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1 Introdu
tionThe theory of strongly 
orrelated ele
trons is of great importan
e for solid statephysi
s or in general 
ondensed matter physi
s. For instan
e, 
ondu
tivity andmagneti
 properties are strongly in�uen
ed by ele
troni
 
orrelations. Materialswith strongly 
orrelated ele
trons exhibit many interesting phenomena that 
anonly be understood in 
onsideration of quantum physi
s. The usual approa
h isto redu
e the exhaustive many-body problems with a multitude of intera
tionsto simple paradigmati
 models that in
lude the de
isive physi
al properties.One of the most 
hallenging issues in modern solid state physi
s is the sear
hfor an appropriate theoreti
al des
ription for high-temperature super
ondu
tiv-ity. While 
onventional low-temperature super
ondu
tivity is well-understoodand very a

urately des
ribed on the mi
ros
opi
 level by the BCS theory [1℄,the me
hanisms behind the super
ondu
tivity based on 
uprate or iron pni
tide
ompounds are subje
ts of ongoing resear
h. The 
riti
al temperature Tc for
uprate super
ondu
tors (�rst dis
overed by Bednorz and Müller in 1986 [2℄) isup to 138 K [3℄ and hen
e relevant for te
hni
al appli
ations. The understandingof the underlying pro
esses 
ould also help �nding materials with even higher Tc.The 
ru
ial point for 
onventional super
ondu
tivity is the phonon mediated
ombination of two ele
trons to a Cooper pair with integer spin as des
ribedby the BCS theory. The bosoni
 Cooper pairs 
an form a 
olle
tive quantumstate whi
h is responsible for the e�e
ts of super
ondu
tivity. In essen
e theseare: (i) a 
urrent �ow without resistan
e and (ii) the Meissner-O
hsenfeld e�e
t.The 
urrent approa
hes to a theory for high-Tc super
ondu
tivity in 
uprate
ompounds assume similar 
onditions. Fermioni
 
harge 
arriers, whi
h 
an beeither holes or ele
trons depending on the material and doping, are supposed tobe 
ombined into pairs via attra
tive intera
tions. However, these intera
tionsare likely not to be due to a barely phononi
 mediation [4℄.A model system 
onsisting of spins that intera
t magneti
ally with positive
oupling 
onstants and mobile 
harge 
arriers is 
alled a doped antiferromagnet.1



CHAPTER 1. INTRODUCTIONIts theoreti
al des
ription is a
hieved by the so 
alled t-J-model1 [5, 6℄. Froma strong 
oupling perspe
tive su
h a model in 2D is expe
ted to in
orporatethe essential features of the high-Tc super
ondu
tors based on 
uprates. Thismodel 
aptures the main e�e
t be
ause the super
ondu
tion takes pla
e in two-dimensional 
uprate layers separated from ea
h other by the other 
onstituentsof the 
ompound. The 
oupling between the 
uprate planes is so weak that it
an be negle
ted [7℄.The s
hemati
 phase diagram for a typi
al hole-doped high-Tc 
uprate super-
ondu
tor in dependen
e on the temperature T and the hole 
on
entration δ isshown in Figure 1.1. There is a phase 
hara
terised by a long-range 
ommensu-rate antiferromagneti
 order (AF), whi
h o

urs for small δ. The super
ondu
tingphase (SC) 
an be found at low T in the region 0.05 . δ . 0.25. It is also 
alled�super
ondu
ting dome� be
ause of its form in the phase diagram. Optimal dop-ing is a
hieved when Tc be
omes maximal. In the regime between antiferromagnetand super
ondu
tor various forms of disordered and in
ommensurate magnetismo

ur. The remaining regimes, whi
h are not separated by phase transitions butby 
rossovers, are in the order of in
reasing δ: The pseudogap regime (PG), thenon-Fermi liquid regime (NFL) and the Fermi liquid regime (FL).Di�erent theories have been developed as possible des
riptions for high-Tc
uprate super
ondu
tivity: The resonating valen
e bond state and spin-
hargeseparation respe
tively [4, 8, 9℄, stripe-like inhomogeneous spin and 
harge order-ing [7, 10�13℄ and quantum 
riti
ality [14, 15℄ are the most important 
on
epts.Certainly magneti
 �u
tuations and their intera
tions with the 
harge 
arriersplay a key role.In this thesis a quasi one-dimensional model system for 
uprate super
ondu
-tors is 
onsidered, whi
h is the antiferromagneti
 two-leg spin-1
2
ladder (dis
ussedin Chapters 4 and 5). The assumed importan
e of the antiferromagneti
 spin in-tera
tion within the 
uprate layers for the attra
tion of the ele
trons or holesrespe
tively is expe
ted also to be featured by the spin ladder as an analogousone-dimensional e�e
t. We expe
t that magneti
 ex
itations, whi
h are dom-inated by a lo
al triplet state on a rung of the ladder, mediate an attra
tiveintera
tion between the hole ex
itations.The spin ladder model is not a purely theoreti
al toy model, the system is re-alised in the so 
alled telephone number 
ompounds (see Se
tion 1.1). For thesesystems super
ondu
tivity 
an be dete
ted under high pressure [16℄. CaV2O51t denotes the hopping 
onstant for the 
harge 
arriers and J the magneti
 
oupling 
onstant.2
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Figure 1.1: S
hemati
 phase diagram for a typi
al hole-doped high-Tc 
uprate super
on-du
tor [7℄: The parameters are the temperature T and the hole 
on
entration δ. Thetrue phases are the long-range 
ommensurate antiferromagneti
 order AF and the su-per
ondu
ting phase SC. The pseudogap regime PG, the non-Fermi liquid regime NFLand the Fermi liquid regime FL are not stri
tly separated. In the shaded area variousforms of disordered and in
ommensurate magnetism o

ur.[17℄ and SrCu2O3 [16, 18℄ are further systems in whi
h spin ladders 
an be found.Within the isolating regime the spin ladder is very well understood. The be-haviour of magneti
 ex
itations in spin ladders already examined in Ref. [19℄ isresumed in Chapter 4 and augmented by additional results. The ladder is ef-fe
tively treated as a one-dimensional 
hain with sites populated by hard
orebosons. These parti
les obey a spe
i�
 algebra (see Se
tion 2.4).The subje
t of Chapter 5 are hole-doped ladders, i.e. an extension of the modelby insertion of 
harge 
arriers in the form of holes. The 
hallenge of this exten-sion 
onsists in the 
ombined appearan
e of fermioni
 and bosoni
 parti
les withhard
ore properties. The 
on
erning algebra is also dis
ussed in Se
tion 2.4. In-
luding both algebras in the 
al
ulations at the same time is a rather demandingtask. Furthermore the Hamiltonian 
ontains a multitude of terms.Our method of 
hoi
e to derive e�e
tive Hamiltonians for the 
onsidered models3



CHAPTER 1. INTRODUCTIONis the 
ontinuous unitary transformation (CUT). The CUT te
hnique is intro-du
ed in Chapter 2. The general issue of diagonalising a Hamiltonian (or at leastto a
hieve a form that is 
loser to diagonality) 
an be performed with this te
h-nique introdu
ed by Wegner [20℄ as well as independently by Wilson and Gªazek[21, 22℄. Instead of applying only one single 
onstant unitary transformation thatdiagonalises the Hamiltonian at on
e or several 
onstant unitary transformationssu

essively, a unitary transformation depending on a 
ontinuous parameter isapplied to the Hamiltonian. This transformation adjusts itself permanently dur-ing its appli
ation. Dis
rete transformations must be known expli
itly before we
an apply them, whereas for the 
ontinuous transformation it is su�
ient to setup the in�nitesimal generator of the transformation. The 
hoi
e of this gener-ator determines whi
h properties the transform exhibits and in whi
h way thesorting of the eigenvalues is 
arried out. The generators used for the 
al
ulationsin this thesis are based on the ideas of Mielke [23℄ as well as Knetter and Uhrig[24, 25℄, who designed a generator that indu
es an e�e
tive model that preservesthe number of ex
itations (or quasiparti
les respe
tively) and enables an easy
lassi�
ation of the resulting eigenenergies 
on
erning this number. We do notonly use this generator in its original form but also modi�
ations introdu
ed inRef. [26℄. These modi�
ations enable the treatment of new parameter regimes,for whi
h the original generator is not appli
able.The CUT 
an be performed in either a perturbative (PCUT) or a self-similar(SCUT) fashion. Both ways are dis
ussed and 
ompared. In this thesis the SCUTis applied to the spin ladder Hamiltonians and 
ompared to established PCUTresults [27℄ if available. Be
ause in�nite systems are 
onsidered, an adequatetrun
ation has to be implemented. The 
hosen trun
ation s
heme only restri
tsthe operators and not the states of the system to whi
h they are applied. Be
ausethe spin ladder is a gapful system, the 
orrelation between the quasiparti
lesde
reases exponentially depending on the real spa
e distan
e. Hen
e a real spa
etrun
ation is 
onsidered as the most suitable way of trun
ation.Chapter 3 deals with the implementation of the SCUT on a 
omputer. Readersinterested in the te
hni
al aspe
ts of the method will �nd a detailed des
riptionof the program and data stru
ture within this 
hapter.4



1.1. TELEPHONE NUMBER COMPOUNDS
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Figure 1.2: S
hemati
 view of (Sr,La,Ca,Y)14Cu24O41 taken from [28℄. The 
ouplingis illustrated by bla
k lines. Left: A 3D view of the stru
ture. Middle: A 
uprate layer
onsisting of 
hains. Right: A 
uprate layer 
onsisting of ladders.1.1 Telephone Number CompoundsThe 
omposite 
rystals (Sr, La, Ca, Y)14Cu24O41 
alled telephone number 
om-pounds (a detailed survey of these interesting materials is given in Ref. [29℄) are
omposed of 
uprate layers alternated with (Sr, La, Ca, Y) layers. There are twokinds of 
uprate layers: layers with CuO2 
hains and layers with Cu2O3 ladders(ea
h aligned along the 
rystallographi
 c axis) (
f. Figure 1.2), whi
h also al-ternate. The latter are of great interest in 
urrent resear
h be
ause the 
uprateladder 
an be 
onsidered as a model system for the 2D high-Tc super
ondu
ting
uprate square latti
e.The spin sites are the 3dx2−y2 orbitals of the 
opper atoms 
oupled via the 2px or
2py orbitals of the oxygen atoms, whi
h hybridise with the 
opper 3dx2−y2 orbitalsso that superex
hange [30℄ is possible (see Figure 1.3). Intera
tions between theladders are weak be
ause they result from 90◦ ex
hange [31, 32℄. Thus the ladders
an be 
onsidered as isolated from ea
h other. Even if the interladder 
oupling istaken into a

ount, the strong frustration of the latti
e 
auses the system to bee�e
tively one-dimensional [33℄. The dispersions of the magneti
 ex
itations ofthe 
omplete layer with interladder 
oupling are similar to those of a single spin5



CHAPTER 1. INTRODUCTION

a

cFigure 1.3: S
hemati
 view of the Cu 3dx2−y2 (red) and O 2pσ (blue) orbitals withinthe ladder layers of the telephone number 
ompounds.ladder. Important properties of the ladders are investigated in Refs. [34�38℄.Typi
ally the telephone number 
ompounds are insulators with a temperaturedependent DC 
ondu
tivity, but by in
reasing the doping level of Ca a metal-insulator transition o

urs [39℄. The 
harge 
arrier density 
an be adjusted bydoping. Under high pressure the 
rystal be
omes a super
ondu
tor for appropri-ate doping [16℄.
Sr14Cu24O41 exhibits an intrinsi
 doping of six holes per unit 
ell. Only 0.8of these holes per unit 
ell are allotted to the ladders; the remaining 5.2 holesare found in the 
hains [40℄ be
ause the 
hains possess a higher ele
tronega-tivity [41℄. La6Ca8Cu24O41 features undoped ladders [32℄ and the ladders in

La5.2Ca8.8Cu24O41, whi
h are only slightly doped, 
an be 
onsidered as approxi-mately undoped [42℄.In this thesis the isolated spin ladder is investigated. Chapter 4 is 
on
ernedwith the undoped ladder, whi
h will be treated as a half-�lled spin-1
2
model with-out ele
tron hopping. So just magneti
 intera
tions are present. In Chapter 5 thehole-doped ladder is examined. The a

ording model in
ludes ele
tron hoppingadditionally to the magneti
 intera
tions. Double o

upan
y is forbidden, i.e.ele
trons do not o

ur as 
harge 
arriers but only holes. This 
an be justi�ed bythe fa
t that the onsite Coulomb repulsion between the ele
trons is large.6



2 Continuous UnitaryTransformationsThe diagonalisation of Hamiltonians is a 
entral issue in theoreti
al quantumphysi
s. The te
hnique of 
ontinuous unitary transformations (CUT) also re-ferred to as �ow equation method and introdu
ed by Wegner [20℄ as well as byWilson and Gªazek [21, 22℄ o�ers a general approa
h to diagonalise operators orat least to a
hieve a form whi
h is 
loser to diagonality. The basi
 idea of theCUT is to implement a method that adjusts itself during the pro
edure of thediagonalisation depending on the 
urrent form of the Hamiltonian at this pointof the 
ontinuous transformation: The 
hange of the Hamiltonian indu
ed bythe transformation is determined by the 
urrent magnitude of the non-diagonalelements.A unitary transformation U dependent on the 
ontinuous parameter l is appliedto the operator H0 that is to be diagonalised:
H(l) = U(l)H0U

†(l) (2.1)where U(0) = 1.Due to the unitarity of the transformation the eigenvalues of every H(l) are thesame as the ones for H0. The antihermitian1 generator η of the transformation
U is de�ned by

η(l) =
∂U(l)

∂l
U †(l) (2.2)so that the derivative of H with respe
t to l is given by the so-
alled �ow equation

∂H(l)

∂l
= [η(l), H(l)] . (2.3)This is a
tually a system of di�erential equations (generi
ally highly 
oupled) forthe 
oe�
ients of the operators appearing in H . Other operators A that are to1The generator η must be antihermitian to ensure that U is unitary. 7



CHAPTER 2. CONTINUOUS UNITARY TRANSFORMATIONSbe 
onsidered (e.g. observables) are subje
ted to the same transformation as alloperators have to be transformed in the same manner � like for every 
hange ofbasis. For A the general �ow equation
∂A(l)

∂l
= [η(l), A(l)] (2.4)holds true.Inserting H0 into the �ow equation (2.3) generally yields new kinds of 
ontri-butions for H that were not part of the original H0. Applying the �ow equationfor these resulting terms yields again new terms and so on. For an in�nite systemone usually obtains an in�nite number of terms and for sizable �nite systemsan exponentially large number of di�erential equations. Thus a trun
ation is re-quired that negle
ts 
ontributions that do not a�e
t the main physi
al e�e
ts ofa Hamiltonian H to rea
h a manageable number of di�erential equations.The 
hoi
e of η(l) determines the transformation U(l) and therefore the formof H(l). Formally the transformation 
an be expressed by

U(l) = Le
R l

0
η(l′)dl′ (2.5)where L denotes the l-ordering operator, whi
h orders the following expressionfrom right to left a

ording to in
reasing values of l. In general it is 
ompli
atedto determine the expli
it U(l) due to the 
omplexity arising from the appli
ationof L. Usually the �ow equation (2.3) is integrated numeri
ally to 
al
ulate H fora 
ertain value of l.The original generator, whi
h was introdu
ed by Wegner [20℄, is de�ned by the
ommutator of the diagonal and the non-diagonal part of H

ηWegner(l) = [Hdiagonal(l), Hnon−diagonal(l)] . (2.6)The intention of this 
hoi
e is that for the e�e
tive Hamiltonian, i.e. for l → ∞,the non-diagonal partHnon−diagonal vanishes. The de�nition ofHdiagonal is arbitraryand depends on the 
hoi
e of the basis. Therefore Hdiagonal 
an be de�ned asa stru
ture that 
an be treated easily. However, if subspa
es of Hdiagonal aredegenerate, they remain non-diagonal.The disadvantage of the Wegner generator is that if H0 
an be written in theform of a band matrix, this feature is usually lost during the transformation for�nite l and eigenvalues 
annot ne
essarily be assigned to a 
on
rete number ofex
itations (respe
tively parti
les) without further investigation.8



The generator of our 
hoi
e is the so-
alled p
 (parti
le 
onserving) generator[23�25℄
ηpc,i,j(l) = sign(qi − qj)Hi,j(l) (2.7)de�ned in the eigenbasis of the operator Q 
ounting the parti
le number. Theindi
es i, j denote a transition from state j to state i and qi is the eigenvalue of

Q (i.e. the number of parti
les) for the state i. Inserting the p
 generator intothe �ow equation (2.3) yields
∂Hi,j(l)

∂l
= −sign(qi − qj)(Hi,i(l) − Hj,j(l))Hi,j(l) (2.8)

+
∑

k 6=i,j

(sign(qi − qk) + sign(qj − qk)) Hi,k(l)Hk,j(l) .The eigenstates of Q 
an be ordered so that qk ≥ qi for k > i without loss ofgenerality. For the derivative of the sum over the �rst r diagonal elements of H(l)

∂

∂l

r
∑

i=1

Hi,i(l) = 2
r
∑

i=1

∑

k>r

sign(qi − qk)|Hi,k(l)|2 ≤ 0 (2.9)holds true due to qk ≥ qi. Therefore the sum ∑r

i=1 Hi,i(l) is monotoni
ally de-
reasing. Be
ause a Hamiltonian is usually bounded from below, this sum 
on-verges for l → ∞ and
lim
l→∞

∂

∂l

r
∑

i=1

Hi,i(l) = 2
r
∑

i=1

∑

k>r

sign(qi − qk)|Hi,k(l)|2 = 0 . (2.10)Hen
e it follows that for l → ∞ and for all i, j with i 6= k either qi = qkor Hi,k(l) = 0. The 
ase qi = qk is equivalent to degenera
y with respe
t tothe parti
le number. Therefore all non-diagonal elements Hi,k(l) that 
ouplesubspa
es with di�erent parti
le numbers tend to zero for l → ∞. Thus theindu
ed transformation results in a blo
k-diagonal Hamiltonian 
onserving theparti
le number for l → ∞, i.e. [H(∞), Q] = 0. Also due to Hi,k(l) → 0 theasymptoti
 behaviour for the derivative of the non-diagonal elements is dominatedby the �rst part of Equation (2.8)
∂Hi,j(l)

∂l
≈ −sign(qi − qj)(Hi,i(l) − Hj,j(l))Hi,j(l) . (2.11)Thus
sign(qi − qj)(Hi,i(l) − Hj,j(l)) > 0 (2.12)9
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l = 0 �nite l l = ∞Figure 2.1: S
hemati
 example for a transformation of H(l) indu
ed by the p
 generator:Ea
h 
oloured (nc, na)-blo
k represents 
ontributions to H 
reating nc parti
les afterannihilating na parti
les.holds for i 6= j and for su�
iently large l be
ause Hi,j(l) tends to zero as well.This means that the transformation also sorts the eigenenergies a

ording to theparti
le number if the 
orresponding subspa
es of the Hilbertspa
e are 
oupledbefore the transformation, i.e. Hi,j(l = 0) 6= 0. For a detailed investigation of theasymptoti
 behaviour of the p
 CUT see Refs. [23, 26, 43℄. Note that for

lim
l→∞

sign(qi − qj)(Hi,i(l) − Hj,j(l)) < 0 (2.13)
onvergen
e problems may o

ur if Hi,j(l = 0) 6= 0, i.e. an overlap of energies be-longing to di�erent parti
le numbers may hinder the 
onvergen
e. We en
ounterthis problem for the treatment of spin ladders (see Chapters 4 and 5). A possibleremedy is a generator adaption (see Se
tion 2.5).An example for the stru
tural 
hange of H(l) is depi
ted in Figure 2.1. In thisexample H0 = H(0) 
onsists of terms a�e
ting maximally two parti
les. For �nite
l terms a�e
ting higher parti
le numbers o

ur. The trun
ation s
heme has tobe applied here to keep the number of terms �nite for an in�nite system2. The
hange of the parti
le number 
annot be higher than in H0. Hen
e the blo
k-band stru
ture is 
onserved [23, 25, 44℄. For l = ∞ H is blo
k-diagonal and
onserves the parti
le number. Ea
h blo
k 
an be assigned to a 
on
rete numberof parti
les. Further information about the stru
ture of the Hamiltonian and ofthe observables in the 
ontext of p
 CUTs 
an be found in Ref. [44℄.Note that the s
heme in Figure 2.1 does not represent the form of a matrix
orresponding to H(l). A blo
k in this representation 
ontains all terms that2The trun
ation is only applied to the operators but not to the Hilbert spa
e.10



2.1. PERTURBATIVE CUT AND SELF-SIMILAR CUT
reate nc parti
les after annihilating na parti
les. A (nc, na)-blo
k does notonly a�e
t states with na parti
les but also those with more than na parti
les.Therefore this representation is not identi
al with a matrix representation, forwhi
h the a
tion of ea
h blo
k is restri
ted to the 
on
erning subspa
e withoutoverlaps.If the �ow equation (2.3) is numeri
ally integrated (as usual in pra
ti
e), theintegration 
an be stopped at a 
ertain �nite l when the non-diagonal parts of Hare small enough to be 
onsidered as negligible. For a 
omfortable handling theterms of H are expressed in se
ond quantisation for the parti
les under study.Three easily 
omprehensible examples for the appli
ation of CUTs are given inRef. [45℄. The di�eren
es between the p
 and the Wegner generator are dis
ussedby means of simple Hamiltonians. In parti
ular the 
onvergen
e behaviour isexamined. The Wegner generator always leads to a �xed point, but degenera
ieshinder the diagonalisation, whereas the p
 generator is not sensitive to degenera-
ies, but the indu
ed transformation does not always 
onverge.2.1 Perturbative CUT and Self-Similar CUTContinuous unitary transformations 
an be performed in a perturbative or ina self-similar fashion. In this thesis the self-similar 
ontinuous unitary trans-formation (SCUT) was used ex
lusively. Nevertheless, this se
tion also gives abrief des
ription of the perturbative 
ontinuous unitary transformation (PCUT)be
ause SCUT results were 
ompared to PCUT results and the di�eren
es be-tween the two approa
hes are an important issue. Both CUT pro
edures will beexplained exemplarily for the p
 generator (2.7). A detailed des
ription of thePCUT with the p
 generator is given in Ref. [25℄.2.1.1 PCUTFor the PCUT the HamiltonianH has to be split up into an unperturbed (parti
le
onserving) part Hu and a perturbed part xV as usual in perturbation theorywhere x denotes the expansion parameter, whi
h has to be small. Additionallythe following 
onditions have to be ful�lled:
• The energy spe
trum of Hu is equidistant with a lower boundary; theeigenenergies are proportional to the parti
le number. 11



CHAPTER 2. CONTINUOUS UNITARY TRANSFORMATIONS
• The perturbation term 
an be written as V =

∑N
n=−N Tn with N ∈ N. Theoperator Tn 
hanges the parti
le number by n.Then H(l) 
an be represented by the ansatz:

H(x, l) = Hu +

∞
∑

k=1

xk
∑

|m|=k

F (l, m)T (m). (2.14)
m denotes a set of indi
esmi ∈ {−N,−N + 1, . . . , N − 1, N} with i ∈ {1, 2, . . . , k}so that T (m) is a produ
t of the operators Tmi

. The number of 
omponents of
m is denoted by |m|. The 
oe�
ients F (x, l) still have to be determined.Now the 
hosen generator has to be depi
ted in the same representation. Sothe p
 generator (2.7) reads in this representation

η(x, l) =
∞
∑

k=0

xk
∑

|m|=k

sign (M(m))F (l, m)T (m). (2.15)Here M(m) :=
∑

i mi spe
i�es the number of parti
les being 
reated or annihi-lated by T (m) in total.Inserting H (2.14) and η (2.15) into the �ow equation (2.3) yields a system ofdi�erential equations for the F (l, m) via 
omparison of 
oe�
ients. The integra-tion of this system for l → ∞ results in the e�e
tive Hamiltonian
Heff(x) = Hu +

∞
∑

k=1

xk
∑

|m|=k

F (∞, m)T (m) , (2.16)whi
h is parti
le 
onserving be
ause all F (∞, m) with M(m) 6= 0 are zero.2.1.2 SCUTFor the SCUT the Hamiltonian H is represented by a sum of di�erent operators
ôi multiplied by the 
on
erning prefa
tors gi. At �rst a trun
ation s
heme has tobe de�ned that de
ides whether a term shall be negle
ted. The trun
ation s
hemedepends on the physi
al properties of the 
onsidered model. This is dis
ussed indetail in Se
tions 2.1.3 and 2.2. The trun
ation s
heme for the spin ladder modelsinvestigated in this thesis is dis
ussed in Se
tions 4.2 and 5.2.During the �ow only the prefa
tors 
hange while the operators remain 
onstant

H(l) =
∑

i

gi(l)ôi. (2.17)12



2.1. PERTURBATIVE CUT AND SELF-SIMILAR CUTThe operators serve as a �xed basis for H(l). This is the reason why this fashionof CUT is 
alled self-similar. The di�erential equations for the gi(l) are given viathe �ow equation (2.3) by performing the following steps:1. Set up a HamiltonianH(l) with the operators ôi of the starting Hamiltonian
H(0) and variable prefa
tors gi(l).2. Cal
ulate the 
on
erning p
 generator η(l) a

ording to Equation (2.7) usingthe terms of H(l) and insert η(l) and H(l) into the �ow equation (2.3).3. Compare the 
oe�
ients of the operators of the left and the right hand sideof the �ow equation (after having 
he
ked that the operator representation isunique3). This yields 
ontributions that have to be added to the di�erentialequations of the gi(l) in the form of ai,j,kgj(l)gk(l). The ai,j,k are prefa
torsdepending on the result of the 
ommutator [η(l), H(l)]. New operators ôi
an emerge that do not appear in H(l). The trun
ation s
heme de
ideswhether to keep them or not.4. Take the new operators ôi, whi
h shall be kept, multiplied by variable pref-a
tors gi(l) and atta
h them to H(l).Repeat steps 2 to 4 until no new non-negligible operators emerge. In the repeti-tion of step 2 only new 
ontributions to [η, H ] have to be 
al
ulated.Then the di�erential equations for the gi(l) exhibit the form:

∂gi(l)

∂l
=
∑

j,k

ai,j,kgj(l)gk(l). (2.18)The formal solution for the e�e
tive Hamiltonian is
Heff =

∑

i

gi(∞)ôi . (2.19)It is usually not feasible to a
hieve an analyti
ally exa
t solution for l → ∞. Butthe 
losed system of di�erential equations for the gi(l) 
an be solved numeri
ally.The initial values gi(0) are given by the prefa
tors of H0. The new terms arisingduring the 
al
ulation of [η(l), H(l)] start with the intial prefa
tor zero. Theprefa
tors belonging to operators that are not parti
le 
onserving are monitored3We use normal ordered operators to have a unique representation (see Se
tion 2.3). 13



CHAPTER 2. CONTINUOUS UNITARY TRANSFORMATIONSduring this integration be
ause these terms are the ones that we want to eliminate.If their absolute values are su�
iently small for a 
ertain large value l = l̃ so thatthey 
an be negle
ted, the integration is stopped and the e�e
tive Hamiltonianreads
Heff =

∑

i

gi(l̃)ôi . (2.20)2.1.3 Comparison between PCUT and SCUTThe PCUT exhibits the typi
al advantages and disadvantages of perturbativeapproa
hes. The in
rease of the expansion parameter x leads relatively rapidlyto poor results. Of 
ourse the quality of the results 
an be improved drasti
allyby applying extrapolation te
hniques su
h as e.g. Padé approximation.Comparatively large orders are easily a
hievable by PCUT. The a
tual integra-tion has to be 
arried out only on
e for the general s
heme whi
h is appli
ableto variable models while the SCUT yields di�erent systems of di�erential equa-tions for ea
h model. For SCUTs the di�erential equations have to be integratedwhenever a new model is 
onsidered. Even if only the initial values are di�erent,a new integration has to be 
arried out.The PCUT has been su

essfully applied in the 
ontext of many di�erent prob-lems. Examples of su
h problems are the Hubbard model [46℄, many-parti
lesystems [47℄, spin 
hains [25℄ and also spin ladders [27, 48℄. The SCUT wasalso su
essfully used in a broad �eld of 
ontexts � e.g. for the Anderson model[49�51℄, super
ondu
tivity [52�55℄, undoped antiferromagneti
 spin 
hains andladders [19℄, bosoni
 atoms in an opti
al latti
e [19℄ and the derivation of ane�e
tive t-J-model from the Hubbard model [19, 56℄. A general overview withmany more examples for appli
ations of both fashions is given in [57℄.The overlap between energies of subspa
es of the Hilbert spa
e with di�erentparti
le numbers hinders the 
onvergen
e of the integration of the di�erentialequations for l → ∞ be
ause the p
 generator sorts the eigenenergies a

ordingto the parti
le number. If states with more parti
les have a lower energy, a CUTusing the p
 generator is no longer adequate4. In this 
ase an adaption of thegenerator [26℄ 
an be helpful (see Se
tion 2.5).However, the PCUT 
onstitutes an expansion around the point where the ex-pansion parameter x is zero and no overlap exists. Therefore an a
tual overlap4In praxi the CUT 
an 
onverge, nevertheless, if the trun
ation is very stri
t. This is dis
ussedin the next se
tion.14



2.2. REAL SPACE REPRESENTATION AND TRUNCATIONfor x > c > 0 has no in�uen
e on the 
onvergen
e of the PCUT. The e�e
ts of anoverlap are not 
aptured by the PCUT. Also approa
hing 
ontinua, whi
h do notoverlap yet, pose a problem for the PCUT. Approa
hing 
ontinua are sensitiveto ea
h other, whi
h results in a deformation of the 
ontinua. The PCUT resultshave to be 
orre
ted by rather sophisti
ated extrapolation te
hniques to re�e
tthe physi
al properties of approa
hing 
ontinua. A 
lear advantage of the SCUTis that su
h properties are in
luded dire
tly in the resulting e�e
tive models.While the PCUT results exhibit the typi
al problems of series-expansions in-
reasing with the perturbation parameter, the errors of the SCUT results stemfrom the trun
ation of the Hamiltonian. To �nd a suitable trun
ation s
heme isstill a di�
ult task. The optimal trun
ation is usually determined a posteriori:If the results 
onverge 
on
erning the expansion of the trun
ation parameters,the results are expe
ted to re�e
t the physi
al properties of the Hamiltonian andthe e�e
tive model is 
onsidered to be valid and reliable (
f. Se
tion 4.3.1). Ana priori determination of the trun
ation error is an obje
tive of 
urrent resear
h[58℄.The trun
ation for the SCUTs treated in this thesis is based on a real spa
erepresentation. The reasons for this 
hoi
e are dis
ussed in the next se
tion.2.2 Real Spa
e Representation and Trun
ationAmultitude of the problems treated in theoreti
al solid state physi
s is formulatedusing lo
alised states (e.g. Wannier states) and lo
al Hamiltonians in se
ondquantisation [59℄. This does of 
ourse not imply that the physi
s of these systemsis restri
ted to lo
al e�e
ts. The ex
itations of the spin ladder are known to havea gapful dispersion as long as the four-spin intera
tions are small enough (seeSe
tions 4.1 and 5.4). The 
orrelation length ξ and the energy gap ∆ satisfythe relation ∆ ∝ ξ−z where z denotes the dynami
 
riti
al exponent [60℄. Thusthe 
orrelations are lo
al and long-range intera
tions are less important. Thetrun
ation needed for the SCUT to keep the number of di�erential equations�nite 
an hen
e appropriately be implemented by omitting longe-range terms.We have to keep in mind that this trun
ation is a 
ru
ial point as it is essentialto keep the number of di�erential equations �nite for an in�nite system (or tokeep the number of di�erential equations manageable for a large �nite system).Ex
ept for the numeri
al error of the integration the only step 
ausing errors isthe trun
ation. The most obvious trun
ation for a system dominated by lo
al15



CHAPTER 2. CONTINUOUS UNITARY TRANSFORMATIONS
orrelations is to omit long-range intera
tions.Another 
hara
teristi
 whi
h has to be 
onsidered for the trun
ation is thenumber of parti
les involved in a 
ertain intera
tion. This aspe
t is of 
ourse
orrelated with the lo
ality of the intera
tion be
ause the more hard
ore parti
lesare involved the less lo
al is the 
on
erning term. For the spin ladder the 
ru
ialphysi
s of the parameter regime in whi
h we are interested is 
overed by termsa�e
ting one and two parti
les [61℄.It should also be noted that the trun
ation is only restri
ted to operators.There is no trun
ation of the Hilbert spa
e of the states. Thus although operatorsa�e
ting higher numbers of parti
les are omitted, the number of parti
les that
an be treated 
an be arbitrarily large. To illustrate this we 
onsider the a
tionof a term in se
ond quantisation, e.g. a†
ia

†
jak, whi
h annihilates one parti
le and
reates two. This term a
ts not only on the one-parti
le subspa
e, but also onthe subspa
es with more than one parti
le, e.g. it 
hanges a four-parti
le into a�ve-parti
le state.The 
on
rete trun
ation s
heme used for the spin ladders is dis
ussed in detailin Se
tions 4.2 and 5.2.The trun
ation also a�e
ts the 
onvergen
e of the �ow. In 
ase of a diverg-ing �ow the trun
ation of terms that hinder the 
onvergen
e 
an suppress thedivergen
e. This is illustrated by an example for whi
h the eigenenergies shall beknown a priori. For 
onvenien
e we assume that terms a�e
ting more than twoparti
les are negligible. Moreover, the only terms that do not 
onserve the par-ti
le number are of the form a†

na†
n+∆nam or a†

man+∆nan, where the indi
es denotethe site on whi
h the operator a
ts. These terms are the non-diagonal ones inour example.Let us 
onsider a simple 
ase �rst, in whi
h the one-parti
le dispersion andthe two-parti
le 
ontinuum do not overlap (see left panel in Figure 2.2). Be
auseof the asymptoti
 behaviour of the non-diagonal elements (2.11) the 
onvergen
eis hindered only if energies of subspa
es with di�erent quasiparti
le numbersoverlap, while the �ow of an SCUT with the p
 generator always 
onverges. Thiswas shown in the introdu
tion of the present 
hapter.If an overlap is present like in the middle and in the right panel in Figure 2.2,the �ow may diverge. The di�eren
e between the panel in the middle and thepanel on the right is the in�uen
e of di�erent trun
ations. It depends on thetrun
ation whi
h two-parti
le states are rea
hed by the non-diagonal terms. Thereal spa
e distan
e between the two parti
les is de
isive. The terms a†
na†

n+∆nam16



2.2. REAL SPACE REPRESENTATION AND TRUNCATION
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hemati
 examples for one- and two-parti
le energies. The bla
k line isthe one-parti
le dispersion, the solid 
yan lines are the boundaries of the two-parti
le
ontinuum and the dashed 
yan lines are the energies of the two-triplon states whi
hare a
tually a�e
ted by the non-diagonal terms. In the left panel the one- and two-parti
le energies do not overlap and no 
onvergen
e problems o

ur. In the middleand right panel an overlap is present. If this overlap a
tually 
auses divergen
e, astri
ter trun
ation in real spa
e may yield 
onvergen
e. The energies of the two-parti
lestates a�e
ted by the non-diagonal terms are dis
rete due to this trun
ation. Furtherinformation 
an be found in the text.
onvert one parti
le into two parti
les with a real spa
e distan
e |∆n| betweenthe parti
les, the Hermitian 
onjugate terms a†
man+∆nan 
onvert two parti
leswith a real spa
e distan
e |∆n| into one parti
le. The trun
ation restri
ts |∆n|to a maximal distan
e ∆nmax. Hen
e not the whole 
ontinuum is a�e
ted bythe non-diagonal terms but only ∆nmax two-parti
le states with dis
rete energieslying within the 
ontinuum. These dis
rete energies are depi
ted as dashed linesin Figure 2.2. In the middle panel a stri
ter trun
ation (∆nmax = 2) is 
onsideredthan in the right one (∆nmax = 10). Therefore the number of two-parti
le stateswith dis
rete energies, whi
h are a�e
ted by the non-diagonal terms, is di�erent.If the dis
rete two-parti
le energies do not overlap with the one-triplon dispersion(like in the middle panel), the SCUT is less sensitive to the a
tual overlap andthe �ow 
onverges. Hen
e a stri
ter trun
ation 
an yield 
onvergen
e in 
ase ofan overlap that would a
tually 
ause divergen
e. For ∆nmax → ∞ the dis
reteenergies merge into the 
ontinuum.Note that the one-parti
le dispersion that lies within the two-parti
le 
ontin-uum 
an only be exa
t if there is no 
oupling between their subspa
es. In 
ase of17



CHAPTER 2. CONTINUOUS UNITARY TRANSFORMATIONSpossible transitions between the one- and two-parti
le subspa
e the one-parti
ledispersion is only de�ned outside the 
ontinuum. Nevertheless, the one-parti
ledispersion 
an still be tall in the two-parti
le 
ontinuum as a a resonan
e, whi
h
an be observed in the two-parti
le spe
tral density.2.3 Referen
e State and Normal OrderThe de�nition of a referen
e state is ne
essary for the implementation of a nor-mal ordering s
heme. The normal ordering is of great importan
e as a uniquerepresentation is needed for 
omparing operators during the setup of the di�er-ential equations. We also single out the relevant pro
esses based on the normalordering.In the following n will denote the latti
e site. In 
ase of the spin ladder theglobal referen
e state |0〉 is 
omposed of the lo
al referen
e states |0〉n as follows
|0〉 =

⊗

n

|0〉n . (2.21)This state will be mapped onto the quasiparti
le va
uum by the CUT. For othermodels it is not always reasonable to 
ompose |0〉 of lo
al states. However, en-tangled referen
e states are less tra
table.The 
on
rete 
hoi
e of |0〉n and therefore |0〉 is physi
ally motivated. The state
|0〉 in its form before the transformation should be already 
lose to the groundstate, i.e. the quasiparti
le va
uum. Usually we 
onsider a solvable limit of theHamiltonian. The ground state of this limit is a suitable 
hoi
e for |0〉 as long asthe parameters of the Hamiltonian are 
lose to this limit. Then we expe
t |0〉 tobe 
lose to the a
tual ground state.This a
tual ground state is usually very 
omplex and not expli
itly deter-minable. The same is true for the quasiparti
les, i.e. ex
itations. Figure 2.3illustrates the mapping of a CUT onto a state des
ribing a single ex
itation if the
orrelation de
reases exponentially with spatial range (
f. pre
eding se
tion).For the normal order we employ a de�nition that is somewhat di�erent fromthe usual one be
ause the referen
e state is a produ
t state in our 
ase (2.21).A

ording to our de�nition, a lo
al operator ôn is normal ordered if

〈0| ôn |0〉 = 0. (2.22)A

ordingly a produ
t of lo
al operators ô =
∏

n ôn is normal ordered if ea
h ofits lo
al fa
tors ôn is normal ordered.18



2.4. HARDCORE PARTICLE ALGEBRA
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CUT

Figure 2.3: Illustration of the transformation of a state that is mapped onto a singlequasiparti
le in 
ase of an exponentially de
reasing 
orrelation. On the left hand sidethe situation before the transformation is depi
ted: The state is a produ
t state of lo
alreferen
e states (white 
ir
les) and another lo
al state (bla
k 
ir
le); this state is anex
itation with respe
t to the solvable limit of the Hamiltonian for whi
h the referen
estate is the ground state. The right hand side shows the state after the transformation:The a
tual ex
itation is dominated by the state on one site (bla
k 
ir
le), but it polarisesits environment (shaded 
ir
les). This polarisation de
reases exponentially with thedistan
e from its 
enter (illustrated by di�erent shadings).In the 
ase of a degenerate ground state a single referen
e state is not su�
ient.A referen
e ensemble is needed instead, whi
h is, however, not the 
ase for thespin ladder. An example for a referen
e ensemble 
an be found in Ref. [56℄.2.4 Hard
ore Parti
le AlgebraThe quasiparti
les populating the spin ladder, whi
h are introdu
ed in Se
tions4.1 and 5.1, are hard
ore parti
les, i.e. if a site is o

upied by su
h a quasipar-ti
le no other quasiparti
le 
an be 
reated there. The magneti
 ex
iations ofthe spin ladder are bosoni
 hard
ore parti
les, whi
h are dominated by a lo
altriplet state. Due to the threefold degenera
y of the triplet these parti
les 
omein three �avours. The hole ex
itations are fermioni
 hard
ore parti
les, whi
hare dominated by a lo
al state 
onsisting of a hole and a spin 1
2
. This parti
lehas four �avours be
ause the spin has two possible positions and two possibleorientations. Note that for the fermions the hard
ore property is stronger than19



CHAPTER 2. CONTINUOUS UNITARY TRANSFORMATIONSthe Pauli ex
lusion prin
iple be
ause a fermioni
 hard
ore parti
le on a site alsoex
ludes bosons as well as fermions in di�erent states.We introdu
e operators b†n,α and bn,α 
reating and annihilating respe
tively abosoni
 quasiparti
le, i.e. a parti
le with integer spin. The index n denotes thesite to whi
h the operator is applied and the index α the state of the quasiparti
le.In analogy we de�ne fermioni
 
reation operators f †
n,α and fermioni
 annihilationoperators fn,α for quasiparti
les with half-integer spin.The algebra for the hard
ore bosons is given by the 
ommutation relation

[bn,α, b†m,β ] = δn,m

(

δα,β

(1n −
∑

γ

e†n,γen,γ

)

− b†n,βbn,α

) (2.23)where e†n,α and en,α denote all possible 
reation and annihilation operators (bosoni
and fermioni
). The sum over γ goes over all possible states for the quasiparti
les.Note that 1n −
∑

γ e†n,γen,γ is one for an empty state and zero otherwise. Thisoperator is not normal ordered due to the identity operator (see Se
tion 3.5). Inprodu
ts of lo
al operators the identity operator 
an be negle
ted be
ause onlythe operators a�e
ting the quasiparti
les are relevant. The operator produ
t inthe Hamiltonian 
onsisting of identity operators only for all sites yields a 
onstantenergy (in�nite for an in�nite system), whi
h 
an be omitted by an appropriateo�set. In the e�e
tive parti
le 
onserving model, i.e. for l → ∞, this 
onstantenergy is the groundstate energy of the system at hand.Con
erning di�erent sites the operators behave like usual bosoni
 operators:they 
ommute a

ommodated by the δn,m in Equation 2.23. A
ting on the samesite the hard
ore property 
omes into play. A

ording to its de�nition the 
om-mutator yields
[bn,α, b†n,β] = bn,αb†n,β − b†n,βbn,α. (2.24)The a
tion of the �rst term bn,αb†n,β depends on whether α is equal to β or not.It 
an be easily seen that bn,αb†n,β = 0 for α 6= β due to the fa
t that multipleo

upation of one site is not allowed. In the 
ase α = β the term bn,αb†n,β = bn,αb†n,αa
ts like the operator whi
h 
ounts the empty states be
ause it is zero for ano

upied site and one for an empty one. In
orporating these relations one getsthe form of Equation 2.23.For the hard
ore fermions the following anti
ommutation relation holds true

{fn,α, f †
m,β} = δn,m

(

δα,β

(1n −
∑

γ

e†n,γen,γ

)

+ f †
n,βfn,α

)

. (2.25)
20



2.5. ADAPTED GENERATORS
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l = 0 �nite l l = ∞Figure 2.4: S
hemati
 example for a transformation of H(l) indu
ed by the gs,1p gen-erator: Ea
h 
oloured (nc, na)-blo
k represents 
ontributions to H 
reating nc parti
lesafter annihilating na parti
les. The red line indi
ates that all operators a�e
ting morethan four parti
les are trun
ated. The generator 
ontributions are depi
ted as shadedblo
ks.In analogy to the bosoni
 operators the fermioni
 ones behave like usual fermioni
operators if they a
t on di�erent sites, i.e. they anti
ommute. For operators onthe same site only the hard
ore property is relevant.Commutators with fermioni
 and bosoni
 operators belonging to hard
ore par-ti
les yield

[bn,α, f †
m,β] = −δn,mf †

n,βbn,α (2.26)and
[fn,α, b†m,β ] = −δn,mb†n,βfn,α (2.27)be
ause bosoni
 and fermioni
 operators 
ommute a
ting on di�erent sites.2.5 Adapted Generators2.5.1 Ex
lusion of Terms from the GeneratorIf transitions between parti
le spa
es with overlapping energies are possible, thep
 generator (whi
h is based on the idea that more present parti
les always 
or-respond to a higher energy of the system) is only partly appropriate be
ause theresulting SCUT usually shows problems with the 
onvergen
e for l → ∞. A
tu-ally the SCUT diverges in this 
ase if the trun
ation s
heme is made less stri
t.Be
ause the divergen
e is indu
ed only by long range terms for small overlaps,the trun
ation of these terms 
an restore 
onvergen
e (see Se
tion 2.2). But this21
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Figure 2.5: S
hemati
 representation of an overlap between a two-parti
le 
ontinuum(boundaries in bla
k) and a three-parti
le 
ontinuum (boundaries in 
yan). The over-lap is present for k & 0.55π and depi
ted by the bla
k shaded area. The terms
a
†
n1

a
†
n2

a
†
n3

an4
an5

indu
e a transition from the two- to the three-parti
le 
ontinuum andthe hermitian 
onjugate terms a transition vi
e versa.
onvergen
e is a

ompanied by the negle
t of physi
al properties. Therefore theresulting eigenenergies re�e
t the assumptions implied by the generator. The 
on-
erning overlapping energies are separated by the transformation, i.e. the e�e
tiveHamiltonian does not exhibit this a
tual overlap.5Nevertheless, if the 
ontinua have a strong overlap, the integration of the SCUTdi�erential equations for the prefa
tors of the Hamiltonian diverges for l → ∞.The ex
lusion of the terms responsible for the transition between the overlapping
ontinua from the p
 generator is a remedy for this problem. For instan
e, ifan overlap between the two- and the three parti
le 
ontinuum (see Figure 2.5)hinders the 
onvergen
e, terms of the form a†
n1

a†
n2

a†
n3

an4
an5

and the hermitian
onjugate terms are ex
luded from the generator.5Note that the approa
h of non-overlapping 
ontinua results in a deformation of the energybands as an a
tual physi
al e�e
t. This e�e
t is 
aptured by the p
 SCUT. However, if anoverlap is present, the p
 generator en
ounters problems (
f. Equation (2.13)).22



2.5. ADAPTED GENERATORSThe 
onsequen
e of this ex
lusion is that the 
on
erning parti
le spa
es remain
oupled. In 
ontrast to the appli
ation of the p
 generator the Hamiltonian losesits blo
k-band form during the �ow then. Of 
ourse the diagonalisation of theparts of the Hamiltonian 
on
erning the a

ording parti
le spa
es still has to bedone if the 
orresponding 
ontinua shall be 
al
ulated. But regarding all otherparti
le numbers the Hamiltonian will be blo
k-diagonal after the SCUT, whi
hnow 
onverges for l → ∞.In Figure 2.4 an example for an SCUT adapted in the manner des
ribed hereis depi
ted. We use again the (nc, na)-blo
k representation introdu
ed in Se
tion2. In this example the generator 
ontains only the (0, n)- and (1, n)-blo
ks aswell as the 
onjugate terms. We use the term gs,1p generator for this generator,whi
h de
ouples only the ground state and the one-parti
le state from the rest.We start from a Hamiltonian exhibiting the same stru
ture as in the example forthe p
 generator in Figure 2.1. Conferring both examples the di�eren
es betweenboth generators with respe
t to the stru
ture of the Hamiltonian during the �owand for l → ∞ be
ome 
lear.If the 
ontinua belonging to 
ertain parti
le numbers are not of interest, theterms of the Hamiltonian 
onne
ting the 
on
erning subspa
es 
an be ex
ludedfor the sake of performan
e. Although terms appear during the �ow that wouldnot be indu
ed by the p
 generator, the right hand side 
ontributions to the �owequation (2.3) are redu
ed whi
h simpli�es the problem 
onsiderably.Generally all problemati
 terms 
an be ex
luded from the generator at theexpense of the de
oupling of the 
orresponding subspa
es. A detailed dis
ussionof generator adaptions by ex
luding terms from the p
 generator 
an be found in[26℄ where quasiparti
le de
ay is examined by means of SCUT.2.5.2 Additional Sign Changes in the GeneratorIf the lo
al behaviour in the model suggests that 
ertain pro
esses in
reasing theparti
le number are lowering the energy, the 
on
erning terms 
an also be pro-vided with a minus sign in the generator instead of being ex
luded. Then theHermitian 
onjugate terms de
reasing the parti
le number and raising the energydo not get the minus sign they would get in the p
 generator. The advantage ofsign 
hange over ex
lusion is that these terms 
hanging the parti
le number willnot o

ur in the e�e
tive Hamiltonian sin
e their 
ontribution to the generator
auses their de
rease for large l. Thus all subspa
es 
orresponding to 
ertain par-23



CHAPTER 2. CONTINUOUS UNITARY TRANSFORMATIONSti
le numbers will be de
oupled from ea
h other produ
ing a parti
le 
onservinge�e
tive model.In the 
ontext of the hole-doped spin ladders this idea of adapting the sign ofthe generator terms be
omes interesting. In
reasing the number of magneti
 ex
i-tations 
orresponding to quasiparti
les is not ne
essarily a

ompanied by raisingthe energy be
ause the presen
e of a hole permits new pro
esses in whi
h thegeneration of additional magneti
 ex
itations implies the redu
tion of the energyof the hole. Analogous pro
esses de
reasing the number of ex
itations and en-han
ing the hole energy are also possible. A detailed dis
ussion of this issue willbe given in Se
tion 5.3.Both possibilities of adapting the generator for the SCUT des
ribed here �ex
lusion of terms and sign 
hange � 
an of 
ourse be 
ombined to a
hieve optimalresults.Nevertheless, the 
omputation of the sign of the energy 
hange in advan
eis not a simple task be
ause this sign is a
tually one of the properties of thee�e
tive model whi
h still has to be 
al
ulated. If this property depends on themomentum, the ansatz of trun
ating in real spa
e depending on extensions ofoperators is not feasible. The e�e
ts of a generator based on a wrong estimationare dis
ussed in Se
tion 5.3.2.5.3 Real Spa
e Restri
tion of the GeneratorMany terms that remain after the real spa
e trun
ation of the Hamiltonian a
t onstates with dis
rete energies within the 
ontinua (see Se
tion 2.2). The divergen
eof the SCUT in 
ase of an overlap is not indu
ed by all terms that mediate betweenoverlapping 
ontinua, but only by a part of these terms (see Figure 2.6). It wasalso shown in Se
tion 2.2 that a stri
ter real spa
e trun
ation of the Hamiltonian
an indu
e 
onvergen
e.However, a stri
ter trun
ation 
auses a larger error for the results of the SCUT.Therefore we do not apply a stri
ter trun
ation to the Hamiltonian but we 
hoosea stri
ter generator. We emphasize that a restri
tion of the generator does notimply an approximation. It only 
hanges the dire
tion of the unitary rotation.This restri
tion of the generator is not based on the total extension of the terms,but on the extension of the 
reation operators and the extension of the annihi-lation operators. Let us 
onsider the example of an overlap between one- andtwo-parti
le energies shown in Figure 2.6. The terms a†
na†

n+∆nam and a†
man+∆nan24
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Figure 2.6: S
hemati
 example for an overlap between one- and two-parti
le energies.The bla
k line is the one-parti
le dispersion, the solid 
yan lines are the boundariesof the two-parti
le 
ontinuum and the dashed lines are the energies of the two-triplonstates whi
h are a
tually a�e
ted by the terms a
†
na

†
n+∆nam and a

†
man+∆nan. The 
yandashed lines do not pose a problem be
ause they do not 
ross the one-parti
le dispersion.The 
onvergen
e problem is indu
ed by the terms that a
t on the states with the reddashed dispersions, whi
h 
ross the one-parti
le dispersion.

are responsible for transitions between the one- and the two-parti
le subspa
e.We 
hoose to restri
t the generator based on |∆n|, whi
h is the distan
e betweenthe two parti
les whi
h are 
reated or annihilated. Be
ause the one-parti
le statedoes not have an extension, it is not relevant for the restri
tion of the generator.All terms that have a larger |∆n| than a 
ertain ∆nmax are ex
luded from thegenerator. Note that they are still part of the Hamiltonian as long as they meetthe trun
ation 
riteria for the Hamiltonian.The transformation indu
ed by this restri
ted generator does not try to sort alleigenenergies (
f. Equation 2.12), but only those whi
h are 
aptured by the termsin the generator. Therefore the �ow may also 
onverge in 
ase of overlappingenergies. The pri
e to be paid is that the subspa
es a�e
ted by the omitted termsare not 
ompletely de
oupled from the remaining Hilbertspa
e. Thus either an25



CHAPTER 2. CONTINUOUS UNITARY TRANSFORMATIONSadditional diagonalisation has to be applied to the e�e
tive Hamiltonian from thisSCUT or the results have to be 
onsidered as upper limit for the a
tual results.The restri
tion of the generator 
an be applied to the p
 generator or to any of itsadaptions. A 
on
rete example for su
h a restri
tion is introdu
ed and dis
ussedin Se
tion 5.3.

26



3 SCUT Implementation on aComputerFor the realisation of an SCUT it is essential to implement a program tailoredto the parti
ular purpose. The spe
ial features of su
h a 
al
ulation have to beoptimized for the 
omputing performan
e. These te
hni
al aspe
ts are dis
ussedwithin this 
hapter.Be
ause the SCUT 
onsists of two di�erent parts, it is advisable to use twoseparate programs. The �rst one sets up the di�erential equations arising from theHamiltonian to be diagonalised in 
onsideration of the algebra of the underlyingoperators. The se
ond one integrates the di�erential equations set up by the �rstone. The advantage of the separation of these two steps 
onsists in the possibilityto apply the se
ond step with di�erent initial values independently from the �rstone be
ause setting up the di�erential equations is very demanding 
on
erningmemory and time.3.1 Data Stru
tureTo implement the �rst part of the SCUT, whi
h sets up the di�erential equationsfor the prefa
tors of the Hamiltonian, the programming language C++ is used.For the sake of performan
e we do not use a 
omputer algebra system like Math-emati
a or Maple be
ause up to several hundred thousands of terms have to betreated for the systems 
onsidered within this thesis.A 
lass for the operator terms is an essential part of our program. The obje
tsof this 
lass have the following attributes.The prefa
tor for these terms is a 
ommon fra
tion 
onsisting of a sign, an inte-ger numerator and an integer denominator. In this thesis only integer prefa
torsare a
tually needed. But for other algebrae fra
tions 
annot be avoided, whi
hshould remain 
ommon fra
tions as long as possible to minimise the rounding27



CHAPTER 3. SCUT IMPLEMENTATION ON A COMPUTERerrors. Only the numeri
al integration in the se
ond part of the SCUT requires�oats.A boolean variable determines whether the prefa
tor is real or imaginary. Theterms appearing in the models of this thesis are either purely real or purelyimaginary. However, 
omplex prefa
tors 
an be represented using these attributesby splitting a number into its real and its imaginary part.The main part of the term is an array of lo
al operators. For these operators aparti
ular 
lass is implemented. It is advisable to use a matrix representation forthe lo
al operators as the 
ommutators and the 
ombinations of lo
al operatorsare easier to 
al
ulate by means of matrix produ
ts. Also the site whi
h is a�e
tedby the lo
al operator has to be an attribute. The models of this thesis are quasione-dimensional so that the site 
an be represented by an integer s
alar. Forhigher dimensions it has to be a ve
tor.A large number of terms is generated during the setup of the di�erential equa-tions and ea
h resulting term of a 
ommutator has to be 
ompared to the terms ofthe Hamiltonian to 
he
k if it 
ontributes to already existing terms in the Hamil-tonian or to new terms to be established. To simplify this 
omparison a hashvalue is attributed to ea
h term depending on the operators in
luded. A hashfun
tion assigns a unique hash value to a 
ertain 
ombination of lo
al operators.Terms with the same hash value are 
ombined to a group. Then the sear
h forequal terms 
an be restri
ted to the group with the same hash value. The morepossible hash values there are the smaller the groups are and the faster the sear
h
an be done. The hash fun
tion should also assign the values evenly so that thesizes of the groups do not di�er too mu
h. If terms are similar, a sear
h for a
ertain term is more di�
ult and therefore slower. Hen
e similar terms shouldget di�erent hash values. The hash fun
tion should rather be implemented in away that terms with equal hash values di�er distin
tly so that it is easier to dis-tinguish them and the sear
h be
omes faster. An appropriate hashing 
an speedup the program signi�
antly. We have 
hosen a simple hash fun
tion based onthe modulo operation. The hash value v is given by
v = (. . . (i0a + i1)modM)a + i2)modM)a + i3)modM)a + . . . in) (3.1)where ik denotes the index that 
hara
terises the k-th lo
al operator of the term.The number of lo
al operators is n, the of possible hash values is M and a denotesthe number of possible lo
al operators. To avoid an integer over�ow the modulooperation is applied after ea
h addition.28



3.2. UTILISATION OF SYMMETRIESIt is also 
onvenient to use an attribute �multipli
ity�, whi
h appears in the
ontext of the utilisation of the symmetries, whi
h are dis
ussed in the nextse
tion. The time needed to determine this number 
an be redu
ed if it is only
al
ulated on
e and stored as an attribute instead of 
a
ulating it numerous times.Of 
ourse other properties that are needed frequently 
an be attributed to theterms as well if their 
al
ulation is time-
onsuming.The terms in the sum of the Hamiltonian should be stored as a dynami
al arraybe
ause the size of the �nal Hamiltonian is not known in advan
e. Be
ause theterms of the p
 generator are all part of the Hamiltonian ex
ept for possible signs2.7, the generator does not have to be stored additionally to the Hamiltonian.If a term has to be used as a generator term, the potential additional sign isadded during the 
al
ulation if ne
essary. For the adaptions of the p
 generatorintrodu
ed in Se
tion 2.5 we pro
eed in the same way.Arbitrary operators are transformed a

ording to Equation (2.4). Be
auseHamiltonians are the only operators that were transformed in this thesis, thisaspe
t of the SCUT is not treated here. A detailed des
ription of the implemen-tation of general operator transformations 
an be found in Ref. [19℄.3.2 Utilisation of SymmetriesThe utilisation of symmetries given by the Hamiltonian of the model saves timeand memory and it is therefore essential for 
omplex problems. For in�nitely ex-tended systems the SCUT is even theoreti
ally infeasible without the utilisationof at least one symmetry that redu
es the Hamiltonian to a �nite number of rep-resentative terms. Normally this symmetry is the translation symmetry. Termsthat emerge from ea
h other via translations in real spa
e 
an be represented byone exemplary term. In a one-dimensional system in whi
h the sites are labelledby integers one 
an use the term with the smallest site number equal to zeroas the representative for the whole group, whi
h 
ontains an in�nite number ofterms.Other generi
 symmetries that 
an be utilised are the remaining symmetriesof the latti
e, symmetries in spin spa
e or parti
le-hole symmetries. Also thehermiti
ity of the Hamiltonian, whi
h is no symmetry in the usual sense, 
an beutilised. It is dis
ussed here how to 
al
ulate the 
omplete 
ommutator using therepresentative terms for dis
rete symmetries exemplarily.The Hamiltonian H represented by a sum of the terms hi with their prefa
tors29



CHAPTER 3. SCUT IMPLEMENTATION ON A COMPUTER
fi 
an be written as a sum over the whole symmetry group G (with lG elements)
omprising all symmetries to be used:

H =

N
∑

i=1

fihi =
∑

G

Ns
∑

j=1

f̃j h̃j (3.2)where N denotes the number of all terms of the Hamiltonian without 
onsid-eration of the symmetries and Ns the number of representatives. The a
tualrepresentatives h̃j 
arry the prefa
tors f̃j whi
h are in general not equal to the
fi.The relation

abs(fi) = abs(sj f̃j) (3.3)holds true for the absolute value of the 
orresponding 
oe�
ients if there is aone-to-one 
orresponden
e between single operator monomials under the grouptransformations. The fa
tor si is the multipli
ity of h̃i in the sum over G. If theappli
ation of di�erent symmetry operations to a representative generates termsmultiple times so that the sum over G 
ontains them multiple times as well, theprefa
tor of the 
on
erning representative has to be redu
ed by the multipli
ityin the sum over G. The simplest example for a nontrivial multipli
ity, i.e. a mul-tipli
ity not equal to one, is the multipli
ity of the unity operator. Be
ause theunity operator remains un
hanged by the appli
ation of every symmetry opera-tion, its multipli
ity is equal to the number of all possible symmetry operations,i.e. lG.For another simple example 
onsider the symmetry operation R whi
h re�e
tsa term with respe
t to a 
ertain plane. If a term does not 
hange under R, butunder all remaining symmetry operations, its multipli
ity is 2.Note that some symmetry operations 
hange the sign of the 
oe�
ient. Hen
ethe sign has to be taken into a

ount as well for the f̃j and Equation (3.3) is onlyvalid for the absolute values. For instan
e, the appli
ation of the parity operatorto a term a�e
ting a state with odd parity yields an additional minus sign.Due to the multipli
ities the number of terms in the Hamiltonian usually 
annot be redu
ed by the fa
tor lG. But espe
ially for a large number of terms theredu
tion usually 
omes 
lose to it. There are 
ases where the redu
tion 
ana
tually be larger than lG if the utilisation of the symmetry avoids the emergen
eof 
ertain terms [62℄.The 
al
ulation of the 
ommutator, however, 
annot be restri
ted to the rep-resentatives only. As the generator 
onsists of terms that are also part of the30



3.2. UTILISATION OF SYMMETRIESPSfrag repla
ements
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â0

b̂−1

b̂0

b̂1

b̂2Figure 3.1: The example for the use of the translation symmetry in the 
ommutatorexplained in the text is illustrated. The a
tion of the terms a0, b−1, b0, b1 and b2on a one-dimensional 
hain, whose sites are depi
ted as 
ir
les, is shown. The sitesa�e
ted by an operator are depi
ted by �lled 
ir
les. The 
ommutator [â0,
∑

n b̂n

] yieldsthe representative terms for the 
omplete 
ommutator [∑n ân,
∑

n b̂n

]. In 
ontrastthe 
ommutator [â0, b̂0

] 
onsidered in isolation misses the relative translations of theoperators that are present for [â0, b̂−1

], [â0, b̂1

] and [â0, b̂2

].Hamiltonian, the 
ommutator on the right hand side of the �ow equation (2.3)
an be 
al
ulated by 
ommutators of the form [hi, hj ].The symmetries 
an be used by
[

∑

G

f̃ih̃i,
∑

G

f̃j h̃j

]

=
∑

G

[

f̃ih̃i,
∑

G

f̃j h̃j

] (3.4)so that one sum of the 
ommutator 
an be restri
ted to the representatives andonly for the other sum the full symmetry group must be taken into a

ount.This is illustrated for the translational symmetry in a one-dimensional example.The example 
onsiders the 
ommutator of a term ân a
ting on three neighbouringsites and a term b̂n a
ting on two neighbouring sites where n denotes the smallestsite index (see Figure 3.1). The representative terms are a0 and b0 without lossof generality.The 
omplete 
ommutator [∑n ân,
∑

n b̂n

] in
orporates an in�nite number ofnontrivial terms for an in�nite 
hain. The 
ommutator [â0,
∑

n b̂n

] omitting the31



CHAPTER 3. SCUT IMPLEMENTATION ON A COMPUTER�rst sum and taking into a

ount the representative â0 only yields the represen-tative terms for the result of the 
omplete 
ommutator be
ause the omitted sum
auses the translation of the whole term.The 
ommutator of the representatives [â0, b̂0

] is only a partial 
ontributionto the representative terms of the result be
ause omitting both sums negle
ts thepossible relative translations of the operators ân and b̂n.In the present 
ase the sum over n for the b̂n 
an be restri
ted to n from −1to 2 be
ause all other b̂n have no overlap with the representative â0 and the
orresponding 
ommutators are zero for bosoni
 operators1.Note that the resulting representatives do not mat
h the form de�ned in thebeginning and still have to be adapted to this de�nition. In our example thismeans that the smallest site index of the resulting representatives is not zero ingeneral so that the terms have to be translated appropriately.3.3 Setup of the Flow EquationThe essential part of the program that 
al
ulates the �ow equation (2.3), whi
h isa
tually a system of di�erential equations for the 
oe�
ients of the Hamiltonian(2.18), features two for loops running over the terms of the Hamiltonian. Theterms originating from the �rst loop represent the generator terms. Therefore,still outside the se
ond loop, it has to be 
he
ked whether the �rst term mat
hesthe 
riteria for the generator. If it is not part of the generator, the se
ond loopis skipped and the �rst one 
ontinues with the next term.Due to the utilisation of the symmetries the step in whi
h the term from ηand the term from H are identi
al must not be skipped. The appli
ation of thesymmetry operations, whi
h takes pla
e inside the loops, generates terms fromthe H term that are di�erent from the η term.Figure 3.2 shows a stru
ture diagram for the program that sets up the �owequation. The two for loops des
ribed in the pre
eding paragraph are embeddedinto a while loop that has the exit 
ondition that no new terms arise inside.In the 
ase of a generator whi
h 
onserves the blo
k-band stru
ture of theHamiltonian the pro
edure inside the two for loops should start with a queryif it 
an be 
on
luded from the 
omponents of the two terms to be 
ommutedwhether the 
ommutator yields terms outside the band of the Hamiltonian. These1Terms 
onsisting of an even number of fermioni
 operators behave like bosoni
 operators.32
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PSfrag repla
ements
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ommutator
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lude new terms in H�le 
ontributions to di�. eqs.
Figure 3.2: Stru
ture diagram of the program for setting up the �ow equation.resulting terms are 
an
elled by other terms due to the properties of the generator.Hen
e they 
an be left out immediately and the 
ommutator does not need tobe 
al
ulated. Consider a starting Hamiltonian that 
hanges the parti
le numbermaximally by N . All Hamiltonians H(l) o

urring during the �ow inherit thisproperty if a p
 generator is employed. A 
ommutator of a term that 
hangesthe parti
le number by n1 and a term that 
hanges the parti
le number by n2yields only terms that 
hange the parti
le number by n1 +n2 (with n1, n2 ∈ Z). If

abs(n1 + n2) > N , the results of the 
ommutator violate the 
onsidered propertyand do not 
ontribute to the �ow equation.The term representing a part of the generator is attributed the appropriatesign at this point. For the p
 generator the sign is de�ned by Equation (2.7).33



CHAPTER 3. SCUT IMPLEMENTATION ON A COMPUTERBe
ause [f̃ih̃i,
∑

G f̃j h̃j

] has to be 
al
ulated (as explained in the last se
tion), allpossible symmetry operations are applied to the se
ond term of the 
ommutator.The arising terms are run over by a loop in whi
h the 
ommutator is 
al
ulated�nally. The fun
tion 
arrying out this task resorts to an array in whi
h all possiblelo
al 
ommutators are stored2 and to the distributive law for 
ommutators whi
his the subje
t of the next se
tion.Afterwards the trun
ation is applied to the results of the 
ommutator. Theremaining terms are adapted to the de�nition of the representatives. Terms thatare equivalent to the same representative have to be summed up.The results of the 
ommutator are now in the �nal form and have to be 
om-pared to the representative terms of the Hamiltonian. If they mat
h an existingterm, the program stores the information that the 
oe�
ients of the two termswhi
h were inserted into the 
ommutator 
ontribute (in
luding the resulting pref-a
tor) to the derivative of the 
oe�
ient of the mat
hing term (
f. Equation 2.18).If a 
ommutator result is a new term, the term is added to the dynami
al arrayof the Hamiltonian. Its initial value is set to zero be
ause it is not present inthe starting Hamiltonian. Then the 
ontributions to the �ow equation are storedlike for an already existing term. This 
on
ludes the pro
edure inside the two forloops.When all 
ommutators are 
omputed for the terms of the starting Hamiltonian,the for loops run over all 
ombinations of the new terms among ea
h other and ofnew terms and old terms. When all the 
on
erning 
ommutators are 
al
ulated,this pro
edure is repeated after ea
h run as long as new terms emerge whi
h arenot trun
ated.3.4 Cal
ulation of the CommutatorA 
ommutator of terms 
onsisting of lo
al operators3
[(

nL
∏

i=1

âi

)

,

(

nR
∏

j=1

b̂j

)] (3.5)with nL operators âi in the �rst produ
t and nR operators b̂j in the se
ond produ
thas to be 
al
ulated e�
iently within the program. The operators âi and b̂j are2The possible lo
al 
ommutators 
an be 
al
ulated via matrix produ
ts at the beginning ofthe program be
ause the lo
al operators 
an be represented by matri
es (see Se
tion 3.5).3A lo
al operator âi a
ting on site i is here an abbreviatory notation for⊗j<i 1j⊗âi⊗
⊗

j>i 1j .34



3.4. CALCULATION OF THE COMMUTATORlo
ally normal ordered4 operators a�e
ting only one site ea
h.The appli
ation of the 
ommutator de�nition [Â, B̂] = ÂB̂ − B̂Â with sub-sequent 
ombination of terms a
ting on the same sites is less e�
ient than theappli
ation of the distributive law for 
ommutators. The 
ommutator 
an be splitinto lo
al 
ommutators
[(

nL
∏

i=1

âi

)

,

(

nR
∏

j=1

b̂j

)] (3.6)
=

nL
∑

k=1

nR
∑

l=1

((

k−1
∏

i=1

âi

)(

l−1
∏

j=1

b̂j

)

[

âk, b̂l

]

(

nR
∏

j′=l+1

b̂j′

)(

nL
∏

i′=k+1

âi′

))whi
h is 
onvenient for 
ommutators of bosoni
 operators or mixed 
ommutatorswith bosoni
 operators ai and fermioni
 operators bj or vi
e versa. If one ofthe parts of the generator 
onsists of an even number of lo
al operators, the
ommutator 
an be split into lo
al anti
ommutators. Let nR be even withoutloss of generality, then
[(

nL
∏

i=1

âi

)

,

(

nR
∏

j=1

b̂j

)] (3.7)
=

nL
∑

k=1

nR
∑

l=1

(

(−1)l−1

(

k−1
∏

i=1

âi

)(

l−1
∏

j=1

b̂j

)

{

âk, b̂l

}

(

nR
∏

j′=l+1

b̂j′

)(

nL
∏

i′=k+1

âi′

))whi
h is 
onvenient for fermioni
 operators. Be
ause the fermion number is 
on-served within our models, in ea
h term of the Hamiltonian the number of fermioni

reation operators always equals the number of fermioni
 annihilation operators,i.e. there is an even number of fermioni
 operators in all of these terms.The terms en
ountered in the 
ommutator 
onsist of both bosoni
 and fermi-oni
 lo
al operators in general. These general terms 
an be dealt with by orderingthe operators a

ording to the algebra they obey, i.e. an operator Â should bewritten as a produ
t of Âb 
onsisting of lo
al bosoni
 operators and Âf 
onsistingof lo
al fermioni
 operators. Then ea
h 
ommuator to be 
al
ulated 
an be splitup a

ording to
[

Â, B̂
]

=
[

ÂbÂf , B̂bB̂f

] (3.8)
=

[

Âb, B̂b

]

B̂f Âf + Âb

[

Âf , B̂b

]

B̂f + B̂b

[

Âb, B̂f

]

Âf + ÂbB̂b

[

Âf , B̂f

]

.4The normal order used in this 
ontext is des
ribed in Se
tion 2.3. 35



CHAPTER 3. SCUT IMPLEMENTATION ON A COMPUTERThe �rst three parts of this sum 
an be evaluated via Equation 3.6 and the lastpart via Equation 3.7.The advantage of this approa
h of relying on the distributive law is that the
ommutator is redu
ed to a small number of terms 
lose to the desired formbe
ause most terms in the sums in Equations 3.6 and 3.7 are zero5.Now the operators in the remaining produ
ts outside the 
ommutator or anti-
ommutator respe
tively have to be 
ombined until ea
h site is related to just onelo
al operator. The results of all possible lo
al produ
ts 
an be stored in an arraylike the results for the lo
al 
ommutators. To be able to 
ompare the resultingterms with the terms of the Hamiltonian, the de�ned order 
on
erning bosoni
and fermioni
 operators as well as 
on
erning the sites has to be established;additional minus signs o

ur by swapping fermioni
 operators.3.5 Matrix Representation for Lo
al OperatorsThe lo
al 
ommutators, anti
ommutators and produ
ts of lo
al operators neededfor the 
al
ulation are 
al
ulated at the beginning of the program. This is 
on-veniently done in matrix representation. For a lo
al basis 
onsisting of N states6there are N2 linearly independent lo
al operators, whi
h 
an be represented by
N × N matri
es. One of the states is the lo
al referen
e state |0〉n introdu
ed inSe
tion 2.3. The other states of the lo
al basis shall be referred to as |r〉n with
r ∈ {1, 2, . . . , N − 1}. The p
 CUT maps |0〉n onto the empty site and the otherstates onto the site o

upied by one quasiparti
le, whi
h 
an have N −1 di�erent�avours r.The 
orresponding ve
tors are de�ned to be

|0〉n =













1

0

0...












n

|1〉n =













0

1

0...












n

|2〉n =













0

0

1...












n

. . . . (3.9)The operators e†n,r 
reating quasiparti
les with the �avour r on site n are repre-5The 
ommutator for lo
al bosoni
 operators a
ting on di�erent sites vanishes and so doesthe anti
ommutator for lo
al fermioni
 operators. Furthermore, many lo
al produ
ts aibjor bjai yield zero.6For the undoped ladder N = 4 holds (see Se
tion 4.1). We 
onsider N = 8 for the dopedladder negle
ting the double hole state (see Se
tion 5.1).36



3.5. MATRIX REPRESENTATION FOR LOCAL OPERATORSsented by the matri
es
e†n,1 =













0 0 0 . . .

1 0 0

0 0 0... . . .












n

e†n,2 =













0 0 0 . . .

0 0 0

1 0 0... . . .












n

. . . (3.10)from whi
h the lo
al operators en,r and e†n,ren,r′ 
an be formed easily. Togetherwith the unity operator 1n these N2−1 operators e†n,r, en,r and e†n,ren,r′ 
onstitutea lo
al basis. The operator












1 0 0 . . .

0 0 0

0 0 0... . . .












n

(3.11)is not 
hosen as an element of the basis be
ause it is not normal ordered 
on
erning
|0〉n. This operator is therefore represented by the linear 
ombination1n −

N−1
∑

r=1

e†n,ren,r (3.12)whi
h was already used in Se
tion 2.4. The unity operator 1n is also not normalordered 
on
erning |0〉n, but it is not taken into a

ount in produ
ts of lo
aloperators as usual in se
ond quantisation be
ause it a
ts only trivially. Theoverall unity operator 1 =
⊗

n 1n yields only a 
onstant energy 
ontributionand does not appear on the right hand side of the �ow equation (2.3) be
ause it
ommutes with every term.The matri
es obey the hard
ore algebra introdu
ed in Se
tion 2.4. The quasi-parti
les 
an be bosoni
 or fermioni
 sin
e the lo
al algebra is only given by thehard
ore property. For bosoni
 parti
les (or mixed 
ombinations of one bosoni
and one fermioni
 parti
le) only the lo
al 
ommutators and for the fermioni
 par-ti
les only the lo
al anti
ommutators are needed. So in total N4 relations have tobe 
al
ulated. Also N4 di�erent lo
al produ
ts are possible. The results a
hievedvia the matri
es are stored in an array for further use.Although it is not obligatory to store all results due to the antisymmetry of the
ommutator [A, B] = −[B, A] and the symmetry of the anti
ommutator {A, B} =

{B, A}, the program is faster if we 
an re
all all results dire
tly from the memorywithout further operations. 37



CHAPTER 3. SCUT IMPLEMENTATION ON A COMPUTER3.6 Numeri
al Integration of the Flow EquationThe se
ond part of the SCUT � the solution of the �ow equation � is a ratherstraightforward numeri
al integration. A system of ordinary �rst order bilineardi�erential equations (2.18) depending on the 
ontinuous variable l has to besolved. For instan
e, a �fth order Runge-Kutta method 
an be applied, whi
h isour algorithm of 
hoi
e. An adaptive step size 
ontrol is advisable be
ause mostof the 
hanges take pla
e at the beginning of the integration while the 
oe�
ients
gi(l) remain almost 
onstant from a 
ertain l on if the transformation 
onvergesfor large l. So the size of the steps of the numeri
al integration 
an be in
reasedduring the 
al
ulation. The program 
ode for the Runge-Kutta method 
an befound in Ref. [63℄.The 
onvergen
e is monitored during the integration. Sin
e all 
ontributionsto the generator de
rease exponentially in 
ase of 
onvergen
e, the 
on
erning
oe�
ients are squared and summed up. This sum is de�ned as residual o�-diagonality (ROD). It is a measure for the 
onvergen
e. The ROD is expe
tedto tend to zero for l → ∞. Note that the term �o�-diagonality� is meant inthe broadest sense, i.e. the de�nition of the generator determines whi
h elementsshall be kept for l → ∞ and these elements are de�ned as diagonal parts of theHamiltonian. The RODs depi
ted within this thesis are always normalised to theinitial ROD.With the de
rease of the ROD the designated e�e
tive Hamiltonian is ap-proa
hed. If the ROD falls below a 
ertain threshold spe
ifying the pre
ision ofthe result (usually ≈ 10−15), the integration 
an be 
onsidered as 
ompleted. Theorigin of divergen
ies is dis
ussed in Se
tion 2.5 in the 
ontext of the adaption ofthe generator. The number of 
oe�
ients is of the order of magnitude of up to
105 for the models 
onsidered in this thesis.

38



4 Undoped Antiferromagneti
Spin-1
2
Ladders4.1 Model An undoped ladder 
onsists of two Heisenberg

PSfrag repla
ements

leg l leg rrung nrung n + 1

J⊥

J‖J�

Figure 4.1: Undoped spin ladder.

spin 
hains 
oupled to ea
h other (see Figure4.1). The ladder will be treated as a half-�lled spin-1
2
model without ele
tron hoppingbut only with magneti
 spin intera
tions. Ifwe just take into a

ount nearest neighbourintera
tions (with the 
oupling J⊥ along therungs of the ladder and the 
oupling J‖ paral-lel to the legs of the ladder), the Hamiltonianreads

H = J⊥

∑

n

~Sn,l·~Sn,r+J‖

∑

n,α

~Sn,α·~Sn+1,α (4.1)where ~Sn,α denotes the spin ve
tor for the siteon rung n ∈ Z and on leg α ∈ {l, r}. In thefollowing the spin will be 1
2
and we will 
on-sider the antiferromagneti
 
ase that J⊥ and J‖are both positive. This model des
ribes a sub-system of the telephone number 
ompounds

(Sr, La, Ca, Y)14Cu24O41 (see Se
tion 1.1). Thein�uen
e of the 
ouplings J⊥ and J‖ is also il-lustrated in Figure 4.1. The 
oupling J� also appearing in this �gure is dis
ussedlater within this se
tion.Usually the spin ladders within the telephone number 
ompounds are hole-doped. However, in this 
hapter the undoped spin ladder is dis
ussed, whi
h39



CHAPTER 4. UNDOPED ANTIFERROMAGNETIC SPIN-1
2
LADDERSdoes not 
onsider the 
harge 
arriers. This 
ase is realised in La6Ca8Cu24O41 [32℄and approximately realised in La5.2Ca8.8Cu24O41 [42℄. The doped ladder in
ludingthe 
harge 
arriers in form of holes is dis
ussed in Chapter 5.If the ratio x =

J‖

J⊥
goes to in�nity for bounded J‖, the two legs are de
oupledand 
an be treated as two independent Heisenberg 
hains.In the 
ase x = 0 the rungs are de
oupled and form independent dimers. Thenthe ground state for the antiferromagneti
 
ase is 
omposed of rung singlet states

|0〉 =
⊗

n

|singlet〉n =
⊗

n

1√
2

(|↑↓〉 − |↓↑〉)n . (4.2)The ex
itations are rung triplet states for x = 0.The state |0〉 is a suitable referen
e state for the CUT as it exhibits the prop-erties required a

ording to Se
tion 2.3. For x > 0 this state is no longer theground state and the a
tual ground state is unknown sin
e the expli
it opera-tor that performs the SCUT 
annot be determined. Yet as long as x is not toolarge the singlet is the dominant part and this referen
e state is reasonable. Theelementary ex
itations are triplons, i.e. triplet states dressed with the magneti
intera
tions with their environment. We do not want to use the term �magnon�for these magneti
 ex
itations be
ause this term is usually asso
iated with quasi-parti
les in systems that exhibit long-range magneti
 order (whi
h is not the 
asefor the triplons). Moreover triplons feature a threefold degenera
y based on their
S = 1 
hara
ter [64℄.For the triplet states we 
hoose the so-
alled bond operator representation[65℄. The 
reation operators t†α,n with t†α,n |singlet〉n = |tα〉n and the a

ordingannihilation operators tα,n 
orrespond to the states

|tx〉n =
−1√

2
(|↑↑〉 − |↓↓〉)n (4.3a)

|ty〉n =
i√
2

(|↑↑〉 + |↓↓〉)n (4.3b)
|tz〉n =

1√
2

(|↑↓〉 + |↓↑〉)n . (4.3
)These states are aligned along the x-, y- and z-axis of the spin spa
e. Due to theSU(2) symmetry of the spins this basis is advantageous. Its bene�t is seen in the40



4.1. MODELrepresentation of the Hamiltonian:
H

J⊥
= H⊥ + xH‖ =

∑

n,α

t†n,αtn,α (4.4)
+

x

2

∑

n

[

∑

α

t†n,αtn+1,α + t†n+1,αtn,α −
∑

α6=β

t†n,αt†n+1,αtn,βtn+1,β

+
∑

α6=β

t†n,αt†n+1,βtn,βtn+1,α +
∑

α

t†n,αt†n+1,α + tn,αtn+1,α

]

.The invarian
e under rotations in spin spa
e by π
2
about the prin
ipal axes Sx, Syand Sz is manifest in this representation in 
ontrast to the usual representationbased upon the Sz 
omponent of the 
on
erning triplet state. For instan
e, a
lo
kwise rotation by π

2
about the z-axis, whi
h 
hanges |tx〉n into |ty〉n, |ty〉n into

− |tx〉n and does not 
hange |tz〉n, leaves H un
hanged. Note that the energy ofthe referen
e state |0〉 was set to zero in this Hamiltonian by adding the energy
3
4
J⊥ to the lo
al operator J⊥

~Sn,l · ~Sn,r = J⊥

(

−3
4
1n +

∑

α t†n,αtn,α

), whi
h is thediagonal part of the Hamiltonian in our representation.The e�e
ts of the spin symmetries are dis
ussed in Appendix A. An obvious
onsequen
e is the saving of memory and time, but also numeri
al improvementsare implied.Be
ause the hybridization path around the Cu4O4 square plaquettes (
f. Fig-ure 1.3) is strong, the in�uen
e of the four-spin intera
tions belonging to theseplaquettes (i.e. two neighbouring rungs) is not negligible [66℄. These intera
tionsare referred to as ring ex
hange (also 
y
li
 ex
hange) and 
an be expressed bythe operators Πp and Π−1
p , whi
h permutate the spins of the plaquette p 
lo
k-wise and 
ounter
lo
kwise respe
tively. The 
omplete ring ex
hange Hamiltonianreads
J�Hc

� =
J�

4

∑

p

(

Πp + Π−1
p

)

. (4.5)The a
tion of this term is illustrated in Figure 4.1. In the spin operator repre-sentation the ring ex
hange Hamiltonian is expressed by
J�H� = J�

∑

n

(

~Sn,l · ~Sn+1,l

)(

~Sn,r · ~Sn+1,r

) (4.6)
+
(

~Sn,l · ~Sn,r

)(

~Sn+1,l · ~Sn+1,r

)

−
(

~Sn,l · ~Sn+1,r

)(

~Sn,r · ~Sn+1,l

)

.A
tually the 
omplete ring ex
hange Hc
�

also in
ludes two-spin terms for alltwo-spin 
ombinations of the four spins on two neighbouring rungs. Yet the41



CHAPTER 4. UNDOPED ANTIFERROMAGNETIC SPIN-1
2
LADDERS
ontributions from the terms 
oupling the spins along the rungs and parallel to thelegs are merged with the terms H⊥ and H‖ so that the 
oupling 
onstants J⊥ and

J‖ in
lude these 
ontributions, whereas the terms 
oupling the spins diagonally
an be negle
ted here be
ause their prefa
tor is only of the order of 3% of J⊥[67℄. The 
omplete representation of the ring ex
hange using spin operators 
anbe found in Ref. [68℄.In analogy to x we de�ne x� = J�

J⊥
. The term H� is of importan
e for thequantitative 
omparison with the experimental data for both the two-dimensionalHeisenberg latti
e [66, 69�71℄ and the Heisenberg ladder [42, 68, 72�77℄. Althoughone 
ould �t the neutron s
attering results for the spin ladders [68, 72, 73℄ to amodel without ring ex
hange, this would imply that x was of the order of 2.But due to the fairly isotropi
 geometri
al stru
ture of the ladders no essentialdi�eren
es between J⊥ and J‖ are expe
ted. An in
lusion of the ring ex
hangeyields x ≈ 1.2 and x� ≈ 0.2 [75℄. The infrared absorption [42℄ and the Ramanspe
tros
opy [74℄ also suggest that x ≈ 1.2. For La4Sr10Cu24O41 inelasti
 neutrons
attering determines x = 1.5 and x� = 0.25 [78℄.Also the theoreti
al derivation of Heisenberg models for spin ladders from one-band [19, 79, 80℄ and three-band Hubbard models [67, 81�83℄ provides eviden
ethat x� is of the order of 0.2.While the triplon gap ∆ remains �nite for all values of x without the ringex
hange [34, 84℄, the gap 
loses with growing x�. Then the ground state is nolonger dominated by singlets on the rungs and hen
e the referen
e state |0〉 nolonger suits our purpose [85, 86℄. Therefore the SCUT yields unphysi
al resultsapproa
hing this phase transition and diverges �nally (see Se
tion 4.3.1).In the bond operator representation the ring ex
hange term (ex
ept for a 
on-stant 9

16
1n in the lo
al term negle
ted here) reads
J�H� = J�

∑

n

∑

α

[

−3

2
t†n,αtn,α +

1

4

(

t†n,αtn+1,α + t†n+1,αtn,α

) (4.7)
− 1

4

(

t†n,αt†n+1,α + tn,αtn+1,α

)

]

+
∑

α,β

t†n,αt†n+1,βtn,αtn+1,β.All terms ex
ept the last one already appear in the Hamiltonian without ringex
hange. This new term belongs to the diagonal part of the Hamiltonian be
ause42



4.2. TRUNCATIONit is a density-density term. The 
omplete Hamiltonian divided by J⊥ reads
H

J⊥
= H⊥ + xH‖ + x�H� =

(

1 − 3

2
x�

)

∑

n,α

t†n,αtn,α (4.8)
+
∑

n

[

∑

α

(x

2
+

x�

4

)(

t†n,αtn+1,α + t†n+1,αtn,α

)

−x

2

∑

α6=β

t†n,αt†n+1,αtn,βtn+1,β +
x

2

∑

α6=β

t†n,αt†n+1,βtn,βtn+1,α

+
(x

2
− x�

4

)

∑

α

(

t†n,αt†n+1,α + tn,αtn+1,α

)

+ x�

∑

α,β

t†n,αt†n+1,βtn,αtn+1,β

]and in
ludes all terms whi
h are relevant for an appropriate des
ription of thespin ladder.Note that H is invariant under the parity operation P , whi
h is illustratedin Figure 4.2. The parity of a singlet state with respe
t to P is odd, whereasthe parity of a triplon is even. Therefore the 
reation or annihilation of an oddnumber of triplons violates the parity, while the parity is 
onserved if the triplonnumber is 
hanged by an even number. The terms of H either 
onserve the triplonnumber or 
hange it by two. Hen
e the parity is 
onserved by H .
Figure 4.2: Illustration of the parity operator P , whi
h re�e
ts about the red axis.
4.2 Trun
ationThe �nite energy gap ∆ of the triplons [35, 36℄ is equivalent to a 
orrelation be-tween the triplons whi
h is exponentially de
reasing with respe
t to the distan
e.Hen
e a trun
ation in real spa
e is feasible. The extension in real spa
e shallbe used as a measure for the physi
al importan
e of a term of the Hamiltonian.In our quasi one-dimensional spin ladder the extension of a term is de�ned as43
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2
LADDERSPSfrag repla
ements
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2,4
d6

4,4
d8Figure 4.3: S
hemati
 representation for a trun
ation of the undoped ladder Hamilto-nian H(l): Ea
h 
oloured (nc, na)-blo
k represents 
ontributions to H(l) 
reating ncparti
les after annihilating na parti
les. The dn are the maximal extensions relevantfor the blo
ks in whi
h they appear. The red line indi
ates a maximal parti
le number

N = 4, i.e. terms 
ut o� by the red line are omitted. The blue blo
ks are the parti
le
onserving terms that remain the only 
ontributions for l → ∞ in 
ase of a 
onvergingp
 CUT. The green blo
ks are the 
ontributions to the p
 generator, whi
h go to zerofor l → ∞.the di�eren
e between the smallest and the largest rung index of the lo
al opera-tors within the term. For higher-dimensional latti
es an extension de�ned in thetaxi
ab metri
 is easy to handle.The simplest way of trun
ating would be one maximal extension in real spa
efor all terms. Terms ex
eeding this limit would be omitted. But this approa
h isnot reasonable in our 
ase. The number of possible terms in
reases more stronglywith the maximal extension for terms 
onsisting of more lo
al operators. However,terms 
onsisting of less operators are usually more important in the sense thathigher extensions should be taken into a

ount for terms with less operators. Forinstan
e, the 
oe�
ient of a one-parti
le hopping term 
onsisting of two lo
aloperators is usually larger than the 
oe�
ient of a two parti
le intera
tion term44



4.2. TRUNCATION
onsisting of four lo
al operators if they both have the same extension. Thereforedi�erent maximal extensions dn are de�ned in units of the rung distan
e where nis the number of lo
al operators of the 
on
erned term.Additionally a maximal parti
le number N is de�ned for the operators, i.e.terms a�e
ting higher parti
le numbers than N are 
ompletely omitted even ifthe 
orresponding dn is larger than zero. Figure 4.3 shows the trun
ation forthe undoped ladder s
hemati
ally for H(l). The restri
tion N = 4 reje
ts allterms outside the red line. Be
ause only terms 
hanging the parti
le number bytwo or 
onserving the parti
le number o

ur in the starting Hamiltonian (4.4)or (4.8) respe
tively, the number of lo
al operators in a term is always evenduring the �ow and the Hamiltonian only 
onsists of the 
oloured blo
ks in the�gure1. The total number of lo
al operators is equal for the terms of the diagonalsfrom left bottom to right top. Therefore all blo
ks of ea
h of these diagonalsshare the same maximal extension dn. The parameter d0 for the (0, 0)-blo
k ismeaningless as this blo
k 
ontains only the non-lo
al unity operator for the wholeladder, i.e. a 
onstant energy 
ontribution. This trun
ation s
heme, whi
h we usewithin this thesis, is not 
ompulsory. Other s
hemes 
ould be implemented, whi
huse di�erent 
lassi�
ations for the groups of terms sharing the same maximalextension.An important point is that a trun
ation of the operators does not a�e
t theHilbert spa
e. A
tually we do not redu
e the Hilbert spa
e at all. A maximalparti
le number for the operators does not restri
t the possible number of parti
lesbe
ause we work in se
ond quantisation on the in�nite system. A (nc, na)-blo
ka�e
ts all states with na parti
les or more. Therefore the (1, 1)-blo
k a
ts onall states that exhibit triplon ex
itations of arbitrary number larger than zero.A
tually the multi-parti
le 
ontinua are mainly determined by the one-parti
ledispersion and 
an be made more a

urate by in
luding two-parti
le intera
tions.
1The 
onservation of the parity with respe
t to P , whi
h was introdu
ed in the pre
edingse
tion, forbids the 
hange of the triplon number by an odd value as the parity of onetriplon is odd. 45
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2
LADDERS4.3 Results for the p
 Generator4.3.1 One-Triplon DispersionThe dispersion for one triplon 
an be easily dedu
ed from the e�e
tive Hamilto-nian, whi
h 
onserves the number of triplons. The (1, 1)-blo
k has the stru
ture

H1,1 =

d2
∑

d=−d2

∑

n,α

adt
†
n+d,αtn,α (4.9)where the hopping pro
esses are restri
ted by the maximal extension d2. The
oe�
ients ad are 
al
ulated by SCUT. A Fourier transformation diagonalises

H1,1 in the one-parti
le spa
e. We 
onsider a one-triplon-state with a 
on
rete�avour α ∈ {x, y, z} be
ause the three �avours are equivalent due to the SU(2)symmetry of the spins. The one-triplon dispersion ω1t(k), i.e. the one-triplonenergy relative to the ground state, 
an be identi�ed as the Fourier transform of
H1,1 applied to a one-triplon state, whi
h is

ω1t(k) = a0 +

d2
∑

d=1

2ad cos(dk) (4.10)with the rung distan
e set to one.At �rst let us 
onsider x� = 0. For small x the 
oe�
ients ad with d > 1 arenegligibly small and the one-triplon dispersion is
ω1t(k)

J⊥

≈ 1 + x cos(k). (4.11)In
reasing x 
auses a growing dip in the dispersion at k = 0. This is illustratedby the one-triplon dispersions for x = 0.5, x = 1 and x = 1.5 shown in Figure 4.4
ompared to the PCUT results. The dip at small momenta is due to the 
losenessof the three-triplon 
ontinuum whi
h lies energeti
ally above (
f. Se
tion 4.3.2).The two-triplon 
ontinuum has no in�uen
e on the one-triplon dispersion as thetriplon number 
an only be 
hanged by even values. The lowering of the one-triplon energy observed here is in
luded within the SCUT without further e�ort.In 
ontrast the PCUT is in need of additional extrapolations to in
orporate thisfeature [27℄. The energy minimum is also lo
ated at k = π. The gap de
reaseswith as
ending x, but it stays �nite when x → ∞ for J‖ = const where the ladderturns into two independent 
hains [34, 84℄.46
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2
LADDERSThe maximal extensions dn have to be adjusted to the parameters of the model.For an a

urate one-triplon dispersion result for x = 0.5, x� = 0 the trun
ation

N = 3, d2 = 10, d4 = 6 and d6 = 3 is ne
essary and su�
ient. The relativedeviation to the PCUT results [27℄ is less than 1%. Also the agreement with theresults derived by series-expansion [87℄, exa
t diagonalisation [68℄ and DMRG[75℄ is very good. Thus in
reasing N or the dn beyond these values is not requi-site. As the two- and the four-triplon 
ontinuum already show a small overlap for
x = 0.5, x� = 0 in the region k . 0.6π (as shown in Se
tion 4.3.2), a trun
ations
heme in
luding more extended terms is expe
ted to lead to divergen
e. If tran-sitions between subspa
es with di�erent quasiparti
le numbers are possible, theCUT 
reated by the p
 generator should theoreti
ally diverge be
ause the sort-ing of the eigenenergies with respe
t to the quasiparti
le number is not possible[23, 26℄. Trun
ating the terms responsible for the divergen
e, however, may yield
onvergen
e again (see Se
tion 2.2). For the given example the a
tual divergen
eis 
aused by long-range terms, whi
h are negle
ted by our trun
ation. Never-theless, the 
ru
ial physi
al properties are retrieved by the short-range termsin
luded.The residual o�-diagonality (ROD) de�ned as the sum over the squared matrixelements whi
h are part of the generator2 show an exponential de
ay (
f. Se
tion3.6). The ROD a

ording to the three dispersions in Figure 4.4 are shown inFigure 4.5.The 
ase x = 1, x� = 0 is more interesting be
ause the overlap between thetwo- and the four-triplon 
ontinuum is larger and it is present for all values of k(see Se
tion 4.3.2). But for the trun
ations implemented within this thesis theSCUT still 
onverges. The expe
ted divergen
e would also be indu
ed by terms of
onsiderably larger extensions. Figure 4.6 depi
ts several one-triplon dispersionresults generated by SCUT, whi
h di�er in their maximal extensions. The PCUTresult is also shown for 
omparison. There are deviations between the methodsfor small momenta. The SCUT result seems to 
onverge towards a dispersionwhi
h has a slightly less pronoun
ed dip 3. Nevertheless, this result is within theerror bounds of the PCUT dispersion. We will 
ome ba
k to these deviations2For the p
 generator the ROD 
ontributions 
onsist of all the non-diagonal blo
ks of theHamiltonian while for the adapted generators every term that is not part of the generatorshall be 
onsidered as diagonal even if some terms are a
tually non-diagonal.3The di�eren
e between the results for the trun
ations d = {10, 8, 6, 4} (whi
h is not shownhere) and d = {10, 8, 6, 5} is of the order of 0.01%.48



4.3. RESULTS FOR THE PC GENERATOR

0 0.2 0.4 0.6 0.8 1
k[π]

0

0.5

1

1.5

2

2.5

3

ω
[J

⊥
]

PCUT
SCUT d = {10,6,4,3}
SCUT d = {10,6,5,3}
SCUT d = {10,8,4,3}
SCUT d = {10,8,5,3}
SCUT d = {10,8,5,4}
SCUT d = {10,8,6,5}

0 0.1 0.2 0.3 0.4
1.8

1.9

2

2.1

Figure 4.6: One-triplon dispersion for x = 1, x� = 0: Comparison between PCUT andSCUT with di�erent trun
ations with N = 4 and maximal extension d = {d2, d4, d6, d8}.and dis
uss the possibilities of their origin in the �nal dis
ussion for the undopedladder (see Se
tion 4.5).For x = 1.5 and x� = 0, it is not possible to obtain results for trun
ationsdistin
tly higher than N = 4, d2 = 10, d4 = 6, d6 = 4 and d8 = 3 (shownin Figure 4.4). A further in
rease of the extensions leads to divergen
e. Thusthe in�uen
e of the overlap between the two- and the four-triplon 
ontinuum isalready noti
eable. Yet an adaption of the generator 
an eliminate this in�uen
eon the 
onvergen
e. This adaption is dis
ussed in Se
tion 5.3.The ring ex
hange lowers the one-triplon dispersion. This is illustrated by thedispersions for x = 1 and various values for x� in Figure 4.7. On
e the one-triplon gap 
loses, a phase transition takes pla
e. The ground state is no longerdominated by singlet states on the rungs but by singlet states staggered along theladder [85℄. For x = 1 this transition happens at x� ≈ 0.5 (see Ref. [86℄4). Ourrepresentation, in whi
h ex
itations are dominated by triplet states on the rungs,is no longer feasible for a real spa
e trun
ation s
heme be
ause the 
orrelations4Note that within this referen
e x� in
ludes an additional fa
tor 1

2
and it is therefore half aslarge. 49
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4, d8 = 3.between ex
itations do not remain lo
ally restri
ted for a gapless dispersion. Thevi
inity of the phase transition be
omes noti
eable in the quality of the SCUTresult. Note that the de
line of the quality is only due to the real spa
e trun
ation.When the gap be
omes less pronoun
ed, terms with mu
h larger extensions haveto be taken into a

ount.While the agreement between PCUT and SCUT is good for x� up to 0.2,already for x� = 0.3 deviations o

ur and the shape of the SCUT result beginsto lose its smoothness. This e�e
t is even more pronoun
ed for x� = 0.4. For
x� = 0.5 the �ow diverges. The slowing down of the 
onvergen
e with in
reasingring ex
hange and its eventual loss 
an be seen in Figure 4.8 where the residualo�-diagonality (ROD), whi
h was de�ned in Se
tion 3.6, is plotted.4.3.2 Multi-Triplon ContinuaThe band edges of the multi-triplon 
ontinua 
an be determined from the one-triplon dispersions. For a 
omplete n-triplon 
ontinuum the intera
tions of nand less triplons have to be in
luded. However, only binding e�e
ts for two50
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Figure 4.8: ROD for x = 1 and various values of x� 
orresponding to the dispersionsin Figure 4.7. For x� ≤ 0.4 the SCUT 
onverges, for x� = 0.5 it diverges.triplons have a dete
table in�uen
e on the boundaries of the 
ontinua [61℄. Inthe following only the two-triplon bound states [42, 88�95℄, whi
h 
orrespond tothese two-triplon binding e�e
ts, will be 
onsidered.For the 
al
ulation of the two-triplon bound states the (2, 2)-blo
k of thee�e
tive Hamiltonian
H2,2 =

∑

n,α,β,γ,δ

d,r,d′

ad,r,d′t
†
n+r+d′,αt†n+r,βtn+d,γtn,δ (4.12)

with |d|, |d′|, |r|, |r + d′|, |r − d|, |r + d′ − d| < d4has to be diagonalised in addition to the (1, 1)-blo
k. The initial distan
e betweenthe triplons d, the �nal distan
e d′ and the displa
ement r are restri
ted by themaximal extension d4. Due to spin 
onservation for ea
h operator one of thefollowing relations between α, β, γ and δ holds true
α = β = γ = δ (4.13a)
α = β 6= γ = δ (4.13b)
α = δ 6= β = γ (4.13
)
α = γ 6= β = δ . (4.13d)51
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Figure 4.9: Triplon 
ontinua for x = 0.5, x� = 0: On the left side the one-triplondispersion (bla
k) and the boundaries of the three-triplon 
ontinuum (
yan) and onthe right side the boundaries of the two-triplon 
ontinuum (bla
k), the two-triplonbound states and the boundaries of the four-triplon 
ontinuum (
yan) are displayed.The dashed lines (in ea
h panel) represent the boundaries of the 
ontinua without
onsideration of the two-triplon binding e�e
ts.A two-triplon state |K, d, S, m〉 is 
hara
terised by the total momentum K, thedistan
e between the triplons d, the total spin S and the magneti
 quantumnumber m. The a
tion of the (1, 1)-blo
k
H1,1 |K, d, S, m〉 = 2

∑

d′ 6=d

ad′ cos

(

Kd′

2

)

(sign(d − d′))
S |K, |d − d′|, S, m〉 (4.14)and the a
tion of the (2, 2)-blo
k

H2,2 |K, d, S, m〉 (4.15)
=







∑

d′

a
d, d−d′

2
,d′

+ 2
∑

r> d−d′

2
,d′

ad,r,d′ cos

(

K

(

r − d − d′

2

))






|K, d′, S, m〉yield all matrix elements relevant for the two-parti
le subspa
e. Note that a

d, d−d′

2
,d′

=

0 for d−d′

2
/∈ Z. The part of Heff a
ting on the two-parti
le spa
e is still non-52
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Figure 4.10: Triplon 
ontinua for x = 1, x� = 0: On the left side the one-triplondispersion (bla
k) and the boundaries of the three-triplon 
ontinuum (
yan) and onthe right side the boundaries of the two-triplon 
ontinuum (bla
k), the two-triplonbound states and the boundaries of the four-triplon 
ontinuum (
yan) are displayed.The dashed lines (in ea
h panel) represent the boundaries of the 
ontinua without
onsideration of the two-triplon binding e�e
ts.diagonal with respe
t to d in this representation. Therefore a Lan
zos algorithmis applied to the matrix. A detailed des
ription of the diagonalisation of Heff 
anbe found in Ref. [48℄.For x = 0.5 and x� = 0, the overlap between the two- and the four-parti
le
ontinuum is already present. In Figure 4.9 this 
ase is depi
ted. The graphsfor the odd and the even triplon numbers are separated be
ause only transitionsare allowed that 
hange the parti
le number by two. In the region 0 < k . 0.6πthe lower boundary of the four-parti
le 
ontinuum lies below the upper boundaryof the two-parti
le 
ontinuum. In the pre
eding se
tion it was shown that thisoverlap is weak enough that its hindering in�uen
e on the 
onvergen
e 
an beex
luded by the trun
ation while the de
isive physi
al properties are in
luded.The dispersions of the two-triplon bound states are also presented in Figure 4.9.For small momenta these dispersions are absorbed by the two-triplon 
ontinuum53
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LADDERSand hen
e no binding o

urs. If the two-triplon binding e�e
ts are in
luded inthe 
al
ulation of the 
ontinua with more than two parti
les, the lower boundaryof the three-triplon 
ontinuum is lowered for k . 0.49π and the lower boundaryof the four-triplon 
ontinuum is lowered for k & 0.58π.For x = 0.5 and x� = 0, the gap between the one-triplon dispersion andthe three-triplon 
ontinuum is manifestly too large to produ
e an appre
iabledeviation from the dominating 
osine shape of the one-triplon dispersion even ifthe two-triplon intera
tions are 
onsidered. This deviation in form of a dip at

k = 0 
aused by the approa
hing three-triplon 
ontinuum be
omes relevant forin
reasing x only (
f. Se
tion 4.3.1). For x = 1 and x� = 0 this dip is present andalso the proximity of the three-triplon 
ontinuum to the one-triplon dispersion
an be observed if the two-triplon intera
tions are in
luded in the three-triplon
ontinuum (see Figure 4.10). The results gained by the SCUT are again in verygood agreement with the PCUT results [96℄.Although the distin
t overlap between the two- and the four-parti
le 
ontinuumranges over all values of k for x = 1, it does not hinder the 
onvergen
e of thetransformation for the 
onsidered trun
ations. The two-triplon bound states also
hange their dispersion qualitatively with in
reasing x. For the S = 1 boundstate the maximum of the dispersion moves away from k = π (to k ≈ 0.63π for
x = 1) and the maximum of the S = 0 dispersion in
reases distin
tly in relationto the rest of the 
urve.4.4 Generator AdaptionFor x > 1 the SCUT with the p
 generator is a�e
ted by the overlap of thetwo- and four-triplon 
ontinuum relatively rapidly when the maximal extensionsare in
reased. The 
onvergen
e worsens a

ordingly. To solve this problem agenerator adaption is advisable. The idea of ex
luding terms from the generatorintrodu
ed in Se
tion 2.5 is the method of 
hoi
e here. The CUT indu
ed bythe p
 generator diverges be
ause it is not able to sort the eigenenergies of theoverlapping two- and the four-parti
le spa
e a

ording to the triplon number. Theterms that are responsible for the transitions between these two subspa
es are theterms with either four 
reation and two annihilation operators or vi
e versa. Ifthese terms are ex
luded from the generator, we expe
t the CUT to 
onvergedespite the overlap (
f. Ref. [26℄). The 
orresponding generator is referred to asgs,1p (ground state, one parti
le) generator be
ause it de
ouples the va
uum and54
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 representation of the Hamiltonian H(l) for the undoped ladderusing a gs,1p generator and a gs generator: Ea
h 
oloured (nc, na)-blo
k represents 
on-tributions to H(l) 
reating nc parti
les after annihilating na parti
les. The blue blo
ks
ontain the parti
le 
onserving terms. The light green blo
ks are the 
ontributions tothe generators. The generators do not in
lude the dark green blo
ks in 
ontrast to thep
 generator. Thus these blo
ks 
ontain �nite 
ontributions for l → ∞. The red blo
kso

ur during a CUT indu
ed by the adapted generators. This is not the 
ase for ap
 CUT, whi
h preserves the blo
k-band diagonal stru
ture [23, 25, 44℄. However, the
ontributions of the red blo
ks go to zero for l → ∞ if the transformation 
onverges.the one-triplon spa
e from the rest while the spa
es with higher parti
le numbersremain 
oupled. A
tually the three parti
le spa
e is also de
oupled from therest as it only 
ouples to the one-parti
le spa
e due to the trun
ation parameter
N = 4 and the restri
tion that the parti
le number 
an only be 
hanged byeven numbers. Nevertheless, the name gs,1p generator will be used be
ause thede
oupling of the subspa
es with low parti
le numbers are the essential feature. As
hemati
 representation of the transformation of the Hamiltonian is depi
ted inFigure 4.11. The two-triplon bound state dispersions are not dire
tly 
omputablefrom an e�e
tive Hamiltonian based on the gs,1p generator be
ause the two-triplon subspa
e has to be de
oupled for this purpose. However, the one-triplondispersion 
an be derived as before (see Se
tion 4.3.1).In analogy we de�ne the gs generator whi
h de
ouples only the ground state.This generator 
ontains only (0, n)- and (n, 0)-blo
ks. The behaviour of theHamiltonian during the �ow indu
ed by the gs generator is also illustrated in55



CHAPTER 4. UNDOPED ANTIFERROMAGNETIC SPIN-1
2
LADDERS

0 0.2 0.4 0.6 0.8 1
k[π]

0

0.5

1

1.5

2

2.5
ω

[J
⊥
]

PCUT
SCUT η

pc
    d = {10,8,6,5}

SCUT η
gs,1p

 d = {12,10,8,5}

0 0.1 0.2 0.3 0.4
1.8

1.9

2

2.1

Figure 4.12: One-triplon dispersion for x = 1, x� = 0: Comparison between PCUTand SCUT with p
 as well as gs,1p generator with N = 4 and maximal extension
d = {d2, d4, d6, d8}.Figure 4.11. The resulting e�e
tive Hamiltonian, however, yields no one-triplondispersion if only its (1, 1)-blo
k is taken into a

ount be
ause the one-triplonsubspa
e is still 
oupled to the three-triplon subspa
e. Yet the Fourier transformof the (1, 1)-blo
k yields an upper bound for the one-triplon dispersion due to thevariational prin
iple that a minimum in a restri
ted subspa
e is an upper boundto the minimum in an unrestri
ted subspa
e. At the end of this se
tion we willpresent a gs result of the one-triplon dispersion for x = 1.5 that was a
hievedby an additional diagonalisation 
on
erning the one- and three-triplon subspa
eusing a Lan
zos algorithm (
f. Ref [26℄).Before we 
onsider the region x > 1 for whi
h the generator adaption wasdesigned, we 
ompare the results of the p
 and the gs,1p generator for x = 1,
x� = 0 (see Figure 4.12). The gs,1p generator yields a one-triplon dispersion thatdeviates from the p
 result in the region k . 0.4π. Although these deviations aresmall (≈ 2% at maximum), the di�eren
e is larger than numeri
al ina

ura
ies.The origin of these deviations is dis
ussed in the next se
tion.In Figure 4.13 several one-triplon dispersion results for x = 1.5, x� = 0 are56
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Figure 4.13: One-triplon dispersion for x = 1.5, x� = 0 with N = 4, Nt = 2, d =

{d2, d4, d6, d8}: SCUT result for p
, gs,1p and gs generator 
ompared to PCUT result.The red shaded area depi
ts the three-triplon 
ontinuum in
luding two-triplon bindinge�e
ts. This 
ontinuum was 
al
ulated from the p
 result with d = {10, 6, 4, 3}.
ompared. The SCUT was performed with the p
, the gs,1p and the gs generator.The PCUT results are also shown. All 
al
ulations yield the gap at k = π in verygood agreement. However, the deviations for the rest of the 
urve are signi�
antfor the di�erent methods. While the SCUT results 
oin
ide for large k for bothgenerators, the PCUT result already di�ers on
e k moves away from π. Thedi�erent trun
ations for the gs,1p SCUT lead to similar results that only di�ermarginally at k = 0. Also the gs result is in very good agreement with the gs,1presult.The lower boundary of the three-triplon 
ontinuum in
luding two-triplon bind-ing e�e
ts is also shown in Figure 4.13. The e�e
tive Hamiltonians from thegs,1p generator and from the gs generator yield no reliable result for the lowerboundary of the three-triplon 
ontinuum be
ause two-triplon binding e�e
ts 
an-not be 
onsidered due to the 
oupling to the four-triplon spa
e, whi
h is stillpresent for l → ∞. But the in�uen
e of the two-triplon binding e�e
ts is de
isivefor the 
loseness of one-triplon dispersion and three-triplon 
ontinuum (see Se
-57
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e we used the p
 result with d = {10, 6, 4, 3}. The one-triplondispersion enters the three-triplon 
ontinuum for small momenta. This suggeststhat both the p
 generator, whi
h was also used for the PCUT, and the gs,1pen
ounter problems due to the sorting of the eigenenergies. In the next se
tion wewill dis
uss the reliability of the di�erent one-triplon dispersion results in detail.4.5 Dis
ussionFor small x and x� the SCUT and the PCUT yield results in very good agreementfor the one-triplon dispersion and the boundaries of the multi-triplon 
ontinua.The overlap between the two- and the four-triplon 
ontinuum 
an be dete
ted.Nevertheless, it does not hinder the 
onvergen
e of the p
 SCUT for the 
onsid-ered trun
ations as long as x . 1.5. The in
rease of x produ
es a growing dip at

k = 0 in the one-triplon dispersion while the gap de
reases yet remains �nite andstays at k = π. Raising the ring ex
hange lowers the energy of the triplons untila phase transition to a ground state dominated by staggered singlets o

urs.With growing x also the deviations between SCUT and PCUT grow. Theemployment of the gs,1p generator, whi
h is insensitive to the overlap betweenthe two- and the four-triplon 
ontinuum and whi
h allows the examination ofhigher values of x, leads to deviating results as well. However, the gap is still ingood agreement for all CUT versions. In the PCUT results the dip at k = 0 ismore pronoun
ed than in the SCUT results. For the gs,1p SCUT the e�e
t ofthe lowering of the one-triplon dispersion due to the approa
h of the three-triplon
ontinuum in the region of small k is less pronoun
ed.The deviations between PCUT and SCUT for x = 1.5 have pre
ursors at x = 1(
f. Figure 4.6). For x = 1 the dip at k = 0 is already less pronoun
ed forthe SCUT result than for the PCUT result. Also the deviations for larger k areadumbrated for x = 1. The dispersions from the SCUT 
al
ulations lie all abovethe PCUT result in the k region from 0.55π to 0.91π. Even if this is hardlynoti
eable due to the slope of the 
urve, these deviations are of the order of 1%for the larger maximal extensions and slightly larger for the stri
ter trun
ations,i.e. for lower maximal extensions.Although the extrapolations whi
h estimate the e�e
ts of the approa
h of theenergies of states with di�erent triplon numbers are rather sophisti
ated, theybe
ome less pre
ise when these e�e
ts in
rease. Thus a possible explanationfor the deviations 
ould be that the extrapolations for the perturbative ansatz58



4.5. DISCUSSIONoverestimate these e�e
ts. The SCUT 
ould also underestimate the e�e
t be
auseoperators a�e
ting �ve triplons, whi
h are ex
luded by the trun
ation, 
ould 
ausean additional lowering. However, the in�uen
e of the �ve-triplon 
ontinuum isexpe
ted to be small be
ause the spe
tral weight de
reases with the number ofquasiparti
les [61℄. The error bound of the extrapolated PCUT results is a
tuallyso large that it in
ludes the SCUT results. In addition the results from theadapted generators seem to 
onverge with in
reasing maximal extensions so thatwe 
on
lude that the SCUT results indu
ed by the adapted generators 
onstitutean improvement over the PCUT result. Moreover, the one-triplon dispersion
rosses the lower boundary of the three-triplon 
ontinuum. This also indi
atesthat the p
 results (in
luding the PCUT result) are less reliable than the resultsfrom the adapted generators be
ause this overlap leads to problems with respe
tto the sorting of the eigenvalues if the generator in
ludes the (1, 3)- and the (3,
1)-blo
k respe
tively. Although in prin
iple the gs,1p generator 
an en
ountersu
h problems as well, in the present 
ase its result is in very good agreementwith the dispersion from the gs generator.The regime J‖ > J⊥ is still 
hallenging for the CUTs although the generatoradaption for the SCUT allows us to extend the 
al
ulations into this regime. Asthe gs,1p generator leaves the subspa
es with two and four triplons 
oupled to ea
hother, a subsequent transformation has to be found that allows the determinationof the two-triplon bound states whi
h yield an important 
ontribution to the
ontinua with more than two triplons. The Lan
zos algorithm that was used tode
ouple the one- and the three-triplon subspa
e in 
ase of the gs generator is notfeasible for this purpose be
ause it be
omes too intri
ate if four-parti
le statesare involved.
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5 Hole-Doped Antiferromagneti
Spin-1
2
Ladders5.1 ModelFor the hole-doped ladder four additional rung states with one hole are possible:
|aτ=1,σ=1〉n =

1√
2

(|↑ 0〉 + |0 ↑〉)n (5.1a)
|aτ=−1,σ=1〉n =

1√
2

(|↑ 0〉 − |0 ↑〉)n (5.1b)
|aτ=1,σ=−1〉n =

1√
2

(|↓ 0〉 + |0 ↓〉)n (5.1
)
|aτ=−1,σ=−1〉n =

1√
2

(|↓ 0〉 − |0 ↓〉)n (5.1d)where 0 denotes the hole. State (5.1a) and state (5.1b) have an Sz-spin of +1
2while state (5.1
) and state (5.1d) have an Sz-spin of −1

2
. The sign of the spin isindi
ated by σ. The parity with respe
t to P , whi
h was introdu
ed in Se
tion 4.1,is denoted by τ . It is even for the states (5.1a), (5.1
) and odd for (5.1b), (5.1d).All these four states have fermioni
 properties regarding states on di�erent rungs.They 
an be 
reated from the lo
al singlet by the appli
ation of the 
orresponding
reation operators a†

τ,σ,n so that a†
τ,σ,n |singlet〉n = |aτ,σ〉n.A further possible rung state � the double hole state �
|d〉 = |00〉 (5.2)
onsists of a hole on ea
h leg of the ladder. Hen
e |d〉 behaves like a boson inrelation to the states of other rungs. However, in this thesis only one-hole stateswill be 
onsidered and hen
e this state |d〉 will be negle
ted. The lo
al energy of

|d〉 is also larger than the energy of the other states. Therefore |d〉 is expe
tedto be also neglible for slightly doped ladders. So the lo
al basis 
onsists of eight61
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PSfrag repla
ements
singlet statetriplet statehole stateextension

Figure 5.1: Extension of the spin ladder by in
lusion of hole states in the basis of lo
alstates: While the undoped ladder (left hand side) has only singlet and triplet states(the latter with three possible �avours and total spin 1), the hole-doped ladder hasfour additional hole states whi
h 
arry spin 1
2 . The di�eren
e between these four states
onsists in the sign of the spin z-
omponent and the parity of the state.states in
luding the lo
al referen
e state � i.e. the singlet. This redu
tion by onelo
al state de
reases the number of potential terms de
isively1.The Hamiltonian in
orporating the lo
al one-hole states is extended by thenext nearest neighbour ele
tron hopping

Hhopping = −t⊥
∑

n,α

c†σ,α,ncσ,α,n − t‖
∑

n,α

c†σ,α,ncσ,α,n±1 (5.3)with the 
onstants t⊥ for the hopping within the rung from one leg to the otherand t‖ for the hopping along the ladder from rung to rung. The ele
tron 
reationand annihilation operators c†σ,α,n and cσ,α,n 
on
erning an ele
tron with spin σ ∈1If physi
al properties like 
harge or spin 
onservation did not forbid 
ertain pro
esses, thenumber of potential terms with a maximal extension of d would be exa
tly s2d − 1 for alo
al basis with s states.62



5.1. MODEL
{−1

2
, 1

2
} a
t on leg α ∈ {l, r} and rung n ∈ Z. These ele
tron operators already
ontain hard
ore properties as double o

upan
y is forbidden.The Hamiltonian for the undoped ladder is extended by the hopping term andmagneti
 intera
tion terms a�e
ting the hole states. Sin
e the hole states |aτ,σ〉nalso have spin S = 1

2
, they intera
t magneti
ally with the neighbouring states.The 
omplete Hamiltonian reads

H = Hundoped +

9
∑

j=0

Hj. (5.4)This Hamiltonian H is a t-J-model. The extension 
onsists of the terms Hj givenexpli
itly below. The terms are again divided by J⊥ to obtain a dimensionlessHamiltonian. In analogy to x =
J‖

J⊥
and x� = J�

J⊥
the parameters λ⊥ = t⊥

J⊥
and

λ‖ =
t‖

J⊥
are used.

H0

J⊥
=
∑

τ,σ,n

a†
τ,σ,naτ,σ,n

(

−τλ⊥ +
3

4

) (5.5a)
H1

J⊥
=

λ‖

2

∑

τ,σ,〈n,m〉

a†
τ,σ,naτ,σ,m (5.5b)

H2

J⊥
=

λ‖

2

∑

τ,σ,〈n,m〉

σ a†
−τ,σ,n

(

t†z,m + tz,n

)

aτ,σ,m (5.5
)
H3

J⊥
=

λ‖

2

∑

τ,〈n,m〉

a†
−τ,1,n

(

t†x,m − i t†y,m + tx,n − i ty,n

)

aτ,−1,m (5.5d)
+a†

−τ,−1,n

(

t†x,m + i t†y,m + tx,n + i ty,n

)

aτ,1,m

H4

J⊥
=

λ‖

2

∑

τ,〈n,m〉

a†
τ,1,n

[(

t†x,m − i t†y,m

)

tz,n + t†z,m

(

−tx,n + i ty,n

)]

aτ,−1,m

+a†
τ,−1,n

[(

−t†x,m − i t†y,m

)

tz,n + t†z,m

(

tx,n + i ty,n

)]

aτ,1,m (5.5e)
H5

J⊥
=

λ‖

2

∑

τ,〈n,m〉

a†
τ,1,n

(

t†x,mtx,n + t†y,mty,n + t†z,mtz,n (5.5f)
−i t†x,mty,n + i t†y,mtx,n

)

aτ,1,m + a†
τ,−1,n

(

t†x,mtx,n + t†y,mty,n

+t†z,mtz,n + i t†x,mty,n − i t†y,mtx,n

)

aτ,−1,m 63
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H6

J⊥
=

x

4

∑

τ,σ,〈n,m〉

σ a†
−τ,σ,n

(

t†z,m + tz,m

)

aτ,σ,n (5.5g)
H7

J⊥
=

x

4

∑

τ,〈n,m〉

a†
−τ,1,n

(

t†x,m − i t†y,m + tx,m − i ty,m

)

aτ,−1,n (5.5h)
+a†

−τ,−1,n

(

t†x,m + i t†y,m + tx,m + i ty,m

)

aτ,1,n

H8

J⊥
=

x

4

∑

τ,〈n,m〉

a†
τ,1,n

[(

t†x,m − i t†y,m

)

tz,m + t†z,m

(

−tx,m + i ty,m

)]

aτ,−1,n

+a†
τ,−1,n

[(

−t†x,m − i t†y,m

)

tz,m + t†z,m

(

tx,m + i ty,m

)]

aτ,1,n (5.5i)
H9

J⊥

=
x

4

∑

τ,〈n,m〉

a†
τ,1,n

(

−i t†x,mty,m + i t†y,mtx,m

)

aτ,1,n (5.5j)
+a†

τ,−1,n

(

i t†x,mty,m − i t†y,mtx,m

)

aτ,−1,nThe terms H0 to H5 
ontain the ele
tron hopping (5.3) while the terms H6 to
H9 
over the magneti
 intera
tions between the hole states 
aused by the spinintera
tions (4.1).The lo
al terms for the one-hole states 
onstitute H0. This term 
auses thesplitting of the one-hole dispersion into two bands � one for ea
h parity � dueto the fa
tor −τλ⊥. Note that the terms H1 to H9 do not depend on the parityof the hole states as they are invariant under 
hange of parity. Be
ause thesinglet is 
onsidered as the va
uum state de�ning the zero-point energy, the energydi�eren
e of 3

4
has to be paid additionally for ea
h hole state.The term H1 des
ribes the pure nearest neighbour hopping of the hole states

|aτ,σ〉n. Note the additional fa
tor 1
2
in the 
oe�
ient λ‖

2
of these terms in 
ontrastto the 
oe�
ient for the ele
tron hopping (5.3). The c operators in Equation (5.3)a
t on single-spin sites, while the a operators in H1 a
t on rungs. The proje
tionof the bare hopping onto the �nal state yields the fa
tor 1

2
.The terms H2 and H3 belong to pro
esses 
reating or annihilating triplonsasso
iated with the hopping of a hole state. The prefa
tor is λ‖

2
as well. Theparity of the hole state has to 
hange be
ause the 
reation or annihilation of onetriplon would violate parity. In H2 the triplons are z-triplons, whi
h do not 
arryan Sz spin, while the x- and y-triplons in H3 are 
omposed of states with an Szspin of ±1. So due to spin 
onservation the spin of the hole state does not 
hange64



5.1. MODELin H2 and it is altered in H3. Single terms of the sum in H3 violate the spin
onservation, but the 
ombination of terms with t†x,m (tx,n) on the one hand and
t†y,m (ty,n) on the other 
onserves the spin.

H4 and H5 are 
orrelated hopping terms for one hole state and one triplon stateex
hanging their pla
es. Again the 
oe�
ient is λ‖

2
. The parity of the hole stateis un
hanged be
ause the number of triplons is also un
hanged. It depends onthe alignment of the spin of the triplon before and after the intera
tion whetherthe spin of the hole state is altered or not. The former is the 
ase for H4, thelatter for H5. Con
erning the spin 
onservation for the single terms of H4 thesame holds true as for H3.The magneti
 intera
tion terms for the hole states, whi
h all 
arry the prefa
tor

x
4
, have a similar stru
ture like the hopping terms sin
e the same 
onservationlaws for spin and 
harge are valid. The di�eren
e is that the hole must not 
hangeits pla
e for the magneti
 intera
tions. The ring ex
hange does not a�e
t the holestates be
ause the 
on
erning terms (4.6) are zero if one spin is missing.The triplon 
reation and annihilation without spin �ip is represented by H6 inanalogy to H2. The term H7 
ontains the triplon 
reation and annihilation withspin �ip analogous to H3. The 
orrelated hopping of triplons and hole states isdes
ribed by H8 with spin �ip (analogous to H4) and by H9 without spin �ip(analogous to H5). Note that there are less terms in H9 than in H5 be
ausepro
esses that do not 
hange the spin alignment of the triplon 
an o

ur forhopping but not without hopping.Be
ause a hole does not 
hange the magneti
 degrees of freedom, the part

Hundoped is not in�uen
ed by the terms with hole state operators Hj during the�ow, i.e. the di�erential equations for the terms of Hundoped do not in
lude 
on-tributions from the Hj terms. Therefore the dispersion and the 
ontinua for puretriplon states are independent of λ⊥ and λ‖. The energies do not di�er from theresults for the undoped ladder. This is straightforward be
ause the dynami
s ofpure triplon states must be identi
al to the dynami
s in an undoped ladder. In
ontrast the terms in
luding hole operators are strongly a�e
ted by the terms of
Hundoped dependent on the parameter x, whi
h also enters the terms H6 to H9.Due to 
harge 
onservation the subspa
es of the Fo
k spa
e with �xed holenumbers are already de
oupled from ea
h other. Only the number of magneti
ex
itations 
hanges. 65
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ationThe trun
ation for the hole-doped ladder in
ludes many parameters for the �netuning 
onsidering the multitude of possible terms with hole state operators. Inaddition to the remaining maximal extensions dn for terms 
onsisting only of ntriplon operators and the maximal triplon number N we introdu
e the followingrestri
tions.The parameter Nh de�nes the maximal number of holes whi
h is one for the
ase we want to 
onsider here. By hn′ we denote the maximal extension for n′hole state operators. It does not matter if the term 
on
erned 
ontains additionaltriplon operators. For terms with triplon and hole state operators, hn′ a�e
ts onlythe hole state operators. The total maximal extension tn′′ for these mixed termsdepends on the number of triplon operators n′′. The parameter Nt denotes themaximal number of triplons intera
ting with holes. Note that tn′′ with odd n′′have to be taken into a

ount be
ause the triplon number is 
hanged by an oddnumber if the hole state parity is altered.Sin
e the size of the system of di�erential equations for the doped ladder growsdrasti
ally with in
reasing extensions, the trun
ation is always very stri
t for our
al
ulations. The parameters N = 4, d2 = 10, d4 = 6, d6 = 4 and d8 = 3 wereused for the pure triplon terms be
ause these maximal extensions are su�
ientfor the undoped 
ase up to x = 1. For the terms in
luding hole operators thetrun
ation used for the SCUT is given by Nt = 2, h2 = 3, t1 = 6, t2 = 6, t3 = 5,

t4 = 5, t5 = 4 and t6 = 4. Only if other parameteres are used, they are givenexpli
itly.
5.3 Generator AdaptionIn this se
tion the adapted generators are introdu
ed that are used for the dopedladder besides the p
 generator. Be
ause the number of the �ow equations be-
omes very large for physi
ally reasonable extensions, a 
entral issue is the re-du
tion of this number. This 
an be a
hieved by the ex
lusion of terms fromthe generator. For general and for undoped systems in parti
ular this strategyis 
omprehensively dis
ussed in Ref. [26℄. In the following we are only interested66



5.3. GENERATOR ADAPTION
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Figure 5.2: Comparison between the gs generator and the adapted generator des
ribedin the text for x = 1, x� = 0 and λ⊥ = λ‖ = 2. The even hole dispersion is almostidenti
al for the gs generator (bla
k solid) and the adapted generator (bla
k dashed).The odd hole dispersion from the gs generator (
yan 
ontinuous) lies below the 
ontin-uum formed by one even hole and one triplon (
yan shaded area), whereas the odd holedispersion from the adapted generator (
yan dashed) lies above it.in pure hole states. Hen
e the zero-triplon spa
e2 is the only subspa
e that hasto be de
oupled from the remaining Hilbert spa
e. The terms in the generatorthat is restri
ted to performing just this task 
ontain only triplon 
reation or onlytriplon annihilation operators apart from possible hole state operators. This isthe gs generator already introdu
ed in Se
tion 4.4. This generator may indu
e
onverging transformations in the 
ase of overlapping triplon 
ontinua3.Considering the lo
al hole state terms of the Hamiltonian (5.5a) it seems likelythat for su�
iently large λ⊥ the pro
ess of 
reating or annihilating one triplon(under 
hange of the parity of one hole) the energy 
hange is dominated (or atleast strongly in�uen
ed) by the band 
hange. If this is a
tually the 
ase, the p
2A state without triplons 
an in
lude holes. Be
ause of 
harge 
onservation the number ofholes is �xed. Thus after the CUT the zero-triplon state is the ground state for every spinladder with a 
ertain number of holes.3These 
ontinua have to in
orporate the hole energies for the doped 
ase. 67
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hange of the parti
le number dominatesthe energy 
hange will no longer indu
e a 
onverging transformation. If there isa distin
tly dominating pro
ess for ea
h term of the Hamiltonian, the adaptionof the generator 
an take this into a

ount by appropriate signs. But a pro-noun
ed gap between the hole bands with di�erent parity is ne
essary to makethe band 
hange always dominating at least for pro
esses involving the 
reationor annihilation of a single triplon. The system does not develop su
h a gap inthe examined parameter spa
e as the next se
tion will show. In fa
t the bandsexhibit a 
rossing if the hopping 
onstants are in
reased. Therefore the triplon
reation or annihilation either remains the dominant pro
ess or 
ompetes withthe band 
hange and an adaption of a sign 
hange in the generator is not appro-priate. Only if all other parameters are mu
h smaller than λ⊥, this adaption issuitable.In the 
ase that for 
ertain terms it 
an not be determined in general whetherthey in
rease or de
rease the energy a simple sign 
orre
tion in the generatoris not possible. This happens if the sign of the energy 
hange depends on themomentum. Then the real spa
e trun
ation s
heme is not the optimal ansatz.An implementation of a generator adaption a

ording to Se
tion 2.5.2 was alsotested. If we use the adapted generator whi
h 
onsiders the band 
hange as thedominant pro
ess in the way that the even band is assumed to be the lower energy,we obtain unphysi
al results for the parameters examined within this thesis. Theresults for the even band are indeed the same as without the adaption (apartfrom small deviations for small momenta). However, the odd band is for
ed tolie above the 
ontinuum formed by one even hole and one triplon. This 
an beseen examplarily for x = 1, x� = 0 and λ⊥ = λ‖ = 2 in Figure 5.2.In the regime x = 1, x� = 0 and λ⊥ = λ‖ > 2 we en
ounter 
onvergen
eproblems with both the p
 and the gs generator. We will show this in Se
tion5.4.1. To preserve 
onvergen
e a restri
ted generator ηrs was used (see Se
tion2.5.3). The problemati
 terms are the ones whi
h 
ouple the single-hole subspa
eto the subspa
e with one hole and one triplon

a†
τ,σ,nt†α,n+∆naτ ′,σ′,m and a†

τ,σ,mtα,naτ ′,σ′,n+∆n. (5.6)For ηrs we restri
t |∆n| to be smaller than or equal to a maximal value ∆nmax.This restri
tion indeed yields a 
onverging �ow for x = 1, x� = 0 and λ⊥ = λ‖ >

2, whi
h will also be illustrated in Se
tion 5.4.1.68



5.4. ONE-HOLE DISPERSION
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Figure 5.3: Fourfold degenerate one-hole energy for λ⊥ = λ‖ = x� = 0 in dependen
eof x 
al
ulated with the p
 generator (solid) and with the gs generator (dashed).5.4 One-Hole DispersionThe dispersion of a single hole in the absen
e of triplons 
an be as easily derivedfrom the e�e
tive Hamiltonian in the same manner as the one-triplon dispersionin Se
tion 4.3.1. The part of the Hamiltonian to be diagonalised
H1h =

h2
∑

d=−h2

∑

τ,σ,n

bd a†
τ,σ,n+daτ,σ,n (5.7)
ontains the one-hole terms restri
ted by h2 and 
hara
terised by the 
oe�
ients

bd. The one-hole energy relative to the ground state
ω1h,τ (k) = b0 +

h2
∑

d=1

2bd cos(dk) (5.8)only depends on the parity τ and is degenerate 
on
erning the spin σ.If λ‖ and λ⊥ are small while x = x� = 0, the dispersion is
ω1h,±1(k)

J⊥
=

3

4
∓ λ⊥ + λ‖ cos(k) + O(λ2

⊥, λ2
‖, λ⊥λ‖). (5.9)69
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0 0.2 0.4 0.6 0.8 1Figure 5.4: One-hole dispersion for x = x� = 0 
al
ulated with the p
 generator; left:
λ = 0.25, right: λ = 0.5. The 
urves 
oin
ide well with the series expansion resultsfrom [97℄.If λ⊥ = λ‖ = 0 the hole energy is a dispersionless 
onstant and fourfold degenerate(
on
erning spin and parity). This energy in
reases with growing x due to theterms of the Hamiltonian that des
ribe the magneti
 intera
tions of the hole stateswith their environment (5.5g-5.5j). Figure 5.3 demonstrates this quantitativelyfor x� = 0. The deviations between the results from the p
 generator and fromthe gs generator are growing with x. However, they are still marginal (< 1%) for
x = 1.5.4.1 Isotropi
 HoppingLet us at �rst 
onsider the isotropi
 
ase λ⊥ = λ‖ = λ. For small values of theparameters x, x� and λ the deviations from Equation (5.9) are a
tually small. InFigure 5.4 two values of λ are 
onsidered for x = x� = 0. The result for λ = 0.25already exhibits deviations from the relation for small hopping 
onstants. Bothbandwidths are smaller than 2λ = 0.5. The odd band is narrower than the evenband. Moreover the odd band is shifted upwards by less than λ, while the even70
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Figure 5.5: One-hole dispersion for x = x� = 0, λ = 1 
al
ulated with the gs generatorand the p
 generator. The results for the even bands 
oin
ide so that the 
urves 
annotbe distinguished. The 
yan shaded area is the 
ontinuum formed by one triplon andone even hole state.band is shifted downwards by slightly more than λ.The in
rease of λ to 0.5 yields a result with obvious deviations relative to 5.9.The odd band be
omes lower and narrower with growing λ in this region. The
osine shape of both dispersions is � for λ = 0.25 as well as for λ = 0.5 � notdeformed by higher harmoni
s. The results of the series expansion [97℄ exhibit thesame behaviour for these parameters in good agreement with the SCUT results.However, it has to be pointed out that the 
onvergen
e of the SCUT is mu
hworse for λ = 0.5 than for λ = 0.25. The residual o�-diagonality (ROD) whi
h isde�ned as the sum over the squared 
oe�
ients 
ontributing to the generator andused as a measure for the 
onvergen
e (
f. Se
tion 3.6) is de
reasing very slowlyfor λ = 0.5. While the ROD is smaller than 10−13 at lJ⊥ = 200 for λ = 0.25, it isstill ≈ 10−5 at lJ⊥ = 200 for λ = 0.5. Both RODs are de
reasing exponentiallyfor large l.For x = x� = 0, λ = 1 the p
 generator yields results for the even bandthat still agree very well with the series expansion. For the odd band there are71
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Figure 5.6: ROD for the SCUT for x = x� = 0, λ = 1 indu
ed by the p
 generator(solid line) and by the gs generator (dashed line).no series expansion results available. Figure 5.5 shows the 
omparison betweenthe results for the p
 generator and for the gs generator. The even band resultslie on top of ea
h other, but the odd band exhibits deviations for k & 0.57π.While the gs generator produ
es an almost featureless dispersion (
ompared tothe even band), the p
 generator 
auses a pronoun
ed maximum at k = π. Thesedi�eren
es are due to the position of the lower boundary of the 
ontinuum formedby one triplon and one even hole state4 (see also Figure 5.5). An overlap betweenthe odd dispersion and this 
ontinuum is present for the p
 result. The deviatingodd band from the gs generator avoids this overlap. For both generators the evenand the odd band 
ross at k ≈ 0.46π. While the even band keeps its 
osine shape,for the odd band the se
ond harmoni
 is no longer negligible for both the p
 andthe gs generator.It is ne
essary to mention that for x = x� = 0, λ = 1 the transformation doesnot 
onverge for the p
 generator, while the gs generator indu
es 
onvergen
e (seeFigure 5.6). The overlap hinders the 
onvergen
e for the p
 generator. The kink4The boundaries of this 
ontinuum are 
onstant be
ause the triplon dispersion is also 
onstantfor x = x� = 0.72
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Figure 5.7: Left panel: One-hole dispersion for x = 0.5, x� = 0, λ = 0.25 
al
ulatedwith the p
 generator. The series expansion result for the odd band is also shown,while the result for the even band is not available. Right panel: One-hole dispersion for
x = 0.5, x� = 0, λ = 0.5 
al
ulated with the p
 generator and the gs generator. For a)the usual trun
ation was used, for b) h2 was in
reased to 4, t1 and t2 to 8 as well as t3and t4 to 6. The dotted 
urves are extrapolations from the series expansion data.at lJ⊥ ≈ 120 in the gs ROD is probably due to numeri
al ina

ura
ies that areampli�ed via a feedba
k within the �ow equation (
f. Appendix A). Sin
e theROD is already < 10−13 at the kink we 
an stop the transformation at this pointand negle
t the remaining o�-diagonal terms, i.e. we 
onsider the transformation
onverged. For the 
al
ulation of the hole dispersions the p
 SCUT was stoppedat lJ⊥ ≈ 50 where the ROD is still≈ 10−4 and not negligible. Therefore the resultfrom the gs generator is more trustable than the result from the p
 generator.The parameters x = x� = 0, λ = 2 lead to divergen
e for either generator.Now we want to 
onsider x > 0. For λ = 0 the energy of the hole states whi
his independent of k and τ de
reases with in
reasing x due to the terms (5.5g-5.5j). For small �nite λ the deviations from the simple 
osine shape appear quiteearly in λ for the odd band. This 
an be seen in Figure 5.7 where the one-holedispersions for x = 0.5 and λ = 0.25 are depi
ted. The odd band is in good73
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Figure 5.8: Comparison between the odd hole dispersion and the 
ontinuum formedby one triplon and one even hole state for x = 0.5, x� = 0, λ = 0.5. The odd holedispersion was derived by SCUT using the p
 generator (
yan solid) and by seriesexpansion (
yan dotted). The 
yan shaded area is the 
ontinuum (derived by the sameSCUT 
al
ulation).agreement with the series expansion (only slight deviations at k = 0 o

ur), forthe even band no series expansion data are available.For x = 0.5 and λ = 0.5 (see also Figure 5.7) the result for the even bandis again in good agreement with the series expansion result, but the odd bandbehaves di�erently. Only for large k the behaviour is similar although also in thisregion the SCUT result is slightly lower. The series expansion result exhibits alo
al maximum at k = 0 and a global minimum at k ≈ 0.58π, while the SCUTresult hardly 
hanges in the region 0 < k < π
2
. The gs generator yields thesame result as the p
 generator apart from minimal deviations (< 2%) at k = 0.However, the gs generator allows us to extend the trun
ation s
heme: h2 wasin
reased to 4, t1 and t2 to 8 as well as t3 and t4 to 6. In the result the shape ofthe odd band 
hanges mainly for small k. Thus the odd dispersion still 
hangeswith in
reasing maximal extensions.We 
an understand these di�eren
es between SCUT and series expansion by74



5.4. ONE-HOLE DISPERSION

0 0.2 0.4 0.6 0.8 1
k[π]

0

0.5

1

1.5

2

ω
[J

⊥
]

SCUT η
pc

 even parity

SCUT η
pc

 odd parity

SCUT η
gs

 even parity

SCUT η
gs

 odd parity

SE  even parity
SE  odd parity

Figure 5.9: One-hole dispersion for x = 1, x� = 0, λ = 0.5 
al
ulated with the p
generator and the gs generator. The dashed 
urves are extrapolations from the seriesexpansion data.looking at the position of the 
ontinuum formed by one triplon and one even holestate (see Figure 5.8). The series expansion result 
rosses the lower boundary ofthis 
ontinuum at k ≈ 0.34π. Assuming that the series expansion yields a resultnear to the a
tual odd hole dispersion it is 
ogent that the SCUT based on the p
generator is not able to sort the eigenvalues properly for small k be
ause 
reatingone triplon does not ne
essarily in
rease the energy. Sin
e the problemati
 overlap
on
erns the zero- and the one-triplon spa
e, the ex
lusion of terms from thegenerator is no remedy here. Hen
e the gs generator yields mainly the same result.Although the odd dispersion still 
hanges with in
reasing maximal extensions, dueto the overlap an agreement with the series expansion result is not to be expe
tedfor small k. It is also possible that the extrapolation does not 
ompletely 
omprisethe e�e
t of the overlapping 
ontinuum.For x = 1 and λ = 0.5 (see Figure 5.9) the SCUT results for the odd bandagain show distin
t deviations from the series expansion results. While the evenband exhibits its maximal deviation at k = 0 whi
h is only ≈ 1%, the odd banddeviates 
on
erning the shape for small k (but the quantitative deviations are75
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Figure 5.10: Comparison between the odd hole dispersion and the 
ontinuum formed byone triplon and one even hole state for x = 1, x� = 0, λ = 0.5. The odd hole dispersionwas derived by SCUT using the p
 generator (
yan solid), using the gs generator (
yandotted) and by series expansion (
yan dashed). The 
yan shaded area is the 
ontinuum(derived by the same p
 SCUT 
al
ulation).not very pronoun
ed there) and is 
onsiderably lower for large k. All in all thedeviations are not as pronoun
ed as for x = 0.5 and λ = 0.25. A 
omparison withthe 
ontinuum formed by one even hole and one triplon (see Figure 5.10) showsthat an overlap exists around k = π for the series expansion result and for the gsresult. This explains again the deviations in this region. As this overlap is notas strong as the overlap for x = 0.5 and λ = 0.5 the deviations are a

ordinglysmaller. Even if we 
annot 
learly state that there is an a
tual overlap, the
ontinuum is at least very 
lose. Hen
e it is to be expe
ted that the odd holedispersion is lowered for k ≈ π due to this reason.Sin
e for x = 1 and λ = 1 (see Figure 5.11) no one-hole dispersion result withodd parity is available from the series expansion, we 
an only 
ompare the evenband. But we also 
ompare with exa
t diagonalisation results by Läu
hli [98℄.For the exa
t diagonalisation a �nite ladder with 14 rungs was examined and theresulting eigenenergies were �tted by a series with three 
osine terms for both76
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Figure 5.11: One-hole dispersion for x = 1, x� = 0, λ = 1 
al
ulated with the p
generator and the gs generator. The dashed 
urve is the result from the series expansion,for whi
h only the even band is available. The dashed-dotted 
urves are the exa
tdiagonalisation results.bands. The p
 result for the even band exhibits a 
ompletely di�erent behaviourthan the gs result. For the odd band the p
 result lies below the gs result andthe deviations grow with in
reasing momentum. The 
omparison with the seriesexpansion and with the exa
t diagonalisation suggests that the gs result is morereasonable be
ause the deviations are smaller than 1% for the even band. Alsofor the odd band the gs result is 
loser to the exa
t diagonalisation result.It should be noted that the diagrammati
 approa
h from Ref. [99℄ yields bandsthat show qualitative deviations from the SCUT and from the exa
t diagonali-sation 
on
erning the shape for small k. But the authors say that in this regimethey only provide an approximate des
ription a
tually beyond their approa
h.The quantum Monte Carlo result from Ref. [100℄ is in good agreement with ourresult. For the even band the agreement is a
tually very good like the agreementbetween SCUT and exa
t diagonalisation.The odd band result from the gs SCUT enters the 
ontinuum formed by onetriplon and one even hole state for k & 0.83π (see Figure 5.12), while the p
77
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Figure 5.12: Comparison between the hole dispersions and the 
ontinua formed by onetriplon and one hole state for x = 1, x� = 0, λ = 1. Left: The odd hole dispersion wasderived by SCUT using the p
 generator (
yan solid) and using the gs generator (
yandotted). The 
yan shaded area depi
ts the 
ontinuum with one even hole and one triplon(derived by the same gs SCUT 
al
ulation). Right: The even hole dispersion was derivedby SCUT using the p
 generator (bla
k solid), using the gs generator (bla
k dotted)and by series expansion (bla
k dashed). The bla
k shaded area depi
ts the 
ontinuumwith one odd hole and one triplon (derived by the same gs SCUT 
al
ulation).result lies always below the 
ontinuum. This overlap is also present in the ex-a
t diagonalisation result [98℄ and in the quantum Monte Carlo result [100℄. A
omparison between the even one-hole dispersion and the 
ontinuum formed byone triplon and one odd hole state (see also Figure 5.12) supports the assump-tion that the gs result is more reliable than the p
 result be
ause the dispersionindu
ed by the gs SCUT exhibits a shape that appears as if it were formed bythe lower boundary of the approa
hing 
ontinuum. The p
 result, however, staysaway from the 
ontinuum at k = 0 and at the boundary of the Brillouin zone,while it overlaps with the 
ontinuum around k ≈ 0.44π.At this point we 
ompare the 
onvergen
e behaviour for x = 0.5, λ = 0.5;
x = 1, λ = 0.5 and x = 1, λ = 1 in 
ase of the p
 generator. The 
on
erning78
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Figure 5.13: ROD for the SCUT 
al
ulated with the p
 generator for di�erent parame-ters.
RODs are depi
ted in Figure 5.13. All three 
urves exhibit a kink with non-
onverging behaviour afterwards. This is typi
al for 
umulating rounding errorsbe
ause of a symmetry breaking due to numeri
al ina

ura
ies (
f. Appendix A).Su
h a symmetry breaking is not unlikely be
ause the spin symmetry 
ould notbe used expli
itly. The problems of this utilisation are dis
ussed in Se
tion 5.5.It is interesting that the ROD for x = 1, λ = 0.5 a
hieves the lowest value withless than 10−8. However, if we 
onsider the rate of de
rease before the kink forall 
urves, it 
an be 
learly seen that for x = 0.5, λ = 0.5 this rate is the largest.This is to be expe
ted as these parameters are the smallest of the ones 
onsideredhere and the 
orresponding unitary transformation is the least demanding.For x = 1 and λ > 1 the parameters are entering a region whi
h is expe
tedto re�e
t realisti
 relations of the 
onstants in the telephone number 
ompounds.The results for x = 1 and λ = 2 are shown in Figure 5.14. Again we do not only
ompare with the series expansion (for whi
h only the even band is available) but79
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Figure 5.14: One-hole dispersion for x = 1, x� = 0, λ = 2 
al
ulated with the p
generator and the gs generator. The graph also shows the exa
t diagonalisation data(ED) and the series expansion data (SE). For the latter only the even band is available.The even band results are bla
k, the odd band results are 
yan.also with exa
t diagonalisation results for L = 14 by Läu
hli [98℄.5
ω1h,τ (k) = b0 +

3
∑

d=1

2bd cos(dk). (5.10)Approximate analyti
 results were obtained in Ref. [102℄ by perturbation theoryimproved by a variational ansatz. These results lie even above the series expansionresults but 
on�rm the qualitative shape for the even band. The p
 result forboth the even and the odd band is again very distin
t from the other results likefor x = 1, λ = 1. The gs result, however, is in better agreement with the datafrom the series expansion and espe
ially with the exa
t diagonalisation result ina

ordan
e with our previous observations.Apart from the p
 result the dispersions exhibit the same features. The evenband has a global maximum at k = 0 and a lo
al maximum at k = π, while it isvi
e versa for the odd band. Be
ause both bands lie in the same energy range,5For a �nite ladder with 10 rungs results were published by Troyer, Tsunetsugu and Ri
e [101℄.80
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Figure 5.15: Comparison between the hole dispersions and the 
ontinua formed by onetriplon and one hole state for x = 1, x� = 0, λ = 2. Left: The odd hole dispersion wasderived by p
 SCUT (
yan solid), gs SCUT (
yan dashed) and by exa
t diagonalisation(
yan dotted). The 
yan shaded area depi
ts the 
ontinuum with one even hole and onetriplon (derived by the same gs SCUT 
al
ulation). The 
yan dash dot dot line is thelower boundary of the 
ontinuum formed by two triplons and one odd hole. Right: Theeven hole dispersion was derived by p
 SCUT (
yan solid), gs SCUT (
yan dashed), byexa
t diagonalisation (
yan dotted) and by series expansion (
yan dashed-dotted). Thebla
k shaded area depi
ts the 
ontinuum with one odd hole and one triplon (derived bythe same gs SCUT 
al
ulation). The bla
k dash dot dot line is the lower boundary ofthe 
ontinuum formed by two triplons and one even hole.they 
ross in the middle between k = 0 and k = π. The exa
t diagonalisationpredi
ts the 
rossing to be at k ≈ 0.48π, but the gs SCUT sees the 
rossing at
k ≈ 0.55π. The even band 
al
ulated by series expansion is lo
ated above boththe series expansion and the gs SCUT result for all k. This is a further indi
atorthat the extrapolation used to 
orre
t the bare series underestimates the loweringof the band indu
ed by the hybridisation with the hole-triplon 
ontinuum.Let us 
onsider the 
ontinua formed by one hole and one triplon. The 
ontinua
onsisting of one hole and one triplon are 
ompared to the one-hole dispersionsin Figure 5.15. The 
ontinua do not overlap with the hole dispersions, but theyare very 
lose to ea
h other. The only ex
eption is the series expansion result for81
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Figure 5.16: ROD for the SCUT for x = 1, x� = 0, λ = 2 indu
ed by the p
 generator(solid line) and by the gs generator (dashed line).the odd band, whi
h exhibits an overlap with the 
ontinuum formed by a triplonand an even hole state.The behaviour of the ROD (
f. Se
tion 3.6) yields further eviden
e why the gsresults should be preferred to the p
 results for this parameter regime. Figure 5.16depi
ts the evolution of the ROD during the �ow for both generators. Not onlythat the p
 SCUT 
onverges extremely slowly, the shape of the 
urve for lJ⊥ < 100is an indi
ator for a problem with respe
t to the sorting of the eigenenergies. It isa typi
al behaviour of the ROD that the sorting of the eigenvalues (
f. Equation(2.12)) is re�e
ted by features for small values of l. If the sorting is 
ompletedthe ROD de
reases exponentially with a 
onstant rate hen
eforward. For the gsgenerator the de
rease of the ROD attains this rate not later than at lJ⊥ = 5.Before this point the de
rease is slower6. The kink of the gs ROD at lJ⊥ ≈
110 with the following rise is again most probably due to 
umulating numeri
alina

ura
ies (
f. Appendix A). This is no real problem be
ause the gs RODhas already fallen below a value of less than 10−32 at lJ⊥ ≈ 110 and 
an hen
e6Even if the ROD exibits a small hump before it de
reases with a 
onstant rate, the sortingusually does not pose a problem.82
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Figure 5.17: Comparison of the one-hole dispersions from the restri
ted generator withthe gs and the exa
t diagonalisation results. Left panel: x = 1, x� = 0, λ = 2. Rightpanel: x = 1, x� = 0, λ = 3. The bla
k lines represent the even hole dispersion andthe 
yan lines represent the odd hole dispersion.be negle
ted. However, the p
 ROD exhibits several humps and a pronoun
edrise at lJ⊥ = 34 before a de
rease with a 
onstant rate is a
hieved. This isa typi
al indi
ation for a suppressed divergen
e that would a
tually o

ur for awider trun
ation. If su
h a feature is distin
t, the transformation is sus
eptible toerrors. These 
onvergen
e problems are 
aused by the strong overlap between theone-hole-one-triplon 
ontinuua and the one-hole-two-triplon 
ontinua (see Figure5.15).The exa
t diagonalisation was also applied for x = 1 and λ = 3 [98℄, buteven the gs generator does not indu
e 
onvergen
e for this 
ase. However, if weapply the generator restri
tion de�ned in Se
tion 5.3 to the gs generator, it yields
onvergen
e for ∆nmax 6 2. Be
ause the Hamiltonian is not diagonalised withrespe
t to the terms that are omitted from the generator, the hole dispersions weobtain from a Fourier transformation are only upper limits for the a
tual result.Hen
e we 
ompare the results from the restri
ted generator for x = 1 and λ = 2with the gs results before we investigate the results for x = 1 and λ = 3. The left83
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Figure 5.18: ROD for the SCUT 
al
ulated with the full gs generator and with therestri
ted gs generator for di�erent parameters.panel of Figure 5.17 shows the 
omparison of the one-hole dispersions for x = 1and λ = 2. We see that for ∆nmax 6 2 the upper boundary from the restri
tedgs generator is 
lose to the result from the full gs generator. In the right panelof Figure 5.17 the results from the restri
ted gs generator are 
ompared to theexa
t diagonalisation results for x = 1 and λ = 3. For the even hole dispersionthe agreement between the result from the restri
ted gs generator and the exa
tdiagonalisation result is almost perfe
t. Also the agreement for the odd holedispersion is good. The deviations are 
omparable to the deviations of the resultby the full gs generator from the exa
t diagonalisation result for x = 1 and λ = 2.The investigation of the ROD shows that the restri
ted gs generator yields afaster 
onvergen
e than the full gs generator for x = 1 and λ = 2 (see Figure5.18). For x = 1 and 3 the ROD diverges for the full generator, while therestri
ted generator indu
es 
onvergen
e (see also Figure 5.18). Note that thekinks of the RODs in Figure 5.18 with the in
rease afterwards are again probablydue to 
umulated numeri
al ina

ura
ies (
f. Appendix A). But all the kinksappear at values where the ROD is already smaller than 10−24. So the �ow 
anbe 
onsidered as 
onverged at the kinks for pra
ti
al purposes.84
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Figure 5.19: Comparison between gs SCUT (solid lines) and exa
t diagonalisation forvarious �nite ladders with L rungs (dis
rete points) for x = 1, λ = 1. The lowerboundaries of the 
ontinua 
al
ulated by gs SCUT are shown as dashed lines. Theresults for the even hole state are bla
k, the results for the odd hole state are 
yan.The terms, whi
h are left out from the generator, still 
ontribute to the Hamil-tonian after the transformation. These 
ontributions yield an estimate of the dif-feren
e between the a
tual energy and the upper boundary for the energy resultingfrom the restri
ted generator. For the 432 terms of the form a†
τ,σ,nt†α,n+∆naτ ′,σ′,m or

a†
τ,σ,mtα,naτ ′,σ′,n+∆n the sum over their squared 
oe�
ients is ≈ 0.48. The squareroot of this value is ≈ 0.69. The largest absolute value of a single 
oe�
ient is

≈ 0.16.To understand the deviations between SCUT and exa
t diagonalisation we haveto investigate the �nite size s
aling of the exa
t diagonalisation. In Figure 5.19the results of the exa
t diagonalisation for various �nite ladders with L rungsare 
ompared to the results from the gs generator for x = 1 and λ = 1. Thegraph shows the dis
rete eigenvalues of H 
al
ulated by exa
t diagonalisation. Inthe 
ase of the even band the lowest lying eigenvalue 
an be 
learly distinguishedfrom the larger eigenvalues, whi
h are the pre
ursor of the 
ontinuum. This holdstrue for all momenta. In the 
ase of the odd band the lowest eigenvalue is very85
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Figure 5.20: Finite size s
aling of the exa
t diagonalisation results for x = 1 λ = 1in 
ase of the odd band at k = 0 and at k = 0.5π. The 
yan 
ir
les depi
t theexa
t diagonalisation results for �nite ladders with various numbers of rungs L. Thesolid bla
k line is a linear extrapolation with respe
t to 1
L
and the dashed line is anextrapolation based on exponential saturation (see Equation (5.11)). For 
omparisonthe result from the gs SCUT is also shown (solid 
yan).
lose to the higher ones for large momenta. Our 
al
ulation of the 
ontinuumpredi
ts that the dispersion merges with the 
ontinuum in this region. Also thequantum Monte Carlo result for the spe
tral weight [100℄ exhibits no peak belowthe 
ontinuum around k ≈ π.Our result for the even band is in ex
ellent agreement with the exa
t diago-nalisation result. Around k ≈ 0.25π our result for the odd band lies above theexa
t diagonalisation result, while it lies below the exa
t diagonalisation resultaround k ≈ 0.6π. An investigation of the �nite size s
aling for the exa
t diago-nalisation data in these regions is di�
ult be
ause we have maximally two pointsfor an extrapolation. Thus at �rst we 
onsider k = 0, where an extrapolation is
on
lusive. The result of this extrapolation is used to support an extrapolationin the region where the deviations are observed. The left panel of Figure 5.20shows the �nite size s
aling for k = 0 using two kinds of extrapolation. The �rstis a simple linear extrapolation with respe
t to 1

L
, while the se
ond assumes anexponential saturation with in
reasing L so that

∆ω ∝ e−
L
ξ (5.11)86
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L=14Figure 5.21: Comparison between gs SCUT (solid lines) and exa
t diagonalisation forvarious �nite ladders with L rungs (dis
rete points) for x = 1, λ = 2. The lowerboundaries of the 
ontinua 
al
ulated by gs SCUT are shown as dashed lines. Theresults for the even hole state are bla
k, the results for the odd hole state are 
yan.holds true for the di�eren
e ∆ω from the limit for L → ∞. The 
orrelationlength ξ is determined to be ≈ 4.32 by this extrapolation. The 
orrelation length
an be used to apply the se
ond extrapolation also for k = 0.5π where only tworesults are obtained by exa
t diagonalisation. The �nite size s
aling for k = 0.5πin 
ase of the odd band is investigated by both extrapolations in the right panelof Figure 5.22. The extraploation results at k = 0 are still 
lose to the gs SCUTresult and the extrapolation results at k = 0.5π are in good agreement with thegs SCUT result. The linear extrapolation is even in ex
ellent agreement withour result. Note that the points from the L = 6 
al
ulation are omitted for theextrapolations be
ause they deviate from the behaviour of the other points dueto the small size of the system.In Figure 5.21 we 
ompare the results of the exa
t diagonalisation with theresults from the gs generator for x = 1 and λ = 2. In the 
ase of the even bandfor large momenta the lowest lying eigenvalue is 
learly distinguishable from thelarger eigenvalues, whi
h are again the pre
ursor of the 
ontinuum. The same istrue for the odd band for small momenta. But for small momenta in 
ase of the87
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Figure 5.22: Finite size s
aling of the exa
t diagonalisation results for x = 1 λ = 2in 
ase of the odd band at k = 0 and at k = 0.5π. The 
yan 
ir
les depi
t theexa
t diagonalisation results for �nite ladders with various numbers of rungs L. Thesolid bla
k line is a linear extrapolation with respe
t to 1
L
and the dashed line is anextrapolation based on exponential saturation (see Equation (5.11)). For 
omparisonthe result from the gs SCUT is also shown (solid 
yan).even band and for large momenta in 
ase of the odd band the lowest eigenvalue isvery 
lose to the higher ones. Hen
e the distin
tion between hole dispersion and
ontinuum be
omes di�
ult in these regions. It is even questionable if they area
tually distinguishable or if the dispersion merges with the 
ontinuum. In theseregions the deviations between SCUT and exa
t diagonalisation are the largest.We 
on
lude that the SCUT su�ers from trun
ation errors if the dispersion runs
lose to 
ontinua or even enters them. Also the lower boundary of the 
ontinuumthat we 
al
ulated from the gs result is higher at k = 0 for the even band andat k = π for the odd band than we would expe
t from the exa
t diagonalisationdata. However, the intera
tion between hole and triplon is not in
luded in the
al
ulation of the 
ontinua. The 
onsideration of this intera
tion may lower ourresult.In the remaining regions the SCUT result for the dispersions 
omes 
lose to theextrapolation of exa
t diagonalisation results. This is most obvious for the oddband at k = 0. The left panel of Figure 5.22 shows the �nite size s
aling for this
ase using the same extrapolations like for x = 1 and λ = 1. We determine ξ tobe ≈ 4.03 by the extrapolation based on exponential saturation. The 
orrelation88
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Figure 5.23: Comparison between SCUT from the restri
ted gs generator with ∆nmax =

2 (solid lines) and exa
t diagonalisation for various �nite ladders with L rungs (dis
retepoints) for x = 1, λ = 3. The dashed lines are estimations for the lower boundaries ofthe 
ontinua based on the result from the restri
ted gs generator. The results for theeven hole state are bla
k, the results for the odd hole state are 
yan.length is again used to apply this kind of extrapolation also for k = 0.5π. The�nite size s
aling for k = 0.5π in 
ase of the odd band is investigated by bothextrapolations in the right panel of Figure 5.22. For both momenta the linearextrapolation 
omes 
lose to the SCUT result, but also the extrapolation basedon exponential saturation does not exhibit large deviations from the SCUT result.The deviation for k = 0 is ≈ 2% and the deviation for k = 0.5π is ≈ 7%. Thepoints from the L = 6 
al
ulation are omitted for the extrapolations be
ause theydeviate from the behaviour of the other points due to the small size of the system.For x = 1 and λ = 3 the exa
t diagonalisation results are shown in Figure5.23 for various �nite ladders with L rungs. The odd hole dispersion is moredi�
ult to distinguish from the 
ontinuum than for x = 1 and λ = 2. Alsofor small momenta the lowest eigenvalue is very 
lose to the higher ones. Theupper boundary for the hole dispersions from the restri
ted gs generator with
∆nmax = 2 is also depi
ted in Figure 5.23. In the region 0.5π . k . 0.8π thisupper boundary lies below the exa
t diagonalisation data. But the tenden
y of89
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aling at k = 0.5π indi
ates that the exa
t diagonalisation resultsoverestimate the energy of the odd band in this region so that one 
an expe
tthat a proper �nite size s
aling yields a dispersion that lies 
ompletely belowthis upper boundary. However, an extrapolation from the two points (L = 8 and

L = 12) at k = 0.5π is not 
on
lusive. We have several points for an extrapolationfor k = 0 and k = π, but there the distin
tion between 
ontinuum and dispersionis di�
ult. Be
ause the gs SCUT diverges without restri
tion of the generator,we a
tually expe
t that a strong overlap is present.5.4.2 Anisotropi
 HoppingWe want to 
onsider anisotropi
 hopping, i.e. λ⊥ 6= λ‖. This is also of interestbe
ause at least small di�eren
es between the parallel and the perpendi
ularhopping are expe
ted to be realisti
 like for the magneti
 
oupling 
onstants J⊥and J‖. We want to 
onsider three parameter regimes. In ea
h 
ase we start froman isotropi
 hopping using parameters that yield reliable results. The startingvalues are x = 0, λ⊥ = λ‖ = 0.5; x = 0.5, λ⊥ = λ‖ = 0.25 and x = 1, λ⊥ = λ‖ = 2.The ring ex
hange x� is always zero. We employ the gs generator in the �rst two
ases and the 0n generation in the latter one be
ause the 
orresponding resultsare 
on
lusive for isotropi
 hopping whi
h was shown in the pre
eding se
tion.The one-triplon dispersions derived by SCUT for these 
ases agree well with theresults from series expansion [97℄ and from exa
t diagonalisation [101℄ (see Se
tion5.4.1). Also the ROD 
onverges properly.The �rst 
ase starts from x = x� = 0, λ⊥ = λ‖ = 0.5. In
reasing the hopping
onstants separately leads to a lowering of the bands (Figure 5.24(a)), whilede
reasing them leads to a lifting (Figure 5.24(b)). However, this e�e
t is weak forthe odd band in the 
ase of 
hanging λ⊥. The 
onstant in the dispersion 
hangeslike in the other 
ases, but the 
hange of the bandwidth is dominant. Hen
e theodd band for λ⊥ = 0.6, λ‖ = 0.5 lies above the odd band for λ⊥ = λ‖ = 0.5 inthe region k & 0.41π; the odd band for λ⊥ = 0.4, λ‖ = 0.5 lies beneath the oddband for λ⊥ = λ‖ = 0.5 in the region k & 0.44π.The regime around x = 0.5, λ⊥ = λ‖ = 0.25 and x = 1 again exhibits a di�erentbehaviour for the odd band in the 
ase of 
hanging λ⊥. Figure 5.25(a) shows theseparate in
rease of the hopping 
onstants, Figure 5.25(b) the de
rease. The evenband is lowered if one hopping 
onstant is in
reased and raised if one hopping
onstant is de
reased. However, although for λ‖ = 0.1 there is a shift upwards90



5.4. ONE-HOLE DISPERSIONfor the 
onstant of the even dispersion, the bandwidth is de
reased by a fa
torof ≈ 2.5 so that the maximum at k = 0 has almost the same value for λ‖ = 0.25and for λ‖ = 0.1. It is even slightly lower for λ‖ = 0.1. The odd band is alsolowered if λ‖ is in
reased and raised if λ‖ is de
reased. The di�erent behaviourof the odd band in the 
ase of λ⊥ = 0.4 
onsists in the following features: Theformer lo
al maximum at k = 0 for the isotropi
 
ase moves to k ≈ 0.33, theglobal minimum now lies at k = 0 and the global maximum at k = π is morepronoun
ed. For λ⊥ = 0.1 the di�erent behaviour of the odd band 
onsists in thefollowing features: The maxima at k = 0 and k = π are of almost equal heightnow and the minimum, whi
h moves from k ≈ 0.41π (in the isotropi
 
ase) to
k ≈ 0.52π, is lowered by ≈ 0.03J⊥.Next, let us start from the isotropi
 
ase λ⊥ = λ‖ = 2 for x = 1 and x� = 0. At�rst we in
rease the hopping 
onstants separately. Figure 5.26 shows the resultsfor the SCUT indu
ed by the gs generator. The p
 results are not examined asthey deviate 
onsiderably from the results of other methods in this parameterregion as shown in the last se
tion.The in
rease of one of the hopping 
onstants leads to a lowering of the bandsfor both the relation λ⊥ > λ‖ and the relation λ⊥ < λ‖. Both bands are de
reasedin almost equal measure (see Figure 5.26(a)). This e�e
t is almost twi
e as strongfor λ⊥ = 2, λ‖ = 2.5 as for λ⊥ = 2.5, λ‖ = 2. The shape of the dispersions isalmost 
onserved, but the lo
ations of the minima 
hange. The 
rossing pointmoves to slightly smaller k for in
reasing λ‖ and to larger k for in
reasing λ⊥.Although this e�e
t is not pronoun
ed, results for interim values 
on�rm thetrend of this movement of the 
rossing point.The de
rease of one of the hopping 
onstants starting from λ⊥ = λ‖ = 2 leadsto a lifting of the bands (see Figure 5.26(b)). While for λ⊥ = 1.5, λ‖ = 2 theshape of the band is again 
onserved, for λ⊥ = 2, λ‖ = 1.5 the lo
al maximummoves from k = 0 to k = 0.22π and a lo
al minimum appears at k = 0. Thee�e
t of the lifting is approximately twi
e as strong for the 
hange of λ‖ than forthe 
hange of λ⊥. This is in analogy to the e�e
t of the lowering in the 
ase ofthe in
rease of one of the hopping 
onstants. The 
rossing point of the bandsmoves to larger k with de
reasing λ‖ and to smaller k with de
reasing λ⊥.
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5.4. ONE-HOLE DISPERSION5.4.3 In�uen
e of the Ring Ex
hangeSin
e the ring ex
hange is needed for an adequate des
ription of the experi-mentally available systems (see Se
tion 4.1), we also investigate the in�uen
eof the ring ex
hange on the doped ladder whi
h is � to our knowledge � stillan open issue. A typi
al value is x� ≈ 0.2 [75℄. Like for the examination of theanisotropi
 hopping we take the reliable results for x = 0, λ⊥ = λ‖ = 0.5; x = 0.5,
λ⊥ = λ‖ = 0.25 and x = 1, λ⊥ = λ‖ = 2 without ring ex
hange as starting pointfor our investigation.For the �rst 
ase x = 0, λ⊥ = λ‖ = 0.5 the in�uen
e of the ring ex
hange is theweakest (see Figure 5.27). The odd band hardly 
hanges. It is slightly lowered �only the maximum is de
reased more strongly. The even band, however, 
hangesmore pronoun
edly. It is strongly lowered so that a band 
rossing o

urs and theshape 
hanges. A lo
al miminum appears at k = 0 developing into the globalminimum with growing x�.Figure 5.28 depi
ts the 
ase x = 0.5, λ⊥ = λ‖ = 0.25. Both bands are loweredstronger for small k than for large k. Also the shape of both bands 
hanges.While the minimum of the even band moves to k ≈ 0.65π for x� = 0.2 and alo
al maximum at k = π o

urs, the lo
al maximum at k = 0 of the odd bandmoves to k ≈ 0.55π and a lo
al minimum at k = 0 o

urs.For λ⊥ = λ‖ = 2 and x = 1 only the gs results are dis
ussed as the p
generator yields no 
on
lusive results for these parameters without ring ex
hange(see Se
tion 5.4.1). The resulting one-hole dispersions are shown in Figure 5.29.The in
rease of x� yields a lowered dispersion for both bands. The shape ofthe bands is 
onserved, but for the odd band the de
rease is pronoun
ed around
k = π, while not only a less pronoun
ed de
rease, but even an in
rease of theenergy 
an be observed for the even band around k = π.
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Figure 5.27: One-hole dispersions with even parity (bla
k) and odd parity (
yan) for
x = 0, λ⊥ = λ‖ = 0.5 and various values for x�.
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x = 0.5, λ⊥ = λ‖ = 0.25 and various values for x�.
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LADDERS5.5 Dis
ussionWe are able to 
al
ulate the one-hole dispersions by means of SCUT. The agree-ment with results from series expansion is very good for small parameters. Evenin the regime x = 1, x� = 0, 2 < λ < 3 the agreement with the exa
t diago-nalisation results is still good. The hole dispersions are strongly in�uen
ed bythe triplons. Be
ause the one-hole dispersion with odd parity has a larger lo
alenergy whi
h is in�uen
ed more strongly by the 
ontinuum above, it 
hangesmore expli
itly with in
reasing hopping 
onstants. Hen
e it is doubtlessly moredi�
ult to 
al
ulate, i.e. the in�uen
e of the triplons on the odd band is strongerthan on the even band. Therefore the deviations from the simple 
osine shape aremore pronoun
ed for the odd band. These deviations grow if either the magneti

oupling or the strength of the hopping is in
reased:

• The broadening of the odd band is slowing down, then turned into a narrow-ing and �nally the shape 
hanges totally under the in�uen
e of the se
ondharmoni
 so that the maximum at k = 0 is only lo
al, the total maximumo

urs at k = π and the minimum lies between 0 and π.
• The shift upwards is also slowing down and then turned into a shift down-wards due to the in�uen
e of the 
ontinuum formed by one triplon and oneeven hole state. In the regime around x = 1 and λ⊥ = λ‖ = 2 the 
onstantof the odd dispersion is approximately as low as the 
onstant of the evendispersion.For the even band the deviations from the 
osine shaped dispersion 
onsist es-sentially in the growth of the se
ond harmoni
. For x = 1 and λ⊥ = λ‖ = 2 theminimum has moved from k = π into the region k ≈ π

2
. A lo
al maximum at

k = π o

urs. But the absolute maximum remains at k = 0.The 
ombination of these e�e
ts for x = 1 and λ⊥ = λ‖ = 2 yield a 
rossingof the two dispersions. The 
rossing point lies between the minima of the bands.However, the p
 generator is not appli
able for the SCUT if the parameters arein this region. This is suggested by the deviations from the series expansion andexa
t diagonalisation results as well as by the pe
uliar 
onvergen
e behaviour ofthe SCUT.In the regime x ≈ 1 and λ⊥ = λ‖ & 1 the p
 generator is no longer suitablebe
ause the 
onvergen
e of the �ow is hindered due to the overlap between theone-hole-one-triplon 
ontinuua and the one-hole-two-triplon 
ontinua. The p
98



5.5. DISCUSSIONresults are distin
t from the series expansion and exa
t diagonalisation results.Furthermore the 
onvergen
e is very slow and exhibits features that indi
ateproblems regarding the sorting of the eigenvalues. The remedy is the gs gener-ator whi
h only de
ouples the zero-triplon spa
e from the rest. Then the holedispersions are similar to the exa
t diagonalisation results. Although there aresmall deviations from the series expansion, the agreement is astonishingly good.Be
ause the exa
t diagonalisation examines a ladder with fourteen rungs, �nitesize e�e
ts are present so that a part of the deviations are due to 
onstraints ofthe exa
t diagonalisation. The remaining deviations are probably due to trun
a-tion errors. Another aspe
t in favour for the SCUT indu
ed by the gs generatoris the satisfa
tory 
onvergen
e behaviour.The treatment of the 
ase λ⊥ > 2 and λ‖ > 2 is problemati
 for the gs generatorbe
ause the 
onvergen
e is hindered by the overlap between the odd one-holedispersion and the 
ontinuum formed by one even hole and one triplon. To a
hieve
onvergen
e in this regime we use the following restri
tion for the gs generator.A term a�e
ting the hole-triplon 
ontinuum is omitted, if the distan
e betweenthe triplon and the hole state on whi
h the term a
ts is larger than ∆nmax. Thee�e
tive Hamiltonian yields an upper boundary for the hole dispersions. The
omparison between the results from the full gs generator and from the restri
tedgs generator for x = 1 and λ⊥ = λ‖ = 2 shows that the upper boundary givenby the result from the restri
ted generator is already 
lose to the result fromthe full generator for ∆nmax = 2. For x = 1 and λ⊥ = λ‖ = 3 this restri
tion
∆nmax = 2 indu
es 
onvergen
e, while the �ow diverges for ∆nmax > 2. Theestimations we obtain for the hole dispersions are again in good agreement withthe exa
t diagonalisation results. The exa
t diagonalisation [101℄ results predi
tthat the situation is qualitatively the same for λ⊥ = λ‖ = 3 as for λ⊥ = λ‖ = 2if x = 1 and x� = 0. The bands exhibit a similar shape and relative position toea
h other so that still a 
rossing at k ≈ 0.5π o

urs. But the energy is loweredand the bandwith of both bands is in
reased by a fa
tor of ≈ 1.5. The resultsfrom the restri
ted gs generator yields an estimation for the even band whi
his in good agreement with the exa
t diagonalisation result, while the odd holedispersion exhibits deviations that are very similar to the deviations between theexa
t diagonalisation and the full gs generator for λ⊥ = λ‖ = 2.The 
ase x = λ⊥ = λ‖ = 0.5 is a spe
ial one. Both the p
 and the gs genera-tor (even with in
reased maximal extensions) exhibit deviations from the seriesexpansion results for the odd hole state. These deviations stem apparently from99



CHAPTER 5. HOLE-DOPED ANTIFERROMAGNETIC SPIN-1
2
LADDERSthe 
loseness (or even overlap) of the 
ontinuum formed by one even hole andone triplon. If the lowering of the odd band is overestimated by the SCUT orunderestimated by the series expansion is not 
lear.Anisotropi
 hopping has the e�e
t that the bands are lowered (raised) if onehopping 
onstant is in
reased (de
reased). But if λ⊥ is 
hanged, the odd bandexhibits a slightly di�erent behaviour dominated by the �rst and se
ond harmoni
respe
tively.The ring ex
hange leads to a lowering of the hole dispersions. This e�e
t isleast pronoun
ed for the even band around k = π. The deformation of the bandshape is most pronoun
ed for the odd band like for the anisotropi
 hopping.All in all the odd band is more sensitive to 
hanges of the parameters than theeven band.Ladders doped with more than one hole have not been treated yet. The addi-tional lo
al basis state (the 
ompletely empty rung), whi
h is present for at leasttwo holes in the system, in
reases the number of operator terms to be 
onsideredwith the 
al
ulations. As we have already rea
hed the limits of the 
omputationalperforman
e, we expe
t that this in
rement is di�
ult to handle. However, weexpe
t that this state is still negligible for slightly doped ladders be
ause the lo
alenergy of this state is larger than the lo
al energies of the remaining states.The use of the spin symmetry, whi
h redu
es the time and memory 
osts for theundoped ladder by a fa
tor of approximately 6, is still not implemented for thedoped ladder. By this implementation also a fa
tor of approximately 6 
ould begained 
on
erning the redu
tion of time and memory. But this implementationis distin
tly more di�
ult for the doped 
ase be
ause the rotation in spin spa
edoes not simply 
onvert one lo
al hole state operator into another one like it isthe 
ase for the triplet states. A rotation of a hole state operator in spin spa
eyields a linear 
ombination of two operators. This is problemati
 be
ause linear
ombinations of operators have to be taken into a

ount for the identi�
ation ofthe representative terms during the setup of the di�erential equations.The symmetry utilisation would also allow us to investigate the in�uen
e ofin
reasing maximal extensions. Until now we are not able to state whether theresults still 
hange if the trun
ation is made less stri
t. We expe
t at least minor
hanges sin
e the extensions 
on
erning the hole operators are mu
h smaller thanthe extensions of the pure triplon terms.
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6 Summary and OutlookIn the present thesis the te
hnique of self-similar 
ontinuous unitary transforma-tions (SCUTs) is used to generate e�e
tive Hamiltonians for antiferromagneti
Heisenberg spin-1
2
ladders, whi
h are appropriate models for a 
ertain subsystemof (Sr, La, Ca, Y)14Cu24O41 � the so 
alled telephone number 
ompounds.A 
ontinuous unitary transformation (CUT) is a general method to diagonaliseHamiltonians. The 
hoi
e of the generator determines the properties of the CUT.The p
 generator whi
h 
reates parti
le 
onserving Hamiltonians and adaptionsof this generator are used in this thesis. The SCUT uses a trun
ation s
hemethat de�nes whi
h parts of the Hamiltonian shall be omitted. This indu
es aself-similar transformation. The SCUT is not in need of extrapolation te
hniqueslike the perturbative realisation of CUT. However, overlapping energies 
ause
onvergen
e problems1. A possible remedy is a generator adaption ex
luding theterms hindering the 
onvergen
e.The doped spin-1

2
ladder is a one-dimensional model, whi
h is expe
ted to 
ap-ture the same qualitative features as the two-dimensional 
uprate latti
e, whi
hexhibits high-temperature super
ondu
tivity. The undoped and the slightly hole-doped 
ase are 
onsidered in this thesis. Double o

upan
y is forbidden for thesites, whi
h is a good model assumption for strong Coulomb repulsion. Be
ausethis system is gapful for the 
onsidered parameters, the 
orrelations betweenthe ex
itations de
rease exponentially with the distan
e. Therefore a real spa
etrun
ation is appropriate.The performan
e and the numeri
al stability of the SCUT are improved de
i-sively for the undoped ladder by utilising the spin symmetries within the bondoperator representation. For the undoped ladder the implementation of the gs,1pgenerator, whi
h de
ouples only the zero- and one-triplon spa
e from the restof the Hilbert spa
e, enables the treatment of higher values of x (the ratio be-tween the magneti
 
oupling parallel and perpendi
ular to the ladder). Sin
e the1Note that strong overlaps also pose problems for the PCUT on the 
on
eptual level. 101



CHAPTER 6. SUMMARY AND OUTLOOKtwo- and the four-triplon 
ontinuum overlap be
omes stronger with in
reasing xand therefore hinders the 
onvergen
e of the transformation, the gs,1p generatoravoids the sorting of the 
orresponding eigenenergies and yields a 
onverging trun-
ation. However, the two-triplon bound states 
annot be 
al
ulated without anadditional diagonalisation. Hen
e 
ontinua with more than two parti
les 
annotbe determined easily if the gs,1p generator is used be
ause the two-triplon boundstates 
ontribute 
ru
ially to these 
ontinua. The exe
ution of this de
oupling issubje
t to 
urrent resear
h.We also dete
t that the one-triplon dispersion enters the three-triplon 
ontin-uum for x = 1.5. Yet the overlap is not too large. Hen
e it does not hinder the
onvergen
e of the gs,1p SCUT.For the doped ladder we are able to 
al
ulate the dispersions for the hole stateswhi
h in
lude not only a hole but also a spin and therefore intera
t magneti
allywith the neighbouring rungs. The hole dispersions, whi
h are degenerate 
on
ern-ing the spin but di�er for di�erent parity, are strongly in�uen
ed by intera
tionswith the triplons. This in�uen
e is stronger on the band with odd parity thanon the band with even parity be
ause the lo
al energy of the odd hole state islarger and more sensitive to the 
ontinuum above. The agreement with the seriesexpansion results is very good for a large regime of parameters.If at least one of the 
ontinua formed by one hole and one triplon exhibitsa pronoun
ed overlap with the higher 
ontinua, the p
 generator is no longerappli
able. The agreement with the results of other methods and the 
onvergen
edeteriorate. Then the gs generator, whi
h de
ouples only the zero-triplon statefrom the remaining states, yields by far more 
on
lusive results. If the parametersare small, the results of the p
 and of the gs generator 
oin
ide.In 
ase of strong isotropi
 hopping 
onstants λ⊥ = λ‖ & 1 and x = 1 thehole dispersions 
over approximately the same energies and exhibit a 
rossing at
k ≈ 0.5π. Our results are in good agreement with the exa
t diagonalisation resultsfor λ⊥ = λ‖ = 2. The �nite size s
aling of the exa
t diagonalisation explains mostof the deviations between both methods. The remaining deviations are probably
aused by trun
ation errors. However, the 
onvergen
e of the gs generator islost for even larger hopping 
onstants. Be
ause the restri
ted gs generator still
onverges in this regime, the 
onvergen
e problems must be due to the overlap ofthe one-hole dispersions with the triplon-hole 
ontinua.The restri
tion whi
h is applied to the generator omits a term a�e
ting the
ontinuum formed by one hole and one triplon, if the maximal distan
e ∆nmax102



between the triplon and the hole state on whi
h the term a
ts is ex
eeded. If weFourier transform the one-hole subspa
e of the e�e
tive Hamiltonian, we obtainonly upper boundaries for the a
tual hole dispersions. Nevertheless, these resultsare 
lose to the exa
t diagonalisation results for x = 1 and λ⊥ = λ‖ = 3.We also investigated the in�uen
e of anisotropi
 hopping and magneti
 ringex
hange on the one-hole dispersions. The odd hole dispersion is more sensitiveto 
hanges of the parameters than the even hole dispersion due to the strongerin�uen
e of the 
ontinuum for the odd band whi
h has a larger lo
al energy.We 
on
lude with an outlook on future investigations. The next step will bethe examination of two-hole states. Espe
ially the two-hole bound states, whi
hare interesting in the 
ontext of super
ondu
tivity, shall be investigated. Thein
lusion of the rung state with two holes, i.e. the empty state, whi
h is notneeded to be 
onsidered for the one-hole dispersions, in
reases the e�ort 
on
ern-ing memory and time needed for the 
al
ulation in
isively. However, we expe
tthat this state is still negligible be
ause it is energeti
ally unfavourable.Nevertheless, even without the lo
al two-hole state the system of di�erentialequations is larger if all operators a
ting on global two-hole states are in
luded.The new terms are terms with four hole operators (two 
reation and two annihi-lation operators). The utilisation of the spin symmetry for the operators a�e
tinghole states, whi
h is still di�
ult to implement, would improve the performan
eof the program signi�
antly. Another approximation that redu
es the e�ort 
anbe made by negle
ting all 
ontributions from terms with four hole operators onthe right hand side of the �ow equation, but not on the left hand side.
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A E�e
ts of Utilisation of theSpin Symmetry for theUndoped LadderThe utilisation of the spin symmetry redu
es the terms to be in
luded in theHamiltonian of the undoped ladder by almost a fa
tor of six. Nearly all termsdeal with two or three di�erent spin states. For these terms the appli
ation of allpossible rotations in spin spa
e to a representative term yields six terms in
ludingthe representative. These rotations are equivalent to permuting the spin states
x, y, z and adding optional signs for the lo
al triplon operators1. Therefore theserotations are easy to implement for the triplon operators in the bond operatorrepresentation [65℄.Together with the utilisation of the Hermiti
ity and the real spa
e symmetrythe memory as well as the time 
onsumed by the 
al
ulation 
an be redu
ed byalmost a fa
tor of 24. But this is only the obvious advantage. The numeri
alstability of the integration is also improved by utilising the symmetries. With-out expli
it 
onsideration of the symmetry small numeri
al deviations betweenterms that should be equal 
an in
rease drasti
ally via feedba
k. This feedba
kis due to the 
oupling of the di�erential equations. Di�eren
es of su
h termsexpe
ted to be zero yield �nite numeri
al values and 
ontribute to the �ow equa-tion. These rounding errors link se
tors of the Hilbert spa
e whi
h should bede
oupled. Hen
e the SCUT fails at the reordering and the feedba
k be
omesdominant. In Figure A.1 the e�e
t of su
h a feedba
k 
an be observed in theROD (residual o�-diagonality, introdu
ed in Se
tion 3.6). If symmetries are notutilised, the ROD exhibits the typi
al behaviour for su
h a numeri
al instabil-ity at lJ⊥ ≈ 70: The exponential de
rease 
hanges into an exponential in
reaseat this point and shows a non-
onvergent behaviour afterwards, whi
h is 
har-a
terised by alternating irregular de
rease and in
rease. If the symmetries are1If the parity is 
onserved, there is always an even number of additional signs. 105



APPENDIX A. EFFECTS OF UTILISATION OF THE SPIN SYMMETRYFOR THE UNDOPED LADDER
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Figure A.1: Comparison of the ROD during the �ow for the p
 SCUT with (dashed)and without (solid) utilisation of the symmetries; undoped ladder with x = 1, x� = 0;trun
ation: N = 4, d2 = 10, d4 = 6, d5 = 5, d2 = 3.utilised on the 
ontrary, the ROD de
reases exponentially without pe
uliarities.The symmetry breaking for the SCUT without utilisation of the symmetriesresponsible for the feedba
k is also ampli�ed and distributed via the 
oupling ofthe di�erential equations. Figure A.2 shows this symmetry breaking examplarilyfor six terms that are a
tually spin symmetri
. The 
oe�
ients of these termsshould be equal but deviate for lJ⊥ & 100, i.e. after the kink of the ROD. The
onvergen
e seems to be a
hieved already at lJ⊥ ≈ 12. Indu
ed by the numeri
alinstability abrupt deviations from the 
onvergen
e value o

ur for lJ⊥ & 100ex
ept for two of the 
onsidered 
oe�
ients, whi
h, however, �nally show smalldeviations from the 
onvergen
e value for lJ⊥ & 195.
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Figure A.2: Comparison of the 
oe�
ients gi of six terms that should be equal due to thespin symmetry during the �ow for the p
 SCUT without utilisation of the symmetries;undoped ladder with x = 1, x� = 0; trun
ation: N = 4, d2 = 10, d4 = 6, d5 = 5,
d2 = 3. The blue 
urve 
oin
ides with the 
urve of another 
oe�
ient.
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B Consisten
y Che
k for theDoped Ladder ResultsA high-level 
he
k of the SCUT method for the hole-doped ladder is performed bya systemati
 
omparison with the series expansion results from Ref. [97℄. For thispurpose a new trun
ation s
heme is introdu
ed that is not based on extensions inreal spa
e but on the perturbation parameters instead. This allows us to 
omparethe order of the parameters. In Ref. [97℄ the ring ex
hange is not 
onsideredand the 
oupling 
onstants for the hopping are identi
al. Therefore the onlyperturbation parameters are x and λ = λ‖ = λ⊥. The ratio ρ = x
λ
is �xed forea
h 
omparison to have a
tually only one parameter. For the new trun
ation anew attribute is assigned to ea
h term: the leading order in x for the expansionof the 
oe�
ient. Nevertheless, the CUT is still self-similar and the expansionsin x are not 
al
ulated. This is not ne
essary to determine the leading order.The leading order for the terms of the starting Hamiltonian is known be
ause all
ontributions generated by the SCUT are terms of the same or higher order asthey originate from 
ommutators and nested 
ommutators of these terms. So theleading order of these terms is the leading order in whi
h x is present for l = 0.The expansion of the 
oe�
ients gi(l) in x has the form

gi(l) =

∞
∑

m=0

ai,ni+m(l)xni+m (B.1)where ni is the leading order. As the di�erential equations for the 
oe�
ientshave a bilinear form (2.18), the leading order of a gi(l) whi
h is zero for l = 0 isgiven by the minimal exponent nj + nk of all terms gj(l)gk(l) on the right handside of the �ow equation.If the leading order of a term, whi
h o

urs during the setup of the �ow equa-tion, is higher than a 
ertain nmax de�ned in advan
e, this term is omitted. Withthis trun
ation we are able to 
ontrol up to whi
h order the results will be 
orre
t.109



APPENDIX B. CONSISTENCY CHECK FOR THE DOPED LADDERRESULTS
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Figure B.1: Consisten
y 
he
k for nmax = 4 and ρ = 0.5. For all 
oe�
ients cj,p thedi�eren
e quotient qj,p 
onverges against α = 5. The di�eren
e ∆c0,e has the smallestvalue whi
h is already in the order of the numeri
al pre
ision for xn ≈ 0.001. Hen
e
q0,e shows deviations for small x.The 
oe�
ients cj,p of the one-hole dispersions

ω1h,p(k) = c0,p +

jmax
∑

j=1

2cj,p cos(jk) (B.2)were 
ompared with the results of the series expansion. The parameter p ∈ {e, o}denotes the parity (even or odd) of the hole state. Be
ause no maximal extensionin real spa
e is de�ned in this trun
ation s
heme, jmax depends on nmax. A

ordingto the fourth order series from Ref. [97℄ and using λ = x
ρ
the leading order for c0,pis zero, one for c1,p and four for c2,p, i.e. jmax = 1 for 0 < nmax < 4 and jmax = 2for nmax = 4.If both methods are 
onsistent, the di�eren
e between a 
oe�
ient 
al
ulatedby SCUT on the one hand and the 
orresponding 
oe�
ient from the series expan-sion on the other hand should show power law behaviour ∝ xα with α = nmax +1for x → 0. For the 
he
k of the behaviour of this di�eren
e ∆cj,p(x) for x → 0 weanalysed several values of x starting with x0 = 1

64
and bise
ting x 
onse
utively,110



0 0.005 0.01 0.015
x

n

3

3.5

4

4.5

5

5.5
q j,p

(x
n)

q
0,e

q
0,o

q
1,e

q
1,o

q
2,e

q
2,o

Figure B.2: Consisten
y 
he
k for nmax = 4 and ρ = 1. For all 
oe�
ients cj,p thedi�eren
e quotient qj,p 
onverges against α = 5. Again for q0,e the deviations arethe most obvious and larger than for ρ = 0.5 but also for q0,o and q1,e deviations aredistinguishable.i.e. xn+1 = xn

2
. This was done for ρ = 0.5, ρ = 1 and ρ = 2. To show that

α = nmax + 1 is a
tually the dominating exponent in ∆cj,p(x) the ratio of thedi�eren
es
qj,p(xn) =

ln (∆cj,p(xn)) − ln (∆cj,p(xn+1))

ln(xn) − ln(xn+1)
(B.3)was plotted against xn. For a fun
tion ∆cj,p(x) dominated by b xα

lim
n→∞

qj,p(xn) = α (B.4)holds true. But if xn be
omes too small, ∆cj,p is redu
ed to the size of thenumeri
al pre
ision. The di�eren
e ∆cj,p is even numeri
ally zero for very small
xn be
ause the error is smaller than the numeri
al pre
ision for x ≈ 0. Thereforethe 
onvergen
e 
eases in this region. Nevertheless, in a small region where xn isneither too small nor too large the 
onvergen
e is observable.The �gures depi
ted here (Figures B.1-B.3) show the behaviour of the qj,p for
nmax = 4. The expe
ted 
onvergen
e against α = 5 is obvious. The deviations forsmall x 
an be explained by rea
hing the limits of the numeri
al pre
ision. The111
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Figure B.3: Consisten
y 
he
k for nmax = 4 and ρ = 2. For all 
oe�
ients cj,p thedi�eren
e quotient qj,p 
onverges against α = 5 ex
ept for q0,e. For this reason the datapoints for q0,e were not 
onne
ted as they do not form a 
urve. Further explanations
an be found in the text.only remaining dis
repan
y is the behaviour of q0,e for ρ = 2 (see Figure B.3),whi
h does not reveal any kind of 
onvergen
e. This is due to a zero-
rossing of
∆c0,e in the 
onsidered region of x. Thus the ansatz with the ratio qj,p yields noreliable result. However, the proper behaviour of the other qj,p demonstrates the
onsisten
y of the SCUT with the series expansion. If c0,e exhibited an error, thiserror would a�e
t the other 
oe�
ients via the �ow equations and they wouldnot show a 
onsistent behaviour.To 
on
lude, we 
an state that this high-level 
he
k supports our method.The results of this 
he
k meet our expe
tations that the SCUT is implemented
orre
tly.
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