≤ C
√
n
kn
n

= C
kn√
n
→ 0,

and we are done. 2

Lemma 5.2 We have

√
n
kn
n

b n
kn
c−1∑

i=0

Bn
i

P−→ 0.

Proof of Lemma 5.2 This proof follows essentially the same strategy as the one of the previous
lemma, and we will only give the main ideas. Recalling (5.19) and setting

γni =
n

kn
σ ikn

n
τ ikn

n

(i+1)kn∑
j=ikn+1

∆n
jW∆n

j V and δni =
n

kn

(i+1)kn∑
j=ikn+1

∆n
jX∆n

j Y (5.42)

the assertion reduces to showing

kn√
n

b n
kn
c−1∑

i=0

( γni√
χni
− γni√

µni

)
=

kn√
n

b n
kn
c−1∑

i=0

γni (µni − χni )√
µni
√
χni (
√
µni +

√
χni )

P−→ 0.

We have already discussed in (5.22) that the denominator is (in that particular sense) bounded
from below in n, so the main focus will be on the nominator γni (Rni + Sni ) with the notation from
(5.39).
As in the previous proof we need certain approximations for γni R

n
i and γni S

n
i , which will be called
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θni and λni in the following. For the sake of brevity we will only define and discuss λni in detail, as
the other quantity has a similar form and can be treated in the same way. Recalling (2.4) we set

λni =
n3

k3n

(i+1)kn∑
j,k,l=ikn+1

σ ikn
n
τ3ikn

n

∆n
jW∆n

j V (∆n
kV )2(αnl + βnl + πnl ) (5.43)

with

αnl = 2a ikn
n
σ ikn

n

∫ l
n

l−1
n

(Ws −W l−1
n

) ds, βnl = τ ikn
n

∫ l
n

l−1
n

(Vs − V ikn
n

) ds,

and

πnl = 2

∫ l
n

l−1
n

(
a ikn

n
σ ikn

n

∫ s

l−1
n

du+ ϑ1ikn
n

σ ikn
n

{
(Ws −W ikn

n
)

∫ s

l−1
n

dWu +

∫ s

l−1
n

(Wu −W ikn
n

) dWu

}
+ϑ2ikn

n

σ ikn
n

{
(Vs − V ikn

n
)

∫ s

l−1
n

dWu +

∫ s

l−1
n

(Vu − V ikn
n

) dWu

}
+ϑ3ikn

n

σ ikn
n

{
(Us − U ikn

n
)

∫ s

l−1
n

dWu +

∫ s

l−1
n

(Uu − U ikn
n

) dWu

})
dWs

for ikn < l ≤ (i + 1)kn. Now, using the same arguments as in the proof of Lemma 5.1, we are
finished once we have shown

kn√
n

b n
kn
c−1∑

i=0

E[|γni (µni − χni )− (λni + θni )|]→ 0, (5.44)

kn√
n

b n
kn
c−1∑

i=0

λni + θni
2(χni )3/2

P−→ 0 and (5.45)

kn√
n

b n
kn
c−1∑

i=0

( λni + θni√
µni
√
χni (
√
µni +

√
χni )
− λni + θni

2(χni )3/2

)
P−→ 0, (5.46)

where we have used (5.38).
As said before, instead of proving (5.44) we discuss

kn√
n

b n
kn
c−1∑

i=0

E[|γni Sni − λni |]→ 0 (5.47)

only. We have

γni S
n
i =

n3

k3n

(i+1)kn∑
j,k,l=ikn+1

σ ikn
n
τ ikn

n
∆n
jW∆n

j V (∆n
kY )2

(
(∆n

l X)2 − σ2ikn
n

(∆n
l W )2

)
,
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thus using E[|∆n
jW |r] ≤ Cn−

r
2 , (5.41) twice (once in terms of X and once in terms of σ2) plus

Hölder’s inequality we obtain

E
[∣∣∣γni Sni − n3

k3n

(i+1)kn∑
j,k,l=ikn+1

σ ikn
n
τ3ikn

n

∆n
jW∆n

j V (∆n
kV )2

(
(∆n

l X)2 − σ2ikn
n

(∆n
l W )2

)∣∣∣] ≤ Ckn
n
.

With kn/
√
n→ 0 and from the boundedness of σ and τ , (5.47) reduces to showing that

n5/2

k2n

b n
kn
c−1∑

i=0

E
[∣∣∣ (i+1)kn∑
j,k,l=ikn+1

∆n
jW∆n

j V (∆n
kV )2

(
(∆n

l X)2 − σ2ikn
n

(∆n
l W )2 − (αnl + βnl + πnl )

)∣∣∣]
converges to zero. To this end, we use the following estimates which are straight-forward conse-
quences of Hölder’s and Burkholder’s inequality:

E
[∣∣∣2 ∫ j

n

j−1
n

(Xs −X j−1
n

)as ds− αnj
∣∣∣2] ≤ C( 1

n2
E
[ ∫ l

n

l−1
n

(as − a ikn
n

)2 ds
]

+
kn
n4

)
,

E
[∣∣∣ ∫ j

n

j−1
n

(
σ2s − σ2ikn

n

)
ds− βnj

∣∣∣2] ≤ Ck2n
n4
, (5.48)

E
[∣∣∣2 ∫ j

n

j−1
n

{
(Xs −X j−1

n
)σs − (Ws −W j−1

n
)σ2ikn

n

}
dWs − πnj

∣∣∣2]
≤ C

( 1

n2
E
[ ∫ l

n

l−1
n

(as − a ikn
n

)2 ds
]

+
k2n
n4

)
.

Thus we may conclude from (5.29) that

E
[∣∣∣ (i+1)kn∑
j,k,l=ikn+1

∆n
jW∆n

j V (∆n
kV )2

(
σ2ikn

n

(∆n
l W )2 − (∆n

l X)2 − (αnl + βnl + πnl )
)∣∣∣]

≤ Ck
3
n

n3

(
E
[ ∫ l

n

l−1
n

(as − a ikn
n

)2 ds
]1/2

+
kn
n

)
,

and the proof of (5.47) is complete, once we use again the fact that a is left-continuous.

Showing (5.45) is similar to proving (5.24): We know from Hölder’s inequality that
λni +θ

n
i

2(χn
i )

3/2 has

finite first moments for n large enough. Now, have a look at
λni

2(χn
i )

3/2 for example: Similar to the

definition of κni in the proof of (5.24) F ikn
n

-measurable variables do not matter here as well. Also,

the resulting variable has finite first moments, and using Hölder’s inequality and (5.36) we obtain

E
[( λni + θni

2(χni )3/2

)r]
≤ C E[(λni + θni )2r]1/2 ≤ C

(kn
n

)r/2
(5.49)

for any integer r. As the variable is also odd in (U, V,W ) (each of the quantities αni , βni and πni
is), its first moment is zero, and

E
[( kn√

n

b n
kn
c−1∑

i=0

λni + θni
2(χni )3/2

)2]
=
k2n
n

b n
kn
c−1∑

i=0

E
[( λni + θni

2(χni )3/2

)2]
≤ Ck

2
n

n
→ 0.
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Finally,

λni + θni√
µni
√
χni (
√
µni +

√
χni )
− λni + θni

2(χni )3/2
(5.50)

=
(λni + θni )(χni − µni )

2(χni )3/2
√
µni (
√
µni +

√
χni )

+
(λni + θni )

√
χni (χni − µni )

2(χni )3/2
√
µni (
√
µni +

√
χni )2

,

and using (5.38) we are left to prove

kn√
n

b n
kn
c−1∑

i=0

E
[∣∣∣(λni + θni )(χni − µni )(

√
χni + 1)

∣∣∣]→ 0 (5.51)

as before. Using (5.49), (5.41) and E[|χni |r] ≤ Cr we obtain

E[|λni + θni |3]1/3 ≤ C
(kn
n

)1/2
, E[|χni − µni |3]1/3 ≤ C

(kn
n

)1/2
, E[|

√
χni + 1|3]1/3 ≤ C,

and thus Hölder’s inequality and kn/
√
n→ 0 yield (5.51). 2

The proof of (2.10) and (2.11) is simpler. For the first result, note that

(Zni )3 − (Uni )3 = (Zni )2(Zni − Uni ) + Zni U
n
i (Zni − Uni ) + (Uni )2(Zni − Uni ), (5.52)

and without loss of generality we discuss the first term on the right hand side only. Recall (5.42).
We have

(Zni )2(Zni − Uni ) =
(δni )2

µni

( δni√
µni
− γni√

χni

)
=

(δni )3(χni − µni )

(µni )3/2
√
χni (
√
χni +

√
µni )

+
(δni )2(δni − γni )

µni
√
χni

.

Using (5.38) we may conclude as in the previous proof that (2.10) follows, once we have established

1√
n

b n
kn
c−1∑

i=0

E[|(δni )3(χni − µni )|+ |(δni )2(δni − γni )|]→ 0. (5.53)

The same arguments that lead to (5.41) give both

E[|χni − µni |r] ≤ Cr
(kn
n

)r/2
and E[|δni − γni |r] ≤ Cr

(kn
n

)r/2
,

and it is easy to obtain E[|δni |r] ≤ Cr and E[|µni |r] ≤ Cr. Applying kn →∞ completes the proof of
(5.53).

It remains to prove (2.11). Since the Uni form a triangular array of rowwise independent and
identically distributed random variables, this claim follows from

√
n
(
E
[
Un1 +

Un1 (1− (Uni )2)

2(kn − 3)

]
− ρ
)
→ 0 (5.54)
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and

knVar
(
Un1 +

Un1 (1− (Uni )2)

2(kn − 3)

)
→ v2. (5.55)

From equation (2.6) in [13] we know that

E
[
Un1 +

Un1 (1− (Uni )2)

2(kn − 3)

]
− ρ = O

(
k−2n

)
,

and (5.54) follows, since n1/2k−2n → 0 by assumption. (5.55) is a standard consequence of the
Cramér-Wold theorem. Setting

Fni =
n

kn

(i+1)kn∑
j=ikn+1

∆n
jW∆n

j V, Gni =
n

kn

(i+1)kn∑
j=ikn+1

(∆n
jW )2, Hn

i =
n

kn

(i+1)kn∑
j=ikn+1

(∆n
j V )2,

one has

√
kn

 Fni
Gni
Hn
i

−
 ρ

1
1

 w−→ N (0,Σ) with Σ =

 1 + ρ2 2ρ 2ρ
2ρ 2 2ρ2

2ρ 2ρ2 2

 ,

and the delta method gives √
kn(Uni − ρ)

w−→ N (0, v2).

(5.55) can now be derived easily. 2

Proof of Lemma 3.2 We use Itô’s formula again. For any 1 ≤ j ≤ mn we have

(X j+k
n
−X j+k−1

n
)2 = 2

∫ j+k
n

j+k−1
n

(
(Xs −X j+k−1

n
)as + σ2s

)
ds+ 2

∫ j+k
n

j+k−1
n

(Xs −X j+k−1
n

)σs dWs,

and thus

σ̂2k
n

− σ2k
n

=
n

mn

mn∑
j=1

(
(X j+k

n
−X j+k−1

n
)2 − 1

n
σ2k

n

)
(5.56)

=
n

mn

mn∑
j=1

(∫ j+k
n

j+k−1
n

2(Xs −X j+k−1
n

)as + (σ2s − σ2k
n

) ds+ 2

∫ j+k
n

j+k−1
n

(Xs −X j+k−1
n

)σs dWs

)
.

From Burkholder’s inequality it is obvious that

n

mn

mn∑
j=1

∫ j+k
n

j+k−1
n

2(Xs −X j+k−1
n

)as ds = Op

(
n−

1
2

)
,

and the same way we have

n

mn

mn∑
j=1

∫ j+k
n

j+k−1
n

(σ2s − σ2k
n

) ds = Op

(√mn

n

)
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for the second term. By successive conditioning we obtain finally

E
[( n

mn

mn∑
j=1

∫ j+k
n

j+k−1
n

(Xs −X j+k−1
n

)σs dWs

)2]
=

n2

m2
n

mn∑
j=1

∫ j+k
n

j+k−1
n

E[(Xs −X j+k−1
n

)2σ2s ] ds ≤ C
1

mn
,

which finishes the proof. 2

Proof of Theorem 3.4 We will only give a proof of the central limit theorem, as the consistency
result follows essentially from the same lines. To this end we start with some additional notation,
which in parts is similar to the one used in the proof of Theorem 2.1, but should not be mixed up
with it. First, we set rij = 3ikn + 3j − 1 and define

µ̂ni =
n

knln

kn∑
j=1

(X rij ln

n

−X (rij−1)ln

n

)2
n

knln

kn∑
j=1

(σ̂2rij ln
n

− ˆ̄σ2(rij−1)ln

n

)2, (5.57)

µni =
n

knln

kn∑
j=1

(X rij ln

n

−X (rij−1)ln

n

)2
n

knln

kn∑
j=1

(σ2rij ln
n

− σ2(rij−1)ln

n

)2, and

χni =
n

knln

kn∑
j=1

σ23iknln
n

(W rij ln

n

−W (rij−1)ln

n

)2
n

knln

kn∑
j=1

τ23iknln
n

(V rij ln

n

− V (rij−1)ln

n

)2

for i = 0, . . . , b n
3knln

c − 1, which are the (squared) denominator of Ẑni and two natural approxima-
tions for it. We define similar quantities for its nominator:

δ̂ni =
n

knln

kn∑
j=1

(X rij ln

n

−X (rij−1)ln

n

)(σ̂2rij ln
n

− ˆ̄σ2(rij−1)ln

n

) and (5.58)

δni =
n

knln

kn∑
j=1

(X rij ln

n

−X (rij−1)ln

n

)(σ2rij ln
n

− σ2(rij−1)ln

n

).

Finally

Zin =

1
kn

∑kn
j=1

n
ln

(X rij ln

n

−X (rij−1)ln

n

)(σ2rij ln
n

− σ2(rij−1)ln

n

)√
n

knln

∑kn
j=1(X rij ln

n

−X (rij−1)ln

n

)2 n
knln

∑kn
j=1(σ

2
rij ln

n

− σ2(rij−1)ln

n

)2
,

and from Theorem 2.1 we have√
n

3ln

3knln
n

b n
3knln

c−1∑
i=0

(
Zni +

Zni (1− (Zni )2)

2(kn − 3)

)
w−→ N (0, v2). (5.59)

Our task therefore is to show that the error due to replacing Zni by Ẑni is negligible. Since

Ẑni − Zni =
δ̂ni√
µ̂ni
− δni√

µni
=
δ̂ni − δni√

µni
+

δ̂ni (µni − µ̂ni )√
µni
√
µ̂ni (
√
µni +

√
µ̂ni )

, (5.60)
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we prove in a first step that √
n

ln

knln
n

b n
3knln

c−1∑
i=0

δ̂ni − δni√
µni

= op(1). (5.61)

From Burkholder’s inequality we have

X rij ln

n

−X (rij−1)ln

n

= σ 3ilnkn
n

(W rij ln

n

−W (rij−1)ln

n

) +Rnij with E[|Rnij |q] ≤ Cqkq/2n

( ln
n

)q
, (5.62)

and using (5.56) we are able to show

σ̂2rij ln
n

− σ2rij ln
n

= ψnij + Snij with E[|Snij |q] ≤ Cq
(lnknmn)q/2

nq
,

where

ψnij =
n

mn

rij ln+mn∑
k=rij ln+1

(
τ 3ilnkn

n

∫ k
n

k−1
n

∫ s

rij ln

n

dVu ds+ 2σ23ilnkn
n

∫ k
n

k−1
n

∫ s

k−1
n

dWu dWs

)
. (5.63)

A similar decomposition holds for ˆ̄σ2(rij−1)ln

n

− σ2(rij−1)ln

n

, in which case the approximation is

φnij =
n

mn

(rij−1)ln−1∑
k=(rij−1)ln−mn

(
τ 3ilnkn

n

∫ k+1
n

k
n

∫ s

(rij−1)ln

n

dVu ds+ 2σ23ilnkn
n

∫ k+1
n

k
n

∫ s

k
n

dWu dWs

)
. (5.64)

Thus with

Dn
i =

n

knln

kn∑
j=1

ψnijσ 3ilnkn
n

∫ rij ln

n

(rij−1)ln

n

dWs and Eni =
n

knln

kn∑
j=1

φnijσ 3ilnkn
n

∫ rij ln

n

(rij−1)ln

n

dWs

we can proceed as in (5.22)–(5.25): We have to show

P
(

min
i

√
µni < K − δ

)
→ 0 for any 0 < δ < K, (5.65)

kn

√
ln
n

b n
3lnkn

c−1∑
i=0

E[|δ̂ni − δni − (Dn
i − Eni )|]→ 0, (5.66)

kn

√
ln
n

b n
3lnkn

c−1∑
i=0

Dn
i − Eni√
χni

P−→ 0 and (5.67)

kn

√
ln
n

b n
3lnkn

c−1∑
i=0

(Dn
i − Eni√
µni

− Dn
i − Eni√
χni

)
P−→ 0. (5.68)

(5.65) follows from (5.22), whereas we conclude

kn

√
ln
n

b n
3lnkn

c−1∑
i=0

E[|δ̂ni − δni − (Dn
i − Eni )|] ≤ C

√
n

ln

n

ln

(knmn)1/2ln

n3/2
= C

(knmn

ln

)1/2
→ 0
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from (5.62) and (5.63) and by assumption on kn, which gives (5.66). (5.67) can be shown in
the same way as (5.24), and one uses that the quantities Dn

i , Eni and χni are defined on disjoint
intervals. From the independence of increments of a Brownian motion one obtains (in order to have
an existing expected value, n has to be large enough again)

E
[Dn

i − Eni√
χni

∣∣∣F 3ilnkn
n

]
= 0,

and thus E[(Dn
i − Eni )4] < C

(
mn
knln

+ n
knlnmn

)2
plus Hölder’s inequality gives

E
[(
kn

√
ln
n

b n
3lnkn

c−1∑
i=0

Dn
i − Eni√
χni

)2]
< C

(mn

ln
+

n

lnmn

)
→ 0.

Finally, we can use E[(χni − µni )2] < C knln
n from (5.41) in order to obtain

kn

√
ln
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3lnkn
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√
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√
knln
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= C

√
mn

ln
→ 0.

As in the proof of (5.25) this is sufficient to derive (5.68) and thus (5.61).
We come to the analysis of

δ̂ni (µni − µ̂ni )√
µni
√
µ̂ni (
√
µni +

√
µ̂ni )

,

and we define another three terms, which will be used to approximate the nominator above, namely
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n

), (5.69)
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)2
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dVs).

with ψnij and φnij as in (5.63) and (5.64), respectively. The second step now consists of establishing

√
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√
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√
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n
i

2(χni )3/2

)
= op(1), (5.70)
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whose proof will be split into three parts, namely
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3knln
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δ̂ni (µni − µ̂ni )− γni µ̄ni√
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√
µ̂ni (
√
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= op(1), (5.71)
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√
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= op(1), (5.72)

√
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i=0

γni (µ̄ni − µ̃ni )

2(χni )3/2
= op(1). (5.73)

Note first that one obtains

E
[∣∣∣(σ2rij ln

n

− σ2(rij−1)ln

n

)2 − (σ̂2rij ln
n

− ˆ̄σ2(rij−1)ln

n

)2
∣∣∣q] ≤ Cq (mnln)q/2

nq
(5.74)

as the binomial theorem gives a natural decomposition of the left hand side of the preceding display
into five terms, whose orders are simple to compute. We use this result to prove

P
(

min
i

√
µ̂ni < K − δ

)
→ 0 for any 0 < δ < K (5.75)

first. Recall (5.22) and its proof. It is then easy to see that it suffices to verify

P
(

min
i

n

knln

∣∣∣ kn∑
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2

)
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which thus follows from Markov’s inequality, in the same way as the corresponding result in the
proof of (5.22). This claim helps in order to obtain (5.71), since similar to the proof of Lemma 5.1
it is now sufficient to establish√

n

ln
E[|δ̂ni (µni − µ̂ni )− γni µ̄ni |]→ 0 uniformly in i. (5.76)

Showing (5.76) is tedious. The main idea is that one exchanges the quantities in δ̂ni (µni − µ̂ni ) in
several steps by less complex ones, where the error of each replacement is small. Precisely, we
use (5.62) and (5.63) plus (5.74) in order to first replace any increment of X by σ 3ilnkn

n
times the

corresponding increment of W . Then the overall size of the error due to this approximation is of

order
√

knmn
ln
→ 0. The same error arises, if we replace
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) by ψnij + τ 3ilnkn
n

∫ rij ln
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(rij−1)ln
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dVs − φnij

afterwards, and using (5.63) and (5.64) we can finally define similar approximations for each of the

five terms in the decomposition of (5.74), giving again an overall error of size
√

knmn
ln

. This new

term is already close to γni µ̄
n
i , but still includes an additional term involving the product of ψnij and
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φnij . However, using that both ψnij , φ
n
ij and the dWs−, dVs−integrals are living on disjoint intervals,

a simple calculation gives that this additional term is of small order, that is on the whole

n

ln
E[|δ̂ni (µni − µ̂ni )− γni µ̃ni |2] ≤ C

(knmn

ln
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l3nkn
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)
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and thus (5.71) follows. For the proof of (5.72) note that
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n
i√

µni
√
µ̂ni (
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√
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− γni µ̄
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2(χni )3/2

can be decomposed in a similar way as the difference in (5.50), which forces us to show√
n

ln
E[|γni µ̄ni (χni − µni )(

√
µni +

√
µ̂ni )
√
µ̂ni |]→ 0 uniformly in i (5.77)

and several related results, where the main difference is that (χni −µni ) must sometimes be replaced
by (χni − µ̂ni ). However, we use (5.41) and derive

E[|µni − µ̂ni |q] ≤ Cq
(mn

ln

)q/2
, E[|γni |q] ≤ Cq, E[|µ̄ni |q] ≤ Cq

( mn

knln

)q/2
(5.78)

from (5.74) and some careful computations, thus (5.72) follows from Hölder’s inequality. Finally,
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k3nl
3
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.

Introducing Gni , which is the smallest σ-algebra containing F 3ilnkn
n

and such that the increments of

W and V on [
(rij−1)ln

n ,
rij ln
n ], j = 1, . . . , kn, are Gni -measurable we obtain
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since ψnil and φnil are centered and independent of Gni for each l. Therefore
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follows from the Cauchy-Schwarz inequality. This proves (5.73), thus (5.70).
In a third step we establish
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3knln
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(
(Ẑni )3 − (Zni )3

)
P−→ 0, (5.79)
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which can be shown in a similar way as the corresponding result in (2.11). Precisely, from the same
expansion as in (5.52) plus the decomposition (5.60) and the Cauchy-Schwarz inequality it remains
to prove

√
ln
n
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3knln

c−1∑
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(E[|δ̂ni − δni |2]1/2 + E[|µ̂ni − µni |2]1/2)→ 0. (5.80)

However, we have
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using (5.78) and Lemma 3.2, and since

√
nmn

lnkn
≤ Cn

1
12

kn
→ 0

from (3.16), (5.80) and (5.79) follow.
Let us put things together. (5.61), (5.70), (5.79) and (5.59) show that the final part in the proof
of Theorem 3.4 consists of establishing
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Set sni = σ 3ilnkn
n

τ 3ilnkn
n

. As the correlation ρ is zero, it is easy to see that both
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hold. Also, for a twice continuously differentiable function f on R2 a Taylor expansion gives

f(x, y) = f(0, sni ) + (x, y − sni )∇f(ξni , ϑ
n
i )

with |ξni | ≤ |x| and |ϑni − sni | ≤ |y − sni |. Setting f(x, y) = x
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The proof of (5.81) is simple now. 2
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ρ -0.5 0 0.5

n/α .025 .05 .1 .025 .05 .1 .025 .05 .1

125 .0632 .0985 .1599 .0465 .0789 .1402 .0533 .0896 .1471
1000 .0267 .0508 .0974 .0293 .059 .1127 .0457 .084 .1487
3375 .025 .048 .0927 .0312 .0586 .1106 .0372 .0718 .1342
8000 .0237 .0434 .0881 .0272 .0573 .1067 .0389 .0705 .1321
15625 .0239 .0495 .0926 .0307 .0597 .1099 .0376 .0725 .1316
27000 .0208 .0404 .0843 .0304 .0541 .1072 .0358 .0693 .1283

Table 1: Simulated quantiles of the statistic from Corollary 2.3 for various choices of the
sample size n and the correlation parameter ρ.

ρ -0.2 -0.1 0.1 0.2

n/α .05 .1 .05 .1 .05 .1 .05 .1

125 .6046 .7041 .2422 .3389 .2343 .3298 .6097 .7088
1000 1 1 .8764 .9262 .8691 .9218 .9999 1

Table 2: Rejection probabilities of the test from Corollary 2.3 under the null hypothesis ρ = 0
and for various choices of the sample size n and the alternative ρ.

ρ -0.5 0 0.5

n mn kn bias std. dev. bias std. dev. bias std. dev.

8000 66 5 -.0148 .1462 -.0017 .1802 .0152 .1453
15625 85 6 -.0081 .1143 .002 .1435 .01 .1128
27000 115 7 -.0055 .0953 .0005 .1223 .0058 .0962

Table 3: Bias and standard deviation of ρ̂ − ρ for various choices of the sample size n (and
mn and kn) and the correlation parameter ρ.

n ln mn kn .025 .05 .1

8000 140 53 4 .0716 .1067 .1631
15625 190 66 5 .05 .0814 .1395
27000 240 82 6 .0415 .0712 .1269

Table 4: Simulated quantiles of the z-transformed version of (3.18) for ρ = 0 and various
choices of the sample size n (and ln, mn and kn).



 



 



 


