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1 IntrodutionThe theory of strongly orrelated eletrons is of great importane for solid statephysis or in general ondensed matter physis. For instane, ondutivity andmagneti properties are strongly in�uened by eletroni orrelations. Materialswith strongly orrelated eletrons exhibit many interesting phenomena that anonly be understood in onsideration of quantum physis. The usual approah isto redue the exhaustive many-body problems with a multitude of interationsto simple paradigmati models that inlude the deisive physial properties.One of the most hallenging issues in modern solid state physis is the searhfor an appropriate theoretial desription for high-temperature superondutiv-ity. While onventional low-temperature superondutivity is well-understoodand very aurately desribed on the mirosopi level by the BCS theory [1℄,the mehanisms behind the superondutivity based on uprate or iron pnitideompounds are subjets of ongoing researh. The ritial temperature Tc foruprate superondutors (�rst disovered by Bednorz and Müller in 1986 [2℄) isup to 138 K [3℄ and hene relevant for tehnial appliations. The understandingof the underlying proesses ould also help �nding materials with even higher Tc.The ruial point for onventional superondutivity is the phonon mediatedombination of two eletrons to a Cooper pair with integer spin as desribedby the BCS theory. The bosoni Cooper pairs an form a olletive quantumstate whih is responsible for the e�ets of superondutivity. In essene theseare: (i) a urrent �ow without resistane and (ii) the Meissner-Ohsenfeld e�et.The urrent approahes to a theory for high-Tc superondutivity in uprateompounds assume similar onditions. Fermioni harge arriers, whih an beeither holes or eletrons depending on the material and doping, are supposed tobe ombined into pairs via attrative interations. However, these interationsare likely not to be due to a barely phononi mediation [4℄.A model system onsisting of spins that interat magnetially with positiveoupling onstants and mobile harge arriers is alled a doped antiferromagnet.1



CHAPTER 1. INTRODUCTIONIts theoretial desription is ahieved by the so alled t-J-model1 [5, 6℄. Froma strong oupling perspetive suh a model in 2D is expeted to inorporatethe essential features of the high-Tc superondutors based on uprates. Thismodel aptures the main e�et beause the superondution takes plae in two-dimensional uprate layers separated from eah other by the other onstituentsof the ompound. The oupling between the uprate planes is so weak that itan be negleted [7℄.The shemati phase diagram for a typial hole-doped high-Tc uprate super-ondutor in dependene on the temperature T and the hole onentration δ isshown in Figure 1.1. There is a phase haraterised by a long-range ommensu-rate antiferromagneti order (AF), whih ours for small δ. The superondutingphase (SC) an be found at low T in the region 0.05 . δ . 0.25. It is also alled�superonduting dome� beause of its form in the phase diagram. Optimal dop-ing is ahieved when Tc beomes maximal. In the regime between antiferromagnetand superondutor various forms of disordered and inommensurate magnetismour. The remaining regimes, whih are not separated by phase transitions butby rossovers, are in the order of inreasing δ: The pseudogap regime (PG), thenon-Fermi liquid regime (NFL) and the Fermi liquid regime (FL).Di�erent theories have been developed as possible desriptions for high-Tcuprate superondutivity: The resonating valene bond state and spin-hargeseparation respetively [4, 8, 9℄, stripe-like inhomogeneous spin and harge order-ing [7, 10�13℄ and quantum ritiality [14, 15℄ are the most important onepts.Certainly magneti �utuations and their interations with the harge arriersplay a key role.In this thesis a quasi one-dimensional model system for uprate superondu-tors is onsidered, whih is the antiferromagneti two-leg spin-1
2
ladder (disussedin Chapters 4 and 5). The assumed importane of the antiferromagneti spin in-teration within the uprate layers for the attration of the eletrons or holesrespetively is expeted also to be featured by the spin ladder as an analogousone-dimensional e�et. We expet that magneti exitations, whih are dom-inated by a loal triplet state on a rung of the ladder, mediate an attrativeinteration between the hole exitations.The spin ladder model is not a purely theoretial toy model, the system is re-alised in the so alled telephone number ompounds (see Setion 1.1). For thesesystems superondutivity an be deteted under high pressure [16℄. CaV2O51t denotes the hopping onstant for the harge arriers and J the magneti oupling onstant.2
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Figure 1.1: Shemati phase diagram for a typial hole-doped high-Tc uprate superon-dutor [7℄: The parameters are the temperature T and the hole onentration δ. Thetrue phases are the long-range ommensurate antiferromagneti order AF and the su-peronduting phase SC. The pseudogap regime PG, the non-Fermi liquid regime NFLand the Fermi liquid regime FL are not stritly separated. In the shaded area variousforms of disordered and inommensurate magnetism our.[17℄ and SrCu2O3 [16, 18℄ are further systems in whih spin ladders an be found.Within the isolating regime the spin ladder is very well understood. The be-haviour of magneti exitations in spin ladders already examined in Ref. [19℄ isresumed in Chapter 4 and augmented by additional results. The ladder is ef-fetively treated as a one-dimensional hain with sites populated by hardorebosons. These partiles obey a spei� algebra (see Setion 2.4).The subjet of Chapter 5 are hole-doped ladders, i.e. an extension of the modelby insertion of harge arriers in the form of holes. The hallenge of this exten-sion onsists in the ombined appearane of fermioni and bosoni partiles withhardore properties. The onerning algebra is also disussed in Setion 2.4. In-luding both algebras in the alulations at the same time is a rather demandingtask. Furthermore the Hamiltonian ontains a multitude of terms.Our method of hoie to derive e�etive Hamiltonians for the onsidered models3



CHAPTER 1. INTRODUCTIONis the ontinuous unitary transformation (CUT). The CUT tehnique is intro-dued in Chapter 2. The general issue of diagonalising a Hamiltonian (or at leastto ahieve a form that is loser to diagonality) an be performed with this teh-nique introdued by Wegner [20℄ as well as independently by Wilson and Gªazek[21, 22℄. Instead of applying only one single onstant unitary transformation thatdiagonalises the Hamiltonian at one or several onstant unitary transformationssuessively, a unitary transformation depending on a ontinuous parameter isapplied to the Hamiltonian. This transformation adjusts itself permanently dur-ing its appliation. Disrete transformations must be known expliitly before wean apply them, whereas for the ontinuous transformation it is su�ient to setup the in�nitesimal generator of the transformation. The hoie of this gener-ator determines whih properties the transform exhibits and in whih way thesorting of the eigenvalues is arried out. The generators used for the alulationsin this thesis are based on the ideas of Mielke [23℄ as well as Knetter and Uhrig[24, 25℄, who designed a generator that indues an e�etive model that preservesthe number of exitations (or quasipartiles respetively) and enables an easylassi�ation of the resulting eigenenergies onerning this number. We do notonly use this generator in its original form but also modi�ations introdued inRef. [26℄. These modi�ations enable the treatment of new parameter regimes,for whih the original generator is not appliable.The CUT an be performed in either a perturbative (PCUT) or a self-similar(SCUT) fashion. Both ways are disussed and ompared. In this thesis the SCUTis applied to the spin ladder Hamiltonians and ompared to established PCUTresults [27℄ if available. Beause in�nite systems are onsidered, an adequatetrunation has to be implemented. The hosen trunation sheme only restritsthe operators and not the states of the system to whih they are applied. Beausethe spin ladder is a gapful system, the orrelation between the quasipartilesdereases exponentially depending on the real spae distane. Hene a real spaetrunation is onsidered as the most suitable way of trunation.Chapter 3 deals with the implementation of the SCUT on a omputer. Readersinterested in the tehnial aspets of the method will �nd a detailed desriptionof the program and data struture within this hapter.4



1.1. TELEPHONE NUMBER COMPOUNDS
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Figure 1.2: Shemati view of (Sr,La,Ca,Y)14Cu24O41 taken from [28℄. The ouplingis illustrated by blak lines. Left: A 3D view of the struture. Middle: A uprate layeronsisting of hains. Right: A uprate layer onsisting of ladders.1.1 Telephone Number CompoundsThe omposite rystals (Sr, La, Ca, Y)14Cu24O41 alled telephone number om-pounds (a detailed survey of these interesting materials is given in Ref. [29℄) areomposed of uprate layers alternated with (Sr, La, Ca, Y) layers. There are twokinds of uprate layers: layers with CuO2 hains and layers with Cu2O3 ladders(eah aligned along the rystallographi c axis) (f. Figure 1.2), whih also al-ternate. The latter are of great interest in urrent researh beause the uprateladder an be onsidered as a model system for the 2D high-Tc superondutinguprate square lattie.The spin sites are the 3dx2−y2 orbitals of the opper atoms oupled via the 2px or
2py orbitals of the oxygen atoms, whih hybridise with the opper 3dx2−y2 orbitalsso that superexhange [30℄ is possible (see Figure 1.3). Interations between theladders are weak beause they result from 90◦ exhange [31, 32℄. Thus the laddersan be onsidered as isolated from eah other. Even if the interladder oupling istaken into aount, the strong frustration of the lattie auses the system to bee�etively one-dimensional [33℄. The dispersions of the magneti exitations ofthe omplete layer with interladder oupling are similar to those of a single spin5



CHAPTER 1. INTRODUCTION

a

cFigure 1.3: Shemati view of the Cu 3dx2−y2 (red) and O 2pσ (blue) orbitals withinthe ladder layers of the telephone number ompounds.ladder. Important properties of the ladders are investigated in Refs. [34�38℄.Typially the telephone number ompounds are insulators with a temperaturedependent DC ondutivity, but by inreasing the doping level of Ca a metal-insulator transition ours [39℄. The harge arrier density an be adjusted bydoping. Under high pressure the rystal beomes a superondutor for appropri-ate doping [16℄.
Sr14Cu24O41 exhibits an intrinsi doping of six holes per unit ell. Only 0.8of these holes per unit ell are allotted to the ladders; the remaining 5.2 holesare found in the hains [40℄ beause the hains possess a higher eletronega-tivity [41℄. La6Ca8Cu24O41 features undoped ladders [32℄ and the ladders in

La5.2Ca8.8Cu24O41, whih are only slightly doped, an be onsidered as approxi-mately undoped [42℄.In this thesis the isolated spin ladder is investigated. Chapter 4 is onernedwith the undoped ladder, whih will be treated as a half-�lled spin-1
2
model with-out eletron hopping. So just magneti interations are present. In Chapter 5 thehole-doped ladder is examined. The aording model inludes eletron hoppingadditionally to the magneti interations. Double oupany is forbidden, i.e.eletrons do not our as harge arriers but only holes. This an be justi�ed bythe fat that the onsite Coulomb repulsion between the eletrons is large.6



2 Continuous UnitaryTransformationsThe diagonalisation of Hamiltonians is a entral issue in theoretial quantumphysis. The tehnique of ontinuous unitary transformations (CUT) also re-ferred to as �ow equation method and introdued by Wegner [20℄ as well as byWilson and Gªazek [21, 22℄ o�ers a general approah to diagonalise operators orat least to ahieve a form whih is loser to diagonality. The basi idea of theCUT is to implement a method that adjusts itself during the proedure of thediagonalisation depending on the urrent form of the Hamiltonian at this pointof the ontinuous transformation: The hange of the Hamiltonian indued bythe transformation is determined by the urrent magnitude of the non-diagonalelements.A unitary transformation U dependent on the ontinuous parameter l is appliedto the operator H0 that is to be diagonalised:
H(l) = U(l)H0U

†(l) (2.1)where U(0) = 1.Due to the unitarity of the transformation the eigenvalues of every H(l) are thesame as the ones for H0. The antihermitian1 generator η of the transformation
U is de�ned by

η(l) =
∂U(l)

∂l
U †(l) (2.2)so that the derivative of H with respet to l is given by the so-alled �ow equation

∂H(l)

∂l
= [η(l), H(l)] . (2.3)This is atually a system of di�erential equations (generially highly oupled) forthe oe�ients of the operators appearing in H . Other operators A that are to1The generator η must be antihermitian to ensure that U is unitary. 7



CHAPTER 2. CONTINUOUS UNITARY TRANSFORMATIONSbe onsidered (e.g. observables) are subjeted to the same transformation as alloperators have to be transformed in the same manner � like for every hange ofbasis. For A the general �ow equation
∂A(l)

∂l
= [η(l), A(l)] (2.4)holds true.Inserting H0 into the �ow equation (2.3) generally yields new kinds of ontri-butions for H that were not part of the original H0. Applying the �ow equationfor these resulting terms yields again new terms and so on. For an in�nite systemone usually obtains an in�nite number of terms and for sizable �nite systemsan exponentially large number of di�erential equations. Thus a trunation is re-quired that neglets ontributions that do not a�et the main physial e�ets ofa Hamiltonian H to reah a manageable number of di�erential equations.The hoie of η(l) determines the transformation U(l) and therefore the formof H(l). Formally the transformation an be expressed by

U(l) = Le
R l

0
η(l′)dl′ (2.5)where L denotes the l-ordering operator, whih orders the following expressionfrom right to left aording to inreasing values of l. In general it is ompliatedto determine the expliit U(l) due to the omplexity arising from the appliationof L. Usually the �ow equation (2.3) is integrated numerially to alulate H fora ertain value of l.The original generator, whih was introdued by Wegner [20℄, is de�ned by theommutator of the diagonal and the non-diagonal part of H

ηWegner(l) = [Hdiagonal(l), Hnon−diagonal(l)] . (2.6)The intention of this hoie is that for the e�etive Hamiltonian, i.e. for l → ∞,the non-diagonal partHnon−diagonal vanishes. The de�nition ofHdiagonal is arbitraryand depends on the hoie of the basis. Therefore Hdiagonal an be de�ned asa struture that an be treated easily. However, if subspaes of Hdiagonal aredegenerate, they remain non-diagonal.The disadvantage of the Wegner generator is that if H0 an be written in theform of a band matrix, this feature is usually lost during the transformation for�nite l and eigenvalues annot neessarily be assigned to a onrete number ofexitations (respetively partiles) without further investigation.8



The generator of our hoie is the so-alled p (partile onserving) generator[23�25℄
ηpc,i,j(l) = sign(qi − qj)Hi,j(l) (2.7)de�ned in the eigenbasis of the operator Q ounting the partile number. Theindies i, j denote a transition from state j to state i and qi is the eigenvalue of

Q (i.e. the number of partiles) for the state i. Inserting the p generator intothe �ow equation (2.3) yields
∂Hi,j(l)

∂l
= −sign(qi − qj)(Hi,i(l) − Hj,j(l))Hi,j(l) (2.8)

+
∑

k 6=i,j

(sign(qi − qk) + sign(qj − qk)) Hi,k(l)Hk,j(l) .The eigenstates of Q an be ordered so that qk ≥ qi for k > i without loss ofgenerality. For the derivative of the sum over the �rst r diagonal elements of H(l)

∂

∂l

r
∑

i=1

Hi,i(l) = 2
r
∑

i=1

∑

k>r

sign(qi − qk)|Hi,k(l)|2 ≤ 0 (2.9)holds true due to qk ≥ qi. Therefore the sum ∑r

i=1 Hi,i(l) is monotonially de-reasing. Beause a Hamiltonian is usually bounded from below, this sum on-verges for l → ∞ and
lim
l→∞

∂

∂l

r
∑

i=1

Hi,i(l) = 2
r
∑

i=1

∑

k>r

sign(qi − qk)|Hi,k(l)|2 = 0 . (2.10)Hene it follows that for l → ∞ and for all i, j with i 6= k either qi = qkor Hi,k(l) = 0. The ase qi = qk is equivalent to degeneray with respet tothe partile number. Therefore all non-diagonal elements Hi,k(l) that ouplesubspaes with di�erent partile numbers tend to zero for l → ∞. Thus theindued transformation results in a blok-diagonal Hamiltonian onserving thepartile number for l → ∞, i.e. [H(∞), Q] = 0. Also due to Hi,k(l) → 0 theasymptoti behaviour for the derivative of the non-diagonal elements is dominatedby the �rst part of Equation (2.8)
∂Hi,j(l)

∂l
≈ −sign(qi − qj)(Hi,i(l) − Hj,j(l))Hi,j(l) . (2.11)Thus
sign(qi − qj)(Hi,i(l) − Hj,j(l)) > 0 (2.12)9
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l = 0 �nite l l = ∞Figure 2.1: Shemati example for a transformation of H(l) indued by the p generator:Eah oloured (nc, na)-blok represents ontributions to H reating nc partiles afterannihilating na partiles.holds for i 6= j and for su�iently large l beause Hi,j(l) tends to zero as well.This means that the transformation also sorts the eigenenergies aording to thepartile number if the orresponding subspaes of the Hilbertspae are oupledbefore the transformation, i.e. Hi,j(l = 0) 6= 0. For a detailed investigation of theasymptoti behaviour of the p CUT see Refs. [23, 26, 43℄. Note that for

lim
l→∞

sign(qi − qj)(Hi,i(l) − Hj,j(l)) < 0 (2.13)onvergene problems may our if Hi,j(l = 0) 6= 0, i.e. an overlap of energies be-longing to di�erent partile numbers may hinder the onvergene. We enounterthis problem for the treatment of spin ladders (see Chapters 4 and 5). A possibleremedy is a generator adaption (see Setion 2.5).An example for the strutural hange of H(l) is depited in Figure 2.1. In thisexample H0 = H(0) onsists of terms a�eting maximally two partiles. For �nite
l terms a�eting higher partile numbers our. The trunation sheme has tobe applied here to keep the number of terms �nite for an in�nite system2. Thehange of the partile number annot be higher than in H0. Hene the blok-band struture is onserved [23, 25, 44℄. For l = ∞ H is blok-diagonal andonserves the partile number. Eah blok an be assigned to a onrete numberof partiles. Further information about the struture of the Hamiltonian and ofthe observables in the ontext of p CUTs an be found in Ref. [44℄.Note that the sheme in Figure 2.1 does not represent the form of a matrixorresponding to H(l). A blok in this representation ontains all terms that2The trunation is only applied to the operators but not to the Hilbert spae.10



2.1. PERTURBATIVE CUT AND SELF-SIMILAR CUTreate nc partiles after annihilating na partiles. A (nc, na)-blok does notonly a�et states with na partiles but also those with more than na partiles.Therefore this representation is not idential with a matrix representation, forwhih the ation of eah blok is restrited to the onerning subspae withoutoverlaps.If the �ow equation (2.3) is numerially integrated (as usual in pratie), theintegration an be stopped at a ertain �nite l when the non-diagonal parts of Hare small enough to be onsidered as negligible. For a omfortable handling theterms of H are expressed in seond quantisation for the partiles under study.Three easily omprehensible examples for the appliation of CUTs are given inRef. [45℄. The di�erenes between the p and the Wegner generator are disussedby means of simple Hamiltonians. In partiular the onvergene behaviour isexamined. The Wegner generator always leads to a �xed point, but degeneraieshinder the diagonalisation, whereas the p generator is not sensitive to degenera-ies, but the indued transformation does not always onverge.2.1 Perturbative CUT and Self-Similar CUTContinuous unitary transformations an be performed in a perturbative or ina self-similar fashion. In this thesis the self-similar ontinuous unitary trans-formation (SCUT) was used exlusively. Nevertheless, this setion also gives abrief desription of the perturbative ontinuous unitary transformation (PCUT)beause SCUT results were ompared to PCUT results and the di�erenes be-tween the two approahes are an important issue. Both CUT proedures will beexplained exemplarily for the p generator (2.7). A detailed desription of thePCUT with the p generator is given in Ref. [25℄.2.1.1 PCUTFor the PCUT the HamiltonianH has to be split up into an unperturbed (partileonserving) part Hu and a perturbed part xV as usual in perturbation theorywhere x denotes the expansion parameter, whih has to be small. Additionallythe following onditions have to be ful�lled:
• The energy spetrum of Hu is equidistant with a lower boundary; theeigenenergies are proportional to the partile number. 11



CHAPTER 2. CONTINUOUS UNITARY TRANSFORMATIONS
• The perturbation term an be written as V =

∑N
n=−N Tn with N ∈ N. Theoperator Tn hanges the partile number by n.Then H(l) an be represented by the ansatz:

H(x, l) = Hu +

∞
∑

k=1

xk
∑

|m|=k

F (l, m)T (m). (2.14)
m denotes a set of indiesmi ∈ {−N,−N + 1, . . . , N − 1, N} with i ∈ {1, 2, . . . , k}so that T (m) is a produt of the operators Tmi

. The number of omponents of
m is denoted by |m|. The oe�ients F (x, l) still have to be determined.Now the hosen generator has to be depited in the same representation. Sothe p generator (2.7) reads in this representation

η(x, l) =
∞
∑

k=0

xk
∑

|m|=k

sign (M(m))F (l, m)T (m). (2.15)Here M(m) :=
∑

i mi spei�es the number of partiles being reated or annihi-lated by T (m) in total.Inserting H (2.14) and η (2.15) into the �ow equation (2.3) yields a system ofdi�erential equations for the F (l, m) via omparison of oe�ients. The integra-tion of this system for l → ∞ results in the e�etive Hamiltonian
Heff(x) = Hu +

∞
∑

k=1

xk
∑

|m|=k

F (∞, m)T (m) , (2.16)whih is partile onserving beause all F (∞, m) with M(m) 6= 0 are zero.2.1.2 SCUTFor the SCUT the Hamiltonian H is represented by a sum of di�erent operators
ôi multiplied by the onerning prefators gi. At �rst a trunation sheme has tobe de�ned that deides whether a term shall be negleted. The trunation shemedepends on the physial properties of the onsidered model. This is disussed indetail in Setions 2.1.3 and 2.2. The trunation sheme for the spin ladder modelsinvestigated in this thesis is disussed in Setions 4.2 and 5.2.During the �ow only the prefators hange while the operators remain onstant

H(l) =
∑

i

gi(l)ôi. (2.17)12



2.1. PERTURBATIVE CUT AND SELF-SIMILAR CUTThe operators serve as a �xed basis for H(l). This is the reason why this fashionof CUT is alled self-similar. The di�erential equations for the gi(l) are given viathe �ow equation (2.3) by performing the following steps:1. Set up a HamiltonianH(l) with the operators ôi of the starting Hamiltonian
H(0) and variable prefators gi(l).2. Calulate the onerning p generator η(l) aording to Equation (2.7) usingthe terms of H(l) and insert η(l) and H(l) into the �ow equation (2.3).3. Compare the oe�ients of the operators of the left and the right hand sideof the �ow equation (after having heked that the operator representation isunique3). This yields ontributions that have to be added to the di�erentialequations of the gi(l) in the form of ai,j,kgj(l)gk(l). The ai,j,k are prefatorsdepending on the result of the ommutator [η(l), H(l)]. New operators ôian emerge that do not appear in H(l). The trunation sheme deideswhether to keep them or not.4. Take the new operators ôi, whih shall be kept, multiplied by variable pref-ators gi(l) and attah them to H(l).Repeat steps 2 to 4 until no new non-negligible operators emerge. In the repeti-tion of step 2 only new ontributions to [η, H ] have to be alulated.Then the di�erential equations for the gi(l) exhibit the form:

∂gi(l)

∂l
=
∑

j,k

ai,j,kgj(l)gk(l). (2.18)The formal solution for the e�etive Hamiltonian is
Heff =

∑

i

gi(∞)ôi . (2.19)It is usually not feasible to ahieve an analytially exat solution for l → ∞. Butthe losed system of di�erential equations for the gi(l) an be solved numerially.The initial values gi(0) are given by the prefators of H0. The new terms arisingduring the alulation of [η(l), H(l)] start with the intial prefator zero. Theprefators belonging to operators that are not partile onserving are monitored3We use normal ordered operators to have a unique representation (see Setion 2.3). 13



CHAPTER 2. CONTINUOUS UNITARY TRANSFORMATIONSduring this integration beause these terms are the ones that we want to eliminate.If their absolute values are su�iently small for a ertain large value l = l̃ so thatthey an be negleted, the integration is stopped and the e�etive Hamiltonianreads
Heff =

∑

i

gi(l̃)ôi . (2.20)2.1.3 Comparison between PCUT and SCUTThe PCUT exhibits the typial advantages and disadvantages of perturbativeapproahes. The inrease of the expansion parameter x leads relatively rapidlyto poor results. Of ourse the quality of the results an be improved drastiallyby applying extrapolation tehniques suh as e.g. Padé approximation.Comparatively large orders are easily ahievable by PCUT. The atual integra-tion has to be arried out only one for the general sheme whih is appliableto variable models while the SCUT yields di�erent systems of di�erential equa-tions for eah model. For SCUTs the di�erential equations have to be integratedwhenever a new model is onsidered. Even if only the initial values are di�erent,a new integration has to be arried out.The PCUT has been suessfully applied in the ontext of many di�erent prob-lems. Examples of suh problems are the Hubbard model [46℄, many-partilesystems [47℄, spin hains [25℄ and also spin ladders [27, 48℄. The SCUT wasalso suessfully used in a broad �eld of ontexts � e.g. for the Anderson model[49�51℄, superondutivity [52�55℄, undoped antiferromagneti spin hains andladders [19℄, bosoni atoms in an optial lattie [19℄ and the derivation of ane�etive t-J-model from the Hubbard model [19, 56℄. A general overview withmany more examples for appliations of both fashions is given in [57℄.The overlap between energies of subspaes of the Hilbert spae with di�erentpartile numbers hinders the onvergene of the integration of the di�erentialequations for l → ∞ beause the p generator sorts the eigenenergies aordingto the partile number. If states with more partiles have a lower energy, a CUTusing the p generator is no longer adequate4. In this ase an adaption of thegenerator [26℄ an be helpful (see Setion 2.5).However, the PCUT onstitutes an expansion around the point where the ex-pansion parameter x is zero and no overlap exists. Therefore an atual overlap4In praxi the CUT an onverge, nevertheless, if the trunation is very strit. This is disussedin the next setion.14



2.2. REAL SPACE REPRESENTATION AND TRUNCATIONfor x > c > 0 has no in�uene on the onvergene of the PCUT. The e�ets of anoverlap are not aptured by the PCUT. Also approahing ontinua, whih do notoverlap yet, pose a problem for the PCUT. Approahing ontinua are sensitiveto eah other, whih results in a deformation of the ontinua. The PCUT resultshave to be orreted by rather sophistiated extrapolation tehniques to re�etthe physial properties of approahing ontinua. A lear advantage of the SCUTis that suh properties are inluded diretly in the resulting e�etive models.While the PCUT results exhibit the typial problems of series-expansions in-reasing with the perturbation parameter, the errors of the SCUT results stemfrom the trunation of the Hamiltonian. To �nd a suitable trunation sheme isstill a di�ult task. The optimal trunation is usually determined a posteriori:If the results onverge onerning the expansion of the trunation parameters,the results are expeted to re�et the physial properties of the Hamiltonian andthe e�etive model is onsidered to be valid and reliable (f. Setion 4.3.1). Ana priori determination of the trunation error is an objetive of urrent researh[58℄.The trunation for the SCUTs treated in this thesis is based on a real spaerepresentation. The reasons for this hoie are disussed in the next setion.2.2 Real Spae Representation and TrunationAmultitude of the problems treated in theoretial solid state physis is formulatedusing loalised states (e.g. Wannier states) and loal Hamiltonians in seondquantisation [59℄. This does of ourse not imply that the physis of these systemsis restrited to loal e�ets. The exitations of the spin ladder are known to havea gapful dispersion as long as the four-spin interations are small enough (seeSetions 4.1 and 5.4). The orrelation length ξ and the energy gap ∆ satisfythe relation ∆ ∝ ξ−z where z denotes the dynami ritial exponent [60℄. Thusthe orrelations are loal and long-range interations are less important. Thetrunation needed for the SCUT to keep the number of di�erential equations�nite an hene appropriately be implemented by omitting longe-range terms.We have to keep in mind that this trunation is a ruial point as it is essentialto keep the number of di�erential equations �nite for an in�nite system (or tokeep the number of di�erential equations manageable for a large �nite system).Exept for the numerial error of the integration the only step ausing errors isthe trunation. The most obvious trunation for a system dominated by loal15



CHAPTER 2. CONTINUOUS UNITARY TRANSFORMATIONSorrelations is to omit long-range interations.Another harateristi whih has to be onsidered for the trunation is thenumber of partiles involved in a ertain interation. This aspet is of ourseorrelated with the loality of the interation beause the more hardore partilesare involved the less loal is the onerning term. For the spin ladder the ruialphysis of the parameter regime in whih we are interested is overed by termsa�eting one and two partiles [61℄.It should also be noted that the trunation is only restrited to operators.There is no trunation of the Hilbert spae of the states. Thus although operatorsa�eting higher numbers of partiles are omitted, the number of partiles thatan be treated an be arbitrarily large. To illustrate this we onsider the ationof a term in seond quantisation, e.g. a†
ia

†
jak, whih annihilates one partile andreates two. This term ats not only on the one-partile subspae, but also onthe subspaes with more than one partile, e.g. it hanges a four-partile into a�ve-partile state.The onrete trunation sheme used for the spin ladders is disussed in detailin Setions 4.2 and 5.2.The trunation also a�ets the onvergene of the �ow. In ase of a diverg-ing �ow the trunation of terms that hinder the onvergene an suppress thedivergene. This is illustrated by an example for whih the eigenenergies shall beknown a priori. For onveniene we assume that terms a�eting more than twopartiles are negligible. Moreover, the only terms that do not onserve the par-tile number are of the form a†

na†
n+∆nam or a†

man+∆nan, where the indies denotethe site on whih the operator ats. These terms are the non-diagonal ones inour example.Let us onsider a simple ase �rst, in whih the one-partile dispersion andthe two-partile ontinuum do not overlap (see left panel in Figure 2.2). Beauseof the asymptoti behaviour of the non-diagonal elements (2.11) the onvergeneis hindered only if energies of subspaes with di�erent quasipartile numbersoverlap, while the �ow of an SCUT with the p generator always onverges. Thiswas shown in the introdution of the present hapter.If an overlap is present like in the middle and in the right panel in Figure 2.2,the �ow may diverge. The di�erene between the panel in the middle and thepanel on the right is the in�uene of di�erent trunations. It depends on thetrunation whih two-partile states are reahed by the non-diagonal terms. Thereal spae distane between the two partiles is deisive. The terms a†
na†

n+∆nam16



2.2. REAL SPACE REPRESENTATION AND TRUNCATION
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0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1Figure 2.2: Shemati examples for one- and two-partile energies. The blak line isthe one-partile dispersion, the solid yan lines are the boundaries of the two-partileontinuum and the dashed yan lines are the energies of the two-triplon states whihare atually a�eted by the non-diagonal terms. In the left panel the one- and two-partile energies do not overlap and no onvergene problems our. In the middleand right panel an overlap is present. If this overlap atually auses divergene, astriter trunation in real spae may yield onvergene. The energies of the two-partilestates a�eted by the non-diagonal terms are disrete due to this trunation. Furtherinformation an be found in the text.onvert one partile into two partiles with a real spae distane |∆n| betweenthe partiles, the Hermitian onjugate terms a†
man+∆nan onvert two partileswith a real spae distane |∆n| into one partile. The trunation restrits |∆n|to a maximal distane ∆nmax. Hene not the whole ontinuum is a�eted bythe non-diagonal terms but only ∆nmax two-partile states with disrete energieslying within the ontinuum. These disrete energies are depited as dashed linesin Figure 2.2. In the middle panel a striter trunation (∆nmax = 2) is onsideredthan in the right one (∆nmax = 10). Therefore the number of two-partile stateswith disrete energies, whih are a�eted by the non-diagonal terms, is di�erent.If the disrete two-partile energies do not overlap with the one-triplon dispersion(like in the middle panel), the SCUT is less sensitive to the atual overlap andthe �ow onverges. Hene a striter trunation an yield onvergene in ase ofan overlap that would atually ause divergene. For ∆nmax → ∞ the disreteenergies merge into the ontinuum.Note that the one-partile dispersion that lies within the two-partile ontin-uum an only be exat if there is no oupling between their subspaes. In ase of17



CHAPTER 2. CONTINUOUS UNITARY TRANSFORMATIONSpossible transitions between the one- and two-partile subspae the one-partiledispersion is only de�ned outside the ontinuum. Nevertheless, the one-partiledispersion an still be tall in the two-partile ontinuum as a a resonane, whihan be observed in the two-partile spetral density.2.3 Referene State and Normal OrderThe de�nition of a referene state is neessary for the implementation of a nor-mal ordering sheme. The normal ordering is of great importane as a uniquerepresentation is needed for omparing operators during the setup of the di�er-ential equations. We also single out the relevant proesses based on the normalordering.In the following n will denote the lattie site. In ase of the spin ladder theglobal referene state |0〉 is omposed of the loal referene states |0〉n as follows
|0〉 =

⊗

n

|0〉n . (2.21)This state will be mapped onto the quasipartile vauum by the CUT. For othermodels it is not always reasonable to ompose |0〉 of loal states. However, en-tangled referene states are less tratable.The onrete hoie of |0〉n and therefore |0〉 is physially motivated. The state
|0〉 in its form before the transformation should be already lose to the groundstate, i.e. the quasipartile vauum. Usually we onsider a solvable limit of theHamiltonian. The ground state of this limit is a suitable hoie for |0〉 as long asthe parameters of the Hamiltonian are lose to this limit. Then we expet |0〉 tobe lose to the atual ground state.This atual ground state is usually very omplex and not expliitly deter-minable. The same is true for the quasipartiles, i.e. exitations. Figure 2.3illustrates the mapping of a CUT onto a state desribing a single exitation if theorrelation dereases exponentially with spatial range (f. preeding setion).For the normal order we employ a de�nition that is somewhat di�erent fromthe usual one beause the referene state is a produt state in our ase (2.21).Aording to our de�nition, a loal operator ôn is normal ordered if

〈0| ôn |0〉 = 0. (2.22)Aordingly a produt of loal operators ô =
∏

n ôn is normal ordered if eah ofits loal fators ôn is normal ordered.18



2.4. HARDCORE PARTICLE ALGEBRA
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Figure 2.3: Illustration of the transformation of a state that is mapped onto a singlequasipartile in ase of an exponentially dereasing orrelation. On the left hand sidethe situation before the transformation is depited: The state is a produt state of loalreferene states (white irles) and another loal state (blak irle); this state is anexitation with respet to the solvable limit of the Hamiltonian for whih the referenestate is the ground state. The right hand side shows the state after the transformation:The atual exitation is dominated by the state on one site (blak irle), but it polarisesits environment (shaded irles). This polarisation dereases exponentially with thedistane from its enter (illustrated by di�erent shadings).In the ase of a degenerate ground state a single referene state is not su�ient.A referene ensemble is needed instead, whih is, however, not the ase for thespin ladder. An example for a referene ensemble an be found in Ref. [56℄.2.4 Hardore Partile AlgebraThe quasipartiles populating the spin ladder, whih are introdued in Setions4.1 and 5.1, are hardore partiles, i.e. if a site is oupied by suh a quasipar-tile no other quasipartile an be reated there. The magneti exiations ofthe spin ladder are bosoni hardore partiles, whih are dominated by a loaltriplet state. Due to the threefold degeneray of the triplet these partiles omein three �avours. The hole exitations are fermioni hardore partiles, whihare dominated by a loal state onsisting of a hole and a spin 1
2
. This partilehas four �avours beause the spin has two possible positions and two possibleorientations. Note that for the fermions the hardore property is stronger than19



CHAPTER 2. CONTINUOUS UNITARY TRANSFORMATIONSthe Pauli exlusion priniple beause a fermioni hardore partile on a site alsoexludes bosons as well as fermions in di�erent states.We introdue operators b†n,α and bn,α reating and annihilating respetively abosoni quasipartile, i.e. a partile with integer spin. The index n denotes thesite to whih the operator is applied and the index α the state of the quasipartile.In analogy we de�ne fermioni reation operators f †
n,α and fermioni annihilationoperators fn,α for quasipartiles with half-integer spin.The algebra for the hardore bosons is given by the ommutation relation

[bn,α, b†m,β ] = δn,m

(

δα,β

(1n −
∑

γ

e†n,γen,γ

)

− b†n,βbn,α

) (2.23)where e†n,α and en,α denote all possible reation and annihilation operators (bosoniand fermioni). The sum over γ goes over all possible states for the quasipartiles.Note that 1n −
∑

γ e†n,γen,γ is one for an empty state and zero otherwise. Thisoperator is not normal ordered due to the identity operator (see Setion 3.5). Inproduts of loal operators the identity operator an be negleted beause onlythe operators a�eting the quasipartiles are relevant. The operator produt inthe Hamiltonian onsisting of identity operators only for all sites yields a onstantenergy (in�nite for an in�nite system), whih an be omitted by an appropriateo�set. In the e�etive partile onserving model, i.e. for l → ∞, this onstantenergy is the groundstate energy of the system at hand.Conerning di�erent sites the operators behave like usual bosoni operators:they ommute aommodated by the δn,m in Equation 2.23. Ating on the samesite the hardore property omes into play. Aording to its de�nition the om-mutator yields
[bn,α, b†n,β] = bn,αb†n,β − b†n,βbn,α. (2.24)The ation of the �rst term bn,αb†n,β depends on whether α is equal to β or not.It an be easily seen that bn,αb†n,β = 0 for α 6= β due to the fat that multipleoupation of one site is not allowed. In the ase α = β the term bn,αb†n,β = bn,αb†n,αats like the operator whih ounts the empty states beause it is zero for anoupied site and one for an empty one. Inorporating these relations one getsthe form of Equation 2.23.For the hardore fermions the following antiommutation relation holds true

{fn,α, f †
m,β} = δn,m

(

δα,β

(1n −
∑

γ

e†n,γen,γ

)

+ f †
n,βfn,α

)

. (2.25)
20



2.5. ADAPTED GENERATORS
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l = 0 �nite l l = ∞Figure 2.4: Shemati example for a transformation of H(l) indued by the gs,1p gen-erator: Eah oloured (nc, na)-blok represents ontributions to H reating nc partilesafter annihilating na partiles. The red line indiates that all operators a�eting morethan four partiles are trunated. The generator ontributions are depited as shadedbloks.In analogy to the bosoni operators the fermioni ones behave like usual fermionioperators if they at on di�erent sites, i.e. they antiommute. For operators onthe same site only the hardore property is relevant.Commutators with fermioni and bosoni operators belonging to hardore par-tiles yield

[bn,α, f †
m,β] = −δn,mf †

n,βbn,α (2.26)and
[fn,α, b†m,β ] = −δn,mb†n,βfn,α (2.27)beause bosoni and fermioni operators ommute ating on di�erent sites.2.5 Adapted Generators2.5.1 Exlusion of Terms from the GeneratorIf transitions between partile spaes with overlapping energies are possible, thep generator (whih is based on the idea that more present partiles always or-respond to a higher energy of the system) is only partly appropriate beause theresulting SCUT usually shows problems with the onvergene for l → ∞. Atu-ally the SCUT diverges in this ase if the trunation sheme is made less strit.Beause the divergene is indued only by long range terms for small overlaps,the trunation of these terms an restore onvergene (see Setion 2.2). But this21



CHAPTER 2. CONTINUOUS UNITARY TRANSFORMATIONS
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indue a transition from the two- to the three-partile ontinuum andthe hermitian onjugate terms a transition vie versa.onvergene is aompanied by the neglet of physial properties. Therefore theresulting eigenenergies re�et the assumptions implied by the generator. The on-erning overlapping energies are separated by the transformation, i.e. the e�etiveHamiltonian does not exhibit this atual overlap.5Nevertheless, if the ontinua have a strong overlap, the integration of the SCUTdi�erential equations for the prefators of the Hamiltonian diverges for l → ∞.The exlusion of the terms responsible for the transition between the overlappingontinua from the p generator is a remedy for this problem. For instane, ifan overlap between the two- and the three partile ontinuum (see Figure 2.5)hinders the onvergene, terms of the form a†
n1

a†
n2

a†
n3

an4
an5

and the hermitianonjugate terms are exluded from the generator.5Note that the approah of non-overlapping ontinua results in a deformation of the energybands as an atual physial e�et. This e�et is aptured by the p SCUT. However, if anoverlap is present, the p generator enounters problems (f. Equation (2.13)).22



2.5. ADAPTED GENERATORSThe onsequene of this exlusion is that the onerning partile spaes remainoupled. In ontrast to the appliation of the p generator the Hamiltonian losesits blok-band form during the �ow then. Of ourse the diagonalisation of theparts of the Hamiltonian onerning the aording partile spaes still has to bedone if the orresponding ontinua shall be alulated. But regarding all otherpartile numbers the Hamiltonian will be blok-diagonal after the SCUT, whihnow onverges for l → ∞.In Figure 2.4 an example for an SCUT adapted in the manner desribed hereis depited. We use again the (nc, na)-blok representation introdued in Setion2. In this example the generator ontains only the (0, n)- and (1, n)-bloks aswell as the onjugate terms. We use the term gs,1p generator for this generator,whih deouples only the ground state and the one-partile state from the rest.We start from a Hamiltonian exhibiting the same struture as in the example forthe p generator in Figure 2.1. Conferring both examples the di�erenes betweenboth generators with respet to the struture of the Hamiltonian during the �owand for l → ∞ beome lear.If the ontinua belonging to ertain partile numbers are not of interest, theterms of the Hamiltonian onneting the onerning subspaes an be exludedfor the sake of performane. Although terms appear during the �ow that wouldnot be indued by the p generator, the right hand side ontributions to the �owequation (2.3) are redued whih simpli�es the problem onsiderably.Generally all problemati terms an be exluded from the generator at theexpense of the deoupling of the orresponding subspaes. A detailed disussionof generator adaptions by exluding terms from the p generator an be found in[26℄ where quasipartile deay is examined by means of SCUT.2.5.2 Additional Sign Changes in the GeneratorIf the loal behaviour in the model suggests that ertain proesses inreasing thepartile number are lowering the energy, the onerning terms an also be pro-vided with a minus sign in the generator instead of being exluded. Then theHermitian onjugate terms dereasing the partile number and raising the energydo not get the minus sign they would get in the p generator. The advantage ofsign hange over exlusion is that these terms hanging the partile number willnot our in the e�etive Hamiltonian sine their ontribution to the generatorauses their derease for large l. Thus all subspaes orresponding to ertain par-23



CHAPTER 2. CONTINUOUS UNITARY TRANSFORMATIONStile numbers will be deoupled from eah other produing a partile onservinge�etive model.In the ontext of the hole-doped spin ladders this idea of adapting the sign ofthe generator terms beomes interesting. Inreasing the number of magneti exi-tations orresponding to quasipartiles is not neessarily aompanied by raisingthe energy beause the presene of a hole permits new proesses in whih thegeneration of additional magneti exitations implies the redution of the energyof the hole. Analogous proesses dereasing the number of exitations and en-haning the hole energy are also possible. A detailed disussion of this issue willbe given in Setion 5.3.Both possibilities of adapting the generator for the SCUT desribed here �exlusion of terms and sign hange � an of ourse be ombined to ahieve optimalresults.Nevertheless, the omputation of the sign of the energy hange in advaneis not a simple task beause this sign is atually one of the properties of thee�etive model whih still has to be alulated. If this property depends on themomentum, the ansatz of trunating in real spae depending on extensions ofoperators is not feasible. The e�ets of a generator based on a wrong estimationare disussed in Setion 5.3.2.5.3 Real Spae Restrition of the GeneratorMany terms that remain after the real spae trunation of the Hamiltonian at onstates with disrete energies within the ontinua (see Setion 2.2). The divergeneof the SCUT in ase of an overlap is not indued by all terms that mediate betweenoverlapping ontinua, but only by a part of these terms (see Figure 2.6). It wasalso shown in Setion 2.2 that a striter real spae trunation of the Hamiltonianan indue onvergene.However, a striter trunation auses a larger error for the results of the SCUT.Therefore we do not apply a striter trunation to the Hamiltonian but we hoosea striter generator. We emphasize that a restrition of the generator does notimply an approximation. It only hanges the diretion of the unitary rotation.This restrition of the generator is not based on the total extension of the terms,but on the extension of the reation operators and the extension of the annihi-lation operators. Let us onsider the example of an overlap between one- andtwo-partile energies shown in Figure 2.6. The terms a†
na†

n+∆nam and a†
man+∆nan24
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Figure 2.6: Shemati example for an overlap between one- and two-partile energies.The blak line is the one-partile dispersion, the solid yan lines are the boundariesof the two-partile ontinuum and the dashed lines are the energies of the two-triplonstates whih are atually a�eted by the terms a
†
na

†
n+∆nam and a

†
man+∆nan. The yandashed lines do not pose a problem beause they do not ross the one-partile dispersion.The onvergene problem is indued by the terms that at on the states with the reddashed dispersions, whih ross the one-partile dispersion.

are responsible for transitions between the one- and the two-partile subspae.We hoose to restrit the generator based on |∆n|, whih is the distane betweenthe two partiles whih are reated or annihilated. Beause the one-partile statedoes not have an extension, it is not relevant for the restrition of the generator.All terms that have a larger |∆n| than a ertain ∆nmax are exluded from thegenerator. Note that they are still part of the Hamiltonian as long as they meetthe trunation riteria for the Hamiltonian.The transformation indued by this restrited generator does not try to sort alleigenenergies (f. Equation 2.12), but only those whih are aptured by the termsin the generator. Therefore the �ow may also onverge in ase of overlappingenergies. The prie to be paid is that the subspaes a�eted by the omitted termsare not ompletely deoupled from the remaining Hilbertspae. Thus either an25



CHAPTER 2. CONTINUOUS UNITARY TRANSFORMATIONSadditional diagonalisation has to be applied to the e�etive Hamiltonian from thisSCUT or the results have to be onsidered as upper limit for the atual results.The restrition of the generator an be applied to the p generator or to any of itsadaptions. A onrete example for suh a restrition is introdued and disussedin Setion 5.3.

26



3 SCUT Implementation on aComputerFor the realisation of an SCUT it is essential to implement a program tailoredto the partiular purpose. The speial features of suh a alulation have to beoptimized for the omputing performane. These tehnial aspets are disussedwithin this hapter.Beause the SCUT onsists of two di�erent parts, it is advisable to use twoseparate programs. The �rst one sets up the di�erential equations arising from theHamiltonian to be diagonalised in onsideration of the algebra of the underlyingoperators. The seond one integrates the di�erential equations set up by the �rstone. The advantage of the separation of these two steps onsists in the possibilityto apply the seond step with di�erent initial values independently from the �rstone beause setting up the di�erential equations is very demanding onerningmemory and time.3.1 Data StrutureTo implement the �rst part of the SCUT, whih sets up the di�erential equationsfor the prefators of the Hamiltonian, the programming language C++ is used.For the sake of performane we do not use a omputer algebra system like Math-ematia or Maple beause up to several hundred thousands of terms have to betreated for the systems onsidered within this thesis.A lass for the operator terms is an essential part of our program. The objetsof this lass have the following attributes.The prefator for these terms is a ommon fration onsisting of a sign, an inte-ger numerator and an integer denominator. In this thesis only integer prefatorsare atually needed. But for other algebrae frations annot be avoided, whihshould remain ommon frations as long as possible to minimise the rounding27



CHAPTER 3. SCUT IMPLEMENTATION ON A COMPUTERerrors. Only the numerial integration in the seond part of the SCUT requires�oats.A boolean variable determines whether the prefator is real or imaginary. Theterms appearing in the models of this thesis are either purely real or purelyimaginary. However, omplex prefators an be represented using these attributesby splitting a number into its real and its imaginary part.The main part of the term is an array of loal operators. For these operators apartiular lass is implemented. It is advisable to use a matrix representation forthe loal operators as the ommutators and the ombinations of loal operatorsare easier to alulate by means of matrix produts. Also the site whih is a�etedby the loal operator has to be an attribute. The models of this thesis are quasione-dimensional so that the site an be represented by an integer salar. Forhigher dimensions it has to be a vetor.A large number of terms is generated during the setup of the di�erential equa-tions and eah resulting term of a ommutator has to be ompared to the terms ofthe Hamiltonian to hek if it ontributes to already existing terms in the Hamil-tonian or to new terms to be established. To simplify this omparison a hashvalue is attributed to eah term depending on the operators inluded. A hashfuntion assigns a unique hash value to a ertain ombination of loal operators.Terms with the same hash value are ombined to a group. Then the searh forequal terms an be restrited to the group with the same hash value. The morepossible hash values there are the smaller the groups are and the faster the searhan be done. The hash funtion should also assign the values evenly so that thesizes of the groups do not di�er too muh. If terms are similar, a searh for aertain term is more di�ult and therefore slower. Hene similar terms shouldget di�erent hash values. The hash funtion should rather be implemented in away that terms with equal hash values di�er distintly so that it is easier to dis-tinguish them and the searh beomes faster. An appropriate hashing an speedup the program signi�antly. We have hosen a simple hash funtion based onthe modulo operation. The hash value v is given by
v = (. . . (i0a + i1)modM)a + i2)modM)a + i3)modM)a + . . . in) (3.1)where ik denotes the index that haraterises the k-th loal operator of the term.The number of loal operators is n, the of possible hash values is M and a denotesthe number of possible loal operators. To avoid an integer over�ow the modulooperation is applied after eah addition.28



3.2. UTILISATION OF SYMMETRIESIt is also onvenient to use an attribute �multipliity�, whih appears in theontext of the utilisation of the symmetries, whih are disussed in the nextsetion. The time needed to determine this number an be redued if it is onlyalulated one and stored as an attribute instead of aulating it numerous times.Of ourse other properties that are needed frequently an be attributed to theterms as well if their alulation is time-onsuming.The terms in the sum of the Hamiltonian should be stored as a dynamial arraybeause the size of the �nal Hamiltonian is not known in advane. Beause theterms of the p generator are all part of the Hamiltonian exept for possible signs2.7, the generator does not have to be stored additionally to the Hamiltonian.If a term has to be used as a generator term, the potential additional sign isadded during the alulation if neessary. For the adaptions of the p generatorintrodued in Setion 2.5 we proeed in the same way.Arbitrary operators are transformed aording to Equation (2.4). BeauseHamiltonians are the only operators that were transformed in this thesis, thisaspet of the SCUT is not treated here. A detailed desription of the implemen-tation of general operator transformations an be found in Ref. [19℄.3.2 Utilisation of SymmetriesThe utilisation of symmetries given by the Hamiltonian of the model saves timeand memory and it is therefore essential for omplex problems. For in�nitely ex-tended systems the SCUT is even theoretially infeasible without the utilisationof at least one symmetry that redues the Hamiltonian to a �nite number of rep-resentative terms. Normally this symmetry is the translation symmetry. Termsthat emerge from eah other via translations in real spae an be represented byone exemplary term. In a one-dimensional system in whih the sites are labelledby integers one an use the term with the smallest site number equal to zeroas the representative for the whole group, whih ontains an in�nite number ofterms.Other generi symmetries that an be utilised are the remaining symmetriesof the lattie, symmetries in spin spae or partile-hole symmetries. Also thehermitiity of the Hamiltonian, whih is no symmetry in the usual sense, an beutilised. It is disussed here how to alulate the omplete ommutator using therepresentative terms for disrete symmetries exemplarily.The Hamiltonian H represented by a sum of the terms hi with their prefators29



CHAPTER 3. SCUT IMPLEMENTATION ON A COMPUTER
fi an be written as a sum over the whole symmetry group G (with lG elements)omprising all symmetries to be used:

H =

N
∑

i=1

fihi =
∑

G

Ns
∑

j=1

f̃j h̃j (3.2)where N denotes the number of all terms of the Hamiltonian without onsid-eration of the symmetries and Ns the number of representatives. The atualrepresentatives h̃j arry the prefators f̃j whih are in general not equal to the
fi.The relation

abs(fi) = abs(sj f̃j) (3.3)holds true for the absolute value of the orresponding oe�ients if there is aone-to-one orrespondene between single operator monomials under the grouptransformations. The fator si is the multipliity of h̃i in the sum over G. If theappliation of di�erent symmetry operations to a representative generates termsmultiple times so that the sum over G ontains them multiple times as well, theprefator of the onerning representative has to be redued by the multipliityin the sum over G. The simplest example for a nontrivial multipliity, i.e. a mul-tipliity not equal to one, is the multipliity of the unity operator. Beause theunity operator remains unhanged by the appliation of every symmetry opera-tion, its multipliity is equal to the number of all possible symmetry operations,i.e. lG.For another simple example onsider the symmetry operation R whih re�etsa term with respet to a ertain plane. If a term does not hange under R, butunder all remaining symmetry operations, its multipliity is 2.Note that some symmetry operations hange the sign of the oe�ient. Henethe sign has to be taken into aount as well for the f̃j and Equation (3.3) is onlyvalid for the absolute values. For instane, the appliation of the parity operatorto a term a�eting a state with odd parity yields an additional minus sign.Due to the multipliities the number of terms in the Hamiltonian usually annot be redued by the fator lG. But espeially for a large number of terms theredution usually omes lose to it. There are ases where the redution anatually be larger than lG if the utilisation of the symmetry avoids the emergeneof ertain terms [62℄.The alulation of the ommutator, however, annot be restrited to the rep-resentatives only. As the generator onsists of terms that are also part of the30



3.2. UTILISATION OF SYMMETRIESPSfrag replaements
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b̂2Figure 3.1: The example for the use of the translation symmetry in the ommutatorexplained in the text is illustrated. The ation of the terms a0, b−1, b0, b1 and b2on a one-dimensional hain, whose sites are depited as irles, is shown. The sitesa�eted by an operator are depited by �lled irles. The ommutator [â0,
∑

n b̂n

] yieldsthe representative terms for the omplete ommutator [∑n ân,
∑

n b̂n

]. In ontrastthe ommutator [â0, b̂0

] onsidered in isolation misses the relative translations of theoperators that are present for [â0, b̂−1

], [â0, b̂1

] and [â0, b̂2

].Hamiltonian, the ommutator on the right hand side of the �ow equation (2.3)an be alulated by ommutators of the form [hi, hj ].The symmetries an be used by
[

∑

G

f̃ih̃i,
∑

G

f̃j h̃j

]

=
∑

G

[

f̃ih̃i,
∑

G

f̃j h̃j

] (3.4)so that one sum of the ommutator an be restrited to the representatives andonly for the other sum the full symmetry group must be taken into aount.This is illustrated for the translational symmetry in a one-dimensional example.The example onsiders the ommutator of a term ân ating on three neighbouringsites and a term b̂n ating on two neighbouring sites where n denotes the smallestsite index (see Figure 3.1). The representative terms are a0 and b0 without lossof generality.The omplete ommutator [∑n ân,
∑

n b̂n

] inorporates an in�nite number ofnontrivial terms for an in�nite hain. The ommutator [â0,
∑

n b̂n

] omitting the31



CHAPTER 3. SCUT IMPLEMENTATION ON A COMPUTER�rst sum and taking into aount the representative â0 only yields the represen-tative terms for the result of the omplete ommutator beause the omitted sumauses the translation of the whole term.The ommutator of the representatives [â0, b̂0

] is only a partial ontributionto the representative terms of the result beause omitting both sums neglets thepossible relative translations of the operators ân and b̂n.In the present ase the sum over n for the b̂n an be restrited to n from −1to 2 beause all other b̂n have no overlap with the representative â0 and theorresponding ommutators are zero for bosoni operators1.Note that the resulting representatives do not math the form de�ned in thebeginning and still have to be adapted to this de�nition. In our example thismeans that the smallest site index of the resulting representatives is not zero ingeneral so that the terms have to be translated appropriately.3.3 Setup of the Flow EquationThe essential part of the program that alulates the �ow equation (2.3), whih isatually a system of di�erential equations for the oe�ients of the Hamiltonian(2.18), features two for loops running over the terms of the Hamiltonian. Theterms originating from the �rst loop represent the generator terms. Therefore,still outside the seond loop, it has to be heked whether the �rst term mathesthe riteria for the generator. If it is not part of the generator, the seond loopis skipped and the �rst one ontinues with the next term.Due to the utilisation of the symmetries the step in whih the term from ηand the term from H are idential must not be skipped. The appliation of thesymmetry operations, whih takes plae inside the loops, generates terms fromthe H term that are di�erent from the η term.Figure 3.2 shows a struture diagram for the program that sets up the �owequation. The two for loops desribed in the preeding paragraph are embeddedinto a while loop that has the exit ondition that no new terms arise inside.In the ase of a generator whih onserves the blok-band struture of theHamiltonian the proedure inside the two for loops should start with a queryif it an be onluded from the omponents of the two terms to be ommutedwhether the ommutator yields terms outside the band of the Hamiltonian. These1Terms onsisting of an even number of fermioni operators behave like bosoni operators.32



3.3. SETUP OF THE FLOW EQUATION
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Figure 3.2: Struture diagram of the program for setting up the �ow equation.resulting terms are anelled by other terms due to the properties of the generator.Hene they an be left out immediately and the ommutator does not need tobe alulated. Consider a starting Hamiltonian that hanges the partile numbermaximally by N . All Hamiltonians H(l) ourring during the �ow inherit thisproperty if a p generator is employed. A ommutator of a term that hangesthe partile number by n1 and a term that hanges the partile number by n2yields only terms that hange the partile number by n1 +n2 (with n1, n2 ∈ Z). If

abs(n1 + n2) > N , the results of the ommutator violate the onsidered propertyand do not ontribute to the �ow equation.The term representing a part of the generator is attributed the appropriatesign at this point. For the p generator the sign is de�ned by Equation (2.7).33



CHAPTER 3. SCUT IMPLEMENTATION ON A COMPUTERBeause [f̃ih̃i,
∑

G f̃j h̃j

] has to be alulated (as explained in the last setion), allpossible symmetry operations are applied to the seond term of the ommutator.The arising terms are run over by a loop in whih the ommutator is alulated�nally. The funtion arrying out this task resorts to an array in whih all possibleloal ommutators are stored2 and to the distributive law for ommutators whihis the subjet of the next setion.Afterwards the trunation is applied to the results of the ommutator. Theremaining terms are adapted to the de�nition of the representatives. Terms thatare equivalent to the same representative have to be summed up.The results of the ommutator are now in the �nal form and have to be om-pared to the representative terms of the Hamiltonian. If they math an existingterm, the program stores the information that the oe�ients of the two termswhih were inserted into the ommutator ontribute (inluding the resulting pref-ator) to the derivative of the oe�ient of the mathing term (f. Equation 2.18).If a ommutator result is a new term, the term is added to the dynamial arrayof the Hamiltonian. Its initial value is set to zero beause it is not present inthe starting Hamiltonian. Then the ontributions to the �ow equation are storedlike for an already existing term. This onludes the proedure inside the two forloops.When all ommutators are omputed for the terms of the starting Hamiltonian,the for loops run over all ombinations of the new terms among eah other and ofnew terms and old terms. When all the onerning ommutators are alulated,this proedure is repeated after eah run as long as new terms emerge whih arenot trunated.3.4 Calulation of the CommutatorA ommutator of terms onsisting of loal operators3
[(

nL
∏

i=1

âi

)

,

(

nR
∏

j=1

b̂j

)] (3.5)with nL operators âi in the �rst produt and nR operators b̂j in the seond produthas to be alulated e�iently within the program. The operators âi and b̂j are2The possible loal ommutators an be alulated via matrix produts at the beginning ofthe program beause the loal operators an be represented by matries (see Setion 3.5).3A loal operator âi ating on site i is here an abbreviatory notation for⊗j<i 1j⊗âi⊗
⊗

j>i 1j .34



3.4. CALCULATION OF THE COMMUTATORloally normal ordered4 operators a�eting only one site eah.The appliation of the ommutator de�nition [Â, B̂] = ÂB̂ − B̂Â with sub-sequent ombination of terms ating on the same sites is less e�ient than theappliation of the distributive law for ommutators. The ommutator an be splitinto loal ommutators
[(

nL
∏

i=1

âi

)

,

(

nR
∏

j=1

b̂j

)] (3.6)
=

nL
∑

k=1

nR
∑

l=1

((

k−1
∏

i=1

âi

)(

l−1
∏

j=1

b̂j

)

[

âk, b̂l

]

(

nR
∏

j′=l+1

b̂j′

)(

nL
∏

i′=k+1

âi′

))whih is onvenient for ommutators of bosoni operators or mixed ommutatorswith bosoni operators ai and fermioni operators bj or vie versa. If one ofthe parts of the generator onsists of an even number of loal operators, theommutator an be split into loal antiommutators. Let nR be even withoutloss of generality, then
[(

nL
∏

i=1

âi

)

,

(

nR
∏

j=1

b̂j

)] (3.7)
=

nL
∑

k=1

nR
∑

l=1

(

(−1)l−1

(

k−1
∏

i=1

âi

)(

l−1
∏

j=1

b̂j

)

{

âk, b̂l

}

(

nR
∏

j′=l+1

b̂j′

)(

nL
∏

i′=k+1

âi′

))whih is onvenient for fermioni operators. Beause the fermion number is on-served within our models, in eah term of the Hamiltonian the number of fermionireation operators always equals the number of fermioni annihilation operators,i.e. there is an even number of fermioni operators in all of these terms.The terms enountered in the ommutator onsist of both bosoni and fermi-oni loal operators in general. These general terms an be dealt with by orderingthe operators aording to the algebra they obey, i.e. an operator Â should bewritten as a produt of Âb onsisting of loal bosoni operators and Âf onsistingof loal fermioni operators. Then eah ommuator to be alulated an be splitup aording to
[

Â, B̂
]

=
[

ÂbÂf , B̂bB̂f

] (3.8)
=

[

Âb, B̂b

]

B̂f Âf + Âb

[

Âf , B̂b

]

B̂f + B̂b

[

Âb, B̂f

]

Âf + ÂbB̂b

[

Âf , B̂f

]

.4The normal order used in this ontext is desribed in Setion 2.3. 35



CHAPTER 3. SCUT IMPLEMENTATION ON A COMPUTERThe �rst three parts of this sum an be evaluated via Equation 3.6 and the lastpart via Equation 3.7.The advantage of this approah of relying on the distributive law is that theommutator is redued to a small number of terms lose to the desired formbeause most terms in the sums in Equations 3.6 and 3.7 are zero5.Now the operators in the remaining produts outside the ommutator or anti-ommutator respetively have to be ombined until eah site is related to just oneloal operator. The results of all possible loal produts an be stored in an arraylike the results for the loal ommutators. To be able to ompare the resultingterms with the terms of the Hamiltonian, the de�ned order onerning bosoniand fermioni operators as well as onerning the sites has to be established;additional minus signs our by swapping fermioni operators.3.5 Matrix Representation for Loal OperatorsThe loal ommutators, antiommutators and produts of loal operators neededfor the alulation are alulated at the beginning of the program. This is on-veniently done in matrix representation. For a loal basis onsisting of N states6there are N2 linearly independent loal operators, whih an be represented by
N × N matries. One of the states is the loal referene state |0〉n introdued inSetion 2.3. The other states of the loal basis shall be referred to as |r〉n with
r ∈ {1, 2, . . . , N − 1}. The p CUT maps |0〉n onto the empty site and the otherstates onto the site oupied by one quasipartile, whih an have N −1 di�erent�avours r.The orresponding vetors are de�ned to be
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|2〉n =
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0
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. . . . (3.9)The operators e†n,r reating quasipartiles with the �avour r on site n are repre-5The ommutator for loal bosoni operators ating on di�erent sites vanishes and so doesthe antiommutator for loal fermioni operators. Furthermore, many loal produts aibjor bjai yield zero.6For the undoped ladder N = 4 holds (see Setion 4.1). We onsider N = 8 for the dopedladder negleting the double hole state (see Setion 5.1).36



3.5. MATRIX REPRESENTATION FOR LOCAL OPERATORSsented by the matries
e†n,1 =
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1 0 0
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e†n,2 =
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0 0 0

1 0 0... . . .












n

. . . (3.10)from whih the loal operators en,r and e†n,ren,r′ an be formed easily. Togetherwith the unity operator 1n these N2−1 operators e†n,r, en,r and e†n,ren,r′ onstitutea loal basis. The operator
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0 0 0
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n

(3.11)is not hosen as an element of the basis beause it is not normal ordered onerning
|0〉n. This operator is therefore represented by the linear ombination1n −

N−1
∑

r=1

e†n,ren,r (3.12)whih was already used in Setion 2.4. The unity operator 1n is also not normalordered onerning |0〉n, but it is not taken into aount in produts of loaloperators as usual in seond quantisation beause it ats only trivially. Theoverall unity operator 1 =
⊗

n 1n yields only a onstant energy ontributionand does not appear on the right hand side of the �ow equation (2.3) beause itommutes with every term.The matries obey the hardore algebra introdued in Setion 2.4. The quasi-partiles an be bosoni or fermioni sine the loal algebra is only given by thehardore property. For bosoni partiles (or mixed ombinations of one bosoniand one fermioni partile) only the loal ommutators and for the fermioni par-tiles only the loal antiommutators are needed. So in total N4 relations have tobe alulated. Also N4 di�erent loal produts are possible. The results ahievedvia the matries are stored in an array for further use.Although it is not obligatory to store all results due to the antisymmetry of theommutator [A, B] = −[B, A] and the symmetry of the antiommutator {A, B} =

{B, A}, the program is faster if we an reall all results diretly from the memorywithout further operations. 37



CHAPTER 3. SCUT IMPLEMENTATION ON A COMPUTER3.6 Numerial Integration of the Flow EquationThe seond part of the SCUT � the solution of the �ow equation � is a ratherstraightforward numerial integration. A system of ordinary �rst order bilineardi�erential equations (2.18) depending on the ontinuous variable l has to besolved. For instane, a �fth order Runge-Kutta method an be applied, whih isour algorithm of hoie. An adaptive step size ontrol is advisable beause mostof the hanges take plae at the beginning of the integration while the oe�ients
gi(l) remain almost onstant from a ertain l on if the transformation onvergesfor large l. So the size of the steps of the numerial integration an be inreasedduring the alulation. The program ode for the Runge-Kutta method an befound in Ref. [63℄.The onvergene is monitored during the integration. Sine all ontributionsto the generator derease exponentially in ase of onvergene, the onerningoe�ients are squared and summed up. This sum is de�ned as residual o�-diagonality (ROD). It is a measure for the onvergene. The ROD is expetedto tend to zero for l → ∞. Note that the term �o�-diagonality� is meant inthe broadest sense, i.e. the de�nition of the generator determines whih elementsshall be kept for l → ∞ and these elements are de�ned as diagonal parts of theHamiltonian. The RODs depited within this thesis are always normalised to theinitial ROD.With the derease of the ROD the designated e�etive Hamiltonian is ap-proahed. If the ROD falls below a ertain threshold speifying the preision ofthe result (usually ≈ 10−15), the integration an be onsidered as ompleted. Theorigin of divergenies is disussed in Setion 2.5 in the ontext of the adaption ofthe generator. The number of oe�ients is of the order of magnitude of up to
105 for the models onsidered in this thesis.
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4 Undoped AntiferromagnetiSpin-1
2
Ladders4.1 Model An undoped ladder onsists of two Heisenberg

PSfrag replaements

leg l leg rrung nrung n + 1
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Figure 4.1: Undoped spin ladder.

spin hains oupled to eah other (see Figure4.1). The ladder will be treated as a half-�lled spin-1
2
model without eletron hoppingbut only with magneti spin interations. Ifwe just take into aount nearest neighbourinterations (with the oupling J⊥ along therungs of the ladder and the oupling J‖ paral-lel to the legs of the ladder), the Hamiltonianreads

H = J⊥

∑

n

~Sn,l·~Sn,r+J‖

∑

n,α

~Sn,α·~Sn+1,α (4.1)where ~Sn,α denotes the spin vetor for the siteon rung n ∈ Z and on leg α ∈ {l, r}. In thefollowing the spin will be 1
2
and we will on-sider the antiferromagneti ase that J⊥ and J‖are both positive. This model desribes a sub-system of the telephone number ompounds

(Sr, La, Ca, Y)14Cu24O41 (see Setion 1.1). Thein�uene of the ouplings J⊥ and J‖ is also il-lustrated in Figure 4.1. The oupling J� also appearing in this �gure is disussedlater within this setion.Usually the spin ladders within the telephone number ompounds are hole-doped. However, in this hapter the undoped spin ladder is disussed, whih39



CHAPTER 4. UNDOPED ANTIFERROMAGNETIC SPIN-1
2
LADDERSdoes not onsider the harge arriers. This ase is realised in La6Ca8Cu24O41 [32℄and approximately realised in La5.2Ca8.8Cu24O41 [42℄. The doped ladder inludingthe harge arriers in form of holes is disussed in Chapter 5.If the ratio x =

J‖

J⊥
goes to in�nity for bounded J‖, the two legs are deoupledand an be treated as two independent Heisenberg hains.In the ase x = 0 the rungs are deoupled and form independent dimers. Thenthe ground state for the antiferromagneti ase is omposed of rung singlet states

|0〉 =
⊗

n

|singlet〉n =
⊗

n

1√
2

(|↑↓〉 − |↓↑〉)n . (4.2)The exitations are rung triplet states for x = 0.The state |0〉 is a suitable referene state for the CUT as it exhibits the prop-erties required aording to Setion 2.3. For x > 0 this state is no longer theground state and the atual ground state is unknown sine the expliit opera-tor that performs the SCUT annot be determined. Yet as long as x is not toolarge the singlet is the dominant part and this referene state is reasonable. Theelementary exitations are triplons, i.e. triplet states dressed with the magnetiinterations with their environment. We do not want to use the term �magnon�for these magneti exitations beause this term is usually assoiated with quasi-partiles in systems that exhibit long-range magneti order (whih is not the asefor the triplons). Moreover triplons feature a threefold degeneray based on their
S = 1 harater [64℄.For the triplet states we hoose the so-alled bond operator representation[65℄. The reation operators t†α,n with t†α,n |singlet〉n = |tα〉n and the aordingannihilation operators tα,n orrespond to the states

|tx〉n =
−1√

2
(|↑↑〉 − |↓↓〉)n (4.3a)

|ty〉n =
i√
2

(|↑↑〉 + |↓↓〉)n (4.3b)
|tz〉n =

1√
2

(|↑↓〉 + |↓↑〉)n . (4.3)These states are aligned along the x-, y- and z-axis of the spin spae. Due to theSU(2) symmetry of the spins this basis is advantageous. Its bene�t is seen in the40



4.1. MODELrepresentation of the Hamiltonian:
H

J⊥
= H⊥ + xH‖ =

∑

n,α

t†n,αtn,α (4.4)
+

x

2

∑

n

[

∑

α

t†n,αtn+1,α + t†n+1,αtn,α −
∑

α6=β

t†n,αt†n+1,αtn,βtn+1,β

+
∑

α6=β

t†n,αt†n+1,βtn,βtn+1,α +
∑

α

t†n,αt†n+1,α + tn,αtn+1,α

]

.The invariane under rotations in spin spae by π
2
about the prinipal axes Sx, Syand Sz is manifest in this representation in ontrast to the usual representationbased upon the Sz omponent of the onerning triplet state. For instane, alokwise rotation by π

2
about the z-axis, whih hanges |tx〉n into |ty〉n, |ty〉n into

− |tx〉n and does not hange |tz〉n, leaves H unhanged. Note that the energy ofthe referene state |0〉 was set to zero in this Hamiltonian by adding the energy
3
4
J⊥ to the loal operator J⊥

~Sn,l · ~Sn,r = J⊥

(

−3
4
1n +

∑

α t†n,αtn,α

), whih is thediagonal part of the Hamiltonian in our representation.The e�ets of the spin symmetries are disussed in Appendix A. An obviousonsequene is the saving of memory and time, but also numerial improvementsare implied.Beause the hybridization path around the Cu4O4 square plaquettes (f. Fig-ure 1.3) is strong, the in�uene of the four-spin interations belonging to theseplaquettes (i.e. two neighbouring rungs) is not negligible [66℄. These interationsare referred to as ring exhange (also yli exhange) and an be expressed bythe operators Πp and Π−1
p , whih permutate the spins of the plaquette p lok-wise and ounterlokwise respetively. The omplete ring exhange Hamiltonianreads
J�Hc

� =
J�

4

∑

p

(

Πp + Π−1
p

)

. (4.5)The ation of this term is illustrated in Figure 4.1. In the spin operator repre-sentation the ring exhange Hamiltonian is expressed by
J�H� = J�

∑

n

(

~Sn,l · ~Sn+1,l

)(

~Sn,r · ~Sn+1,r

) (4.6)
+
(

~Sn,l · ~Sn,r

)(

~Sn+1,l · ~Sn+1,r

)

−
(

~Sn,l · ~Sn+1,r

)(

~Sn,r · ~Sn+1,l

)

.Atually the omplete ring exhange Hc
�

also inludes two-spin terms for alltwo-spin ombinations of the four spins on two neighbouring rungs. Yet the41



CHAPTER 4. UNDOPED ANTIFERROMAGNETIC SPIN-1
2
LADDERSontributions from the terms oupling the spins along the rungs and parallel to thelegs are merged with the terms H⊥ and H‖ so that the oupling onstants J⊥ and

J‖ inlude these ontributions, whereas the terms oupling the spins diagonallyan be negleted here beause their prefator is only of the order of 3% of J⊥[67℄. The omplete representation of the ring exhange using spin operators anbe found in Ref. [68℄.In analogy to x we de�ne x� = J�

J⊥
. The term H� is of importane for thequantitative omparison with the experimental data for both the two-dimensionalHeisenberg lattie [66, 69�71℄ and the Heisenberg ladder [42, 68, 72�77℄. Althoughone ould �t the neutron sattering results for the spin ladders [68, 72, 73℄ to amodel without ring exhange, this would imply that x was of the order of 2.But due to the fairly isotropi geometrial struture of the ladders no essentialdi�erenes between J⊥ and J‖ are expeted. An inlusion of the ring exhangeyields x ≈ 1.2 and x� ≈ 0.2 [75℄. The infrared absorption [42℄ and the Ramanspetrosopy [74℄ also suggest that x ≈ 1.2. For La4Sr10Cu24O41 inelasti neutronsattering determines x = 1.5 and x� = 0.25 [78℄.Also the theoretial derivation of Heisenberg models for spin ladders from one-band [19, 79, 80℄ and three-band Hubbard models [67, 81�83℄ provides evidenethat x� is of the order of 0.2.While the triplon gap ∆ remains �nite for all values of x without the ringexhange [34, 84℄, the gap loses with growing x�. Then the ground state is nolonger dominated by singlets on the rungs and hene the referene state |0〉 nolonger suits our purpose [85, 86℄. Therefore the SCUT yields unphysial resultsapproahing this phase transition and diverges �nally (see Setion 4.3.1).In the bond operator representation the ring exhange term (exept for a on-stant 9

16
1n in the loal term negleted here) reads
J�H� = J�

∑

n

∑

α

[

−3

2
t†n,αtn,α +

1

4

(

t†n,αtn+1,α + t†n+1,αtn,α

) (4.7)
− 1

4

(

t†n,αt†n+1,α + tn,αtn+1,α

)

]

+
∑

α,β

t†n,αt†n+1,βtn,αtn+1,β.All terms exept the last one already appear in the Hamiltonian without ringexhange. This new term belongs to the diagonal part of the Hamiltonian beause42



4.2. TRUNCATIONit is a density-density term. The omplete Hamiltonian divided by J⊥ reads
H

J⊥
= H⊥ + xH‖ + x�H� =

(

1 − 3

2
x�

)

∑

n,α

t†n,αtn,α (4.8)
+
∑

n

[

∑

α

(x

2
+

x�

4

)(

t†n,αtn+1,α + t†n+1,αtn,α

)

−x

2

∑

α6=β

t†n,αt†n+1,αtn,βtn+1,β +
x

2

∑

α6=β

t†n,αt†n+1,βtn,βtn+1,α

+
(x

2
− x�

4

)

∑

α

(

t†n,αt†n+1,α + tn,αtn+1,α

)

+ x�

∑

α,β

t†n,αt†n+1,βtn,αtn+1,β

]and inludes all terms whih are relevant for an appropriate desription of thespin ladder.Note that H is invariant under the parity operation P , whih is illustratedin Figure 4.2. The parity of a singlet state with respet to P is odd, whereasthe parity of a triplon is even. Therefore the reation or annihilation of an oddnumber of triplons violates the parity, while the parity is onserved if the triplonnumber is hanged by an even number. The terms of H either onserve the triplonnumber or hange it by two. Hene the parity is onserved by H .
Figure 4.2: Illustration of the parity operator P , whih re�ets about the red axis.
4.2 TrunationThe �nite energy gap ∆ of the triplons [35, 36℄ is equivalent to a orrelation be-tween the triplons whih is exponentially dereasing with respet to the distane.Hene a trunation in real spae is feasible. The extension in real spae shallbe used as a measure for the physial importane of a term of the Hamiltonian.In our quasi one-dimensional spin ladder the extension of a term is de�ned as43



CHAPTER 4. UNDOPED ANTIFERROMAGNETIC SPIN-1
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N = 4, i.e. terms ut o� by the red line are omitted. The blue bloks are the partileonserving terms that remain the only ontributions for l → ∞ in ase of a onvergingp CUT. The green bloks are the ontributions to the p generator, whih go to zerofor l → ∞.the di�erene between the smallest and the largest rung index of the loal opera-tors within the term. For higher-dimensional latties an extension de�ned in thetaxiab metri is easy to handle.The simplest way of trunating would be one maximal extension in real spaefor all terms. Terms exeeding this limit would be omitted. But this approah isnot reasonable in our ase. The number of possible terms inreases more stronglywith the maximal extension for terms onsisting of more loal operators. However,terms onsisting of less operators are usually more important in the sense thathigher extensions should be taken into aount for terms with less operators. Forinstane, the oe�ient of a one-partile hopping term onsisting of two loaloperators is usually larger than the oe�ient of a two partile interation term44



4.2. TRUNCATIONonsisting of four loal operators if they both have the same extension. Thereforedi�erent maximal extensions dn are de�ned in units of the rung distane where nis the number of loal operators of the onerned term.Additionally a maximal partile number N is de�ned for the operators, i.e.terms a�eting higher partile numbers than N are ompletely omitted even ifthe orresponding dn is larger than zero. Figure 4.3 shows the trunation forthe undoped ladder shematially for H(l). The restrition N = 4 rejets allterms outside the red line. Beause only terms hanging the partile number bytwo or onserving the partile number our in the starting Hamiltonian (4.4)or (4.8) respetively, the number of loal operators in a term is always evenduring the �ow and the Hamiltonian only onsists of the oloured bloks in the�gure1. The total number of loal operators is equal for the terms of the diagonalsfrom left bottom to right top. Therefore all bloks of eah of these diagonalsshare the same maximal extension dn. The parameter d0 for the (0, 0)-blok ismeaningless as this blok ontains only the non-loal unity operator for the wholeladder, i.e. a onstant energy ontribution. This trunation sheme, whih we usewithin this thesis, is not ompulsory. Other shemes ould be implemented, whihuse di�erent lassi�ations for the groups of terms sharing the same maximalextension.An important point is that a trunation of the operators does not a�et theHilbert spae. Atually we do not redue the Hilbert spae at all. A maximalpartile number for the operators does not restrit the possible number of partilesbeause we work in seond quantisation on the in�nite system. A (nc, na)-bloka�ets all states with na partiles or more. Therefore the (1, 1)-blok ats onall states that exhibit triplon exitations of arbitrary number larger than zero.Atually the multi-partile ontinua are mainly determined by the one-partiledispersion and an be made more aurate by inluding two-partile interations.
1The onservation of the parity with respet to P , whih was introdued in the preedingsetion, forbids the hange of the triplon number by an odd value as the parity of onetriplon is odd. 45



CHAPTER 4. UNDOPED ANTIFERROMAGNETIC SPIN-1
2
LADDERS4.3 Results for the p Generator4.3.1 One-Triplon DispersionThe dispersion for one triplon an be easily dedued from the e�etive Hamilto-nian, whih onserves the number of triplons. The (1, 1)-blok has the struture

H1,1 =

d2
∑

d=−d2

∑

n,α

adt
†
n+d,αtn,α (4.9)where the hopping proesses are restrited by the maximal extension d2. Theoe�ients ad are alulated by SCUT. A Fourier transformation diagonalises

H1,1 in the one-partile spae. We onsider a one-triplon-state with a onrete�avour α ∈ {x, y, z} beause the three �avours are equivalent due to the SU(2)symmetry of the spins. The one-triplon dispersion ω1t(k), i.e. the one-triplonenergy relative to the ground state, an be identi�ed as the Fourier transform of
H1,1 applied to a one-triplon state, whih is

ω1t(k) = a0 +

d2
∑

d=1

2ad cos(dk) (4.10)with the rung distane set to one.At �rst let us onsider x� = 0. For small x the oe�ients ad with d > 1 arenegligibly small and the one-triplon dispersion is
ω1t(k)

J⊥

≈ 1 + x cos(k). (4.11)Inreasing x auses a growing dip in the dispersion at k = 0. This is illustratedby the one-triplon dispersions for x = 0.5, x = 1 and x = 1.5 shown in Figure 4.4ompared to the PCUT results. The dip at small momenta is due to the losenessof the three-triplon ontinuum whih lies energetially above (f. Setion 4.3.2).The two-triplon ontinuum has no in�uene on the one-triplon dispersion as thetriplon number an only be hanged by even values. The lowering of the one-triplon energy observed here is inluded within the SCUT without further e�ort.In ontrast the PCUT is in need of additional extrapolations to inorporate thisfeature [27℄. The energy minimum is also loated at k = π. The gap dereaseswith asending x, but it stays �nite when x → ∞ for J‖ = const where the ladderturns into two independent hains [34, 84℄.46
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CHAPTER 4. UNDOPED ANTIFERROMAGNETIC SPIN-1
2
LADDERSThe maximal extensions dn have to be adjusted to the parameters of the model.For an aurate one-triplon dispersion result for x = 0.5, x� = 0 the trunation

N = 3, d2 = 10, d4 = 6 and d6 = 3 is neessary and su�ient. The relativedeviation to the PCUT results [27℄ is less than 1%. Also the agreement with theresults derived by series-expansion [87℄, exat diagonalisation [68℄ and DMRG[75℄ is very good. Thus inreasing N or the dn beyond these values is not requi-site. As the two- and the four-triplon ontinuum already show a small overlap for
x = 0.5, x� = 0 in the region k . 0.6π (as shown in Setion 4.3.2), a trunationsheme inluding more extended terms is expeted to lead to divergene. If tran-sitions between subspaes with di�erent quasipartile numbers are possible, theCUT reated by the p generator should theoretially diverge beause the sort-ing of the eigenenergies with respet to the quasipartile number is not possible[23, 26℄. Trunating the terms responsible for the divergene, however, may yieldonvergene again (see Setion 2.2). For the given example the atual divergeneis aused by long-range terms, whih are negleted by our trunation. Never-theless, the ruial physial properties are retrieved by the short-range termsinluded.The residual o�-diagonality (ROD) de�ned as the sum over the squared matrixelements whih are part of the generator2 show an exponential deay (f. Setion3.6). The ROD aording to the three dispersions in Figure 4.4 are shown inFigure 4.5.The ase x = 1, x� = 0 is more interesting beause the overlap between thetwo- and the four-triplon ontinuum is larger and it is present for all values of k(see Setion 4.3.2). But for the trunations implemented within this thesis theSCUT still onverges. The expeted divergene would also be indued by terms ofonsiderably larger extensions. Figure 4.6 depits several one-triplon dispersionresults generated by SCUT, whih di�er in their maximal extensions. The PCUTresult is also shown for omparison. There are deviations between the methodsfor small momenta. The SCUT result seems to onverge towards a dispersionwhih has a slightly less pronouned dip 3. Nevertheless, this result is within theerror bounds of the PCUT dispersion. We will ome bak to these deviations2For the p generator the ROD ontributions onsist of all the non-diagonal bloks of theHamiltonian while for the adapted generators every term that is not part of the generatorshall be onsidered as diagonal even if some terms are atually non-diagonal.3The di�erene between the results for the trunations d = {10, 8, 6, 4} (whih is not shownhere) and d = {10, 8, 6, 5} is of the order of 0.01%.48
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2
and it is therefore half aslarge. 49
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H2,2 =

∑

n,α,β,γ,δ

d,r,d′

ad,r,d′t
†
n+r+d′,αt†n+r,βtn+d,γtn,δ (4.12)

with |d|, |d′|, |r|, |r + d′|, |r − d|, |r + d′ − d| < d4has to be diagonalised in addition to the (1, 1)-blok. The initial distane betweenthe triplons d, the �nal distane d′ and the displaement r are restrited by themaximal extension d4. Due to spin onservation for eah operator one of thefollowing relations between α, β, γ and δ holds true
α = β = γ = δ (4.13a)
α = β 6= γ = δ (4.13b)
α = δ 6= β = γ (4.13)
α = γ 6= β = δ . (4.13d)51
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H1,1 |K, d, S, m〉 = 2

∑

d′ 6=d

ad′ cos

(

Kd′

2

)

(sign(d − d′))
S |K, |d − d′|, S, m〉 (4.14)and the ation of the (2, 2)-blok

H2,2 |K, d, S, m〉 (4.15)
=







∑

d′

a
d, d−d′

2
,d′

+ 2
∑

r> d−d′

2
,d′

ad,r,d′ cos

(

K

(

r − d − d′

2

))






|K, d′, S, m〉yield all matrix elements relevant for the two-partile subspae. Note that a

d, d−d′

2
,d′

=

0 for d−d′

2
/∈ Z. The part of Heff ating on the two-partile spae is still non-52
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LADDERSand hene no binding ours. If the two-triplon binding e�ets are inluded inthe alulation of the ontinua with more than two partiles, the lower boundaryof the three-triplon ontinuum is lowered for k . 0.49π and the lower boundaryof the four-triplon ontinuum is lowered for k & 0.58π.For x = 0.5 and x� = 0, the gap between the one-triplon dispersion andthe three-triplon ontinuum is manifestly too large to produe an appreiabledeviation from the dominating osine shape of the one-triplon dispersion even ifthe two-triplon interations are onsidered. This deviation in form of a dip at

k = 0 aused by the approahing three-triplon ontinuum beomes relevant forinreasing x only (f. Setion 4.3.1). For x = 1 and x� = 0 this dip is present andalso the proximity of the three-triplon ontinuum to the one-triplon dispersionan be observed if the two-triplon interations are inluded in the three-triplonontinuum (see Figure 4.10). The results gained by the SCUT are again in verygood agreement with the PCUT results [96℄.Although the distint overlap between the two- and the four-partile ontinuumranges over all values of k for x = 1, it does not hinder the onvergene of thetransformation for the onsidered trunations. The two-triplon bound states alsohange their dispersion qualitatively with inreasing x. For the S = 1 boundstate the maximum of the dispersion moves away from k = π (to k ≈ 0.63π for
x = 1) and the maximum of the S = 0 dispersion inreases distintly in relationto the rest of the urve.4.4 Generator AdaptionFor x > 1 the SCUT with the p generator is a�eted by the overlap of thetwo- and four-triplon ontinuum relatively rapidly when the maximal extensionsare inreased. The onvergene worsens aordingly. To solve this problem agenerator adaption is advisable. The idea of exluding terms from the generatorintrodued in Setion 2.5 is the method of hoie here. The CUT indued bythe p generator diverges beause it is not able to sort the eigenenergies of theoverlapping two- and the four-partile spae aording to the triplon number. Theterms that are responsible for the transitions between these two subspaes are theterms with either four reation and two annihilation operators or vie versa. Ifthese terms are exluded from the generator, we expet the CUT to onvergedespite the overlap (f. Ref. [26℄). The orresponding generator is referred to asgs,1p (ground state, one partile) generator beause it deouples the vauum and54
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2
LADDERStion 4.3.2). Hene we used the p result with d = {10, 6, 4, 3}. The one-triplondispersion enters the three-triplon ontinuum for small momenta. This suggeststhat both the p generator, whih was also used for the PCUT, and the gs,1penounter problems due to the sorting of the eigenenergies. In the next setion wewill disuss the reliability of the di�erent one-triplon dispersion results in detail.4.5 DisussionFor small x and x� the SCUT and the PCUT yield results in very good agreementfor the one-triplon dispersion and the boundaries of the multi-triplon ontinua.The overlap between the two- and the four-triplon ontinuum an be deteted.Nevertheless, it does not hinder the onvergene of the p SCUT for the onsid-ered trunations as long as x . 1.5. The inrease of x produes a growing dip at

k = 0 in the one-triplon dispersion while the gap dereases yet remains �nite andstays at k = π. Raising the ring exhange lowers the energy of the triplons untila phase transition to a ground state dominated by staggered singlets ours.With growing x also the deviations between SCUT and PCUT grow. Theemployment of the gs,1p generator, whih is insensitive to the overlap betweenthe two- and the four-triplon ontinuum and whih allows the examination ofhigher values of x, leads to deviating results as well. However, the gap is still ingood agreement for all CUT versions. In the PCUT results the dip at k = 0 ismore pronouned than in the SCUT results. For the gs,1p SCUT the e�et ofthe lowering of the one-triplon dispersion due to the approah of the three-triplonontinuum in the region of small k is less pronouned.The deviations between PCUT and SCUT for x = 1.5 have preursors at x = 1(f. Figure 4.6). For x = 1 the dip at k = 0 is already less pronouned forthe SCUT result than for the PCUT result. Also the deviations for larger k areadumbrated for x = 1. The dispersions from the SCUT alulations lie all abovethe PCUT result in the k region from 0.55π to 0.91π. Even if this is hardlynotieable due to the slope of the urve, these deviations are of the order of 1%for the larger maximal extensions and slightly larger for the striter trunations,i.e. for lower maximal extensions.Although the extrapolations whih estimate the e�ets of the approah of theenergies of states with di�erent triplon numbers are rather sophistiated, theybeome less preise when these e�ets inrease. Thus a possible explanationfor the deviations ould be that the extrapolations for the perturbative ansatz58



4.5. DISCUSSIONoverestimate these e�ets. The SCUT ould also underestimate the e�et beauseoperators a�eting �ve triplons, whih are exluded by the trunation, ould ausean additional lowering. However, the in�uene of the �ve-triplon ontinuum isexpeted to be small beause the spetral weight dereases with the number ofquasipartiles [61℄. The error bound of the extrapolated PCUT results is atuallyso large that it inludes the SCUT results. In addition the results from theadapted generators seem to onverge with inreasing maximal extensions so thatwe onlude that the SCUT results indued by the adapted generators onstitutean improvement over the PCUT result. Moreover, the one-triplon dispersionrosses the lower boundary of the three-triplon ontinuum. This also indiatesthat the p results (inluding the PCUT result) are less reliable than the resultsfrom the adapted generators beause this overlap leads to problems with respetto the sorting of the eigenvalues if the generator inludes the (1, 3)- and the (3,
1)-blok respetively. Although in priniple the gs,1p generator an enountersuh problems as well, in the present ase its result is in very good agreementwith the dispersion from the gs generator.The regime J‖ > J⊥ is still hallenging for the CUTs although the generatoradaption for the SCUT allows us to extend the alulations into this regime. Asthe gs,1p generator leaves the subspaes with two and four triplons oupled to eahother, a subsequent transformation has to be found that allows the determinationof the two-triplon bound states whih yield an important ontribution to theontinua with more than two triplons. The Lanzos algorithm that was used todeouple the one- and the three-triplon subspae in ase of the gs generator is notfeasible for this purpose beause it beomes too intriate if four-partile statesare involved.
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5 Hole-Doped AntiferromagnetiSpin-1
2
Ladders5.1 ModelFor the hole-doped ladder four additional rung states with one hole are possible:
|aτ=1,σ=1〉n =

1√
2

(|↑ 0〉 + |0 ↑〉)n (5.1a)
|aτ=−1,σ=1〉n =

1√
2

(|↑ 0〉 − |0 ↑〉)n (5.1b)
|aτ=1,σ=−1〉n =

1√
2

(|↓ 0〉 + |0 ↓〉)n (5.1)
|aτ=−1,σ=−1〉n =

1√
2

(|↓ 0〉 − |0 ↓〉)n (5.1d)where 0 denotes the hole. State (5.1a) and state (5.1b) have an Sz-spin of +1
2while state (5.1) and state (5.1d) have an Sz-spin of −1

2
. The sign of the spin isindiated by σ. The parity with respet to P , whih was introdued in Setion 4.1,is denoted by τ . It is even for the states (5.1a), (5.1) and odd for (5.1b), (5.1d).All these four states have fermioni properties regarding states on di�erent rungs.They an be reated from the loal singlet by the appliation of the orrespondingreation operators a†

τ,σ,n so that a†
τ,σ,n |singlet〉n = |aτ,σ〉n.A further possible rung state � the double hole state �
|d〉 = |00〉 (5.2)onsists of a hole on eah leg of the ladder. Hene |d〉 behaves like a boson inrelation to the states of other rungs. However, in this thesis only one-hole stateswill be onsidered and hene this state |d〉 will be negleted. The loal energy of

|d〉 is also larger than the energy of the other states. Therefore |d〉 is expetedto be also neglible for slightly doped ladders. So the loal basis onsists of eight61
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Figure 5.1: Extension of the spin ladder by inlusion of hole states in the basis of loalstates: While the undoped ladder (left hand side) has only singlet and triplet states(the latter with three possible �avours and total spin 1), the hole-doped ladder hasfour additional hole states whih arry spin 1
2 . The di�erene between these four statesonsists in the sign of the spin z-omponent and the parity of the state.states inluding the loal referene state � i.e. the singlet. This redution by oneloal state dereases the number of potential terms deisively1.The Hamiltonian inorporating the loal one-hole states is extended by thenext nearest neighbour eletron hopping

Hhopping = −t⊥
∑

n,α

c†σ,α,ncσ,α,n − t‖
∑

n,α

c†σ,α,ncσ,α,n±1 (5.3)with the onstants t⊥ for the hopping within the rung from one leg to the otherand t‖ for the hopping along the ladder from rung to rung. The eletron reationand annihilation operators c†σ,α,n and cσ,α,n onerning an eletron with spin σ ∈1If physial properties like harge or spin onservation did not forbid ertain proesses, thenumber of potential terms with a maximal extension of d would be exatly s2d − 1 for aloal basis with s states.62



5.1. MODEL
{−1

2
, 1

2
} at on leg α ∈ {l, r} and rung n ∈ Z. These eletron operators alreadyontain hardore properties as double oupany is forbidden.The Hamiltonian for the undoped ladder is extended by the hopping term andmagneti interation terms a�eting the hole states. Sine the hole states |aτ,σ〉nalso have spin S = 1

2
, they interat magnetially with the neighbouring states.The omplete Hamiltonian reads

H = Hundoped +

9
∑

j=0

Hj. (5.4)This Hamiltonian H is a t-J-model. The extension onsists of the terms Hj givenexpliitly below. The terms are again divided by J⊥ to obtain a dimensionlessHamiltonian. In analogy to x =
J‖

J⊥
and x� = J�

J⊥
the parameters λ⊥ = t⊥

J⊥
and

λ‖ =
t‖

J⊥
are used.

H0

J⊥
=
∑

τ,σ,n

a†
τ,σ,naτ,σ,n

(

−τλ⊥ +
3

4

) (5.5a)
H1

J⊥
=

λ‖

2

∑

τ,σ,〈n,m〉

a†
τ,σ,naτ,σ,m (5.5b)

H2

J⊥
=

λ‖

2

∑

τ,σ,〈n,m〉

σ a†
−τ,σ,n

(

t†z,m + tz,n

)

aτ,σ,m (5.5)
H3

J⊥
=

λ‖

2

∑

τ,〈n,m〉

a†
−τ,1,n

(

t†x,m − i t†y,m + tx,n − i ty,n

)

aτ,−1,m (5.5d)
+a†

−τ,−1,n

(

t†x,m + i t†y,m + tx,n + i ty,n

)

aτ,1,m

H4

J⊥
=

λ‖

2

∑

τ,〈n,m〉

a†
τ,1,n

[(

t†x,m − i t†y,m

)

tz,n + t†z,m

(

−tx,n + i ty,n

)]

aτ,−1,m

+a†
τ,−1,n

[(

−t†x,m − i t†y,m

)

tz,n + t†z,m

(

tx,n + i ty,n

)]

aτ,1,m (5.5e)
H5

J⊥
=

λ‖

2

∑

τ,〈n,m〉

a†
τ,1,n

(

t†x,mtx,n + t†y,mty,n + t†z,mtz,n (5.5f)
−i t†x,mty,n + i t†y,mtx,n

)

aτ,1,m + a†
τ,−1,n

(

t†x,mtx,n + t†y,mty,n

+t†z,mtz,n + i t†x,mty,n − i t†y,mtx,n

)

aτ,−1,m 63
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H6

J⊥
=

x

4

∑

τ,σ,〈n,m〉

σ a†
−τ,σ,n

(

t†z,m + tz,m

)

aτ,σ,n (5.5g)
H7

J⊥
=

x

4

∑

τ,〈n,m〉

a†
−τ,1,n

(

t†x,m − i t†y,m + tx,m − i ty,m

)

aτ,−1,n (5.5h)
+a†

−τ,−1,n

(

t†x,m + i t†y,m + tx,m + i ty,m

)

aτ,1,n

H8

J⊥
=

x

4

∑

τ,〈n,m〉

a†
τ,1,n

[(

t†x,m − i t†y,m

)

tz,m + t†z,m

(

−tx,m + i ty,m

)]

aτ,−1,n

+a†
τ,−1,n

[(

−t†x,m − i t†y,m

)

tz,m + t†z,m

(

tx,m + i ty,m

)]

aτ,1,n (5.5i)
H9

J⊥

=
x

4

∑

τ,〈n,m〉

a†
τ,1,n

(

−i t†x,mty,m + i t†y,mtx,m

)

aτ,1,n (5.5j)
+a†

τ,−1,n

(

i t†x,mty,m − i t†y,mtx,m

)

aτ,−1,nThe terms H0 to H5 ontain the eletron hopping (5.3) while the terms H6 to
H9 over the magneti interations between the hole states aused by the spininterations (4.1).The loal terms for the one-hole states onstitute H0. This term auses thesplitting of the one-hole dispersion into two bands � one for eah parity � dueto the fator −τλ⊥. Note that the terms H1 to H9 do not depend on the parityof the hole states as they are invariant under hange of parity. Beause thesinglet is onsidered as the vauum state de�ning the zero-point energy, the energydi�erene of 3

4
has to be paid additionally for eah hole state.The term H1 desribes the pure nearest neighbour hopping of the hole states

|aτ,σ〉n. Note the additional fator 1
2
in the oe�ient λ‖

2
of these terms in ontrastto the oe�ient for the eletron hopping (5.3). The c operators in Equation (5.3)at on single-spin sites, while the a operators in H1 at on rungs. The projetionof the bare hopping onto the �nal state yields the fator 1

2
.The terms H2 and H3 belong to proesses reating or annihilating triplonsassoiated with the hopping of a hole state. The prefator is λ‖

2
as well. Theparity of the hole state has to hange beause the reation or annihilation of onetriplon would violate parity. In H2 the triplons are z-triplons, whih do not arryan Sz spin, while the x- and y-triplons in H3 are omposed of states with an Szspin of ±1. So due to spin onservation the spin of the hole state does not hange64



5.1. MODELin H2 and it is altered in H3. Single terms of the sum in H3 violate the spinonservation, but the ombination of terms with t†x,m (tx,n) on the one hand and
t†y,m (ty,n) on the other onserves the spin.

H4 and H5 are orrelated hopping terms for one hole state and one triplon stateexhanging their plaes. Again the oe�ient is λ‖

2
. The parity of the hole stateis unhanged beause the number of triplons is also unhanged. It depends onthe alignment of the spin of the triplon before and after the interation whetherthe spin of the hole state is altered or not. The former is the ase for H4, thelatter for H5. Conerning the spin onservation for the single terms of H4 thesame holds true as for H3.The magneti interation terms for the hole states, whih all arry the prefator

x
4
, have a similar struture like the hopping terms sine the same onservationlaws for spin and harge are valid. The di�erene is that the hole must not hangeits plae for the magneti interations. The ring exhange does not a�et the holestates beause the onerning terms (4.6) are zero if one spin is missing.The triplon reation and annihilation without spin �ip is represented by H6 inanalogy to H2. The term H7 ontains the triplon reation and annihilation withspin �ip analogous to H3. The orrelated hopping of triplons and hole states isdesribed by H8 with spin �ip (analogous to H4) and by H9 without spin �ip(analogous to H5). Note that there are less terms in H9 than in H5 beauseproesses that do not hange the spin alignment of the triplon an our forhopping but not without hopping.Beause a hole does not hange the magneti degrees of freedom, the part

Hundoped is not in�uened by the terms with hole state operators Hj during the�ow, i.e. the di�erential equations for the terms of Hundoped do not inlude on-tributions from the Hj terms. Therefore the dispersion and the ontinua for puretriplon states are independent of λ⊥ and λ‖. The energies do not di�er from theresults for the undoped ladder. This is straightforward beause the dynamis ofpure triplon states must be idential to the dynamis in an undoped ladder. Inontrast the terms inluding hole operators are strongly a�eted by the terms of
Hundoped dependent on the parameter x, whih also enters the terms H6 to H9.Due to harge onservation the subspaes of the Fok spae with �xed holenumbers are already deoupled from eah other. Only the number of magnetiexitations hanges. 65
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2
LADDERS5.2 TrunationThe trunation for the hole-doped ladder inludes many parameters for the �netuning onsidering the multitude of possible terms with hole state operators. Inaddition to the remaining maximal extensions dn for terms onsisting only of ntriplon operators and the maximal triplon number N we introdue the followingrestritions.The parameter Nh de�nes the maximal number of holes whih is one for thease we want to onsider here. By hn′ we denote the maximal extension for n′hole state operators. It does not matter if the term onerned ontains additionaltriplon operators. For terms with triplon and hole state operators, hn′ a�ets onlythe hole state operators. The total maximal extension tn′′ for these mixed termsdepends on the number of triplon operators n′′. The parameter Nt denotes themaximal number of triplons interating with holes. Note that tn′′ with odd n′′have to be taken into aount beause the triplon number is hanged by an oddnumber if the hole state parity is altered.Sine the size of the system of di�erential equations for the doped ladder growsdrastially with inreasing extensions, the trunation is always very strit for ouralulations. The parameters N = 4, d2 = 10, d4 = 6, d6 = 4 and d8 = 3 wereused for the pure triplon terms beause these maximal extensions are su�ientfor the undoped ase up to x = 1. For the terms inluding hole operators thetrunation used for the SCUT is given by Nt = 2, h2 = 3, t1 = 6, t2 = 6, t3 = 5,

t4 = 5, t5 = 4 and t6 = 4. Only if other parameteres are used, they are givenexpliitly.
5.3 Generator AdaptionIn this setion the adapted generators are introdued that are used for the dopedladder besides the p generator. Beause the number of the �ow equations be-omes very large for physially reasonable extensions, a entral issue is the re-dution of this number. This an be ahieved by the exlusion of terms fromthe generator. For general and for undoped systems in partiular this strategyis omprehensively disussed in Ref. [26℄. In the following we are only interested66
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Figure 5.2: Comparison between the gs generator and the adapted generator desribedin the text for x = 1, x� = 0 and λ⊥ = λ‖ = 2. The even hole dispersion is almostidential for the gs generator (blak solid) and the adapted generator (blak dashed).The odd hole dispersion from the gs generator (yan ontinuous) lies below the ontin-uum formed by one even hole and one triplon (yan shaded area), whereas the odd holedispersion from the adapted generator (yan dashed) lies above it.in pure hole states. Hene the zero-triplon spae2 is the only subspae that hasto be deoupled from the remaining Hilbert spae. The terms in the generatorthat is restrited to performing just this task ontain only triplon reation or onlytriplon annihilation operators apart from possible hole state operators. This isthe gs generator already introdued in Setion 4.4. This generator may indueonverging transformations in the ase of overlapping triplon ontinua3.Considering the loal hole state terms of the Hamiltonian (5.5a) it seems likelythat for su�iently large λ⊥ the proess of reating or annihilating one triplon(under hange of the parity of one hole) the energy hange is dominated (or atleast strongly in�uened) by the band hange. If this is atually the ase, the p2A state without triplons an inlude holes. Beause of harge onservation the number ofholes is �xed. Thus after the CUT the zero-triplon state is the ground state for every spinladder with a ertain number of holes.3These ontinua have to inorporate the hole energies for the doped ase. 67
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LADDERSgenerator based on the idea that the hange of the partile number dominatesthe energy hange will no longer indue a onverging transformation. If there isa distintly dominating proess for eah term of the Hamiltonian, the adaptionof the generator an take this into aount by appropriate signs. But a pro-nouned gap between the hole bands with di�erent parity is neessary to makethe band hange always dominating at least for proesses involving the reationor annihilation of a single triplon. The system does not develop suh a gap inthe examined parameter spae as the next setion will show. In fat the bandsexhibit a rossing if the hopping onstants are inreased. Therefore the triplonreation or annihilation either remains the dominant proess or ompetes withthe band hange and an adaption of a sign hange in the generator is not appro-priate. Only if all other parameters are muh smaller than λ⊥, this adaption issuitable.In the ase that for ertain terms it an not be determined in general whetherthey inrease or derease the energy a simple sign orretion in the generatoris not possible. This happens if the sign of the energy hange depends on themomentum. Then the real spae trunation sheme is not the optimal ansatz.An implementation of a generator adaption aording to Setion 2.5.2 was alsotested. If we use the adapted generator whih onsiders the band hange as thedominant proess in the way that the even band is assumed to be the lower energy,we obtain unphysial results for the parameters examined within this thesis. Theresults for the even band are indeed the same as without the adaption (apartfrom small deviations for small momenta). However, the odd band is fored tolie above the ontinuum formed by one even hole and one triplon. This an beseen examplarily for x = 1, x� = 0 and λ⊥ = λ‖ = 2 in Figure 5.2.In the regime x = 1, x� = 0 and λ⊥ = λ‖ > 2 we enounter onvergeneproblems with both the p and the gs generator. We will show this in Setion5.4.1. To preserve onvergene a restrited generator ηrs was used (see Setion2.5.3). The problemati terms are the ones whih ouple the single-hole subspaeto the subspae with one hole and one triplon

a†
τ,σ,nt†α,n+∆naτ ′,σ′,m and a†

τ,σ,mtα,naτ ′,σ′,n+∆n. (5.6)For ηrs we restrit |∆n| to be smaller than or equal to a maximal value ∆nmax.This restrition indeed yields a onverging �ow for x = 1, x� = 0 and λ⊥ = λ‖ >

2, whih will also be illustrated in Setion 5.4.1.68
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Figure 5.3: Fourfold degenerate one-hole energy for λ⊥ = λ‖ = x� = 0 in dependeneof x alulated with the p generator (solid) and with the gs generator (dashed).5.4 One-Hole DispersionThe dispersion of a single hole in the absene of triplons an be as easily derivedfrom the e�etive Hamiltonian in the same manner as the one-triplon dispersionin Setion 4.3.1. The part of the Hamiltonian to be diagonalised
H1h =

h2
∑

d=−h2

∑

τ,σ,n

bd a†
τ,σ,n+daτ,σ,n (5.7)ontains the one-hole terms restrited by h2 and haraterised by the oe�ients

bd. The one-hole energy relative to the ground state
ω1h,τ (k) = b0 +

h2
∑

d=1

2bd cos(dk) (5.8)only depends on the parity τ and is degenerate onerning the spin σ.If λ‖ and λ⊥ are small while x = x� = 0, the dispersion is
ω1h,±1(k)

J⊥
=

3

4
∓ λ⊥ + λ‖ cos(k) + O(λ2

⊥, λ2
‖, λ⊥λ‖). (5.9)69
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0 0.2 0.4 0.6 0.8 1Figure 5.4: One-hole dispersion for x = x� = 0 alulated with the p generator; left:
λ = 0.25, right: λ = 0.5. The urves oinide well with the series expansion resultsfrom [97℄.If λ⊥ = λ‖ = 0 the hole energy is a dispersionless onstant and fourfold degenerate(onerning spin and parity). This energy inreases with growing x due to theterms of the Hamiltonian that desribe the magneti interations of the hole stateswith their environment (5.5g-5.5j). Figure 5.3 demonstrates this quantitativelyfor x� = 0. The deviations between the results from the p generator and fromthe gs generator are growing with x. However, they are still marginal (< 1%) for
x = 1.5.4.1 Isotropi HoppingLet us at �rst onsider the isotropi ase λ⊥ = λ‖ = λ. For small values of theparameters x, x� and λ the deviations from Equation (5.9) are atually small. InFigure 5.4 two values of λ are onsidered for x = x� = 0. The result for λ = 0.25already exhibits deviations from the relation for small hopping onstants. Bothbandwidths are smaller than 2λ = 0.5. The odd band is narrower than the evenband. Moreover the odd band is shifted upwards by less than λ, while the even70
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Figure 5.8: Comparison between the odd hole dispersion and the ontinuum formedby one triplon and one even hole state for x = 0.5, x� = 0, λ = 0.5. The odd holedispersion was derived by SCUT using the p generator (yan solid) and by seriesexpansion (yan dotted). The yan shaded area is the ontinuum (derived by the sameSCUT alulation).agreement with the series expansion (only slight deviations at k = 0 our), forthe even band no series expansion data are available.For x = 0.5 and λ = 0.5 (see also Figure 5.7) the result for the even bandis again in good agreement with the series expansion result, but the odd bandbehaves di�erently. Only for large k the behaviour is similar although also in thisregion the SCUT result is slightly lower. The series expansion result exhibits aloal maximum at k = 0 and a global minimum at k ≈ 0.58π, while the SCUTresult hardly hanges in the region 0 < k < π
2
. The gs generator yields thesame result as the p generator apart from minimal deviations (< 2%) at k = 0.However, the gs generator allows us to extend the trunation sheme: h2 wasinreased to 4, t1 and t2 to 8 as well as t3 and t4 to 6. In the result the shape ofthe odd band hanges mainly for small k. Thus the odd dispersion still hangeswith inreasing maximal extensions.We an understand these di�erenes between SCUT and series expansion by74
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Figure 5.10: Comparison between the odd hole dispersion and the ontinuum formed byone triplon and one even hole state for x = 1, x� = 0, λ = 0.5. The odd hole dispersionwas derived by SCUT using the p generator (yan solid), using the gs generator (yandotted) and by series expansion (yan dashed). The yan shaded area is the ontinuum(derived by the same p SCUT alulation).not very pronouned there) and is onsiderably lower for large k. All in all thedeviations are not as pronouned as for x = 0.5 and λ = 0.25. A omparison withthe ontinuum formed by one even hole and one triplon (see Figure 5.10) showsthat an overlap exists around k = π for the series expansion result and for the gsresult. This explains again the deviations in this region. As this overlap is notas strong as the overlap for x = 0.5 and λ = 0.5 the deviations are aordinglysmaller. Even if we annot learly state that there is an atual overlap, theontinuum is at least very lose. Hene it is to be expeted that the odd holedispersion is lowered for k ≈ π due to this reason.Sine for x = 1 and λ = 1 (see Figure 5.11) no one-hole dispersion result withodd parity is available from the series expansion, we an only ompare the evenband. But we also ompare with exat diagonalisation results by Läuhli [98℄.For the exat diagonalisation a �nite ladder with 14 rungs was examined and theresulting eigenenergies were �tted by a series with three osine terms for both76
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Figure 5.12: Comparison between the hole dispersions and the ontinua formed by onetriplon and one hole state for x = 1, x� = 0, λ = 1. Left: The odd hole dispersion wasderived by SCUT using the p generator (yan solid) and using the gs generator (yandotted). The yan shaded area depits the ontinuum with one even hole and one triplon(derived by the same gs SCUT alulation). Right: The even hole dispersion was derivedby SCUT using the p generator (blak solid), using the gs generator (blak dotted)and by series expansion (blak dashed). The blak shaded area depits the ontinuumwith one odd hole and one triplon (derived by the same gs SCUT alulation).result lies always below the ontinuum. This overlap is also present in the ex-at diagonalisation result [98℄ and in the quantum Monte Carlo result [100℄. Aomparison between the even one-hole dispersion and the ontinuum formed byone triplon and one odd hole state (see also Figure 5.12) supports the assump-tion that the gs result is more reliable than the p result beause the dispersionindued by the gs SCUT exhibits a shape that appears as if it were formed bythe lower boundary of the approahing ontinuum. The p result, however, staysaway from the ontinuum at k = 0 and at the boundary of the Brillouin zone,while it overlaps with the ontinuum around k ≈ 0.44π.At this point we ompare the onvergene behaviour for x = 0.5, λ = 0.5;
x = 1, λ = 0.5 and x = 1, λ = 1 in ase of the p generator. The onerning78
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Figure 5.13: ROD for the SCUT alulated with the p generator for di�erent parame-ters.
RODs are depited in Figure 5.13. All three urves exhibit a kink with non-onverging behaviour afterwards. This is typial for umulating rounding errorsbeause of a symmetry breaking due to numerial inauraies (f. Appendix A).Suh a symmetry breaking is not unlikely beause the spin symmetry ould notbe used expliitly. The problems of this utilisation are disussed in Setion 5.5.It is interesting that the ROD for x = 1, λ = 0.5 ahieves the lowest value withless than 10−8. However, if we onsider the rate of derease before the kink forall urves, it an be learly seen that for x = 0.5, λ = 0.5 this rate is the largest.This is to be expeted as these parameters are the smallest of the ones onsideredhere and the orresponding unitary transformation is the least demanding.For x = 1 and λ > 1 the parameters are entering a region whih is expetedto re�et realisti relations of the onstants in the telephone number ompounds.The results for x = 1 and λ = 2 are shown in Figure 5.14. Again we do not onlyompare with the series expansion (for whih only the even band is available) but79
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Figure 5.14: One-hole dispersion for x = 1, x� = 0, λ = 2 alulated with the pgenerator and the gs generator. The graph also shows the exat diagonalisation data(ED) and the series expansion data (SE). For the latter only the even band is available.The even band results are blak, the odd band results are yan.also with exat diagonalisation results for L = 14 by Läuhli [98℄.5
ω1h,τ (k) = b0 +

3
∑

d=1

2bd cos(dk). (5.10)Approximate analyti results were obtained in Ref. [102℄ by perturbation theoryimproved by a variational ansatz. These results lie even above the series expansionresults but on�rm the qualitative shape for the even band. The p result forboth the even and the odd band is again very distint from the other results likefor x = 1, λ = 1. The gs result, however, is in better agreement with the datafrom the series expansion and espeially with the exat diagonalisation result inaordane with our previous observations.Apart from the p result the dispersions exhibit the same features. The evenband has a global maximum at k = 0 and a loal maximum at k = π, while it isvie versa for the odd band. Beause both bands lie in the same energy range,5For a �nite ladder with 10 rungs results were published by Troyer, Tsunetsugu and Rie [101℄.80
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Figure 5.15: Comparison between the hole dispersions and the ontinua formed by onetriplon and one hole state for x = 1, x� = 0, λ = 2. Left: The odd hole dispersion wasderived by p SCUT (yan solid), gs SCUT (yan dashed) and by exat diagonalisation(yan dotted). The yan shaded area depits the ontinuum with one even hole and onetriplon (derived by the same gs SCUT alulation). The yan dash dot dot line is thelower boundary of the ontinuum formed by two triplons and one odd hole. Right: Theeven hole dispersion was derived by p SCUT (yan solid), gs SCUT (yan dashed), byexat diagonalisation (yan dotted) and by series expansion (yan dashed-dotted). Theblak shaded area depits the ontinuum with one odd hole and one triplon (derived bythe same gs SCUT alulation). The blak dash dot dot line is the lower boundary ofthe ontinuum formed by two triplons and one even hole.they ross in the middle between k = 0 and k = π. The exat diagonalisationpredits the rossing to be at k ≈ 0.48π, but the gs SCUT sees the rossing at
k ≈ 0.55π. The even band alulated by series expansion is loated above boththe series expansion and the gs SCUT result for all k. This is a further indiatorthat the extrapolation used to orret the bare series underestimates the loweringof the band indued by the hybridisation with the hole-triplon ontinuum.Let us onsider the ontinua formed by one hole and one triplon. The ontinuaonsisting of one hole and one triplon are ompared to the one-hole dispersionsin Figure 5.15. The ontinua do not overlap with the hole dispersions, but theyare very lose to eah other. The only exeption is the series expansion result for81
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Figure 5.16: ROD for the SCUT for x = 1, x� = 0, λ = 2 indued by the p generator(solid line) and by the gs generator (dashed line).the odd band, whih exhibits an overlap with the ontinuum formed by a triplonand an even hole state.The behaviour of the ROD (f. Setion 3.6) yields further evidene why the gsresults should be preferred to the p results for this parameter regime. Figure 5.16depits the evolution of the ROD during the �ow for both generators. Not onlythat the p SCUT onverges extremely slowly, the shape of the urve for lJ⊥ < 100is an indiator for a problem with respet to the sorting of the eigenenergies. It isa typial behaviour of the ROD that the sorting of the eigenvalues (f. Equation(2.12)) is re�eted by features for small values of l. If the sorting is ompletedthe ROD dereases exponentially with a onstant rate heneforward. For the gsgenerator the derease of the ROD attains this rate not later than at lJ⊥ = 5.Before this point the derease is slower6. The kink of the gs ROD at lJ⊥ ≈
110 with the following rise is again most probably due to umulating numerialinauraies (f. Appendix A). This is no real problem beause the gs RODhas already fallen below a value of less than 10−32 at lJ⊥ ≈ 110 and an hene6Even if the ROD exibits a small hump before it dereases with a onstant rate, the sortingusually does not pose a problem.82



5.4. ONE-HOLE DISPERSION

0 0.2 0.4 0.6 0.8

k[π]

-3

-2.5

-2

-1.5

-1
ω

[J
⊥
]

η
gs, rs

∆n
max

 = 2

η
gs

ED

0 0.2 0.4 0.6 0.8 1
-5.5

-5

-4.5

-4

-3.5

-3

Figure 5.17: Comparison of the one-hole dispersions from the restrited generator withthe gs and the exat diagonalisation results. Left panel: x = 1, x� = 0, λ = 2. Rightpanel: x = 1, x� = 0, λ = 3. The blak lines represent the even hole dispersion andthe yan lines represent the odd hole dispersion.be negleted. However, the p ROD exhibits several humps and a pronounedrise at lJ⊥ = 34 before a derease with a onstant rate is ahieved. This isa typial indiation for a suppressed divergene that would atually our for awider trunation. If suh a feature is distint, the transformation is suseptible toerrors. These onvergene problems are aused by the strong overlap between theone-hole-one-triplon ontinuua and the one-hole-two-triplon ontinua (see Figure5.15).The exat diagonalisation was also applied for x = 1 and λ = 3 [98℄, buteven the gs generator does not indue onvergene for this ase. However, if weapply the generator restrition de�ned in Setion 5.3 to the gs generator, it yieldsonvergene for ∆nmax 6 2. Beause the Hamiltonian is not diagonalised withrespet to the terms that are omitted from the generator, the hole dispersions weobtain from a Fourier transformation are only upper limits for the atual result.Hene we ompare the results from the restrited generator for x = 1 and λ = 2with the gs results before we investigate the results for x = 1 and λ = 3. The left83



CHAPTER 5. HOLE-DOPED ANTIFERROMAGNETIC SPIN-1
2
LADDERS

0 50 100 150 200
l J⊥

1e-36

1e-30

1e-24

1e-18

1e-12

1e-06

1
R

O
D

x=1  λ=2  η
gs, rs

∆n
max

=2

x=1  λ=2  η
gs

x=1  λ=3  η
gs, rs

∆n
max

=2

x=1  λ=3  η
gs

Figure 5.18: ROD for the SCUT alulated with the full gs generator and with therestrited gs generator for di�erent parameters.panel of Figure 5.17 shows the omparison of the one-hole dispersions for x = 1and λ = 2. We see that for ∆nmax 6 2 the upper boundary from the restritedgs generator is lose to the result from the full gs generator. In the right panelof Figure 5.17 the results from the restrited gs generator are ompared to theexat diagonalisation results for x = 1 and λ = 3. For the even hole dispersionthe agreement between the result from the restrited gs generator and the exatdiagonalisation result is almost perfet. Also the agreement for the odd holedispersion is good. The deviations are omparable to the deviations of the resultby the full gs generator from the exat diagonalisation result for x = 1 and λ = 2.The investigation of the ROD shows that the restrited gs generator yields afaster onvergene than the full gs generator for x = 1 and λ = 2 (see Figure5.18). For x = 1 and 3 the ROD diverges for the full generator, while therestrited generator indues onvergene (see also Figure 5.18). Note that thekinks of the RODs in Figure 5.18 with the inrease afterwards are again probablydue to umulated numerial inauraies (f. Appendix A). But all the kinksappear at values where the ROD is already smaller than 10−24. So the �ow anbe onsidered as onverged at the kinks for pratial purposes.84



5.4. ONE-HOLE DISPERSION
0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

ω
[J

⊥
]

0 0.2 0.4 0.6 0.8 1
k[π]

-0.5

0

0.5

1

ω
[J

⊥]

L=6
L=8
L=10
L=12
L=14

Figure 5.19: Comparison between gs SCUT (solid lines) and exat diagonalisation forvarious �nite ladders with L rungs (disrete points) for x = 1, λ = 1. The lowerboundaries of the ontinua alulated by gs SCUT are shown as dashed lines. Theresults for the even hole state are blak, the results for the odd hole state are yan.The terms, whih are left out from the generator, still ontribute to the Hamil-tonian after the transformation. These ontributions yield an estimate of the dif-ferene between the atual energy and the upper boundary for the energy resultingfrom the restrited generator. For the 432 terms of the form a†
τ,σ,nt†α,n+∆naτ ′,σ′,m or

a†
τ,σ,mtα,naτ ′,σ′,n+∆n the sum over their squared oe�ients is ≈ 0.48. The squareroot of this value is ≈ 0.69. The largest absolute value of a single oe�ient is

≈ 0.16.To understand the deviations between SCUT and exat diagonalisation we haveto investigate the �nite size saling of the exat diagonalisation. In Figure 5.19the results of the exat diagonalisation for various �nite ladders with L rungsare ompared to the results from the gs generator for x = 1 and λ = 1. Thegraph shows the disrete eigenvalues of H alulated by exat diagonalisation. Inthe ase of the even band the lowest lying eigenvalue an be learly distinguishedfrom the larger eigenvalues, whih are the preursor of the ontinuum. This holdstrue for all momenta. In the ase of the odd band the lowest eigenvalue is very85



CHAPTER 5. HOLE-DOPED ANTIFERROMAGNETIC SPIN-1
2
LADDERS

0 0.05 0.1 0.15 0.2
1/L

-0.34

-0.33

-0.32

-0.31

-0.3

-0.29

-0.28
ω

 (
k=

0)

0 0.05 0.1 0.15 0.2
1/L

-0.6

-0.55

-0.5

-0.45

ω
 (

k=
0.

5π
)

Figure 5.20: Finite size saling of the exat diagonalisation results for x = 1 λ = 1in ase of the odd band at k = 0 and at k = 0.5π. The yan irles depit theexat diagonalisation results for �nite ladders with various numbers of rungs L. Thesolid blak line is a linear extrapolation with respet to 1
L
and the dashed line is anextrapolation based on exponential saturation (see Equation (5.11)). For omparisonthe result from the gs SCUT is also shown (solid yan).lose to the higher ones for large momenta. Our alulation of the ontinuumpredits that the dispersion merges with the ontinuum in this region. Also thequantum Monte Carlo result for the spetral weight [100℄ exhibits no peak belowthe ontinuum around k ≈ π.Our result for the even band is in exellent agreement with the exat diago-nalisation result. Around k ≈ 0.25π our result for the odd band lies above theexat diagonalisation result, while it lies below the exat diagonalisation resultaround k ≈ 0.6π. An investigation of the �nite size saling for the exat diago-nalisation data in these regions is di�ult beause we have maximally two pointsfor an extrapolation. Thus at �rst we onsider k = 0, where an extrapolation isonlusive. The result of this extrapolation is used to support an extrapolationin the region where the deviations are observed. The left panel of Figure 5.20shows the �nite size saling for k = 0 using two kinds of extrapolation. The �rstis a simple linear extrapolation with respet to 1

L
, while the seond assumes anexponential saturation with inreasing L so that

∆ω ∝ e−
L
ξ (5.11)86
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CHAPTER 5. HOLE-DOPED ANTIFERROMAGNETIC SPIN-1
2
LADDERSthe �nite size saling at k = 0.5π indiates that the exat diagonalisation resultsoverestimate the energy of the odd band in this region so that one an expetthat a proper �nite size saling yields a dispersion that lies ompletely belowthis upper boundary. However, an extrapolation from the two points (L = 8 and

L = 12) at k = 0.5π is not onlusive. We have several points for an extrapolationfor k = 0 and k = π, but there the distintion between ontinuum and dispersionis di�ult. Beause the gs SCUT diverges without restrition of the generator,we atually expet that a strong overlap is present.5.4.2 Anisotropi HoppingWe want to onsider anisotropi hopping, i.e. λ⊥ 6= λ‖. This is also of interestbeause at least small di�erenes between the parallel and the perpendiularhopping are expeted to be realisti like for the magneti oupling onstants J⊥and J‖. We want to onsider three parameter regimes. In eah ase we start froman isotropi hopping using parameters that yield reliable results. The startingvalues are x = 0, λ⊥ = λ‖ = 0.5; x = 0.5, λ⊥ = λ‖ = 0.25 and x = 1, λ⊥ = λ‖ = 2.The ring exhange x� is always zero. We employ the gs generator in the �rst twoases and the 0n generation in the latter one beause the orresponding resultsare onlusive for isotropi hopping whih was shown in the preeding setion.The one-triplon dispersions derived by SCUT for these ases agree well with theresults from series expansion [97℄ and from exat diagonalisation [101℄ (see Setion5.4.1). Also the ROD onverges properly.The �rst ase starts from x = x� = 0, λ⊥ = λ‖ = 0.5. Inreasing the hoppingonstants separately leads to a lowering of the bands (Figure 5.24(a)), whiledereasing them leads to a lifting (Figure 5.24(b)). However, this e�et is weak forthe odd band in the ase of hanging λ⊥. The onstant in the dispersion hangeslike in the other ases, but the hange of the bandwidth is dominant. Hene theodd band for λ⊥ = 0.6, λ‖ = 0.5 lies above the odd band for λ⊥ = λ‖ = 0.5 inthe region k & 0.41π; the odd band for λ⊥ = 0.4, λ‖ = 0.5 lies beneath the oddband for λ⊥ = λ‖ = 0.5 in the region k & 0.44π.The regime around x = 0.5, λ⊥ = λ‖ = 0.25 and x = 1 again exhibits a di�erentbehaviour for the odd band in the ase of hanging λ⊥. Figure 5.25(a) shows theseparate inrease of the hopping onstants, Figure 5.25(b) the derease. The evenband is lowered if one hopping onstant is inreased and raised if one hoppingonstant is dereased. However, although for λ‖ = 0.1 there is a shift upwards90



5.4. ONE-HOLE DISPERSIONfor the onstant of the even dispersion, the bandwidth is dereased by a fatorof ≈ 2.5 so that the maximum at k = 0 has almost the same value for λ‖ = 0.25and for λ‖ = 0.1. It is even slightly lower for λ‖ = 0.1. The odd band is alsolowered if λ‖ is inreased and raised if λ‖ is dereased. The di�erent behaviourof the odd band in the ase of λ⊥ = 0.4 onsists in the following features: Theformer loal maximum at k = 0 for the isotropi ase moves to k ≈ 0.33, theglobal minimum now lies at k = 0 and the global maximum at k = π is morepronouned. For λ⊥ = 0.1 the di�erent behaviour of the odd band onsists in thefollowing features: The maxima at k = 0 and k = π are of almost equal heightnow and the minimum, whih moves from k ≈ 0.41π (in the isotropi ase) to
k ≈ 0.52π, is lowered by ≈ 0.03J⊥.Next, let us start from the isotropi ase λ⊥ = λ‖ = 2 for x = 1 and x� = 0. At�rst we inrease the hopping onstants separately. Figure 5.26 shows the resultsfor the SCUT indued by the gs generator. The p results are not examined asthey deviate onsiderably from the results of other methods in this parameterregion as shown in the last setion.The inrease of one of the hopping onstants leads to a lowering of the bandsfor both the relation λ⊥ > λ‖ and the relation λ⊥ < λ‖. Both bands are dereasedin almost equal measure (see Figure 5.26(a)). This e�et is almost twie as strongfor λ⊥ = 2, λ‖ = 2.5 as for λ⊥ = 2.5, λ‖ = 2. The shape of the dispersions isalmost onserved, but the loations of the minima hange. The rossing pointmoves to slightly smaller k for inreasing λ‖ and to larger k for inreasing λ⊥.Although this e�et is not pronouned, results for interim values on�rm thetrend of this movement of the rossing point.The derease of one of the hopping onstants starting from λ⊥ = λ‖ = 2 leadsto a lifting of the bands (see Figure 5.26(b)). While for λ⊥ = 1.5, λ‖ = 2 theshape of the band is again onserved, for λ⊥ = 2, λ‖ = 1.5 the loal maximummoves from k = 0 to k = 0.22π and a loal minimum appears at k = 0. Thee�et of the lifting is approximately twie as strong for the hange of λ‖ than forthe hange of λ⊥. This is in analogy to the e�et of the lowering in the ase ofthe inrease of one of the hopping onstants. The rossing point of the bandsmoves to larger k with dereasing λ‖ and to smaller k with dereasing λ⊥.
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5.4. ONE-HOLE DISPERSION5.4.3 In�uene of the Ring ExhangeSine the ring exhange is needed for an adequate desription of the experi-mentally available systems (see Setion 4.1), we also investigate the in�ueneof the ring exhange on the doped ladder whih is � to our knowledge � stillan open issue. A typial value is x� ≈ 0.2 [75℄. Like for the examination of theanisotropi hopping we take the reliable results for x = 0, λ⊥ = λ‖ = 0.5; x = 0.5,
λ⊥ = λ‖ = 0.25 and x = 1, λ⊥ = λ‖ = 2 without ring exhange as starting pointfor our investigation.For the �rst ase x = 0, λ⊥ = λ‖ = 0.5 the in�uene of the ring exhange is theweakest (see Figure 5.27). The odd band hardly hanges. It is slightly lowered �only the maximum is dereased more strongly. The even band, however, hangesmore pronounedly. It is strongly lowered so that a band rossing ours and theshape hanges. A loal miminum appears at k = 0 developing into the globalminimum with growing x�.Figure 5.28 depits the ase x = 0.5, λ⊥ = λ‖ = 0.25. Both bands are loweredstronger for small k than for large k. Also the shape of both bands hanges.While the minimum of the even band moves to k ≈ 0.65π for x� = 0.2 and aloal maximum at k = π ours, the loal maximum at k = 0 of the odd bandmoves to k ≈ 0.55π and a loal minimum at k = 0 ours.For λ⊥ = λ‖ = 2 and x = 1 only the gs results are disussed as the pgenerator yields no onlusive results for these parameters without ring exhange(see Setion 5.4.1). The resulting one-hole dispersions are shown in Figure 5.29.The inrease of x� yields a lowered dispersion for both bands. The shape ofthe bands is onserved, but for the odd band the derease is pronouned around
k = π, while not only a less pronouned derease, but even an inrease of theenergy an be observed for the even band around k = π.
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Figure 5.27: One-hole dispersions with even parity (blak) and odd parity (yan) for
x = 0, λ⊥ = λ‖ = 0.5 and various values for x�.
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Figure 5.28: One-hole dispersions with even parity (blak) and odd parity (yan) for
x = 0.5, λ⊥ = λ‖ = 0.25 and various values for x�.
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Figure 5.29: One-hole dispersions with even parity (blak) and odd parity (yan) for
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2
LADDERS5.5 DisussionWe are able to alulate the one-hole dispersions by means of SCUT. The agree-ment with results from series expansion is very good for small parameters. Evenin the regime x = 1, x� = 0, 2 < λ < 3 the agreement with the exat diago-nalisation results is still good. The hole dispersions are strongly in�uened bythe triplons. Beause the one-hole dispersion with odd parity has a larger loalenergy whih is in�uened more strongly by the ontinuum above, it hangesmore expliitly with inreasing hopping onstants. Hene it is doubtlessly moredi�ult to alulate, i.e. the in�uene of the triplons on the odd band is strongerthan on the even band. Therefore the deviations from the simple osine shape aremore pronouned for the odd band. These deviations grow if either the magnetioupling or the strength of the hopping is inreased:

• The broadening of the odd band is slowing down, then turned into a narrow-ing and �nally the shape hanges totally under the in�uene of the seondharmoni so that the maximum at k = 0 is only loal, the total maximumours at k = π and the minimum lies between 0 and π.
• The shift upwards is also slowing down and then turned into a shift down-wards due to the in�uene of the ontinuum formed by one triplon and oneeven hole state. In the regime around x = 1 and λ⊥ = λ‖ = 2 the onstantof the odd dispersion is approximately as low as the onstant of the evendispersion.For the even band the deviations from the osine shaped dispersion onsist es-sentially in the growth of the seond harmoni. For x = 1 and λ⊥ = λ‖ = 2 theminimum has moved from k = π into the region k ≈ π

2
. A loal maximum at

k = π ours. But the absolute maximum remains at k = 0.The ombination of these e�ets for x = 1 and λ⊥ = λ‖ = 2 yield a rossingof the two dispersions. The rossing point lies between the minima of the bands.However, the p generator is not appliable for the SCUT if the parameters arein this region. This is suggested by the deviations from the series expansion andexat diagonalisation results as well as by the peuliar onvergene behaviour ofthe SCUT.In the regime x ≈ 1 and λ⊥ = λ‖ & 1 the p generator is no longer suitablebeause the onvergene of the �ow is hindered due to the overlap between theone-hole-one-triplon ontinuua and the one-hole-two-triplon ontinua. The p98



5.5. DISCUSSIONresults are distint from the series expansion and exat diagonalisation results.Furthermore the onvergene is very slow and exhibits features that indiateproblems regarding the sorting of the eigenvalues. The remedy is the gs gener-ator whih only deouples the zero-triplon spae from the rest. Then the holedispersions are similar to the exat diagonalisation results. Although there aresmall deviations from the series expansion, the agreement is astonishingly good.Beause the exat diagonalisation examines a ladder with fourteen rungs, �nitesize e�ets are present so that a part of the deviations are due to onstraints ofthe exat diagonalisation. The remaining deviations are probably due to truna-tion errors. Another aspet in favour for the SCUT indued by the gs generatoris the satisfatory onvergene behaviour.The treatment of the ase λ⊥ > 2 and λ‖ > 2 is problemati for the gs generatorbeause the onvergene is hindered by the overlap between the odd one-holedispersion and the ontinuum formed by one even hole and one triplon. To ahieveonvergene in this regime we use the following restrition for the gs generator.A term a�eting the hole-triplon ontinuum is omitted, if the distane betweenthe triplon and the hole state on whih the term ats is larger than ∆nmax. Thee�etive Hamiltonian yields an upper boundary for the hole dispersions. Theomparison between the results from the full gs generator and from the restritedgs generator for x = 1 and λ⊥ = λ‖ = 2 shows that the upper boundary givenby the result from the restrited generator is already lose to the result fromthe full generator for ∆nmax = 2. For x = 1 and λ⊥ = λ‖ = 3 this restrition
∆nmax = 2 indues onvergene, while the �ow diverges for ∆nmax > 2. Theestimations we obtain for the hole dispersions are again in good agreement withthe exat diagonalisation results. The exat diagonalisation [101℄ results preditthat the situation is qualitatively the same for λ⊥ = λ‖ = 3 as for λ⊥ = λ‖ = 2if x = 1 and x� = 0. The bands exhibit a similar shape and relative position toeah other so that still a rossing at k ≈ 0.5π ours. But the energy is loweredand the bandwith of both bands is inreased by a fator of ≈ 1.5. The resultsfrom the restrited gs generator yields an estimation for the even band whihis in good agreement with the exat diagonalisation result, while the odd holedispersion exhibits deviations that are very similar to the deviations between theexat diagonalisation and the full gs generator for λ⊥ = λ‖ = 2.The ase x = λ⊥ = λ‖ = 0.5 is a speial one. Both the p and the gs genera-tor (even with inreased maximal extensions) exhibit deviations from the seriesexpansion results for the odd hole state. These deviations stem apparently from99



CHAPTER 5. HOLE-DOPED ANTIFERROMAGNETIC SPIN-1
2
LADDERSthe loseness (or even overlap) of the ontinuum formed by one even hole andone triplon. If the lowering of the odd band is overestimated by the SCUT orunderestimated by the series expansion is not lear.Anisotropi hopping has the e�et that the bands are lowered (raised) if onehopping onstant is inreased (dereased). But if λ⊥ is hanged, the odd bandexhibits a slightly di�erent behaviour dominated by the �rst and seond harmonirespetively.The ring exhange leads to a lowering of the hole dispersions. This e�et isleast pronouned for the even band around k = π. The deformation of the bandshape is most pronouned for the odd band like for the anisotropi hopping.All in all the odd band is more sensitive to hanges of the parameters than theeven band.Ladders doped with more than one hole have not been treated yet. The addi-tional loal basis state (the ompletely empty rung), whih is present for at leasttwo holes in the system, inreases the number of operator terms to be onsideredwith the alulations. As we have already reahed the limits of the omputationalperformane, we expet that this inrement is di�ult to handle. However, weexpet that this state is still negligible for slightly doped ladders beause the loalenergy of this state is larger than the loal energies of the remaining states.The use of the spin symmetry, whih redues the time and memory osts for theundoped ladder by a fator of approximately 6, is still not implemented for thedoped ladder. By this implementation also a fator of approximately 6 ould begained onerning the redution of time and memory. But this implementationis distintly more di�ult for the doped ase beause the rotation in spin spaedoes not simply onvert one loal hole state operator into another one like it isthe ase for the triplet states. A rotation of a hole state operator in spin spaeyields a linear ombination of two operators. This is problemati beause linearombinations of operators have to be taken into aount for the identi�ation ofthe representative terms during the setup of the di�erential equations.The symmetry utilisation would also allow us to investigate the in�uene ofinreasing maximal extensions. Until now we are not able to state whether theresults still hange if the trunation is made less strit. We expet at least minorhanges sine the extensions onerning the hole operators are muh smaller thanthe extensions of the pure triplon terms.
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6 Summary and OutlookIn the present thesis the tehnique of self-similar ontinuous unitary transforma-tions (SCUTs) is used to generate e�etive Hamiltonians for antiferromagnetiHeisenberg spin-1
2
ladders, whih are appropriate models for a ertain subsystemof (Sr, La, Ca, Y)14Cu24O41 � the so alled telephone number ompounds.A ontinuous unitary transformation (CUT) is a general method to diagonaliseHamiltonians. The hoie of the generator determines the properties of the CUT.The p generator whih reates partile onserving Hamiltonians and adaptionsof this generator are used in this thesis. The SCUT uses a trunation shemethat de�nes whih parts of the Hamiltonian shall be omitted. This indues aself-similar transformation. The SCUT is not in need of extrapolation tehniqueslike the perturbative realisation of CUT. However, overlapping energies auseonvergene problems1. A possible remedy is a generator adaption exluding theterms hindering the onvergene.The doped spin-1

2
ladder is a one-dimensional model, whih is expeted to ap-ture the same qualitative features as the two-dimensional uprate lattie, whihexhibits high-temperature superondutivity. The undoped and the slightly hole-doped ase are onsidered in this thesis. Double oupany is forbidden for thesites, whih is a good model assumption for strong Coulomb repulsion. Beausethis system is gapful for the onsidered parameters, the orrelations betweenthe exitations derease exponentially with the distane. Therefore a real spaetrunation is appropriate.The performane and the numerial stability of the SCUT are improved dei-sively for the undoped ladder by utilising the spin symmetries within the bondoperator representation. For the undoped ladder the implementation of the gs,1pgenerator, whih deouples only the zero- and one-triplon spae from the restof the Hilbert spae, enables the treatment of higher values of x (the ratio be-tween the magneti oupling parallel and perpendiular to the ladder). Sine the1Note that strong overlaps also pose problems for the PCUT on the oneptual level. 101



CHAPTER 6. SUMMARY AND OUTLOOKtwo- and the four-triplon ontinuum overlap beomes stronger with inreasing xand therefore hinders the onvergene of the transformation, the gs,1p generatoravoids the sorting of the orresponding eigenenergies and yields a onverging trun-ation. However, the two-triplon bound states annot be alulated without anadditional diagonalisation. Hene ontinua with more than two partiles annotbe determined easily if the gs,1p generator is used beause the two-triplon boundstates ontribute ruially to these ontinua. The exeution of this deoupling issubjet to urrent researh.We also detet that the one-triplon dispersion enters the three-triplon ontin-uum for x = 1.5. Yet the overlap is not too large. Hene it does not hinder theonvergene of the gs,1p SCUT.For the doped ladder we are able to alulate the dispersions for the hole stateswhih inlude not only a hole but also a spin and therefore interat magnetiallywith the neighbouring rungs. The hole dispersions, whih are degenerate onern-ing the spin but di�er for di�erent parity, are strongly in�uened by interationswith the triplons. This in�uene is stronger on the band with odd parity thanon the band with even parity beause the loal energy of the odd hole state islarger and more sensitive to the ontinuum above. The agreement with the seriesexpansion results is very good for a large regime of parameters.If at least one of the ontinua formed by one hole and one triplon exhibitsa pronouned overlap with the higher ontinua, the p generator is no longerappliable. The agreement with the results of other methods and the onvergenedeteriorate. Then the gs generator, whih deouples only the zero-triplon statefrom the remaining states, yields by far more onlusive results. If the parametersare small, the results of the p and of the gs generator oinide.In ase of strong isotropi hopping onstants λ⊥ = λ‖ & 1 and x = 1 thehole dispersions over approximately the same energies and exhibit a rossing at
k ≈ 0.5π. Our results are in good agreement with the exat diagonalisation resultsfor λ⊥ = λ‖ = 2. The �nite size saling of the exat diagonalisation explains mostof the deviations between both methods. The remaining deviations are probablyaused by trunation errors. However, the onvergene of the gs generator islost for even larger hopping onstants. Beause the restrited gs generator stillonverges in this regime, the onvergene problems must be due to the overlap ofthe one-hole dispersions with the triplon-hole ontinua.The restrition whih is applied to the generator omits a term a�eting theontinuum formed by one hole and one triplon, if the maximal distane ∆nmax102



between the triplon and the hole state on whih the term ats is exeeded. If weFourier transform the one-hole subspae of the e�etive Hamiltonian, we obtainonly upper boundaries for the atual hole dispersions. Nevertheless, these resultsare lose to the exat diagonalisation results for x = 1 and λ⊥ = λ‖ = 3.We also investigated the in�uene of anisotropi hopping and magneti ringexhange on the one-hole dispersions. The odd hole dispersion is more sensitiveto hanges of the parameters than the even hole dispersion due to the strongerin�uene of the ontinuum for the odd band whih has a larger loal energy.We onlude with an outlook on future investigations. The next step will bethe examination of two-hole states. Espeially the two-hole bound states, whihare interesting in the ontext of superondutivity, shall be investigated. Theinlusion of the rung state with two holes, i.e. the empty state, whih is notneeded to be onsidered for the one-hole dispersions, inreases the e�ort onern-ing memory and time needed for the alulation inisively. However, we expetthat this state is still negligible beause it is energetially unfavourable.Nevertheless, even without the loal two-hole state the system of di�erentialequations is larger if all operators ating on global two-hole states are inluded.The new terms are terms with four hole operators (two reation and two annihi-lation operators). The utilisation of the spin symmetry for the operators a�etinghole states, whih is still di�ult to implement, would improve the performaneof the program signi�antly. Another approximation that redues the e�ort anbe made by negleting all ontributions from terms with four hole operators onthe right hand side of the �ow equation, but not on the left hand side.
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CHAPTER 6. SUMMARY AND OUTLOOK
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A E�ets of Utilisation of theSpin Symmetry for theUndoped LadderThe utilisation of the spin symmetry redues the terms to be inluded in theHamiltonian of the undoped ladder by almost a fator of six. Nearly all termsdeal with two or three di�erent spin states. For these terms the appliation of allpossible rotations in spin spae to a representative term yields six terms inludingthe representative. These rotations are equivalent to permuting the spin states
x, y, z and adding optional signs for the loal triplon operators1. Therefore theserotations are easy to implement for the triplon operators in the bond operatorrepresentation [65℄.Together with the utilisation of the Hermitiity and the real spae symmetrythe memory as well as the time onsumed by the alulation an be redued byalmost a fator of 24. But this is only the obvious advantage. The numerialstability of the integration is also improved by utilising the symmetries. With-out expliit onsideration of the symmetry small numerial deviations betweenterms that should be equal an inrease drastially via feedbak. This feedbakis due to the oupling of the di�erential equations. Di�erenes of suh termsexpeted to be zero yield �nite numerial values and ontribute to the �ow equa-tion. These rounding errors link setors of the Hilbert spae whih should bedeoupled. Hene the SCUT fails at the reordering and the feedbak beomesdominant. In Figure A.1 the e�et of suh a feedbak an be observed in theROD (residual o�-diagonality, introdued in Setion 3.6). If symmetries are notutilised, the ROD exhibits the typial behaviour for suh a numerial instabil-ity at lJ⊥ ≈ 70: The exponential derease hanges into an exponential inreaseat this point and shows a non-onvergent behaviour afterwards, whih is har-aterised by alternating irregular derease and inrease. If the symmetries are1If the parity is onserved, there is always an even number of additional signs. 105



APPENDIX A. EFFECTS OF UTILISATION OF THE SPIN SYMMETRYFOR THE UNDOPED LADDER
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Figure A.1: Comparison of the ROD during the �ow for the p SCUT with (dashed)and without (solid) utilisation of the symmetries; undoped ladder with x = 1, x� = 0;trunation: N = 4, d2 = 10, d4 = 6, d5 = 5, d2 = 3.utilised on the ontrary, the ROD dereases exponentially without peuliarities.The symmetry breaking for the SCUT without utilisation of the symmetriesresponsible for the feedbak is also ampli�ed and distributed via the oupling ofthe di�erential equations. Figure A.2 shows this symmetry breaking examplarilyfor six terms that are atually spin symmetri. The oe�ients of these termsshould be equal but deviate for lJ⊥ & 100, i.e. after the kink of the ROD. Theonvergene seems to be ahieved already at lJ⊥ ≈ 12. Indued by the numerialinstability abrupt deviations from the onvergene value our for lJ⊥ & 100exept for two of the onsidered oe�ients, whih, however, �nally show smalldeviations from the onvergene value for lJ⊥ & 195.
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Figure A.2: Comparison of the oe�ients gi of six terms that should be equal due to thespin symmetry during the �ow for the p SCUT without utilisation of the symmetries;undoped ladder with x = 1, x� = 0; trunation: N = 4, d2 = 10, d4 = 6, d5 = 5,
d2 = 3. The blue urve oinides with the urve of another oe�ient.
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B Consisteny Chek for theDoped Ladder ResultsA high-level hek of the SCUT method for the hole-doped ladder is performed bya systemati omparison with the series expansion results from Ref. [97℄. For thispurpose a new trunation sheme is introdued that is not based on extensions inreal spae but on the perturbation parameters instead. This allows us to omparethe order of the parameters. In Ref. [97℄ the ring exhange is not onsideredand the oupling onstants for the hopping are idential. Therefore the onlyperturbation parameters are x and λ = λ‖ = λ⊥. The ratio ρ = x
λ
is �xed foreah omparison to have atually only one parameter. For the new trunation anew attribute is assigned to eah term: the leading order in x for the expansionof the oe�ient. Nevertheless, the CUT is still self-similar and the expansionsin x are not alulated. This is not neessary to determine the leading order.The leading order for the terms of the starting Hamiltonian is known beause allontributions generated by the SCUT are terms of the same or higher order asthey originate from ommutators and nested ommutators of these terms. So theleading order of these terms is the leading order in whih x is present for l = 0.The expansion of the oe�ients gi(l) in x has the form

gi(l) =

∞
∑

m=0

ai,ni+m(l)xni+m (B.1)where ni is the leading order. As the di�erential equations for the oe�ientshave a bilinear form (2.18), the leading order of a gi(l) whih is zero for l = 0 isgiven by the minimal exponent nj + nk of all terms gj(l)gk(l) on the right handside of the �ow equation.If the leading order of a term, whih ours during the setup of the �ow equa-tion, is higher than a ertain nmax de�ned in advane, this term is omitted. Withthis trunation we are able to ontrol up to whih order the results will be orret.109



APPENDIX B. CONSISTENCY CHECK FOR THE DOPED LADDERRESULTS
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Figure B.1: Consisteny hek for nmax = 4 and ρ = 0.5. For all oe�ients cj,p thedi�erene quotient qj,p onverges against α = 5. The di�erene ∆c0,e has the smallestvalue whih is already in the order of the numerial preision for xn ≈ 0.001. Hene
q0,e shows deviations for small x.The oe�ients cj,p of the one-hole dispersions

ω1h,p(k) = c0,p +

jmax
∑

j=1

2cj,p cos(jk) (B.2)were ompared with the results of the series expansion. The parameter p ∈ {e, o}denotes the parity (even or odd) of the hole state. Beause no maximal extensionin real spae is de�ned in this trunation sheme, jmax depends on nmax. Aordingto the fourth order series from Ref. [97℄ and using λ = x
ρ
the leading order for c0,pis zero, one for c1,p and four for c2,p, i.e. jmax = 1 for 0 < nmax < 4 and jmax = 2for nmax = 4.If both methods are onsistent, the di�erene between a oe�ient alulatedby SCUT on the one hand and the orresponding oe�ient from the series expan-sion on the other hand should show power law behaviour ∝ xα with α = nmax +1for x → 0. For the hek of the behaviour of this di�erene ∆cj,p(x) for x → 0 weanalysed several values of x starting with x0 = 1

64
and biseting x onseutively,110
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Figure B.2: Consisteny hek for nmax = 4 and ρ = 1. For all oe�ients cj,p thedi�erene quotient qj,p onverges against α = 5. Again for q0,e the deviations arethe most obvious and larger than for ρ = 0.5 but also for q0,o and q1,e deviations aredistinguishable.i.e. xn+1 = xn

2
. This was done for ρ = 0.5, ρ = 1 and ρ = 2. To show that

α = nmax + 1 is atually the dominating exponent in ∆cj,p(x) the ratio of thedi�erenes
qj,p(xn) =

ln (∆cj,p(xn)) − ln (∆cj,p(xn+1))

ln(xn) − ln(xn+1)
(B.3)was plotted against xn. For a funtion ∆cj,p(x) dominated by b xα

lim
n→∞

qj,p(xn) = α (B.4)holds true. But if xn beomes too small, ∆cj,p is redued to the size of thenumerial preision. The di�erene ∆cj,p is even numerially zero for very small
xn beause the error is smaller than the numerial preision for x ≈ 0. Thereforethe onvergene eases in this region. Nevertheless, in a small region where xn isneither too small nor too large the onvergene is observable.The �gures depited here (Figures B.1-B.3) show the behaviour of the qj,p for
nmax = 4. The expeted onvergene against α = 5 is obvious. The deviations forsmall x an be explained by reahing the limits of the numerial preision. The111



APPENDIX B. CONSISTENCY CHECK FOR THE DOPED LADDERRESULTS
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Figure B.3: Consisteny hek for nmax = 4 and ρ = 2. For all oe�ients cj,p thedi�erene quotient qj,p onverges against α = 5 exept for q0,e. For this reason the datapoints for q0,e were not onneted as they do not form a urve. Further explanationsan be found in the text.only remaining disrepany is the behaviour of q0,e for ρ = 2 (see Figure B.3),whih does not reveal any kind of onvergene. This is due to a zero-rossing of
∆c0,e in the onsidered region of x. Thus the ansatz with the ratio qj,p yields noreliable result. However, the proper behaviour of the other qj,p demonstrates theonsisteny of the SCUT with the series expansion. If c0,e exhibited an error, thiserror would a�et the other oe�ients via the �ow equations and they wouldnot show a onsistent behaviour.To onlude, we an state that this high-level hek supports our method.The results of this hek meet our expetations that the SCUT is implementedorretly.
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