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1 Introduction

The theory of strongly correlated electrons is of great importance for solid state
physics or in general condensed matter physics. For instance, conductivity and
magnetic properties are strongly influenced by electronic correlations. Materials
with strongly correlated electrons exhibit many interesting phenomena that can
only be understood in consideration of quantum physics. The usual approach is
to reduce the exhaustive many-body problems with a multitude of interactions

to simple paradigmatic models that include the decisive physical properties.

One of the most challenging issues in modern solid state physics is the search
for an appropriate theoretical description for high-temperature superconductiv-
ity. While conventional low-temperature superconductivity is well-understood
and very accurately described on the microscopic level by the BCS theory [1],
the mechanisms behind the superconductivity based on cuprate or iron pnictide
compounds are subjects of ongoing research. The critical temperature 7, for
cuprate superconductors (first discovered by Bednorz and Miiller in 1986 [2]) is
up to 138 K |3| and hence relevant for technical applications. The understanding

of the underlying processes could also help finding materials with even higher 7.

The crucial point for conventional superconductivity is the phonon mediated
combination of two electrons to a Cooper pair with integer spin as described
by the BCS theory. The bosonic Cooper pairs can form a collective quantum
state which is responsible for the effects of superconductivity. In essence these
are: (i) a current flow without resistance and (ii) the Meissner-Ochsenfeld effect.
The current approaches to a theory for high-T, superconductivity in cuprate
compounds assume similar conditions. Fermionic charge carriers, which can be
either holes or electrons depending on the material and doping, are supposed to
be combined into pairs via attractive interactions. However, these interactions

are likely not to be due to a barely phononic mediation |4].

A model system consisting of spins that interact magnetically with positive

coupling constants and mobile charge carriers is called a doped antiferromagnet.
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Its theoretical description is achieved by the so called ¢-J-model® [5, 6]. From
a strong coupling perspective such a model in 2D is expected to incorporate
the essential features of the high-T,. superconductors based on cuprates. This
model captures the main effect because the superconduction takes place in two-
dimensional cuprate layers separated from each other by the other constituents
of the compound. The coupling between the cuprate planes is so weak that it
can be neglected |7].

The schematic phase diagram for a typical hole-doped high-T,. cuprate super-
conductor in dependence on the temperature 7' and the hole concentration 9 is
shown in Figure 1.1. There is a phase characterised by a long-range commensu-
rate antiferromagnetic order (AF), which occurs for small §. The superconducting
phase (SC) can be found at low 7" in the region 0.05 < 0 < 0.25. It is also called
“superconducting dome” because of its form in the phase diagram. Optimal dop-
ing is achieved when T, becomes maximal. In the regime between antiferromagnet
and superconductor various forms of disordered and incommensurate magnetism
occur. The remaining regimes, which are not separated by phase transitions but
by crossovers, are in the order of increasing §: The pseudogap regime (PG), the
non-Fermi liquid regime (NFL) and the Fermi liquid regime (FL).

Different theories have been developed as possible descriptions for high-T,
cuprate superconductivity: The resonating valence bond state and spin-charge
separation respectively [4, 8, 9|, stripe-like inhomogeneous spin and charge order-
ing |7, 10-13| and quantum criticality |14, 15| are the most important concepts.
Certainly magnetic fluctuations and their interactions with the charge carriers
play a key role.

In this thesis a quasi one-dimensional model system for cuprate superconduc-
tors is considered, which is the antiferromagnetic two-leg spin—% ladder (discussed
in Chapters 4 and 5). The assumed importance of the antiferromagnetic spin in-
teraction within the cuprate layers for the attraction of the electrons or holes
respectively is expected also to be featured by the spin ladder as an analogous
one-dimensional effect. We expect that magnetic excitations, which are dom-
inated by a local triplet state on a rung of the ladder, mediate an attractive
interaction between the hole excitations.

The spin ladder model is not a purely theoretical toy model, the system is re-
alised in the so called telephone number compounds (see Section 1.1). For these

systems superconductivity can be detected under high pressure [16]. CaV,05

1t denotes the hopping constant for the charge carriers and J the magnetic coupling constant.
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Figure 1.1: Schematic phase diagram for a typical hole-doped high-T, cuprate supercon-
ductor [7]: The parameters are the temperature 7" and the hole concentration 0. The
true phases are the long-range commensurate antiferromagnetic order AF and the su-
perconducting phase SC. The pseudogap regime PG, the non-Fermi liquid regime NFL
and the Fermi liquid regime FL are not strictly separated. In the shaded area various

forms of disordered and incommensurate magnetism occur.

[17] and SrCuyOs3 [16, 18] are further systems in which spin ladders can be found.
Within the isolating regime the spin ladder is very well understood. The be-
haviour of magnetic excitations in spin ladders already examined in Ref. [19] is
resumed in Chapter 4 and augmented by additional results. The ladder is ef-
fectively treated as a one-dimensional chain with sites populated by hardcore

bosons. These particles obey a specific algebra (see Section 2.4).

The subject of Chapter 5 are hole-doped ladders, i.e. an extension of the model
by insertion of charge carriers in the form of holes. The challenge of this exten-
sion consists in the combined appearance of fermionic and bosonic particles with
hardcore properties. The concerning algebra is also discussed in Section 2.4. In-
cluding both algebras in the calculations at the same time is a rather demanding

task. Furthermore the Hamiltonian contains a multitude of terms.

Our method of choice to derive effective Hamiltonians for the considered models
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is the continuous unitary transformation (CUT). The CUT technique is intro-
duced in Chapter 2. The general issue of diagonalising a Hamiltonian (or at least
to achieve a form that is closer to diagonality) can be performed with this tech-
nique introduced by Wegner [20] as well as independently by Wilson and Glazek
[21, 22]. Instead of applying only one single constant unitary transformation that
diagonalises the Hamiltonian at once or several constant unitary transformations
successively, a unitary transformation depending on a continuous parameter is
applied to the Hamiltonian. This transformation adjusts itself permanently dur-
ing its application. Discrete transformations must be known explicitly before we
can apply them, whereas for the continuous transformation it is sufficient to set
up the infinitesimal generator of the transformation. The choice of this gener-
ator determines which properties the transform exhibits and in which way the
sorting of the eigenvalues is carried out. The generators used for the calculations
in this thesis are based on the ideas of Mielke [23] as well as Knetter and Uhrig
|24, 25|, who designed a generator that induces an effective model that preserves
the number of excitations (or quasiparticles respectively) and enables an easy
classification of the resulting eigenenergies concerning this number. We do not
only use this generator in its original form but also modifications introduced in
Ref. [26]. These modifications enable the treatment of new parameter regimes,

for which the original generator is not applicable.

The CUT can be performed in either a perturbative (PCUT) or a self-similar
(SCUT) fashion. Both ways are discussed and compared. In this thesis the SCUT
is applied to the spin ladder Hamiltonians and compared to established PCUT
results [27] if available. Because infinite systems are considered, an adequate
truncation has to be implemented. The chosen truncation scheme only restricts
the operators and not the states of the system to which they are applied. Because
the spin ladder is a gapful system, the correlation between the quasiparticles
decreases exponentially depending on the real space distance. Hence a real space

truncation is considered as the most suitable way of truncation.

Chapter 3 deals with the implementation of the SCUT on a computer. Readers
interested in the technical aspects of the method will find a detailed description

of the program and data structure within this chapter.
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Figure 1.2: Schematic view of (Sr,La,Ca,Y),,Cu24O4; taken from [28]. The coupling
is illustrated by black lines. Left: A 3D view of the structure. Middle: A cuprate layer

consisting of chains. Right: A cuprate layer consisting of ladders.

1.1 Telephone Number Compounds

The composite crystals (Sr,La, Ca,Y),,Cuz4Oy4; called telephone number com-
pounds (a detailed survey of these interesting materials is given in Ref. |29]) are
composed of cuprate layers alternated with (Sr, La, Ca, Y) layers. There are two
kinds of cuprate layers: layers with CuQOs chains and layers with CuyOg3 ladders
(each aligned along the crystallographic ¢ axis) (cf. Figure 1.2), which also al-
ternate. The latter are of great interest in current research because the cuprate
ladder can be considered as a model system for the 2D high-T, superconducting

cuprate square lattice.

The spin sites are the 3d,2_,2 orbitals of the copper atoms coupled via the 2p, or
2p, orbitals of the oxygen atoms, which hybridise with the copper 3d,2_,» orbitals
so that superexchange [30| is possible (see Figure 1.3). Interactions between the
ladders are weak because they result from 90° exchange |31, 32]. Thus the ladders
can be considered as isolated from each other. Even if the interladder coupling is
taken into account, the strong frustration of the lattice causes the system to be
effectively one-dimensional [33|. The dispersions of the magnetic excitations of

the complete layer with interladder coupling are similar to those of a single spin
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Figure 1.3: Schematic view of the Cu 3d,2_,2 (red) and O 2p, (blue) orbitals within

the ladder layers of the telephone number compounds.

ladder. Tmportant properties of the ladders are investigated in Refs. [34 38|.

Typically the telephone number compounds are insulators with a temperature
dependent DC conductivity, but by increasing the doping level of Ca a metal-
insulator transition occurs [39]. The charge carrier density can be adjusted by
doping. Under high pressure the crystal becomes a superconductor for appropri-
ate doping [16].

Sr14Cus40y4; exhibits an intrinsic doping of six holes per unit cell. Only 0.8
of these holes per unit cell are allotted to the ladders; the remaining 5.2 holes
are found in the chains [40] because the chains possess a higher electronega-
tivity [41]. LagCagCugsOy; features undoped ladders [32] and the ladders in
Las2Cag sCug4041, which are only slightly doped, can be considered as approxi-
mately undoped [42].

In this thesis the isolated spin ladder is investigated. Chapter 4 is concerned
with the undoped ladder, which will be treated as a half-filled spin—% model with-
out electron hopping. So just magnetic interactions are present. In Chapter 5 the
hole-doped ladder is examined. The according model includes electron hopping
additionally to the magnetic interactions. Double occupancy is forbidden, i.e.
electrons do not occur as charge carriers but only holes. This can be justified by

the fact that the onsite Coulomb repulsion between the electrons is large.



2 Continuous Unitary

Transformations

The diagonalisation of Hamiltonians is a central issue in theoretical quantum
physics. The technique of continuous unitary transformations (CUT) also re-
ferred to as flow equation method and introduced by Wegner [20] as well as by
Wilson and Glazek [21, 22| offers a general approach to diagonalise operators or
at least to achieve a form which is closer to diagonality. The basic idea of the
CUT is to implement a method that adjusts itself during the procedure of the
diagonalisation depending on the current form of the Hamiltonian at this point
of the continuous transformation: The change of the Hamiltonian induced by
the transformation is determined by the current magnitude of the non-diagonal
elements.

A unitary transformation U dependent on the continuous parameter [ is applied

to the operator H that is to be diagonalised:
H(l) = U()HyU'(I) (2.1)

where U(0) = 1.
Due to the unitarity of the transformation the eigenvalues of every H(l) are the

same as the ones for Hy. The antihermitian' generator n of the transformation
U is defined by

ou(l
) = W) (2:2)
ol
so that the derivative of H with respect to [ is given by the so-called flow equation
0H(l
o0 — iy, 1y (23)

This is actually a system of differential equations (generically highly coupled) for
the coefficients of the operators appearing in H. Other operators A that are to

!The generator n must be antihermitian to ensure that U is unitary.
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be considered (e.g. observables) are subjected to the same transformation as all
operators have to be transformed in the same manner — like for every change of
basis. For A the general flow equation

DA(l)

o = (), AQ) 2.4

holds true.

Inserting Hy into the flow equation (2.3) generally yields new kinds of contri-
butions for H that were not part of the original Hy. Applying the flow equation
for these resulting terms yields again new terms and so on. For an infinite system
one usually obtains an infinite number of terms and for sizable finite systems
an exponentially large number of differential equations. Thus a truncation is re-
quired that neglects contributions that do not affect the main physical effects of
a Hamiltonian H to reach a manageable number of differential equations.

The choice of n(l) determines the transformation U(l) and therefore the form

of H(l). Formally the transformation can be expressed by
U(l) = Lelon®d! (2.5)

where £ denotes the [-ordering operator, which orders the following expression
from right to left according to increasing values of [. In general it is complicated
to determine the explicit U(l) due to the complexity arising from the application
of L. Usually the flow equation (2.3) is integrated numerically to calculate H for
a certain value of [.

The original generator, which was introduced by Wegner [20], is defined by the

commutator of the diagonal and the non-diagonal part of H

nWegner(l) - [Hdiagonal(l)> Hnon—diagonal(l)] . (26)

The intention of this choice is that for the effective Hamiltonian, i.e. for [ — oo,
the non-diagonal part Hyon—diagonal Vanishes. The definition of Hgjagonal is arbitrary
and depends on the choice of the basis. Therefore Hgiagonat can be defined as
a structure that can be treated easily. However, if subspaces of Hgiagonal are
degenerate, they remain non-diagonal.

The disadvantage of the Wegner generator is that if Hy can be written in the
form of a band matrix, this feature is usually lost during the transformation for
finite | and eigenvalues cannot necessarily be assigned to a concrete number of

excitations (respectively particles) without further investigation.



The generator of our choice is the so-called pc (particle conserving) generator
[23-25]
Mpe,i,j (1) = sign(q; — ¢;) Hi; (1) (2.7)

defined in the eigenbasis of the operator () counting the particle number. The
indices ¢, j denote a transition from state j to state ¢ and ¢; is the eigenvalue of
@ (i-e. the number of particles) for the state i. Inserting the pc generator into

the flow equation (2.3) yields

st (g, — ) (Hislt) — Hyy (0) o) (2.8)
+ > (sign(gq; — qr) + sign(q; — q)) Hiw(1) Hy (1) .
k4,5

The eigenstates of () can be ordered so that ¢ > ¢; for £ > ¢ without loss of

generality. For the derivative of the sum over the first r diagonal elements of H (1)

5 Sl 230 Y sien(a - )l a0 <0 (2.9)
=1

=1 k>r

holds true due to g > ¢;. Therefore the sum 22:1 H, (1) is monotonically de-
creasing. Because a Hamiltonian is usually bounded from below, this sum con-

verges for [ — oo and

IE%%;H,,, 2;;s1gn — )| Hix()* = 0. (2.10)
Hence it follows that for | — oo and for all i, j with i # k either ¢; = g
or H;;(l) = 0. The case ¢; = ¢ is equivalent to degeneracy with respect to
the particle number. Therefore all non-diagonal elements H;j(l) that couple
subspaces with different particle numbers tend to zero for [ — oo. Thus the
induced transformation results in a block-diagonal Hamiltonian conserving the
particle number for [ — oo, i.e. [H(00),Q] = 0. Also due to H;x(l) — 0 the
asymptotic behaviour for the derivative of the non-diagonal elements is dominated
by the first part of Equation (2.8)

0H, ;(1)
ol

~ —sign(g; — ¢;)(Hi (1) — Hy; (1) Hy (1) (2.11)

Thus
sign(g; — ¢;)(Hii(1) — H; (1)) > 0 (2.12)
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Figure 2.1: Schematic example for a transformation of H(l) induced by the pc generator:
Each coloured (n¢, ng)-block represents contributions to H creating n. particles after

annihilating n, particles.

holds for ¢ # j and for sufficiently large | because H; ;(l) tends to zero as well.
This means that the transformation also sorts the eigenenergies according to the
particle number if the corresponding subspaces of the Hilbertspace are coupled
before the transformation, i.e. H; j({ = 0) # 0. For a detailed investigation of the
asymptotic behaviour of the pc CUT see Refs. |23, 26, 43|. Note that for

Jim sign(g; — ;) (Hii(1) — Hj;(1)) <0 (2.13)
convergence problems may occur if H; ;(I = 0) # 0, i.e. an overlap of energies be-
longing to different particle numbers may hinder the convergence. We encounter
this problem for the treatment of spin ladders (see Chapters 4 and 5). A possible
remedy is a generator adaption (see Section 2.5).

An example for the structural change of H (1) is depicted in Figure 2.1. In this
example Hy = H(0) consists of terms affecting maximally two particles. For finite
[ terms affecting higher particle numbers occur. The truncation scheme has to
be applied here to keep the number of terms finite for an infinite system?. The
change of the particle number cannot be higher than in H,. Hence the block-
band structure is conserved |23, 25, 44|. For | = oo H is block-diagonal and
conserves the particle number. Each block can be assigned to a concrete number
of particles. Further information about the structure of the Hamiltonian and of
the observables in the context of pc CUTs can be found in Ref. [44].

Note that the scheme in Figure 2.1 does not represent the form of a matrix

corresponding to H(l). A block in this representation contains all terms that

2The truncation is only applied to the operators but not to the Hilbert space.

10
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create n. particles after annihilating n, particles. A (n., n,)-block does not
only affect states with n, particles but also those with more than n, particles.
Therefore this representation is not identical with a matrix representation, for
which the action of each block is restricted to the concerning subspace without
overlaps.

If the flow equation (2.3) is numerically integrated (as usual in practice), the
integration can be stopped at a certain finite [ when the non-diagonal parts of H
are small enough to be considered as negligible. For a comfortable handling the
terms of H are expressed in second quantisation for the particles under study.

Three easily comprehensible examples for the application of CUTs are given in
Ref. [45]|. The differences between the pc and the Wegner generator are discussed
by means of simple Hamiltonians. In particular the convergence behaviour is
examined. The Wegner generator always leads to a fixed point, but degeneracies
hinder the diagonalisation, whereas the pc generator is not sensitive to degenera-

cies, but the induced transformation does not always converge.

2.1 Perturbative CUT and Self-Similar CUT

Continuous unitary transformations can be performed in a perturbative or in
a self-similar fashion. In this thesis the self-similar continuous unitary trans-
formation (SCUT) was used exclusively. Nevertheless, this section also gives a
brief description of the perturbative continuous unitary transformation (PCUT)
because SCUT results were compared to PCUT results and the differences be-
tween the two approaches are an important issue. Both CUT procedures will be
explained exemplarily for the pc generator (2.7). A detailed description of the
PCUT with the pc generator is given in Ref. |25].

2.1.1 PCUT

For the PCUT the Hamiltonian H has to be split up into an unperturbed (particle
conserving) part H, and a perturbed part zV as usual in perturbation theory
where z denotes the expansion parameter, which has to be small. Additionally

the following conditions have to be fulfilled:

e The energy spectrum of H, is equidistant with a lower boundary; the

eigenenergies are proportional to the particle number.

11
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e The perturbation term can be written as V' = ZnN:_N T, with N € N. The

operator T, changes the particle number by n.

Then H(l) can be represented by the ansatz:

H(z,1)=H,+ Y 2" Y F(l,.m)T(m). (2.14)
F=1 =k
m denotes a set of indicesm; € {—N,—-N +1,...,N — 1, N} withi € {1,2,...,k}
so that T'(m) is a product of the operators T,,,,. The number of components of
m is denoted by |m|. The coefficients F'(z,1) still have to be determined.
Now the chosen generator has to be depicted in the same representation. So

the pc generator (2.7) reads in this representation

pe 1) = 3% 3 sign (M(m) F(1 m)T (m). (215)

k=0 |m|=k

Here M(m) := ), m,; specifies the number of particles being created or annihi-
lated by T'(m) in total.

Inserting H (2.14) and 7 (2.15) into the flow equation (2.3) yields a system of
differential equations for the F'(I,m) via comparison of coefficients. The integra-

tion of this system for [ — oo results in the effective Hamiltonian

Heg(x) = Hy+ Y _2* Y~ F(oo,m)T(m), (2.16)
k=1 |m|=k

which is particle conserving because all F'(co, m) with M (m) # 0 are zero.

2.1.2 SCUT

For the SCUT the Hamiltonian H is represented by a sum of different operators
0; multiplied by the concerning prefactors g;. At first a truncation scheme has to
be defined that decides whether a term shall be neglected. The truncation scheme
depends on the physical properties of the considered model. This is discussed in
detail in Sections 2.1.3 and 2.2. The truncation scheme for the spin ladder models
investigated in this thesis is discussed in Sections 4.2 and 5.2.

During the flow only the prefactors change while the operators remain constant

H(l) = Zgi(l)éi- (2.17)

12
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The operators serve as a fixed basis for H(l). This is the reason why this fashion
of CUT is called self-similar. The differential equations for the g;(I) are given via

the flow equation (2.3) by performing the following steps:

1. Set up a Hamiltonian H (I) with the operators 6; of the starting Hamiltonian
H(0) and variable prefactors g;(1).

2. Calculate the concerning pc generator 7(l) according to Equation (2.7) using
the terms of H(l) and insert n(l) and H(l) into the flow equation (2.3).

3. Compare the coefficients of the operators of the left and the right hand side
of the flow equation (after having checked that the operator representation is
unique?). This yields contributions that have to be added to the differential
equations of the g;(!) in the form of a; ;£g;(1)gr(l). The a; ; are prefactors
depending on the result of the commutator [n(l), H(l)]. New operators o;
can emerge that do not appear in H(l). The truncation scheme decides

whether to keep them or not.

4. Take the new operators 0;, which shall be kept, multiplied by variable pref-
actors g;(1) and attach them to H(I).

Repeat steps 2 to 4 until no new non-negligible operators emerge. In the repeti-

tion of step 2 only new contributions to [n, H] have to be calculated.

Then the differential equations for the g;(1) exhibit the form:

8{‘;[([) - ]21; @ik 9; (1) gr(l)- (2.18)

The formal solution for the effective Hamiltonian is
Heg =Y gi(00)0;. (2.19)

It is usually not feasible to achieve an analytically exact solution for [ — oco. But
the closed system of differential equations for the g;(I) can be solved numerically.
The initial values g;(0) are given by the prefactors of Hy. The new terms arising
during the calculation of [n(l), H(l)] start with the intial prefactor zero. The

prefactors belonging to operators that are not particle conserving are monitored

3We use normal ordered operators to have a unique representation (see Section 2.3).

13
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during this integration because these terms are the ones that we want to eliminate.
If their absolute values are sufficiently small for a certain large value [ = [ so that
they can be neglected, the integration is stopped and the effective Hamiltonian

reads

Her = gi(1)o; . (2.20)

2.1.3 Comparison between PCUT and SCUT

The PCUT exhibits the typical advantages and disadvantages of perturbative
approaches. The increase of the expansion parameter x leads relatively rapidly
to poor results. Of course the quality of the results can be improved drastically
by applying extrapolation techniques such as e.g. Padé approximation.

Comparatively large orders are easily achievable by PCUT. The actual integra-
tion has to be carried out only once for the general scheme which is applicable
to variable models while the SCUT yields different systems of differential equa-
tions for each model. For SCUTs the differential equations have to be integrated
whenever a new model is considered. Even if only the initial values are different,
a new integration has to be carried out.

The PCUT has been successfully applied in the context of many different prob-
lems. Examples of such problems are the Hubbard model [46], many-particle
systems [47], spin chains [25] and also spin ladders [27, 48]. The SCUT was
also sucessfully used in a broad field of contexts — e.g. for the Anderson model
[49-51]|, superconductivity |52-55|, undoped antiferromagnetic spin chains and
ladders |19], bosonic atoms in an optical lattice [19] and the derivation of an
effective ¢-J-model from the Hubbard model [19, 56]. A general overview with
many more examples for applications of both fashions is given in [57].

The overlap between energies of subspaces of the Hilbert space with different
particle numbers hinders the convergence of the integration of the differential
equations for [ — oo because the pc generator sorts the eigenenergies according
to the particle number. If states with more particles have a lower energy, a CUT
using the pc generator is no longer adequate!. In this case an adaption of the
generator [26] can be helpful (see Section 2.5).

However, the PCUT constitutes an expansion around the point where the ex-

pansion parameter x is zero and no overlap exists. Therefore an actual overlap

4In praxi the CUT can converge, nevertheless, if the truncation is very strict. This is discussed

in the next section.

14
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for z > ¢ > 0 has no influence on the convergence of the PCUT. The effects of an
overlap are not captured by the PCUT. Also approaching continua, which do not
overlap yet, pose a problem for the PCUT. Approaching continua are sensitive
to each other, which results in a deformation of the continua. The PCU'T results
have to be corrected by rather sophisticated extrapolation techniques to reflect
the physical properties of approaching continua. A clear advantage of the SCUT
is that such properties are included directly in the resulting effective models.

While the PCUT results exhibit the typical problems of series-expansions in-
creasing with the perturbation parameter, the errors of the SCUT results stem
from the truncation of the Hamiltonian. To find a suitable truncation scheme is
still a difficult task. The optimal truncation is usually determined a posteriori:
If the results converge concerning the expansion of the truncation parameters,
the results are expected to reflect the physical properties of the Hamiltonian and
the effective model is considered to be valid and reliable (cf. Section 4.3.1). An
a priori determination of the truncation error is an objective of current research
[58].

The truncation for the SCUTs treated in this thesis is based on a real space

representation. The reasons for this choice are discussed in the next section.

2.2 Real Space Representation and Truncation

A multitude of the problems treated in theoretical solid state physics is formulated
using localised states (e.g. Wannier states) and local Hamiltonians in second
quantisation [59|. This does of course not imply that the physics of these systems
is restricted to local effects. The excitations of the spin ladder are known to have
a gapful dispersion as long as the four-spin interactions are small enough (see
Sections 4.1 and 5.4). The correlation length £ and the energy gap A satisfy
the relation A oc £ where z denotes the dynamic critical exponent [60]. Thus
the correlations are local and long-range interactions are less important. The
truncation needed for the SCUT to keep the number of differential equations
finite can hence appropriately be implemented by omitting longe-range terms.
We have to keep in mind that this truncation is a crucial point as it is essential
to keep the number of differential equations finite for an infinite system (or to
keep the number of differential equations manageable for a large finite system).
Except for the numerical error of the integration the only step causing errors is

the truncation. The most obvious truncation for a system dominated by local
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CHAPTER 2. CONTINUOUS UNITARY TRANSFORMATIONS

correlations is to omit long-range interactions.

Another characteristic which has to be considered for the truncation is the
number of particles involved in a certain interaction. This aspect is of course
correlated with the locality of the interaction because the more hardcore particles
are involved the less local is the concerning term. For the spin ladder the crucial
physics of the parameter regime in which we are interested is covered by terms
affecting one and two particles [61].

It should also be noted that the truncation is only restricted to operators.
There is no truncation of the Hilbert space of the states. Thus although operators
affecting higher numbers of particles are omitted, the number of particles that
can be treated can be arbitrarily large. To illustrate this we consider the action
Za}ak, which annihilates one particle and

creates two. This term acts not only on the one-particle subspace, but also on

of a term in second quantisation, e.g. a

the subspaces with more than one particle, e.g. it changes a four-particle into a
five-particle state.

The concrete truncation scheme used for the spin ladders is discussed in detail
in Sections 4.2 and 5.2.

The truncation also affects the convergence of the flow. In case of a diverg-
ing flow the truncation of terms that hinder the convergence can suppress the
divergence. This is illustrated by an example for which the eigenenergies shall be
known a priori. For convenience we assume that terms affecting more than two
particles are negligible. Moreover, the only terms that do not conserve the par-
ticle number are of the form aTnaLAnam or af,a,. A,a,, where the indices denote
the site on which the operator acts. These terms are the non-diagonal ones in
our example.

Let us consider a simple case first, in which the one-particle dispersion and
the two-particle continuum do not overlap (see left panel in Figure 2.2). Because
of the asymptotic behaviour of the non-diagonal elements (2.11) the convergence
is hindered only if energies of subspaces with different quasiparticle numbers
overlap, while the flow of an SCUT with the pc generator always converges. This
was shown in the introduction of the present chapter.

If an overlap is present like in the middle and in the right panel in Figure 2.2,
the flow may diverge. The difference between the panel in the middle and the
panel on the right is the influence of different truncations. It depends on the
truncation which two-particle states are reached by the non-diagonal terms. The

real space distance between the two particles is decisive. The terms aLaILJFAnam
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Figure 2.2: Schematic examples for one- and two-particle energies. The black line is
the one-particle dispersion, the solid cyan lines are the boundaries of the two-particle
continuum and the dashed cyan lines are the energies of the two-triplon states which
are actually affected by the non-diagonal terms. In the left panel the one- and two-
particle energies do not overlap and no convergence problems occur. In the middle
and right panel an overlap is present. If this overlap actually causes divergence, a
stricter truncation in real space may yield convergence. The energies of the two-particle
states affected by the non-diagonal terms are discrete due to this truncation. Further

information can be found in the text.

convert one particle into two particles with a real space distance |An| between
the particles, the Hermitian conjugate terms ainanjLAnan convert two particles
with a real space distance |An| into one particle. The truncation restricts |An|
to a maximal distance Ang.,. Hence not the whole continuum is affected by
the non-diagonal terms but only Ang., two-particle states with discrete energies
lying within the continuum. These discrete energies are depicted as dashed lines
in Figure 2.2. In the middle panel a stricter truncation (Anya, = 2) is considered
than in the right one (Anpya. = 10). Therefore the number of two-particle states
with discrete energies, which are affected by the non-diagonal terms, is different.
If the discrete two-particle energies do not overlap with the one-triplon dispersion
(like in the middle panel), the SCUT is less sensitive to the actual overlap and
the flow converges. Hence a stricter truncation can yield convergence in case of
an overlap that would actually cause divergence. For Ang., — oo the discrete
energies merge into the continuum.

Note that the one-particle dispersion that lies within the two-particle contin-

uum can only be exact if there is no coupling between their subspaces. In case of
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CHAPTER 2. CONTINUOUS UNITARY TRANSFORMATIONS

possible transitions between the one- and two-particle subspace the one-particle
dispersion is only defined outside the continuum. Nevertheless, the one-particle
dispersion can still be tall in the two-particle continuum as a a resonance, which

can be observed in the two-particle spectral density.

2.3 Reference State and Normal Order

The definition of a reference state is necessary for the implementation of a nor-
mal ordering scheme. The normal ordering is of great importance as a unique
representation is needed for comparing operators during the setup of the differ-
ential equations. We also single out the relevant processes based on the normal
ordering.

In the following n will denote the lattice site. In case of the spin ladder the

global reference state |0) is composed of the local reference states |0), as follows
0) = X)10), - (2.21)

This state will be mapped onto the quasiparticle vacuum by the CUT. For other
models it is not always reasonable to compose |0) of local states. However, en-
tangled reference states are less tractable.

The concrete choice of |0), and therefore |0) is physically motivated. The state
|0) in its form before the transformation should be already close to the ground
state, i.e. the quasiparticle vacuum. Usually we consider a solvable limit of the
Hamiltonian. The ground state of this limit is a suitable choice for |0) as long as
the parameters of the Hamiltonian are close to this limit. Then we expect |0) to
be close to the actual ground state.

This actual ground state is usually very complex and not explicitly deter-
minable. The same is true for the quasiparticles, i.e. excitations. Figure 2.3
illustrates the mapping of a CUT onto a state describing a single excitation if the
correlation decreases exponentially with spatial range (cf. preceding section).

For the normal order we employ a definition that is somewhat different from
the usual one because the reference state is a product state in our case (2.21).

According to our definition, a local operator 0,, is normal ordered if
(0] 6, |0y = 0. (2.22)

Accordingly a product of local operators 6 = [[,, 0, is normal ordered if each of

its local factors 0,, is normal ordered.
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CUT

Figure 2.3: Ilustration of the transformation of a state that is mapped onto a single
quasiparticle in case of an exponentially decreasing correlation. On the left hand side
the situation before the transformation is depicted: The state is a product state of local
reference states (white circles) and another local state (black circle); this state is an
excitation with respect to the solvable limit of the Hamiltonian for which the reference
state is the ground state. The right hand side shows the state after the transformation:
The actual excitation is dominated by the state on one site (black circle), but it polarises
its environment (shaded circles). This polarisation decreases exponentially with the

distance from its center (illustrated by different shadings).

In the case of a degenerate ground state a single reference state is not sufficient.
A reference ensemble is needed instead, which is, however, not the case for the

spin ladder. An example for a reference ensemble can be found in Ref. [56].

2.4 Hardcore Particle Algebra

The quasiparticles populating the spin ladder, which are introduced in Sections
4.1 and 5.1, are hardcore particles, i.e. if a site is occupied by such a quasipar-
ticle no other quasiparticle can be created there. The magnetic exciations of
the spin ladder are bosonic hardcore particles, which are dominated by a local
triplet state. Due to the threefold degeneracy of the triplet these particles come
in three flavours. The hole excitations are fermionic hardcore particles, which
are dominated by a local state consisting of a hole and a spin % This particle
has four flavours because the spin has two possible positions and two possible

orientations. Note that for the fermions the hardcore property is stronger than
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the Pauli exclusion principle because a fermionic hardcore particle on a site also
excludes bosons as well as fermions in different states.

We introduce operators bi“a and b, , creating and annihilating respectively a
bosonic quasiparticle, i.e. a particle with integer spin. The index n denotes the
site to which the operator is applied and the index « the state of the quasiparticle.
In analogy we define fermionic creation operators fia and fermionic annihilation
operators f, , for quasiparticles with half-integer spin.

The algebra for the hardcore bosons is given by the commutation relation

Byas bl 5] = O <5a,ﬁ <1n = ejmen’,y> — Z)Lﬂbn,a> (2.23)
Y

where eim and e, , denote all possible creation and annihilation operators (bosonic
and fermionic). The sum over 7 goes over all possible states for the quasiparticles.
Note that 1,, — Zﬁ/ eiwen,,y is one for an empty state and zero otherwise. This
operator is not normal ordered due to the identity operator (see Section 3.5). In
products of local operators the identity operator can be neglected because only
the operators affecting the quasiparticles are relevant. The operator product in
the Hamiltonian consisting of identity operators only for all sites yields a constant
energy (infinite for an infinite system), which can be omitted by an appropriate
offset. In the effective particle conserving model, i.e. for [ — oo, this constant
energy is the groundstate energy of the system at hand.

Concerning different sites the operators behave like usual bosonic operators:
they commute accommodated by the ¢, , in Equation 2.23. Acting on the same
site the hardcore property comes into play. According to its definition the com-

mutator yields

[bn,on bl,ﬁ] = bn,abi,ﬁ - bi,ﬁbn,a‘ (224)
The action of the first term bn,abjl,ﬁ depends on whether « is equal to 3 or not.
It can be easily seen that bmabilﬁ = 0 for a # (8 due to the fact that multiple

occupation of one site is not allowed. In the case a = 3 the term bn,abL’ﬁ = bn,abf%a
acts like the operator which counts the empty states because it is zero for an
occupied site and one for an empty one. Incorporating these relations one gets
the form of Equation 2.23.

For the hardcore fermions the following anticommutation relation holds true

{fn,on f:n,ﬁ} = 5717777« (5075 (ﬂ‘" - Z 611,7671,7) + f;,ﬁfn,a> . (225)
Y
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0,0

=0 finite [

Figure 2.4: Schematic example for a transformation of H(l) induced by the gs,1p gen-
erator: Fach coloured (n., ng)-block represents contributions to H creating n,. particles
after annihilating n, particles. The red line indicates that all operators affecting more
than four particles are truncated. The generator contributions are depicted as shaded
blocks.

In analogy to the bosonic operators the fermionic ones behave like usual fermionic
operators if they act on different sites, i.e. they anticommute. For operators on
the same site only the hardcore property is relevant.
Commutators with fermionic and bosonic operators belonging to hardcore par-
ticles yield
[bn,om :qr@,ﬁ] = _5n7mf11,,6‘bn,a (2'26)
and

[.fn,on b;rn,“[}] = _5n,mbi,ﬁfnya (227)

because bosonic and fermionic operators commute acting on different sites.

2.5 Adapted Generators

2.5.1 Exclusion of Terms from the Generator

If transitions between particle spaces with overlapping energies are possible, the
pc generator (which is based on the idea that more present particles always cor-
respond to a higher energy of the system) is only partly appropriate because the
resulting SCUT usually shows problems with the convergence for [ — oco. Actu-
ally the SCUT diverges in this case if the truncation scheme is made less strict.
Because the divergence is induced only by long range terms for small overlaps,

the truncation of these terms can restore convergence (see Section 2.2). But this
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Figure 2.5: Schematic representation of an overlap between a two-particle continuum
(boundaries in black) and a three-particle continuum (boundaries in cyan). The over-
lap is present for k£ = 0.557 and depicted by the black shaded area. The terms
a:'“ailgail?)ama% induce a transition from the two- to the three-particle continuum and

the hermitian conjugate terms a transition vice versa.

convergence is accompanied by the neglect of physical properties. Therefore the
resulting eigenenergies reflect the assumptions implied by the generator. The con-
cerning overlapping energies are separated by the transformation, i.e. the effective

Hamiltonian does not exhibit this actual overlap.®

Nevertheless, if the continua have a strong overlap, the integration of the SCUT
differential equations for the prefactors of the Hamiltonian diverges for [ — oo.
The exclusion of the terms responsible for the transition between the overlapping
continua from the pc generator is a remedy for this problem. For instance, if
an overlap between the two- and the three particle continuum (see Figure 2.5)
hinders the convergence, terms of the form aTnlaILzaTngaMa% and the hermitian

conjugate terms are excluded from the generator.

5Note that the approach of non-overlapping continua results in a deformation of the energy
bands as an actual physical effect. This effect is captured by the pc SCUT. However, if an

overlap is present, the pc generator encounters problems (cf. Equation (2.13)).
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The consequence of this exclusion is that the concerning particle spaces remain
coupled. In contrast to the application of the pc generator the Hamiltonian loses
its block-band form during the flow then. Of course the diagonalisation of the
parts of the Hamiltonian concerning the according particle spaces still has to be
done if the corresponding continua shall be calculated. But regarding all other
particle numbers the Hamiltonian will be block-diagonal after the SCUT, which
now converges for [ — oo.

In Figure 2.4 an example for an SCUT adapted in the manner described here
is depicted. We use again the (n., n,)-block representation introduced in Section
2. In this example the generator contains only the (0, n)- and (1, n)-blocks as
well as the conjugate terms. We use the term gs,1p generator for this generator,
which decouples only the ground state and the one-particle state from the rest.
We start from a Hamiltonian exhibiting the same structure as in the example for
the pc generator in Figure 2.1. Conferring both examples the differences between
both generators with respect to the structure of the Hamiltonian during the flow
and for [ — oo become clear.

If the continua belonging to certain particle numbers are not of interest, the
terms of the Hamiltonian connecting the concerning subspaces can be excluded
for the sake of performance. Although terms appear during the flow that would
not be induced by the pc generator, the right hand side contributions to the flow
equation (2.3) are reduced which simplifies the problem considerably.

Generally all problematic terms can be excluded from the generator at the
expense of the decoupling of the corresponding subspaces. A detailed discussion
of generator adaptions by excluding terms from the pc generator can be found in

|26] where quasiparticle decay is examined by means of SCUT.

2.5.2 Additional Sign Changes in the Generator

If the local behaviour in the model suggests that certain processes increasing the
particle number are lowering the energy, the concerning terms can also be pro-
vided with a minus sign in the generator instead of being excluded. Then the
Hermitian conjugate terms decreasing the particle number and raising the energy
do not get the minus sign they would get in the pc generator. The advantage of
sign change over exclusion is that these terms changing the particle number will
not occur in the effective Hamiltonian since their contribution to the generator

causes their decrease for large [. Thus all subspaces corresponding to certain par-
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ticle numbers will be decoupled from each other producing a particle conserving
effective model.

In the context of the hole-doped spin ladders this idea of adapting the sign of
the generator terms becomes interesting. Increasing the number of magnetic exci-
tations corresponding to quasiparticles is not necessarily accompanied by raising
the energy because the presence of a hole permits new processes in which the
generation of additional magnetic excitations implies the reduction of the energy
of the hole. Analogous processes decreasing the number of excitations and en-
hancing the hole energy are also possible. A detailed discussion of this issue will
be given in Section 5.3.

Both possibilities of adapting the generator for the SCUT described here
exclusion of terms and sign change — can of course be combined to achieve optimal
results.

Nevertheless, the computation of the sign of the energy change in advance
is not a simple task because this sign is actually one of the properties of the
effective model which still has to be calculated. If this property depends on the
momentum, the ansatz of truncating in real space depending on extensions of
operators is not feasible. The effects of a generator based on a wrong estimation

are discussed in Section 5.3.

2.5.3 Real Space Restriction of the Generator

Many terms that remain after the real space truncation of the Hamiltonian act on
states with discrete energies within the continua (see Section 2.2). The divergence
of the SCU'T in case of an overlap is not induced by all terms that mediate between
overlapping continua, but only by a part of these terms (see Figure 2.6). It was
also shown in Section 2.2 that a stricter real space truncation of the Hamiltonian
can induce convergence.

However, a stricter truncation causes a larger error for the results of the SCUT.
Therefore we do not apply a stricter truncation to the Hamiltonian but we choose
a stricter generator. We emphasize that a restriction of the generator does not
imply an approximation. It only changes the direction of the unitary rotation.
This restriction of the generator is not based on the total extension of the terms,
but on the extension of the creation operators and the extension of the annihi-
lation operators. Let us consider the example of an overlap between one- and

.I.

5 . . . . —'- -i-
two-particle energies shown in Figure 2.6. The terms ala,  A,a,, and a},a,, A,a,
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Figure 2.6: Schematic example for an overlap between one- and two-particle energies.
The black line is the one-particle dispersion, the solid cyan lines are the boundaries

of the two-particle continuum and the dashed lines are the energies of the two-triplon

states which are actually affected by the terms aLaiH_An

dashed lines do not pose a problem because they do not cross the one-particle dispersion.

am and ainan+Anan. The cyan

The convergence problem is induced by the terms that act on the states with the red

dashed dispersions, which cross the one-particle dispersion.

are responsible for transitions between the one- and the two-particle subspace.
We choose to restrict the generator based on |An|, which is the distance between
the two particles which are created or annihilated. Because the one-particle state
does not have an extension, it is not relevant for the restriction of the generator.
All terms that have a larger |An| than a certain Angy,, are excluded from the
generator. Note that they are still part of the Hamiltonian as long as they meet

the truncation criteria for the Hamiltonian.

The transformation induced by this restricted generator does not try to sort all
eigenenergies (cf. Equation 2.12), but only those which are captured by the terms
in the generator. Therefore the flow may also converge in case of overlapping
energies. The price to be paid is that the subspaces affected by the omitted terms

are not completely decoupled from the remaining Hilbertspace. Thus either an
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additional diagonalisation has to be applied to the effective Hamiltonian from this
SCUT or the results have to be considered as upper limit for the actual results.
The restriction of the generator can be applied to the pc generator or to any of its
adaptions. A concrete example for such a restriction is introduced and discussed

in Section 5.3.
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3 SCUT Implementation on a

Computer

For the realisation of an SCUT it is essential to implement a program tailored
to the particular purpose. The special features of such a calculation have to be
optimized for the computing performance. These technical aspects are discussed
within this chapter.

Because the SCUT consists of two different parts, it is advisable to use two
separate programs. The first one sets up the differential equations arising from the
Hamiltonian to be diagonalised in consideration of the algebra of the underlying
operators. The second one integrates the differential equations set up by the first
one. The advantage of the separation of these two steps consists in the possibility
to apply the second step with different initial values independently from the first
one because setting up the differential equations is very demanding concerning

memory and time.

3.1 Data Structure

To implement the first part of the SCUT, which sets up the differential equations
for the prefactors of the Hamiltonian, the programming language C++ is used.
For the sake of performance we do not use a computer algebra system like Math-
ematica or Maple because up to several hundred thousands of terms have to be
treated for the systems considered within this thesis.

A class for the operator terms is an essential part of our program. The objects
of this class have the following attributes.

The prefactor for these terms is a common fraction consisting of a sign, an inte-
ger numerator and an integer denominator. In this thesis only integer prefactors
are actually needed. But for other algebrae fractions cannot be avoided, which

should remain common fractions as long as possible to minimise the rounding
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errors. Only the numerical integration in the second part of the SCUT requires
floats.

A boolean variable determines whether the prefactor is real or imaginary. The
terms appearing in the models of this thesis are either purely real or purely
imaginary. However, complex prefactors can be represented using these attributes
by splitting a number into its real and its imaginary part.

The main part of the term is an array of local operators. For these operators a
particular class is implemented. It is advisable to use a matrix representation for
the local operators as the commutators and the combinations of local operators
are easier to calculate by means of matrix products. Also the site which is affected
by the local operator has to be an attribute. The models of this thesis are quasi
one-dimensional so that the site can be represented by an integer scalar. For
higher dimensions it has to be a vector.

A large number of terms is generated during the setup of the differential equa-
tions and each resulting term of a commutator has to be compared to the terms of
the Hamiltonian to check if it contributes to already existing terms in the Hamil-
tonian or to new terms to be established. To simplify this comparison a hash
value is attributed to each term depending on the operators included. A hash
function assigns a unique hash value to a certain combination of local operators.
Terms with the same hash value are combined to a group. Then the search for
equal terms can be restricted to the group with the same hash value. The more
possible hash values there are the smaller the groups are and the faster the search
can be done. The hash function should also assign the values evenly so that the
sizes of the groups do not differ too much. If terms are similar, a search for a
certain term is more difficult and therefore slower. Hence similar terms should
get different hash values. The hash function should rather be implemented in a
way that terms with equal hash values differ distinctly so that it is easier to dis-
tinguish them and the search becomes faster. An appropriate hashing can speed
up the program significantly. We have chosen a simple hash function based on

the modulo operation. The hash value v is given by
v =(...(ipa + i1 )modM)a + is)modM )a + iz)modM)a + . . . 1i,) (3.1)

where 75 denotes the index that characterises the k-th local operator of the term.
The number of local operators is n, the of possible hash values is M and a denotes
the number of possible local operators. To avoid an integer overflow the modulo

operation is applied after each addition.
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It is also convenient to use an attribute “multiplicity”, which appears in the
context of the utilisation of the symmetries, which are discussed in the next
section. The time needed to determine this number can be reduced if it is only
calculated once and stored as an attribute instead of caculating it numerous times.
Of course other properties that are needed frequently can be attributed to the
terms as well if their calculation is time-consuming.

The terms in the sum of the Hamiltonian should be stored as a dynamical array
because the size of the final Hamiltonian is not known in advance. Because the
terms of the pc generator are all part of the Hamiltonian except for possible signs
2.7, the generator does not have to be stored additionally to the Hamiltonian.
If a term has to be used as a generator term, the potential additional sign is
added during the calculation if necessary. For the adaptions of the pc generator
introduced in Section 2.5 we proceed in the same way.

Arbitrary operators are transformed according to Equation (2.4). Because
Hamiltonians are the only operators that were transformed in this thesis, this
aspect of the SCUT is not treated here. A detailed description of the implemen-

tation of general operator transformations can be found in Ref. [19].

3.2 Utilisation of Symmetries

The utilisation of symmetries given by the Hamiltonian of the model saves time
and memory and it is therefore essential for complex problems. For infinitely ex-
tended systems the SCUT is even theoretically infeasible without the utilisation
of at least one symmetry that reduces the Hamiltonian to a finite number of rep-
resentative terms. Normally this symmetry is the translation symmetry. Terms
that emerge from each other via translations in real space can be represented by
one exemplary term. In a one-dimensional system in which the sites are labelled
by integers one can use the term with the smallest site number equal to zero
as the representative for the whole group, which contains an infinite number of
terms.

Other generic symmetries that can be utilised are the remaining symmetries
of the lattice, symmetries in spin space or particle-hole symmetries. Also the
hermiticity of the Hamiltonian, which is no symmetry in the usual sense, can be
utilised. It is discussed here how to calculate the complete commutator using the
representative terms for discrete symmetries exemplarily.

The Hamiltonian H represented by a sum of the terms h; with their prefactors
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fi can be written as a sum over the whole symmetry group G (with [g elements)

comprising all symmetries to be used:

N N,
H=> fhi=> > fih (3.2)
i=1 G j=1

where N denotes the number of all terms of the Hamiltonian without consid-
eration of the symmetries and Ny the number of representatives. The actual
representatives isz carry the prefactors fj which are in general not equal to the
fi-

The relation

abs(f;) = abs(s; f;) (3.3)
holds true for the absolute value of the corresponding coefficients if there is a
one-to-one correspondence between single operator monomials under the group
transformations. The factor s; is the multiplicity of ﬁ, in the sum over G. If the
application of different symmetry operations to a representative generates terms
multiple times so that the sum over G contains them multiple times as well, the
prefactor of the concerning representative has to be reduced by the multiplicity
in the sum over GG. The simplest example for a nontrivial multiplicity, i.e. a mul-
tiplicity not equal to one, is the multiplicity of the unity operator. Because the
unity operator remains unchanged by the application of every symmetry opera-
tion, its multiplicity is equal to the number of all possible symmetry operations,
ie. lg.

For another simple example consider the symmetry operation R which reflects
a term with respect to a certain plane. If a term does not change under R, but
under all remaining symmetry operations, its multiplicity is 2.

Note that some symmetry operations change the sign of the coefficient. Hence
the sign has to be taken into account as well for the f] and Equation (3.3) is only
valid for the absolute values. For instance, the application of the parity operator
to a term affecting a state with odd parity yields an additional minus sign.

Due to the multiplicities the number of terms in the Hamiltonian usually can
not be reduced by the factor l;. But especially for a large number of terms the
reduction usually comes close to it. There are cases where the reduction can
actually be larger than [ if the utilisation of the symmetry avoids the emergence
of certain terms [62].

The calculation of the commutator, however, cannot be restricted to the rep-

resentatives only. As the generator consists of terms that are also part of the
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-1 0 1 2 3

Figure 3.1: The example for the use of the translation symmetry in the commutator
explained in the text is illustrated. The action of the terms ag, b_1, by, by and bo
on a one-dimensional chain, whose sites are depicted as circles, is shown. The sites

affected by an operator are depicted by filled circles. The commutator [do, don Z;n] yields
the representative terms for the complete commutator [Zn an, > o, IA)n} In contrast
the commutator {do, l;o] considered in isolation misses the relative translations of the

operators that are present for [do, 6_1}, [&0, 61] and [&0, lA)g]

Hamiltonian, the commutator on the right hand side of the flow equation (2.3)
can be calculated by commutators of the form [h;, ;).

The symmetries can be used by

[Z fihi, fjﬁj] => [ﬁ-hi,ijﬁj] (3.4)
G G a G
so that one sum of the commutator can be restricted to the representatives and
only for the other sum the full symmetry group must be taken into account.
This is illustrated for the translational symmetry in a one-dimensional example.
The example considers the commutator of a term a,, acting on three neighbouring
sites and a term b, acting on two neighbouring sites where n denotes the smallest
site index (see Figure 3.1). The representative terms are ag and by without loss
of generality.

The complete commutator [Zn Any Y, En] incorporates an infinite number of

nontrivial terms for an infinite chain. The commutator [do, >on lA)n} omitting the
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CHAPTER 3. SCUT IMPLEMENTATION ON A COMPUTER

first sum and taking into account the representative ay only yields the represen-
tative terms for the result of the complete commutator because the omitted sum
causes the translation of the whole term.

The commutator of the representatives [do, 130] is only a partial contribution
to the representative terms of the result because omitting both sums neglects the
possible relative translations of the operators a,, and Bn

In the present case the sum over n for the b, can be restricted to n from —1
to 2 because all other i)n have no overlap with the representative ay and the
corresponding commutators are zero for bosonic operators!.

Note that the resulting representatives do not match the form defined in the
beginning and still have to be adapted to this definition. In our example this
means that the smallest site index of the resulting representatives is not zero in

general so that the terms have to be translated appropriately.

3.3 Setup of the Flow Equation

The essential part of the program that calculates the flow equation (2.3), which is
actually a system of differential equations for the coefficients of the Hamiltonian
(2.18), features two for loops running over the terms of the Hamiltonian. The
terms originating from the first loop represent the generator terms. Therefore,
still outside the second loop, it has to be checked whether the first term matches
the criteria for the generator. If it is not part of the generator, the second loop
is skipped and the first one continues with the next term.

Due to the utilisation of the symmetries the step in which the term from 7
and the term from H are identical must not be skipped. The application of the
symmetry operations, which takes place inside the loops, generates terms from
the H term that are different from the n term.

Figure 3.2 shows a structure diagram for the program that sets up the flow
equation. The two for loops described in the preceding paragraph are embedded
into a while loop that has the exit condition that no new terms arise inside.

In the case of a generator which conserves the block-band structure of the
Hamiltonian the procedure inside the two for loops should start with a query
if it can be concluded from the components of the two terms to be commuted

whether the commutator yields terms outside the band of the Hamiltonian. These

! Terms consisting of an even number of fermionic operators behave like bosonic operators.
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initialise

while (new terms occur)

for terms in n (1st for loop)

for terms in H (2nd for loop)

apply symmetries

calculate commutator

truncate

find representatives

include new terms in H

file contributions to diff. eqgs.

Figure 3.2: Structure diagram of the program for setting up the flow equation.

resulting terms are cancelled by other terms due to the properties of the generator.
Hence they can be left out immediately and the commutator does not need to
be calculated. Consider a starting Hamiltonian that changes the particle number
maximally by N. All Hamiltonians H(l) occurring during the flow inherit this
property if a pc generator is employed. A commutator of a term that changes
the particle number by n; and a term that changes the particle number by no
yields only terms that change the particle number by ny +ns (with ny, ny € 7). If
abs(ny +ng) > N, the results of the commutator violate the considered property

and do not contribute to the flow equation.

The term representing a part of the generator is attributed the appropriate

sign at this point. For the pc generator the sign is defined by Equation (2.7).
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Because | fh;, Yoo f]ﬁ]] has to be calculated (as explained in the last section), all
possible symmetry operations are applied to the second term of the commutator.
The arising terms are run over by a loop in which the commutator is calculated
finally. The function carrying out this task resorts to an array in which all possible
local commutators are stored? and to the distributive law for commutators which
is the subject of the next section.

Afterwards the truncation is applied to the results of the commutator. The
remaining terms are adapted to the definition of the representatives. Terms that
are equivalent to the same representative have to be summed up.

The results of the commutator are now in the final form and have to be com-
pared to the representative terms of the Hamiltonian. If they match an existing
term, the program stores the information that the coefficients of the two terms
which were inserted into the commutator contribute (including the resulting pref-
actor) to the derivative of the coefficient of the matching term (cf. Equation 2.18).
If a commutator result is a new term, the term is added to the dynamical array
of the Hamiltonian. Its initial value is set to zero because it is not present in
the starting Hamiltonian. Then the contributions to the flow equation are stored
like for an already existing term. This concludes the procedure inside the two for
loops.

When all commutators are computed for the terms of the starting Hamiltonian,
the for loops run over all combinations of the new terms among each other and of
new terms and old terms. When all the concerning commutators are calculated,
this procedure is repeated after each run as long as new terms emerge which are

not truncated.

3.4 Calculation of the Commutator

A commutator of terms consisting of local operators?

with ny operators a; in the first product and ng operators lSj in the second product

has to be calculated efficiently within the program. The operators a; and Bj are

2The possible local commutators can be calculated via matrix products at the beginning of
the program because the local operators can be represented by matrices (see Section 3.5).
? A local operator @; acting on site 7 is here an abbreviatory notation for @, _; 1;24:2®,,; 1;.
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3.4. CALCULATION OF THE COMMUTATOR

locally normal ordered* operators affecting only one site each.

The application of the commutator definition [A, B] = AB — BA with sub-
sequent combination of terms acting on the same sites is less efficient than the
application of the distributive law for commutators. The commutator can be split

into local commutators

[(ij a) ’ (ﬁl 6])] (3.6)

- ({0t (o) bl (1L ) (1))

which is convenient for commutators of bosonic operators or mixed commutators
with bosonic operators a; and fermionic operators b; or vice versa. If one of
the parts of the generator consists of an even number of local operators, the
commutator can be split into local anticommutators. Let ng be even without

loss of generality, then

_ 3y <(_1)l—1 <ﬁa) (ﬁ@) {an,br} < II ij) ( I1 a>>

k=1 i=1 i=1 j=1 §=l4+1 i'=k-+1

which is convenient for fermionic operators. Because the fermion number is con-
served within our models, in each term of the Hamiltonian the number of fermionic
creation operators always equals the number of fermionic annihilation operators,
i.e. there is an even number of fermionic operators in all of these terms.

The terms encountered in the commutator consist of both bosonic and fermi-
onic local operators in general. These general terms can be dealt with by ordering
the operators according to the algebra they obey, i.e. an operator A should be
written as a product of A, consisting of local bosonic operators and Af consisting
of local fermionic operators. Then each commuator to be calculated can be split

up according to
[4,8] = [Audy, 5,5 (3.8)

= [AwB] BrAs+ Ay [ B) By + By [A By Ay + 4By [Ar. ]

4The normal order used in this context is described in Section 2.3.
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The first three parts of this sum can be evaluated via Equation 3.6 and the last
part via Equation 3.7.

The advantage of this approach of relying on the distributive law is that the
commutator is reduced to a small number of terms close to the desired form
because most terms in the sums in Equations 3.6 and 3.7 are zero®.

Now the operators in the remaining products outside the commutator or anti-
commutator respectively have to be combined until each site is related to just one
local operator. The results of all possible local products can be stored in an array
like the results for the local commutators. To be able to compare the resulting
terms with the terms of the Hamiltonian, the defined order concerning bosonic
and fermionic operators as well as concerning the sites has to be established;

additional minus signs occur by swapping fermionic operators.

3.5 Matrix Representation for Local Operators

The local commutators, anticommutators and products of local operators needed
for the calculation are calculated at the beginning of the program. This is con-
veniently done in matrix representation. For a local basis consisting of N states®
there are N? linearly independent local operators, which can be represented by
N x N matrices. One of the states is the local reference state |0), introduced in
Section 2.3. The other states of the local basis shall be referred to as |r), with
re{1,2,...,N —1}. The pc CUT maps |0), onto the empty site and the other
states onto the site occupied by one quasiparticle, which can have N —1 different
flavours 7.

The corresponding vectors are defined to be

0 0
0) = 0 1), = ! 2) = 0 3.9

The operators eIN creating quasiparticles with the flavour r on site n are repre-

5The commutator for local bosonic operators acting on different sites vanishes and so does
the anticommutator for local fermionic operators. Furthermore, many local products a;b;

or bja; yield zero.
SFor the undoped ladder N = 4 holds (see Section 4.1). We consider N = 8 for the doped

ladder neglecting the double hole state (see Section 5.1).
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3.5. MATRIX REPRESENTATION FOR LOCAL OPERATORS

sented by the matrices

0 0 O 0 00
P 1 00 P 0 00 510
6n,l - 00 0 671,2 - 1 0 0 ( . )

from which the local operators e, . and el e , can be formed easily. Together

n,r n,r-n,r

with the unity operator 1,, these N2 —1 operators el , e andel e  constitute

n,r’ -n,r n,r - n,r

a local basis. The operator

(3.11)

O O =
o O O
o O O

n
is not chosen as an element of the basis because it is not normal ordered concerning

|0),,. This operator is therefore represented by the linear combination
I,— ) el e (3.12)

which was already used in Section 2.4. The unity operator 1, is also not normal
ordered concerning |0) , but it is not taken into account in products of local
operators as usual in second quantisation because it acts only trivially. The
overall unity operator 1 = @), 1,, yields only a constant energy contribution
and does not appear on the right hand side of the flow equation (2.3) because it
commutes with every term.

The matrices obey the hardcore algebra introduced in Section 2.4. The quasi-
particles can be bosonic or fermionic since the local algebra is only given by the
hardcore property. For bosonic particles (or mixed combinations of one bosonic
and one fermionic particle) only the local commutators and for the fermionic par-
ticles only the local anticommutators are needed. So in total N* relations have to
be calculated. Also N* different local products are possible. The results achieved
via the matrices are stored in an array for further use.

Although it is not obligatory to store all results due to the antisymmetry of the
commutator [A, B] = —[B, A] and the symmetry of the anticommutator {A, B} =
{B, A}, the program is faster if we can recall all results directly from the memory

without further operations.
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3.6 Numerical Integration of the Flow Equation

The second part of the SCUT — the solution of the flow equation — is a rather
straightforward numerical integration. A system of ordinary first order bilinear
differential equations (2.18) depending on the continuous variable [ has to be
solved. For instance, a fifth order Runge-Kutta method can be applied, which is
our algorithm of choice. An adaptive step size control is advisable because most
of the changes take place at the beginning of the integration while the coefficients
g:(1) remain almost constant from a certain [ on if the transformation converges
for large [. So the size of the steps of the numerical integration can be increased
during the calculation. The program code for the Runge-Kutta method can be
found in Ref. |63].

The convergence is monitored during the integration. Since all contributions
to the generator decrease exponentially in case of convergence, the concerning
coefficients are squared and summed up. This sum is defined as residual off-
diagonality (ROD). It is a measure for the convergence. The ROD is expected
to tend to zero for [ — oo. Note that the term “off-diagonality” is meant in
the broadest sense, i.e. the definition of the generator determines which elements
shall be kept for [ — oo and these elements are defined as diagonal parts of the
Hamiltonian. The RODs depicted within this thesis are always normalised to the
initial ROD.

With the decrease of the ROD the designated effective Hamiltonian is ap-
proached. If the ROD falls below a certain threshold specifying the precision of
the result (usually ~ 1071%), the integration can be considered as completed. The
origin of divergencies is discussed in Section 2.5 in the context of the adaption of
the generator. The number of coefficients is of the order of magnitude of up to

10° for the models considered in this thesis.
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4 Undoped Antiferromagnetic
Spin—% |adders

4.1 Model

leg 1 leg r

Ji
rung n *o—— o

rungn+1 e—e

Figure 4.1: Undoped spin ladder.

An undoped ladder consists of two Heisenberg
spin chains coupled to each other (see Figure
4.1). The ladder will be treated as a half-
filled spin—% model without electron hopping
but only with magnetic spin interactions. If
we just take into account nearest neighbour
interactions (with the coupling J, along the
rungs of the ladder and the coupling Jj paral-
lel to the legs of the ladder), the Hamiltonian

reads

H=J Z gn,l-gn,r—l—J” Z gma'gn—i—l,a (4.1)

where gn,a denotes the spin vector for the site
on rung n € Z and on leg a € {l,r}. In the
following the spin will be % and we will con-
sider the antiferromagnetic case that J, and J|
are both positive. This model describes a sub-
system of the telephone number compounds
(Sr,La, Ca, Y),,Cu24O4; (see Section 1.1). The

influence of the couplings J, and Jj is also il-

lustrated in Figure 4.1. The coupling Jg also appearing in this figure is discussed

later within this section.

Usually the spin ladders within the telephone number compounds are hole-

doped. However, in this chapter the undoped spin ladder is discussed, which
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CHAPTER 4. UNDOPED ANTIFERROMAGNETIC SPIN—% LADDERS

does not consider the charge carriers. This case is realised in LagCagCugOyy [32]
and approximately realised in Las 5 Cag g§Cug4Oy4; |42|. The doped ladder including

the charge carriers in form of holes is discussed in Chapter 5.

If the ratio x = % goes to infinity for bounded Jj, the two legs are decoupled

and can be treated as two independent Heisenberg chains.

In the case x = 0 the rungs are decoupled and form independent dimers. Then

the ground state for the antiferromagnetic case is composed of rung singlet states

10) = (X) Isinglet),, ® fm L), - (4.2)

n

The excitations are rung triplet states for x = 0.

The state |0) is a suitable reference state for the CUT as it exhibits the prop-
erties required according to Section 2.3. For x > 0 this state is no longer the
ground state and the actual ground state is unknown since the explicit opera-
tor that performs the SCUT cannot be determined. Yet as long as z is not too
large the singlet is the dominant part and this reference state is reasonable. The
elementary excitations are triplons, i.e. triplet states dressed with the magnetic
interactions with their environment. We do not want to use the term “magnon”
for these magnetic excitations because this term is usually associated with quasi-
particles in systems that exhibit long-range magnetic order (which is not the case
for the triplons). Moreover triplons feature a threefold degeneracy based on their
S =1 character [64].

For the triplet states we choose the so-called bond operator representation

[65]. The creation operators tf,, with t[  [singlet) = |ta), and the according

o,n

annihilation operators ¢, correspond to the states

te), = 7<m> 111)), (4.3a)
ty), = \%<m>+|u>> (4.3b)
t), = E(\Tl)ﬂﬁ))n- (4.3¢)

These states are aligned along the z-, y- and z-axis of the spin space. Due to the

SU(2) symmetry of the spins this basis is advantageous. Its benefit is seen in the
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representation of the Hamiltonian:

H
i — § i
JJ_ = HJ_ + ZL’H” = 2 tmatn’a (4.4)

+§ Z Z tiL,atn—FLa + tn-}—l,atn,a - Z tilvatn'f'LOétn,ﬁtn-kLﬁ
nobe a#p

+ Z tiL,atJr[L—i-l,ﬁtn,ﬁtn—I—La + Z tIL,atIH-l,a + 1, alntia
a#p @

The invariance under rotations in spin space by 4 about the principal axes S, S,
and S, is manifest in this representation in contrast to the usual representation
based upon the S, component of the concerning triplet state. For instance, a
clockwise rotation by 7 about the z-axis, which changes |t,),, into [t,), , [t,), into
— |t;),, and does not change |t,) . leaves H unchanged. Note that the energy of
the reference state |0) was set to zero in this Hamiltonian by adding the energy
%Jl to the local operator JLS;LJ . gn,r =J (—%]ln + Za timtma), which is the
diagonal part of the Hamiltonian in our representation.

The effects of the spin symmetries are discussed in Appendix A. An obvious
consequence is the saving of memory and time, but also numerical improvements
are implied.

Because the hybridization path around the CuyO,4 square plaquettes (cf. Fig-
ure 1.3) is strong, the influence of the four-spin interactions belonging to these
plaquettes (i.e. two neighbouring rungs) is not negligible [66]. These interactions
are referred to as ring exchange (also cyclic exchange) and can be expressed by
the operators II, and H;l, which permutate the spins of the plaquette p clock-
wise and counterclockwise respectively. The complete ring exchange Hamiltonian
reads

J
QEHEZjEE:U%+H;). (4.5)

p

The action of this term is illustrated in Figure 4.1. In the spin operator repre-

sentation the ring exchange Hamiltonian is expressed by

Jote = Jo > (Sur Suea) (S S (4.6)

+ (gnl : gnr) <§n+l,l : §n+1,r) — <§nl : §n+1,r) <§nr : §n+1,1> .

Actually the complete ring exchange HE also includes two-spin terms for all

two-spin combinations of the four spins on two neighbouring rungs. Yet the
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contributions from the terms coupling the spins along the rungs and parallel to the
legs are merged with the terms H, and H) so that the coupling constants J; and
Jj| include these contributions, whereas the terms coupling the spins diagonally
can be neglected here because their prefactor is only of the order of 3% of J,
[67]. The complete representation of the ring exchange using spin operators can
be found in Ref. |68].

In analogy to = we define zg = i—f. The term Hp is of importance for the
quantitative comparison with the experimental data for both the two-dimensional
Heisenberg lattice [66, 69 71| and the Heisenberg ladder [42, 68, 72 77|. Although
one could fit the neutron scattering results for the spin ladders [68, 72, 73| to a
model without ring exchange, this would imply that x was of the order of 2.
But due to the fairly isotropic geometrical structure of the ladders no essential
differences between J, and J are expected. An inclusion of the ring exchange
yields x ~ 1.2 and zg ~ 0.2 [75|. The infrared absorption [42] and the Raman
spectroscopy |74| also suggest that  ~ 1.2. For LaySr;pCussOy4; inelastic neutron

scattering determines x = 1.5 and zg = 0.25 |78|.

Also the theoretical derivation of Heisenberg models for spin ladders from one-
band [19, 79, 80| and three-band Hubbard models [67, 81 83] provides evidence
that zg is of the order of 0.2.

While the triplon gap A remains finite for all values of x without the ring
exchange |34, 84|, the gap closes with growing xg. Then the ground state is no
longer dominated by singlets on the rungs and hence the reference state |0) no
longer suits our purpose [85, 86|. Therefore the SCUT yields unphysical results
approaching this phase transition and diverges finally (see Section 4.3.1).

In the bond operator representation the ring exchange term (except for a con-

stant %Iln in the local term neglected here) reads

1
JDHD = JD Z Z |i_§tiz atn «a Z (t;rz,atn-i-l,a + tIL-i-l,atn,oe) (47)

1
T E T
- 1 (tiz,atn—l—l,oc + tn,atn+1,o¢):| + tJTrL,atn—l—l,ﬁtn,atn-i-l,ﬁ’
a’ﬁ

All terms except the last one already appear in the Hamiltonian without ring

exchange. This new term belongs to the diagonal part of the Hamiltonian because
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it is a density-density term. The complete Hamiltonian divided by J, reads

H

3
_ — _ - T
7~ = HutoHj+aoHo= (1 21@) En aj thotna (4.8)

X xr0 +
+ Z Z <§ + Z) <tJrrL,atn+l,a + tn—l—l,atn,a)

a
z f d f
_5 Z t;rz,atn—l—l,atn,ﬁtn—l—l,ﬁ + 5 Z tJrrL,atn—l—l,ﬁtn,ﬁtn-l-l,a
aF#p a#B

T xr0 +
+ <§ - I) Za: (t;rz,atn—i-l,a + tn,atn—l—l,a)

§ T
+ 20 tiz,atn—i—l,ﬁtn,atn—l—lﬂ]
a75

and includes all terms which are relevant for an appropriate description of the
spin ladder.

Note that H is invariant under the parity operation P, which is illustrated
in Figure 4.2. The parity of a singlet state with respect to P is odd, whereas
the parity of a triplon is even. Therefore the creation or annihilation of an odd
number of triplons violates the parity, while the parity is conserved if the triplon
number is changed by an even number. The terms of H either conserve the triplon

number or change it by two. Hence the parity is conserved by H.

Figure 4.2: Mlustration of the parity operator P, which reflects about the red axis.

4.2 Truncation

The finite energy gap A of the triplons |35, 36| is equivalent to a correlation be-
tween the triplons which is exponentially decreasing with respect to the distance.
Hence a truncation in real space is feasible. The extension in real space shall
be used as a measure for the physical importance of a term of the Hamiltonian.

In our quasi one-dimensional spin ladder the extension of a term is defined as
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0,0

44
dg

Figure 4.3: Schematic representation for a truncation of the undoped ladder Hamilto-
nian H(l): Each coloured (n., n,)-block represents contributions to H(l) creating n.
particles after annihilating n, particles. The d,, are the maximal extensions relevant
for the blocks in which they appear. The red line indicates a maximal particle number
N =4, i.e. terms cut off by the red line are omitted. The blue blocks are the particle
conserving terms that remain the only contributions for [ — oo in case of a converging
pc CUT. The green blocks are the contributions to the pc generator, which go to zero

for | — oo.

the difference between the smallest and the largest rung index of the local opera-
tors within the term. For higher-dimensional lattices an extension defined in the

taxicab metric is easy to handle.

The simplest way of truncating would be one maximal extension in real space
for all terms. Terms exceeding this limit would be omitted. But this approach is
not reasonable in our case. The number of possible terms increases more strongly
with the maximal extension for terms consisting of more local operators. However,
terms consisting of less operators are usually more important in the sense that
higher extensions should be taken into account for terms with less operators. For
instance, the coefficient of a one-particle hopping term consisting of two local

operators is usually larger than the coefficient of a two particle interaction term
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consisting of four local operators if they both have the same extension. Therefore
different maximal extensions d,, are defined in units of the rung distance where n

is the number of local operators of the concerned term.

Additionally a maximal particle number N is defined for the operators, i.e.
terms affecting higher particle numbers than N are completely omitted even if
the corresponding d,, is larger than zero. Figure 4.3 shows the truncation for
the undoped ladder schematically for H(l). The restriction N = 4 rejects all
terms outside the red line. Because only terms changing the particle number by
two or conserving the particle number occur in the starting Hamiltonian (4.4)
or (4.8) respectively, the number of local operators in a term is always even
during the flow and the Hamiltonian only consists of the coloured blocks in the
figure'. The total number of local operators is equal for the terms of the diagonals
from left bottom to right top. Therefore all blocks of each of these diagonals
share the same maximal extension d,,. The parameter dy for the (0, 0)-block is
meaningless as this block contains only the non-local unity operator for the whole
ladder, i.e. a constant energy contribution. This truncation scheme, which we use
within this thesis, is not compulsory. Other schemes could be implemented, which
use different classifications for the groups of terms sharing the same maximal

extension.

An important point is that a truncation of the operators does not affect the
Hilbert space. Actually we do not reduce the Hilbert space at all. A maximal
particle number for the operators does not restrict the possible number of particles
because we work in second quantisation on the infinite system. A (n., n,)-block
affects all states with n, particles or more. Therefore the (1, 1)-block acts on
all states that exhibit triplon excitations of arbitrary number larger than zero.
Actually the multi-particle continua are mainly determined by the one-particle

dispersion and can be made more accurate by including two-particle interactions.

!'The conservation of the parity with respect to P, which was introduced in the preceding
section, forbids the change of the triplon number by an odd value as the parity of one
triplon is odd.
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4.3 Results for the pc Generator

4.3.1 One-Triplon Dispersion

The dispersion for one triplon can be easily deduced from the effective Hamilto-

nian, which conserves the number of triplons. The (1, 1)-block has the structure

da

Hig= Y adt! jotna (4.9)

d=—ds n,x

where the hopping processes are restricted by the maximal extension dy. The
coefficients a4 are calculated by SCUT. A Fourier transformation diagonalises
H,p in the one-particle space. We consider a one-triplon-state with a concrete
flavour a € {x,y, z} because the three flavours are equivalent due to the SU(2)
symmetry of the spins. The one-triplon dispersion wyi(k), i.e. the one-triplon
energy relative to the ground state, can be identified as the Fourier transform of

H, ; applied to a one-triplon state, which is

da
wit(k) = ap + Z 2a4 cos(dk) (4.10)

d=1

with the rung distance set to one.
At first let us consider zg = 0. For small z the coefficients ay with d > 1 are

negligibly small and the one-triplon dispersion is

W1t(k)
J1L

~ 1+ zcos(k). (4.11)

Increasing x causes a growing dip in the dispersion at £ = 0. This is illustrated
by the one-triplon dispersions for x = 0.5, x = 1 and x = 1.5 shown in Figure 4.4
compared to the PCUT results. The dip at small momenta is due to the closeness
of the three-triplon continuum which lies energetically above (cf. Section 4.3.2).
The two-triplon continuum has no influence on the one-triplon dispersion as the
triplon number can only be changed by even values. The lowering of the one-
triplon energy observed here is included within the SCUT without further effort.
In contrast the PCUT is in need of additional extrapolations to incorporate this
feature [27]. The energy minimum is also located at k& = 7. The gap decreases
with ascending x, but it stays finite when  — oo for J = const where the ladder

turns into two independent chains [34, 84].
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Figure 4.4: One-triplon dispersion for x = 0: Comparison between PCUT and SCUT

with the maximal extension d = {ds, dy, dg, dg}.
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The maximal extensions d,, have to be adjusted to the parameters of the model.
For an accurate one-triplon dispersion result for x = 0.5, xg = 0 the truncation
N = 3, dy = 10, dy = 6 and dg = 3 is necessary and sufficient. The relative
deviation to the PCUT results [27] is less than 1%. Also the agreement with the
results derived by series-expansion [87], exact diagonalisation [68] and DMRG
|75 is very good. Thus increasing N or the d,, beyond these values is not requi-
site. As the two- and the four-triplon continuum already show a small overlap for
x = 0.5, 20 = 0 in the region k£ < 0.67 (as shown in Section 4.3.2), a truncation
scheme including more extended terms is expected to lead to divergence. If tran-
sitions between subspaces with different quasiparticle numbers are possible, the
CUT created by the pc generator should theoretically diverge because the sort-
ing of the eigenenergies with respect to the quasiparticle number is not possible
[23, 26]|. Truncating the terms responsible for the divergence, however, may yield
convergence again (see Section 2.2). For the given example the actual divergence
is caused by long-range terms, which are neglected by our truncation. Never-
theless, the crucial physical properties are retrieved by the short-range terms

included.

The residual off-diagonality (ROD) defined as the sum over the squared matrix
elements which are part of the generator? show an exponential decay (cf. Section
3.6). The ROD according to the three dispersions in Figure 4.4 are shown in
Figure 4.5.

The case x = 1, xg = 0 is more interesting because the overlap between the
two- and the four-triplon continuum is larger and it is present for all values of k&
(see Section 4.3.2). But for the truncations implemented within this thesis the
SCUT still converges. The expected divergence would also be induced by terms of
considerably larger extensions. Figure 4.6 depicts several one-triplon dispersion
results generated by SCUT, which differ in their maximal extensions. The PCUT
result is also shown for comparison. There are deviations between the methods
for small momenta. The SCUT result seems to converge towards a dispersion
which has a slightly less pronounced dip ?. Nevertheless, this result is within the

error bounds of the PCUT dispersion. We will come back to these deviations

2For the pc generator the ROD contributions consist of all the non-diagonal blocks of the
Hamiltonian while for the adapted generators every term that is not part of the generator

shall be considered as diagonal even if some terms are actually non-diagonal.
3The difference between the results for the truncations d = {10,8,6,4} (which is not shown

here) and d = {10, 8, 6,5} is of the order of 0.01%.
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Figure 4.6: One-triplon dispersion for x = 1,zg = 0: Comparison between PCUT and
SCUT with different truncations with N = 4 and maximal extension d = {ds, d4, dg, dg}.

and discuss the possibilities of their origin in the final discussion for the undoped
ladder (see Section 4.5).

For x = 1.5 and g = 0, it is not possible to obtain results for truncations
distinctly higher than N = 4, dy = 10, dy = 6, dg = 4 and dg = 3 (shown
in Figure 4.4). A further increase of the extensions leads to divergence. Thus
the influence of the overlap between the two- and the four-triplon continuum is
already noticeable. Yet an adaption of the generator can eliminate this influence
on the convergence. This adaption is discussed in Section 5.3.

The ring exchange lowers the one-triplon dispersion. This is illustrated by the
dispersions for x = 1 and various values for zg in Figure 4.7. Once the one-
triplon gap closes, a phase transition takes place. The ground state is no longer
dominated by singlet states on the rungs but by singlet states staggered along the
ladder |85|. For = 1 this transition happens at xg = 0.5 (see Ref. |86]*). Our
representation, in which excitations are dominated by triplet states on the rungs,

is no longer feasible for a real space truncation scheme because the correlations

4Note that within this reference zg includes an additional factor % and it is therefore half as

large.
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Figure 4.7: One-triplon dispersion for x = 1 and various values of x: Comparison
between PCUT and SCUT with N = 4 and maximal extensions dy = 10,d4 = 6,dg =
4,dg = 3.

between excitations do not remain locally restricted for a gapless dispersion. The
vicinity of the phase transition becomes noticeable in the quality of the SCUT
result. Note that the decline of the quality is only due to the real space truncation.
When the gap becomes less pronounced, terms with much larger extensions have
to be taken into account.

While the agreement between PCUT and SCUT is good for xg up to 0.2,
already for xo = 0.3 deviations occur and the shape of the SCUT result begins
to lose its smoothness. This effect is even more pronounced for xg = 0.4. For
xg = 0.5 the flow diverges. The slowing down of the convergence with increasing
ring exchange and its eventual loss can be seen in Figure 4.8 where the residual
off-diagonality (ROD), which was defined in Section 3.6, is plotted.

4.3.2 Multi-Triplon Continua

The band edges of the multi-triplon continua can be determined from the one-
triplon dispersions. For a complete n-triplon continuum the interactions of n

and less triplons have to be included. However, only binding effects for two
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Figure 4.8: ROD for x = 1 and various values of zg corresponding to the dispersions

in Figure 4.7. For x < 0.4 the SCUT converges, for xmg = 0.5 it diverges.

triplons have a detectable influence on the boundaries of the continua [61]. In
the following only the two-triplon bound states [42, 83 95|, which correspond to
these two-triplon binding effects, will be considered.

For the calculation of the two-triplon bound states the (2, 2)-block of the
effective Hamiltonian

H2’2: Z ad,T,d/tjz-}—r-i—d’,oet:z—i-r,ﬁtn—i-d,«/tn,é (412)

n,a,8,7,6
d,r,d’

with |d|,|d/|,|’l"|,|’f’+d/|,|’l"—d|,|’l"+d/—d| <d4

has to be diagonalised in addition to the (1, 1)-block. The initial distance between
the triplons d, the final distance d’ and the displacement r are restricted by the
maximal extension dy. Due to spin conservation for each operator one of the

following relations between «, 3, and ¢ holds true

a=0f = v=9 (4.13a)
a=0p # v=90¢ (4.13Db)
a=90 # [f=vy (4.13c)
a=v # [=90. (4.13d)
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Figure 4.9: Triplon continua for x = 0.5, xg = 0: On the left side the one-triplon
dispersion (black) and the boundaries of the three-triplon continuum (cyan) and on
the right side the boundaries of the two-triplon continuum (black), the two-triplon
bound states and the boundaries of the four-triplon continuum (cyan) are displayed.
The dashed lines (in each panel) represent the boundaries of the continua without

consideration of the two-triplon binding effects.

A two-triplon state |K,d, S, m) is characterised by the total momentum K, the
distance between the triplons d, the total spin S and the magnetic quantum
number m. The action of the (1, 1)-block

K /
Hi1|K,d,S,m)=2 E aq CoS ( 2d ) (sign(d — d'))° |K,|d — d'|, S,m) (4.14)
d'#d

and the action of the (2, 2)-block

HQ,Q‘K’d, S,m> (415)

d—d
= Zad’d,Tfy7d,—l—2 Z ad,r,d/cos<K<r— 5 )) |K,d',S,m)
d r>

d—d’
2 '

yield all matrix elements relevant for the two-particle subspace. Note that a; oo
) 2 )

0 for d_Td, ¢ 7. The part of Heg acting on the two-particle space is still non-
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Figure 4.10: Triplon continua for x = 1, xg = 0: On the left side the one-triplon
dispersion (black) and the boundaries of the three-triplon continuum (cyan) and on
the right side the boundaries of the two-triplon continuum (black), the two-triplon
bound states and the boundaries of the four-triplon continuum (cyan) are displayed.
The dashed lines (in each panel) represent the boundaries of the continua without

consideration of the two-triplon binding effects.

diagonal with respect to d in this representation. Therefore a Lanczos algorithm
is applied to the matrix. A detailed description of the diagonalisation of H.g can
be found in Ref. |48].

For z = 0.5 and xg = 0, the overlap between the two- and the four-particle
continuum is already present. In Figure 4.9 this case is depicted. The graphs
for the odd and the even triplon numbers are separated because only transitions
are allowed that change the particle number by two. In the region 0 < k& < 0.67
the lower boundary of the four-particle continuum lies below the upper boundary
of the two-particle continuum. In the preceding section it was shown that this
overlap is weak enough that its hindering influence on the convergence can be

excluded by the truncation while the decisive physical properties are included.

The dispersions of the two-triplon bound states are also presented in Figure 4.9.

For small momenta these dispersions are absorbed by the two-triplon continuum
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and hence no binding occurs. If the two-triplon binding effects are included in
the calculation of the continua with more than two particles, the lower boundary
of the three-triplon continuum is lowered for k£ < 0.497 and the lower boundary
of the four-triplon continuum is lowered for k 2 0.587.

For x = 0.5 and g = 0, the gap between the one-triplon dispersion and
the three-triplon continuum is manifestly too large to produce an appreciable
deviation from the dominating cosine shape of the one-triplon dispersion even if
the two-triplon interactions are considered. This deviation in form of a dip at
k = 0 caused by the approaching three-triplon continuum becomes relevant for
increasing x only (cf. Section 4.3.1). For x = 1 and xg = 0 this dip is present and
also the proximity of the three-triplon continuum to the one-triplon dispersion
can be observed if the two-triplon interactions are included in the three-triplon
continuum (see Figure 4.10). The results gained by the SCUT are again in very
good agreement with the PCUT results |96].

Although the distinct overlap between the two- and the four-particle continuum
ranges over all values of k for x = 1, it does not hinder the convergence of the
transformation for the considered truncations. The two-triplon bound states also
change their dispersion qualitatively with increasing x. For the S = 1 bound
state the maximum of the dispersion moves away from k& = 7 (to k ~ 0.637 for
x = 1) and the maximum of the S = 0 dispersion increases distinctly in relation

to the rest of the curve.

4.4 Generator Adaption

For x > 1 the SCUT with the pc generator is affected by the overlap of the
two- and four-triplon continuum relatively rapidly when the maximal extensions
are increased. The convergence worsens accordingly. To solve this problem a
generator adaption is advisable. The idea of excluding terms from the generator
introduced in Section 2.5 is the method of choice here. The CUT induced by
the pc generator diverges because it is not able to sort the eigenenergies of the
overlapping two- and the four-particle space according to the triplon number. The
terms that are responsible for the transitions between these two subspaces are the
terms with either four creation and two annihilation operators or vice versa. If
these terms are excluded from the generator, we expect the CUT to converge
despite the overlap (cf. Ref. [26]). The corresponding generator is referred to as

gs,1p (ground state, one particle) generator because it decouples the vacuum and
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gs.1p gs

Figure 4.11: Schematic representation of the Hamiltonian H(I) for the undoped ladder
using a gs,1p generator and a gs generator: Each coloured (n., n,)-block represents con-
tributions to H(l) creating n. particles after annihilating n, particles. The blue blocks
contain the particle conserving terms. The light green blocks are the contributions to
the generators. The generators do not include the dark green blocks in contrast to the
pc generator. Thus these blocks contain finite contributions for [ — oo. The red blocks
occur during a CUT induced by the adapted generators. This is not the case for a
pc CUT, which preserves the block-band diagonal structure |23, 25, 44]. However, the

contributions of the red blocks go to zero for [ — oo if the transformation converges.

the one-triplon space from the rest while the spaces with higher particle numbers
remain coupled. Actually the three particle space is also decoupled from the
rest as it only couples to the one-particle space due to the truncation parameter
N = 4 and the restriction that the particle number can only be changed by
even numbers. Nevertheless, the name gs,1p generator will be used because the
decoupling of the subspaces with low particle numbers are the essential feature. A
schematic representation of the transformation of the Hamiltonian is depicted in
Figure 4.11. The two-triplon bound state dispersions are not directly computable
from an effective Hamiltonian based on the gs,1p generator because the two-
triplon subspace has to be decoupled for this purpose. However, the one-triplon
dispersion can be derived as before (see Section 4.3.1).

In analogy we define the gs generator which decouples only the ground state.
This generator contains only (0, n)- and (n, 0)-blocks. The behaviour of the

Hamiltonian during the flow induced by the gs generator is also illustrated in
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Figure 4.12: One-triplon dispersion for x = 1,zq = 0: Comparison between PCUT
and SCUT with pc as well as gs,1p generator with N = 4 and maximal extension

d = {do, ds, dg, ds}.

Figure 4.11. The resulting effective Hamiltonian, however, yields no one-triplon
dispersion if only its (1, 1)-block is taken into account because the one-triplon
subspace is still coupled to the three-triplon subspace. Yet the Fourier transform
of the (1, 1)-block yields an upper bound for the one-triplon dispersion due to the
variational principle that a minimum in a restricted subspace is an upper bound
to the minimum in an unrestricted subspace. At the end of this section we will
present a gs result of the one-triplon dispersion for x = 1.5 that was achieved
by an additional diagonalisation concerning the one- and three-triplon subspace

using a Lanczos algorithm (cf. Ref |26]).

Before we consider the region x > 1 for which the generator adaption was
designed, we compare the results of the pc and the gs,1p generator for x = 1,
xg = 0 (see Figure 4.12). The gs,1p generator yields a one-triplon dispersion that
deviates from the pc result in the region & < 0.47. Although these deviations are
small (= 2% at maximum), the difference is larger than numerical inaccuracies.

The origin of these deviations is discussed in the next section.

In Figure 4.13 several one-triplon dispersion results for x = 1.5, xg = 0 are
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Figure 4.13: One-triplon dispersion for x = 1.5, g = 0 with N =4, N; = 2, d =
{da,dy,dg,dg}: SCUT result for pc, gs,1p and gs generator compared to PCUT result.
The red shaded area depicts the three-triplon continuum including two-triplon binding

effects. This continuum was calculated from the pc result with d = {10, 6,4, 3}.

compared. The SCUT was performed with the pc, the gs,1p and the gs generator.
The PCUT results are also shown. All calculations yield the gap at k = 7 in very
good agreement. However, the deviations for the rest of the curve are significant
for the different methods. While the SCUT results coincide for large &k for both
generators, the PCUT result already differs once & moves away from w. The
different truncations for the gs,1p SCUT lead to similar results that only differ
marginally at £k = 0. Also the gs result is in very good agreement with the gs,1p

result.

The lower boundary of the three-triplon continuum including two-triplon bind-
ing effects is also shown in Figure 4.13. The effective Hamiltonians from the
gs,1p generator and from the gs generator yield no reliable result for the lower
boundary of the three-triplon continuum because two-triplon binding effects can-
not be considered due to the coupling to the four-triplon space, which is still
present for [ — co. But the influence of the two-triplon binding effects is decisive

for the closeness of one-triplon dispersion and three-triplon continuum (see Sec-
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tion 4.3.2). Hence we used the pc result with d = {10,6,4,3}. The one-triplon
dispersion enters the three-triplon continuum for small momenta. This suggests
that both the pc generator, which was also used for the PCUT, and the gs,1p
encounter problems due to the sorting of the eigenenergies. In the next section we

will discuss the reliability of the different one-triplon dispersion results in detail.

4.5 Discussion

For small x and g the SCUT and the PCUT yield results in very good agreement
for the one-triplon dispersion and the boundaries of the multi-triplon continua.
The overlap between the two- and the four-triplon continuum can be detected.
Nevertheless, it does not hinder the convergence of the pc SCUT for the consid-
ered truncations as long as z < 1.5. The increase of x produces a growing dip at
k = 0 in the one-triplon dispersion while the gap decreases yet remains finite and
stays at k = m. Raising the ring exchange lowers the energy of the triplons until
a phase transition to a ground state dominated by staggered singlets occurs.

With growing x also the deviations between SCUT and PCUT grow. The
employment of the gs,1p generator, which is insensitive to the overlap between
the two- and the four-triplon continuum and which allows the examination of
higher values of z, leads to deviating results as well. However, the gap is still in
good agreement for all CUT versions. In the PCUT results the dip at £ = 0 is
more pronounced than in the SCUT results. For the gs,1p SCUT the effect of
the lowering of the one-triplon dispersion due to the approach of the three-triplon
continuum in the region of small & is less pronounced.

The deviations between PCUT and SCUT for x = 1.5 have precursors at x = 1
(cf. Figure 4.6). For x = 1 the dip at k = 0 is already less pronounced for
the SCUT result than for the PCUT result. Also the deviations for larger k are
adumbrated for x = 1. The dispersions from the SCUT calculations lie all above
the PCUT result in the k£ region from 0.557 to 0.917. Even if this is hardly
noticeable due to the slope of the curve, these deviations are of the order of 1%
for the larger maximal extensions and slightly larger for the stricter truncations,
i.e. for lower maximal extensions.

Although the extrapolations which estimate the effects of the approach of the
energies of states with different triplon numbers are rather sophisticated, they
become less precise when these effects increase. Thus a possible explanation

for the deviations could be that the extrapolations for the perturbative ansatz
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overestimate these effects. The SCUT could also underestimate the effect because
operators affecting five triplons, which are excluded by the truncation, could cause
an additional lowering. However, the influence of the five-triplon continuum is
expected to be small because the spectral weight decreases with the number of
quasiparticles [61]. The error bound of the extrapolated PCUT results is actually
so large that it includes the SCUT results. In addition the results from the
adapted generators seem to converge with increasing maximal extensions so that
we conclude that the SCUT results induced by the adapted generators constitute
an improvement over the PCUT result. Moreover, the one-triplon dispersion
crosses the lower boundary of the three-triplon continuum. This also indicates
that the pc results (including the PCUT result) are less reliable than the results
from the adapted generators because this overlap leads to problems with respect
to the sorting of the eigenvalues if the generator includes the (1, 3)- and the (3,
1)-block respectively. Although in principle the gs,1p generator can encounter
such problems as well, in the present case its result is in very good agreement
with the dispersion from the gs generator.

The regime J; > J is still challenging for the CUTs although the generator
adaption for the SCUT allows us to extend the calculations into this regime. As
the gs,1p generator leaves the subspaces with two and four triplons coupled to each
other, a subsequent transformation has to be found that allows the determination
of the two-triplon bound states which yield an important contribution to the
continua with more than two triplons. The Lanczos algorithm that was used to
decouple the one- and the three-triplon subspace in case of the gs generator is not
feasible for this purpose because it becomes too intricate if four-particle states

are involved.
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5 Hole-Doped Antiferromagnetic
Spin—% |adders

5.1 Model

For the hole-doped ladder four additional rung states with one hole are possible:

aretomi)y = 5 (10} + 101, (512
1

i), = 5 (110 =0 1), (.10
1

|ar=1,0=-1),, = NG (L 0)+101), (5.1¢)

Ore 1 o=—1), = —=
b Yn \/é

where 0 denotes the hole. State (5.1a) and state (5.1b) have an S,-spin of +3
while state (5.1¢) and state (5.1d) have an S.-spin of —%. The sign of the spin is

(L 0y =10 1)), (5.1d)

indicated by o. The parity with respect to P, which was introduced in Section 4.1,
is denoted by 7. It is even for the states (5.1a), (5.1c) and odd for (5.1b), (5.1d).
All these four states have fermionic properties regarding states on different rungs.
They can be created from the local singlet by the application of the corresponding
creation operators al ,  so that al  |singlet) = l|a.,), .

A further possible rung state — the double hole state —
|d) = 100) (5.2)

consists of a hole on each leg of the ladder. Hence |d) behaves like a boson in
relation to the states of other rungs. However, in this thesis only one-hole states
will be considered and hence this state |d) will be neglected. The local energy of
|d) is also larger than the energy of the other states. Therefore |d) is expected
to be also neglible for slightly doped ladders. So the local basis consists of eight
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Figure 5.1: Extension of the spin ladder by inclusion of hole states in the basis of local
states: While the undoped ladder (left hand side) has only singlet and triplet states
(the latter with three possible flavours and total spin 1), the hole-doped ladder has
four additional hole states which carry spin % The difference between these four states

consists in the sign of the spin z-component and the parity of the state.

states including the local reference state i.e. the singlet. This reduction by one
local state decreases the number of potential terms decisively!.
The Hamiltonian incorporating the local one-hole states is extended by the

next nearest neighbour electron hopping
Hhopping = _tJ- Z ij,amccr,a,n - t|| Z ij,amcma,n:tl (53)
n,x n,x

with the constants ¢, for the hopping within the rung from one leg to the other
and | for the hopping along the ladder from rung to rung. The electron creation

and annihilation operators ¢~ and ¢, , concerning an electron with spin o €

o,a,mn

LIf physical properties like charge or spin conservation did not forbid certain processes, the
number of potential terms with a maximal extension of d would be exactly s> — 1 for a

local basis with s states.
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{—%,2} act on leg o € {I,r} and rung n € Z. These electron operators already
contain hardcore properties as double occupancy is forbidden.

The Hamiltonian for the undoped ladder is extended by the hopping term and
magnetic interaction terms affecting the hole states. Since the hole states |a, ),
also have spin S = %, they interact magnetically with the neighbouring states.

The complete Hamiltonian reads

9
H = Hyngopea + 3 _ Hj. (5.4)

J=0

This Hamiltonian H is a t-J-model. The extension consists of the terms H; given
explicitly below. The terms are again divided by J; to obtain a dimensionless

Hamiltonian. In analogy to z = I and g = j—f the parameters A\, = %~ and

JL Ji
Al = T are used.
Hy _ t _ 3
7" Z; al o nlron ( TN + 4) (5.5a)
Y
JJ_ - 2 7_0<an> aT,o,naT,cr,m (55b)
2 = )\” Z o a—'r on m T tz,n) QAr om (550)
H3 = >\” Z a—'r,l,n - Zt;m + tx,n - z.ty,n) a"r,—l,m (55d)
+aT—T,—1,n (ti,m + i t;[/,m + tx,n + 7;ty,n) aT,l,m
& = ﬂ J[ln tT _ZtTm tzn_‘_tlm _txn+2tn Ar _1,m
JJ_ 2 7—7 , Y, s s s Y, ,— 4,
T,(n,m)
_I—aj',—l,n [(_tl,m - Zt;[/,m) tz,n + tl,m (t:c,n + Zty,n)] a"r,l,m (556)
Hs — ﬂ T ] ]
J_J_ 9 T%ﬂ m,1n (tx mt:c N + ty,mty,n + tz,mtz,n (55f)

—1 tl mty n + i t;; mtm n) aT,l,m + a;r—,—l,n (tl mtx n + t;;,mty,n

] ]
+ti,mtz n +1 t:c mty n i ty mt:c n) a’T,—l,m
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Z o a—TO’TL _'_ tz,m) CLT,CT,'I’L (5'5g)

To,nm

X
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The terms Hy to Hs contain the electron hopping (5.3) while the terms Hg to
Hy cover the magnetic interactions between the hole states caused by the spin
interactions (4.1).

The local terms for the one-hole states constitute Hy. This term causes the
splitting of the one-hole dispersion into two bands one for each parity due
to the factor —7A . Note that the terms H; to Hyg do not depend on the parity
of the hole states as they are invariant under change of parity. Because the
singlet is considered as the vacuum state defining the zero-point energy, the energy
difference of % has to be paid additionally for each hole state.

The term H; describes the pure nearest neighbour hopping of the hole states
lars),- Note the additional factor 1 5 in the coefficient 2L of these terms in contrast
to the coefficient for the electron hopping (5.3). The ¢ operators in Equation (5.3)
act on single-spin sites, while the a operators in H; act on rungs. The projection
of the bare hopping onto the final state yields the factor %

The terms Hy; and Hj belong to processes creating or annihilating triplons
% as well. The

parity of the hole state has to change because the creation or annihilation of one

associated with the hopping of a hole state. The prefactor is
triplon would violate parity. In Hs the triplons are z-triplons, which do not carry

an S, spin, while the z- and y-triplons in H3 are composed of states with an S,

spin of +1. So due to spin conservation the spin of the hole state does not change
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in Hy and it is altered in Hjz. Single terms of the sum in Hj violate the spin

conservation, but the combination of terms with tl’m (t,,) on the one hand and

z,n

t! o (t,,,) on the other conserves the spin.

H, and Hj are correlated hopping terms for one hole state and one triplon state
exchanging their places. Again the coefficient is % The parity of the hole state
is unchanged because the number of triplons is also unchanged. It depends on
the alignment of the spin of the triplon before and after the interaction whether
the spin of the hole state is altered or not. The former is the case for H,, the
latter for Hs. Concerning the spin conservation for the single terms of H, the

same holds true as for H;.

The magnetic interaction terms for the hole states, which all carry the prefactor
7, have a similar structure like the hopping terms since the same conservation
laws for spin and charge are valid. The difference is that the hole must not change
its place for the magnetic interactions. The ring exchange does not affect the hole

states because the concerning terms (4.6) are zero if one spin is missing.

The triplon creation and annihilation without spin flip is represented by Hg in
analogy to Hy. The term H; contains the triplon creation and annihilation with
spin flip analogous to Hsz. The correlated hopping of triplons and hole states is
described by Hg with spin flip (analogous to Hy) and by Hg without spin flip
(analogous to Hs). Note that there are less terms in Hg than in Hs because
processes that do not change the spin alignment of the triplon can occur for

hopping but not without hopping.

Because a hole does not change the magnetic degrees of freedom, the part
Hindoped 1s not influenced by the terms with hole state operators H; during the
flow, i.e. the differential equations for the terms of Hyuqopea do not include con-
tributions from the H; terms. Therefore the dispersion and the continua for pure
triplon states are independent of A; and Aj. The energies do not differ from the
results for the undoped ladder. This is straightforward because the dynamics of
pure triplon states must be identical to the dynamics in an undoped ladder. In
contrast the terms including hole operators are strongly affected by the terms of

Hndopea dependent on the parameter x, which also enters the terms Hg to Hy.

Due to charge conservation the subspaces of the Fock space with fixed hole
numbers are already decoupled from each other. Only the number of magnetic

excitations changes.
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5.2 Truncation

The truncation for the hole-doped ladder includes many parameters for the fine
tuning considering the multitude of possible terms with hole state operators. In
addition to the remaining maximal extensions d,, for terms consisting only of n
triplon operators and the maximal triplon number N we introduce the following

restrictions.

The parameter N;, defines the maximal number of holes which is one for the
case we want to consider here. By h,, we denote the maximal extension for n’
hole state operators. It does not matter if the term concerned contains additional
triplon operators. For terms with triplon and hole state operators, h, affects only
the hole state operators. The total maximal extension t,~ for these mixed terms
depends on the number of triplon operators n”. The parameter N; denotes the
maximal number of triplons interacting with holes. Note that ¢,» with odd n”
have to be taken into account because the triplon number is changed by an odd

number if the hole state parity is altered.

Since the size of the system of differential equations for the doped ladder grows
drastically with increasing extensions, the truncation is always very strict for our
calculations. The parameters N = 4, dy = 10, dy = 6, dg = 4 and dg = 3 were
used for the pure triplon terms because these maximal extensions are sufficient
for the undoped case up to x = 1. For the terms including hole operators the
truncation used for the SCUT is given by Ny = 2, ho =3, t; =6, to = 6, t3 = 5,
ty = 5, t5 = 4 and tg = 4. Only if other parameteres are used, they are given

explicitly.

5.3 Generator Adaption

In this section the adapted generators are introduced that are used for the doped
ladder besides the pc generator. Because the number of the flow equations be-
comes very large for physically reasonable extensions, a central issue is the re-
duction of this number. This can be achieved by the exclusion of terms from
the generator. For general and for undoped systems in particular this strategy

is comprehensively discussed in Ref. |26|. In the following we are only interested
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k[T

Figure 5.2: Comparison between the gs generator and the adapted generator described
in the text for x = 1, g = 0 and A} = A = 2. The even hole dispersion is almost
identical for the gs generator (black solid) and the adapted generator (black dashed).
The odd hole dispersion from the gs generator (cyan continuous) lies below the contin-
uum formed by one even hole and one triplon (cyan shaded area), whereas the odd hole

dispersion from the adapted generator (cyan dashed) lies above it.

in pure hole states. Hence the zero-triplon space? is the only subspace that has
to be decoupled from the remaining Hilbert space. The terms in the generator
that is restricted to performing just this task contain only triplon creation or only
triplon annihilation operators apart from possible hole state operators. This is
the gs generator already introduced in Section 4.4. This generator may induce
converging transformations in the case of overlapping triplon continua?.
Considering the local hole state terms of the Hamiltonian (5.5a) it seems likely
that for sufficiently large A\, the process of creating or annihilating one triplon
(under change of the parity of one hole) the energy change is dominated (or at

least strongly influenced) by the band change. If this is actually the case, the pc

2A state without triplons can include holes. Because of charge conservation the number of
holes is fixed. Thus after the CUT the zero-triplon state is the ground state for every spin

ladder with a certain number of holes.
3These continua have to incorporate the hole energies for the doped case.
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generator based on the idea that the change of the particle number dominates
the energy change will no longer induce a converging transformation. If there is
a distinctly dominating process for each term of the Hamiltonian, the adaption
of the generator can take this into account by appropriate signs. But a pro-
nounced gap between the hole bands with different parity is necessary to make
the band change always dominating at least for processes involving the creation
or annihilation of a single triplon. The system does not develop such a gap in
the examined parameter space as the next section will show. In fact the bands
exhibit a crossing if the hopping constants are increased. Therefore the triplon
creation or annihilation either remains the dominant process or competes with
the band change and an adaption of a sign change in the generator is not appro-
priate. Only if all other parameters are much smaller than X, this adaption is

suitable.

In the case that for certain terms it can not be determined in general whether
they increase or decrease the energy a simple sign correction in the generator
is not possible. This happens if the sign of the energy change depends on the
momentum. Then the real space truncation scheme is not the optimal ansatz.

An implementation of a generator adaption according to Section 2.5.2 was also
tested. If we use the adapted generator which considers the band change as the
dominant process in the way that the even band is assumed to be the lower energy,
we obtain unphysical results for the parameters examined within this thesis. The
results for the even band are indeed the same as without the adaption (apart
from small deviations for small momenta). However, the odd band is forced to
lie above the continuum formed by one even hole and one triplon. This can be
seen examplarily for x = 1, zp =0 and A} = A\ = 2 in Figure 5.2.

In the regime v = 1, xg = 0 and Ay = A > 2 we encounter convergence
problems with both the pc and the gs generator. We will show this in Section
5.4.1. To preserve convergence a restricted generator 7, was used (see Section
2.5.3). The problematic terms are the ones which couple the single-hole subspace

to the subspace with one hole and one triplon

al t;njLAna,, and al _ t At gt s An- (5.6)

T,0m 7'0'm T,0,m”a,n

For n,s we restrict |An| to be smaller than or equal to a maximal value Anyay.
This restriction indeed yields a converging flow for z = 1, zp =0 and A} = | >
2, which will also be illustrated in Section 5.4.1.
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Figure 5.3: Fourfold degenerate one-hole energy for Ay = A = zg = 0 in dependence
of = calculated with the pc generator (solid) and with the gs generator (dashed).

5.4 One-Hole Dispersion

The dispersion of a single hole in the absence of triplons can be as easily derived
from the effective Hamiltonian in the same manner as the one-triplon dispersion
in Section 4.3.1. The part of the Hamiltonian to be diagonalised

ho

th = Z Z bd aj—,a,n-i-da’ﬂ',o,n (57)

d=—hs 1,0

contains the one-hole terms restricted by hy and characterised by the coefficients

by. The one-hole energy relative to the ground state

ha
wing (k) = by + > _ 2bgcos(dk) (5.8)

d=1

only depends on the parity 7 and is degenerate concerning the spin o.

If A and A, are small while z = xn = 0, the dispersion is

k 3
wl%i() =57 AL+ Ajcos(k) + O(N, Aﬁv ALA)).- (5.9)
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Figure 5.4: One-hole dispersion for x = xg = 0 calculated with the pc generator; left:
A = 0.25, right: A = 0.5. The curves coincide well with the series expansion results
from [97].

If A\, = A = 0 the hole energy is a dispersionless constant and fourfold degenerate
(concerning spin and parity). This energy increases with growing x due to the
terms of the Hamiltonian that describe the magnetic interactions of the hole states
with their environment (5.5g-5.5j). Figure 5.3 demonstrates this quantitatively
for xg = 0. The deviations between the results from the pc generator and from
the gs generator are growing with x. However, they are still marginal (< 1%) for

r=1.

5.4.1 Isotropic Hopping

Let us at first consider the isotropic case Ay = A = A. For small values of the
parameters z, xg and A the deviations from Equation (5.9) are actually small. In
Figure 5.4 two values of A are considered for x = xg = 0. The result for A = 0.25
already exhibits deviations from the relation for small hopping constants. Both
bandwidths are smaller than 2\ = 0.5. The odd band is narrower than the even

band. Moreover the odd band is shifted upwards by less than A, while the even
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Figure 5.5: One-hole dispersion for x = g = 0, A = 1 calculated with the gs generator
and the pc generator. The results for the even bands coincide so that the curves cannot
be distinguished. The cyan shaded area is the continuum formed by one triplon and

one even hole state.

band is shifted downwards by slightly more than A.

The increase of A to 0.5 yields a result with obvious deviations relative to 5.9.
The odd band becomes lower and narrower with growing A in this region. The
cosine shape of both dispersions is — for A\ = 0.25 as well as for A = 0.5 — not
deformed by higher harmonics. The results of the series expansion |97| exhibit the
same behaviour for these parameters in good agreement with the SCUT results.
However, it has to be pointed out that the convergence of the SCUT is much
worse for A = 0.5 than for A = 0.25. The residual off-diagonality (ROD) which is
defined as the sum over the squared coefficients contributing to the generator and
used as a measure for the convergence (cf. Section 3.6) is decreasing very slowly
for A = 0.5. While the ROD is smaller than 10~ at [.J, = 200 for A\ = 0.25, it is
still ~ 1075 at [J, = 200 for A = 0.5. Both RODs are decreasing exponentially
for large [.

For x = zg = 0, A = 1 the pc generator yields results for the even band

that still agree very well with the series expansion. For the odd band there are
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Figure 5.6: ROD for the SCUT for x = g = 0, A = 1 induced by the pc generator
(solid line) and by the gs generator (dashed line).

no series expansion results available. Figure 5.5 shows the comparison between
the results for the pc generator and for the gs generator. The even band results
lie on top of each other, but the odd band exhibits deviations for & = 0.577.
While the gs generator produces an almost featureless dispersion (compared to
the even band), the pc generator causes a pronounced maximum at k = 7. These
differences are due to the position of the lower boundary of the continuum formed
by one triplon and one even hole state’ (see also Figure 5.5). An overlap between
the odd dispersion and this continuum is present for the pc result. The deviating
odd band from the gs generator avoids this overlap. For both generators the even
and the odd band cross at k ~ 0.467w. While the even band keeps its cosine shape,
for the odd band the second harmonic is no longer negligible for both the pc and
the gs generator.

It is necessary to mention that for x = xg =0, A = 1 the transformation does
not converge for the pc generator, while the gs generator induces convergence (see

Figure 5.6). The overlap hinders the convergence for the pc generator. The kink

4The boundaries of this continuum are constant because the triplon dispersion is also constant

for x =z = 0.
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Figure 5.7: Left panel: One-hole dispersion for x = 0.5, xg = 0, A = 0.25 calculated
with the pc generator. The series expansion result for the odd band is also shown,
while the result for the even band is not available. Right panel: One-hole dispersion for
x=0.5, g =0, A = 0.5 calculated with the pc generator and the gs generator. For a)
the usual truncation was used, for b) hs was increased to 4, t; and ¢y to 8 as well as t3

and t4 to 6. The dotted curves are extrapolations from the series expansion data.

at [J; ~ 120 in the gs ROD is probably due to numerical inaccuracies that are
amplified via a feedback within the flow equation (cf. Appendix A). Since the
ROD is already < 1073 at the kink we can stop the transformation at this point
and neglect the remaining off-diagonal terms, i.e. we consider the transformation
converged. For the calculation of the hole dispersions the pc SCUT was stopped
at [.J, = 50 where the ROD is still & 10~ and not negligible. Therefore the result
from the gs generator is more trustable than the result from the pc generator.

The parameters x = xg = 0, A = 2 lead to divergence for either generator.

Now we want to consider x > 0. For A = 0 the energy of the hole states which
is independent of k£ and 7 decreases with increasing = due to the terms (5.5g-
5.5j). For small finite A the deviations from the simple cosine shape appear quite
early in A for the odd band. This can be seen in Figure 5.7 where the one-hole
dispersions for z = 0.5 and A = 0.25 are depicted. The odd band is in good
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Figure 5.8: Comparison between the odd hole dispersion and the continuum formed
by one triplon and one even hole state for x = 0.5, xg = 0, A = 0.5. The odd hole
dispersion was derived by SCUT using the pc generator (cyan solid) and by series
expansion (cyan dotted). The cyan shaded area is the continuum (derived by the same
SCUT calculation).

agreement with the series expansion (only slight deviations at k& = 0 occur), for

the even band no series expansion data are available.

For x = 0.5 and A = 0.5 (see also Figure 5.7) the result for the even band
is again in good agreement with the series expansion result, but the odd band
behaves differently. Only for large k& the behaviour is similar although also in this
region the SCUT result is slightly lower. The series expansion result exhibits a
local maximum at £ = 0 and a global minimum at k ~ 0.587, while the SCUT
result hardly changes in the region 0 < k < 7. The gs generator yields the
same result as the pc generator apart from minimal deviations (< 2%) at k = 0.
However, the gs generator allows us to extend the truncation scheme: hy was
increased to 4, t; and t5 to 8 as well as 3 and ¢4 to 6. In the result the shape of
the odd band changes mainly for small k. Thus the odd dispersion still changes

with increasing maximal extensions.

We can understand these differences between SCUT and series expansion by
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Figure 5.9: One-hole dispersion for x = 1, g = 0, A = 0.5 calculated with the pc
generator and the gs generator. The dashed curves are extrapolations from the series

expansion data.

looking at the position of the continuum formed by one triplon and one even hole
state (see Figure 5.8). The series expansion result crosses the lower boundary of
this continuum at k =~ 0.347. Assuming that the series expansion yields a result
near to the actual odd hole dispersion it is cogent that the SCUT based on the pc
generator is not able to sort the eigenvalues properly for small k& because creating
one triplon does not necessarily increase the energy. Since the problematic overlap
concerns the zero- and the one-triplon space, the exclusion of terms from the
generator is no remedy here. Hence the gs generator yields mainly the same result.
Although the odd dispersion still changes with increasing maximal extensions, due
to the overlap an agreement with the series expansion result is not to be expected
for small k. It is also possible that the extrapolation does not completely comprise

the effect of the overlapping continuum.

For z = 1 and A = 0.5 (see Figure 5.9) the SCUT results for the odd band
again show distinct deviations from the series expansion results. While the even
band exhibits its maximal deviation at & = 0 which is only ~ 1%, the odd band

deviates concerning the shape for small k& (but the quantitative deviations are
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Figure 5.10: Comparison between the odd hole dispersion and the continuum formed by
one triplon and one even hole state for x = 1, zg = 0, A = 0.5. The odd hole dispersion
was derived by SCUT using the pc generator (cyan solid), using the gs generator (cyan
dotted) and by series expansion (cyan dashed). The cyan shaded area is the continuum
(derived by the same pc SCUT calculation).

not very pronounced there) and is considerably lower for large k. All in all the
deviations are not as pronounced as for z = 0.5 and A = 0.25. A comparison with
the continuum formed by one even hole and one triplon (see Figure 5.10) shows
that an overlap exists around k = 7 for the series expansion result and for the gs
result. This explains again the deviations in this region. As this overlap is not
as strong as the overlap for x = 0.5 and A = 0.5 the deviations are accordingly
smaller. Even if we cannot clearly state that there is an actual overlap, the
continuum is at least very close. Hence it is to be expected that the odd hole

dispersion is lowered for k =~ 7 due to this reason.

Since for z = 1 and A =1 (see Figure 5.11) no one-hole dispersion result with
odd parity is available from the series expansion, we can only compare the even
band. But we also compare with exact diagonalisation results by Léuchli [98].
For the exact diagonalisation a finite ladder with 14 rungs was examined and the

resulting eigenenergies were fitted by a series with three cosine terms for both
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Figure 5.11: One-hole dispersion for x = 1, xg = 0, A = 1 calculated with the pc
generator and the gs generator. The dashed curve is the result from the series expansion,
for which only the even band is available. The dashed-dotted curves are the exact

diagonalisation results.

bands. The pc result for the even band exhibits a completely different behaviour
than the gs result. For the odd band the pc result lies below the gs result and
the deviations grow with increasing momentum. The comparison with the series
expansion and with the exact diagonalisation suggests that the gs result is more
reasonable because the deviations are smaller than 1% for the even band. Also

for the odd band the gs result is closer to the exact diagonalisation result.

It should be noted that the diagrammatic approach from Ref. |99] yields bands
that show qualitative deviations from the SCUT and from the exact diagonali-
sation concerning the shape for small k. But the authors say that in this regime
they only provide an approximate description actually beyond their approach.
The quantum Monte Carlo result from Ref. [100] is in good agreement with our
result. For the even band the agreement is actually very good like the agreement

between SCUT and exact diagonalisation.

The odd band result from the gs SCUT enters the continuum formed by one
triplon and one even hole state for k& 2 0.837 (see Figure 5.12), while the pc
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Figure 5.12: Comparison between the hole dispersions and the continua formed by one
triplon and one hole state for =1, zg= 0, A = 1. Left: The odd hole dispersion was
derived by SCUT using the pc generator (cyan solid) and using the gs generator (cyan
dotted). The cyan shaded area depicts the continuum with one even hole and one triplon
(derived by the same gs SCUT calculation). Right: The even hole dispersion was derived
by SCUT using the pc generator (black solid), using the gs generator (black dotted)
and by series expansion (black dashed). The black shaded area depicts the continuum

with one odd hole and one triplon (derived by the same gs SCUT calculation).

result lies always below the continuum. This overlap is also present in the ex-
act diagonalisation result [98] and in the quantum Monte Carlo result [100]. A
comparison between the even one-hole dispersion and the continuum formed by
one triplon and one odd hole state (see also Figure 5.12) supports the assump-
tion that the gs result is more reliable than the pc result because the dispersion
induced by the gs SCUT exhibits a shape that appears as if it were formed by
the lower boundary of the approaching continuum. The pc result, however, stays
away from the continuum at £ = 0 and at the boundary of the Brillouin zone,

while it overlaps with the continuum around k ~ 0.44r.

At this point we compare the convergence behaviour for x = 0.5, A\ = 0.5;

x =1, A=0.5and x = 1, A = 1 in case of the pc generator. The concerning
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Figure 5.13: ROD for the SCUT calculated with the pc generator for different parame-

ters.

RODs are depicted in Figure 5.13. All three curves exhibit a kink with non-
converging behaviour afterwards. This is typical for cumulating rounding errors
because of a symmetry breaking due to numerical inaccuracies (cf. Appendix A).
Such a symmetry breaking is not unlikely because the spin symmetry could not

be used explicitly. The problems of this utilisation are discussed in Section 5.5.

It is interesting that the ROD for x = 1, A = 0.5 achieves the lowest value with
less than 1078, However, if we consider the rate of decrease before the kink for
all curves, it can be clearly seen that for x = 0.5, A = 0.5 this rate is the largest.
This is to be expected as these parameters are the smallest of the ones considered

here and the corresponding unitary transformation is the least demanding.

For x = 1 and A > 1 the parameters are entering a region which is expected
to reflect realistic relations of the constants in the telephone number compounds.
The results for x = 1 and A = 2 are shown in Figure 5.14. Again we do not only

compare with the series expansion (for which only the even band is available) but
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Figure 5.14: One-hole dispersion for x = 1, zg = 0, A = 2 calculated with the pc
generator and the gs generator. The graph also shows the exact diagonalisation data
(ED) and the series expansion data (SE). For the latter only the even band is available.

The even band results are black, the odd band results are cyan.

also with exact diagonalisation results for L = 14 by Léuchli |98].°

3
wing(k) = by + > _ 2bgcos(dk). (5.10)
d=1

Approximate analytic results were obtained in Ref. [102] by perturbation theory
improved by a variational ansatz. These results lie even above the series expansion
results but confirm the qualitative shape for the even band. The pc result for
both the even and the odd band is again very distinct from the other results like
for x = 1, A = 1. The gs result, however, is in better agreement with the data
from the series expansion and especially with the exact diagonalisation result in
accordance with our previous observations.

Apart from the pc result the dispersions exhibit the same features. The even
band has a global maximum at £ = 0 and a local maximum at k£ = 7, while it is

vice versa for the odd band. Because both bands lie in the same energy range,

SFor a finite ladder with 10 rungs results were published by Troyer, Tsunetsugu and Rice [101].
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Figure 5.15: Comparison between the hole dispersions and the continua formed by one
triplon and one hole state for z =1, zg = 0, A = 2. Left: The odd hole dispersion was
derived by pc SCUT (cyan solid), gs SCUT (cyan dashed) and by exact diagonalisation
(cyan dotted). The cyan shaded area depicts the continuum with one even hole and one
triplon (derived by the same gs SCUT calculation). The cyan dash dot dot line is the
lower boundary of the continuum formed by two triplons and one odd hole. Right: The
even hole dispersion was derived by pc SCUT (cyan solid), gs SCUT (cyan dashed), by
exact diagonalisation (cyan dotted) and by series expansion (cyan dashed-dotted). The
black shaded area depicts the continuum with one odd hole and one triplon (derived by
the same gs SCUT calculation). The black dash dot dot line is the lower boundary of

the continuum formed by two triplons and one even hole.

they cross in the middle between k£ = 0 and k = 7. The exact diagonalisation
predicts the crossing to be at k ~ 0.48w, but the gs SCUT sees the crossing at
k ~ 0.557. The even band calculated by series expansion is located above both
the series expansion and the gs SCUT result for all k. This is a further indicator
that the extrapolation used to correct the bare series underestimates the lowering
of the band induced by the hybridisation with the hole-triplon continuum.

Let us consider the continua formed by one hole and one triplon. The continua
consisting of one hole and one triplon are compared to the one-hole dispersions
in Figure 5.15. The continua do not overlap with the hole dispersions, but they

are very close to each other. The only exception is the series expansion result for
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Figure 5.16: ROD for the SCUT for x = 1, xg= 0, A = 2 induced by the pc generator
(solid line) and by the gs generator (dashed line).

the odd band, which exhibits an overlap with the continuum formed by a triplon
and an even hole state.

The behaviour of the ROD (cf. Section 3.6) yields further evidence why the gs
results should be preferred to the pc results for this parameter regime. Figure 5.16
depicts the evolution of the ROD during the flow for both generators. Not only
that the pc SCUT converges extremely slowly, the shape of the curve for [J; < 100
is an indicator for a problem with respect to the sorting of the eigenenergies. It is
a typical behaviour of the ROD that the sorting of the eigenvalues (cf. Equation
(2.12)) is reflected by features for small values of [. If the sorting is completed
the ROD decreases exponentially with a constant rate henceforward. For the gs
generator the decrease of the ROD attains this rate not later than at [J, = 5.
Before this point the decrease is slower®. The kink of the gs ROD at [J, =~
110 with the following rise is again most probably due to cumulating numerical
inaccuracies (cf. Appendix A). This is no real problem because the gs ROD

has already fallen below a value of less than 10732 at [J, ~ 110 and can hence

6Even if the ROD exibits a small hump before it decreases with a constant rate, the sorting

usually does not pose a problem.
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Figure 5.17: Comparison of the one-hole dispersions from the restricted generator with
the gs and the exact diagonalisation results. Left panel: x = 1, xg = 0, A = 2. Right
panel: x =1, xg = 0, A = 3. The black lines represent the even hole dispersion and

the cyan lines represent the odd hole dispersion.

be neglected. However, the pc ROD exhibits several humps and a pronounced
rise at [J, = 34 before a decrease with a constant rate is achieved. This is
a typical indication for a suppressed divergence that would actually occur for a
wider truncation. If such a feature is distinct, the transformation is susceptible to
errors. These convergence problems are caused by the strong overlap between the
one-hole-one-triplon continuua and the one-hole-two-triplon continua (see Figure
5.15).

The exact diagonalisation was also applied for z = 1 and A = 3 [98], but
even the gs generator does not induce convergence for this case. However, if we
apply the generator restriction defined in Section 5.3 to the gs generator, it yields
convergence for Ang.. < 2. Because the Hamiltonian is not diagonalised with
respect to the terms that are omitted from the generator, the hole dispersions we
obtain from a Fourier transformation are only upper limits for the actual result.
Hence we compare the results from the restricted generator for = 1 and A = 2

with the gs results before we investigate the results for x = 1 and A = 3. The left
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Figure 5.18: ROD for the SCUT calculated with the full gs generator and with the

restricted gs generator for different parameters.

panel of Figure 5.17 shows the comparison of the one-hole dispersions for x = 1
and A = 2. We see that for An., < 2 the upper boundary from the restricted
gs generator is close to the result from the full gs generator. In the right panel
of Figure 5.17 the results from the restricted gs generator are compared to the
exact diagonalisation results for x = 1 and A = 3. For the even hole dispersion
the agreement between the result from the restricted gs generator and the exact
diagonalisation result is almost perfect. Also the agreement for the odd hole
dispersion is good. The deviations are comparable to the deviations of the result

by the full gs generator from the exact diagonalisation result for x = 1 and A\ = 2.

The investigation of the ROD shows that the restricted gs generator yields a
faster convergence than the full gs generator for x = 1 and A = 2 (see Figure
5.18). For z = 1 and 3 the ROD diverges for the full generator, while the
restricted generator induces convergence (see also Figure 5.18). Note that the
kinks of the RODs in Figure 5.18 with the increase afterwards are again probably
due to cumulated numerical inaccuracies (cf. Appendix A). But all the kinks
appear at values where the ROD is already smaller than 10724, So the flow can

be considered as converged at the kinks for practical purposes.
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Figure 5.19: Comparison between gs SCUT (solid lines) and exact diagonalisation for
various finite ladders with L rungs (discrete points) for x = 1, A = 1. The lower
boundaries of the continua calculated by gs SCUT are shown as dashed lines. The

results for the even hole state are black, the results for the odd hole state are cyan.

The terms, which are left out from the generator, still contribute to the Hamil-
tonian after the transformation. These contributions yield an estimate of the dif-
ference between the actual energy and the upper boundary for the energy resulting

from the restricted generator. For the 432 terms of the form a! ¢

or
T,0,n a,n—l—AnaT’,U’,m

.I. . . . ~
al o mbane or nyan the sum over their squared coefficients is &~ 0.48. The square

root of this value is =~ 0.69. The largest absolute value of a single coefficient is
~ 0.16.

To understand the deviations between SCUT and exact diagonalisation we have
to investigate the finite size scaling of the exact diagonalisation. In Figure 5.19
the results of the exact diagonalisation for various finite ladders with L rungs
are compared to the results from the gs generator for x+ = 1 and A\ = 1. The
graph shows the discrete eigenvalues of H calculated by exact diagonalisation. In
the case of the even band the lowest lying eigenvalue can be clearly distinguished
from the larger eigenvalues, which are the precursor of the continuum. This holds

true for all momenta. In the case of the odd band the lowest eigenvalue is very

85



CHAPTER 5. HOLE-DOPED ANTIFERROMAGNETIC SPIN—% LADDERS

-0.28 T -0.45
-0.29 i
-0.3 —-0.5
S .031 1 5
E S
3 -0.32 —1-0.55=
3
-0.33 7
-0.34 —-0.6
! ! | ! | ! | ! | ! n

| C | 1
0 005 01 015 020 005 01 015 0.2
UL L

Figure 5.20: Finite size scaling of the exact diagonalisation results for x =1 A =1
in case of the odd band at ¥ = 0 and at £ = 0.5m. The cyan circles depict the
exact diagonalisation results for finite ladders with various numbers of rungs L. The
solid black line is a linear extrapolation with respect to % and the dashed line is an
extrapolation based on exponential saturation (see Equation (5.11)). For comparison

the result from the gs SCUT is also shown (solid cyan).

close to the higher ones for large momenta. Our calculation of the continuum
predicts that the dispersion merges with the continuum in this region. Also the
quantum Monte Carlo result for the spectral weight |100| exhibits no peak below

the continuum around k =~ .

Our result for the even band is in excellent agreement with the exact diago-
nalisation result. Around k =~ 0.257 our result for the odd band lies above the
exact diagonalisation result, while it lies below the exact diagonalisation result
around k = 0.67. An investigation of the finite size scaling for the exact diago-
nalisation data in these regions is difficult because we have maximally two points
for an extrapolation. Thus at first we consider £ = 0, where an extrapolation is
conclusive. The result of this extrapolation is used to support an extrapolation
in the region where the deviations are observed. The left panel of Figure 5.20
shows the finite size scaling for £ = 0 using two kinds of extrapolation. The first

1

is a simple linear extrapolation with respect to 7, while the second assumes an

exponential saturation with increasing L so that

L
B

Aw xe” (5.11)
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Figure 5.21: Comparison between gs SCUT (solid lines) and exact diagonalisation for
various finite ladders with L rungs (discrete points) for x = 1, A = 2. The lower
boundaries of the continua calculated by gs SCUT are shown as dashed lines. The

results for the even hole state are black, the results for the odd hole state are cyan.

holds true for the difference Aw from the limit for L. — oco. The correlation
length ¢ is determined to be &~ 4.32 by this extrapolation. The correlation length
can be used to apply the second extrapolation also for £ = 0.57 where only two
results are obtained by exact diagonalisation. The finite size scaling for k = 0.57
in case of the odd band is investigated by both extrapolations in the right panel
of Figure 5.22. The extraploation results at £ = 0 are still close to the gs SCUT
result and the extrapolation results at £ = 0.57 are in good agreement with the
gs SCUT result. The linear extrapolation is even in excellent agreement with
our result. Note that the points from the L = 6 calculation are omitted for the
extrapolations because they deviate from the behaviour of the other points due
to the small size of the system.

In Figure 5.21 we compare the results of the exact diagonalisation with the
results from the gs generator for x = 1 and A = 2. In the case of the even band
for large momenta the lowest lying eigenvalue is clearly distinguishable from the
larger eigenvalues, which are again the precursor of the continuum. The same is

true for the odd band for small momenta. But for small momenta in case of the
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Figure 5.22: Finite size scaling of the exact diagonalisation results for x = 1 A = 2
in case of the odd band at ¥ = 0 and at £ = 0.5m. The cyan circles depict the
exact diagonalisation results for finite ladders with various numbers of rungs L. The
solid black line is a linear extrapolation with respect to % and the dashed line is an
extrapolation based on exponential saturation (see Equation (5.11)). For comparison

the result from the gs SCUT is also shown (solid cyan).

even band and for large momenta in case of the odd band the lowest eigenvalue is
very close to the higher ones. Hence the distinction between hole dispersion and
continuum becomes difficult in these regions. It is even questionable if they are
actually distinguishable or if the dispersion merges with the continuum. In these
regions the deviations between SCUT and exact diagonalisation are the largest.
We conclude that the SCUT suffers from truncation errors if the dispersion runs
close to continua or even enters them. Also the lower boundary of the continuum
that we calculated from the gs result is higher at £ = 0 for the even band and
at k = 7 for the odd band than we would expect from the exact diagonalisation
data. However, the interaction between hole and triplon is not included in the
calculation of the continua. The consideration of this interaction may lower our

result.

In the remaining regions the SCUT result for the dispersions comes close to the
extrapolation of exact diagonalisation results. This is most obvious for the odd
band at £ = 0. The left panel of Figure 5.22 shows the finite size scaling for this
case using the same extrapolations like for x = 1 and A = 1. We determine £ to

be =~ 4.03 by the extrapolation based on exponential saturation. The correlation
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Figure 5.23: Comparison between SCUT from the restricted gs generator with Anpax =
2 (solid lines) and exact diagonalisation for various finite ladders with L rungs (discrete
points) for z = 1, A = 3. The dashed lines are estimations for the lower boundaries of
the continua based on the result from the restricted gs generator. The results for the

even hole state are black, the results for the odd hole state are cyan.

length is again used to apply this kind of extrapolation also for £k = 0.57. The
finite size scaling for £ = 0.57 in case of the odd band is investigated by both
extrapolations in the right panel of Figure 5.22. For both momenta the linear
extrapolation comes close to the SCUT result, but also the extrapolation based
on exponential saturation does not exhibit large deviations from the SCUT result.
The deviation for £ = 0 is & 2% and the deviation for & = 0.57 is &~ 7%. The
points from the L = 6 calculation are omitted for the extrapolations because they
deviate from the behaviour of the other points due to the small size of the system.

For z = 1 and A = 3 the exact diagonalisation results are shown in Figure
5.23 for various finite ladders with L rungs. The odd hole dispersion is more
difficult to distinguish from the continuum than for x = 1 and A = 2. Also
for small momenta the lowest eigenvalue is very close to the higher ones. The
upper boundary for the hole dispersions from the restricted gs generator with
Anpgae = 2 is also depicted in Figure 5.23. In the region 0.57 < k& < 0.87 this

upper boundary lies below the exact diagonalisation data. But the tendency of

89



CHAPTER 5. HOLE-DOPED ANTIFERROMAGNETIC SPIN—% LADDERS

the finite size scaling at £k = 0.57 indicates that the exact diagonalisation results
overestimate the energy of the odd band in this region so that one can expect
that a proper finite size scaling yields a dispersion that lies completely below
this upper boundary. However, an extrapolation from the two points (L = 8 and
L =12) at k = 0.57 is not conclusive. We have several points for an extrapolation
for K = 0 and k£ = m, but there the distinction between continuum and dispersion
is difficult. Because the gs SCUT diverges without restriction of the generator,

we actually expect that a strong overlap is present.

5.4.2 Anisotropic Hopping

We want to consider anisotropic hopping, i.e. A # Aj. This is also of interest
because at least small differences between the parallel and the perpendicular
hopping are expected to be realistic like for the magnetic coupling constants J;
and J. We want to consider three parameter regimes. In each case we start from
an isotropic hopping using parameters that yield reliable results. The starting
valuesarex =0, A\ = A\ =0.5;2 =05 A = =025andz =1, A =) =2
The ring exchange z is always zero. We employ the gs generator in the first two
cases and the On generation in the latter one because the corresponding results
are conclusive for isotropic hopping which was shown in the preceding section.
The one-triplon dispersions derived by SCUT for these cases agree well with the
results from series expansion [97] and from exact diagonalisation [101] (see Section
5.4.1). Also the ROD converges properly.

The first case starts from z = 2o =0, AL = A = 0.5. Increasing the hopping
constants separately leads to a lowering of the bands (Figure 5.24(a)), while
decreasing them leads to a lifting (Figure 5.24(b)). However, this effect is weak for
the odd band in the case of changing A\ ;. The constant in the dispersion changes
like in the other cases, but the change of the bandwidth is dominant. Hence the
odd band for A; = 0.6, Aj = 0.5 lies above the odd band for A = A = 0.5 in
the region & 2 0.41m; the odd band for A; = 0.4, A\j = 0.5 lies beneath the odd
band for A\; = A = 0.5 in the region k 2 0.447.

The regime around x = 0.5, \; = A\ = 0.25 and = = 1 again exhibits a different
behaviour for the odd band in the case of changing A, . Figure 5.25(a) shows the
separate increase of the hopping constants, Figure 5.25(b) the decrease. The even
band is lowered if one hopping constant is increased and raised if one hopping

constant is decreased. However, although for A\ = 0.1 there is a shift upwards
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for the constant of the even dispersion, the bandwidth is decreased by a factor
of ~ 2.5 so that the maximum at £ = 0 has almost the same value for \| = 0.25
and for A\j = 0.1. It is even slightly lower for A\j = 0.1. The odd band is also
lowered if A is increased and raised if )| is decreased. The different behaviour
of the odd band in the case of A\ = 0.4 consists in the following features: The
former local maximum at k& = 0 for the isotropic case moves to k =~ 0.33, the
global minimum now lies at £k = 0 and the global maximum at £ = 7 is more
pronounced. For \| = 0.1 the different behaviour of the odd band consists in the
following features: The maxima at k = 0 and k = 7 are of almost equal height
now and the minimum, which moves from & ~ 0.417 (in the isotropic case) to
k ~ 0.527, is lowered by ~ 0.03.J .

Next, let us start from the isotropic case A\; = A\j = 2 for x = 1 and 2g = 0. At
first we increase the hopping constants separately. Figure 5.26 shows the results
for the SCUT induced by the gs generator. The pc results are not examined as
they deviate considerably from the results of other methods in this parameter
region as shown in the last section.

The increase of one of the hopping constants leads to a lowering of the bands
for both the relation A; > A and the relation A < A. Both bands are decreased
in almost equal measure (see Figure 5.26(a)). This effect is almost twice as strong
for Ay =2, A\ = 2.5 as for A\, = 2.5, A\ = 2. The shape of the dispersions is
almost conserved, but the locations of the minima change. The crossing point
moves to slightly smaller £ for increasing A\ and to larger k for increasing A, .
Although this effect is not pronounced, results for interim values confirm the
trend of this movement of the crossing point.

The decrease of one of the hopping constants starting from A} = A\ = 2 leads
to a lifting of the bands (see Figure 5.26(b)). While for A\, = 1.5, \j = 2 the
shape of the band is again conserved, for A = 2, A\j = 1.5 the local maximum
moves from k£ = 0 to k£ = 0.227 and a local minimum appears at k = 0. The
effect of the lifting is approximately twice as strong for the change of A than for
the change of A\;. This is in analogy to the effect of the lowering in the case of
the increase of one of the hopping constants. The crossing point of the bands

moves to larger k& with decreasing A\ and to smaller k with decreasing A .
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Figure 5.24: One-hole dispersions with even parity (black) and odd parity (cyan) for

x = zg = 0 and anisotropic hopping constants.
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(b) smaller hopping constants compared to A} = A\ = 0.25.

Figure 5.25: One-hole dispersions with even parity (black) and odd parity (cyan) for

x = 0.5, zg = 0 and anisotropic hopping constants.
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(b) smaller hopping constants compared to A = A\ = 2.

Figure 5.26: One-hole dispersions with even parity (black) and odd parity (cyan) for

x =1, g = 0 and anisotropic hopping constants.
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5.4.3 Influence of the Ring Exchange

Since the ring exchange is needed for an adequate description of the experi-
mentally available systems (see Section 4.1), we also investigate the influence
of the ring exchange on the doped ladder which is to our knowledge  still
an open issue. A typical value is 2o & 0.2 [75]. Like for the examination of the
anisotropic hopping we take the reliable results for z = 0, A\, = A} = 0.5; z = 0.5,
AL =X =025and x =1, A\; = )\ = 2 without ring exchange as starting point
for our investigation.

For the first case x = 0, Ay = A = 0.5 the influence of the ring exchange is the
weakest (see Figure 5.27). The odd band hardly changes. It is slightly lowered —
only the maximum is decreased more strongly. The even band, however, changes
more pronouncedly. It is strongly lowered so that a band crossing occurs and the
shape changes. A local miminum appears at £k = 0 developing into the global
minimum with growing xg.

Figure 5.28 depicts the case x = 0.5, \; = A\ = 0.25. Both bands are lowered
stronger for small k& than for large k. Also the shape of both bands changes.
While the minimum of the even band moves to k ~ 0.657 for zg = 0.2 and a
local maximum at & = 7 occurs, the local maximum at k£ = 0 of the odd band
moves to k =~ 0.557 and a local minimum at k& = 0 occurs.

For A, = A = 2 and z = 1 only the gs results are discussed as the pc
generator yields no conclusive results for these parameters without ring exchange
(see Section 5.4.1). The resulting one-hole dispersions are shown in Figure 5.29.
The increase of xg yields a lowered dispersion for both bands. The shape of
the bands is conserved, but for the odd band the decrease is pronounced around
k = m, while not only a less pronounced decrease, but even an increase of the

energy can be observed for the even band around k = 7.
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Figure 5.27: One-hole dispersions with even parity (black) and odd parity (cyan) for

z =0, AL = A = 0.5 and various values for z.
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Figure 5.28: One-hole dispersions with even parity (black) and odd parity (cyan) for

r=0.5, AL = A = 0.25 and various values for z0.
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Figure 5.29: One-hole dispersions with even parity (black) and odd parity (cyan) for

z =1, A} = A =2 and various values for z0.
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5.5 Discussion

We are able to calculate the one-hole dispersions by means of SCUT. The agree-
ment with results from series expansion is very good for small parameters. Even
in the regime x = 1, zg = 0, 2 < A < 3 the agreement with the exact diago-
nalisation results is still good. The hole dispersions are strongly influenced by
the triplons. Because the one-hole dispersion with odd parity has a larger local
energy which is influenced more strongly by the continuum above, it changes
more explicitly with increasing hopping constants. Hence it is doubtlessly more
difficult to calculate, i.e. the influence of the triplons on the odd band is stronger
than on the even band. Therefore the deviations from the simple cosine shape are
more pronounced for the odd band. These deviations grow if either the magnetic

coupling or the strength of the hopping is increased:

e The broadening of the odd band is slowing down, then turned into a narrow-
ing and finally the shape changes totally under the influence of the second
harmonic so that the maximum at & = 0 is only local, the total maximum

occurs at k = m and the minimum lies between 0 and 7.

e The shift upwards is also slowing down and then turned into a shift down-
wards due to the influence of the continuum formed by one triplon and one
even hole state. In the regime around z = 1 and A} = )\ = 2 the constant
of the odd dispersion is approximately as low as the constant of the even

dispersion.

For the even band the deviations from the cosine shaped dispersion consist es-

sentially in the growth of the second harmonic. For z =1 and A| = )\ = 2 the
5-
k = 7 occurs. But the absolute maximum remains at k = 0.

minimum has moved from k = 7 into the region k =~ A local maximum at

The combination of these effects for x = 1 and A\; = A\ = 2 yield a crossing
of the two dispersions. The crossing point lies between the minima of the bands.
However, the pc generator is not applicable for the SCUT if the parameters are
in this region. This is suggested by the deviations from the series expansion and
exact diagonalisation results as well as by the peculiar convergence behaviour of
the SCUT.

In the regime v ~ 1 and A, = )| 2 1 the pc generator is no longer suitable
because the convergence of the flow is hindered due to the overlap between the

one-hole-one-triplon continuua and the one-hole-two-triplon continua. The pc
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results are distinct from the series expansion and exact diagonalisation results.
Furthermore the convergence is very slow and exhibits features that indicate
problems regarding the sorting of the eigenvalues. The remedy is the gs gener-
ator which only decouples the zero-triplon space from the rest. Then the hole
dispersions are similar to the exact diagonalisation results. Although there are
small deviations from the series expansion, the agreement is astonishingly good.
Because the exact diagonalisation examines a ladder with fourteen rungs, finite
size effects are present so that a part of the deviations are due to constraints of
the exact diagonalisation. The remaining deviations are probably due to trunca-
tion errors. Another aspect in favour for the SCUT induced by the gs generator

is the satisfactory convergence behaviour.

The treatment of the case A| > 2 and A\ > 2 is problematic for the gs generator
because the convergence is hindered by the overlap between the odd one-hole
dispersion and the continuum formed by one even hole and one triplon. To achieve
convergence in this regime we use the following restriction for the gs generator.
A term affecting the hole-triplon continuum is omitted, if the distance between
the triplon and the hole state on which the term acts is larger than An,,,,. The
effective Hamiltonian yields an upper boundary for the hole dispersions. The
comparison between the results from the full gs generator and from the restricted
gs generator for x = 1 and A\ = A\ = 2 shows that the upper boundary given
by the result from the restricted generator is already close to the result from
the full generator for Anya = 2. For 2 = 1 and A} = )\ = 3 this restriction
Anpax = 2 induces convergence, while the flow diverges for Any.. > 2. The
estimations we obtain for the hole dispersions are again in good agreement with
the exact diagonalisation results. The exact diagonalisation [101] results predict
that the situation is qualitatively the same for A\, = A\ =3 as for Ay = A =2
if x =1 and xg = 0. The bands exhibit a similar shape and relative position to
each other so that still a crossing at k = 0.57 occurs. But the energy is lowered
and the bandwith of both bands is increased by a factor of ~ 1.5. The results
from the restricted gs generator yields an estimation for the even band which
is in good agreement with the exact diagonalisation result, while the odd hole
dispersion exhibits deviations that are very similar to the deviations between the

exact diagonalisation and the full gs generator for A\| = A\ = 2.

The case v = A = A = 0.5 is a special one. Both the pc and the gs genera-
tor (even with increased maximal extensions) exhibit deviations from the series

expansion results for the odd hole state. These deviations stem apparently from
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the closeness (or even overlap) of the continuum formed by one even hole and
one triplon. If the lowering of the odd band is overestimated by the SCUT or
underestimated by the series expansion is not clear.

Anisotropic hopping has the effect that the bands are lowered (raised) if one
hopping constant is increased (decreased). But if A is changed, the odd band
exhibits a slightly different behaviour dominated by the first and second harmonic
respectively.

The ring exchange leads to a lowering of the hole dispersions. This effect is
least pronounced for the even band around k = w. The deformation of the band
shape is most pronounced for the odd band like for the anisotropic hopping.

All in all the odd band is more sensitive to changes of the parameters than the
even band.

Ladders doped with more than one hole have not been treated yet. The addi-
tional local basis state (the completely empty rung), which is present for at least
two holes in the system, increases the number of operator terms to be considered
with the calculations. As we have already reached the limits of the computational
performance, we expect that this increment is difficult to handle. However, we
expect that this state is still negligible for slightly doped ladders because the local
energy of this state is larger than the local energies of the remaining states.

The use of the spin symmetry, which reduces the time and memory costs for the
undoped ladder by a factor of approximately 6, is still not implemented for the
doped ladder. By this implementation also a factor of approximately 6 could be
gained concerning the reduction of time and memory. But this implementation
is distinctly more difficult for the doped case because the rotation in spin space
does not simply convert one local hole state operator into another one like it is
the case for the triplet states. A rotation of a hole state operator in spin space
yields a linear combination of two operators. This is problematic because linear
combinations of operators have to be taken into account for the identification of
the representative terms during the setup of the differential equations.

The symmetry utilisation would also allow us to investigate the influence of
increasing maximal extensions. Until now we are not able to state whether the
results still change if the truncation is made less strict. We expect at least minor
changes since the extensions concerning the hole operators are much smaller than

the extensions of the pure triplon terms.
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6 Summary and Outlook

In the present thesis the technique of self-similar continuous unitary transforma-
tions (SCUTs) is used to generate effective Hamiltonians for antiferromagnetic
Heisenberg spin—% ladders, which are appropriate models for a certain subsystem
of (Sr,La, Ca,Y),,Cug4O4 — the so called telephone number compounds.

A continuous unitary transformation (CUT) is a general method to diagonalise
Hamiltonians. The choice of the generator determines the properties of the CUT.
The pc generator which creates particle conserving Hamiltonians and adaptions
of this generator are used in this thesis. The SCUT uses a truncation scheme
that defines which parts of the Hamiltonian shall be omitted. This induces a
self-similar transformation. The SCU'T is not in need of extrapolation techniques
like the perturbative realisation of CUT. However, overlapping energies cause
convergence problems'. A possible remedy is a generator adaption excluding the

terms hindering the convergence.

The doped spin—% ladder is a one-dimensional model, which is expected to cap-
ture the same qualitative features as the two-dimensional cuprate lattice, which
exhibits high-temperature superconductivity. The undoped and the slightly hole-
doped case are considered in this thesis. Double occupancy is forbidden for the
sites, which is a good model assumption for strong Coulomb repulsion. Because
this system is gapful for the considered parameters, the correlations between
the excitations decrease exponentially with the distance. Therefore a real space
truncation is appropriate.

The performance and the numerical stability of the SCUT are improved deci-
sively for the undoped ladder by utilising the spin symmetries within the bond
operator representation. For the undoped ladder the implementation of the gs,1p
generator, which decouples only the zero- and one-triplon space from the rest
of the Hilbert space, enables the treatment of higher values of x (the ratio be-

tween the magnetic coupling parallel and perpendicular to the ladder). Since the

!Note that strong overlaps also pose problems for the PCUT on the conceptual level.
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two- and the four-triplon continuum overlap becomes stronger with increasing z
and therefore hinders the convergence of the transformation, the gs,1p generator
avoids the sorting of the corresponding eigenenergies and yields a converging trun-
cation. However, the two-triplon bound states cannot be calculated without an
additional diagonalisation. Hence continua with more than two particles cannot
be determined easily if the gs,1p generator is used because the two-triplon bound
states contribute crucially to these continua. The execution of this decoupling is
subject to current research.

We also detect that the one-triplon dispersion enters the three-triplon contin-
uum for x = 1.5. Yet the overlap is not too large. Hence it does not hinder the
convergence of the gs,1p SCUT.

For the doped ladder we are able to calculate the dispersions for the hole states
which include not only a hole but also a spin and therefore interact magnetically
with the neighbouring rungs. The hole dispersions, which are degenerate concern-
ing the spin but differ for different parity, are strongly influenced by interactions
with the triplons. This influence is stronger on the band with odd parity than
on the band with even parity because the local energy of the odd hole state is
larger and more sensitive to the continuum above. The agreement with the series
expansion results is very good for a large regime of parameters.

If at least one of the continua formed by one hole and one triplon exhibits
a pronounced overlap with the higher continua, the pc generator is no longer
applicable. The agreement with the results of other methods and the convergence
deteriorate. Then the gs generator, which decouples only the zero-triplon state
from the remaining states, yields by far more conclusive results. If the parameters
are small, the results of the pc and of the gs generator coincide.

In case of strong isotropic hopping constants A\, = Aj 2 1 and x = 1 the
hole dispersions cover approximately the same energies and exhibit a crossing at
k ~ 0.5m. Our results are in good agreement with the exact diagonalisation results
for A\; = A\ = 2. The finite size scaling of the exact diagonalisation explains most
of the deviations between both methods. The remaining deviations are probably
caused by truncation errors. However, the convergence of the gs generator is
lost for even larger hopping constants. Because the restricted gs generator still
converges in this regime, the convergence problems must be due to the overlap of
the one-hole dispersions with the triplon-hole continua.

The restriction which is applied to the generator omits a term affecting the

continuum formed by one hole and one triplon, if the maximal distance Anpay
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between the triplon and the hole state on which the term acts is exceeded. If we
Fourier transform the one-hole subspace of the effective Hamiltonian, we obtain
only upper boundaries for the actual hole dispersions. Nevertheless, these results
are close to the exact diagonalisation results for x =1 and A\| = A = 3.

We also investigated the influence of anisotropic hopping and magnetic ring
exchange on the one-hole dispersions. The odd hole dispersion is more sensitive
to changes of the parameters than the even hole dispersion due to the stronger

influence of the continuum for the odd band which has a larger local energy.

We conclude with an outlook on future investigations. The next step will be
the examination of two-hole states. Especially the two-hole bound states, which
are interesting in the context of superconductivity, shall be investigated. The
inclusion of the rung state with two holes, i.e. the empty state, which is not
needed to be considered for the one-hole dispersions, increases the effort concern-
ing memory and time needed for the calculation incisively. However, we expect
that this state is still negligible because it is energetically unfavourable.

Nevertheless, even without the local two-hole state the system of differential
equations is larger if all operators acting on global two-hole states are included.
The new terms are terms with four hole operators (two creation and two annihi-
lation operators). The utilisation of the spin symmetry for the operators affecting
hole states, which is still difficult to implement, would improve the performance
of the program significantly. Another approximation that reduces the effort can
be made by neglecting all contributions from terms with four hole operators on
the right hand side of the flow equation, but not on the left hand side.
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A Effects of Utilisation of the
Spin Symmetry for the

Undoped Ladder

The utilisation of the spin symmetry reduces the terms to be included in the
Hamiltonian of the undoped ladder by almost a factor of six. Nearly all terms
deal with two or three different spin states. For these terms the application of all
possible rotations in spin space to a representative term yields six terms including
the representative. These rotations are equivalent to permuting the spin states
x, y, z and adding optional signs for the local triplon operators'. Therefore these
rotations are easy to implement for the triplon operators in the bond operator
representation [65].

Together with the utilisation of the Hermiticity and the real space symmetry
the memory as well as the time consumed by the calculation can be reduced by
almost a factor of 24. But this is only the obvious advantage. The numerical
stability of the integration is also improved by utilising the symmetries. With-
out explicit consideration of the symmetry small numerical deviations between
terms that should be equal can increase drastically via feedback. This feedback
is due to the coupling of the differential equations. Differences of such terms
expected to be zero yield finite numerical values and contribute to the flow equa-
tion. These rounding errors link sectors of the Hilbert space which should be
decoupled. Hence the SCUT fails at the reordering and the feedback becomes
dominant. In Figure A.1 the effect of such a feedback can be observed in the
ROD (residual off-diagonality, introduced in Section 3.6). If symmetries are not
utilised, the ROD exhibits the typical behaviour for such a numerical instabil-
ity at [J, ~ 70: The exponential decrease changes into an exponential increase
at this point and shows a non-convergent behaviour afterwards, which is char-

acterised by alternating irregular decrease and increase. If the symmetries are

'If the parity is conserved, there is always an even number of additional signs.
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FOR THE UNDOPED LADDER
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Figure A.1: Comparison of the ROD during the flow for the pc SCUT with (dashed)
and without (solid) utilisation of the symmetries; undoped ladder with z = 1, zg = 0;
truncation: N =4, do =10, dy =6, d5 =5, do = 3.

utilised on the contrary, the ROD decreases exponentially without peculiarities.

The symmetry breaking for the SCUT without utilisation of the symmetries
responsible for the feedback is also amplified and distributed via the coupling of
the differential equations. Figure A.2 shows this symmetry breaking examplarily
for six terms that are actually spin symmetric. The coefficients of these terms
should be equal but deviate for [J; 2 100, i.e. after the kink of the ROD. The
convergence seems to be achieved already at [J; ~ 12. Induced by the numerical
instability abrupt deviations from the convergence value occur for [J; 2 100
except for two of the considered coefficients, which, however, finally show small

deviations from the convergence value for [J; 2 195.
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Figure A.2: Comparison of the coefficients g; of six terms that should be equal due to the
spin symmetry during the flow for the pc SCUT without utilisation of the symmetries;
undoped ladder with x = 1, xg = 0; truncation: N =4, do = 10, d4 = 6, d5 = 5,

do = 3. The blue curve coincides with the curve of another coefficient.
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B Consistency Check for the
Doped Ladder Results

A high-level check of the SCUT method for the hole-doped ladder is performed by
a systematic comparison with the series expansion results from Ref. [97]|. For this
purpose a new truncation scheme is introduced that is not based on extensions in
real space but on the perturbation parameters instead. This allows us to compare
the order of the parameters. In Ref. |97| the ring exchange is not considered
and the coupling constants for the hopping are identical. Therefore the only
perturbation parameters are x and A = A\j = A_. The ratio p = £ is fixed for
each comparison to have actually only one parameter. For the new truncation a
new attribute is assigned to each term: the leading order in = for the expansion
of the coefficient. Nevertheless, the CUT is still self-similar and the expansions
in x are not calculated. This is not necessary to determine the leading order.
The leading order for the terms of the starting Hamiltonian is known because all
contributions generated by the SCUT are terms of the same or higher order as
they originate from commutators and nested commutators of these terms. So the
leading order of these terms is the leading order in which x is present for [ = 0.

The expansion of the coefficients ¢;({) in = has the form

i) = Y i (D™ (B.1)
m=0

where n; is the leading order. As the differential equations for the coefficients
have a bilinear form (2.18), the leading order of a g;(I) which is zero for [ = 0 is
given by the minimal exponent n; + ny of all terms g¢;(1)gx({) on the right hand
side of the flow equation.

If the leading order of a term, which occurs during the setup of the flow equa-
tion, is higher than a certain n,., defined in advance, this term is omitted. With

this truncation we are able to control up to which order the results will be correct.
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Figure B.1: Consistency check for ny.x = 4 and p = 0.5. For all coefficients c;, the
difference quotient g;, converges against a = 5. The difference Acg,. has the smallest
value which is already in the order of the numerical precision for x,, ~ 0.001. Hence

qo,e shows deviations for small x.

The coefficients ¢, of the one-hole dispersions

Jmax

winp(k) = cop + Z 2¢;, cos(jk) (B.2)

J=1

were compared with the results of the series expansion. The parameter p € {e, o}
denotes the parity (even or odd) of the hole state. Because no maximal extension
in real space is defined in this truncation scheme, j,., depends on n,,,,. According
to the fourth order series from Ref. [97] and using A = £ the leading order for co
is zero, one for ¢; , and four for ¢y, i.e. jpax = 1 for 0 < npax < 4 and Jpax = 2
for Ny = 4.

If both methods are consistent, the difference between a coefficient calculated
by SCUT on the one hand and the corresponding coefficient from the series expan-
sion on the other hand should show power law behaviour oc 2 with o = N +1
for z — 0. For the check of the behaviour of this difference Ac;,(z) for z — 0 we

analysed several values of x starting with xq = 6—14 and bisecting x consecutively,
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Figure B.2: Consistency check for ny.x = 4 and p = 1. For all coefficients c¢;, the
difference quotient ¢;, converges against a = 5. Again for gg. the deviations are
the most obvious and larger than for p = 0.5 but also for g, and ¢ . deviations are

distinguishable.

i.e. 41 = 5. This was done for p = 0.5, p = 1 and p = 2. To show that

Q = Npmayx + 1 is actually the dominating exponent in Ac;,(x) the ratio of the

differences In (Ac;,(2,)) — In (Acs )
() = B.3
q“,(x ) ln(xn) . ln($n+1) ( )
was plotted against z,. For a function Ac;,(x) dominated by bz®
Tim g p(25) = o (B.4)

holds true. But if z,, becomes too small, Ac;, is reduced to the size of the
numerical precision. The difference Ac;, is even numerically zero for very small
x, because the error is smaller than the numerical precision for x ~ 0. Therefore
the convergence ceases in this region. Nevertheless, in a small region where x,, is
neither too small nor too large the convergence is observable.

The figures depicted here (Figures B.1-B.3) show the behaviour of the ¢;, for
nmax = 4. The expected convergence against o = 5 is obvious. The deviations for

small x can be explained by reaching the limits of the numerical precision. The
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Figure B.3: Consistency check for ny.x = 4 and p = 2. For all coefficients c¢;, the
difference quotient g;, converges against oo = 5 except for gp. For this reason the data
points for gg . were not connected as they do not form a curve. Further explanations

can be found in the text.

only remaining discrepancy is the behaviour of ¢q. for p = 2 (see Figure B.3),
which does not reveal any kind of convergence. This is due to a zero-crossing of
Acg . in the considered region of . Thus the ansatz with the ratio g;, yields no
reliable result. However, the proper behaviour of the other g;, demonstrates the
consistency of the SCUT with the series expansion. If ¢y . exhibited an error, this
error would affect the other coefficients via the flow equations and they would
not show a consistent behaviour.

To conclude, we can state that this high-level check supports our method.
The results of this check meet our expectations that the SCUT is implemented

correctly.
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