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Abstract

The celebrated de la Garza phenomenon states that for a polynomial regression

model of degree p − 1 any optimal design can be based on at most p design points. In

a remarkable paper Yang (2010) showed that this phenomenon exists in many locally

optimal design problems for nonlinear models. In the present note we present a different

view point on these findings using results about moment theory and Chebyshev systems.

In particular, we show that this phenomenon occurs in an even larger class of models

than considered so far.
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1 Introduction

Non linear regression models are widely used for modeling dependencies between response

and explanatory variables [see Seber and Wild (1989) or Ratkowsky (1990)]. It is well known

that an appropriate choice of an experimental design can improve the quality of statistical

analysis substantially, and therefore the problem of constructing optimal designs for nonlinear

regression models has found considerable attention in the literature. Most authors concentrate

on locally optimal designs which assume that a guess for the unknown parameters of the model

is available [see Chernoff (1953), Ford et al. (1992), He et al. (1996), Fang and Hedayat (2008)].
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These designs are usually used as benchmarks for commonly used designs. Additionally,

they serve as a basis for constructing optimal designs with respect to more sophisticated

optimality criteria which address for a less precise knowledge about the unknown parameters

[see Pronzato and Walter (1985) or Chaloner and Verdinelli (1995), Dette (1997), Müller and

Pázman (1998)]. It is a well known fact that the numerical or analytical calculation of optimal

designs simplifies substantially if it is known that the optimal design is saturated, which means

that the number of different experimental conditions coincides with the number of parameters

in the model [see for example He et al. (1996), Dette and Wong (1996), Imhof and Studden

(2001), Imhof (2001), Melas (2006), Fang and Hedayat (2008) among many others].

So, the ideal situation appears if the optimal design is in the sub-class of all saturated designs.

In a celebrated paper de la Garza (1954) proved that for a (p − 1)th-degree polynomial

regression model, any optimal design can be based on at most p points. Khuri et al. (2006)

considered a nonlinear regression model and introduced the terminology of the de la Garza

phenomenon, which means that for any design there exists a saturated design, such that

the information matrix of the saturated design is not inferior to that of the given design

under the Loewner ordering. In a remarkable paper Yang (2010) derived sufficient conditions

on the nonlinear regression model for the occurrence of the de la Garza phenomenon and

demonstrated that this situation appears in a broad class of non linear regression models.

These results generalize recent findings of Yang and Stufken (2009) for nonlinear models with

two parameters.

However, some care is necessary if these results are applied as indicated in the following simple

example of homoscedastic linear regression on the interval [0, 1]. Here the information matrix

of the design which advises the experimenter to take all n observations at the point 0 is given

by

XT
1 X1 =

(
n 0

0 0

)
while any other design (using the experimental conditions x1, . . . , xn) yields an information

matrix

XT
2 X2 =

(
n

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 x
2
i

)
.

It is easy to see that the matrix XT
2 X2 −XT

1 X1 is indefinite (i.e. it has positive and negative

eigenvalues) whenever one of the xi is positive. Consequently, the design corresponding to

XT
1 X1 cannot be improved. On the other hand, it is also easy to see that for any k ∈
{1, . . . , bn/2c − 1} the information matrix of the design, which takes observations at x1 =

. . . = xn−2k = 0 and at xn−2k+1 = . . . = xn = 1/2 can be improved (with respect to the

Loewner ordering) by the information matrix corresponding to the design x1 = . . . = xn−k = 0

and xn−k+1 = . . . = xn = 1. Thus there exist designs where a “real” improvement is possible,
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while other designs cannot be improved. Note that the results in Yang (2010) do not provide

a classification of the two types of designs.

It is the purpose of the present paper to present a more detailed view point on these prob-

lems, which clarifies this – on a first glance – contradiction. In contrast to the method used

by Yang (2010), which is mainly algebraic, our approach is analytic and based on the theory

of Chebyshev systems and moment spaces [see Karlin and Studden (1966a)]. In particular, we

will demonstrate that the de la Garza phenomenon appears in any nonlinear regression model,

where the functions in the Fisher information matrix form a Chebyshev system. Additionally,

we will solve the problem described in the previous paragraph and we will identify the suf-

ficient conditions stated in Yang (2010) as a special case of an extended Chebyshev system.

Therefore, our results generalize the recent findings of Yang (2010) in a non trivial way and,

additionally, provide - in our opinion - a more transparent and more complete explanation of

the de la Garza phenomenon for optimal designs in nonlinear regression models.

The remaining part of this paper is organized as follows. Section 2 provides a brief introduc-

tion in the problem, while Section 3 contains our main results. Finally, the new results are

illustrated in a rational regression model, where the currently available methodology cannot

be used to establish the de la Garza phenomenon.

2 Locally optimal designs

Consider the common nonlinear regression model

Y = η(x, θ) + ε,(2.1)

where θ ∈ Θ ⊂ Rp is the vector of unknown parameters, and different observations are assumed

to be independent. The errors are normally distributed with mean 0 and variance σ2. The

variable x denotes the explanatory variable, which varies in the design space [A,B] ⊂ R. We

assume that η is a continuous and real valued function of both arguments (x, θ) ∈ [A,B]×Θ

and differentiable with respect to the variable θ. A design is defined as a probability measure

ξ on the interval [A,B] with finite support [see Kiefer (1974)]. If the design ξ has masses

wi at the points xi (i = 1, . . . , k) and n observations can be made by the experimenter, this

means that the quantities win are rounded to integers, say ni, satisfying
∑k

i=1 ni = n, and the

experimenter takes ni observations at each location xi (i = 1, . . . , k). The information matrix

of an approximate design ξ is defined by

M(ξ, θ) =

∫ B

A

( ∂
∂θ
η(x, θ

)( ∂
∂θ
η(x, θ)

)T
dξ(x),(2.2)

and it is well known [see Jennrich (1969)] that under appropriate assumptions of regularity

the covariance matrix of the least squares estimator is approximately given by σ2 M−1(ξ, θ)/n,
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where n denotes the total sample size and we assume that the observations are taken according

to the approximate design ξ.

An optimal design maximizes an appropriate functional of the information matrix and numer-

ous criteria have been proposed in the literature to discriminate between competing designs

[see Silvey (1980), Pázman (1986) or Pukelsheim (2006) among others]. Note that in nonlinear

regression models the information matrix (and as a consequence the corresponding optimal

designs) depend on the unknown parameters and are therefore called locally optimal designs

[see Chernoff (1953)]. These designs require an initial guess of the unknown parameters in

the model and are used as benchmarks for many commonly used designs.

Most of the available optimality criteria satisfy a monotonicity property with respect to the

Loewner ordering, that is

M(ξ1, θ) ≤M(ξ2, θ) =⇒ Φ(M(ξ1, θ)) ≤ Φ(M(ξ2, θ)),(2.3)

where the parameter θ is fixed, ξ1, ξ2 are two competing designs and Φ denotes an information

function in the sense of Pukelsheim (2006). For this reason it is of interest to derive a complete

class theorem in this general context which characterizes the class of designs, which cannot

be improved with respect to the Loewner ordering of their information matrices. We call a

design ξ1 admissible if there does not exist a design ξ2, such that M(ξ1, θ) 6= M(ξ2, θ) and

M(ξ1, θ) ≤M(ξ2, θ).(2.4)

As pointed out in Yang (2010) for many nonlinear regression models the information matrix

defined in (2.2) has a representation of the form

M(ξ, θ) = P (θ)C(ξ, θ)P T (θ),(2.5)

where P (θ) is a nonsingular p× p matrix, which does not depend on the design ξ, the matrix

C is defined by

C(ξ, θ) =


∫ B
A

Ψ11(x)dξ(x) · · ·
∫ B
A

Ψ1p(x)dξ(x)
...

. . .
...∫ B

A
Ψp1(x)dξ(x) · · ·

∫ B
A

Ψpp(x)dξ(x)

(2.6)

and Ψ11,Ψ12, . . . ,Ψpp are functions defined on the interval [A,B]. Note that these functions

usually depend on the parameter θ, but for the sake of simplicity we do not reflect this

dependence in our notation. Obviously the inequality (2.4) is satisfied if and only if the

inequality

C(ξ1, θ) ≤ C(ξ2, θ).(2.7)

is satisfied.
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3 Cheyshev systems and complete class theorems

In the following discussion we make extensive use of the property that a system of functions

has the Chebyshev property. Following Karlin and Studden (1966a) a set of k+ 1 continuous

functions u0, . . . , uk : [A,B]→ R is called a Chebyshev system (on the interval [A,B]) if the

inequality

(3.1)

∣∣∣∣∣∣∣∣∣∣
u0(x0) u0(x1) . . . u0(xk)

u1(x0) u1(x1) . . . u1(xk)
...

...
. . .

...

uk(x0) uk(x1) . . . uk(xk)

∣∣∣∣∣∣∣∣∣∣
> 0

holds for all A ≤ x0 < x1 < . . . < xk ≤ B. Note that if the determinant in (3.1) does not

vanish then either the functions u0, u1, . . . , uk−1, uk or the functions u0, u1, . . . , uk−1,−uk form

a Chebyshev system. The Chebyshev property has widely been used to determine explicitly

c-optimal designs [see He et al. (1996), Dette et al. (2003) or Dette et al. (2008) among many

others]. On the other hand, its application to other optimality criteria has not been studied

intensively. In the following discussion we will demonstrate that this property will essentially

be the reason for the occurrence of the de la Garza phenomenon. In particular, we will show

that it is essentially sufficient to obtain a complete class theorem for the design problems

associated with the nonlinear regression model (2.1).

For this purpose we define the index I(ξ) of a design ξ on the interval [A,B] as the number

of support points, where the boundary points A and B (if they occur as support points) are

only counted by 1/2. Recall the definition of the matrix C in (2.6) and denote by Ψ1, . . . ,Ψk

the different elements among the functions {Ψij | 1 ≤ j, j ≤ p}, which are not equal to the

constant function. Throughout this paper we assume

Ψk = Ψll for some l ∈ {1, . . . , p} and Ψij 6= Ψk for all (i, j) 6= (l, l)(3.2)

[see Yang (2010)]. Additionally, we put Ψ0(x) = 1 and assume either that

{Ψ0,Ψ1, . . . ,Ψk−1} and {Ψ0,Ψ1, . . . ,Ψk−1,Ψk} are Chebyshev systems(3.3)

or that

{Ψ0,Ψ1, . . . ,Ψk−1} and {Ψ0,Ψ1, . . . ,Ψk−1,−Ψk} are Chebyshev systems(3.4)

then the following result characterizes the class of admissible designs.

Theorem 3.1.

(1) If the functions Ψ0(x) = 1,Ψ1, . . . ,Ψk−1,Ψk satisfy (3.2) and (3.3), then for any design

ξ there exists a design ξ+ with at most k+2
2

support points, such that M(ξ+, θ) ≥M(ξ, θ).
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If the index of the design ξ satisfies

I(ξ) <
k

2

then the design ξ+ is uniquely determined in the class of all designs η satisfying

(3.5)

∫ B

A

Ψi(x)dη(x) =

∫ B

A

Ψi(x)dξ(x), i = 0, . . . , k − 1

and coincides with the design ξ. Otherwise (in the case I(ξ) ≥ k
2
) the following two

assertions are valid.

(1a) If k is odd, then ξ+ has at most k+1
2

support points and ξ+ can be chosen such that

its support contains the point B.

(1b) If k is even, then ξ+ has at most k
2

+ 1 support points and ξ+ can be chosen such

that the support of ξ+ contains the points A and B.

(2) If the functions Ψ0(x) = 1,Ψ1, . . . ,Ψk−1,Ψk satisfy (3.2) and (3.4), then for any design

ξ there exists a design ξ− with at most k+2
2

support points, such that M(ξ−, θ) ≥M(ξ, θ).

If the index of the design ξ satisfies

I(ξ) <
k

2

then the design ξ− is uniquely determined in the class of all designs η satisfying (3.5)

and coincides with the design ξ. Otherwise (in the case I(ξ) ≥ k
2
) the following two

assertions are valid.

(2a) If k is odd, then ξ− has at most k+1
2

support points and ξ− can be chosen such that

its support contains the point A.

(2b) If k is even, then ξ− has at most k
2

support points.

Proof. We only present a proof of the first part (1) of the theorem, the second part follows

by similar arguments. For i = 0, . . . , k let

di(ξ) =

∫ B

A

Ψi(x)dξ(x)

denote the i-th “moment” and define

dk (ξ) = (d0, (ξ), . . . , dk(ξ))
T

as the vector of all “moments” up to the order k. Consider two designs ξ1 and ξ2 with

dk−1 (ξ1) = dk−1 (ξ2) and dk(ξ1) ≤ dk(ξ2),
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then for any vector z = (z1, . . . , zp)
T ∈ Rp we have for some l ∈ {1, . . . , p}

zT (C(ξ2, θ)− C(ξ1, θ)z ≥ z2l (dk(ξ2)− dk(ξ1)) ≥ 0,

which means that

C(ξ2, θ) ≥ C(ξ1, θ).

Now let for a fixed vector of “moments” dk−1 (ξ)

d+k = sup
{
dk(η) | η design on [A,B] with dk−1 (η) = dk−1 (ξ)

}
denote the maximum of the k-th “moment” over the set of all designs with fixed “moments”

up to the order k − 1. Due to the compactness of the design space and the continuity of the

functions Ψ0, . . . ,Ψk there exists a design ξ+ such that

dj(ξ
+) = dj(ξ) ; j = 0, . . . , k − 1,(3.6)

dk(ξ
+) = d+ ≥ dk(ξ).(3.7)

This shows (by the argument at the beginning of the proof and the discussion at the end of

the previous section)

(3.8) M(ξ+, θ) ≥M(ξ, θ).

Moreover, it follows from Chapter II, Section 6 of Karlin and Studden (1966a) that the point

dk (ξ+) is a boundary point of the “moment space”

Mk = {dk (η) | η design on [A,B]}.

Consequently, we obtain from Theorem 2.1 in Karlin and Studden (1966a) that the design ξ+

is based on at most k+2
2

support points, which proves the first part of the statement.

We now consider the cases (1a) and (1b). The vector dk−1 (ξ) is either a boundary point or

an interior point of the (k − 1)-th moment space Mk−1. The first case is characterized by

an index satisfying I(ξ) < k/2 and there exists a unique measure ξ̃ with “moments” up to

the order k specified by dk−1 (ξ). To prove this statement regarding uniqueness suppose that

I(ξ) < k
2

and that there exists a further design, say ξ̃, with this property. Since

dk−1 (ξ)− dk−1 (ξ̃) = 0

it follows that there exist at least k different points

A ≤ x0 < x1 < · · · < xk−1 ≤ B

such that

(3.9)

∣∣∣∣∣∣∣∣∣∣
Ψ0(x0) Ψ0(x1) . . . Ψ0(xk−1)

Ψ1(x0) Ψ1(x1) . . . Ψ1(xk−1)
...

...
. . .

...

Ψk−1(x0) Ψk−1(x1) . . . Ψk−1(xk−1)

∣∣∣∣∣∣∣∣∣∣
= 0
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which is impossible by the definition of Chebyshev systems. Consequently, a design with

moments specified by (3.5) is uniquely determined and therefore we take ξ+ = ξ̃, which has

at most k+1
2

support points [see Theorem 2.1 in Karlin and Studden (1966a), p. 42].

If the index of the design ξ satisfies I(ξ) ≥ k/2 it follows from the discussion in Chapter II,

Section 6 in Karlin and Studden (1966a) that the design ξ+ defined by (3.6) and (3.7) is the

upper principal representation of the vector dk−1 (ξ), which means that its index is precisely k
2

and its support includes the point B. Note that for this argument we require condition (3.3).

Consequently, if k = 2m + 1 is odd, the upper principal representation ξ+ has index m + 1
2

and precisely m + 1 support points including the point B. On the other hand, if k = 2m is

even, ξ+ has m + 1 support points and the boundary points A and B of the design interval

are support points because the index of the design ξ+ is m.

The proof of part (2) of Theorem 3.1 is similar (where the upper principal representation has

to be replaced by the lower principal representation using condition (3.4)) and omitted. 2

Remark 3.2.

(a) Note that Theorem 2.1 in Karlin and Studden (1966a), Chapter II refers to moment spaces

corresponding to not necessarily bounded measures and the inclusion of the constant function

in the system under consideration guarantees its application to a moment space corresponding

to probability measures as required in the proof of Theorem 3.1. An alternative explanation

can be given by the generalized equivalence theorem as stated in Pukelsheim (2006). It follows

from this result that for an optimal design (with respect to the commonly used criteria) there

exist some constants, say ai ∈ R, i = 1, . . . , k such that for all support points of the optimal

design the identity
k∑
i=1

aiΨi(x) = c,

is satisfied, where c denotes a constant (for example for the D-optimality criterion c is the

number of parameters). Since an optimal design is admissible, the inclusion of the constant

function guarantees that the index of these designs is at most k/2. Note that this is a sufficient

but, generally speaking, not necessary condition.

(b) Note that it follows from the proof of Theorem 3.1 that the conditions (3.6) and (3.7)

imply (3.8), i.e. the superiority of the information matrix of the design ξ+ with respect to the

Loewner ordering. In many cases (for example polynomial regression models) the converse

direction is also true and in these cases it follows from the proof of Theorem 3.1 that a design

ξ with index I(ξ) < k
2
) can only be ”improved” (with respect to the Loewner ordering of the

corresponding information matrices) by itself. In fact we are not aware of any case where the

converse direction does not hold.

(c) Note also that Theorem 3.1 provides a solution to the problem indicated in the example

of the introduction. In the linear regression model we have k = 2, therefore we can use the
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given design ξ1 (concentrating all observations at x = 0) as an “improvement” of ξ1. However,

because the index of ξ1 is 1/2 < 1 the design ξ1 can only be improved by itself (see the previous

remark). In particular there does not exist a design ξ which takes observations at x = 1 and

improves ξ1 in the sense M(ξ) ≥M(ξ1).

(d) It is also worthwhile to mention that a design improving the given design ξ is not

necessarily unique. Consider for example again the linear regression model on the interval

[0, 1] and the design ξ which has equal masses at the points 0 and 3/4. The information

matrix of ξ is given by

M(ξ) =

(
1 3

8
3
8

9
32

)
.

Now define for any p ∈ [1
2
, 5
8
] a design ξ+p with masses p and 1− p at the points 0 and 3

8(1−p) ,

respectively. Then it follows that

M(ξ+p ) =

(
1 3

8
3
8

9
64(1−p)

)
.

and M(ξ+p ) ≥ M(ξ) for any p ∈ [1
2
, 5
8
]. Note that the choice p = 5

8
gives the upper principal

representation ξ+ = ξ+5/8 with index 1 and support points 0 and 1, while for p ∈ [1
2
, 5
8
) we have

index I(ξ+p ) = 3/2.

In the remaining part of this section we will relate the result of Theorem 3.1 to the recent

findings of Yang (2010). Note that - in contrast to Theorem 1 and 2 of Yang (2010) our

Theorem 3.1 does not require the differentiability of the functions Ψj. Moreover, in some case

it provides a better description of the admissible designs. For a more detailed explanation

we note that a Chebyshev system of functions {u0, . . . , uk} is called an extended Chebyshev

system, if and only if for any a0, . . . , ak ∈ R with
∑k

i=0 a
2
i 6= 0 the function

k∑
i=0

aiui(x)

has at most k zeros counted with multiplicities in the interval [A,B] (this definition is equiv-

alent to the definition given in Karlin and Studden (1966a)). A simple way of constructing

an extended Chebyshev system is the following [see Karlin and Studden (1966a), p. 19]. Let

w0, . . . , wk be functions on the interval [A,B] which are either positive or negative. We now

consider the new functions

u0(x) = w0(x)

u1(x) = w0(x)

∫ x

A

w1(t1)dt1(3.10)

...
...

...

uk(x) = w0(x)

∫ x

A

w1(t1)

∫ t2

A

w2(t2) . . .

∫ tk−1

A

wk(tk)dtk . . . dt1.

9



A direct calculation shows that the Wronskian determinant of the functions u0, . . . , uk is given

by

Wx(u0, . . . , uk) =

∣∣∣∣∣∣∣∣∣∣
u0(x) u′0(x) · · · u

(k)
0 (x)

u1(x) u′1(x) · · · u
(k)
1 (x)

...
...

. . .
...

uk(x) u′k(x) · · · u
(k)
k (x)

∣∣∣∣∣∣∣∣∣∣
= (w0(x))k+1(w1(x))k . . . (wk−1(x))2wk(x)(3.11)

and it is shown in Chapter XI in Karlin and Studden (1966a) that the set {u0, . . . , uk} of k

times differentiable function is an extended Chebyshev system if and only if

Wx(u0, . . . , uk) > 0

for all x ∈ [A,B]. On the other hand, this representation provides a constructive method

for checking if a given system of k times differentiable functions {u0, . . . , uk} is a Chebyshev

system on the interval [A,B]. To be precise, define w0(x) = u0(x) and recursively differential

operators

Djf =
d

dx

( f
wj

)
; j = 0, . . . , k(3.12)

wj+1 = (DjDj−1 . . . D0)uj+1 ; j = 0, 1, . . . , k − 1.(3.13)

Consequently, the set {u0, . . . , uk} is a Chebyshev system if the functions w0, . . . , wk calculated

by (3.12) and (3.13) are all positive on the interval [A,B].

Remark 3.3. Yang (2010) constructed a triangle array of functions {fl,t | t = 1, . . . , k; t ≤
l ≤ k} from the functions Ψ1, . . . ,Ψk induced by the nonlinear regression model (2.1) using

the recursion

fl,t(x) =

{
Ψ′l(x) t = 1, . . . , k(

fl,t−1(x)

ft−1,t−1(x)

)′
2 ≤ t ≤ k ; t ≤ l ≤ k

.

It is now easy to see that the functions w1, . . . , wk obtained from (3.12) and (3.13) with

w0 = 1 uj = Ψj (j = 1, . . . , k) are precisely the functions fll defined by Yang (2010). As a

consequence, we will obtain the main result of Yang (2010) as a special case of our Theorem

3.1 (note that our assumptions regarding the differentiability are slightly weaker than in this

reference).

Theorem 3.4. Let Ψ1, . . . ,Ψk denote the k different functions in the information matrix

(3.1) corresponding to the nonlinear regression model which are not equal to the constant
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function. Assume that Ψj is (j + 1) times continuously differentiable, define w0 = 1 and for

j = 0, . . . , k − 1

wj+1 = DjDj−1 . . . D0Ψj+1

and assume that condition (3.2) is satisfied. If

F (x) = w1(x) . . . wk(x) 6= 0

for all x ∈ [A,B], then for any given design ξ there exists a design ξ̃, such that I(ξ̃) ≤ k
2

M(ξ̃, θ) ≥M(ξ, θ).

If the index of the design ξ satisfies I(ξ) < k
2

then ξ̃ is uniquely determined in the class of all

designs η with moments specified by (3.5) and coincides with the design ξ. Otherwise (in the

case I(ξ) ≥ k
2
) the following assertions are valid.

(1a) If k is odd and F (x) < 0 on the interval [A,B], then the design ξ̃ has at most (k+ 1)/2

support points and ξ̃ can be chosen such that the point A is a support point.

(1b) If k is odd and F (x) > 0 on the interval [A,B], then the design ξ̃ has at most (k+ 1)/2

support points and ξ̃ can be chosen such that the point B is a support point.

(2a) If k is even and F (x) < 0 on the interval [A,B], then the design ξ̃ has at most k/2

support points.

(2b) If k is even and F (x) > 0 on the interval [A,B], then the design ξ̃ has at most k/2 + 1

support points and ξ̃ can be chosen such that the points A and B are support points.

Proof. Let us define Ψ0(x) = 1 and note that

F (x) =
Wx(Ψ0, . . . ,Ψk)

Wx(Ψ0, . . . ,Ψk−1)
.

Thus if F (x) > 0 then condition (3.3) is fulfilled and if F (x) < 0 then condition (3.4) is

fulfilled. Now Theorem 3.4 is an immediate corollary of Theorem 3.1. 2

Remark 3.5. Note that if the constant function appears among the different functions

{Ψij | 1 ≤ i ≤ j ≤ p} in the information matrix (3.1) it is not counted in Theorem 3.4 or

Theorem 2 of Yang (2010) [see the proof of Theorem 3, Theorem 5, Theorem 6 and Theorem

7 in this reference].

A number of interesting applications of Theorem 3.4 are given in Yang (2010). Note that

in all examples considered there, as well as in the paper of Yang and Stufken (2009), the
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functions under consideration generate a special type of Chebyshev systems, namely extended

Chebyshev systems that can be generated by formulas (3.7). This follows from Remark 3.3

and the discussion before Theorem 3.4. Note that the main advantage of Theorem 3.1 consists

in the fact that the de la Garza phenomenon can be established by proving that the system

under consideration is a Chebyshev system. For this purpose, several methods are available

which differ from the approach presented in Yang (2010) and in the next section we will

consider an example illustrating the usefulness of Theorem 3.1.

4 An application to rational regression models

In this section we present a class of nonlinear regression models where Theorem 3.4 [or The-

orem 2 in Yang (2010)] is not directly applicable, but the de la Garza phenomenon can be

established by an application of Theorem 3.1. For this purpose we consider rational regression

models of the form

η(x, θ) =
P (x, θ(1))

Q(x, θ(2))
,(4.1)

where

P (x, θ(1)) = θ1 + θ2x+ · · ·+ θlx
(l−1),

Q(x, θ(2)) = 1 + θl+1x+ · · ·+ θs+lx
s.

are polynomials of degree l − 1 and s, respectively, with corresponding parameters

θ(1) = (θ1, . . . , θl)
T , θ(2) = (θ1+1, . . . , θl+s)

T .

It is shown in He et al. (1996) that the information matrix for this model can be written in

the form

M(ξ, θ) = B(θ)C(ξ, θ)B(θ),

where θ = (θ1, . . . , θl+s)
T , B denotes an appropriate matrix [see He et al. (1996)], the matrix

C is given by

C(ξ, θ) =

∫ B

A

[1/Q4(x)]h(x)h(x)Tdξ(x),

h(x) = (1, x, . . . , xp−1)T denotes the vector of monomials with p = l + s and Q(x) is a

polynomial of degree s. Therefore it follows that the different functions in the information

matrix are given by

Ψ1(x) = 1/Q4(x), . . . ,Ψk(x) = xk−1/Q4(x),

where k = 2p− 1. Define Ψ0(x) = 1, then it is well known [see Karlin and Studden (1966b)]

that under the conditions
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(a) Q(x) does not vanish in the interval [A,B];

(b) [Q4(x)](2p−1) does not vanish in the interval [A,B]

the functions Ψ0,Ψ1, . . . ,Ψ2p−1 generate a Chebyshev system on the interval [A,B] and The-

orem 3.1 is applicable here.

However, we will give an alternative proof of this property which yields – as a by-product – a

constructive condition under which the condition (b) is fulfilled. Assume that Q4(x) > 0 for all

x ∈ [A,B] and note that a Chebyshev system remains a Chebyshev system after multiplication

of all functions by a positive function. Thus in order to apply Theorem 3.1 it is sufficient to

prove that the functions

1, x, x2, . . . , x2p−2, Q4(x)

generate a Chebyshev system on the interval [A,B]. The following Lemma provides a sufficient

condition for this property.

Lemma 4.1. Assume that the polynomial Q(x) has only real roots which are either all smaller

than A or larger than B. If s > l − 1, then the functions

1, x, x2, . . . , x2p−2, εQ4(x),

generate a Chebyshev system on the interval [A,B], where ε = +1 if the roots are smaller than

A and ε = −1 if the roots larger than B.

Proof. We restrict ourselves to the case where all roots of the polynomial Q(x) are real and

smaller than A and its leading coefficient is positive. All other cases are treated similarly.

Consider a polynomial R(x) of a degree 2n with positive leading coefficient, where all its roots

are real, simple and smaller than A. Define xmin and xmax as the smallest and largest root of

R(x), then all derivatives of R(x) of even order less or equal than 2n are positive outside of the

interval [xmin, xmax]. To show this property note that by Rolle’s theorem the first derivative of

the polynomial R(x) vanishes between two roots of R(x). This means that the first derivative

does not vanish for all x in the complement of the interval [xmin, xmax]. Moreover (because

the degree of R is even) it is positive for x > xmax and negative for x < xmin. By a multiple

application of this argument we obtain that all derivatives of even order of the polynomial

R(x) are positive, whenever x 6∈ [xmin, xmax]. Finally, if there exist roots of the polynomial

R(x), which are not simple, we approximate R(x) by a polynomial with simple roots and

obtain the assertion by a limit argument.

Now consider the polynomial Q(x), then Q4(x) is a polynomial of even degree (4s = 2n) and

it follows from the discussion of the previous paragraph that (Q4(x))(2j) ≥ 0, j = 1, . . . , 2s

for all x 6∈ [xmin, xmax]. Similarly, it can be shown that (Q4(x))(2j−1) ≤ 0 (j = 1, . . . , 2s)
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for all x < xmin and (Q4(x))(2j−1) ≥ 0 (j = 1, . . . , 2s) for all x > xmax. Define u0(x) =

1, u1(x) = x, . . . , u2p−2(x) = x2p−2, u2p−1(x) = Q4(x). By formulas (3.12) and (3.13) we can

easily calculate that w0(x) = w1(x) = . . . = w2p−2(x) = 1, w2p−1(x) = [Q4(x)](2p−1). Thus if

s > l − 1 it follows that w2p−1(x) is negative for x < xmin and positive for A > x > xmax.

Therefore (note that [Q4(x)](2p−1) has no roots in the interval [A,B]) we have w2p−1(x) > 0 for

all x ∈ [A,B]. Now the assertion of Lemma 4.1 follows from the formula for the Wronskian

determinant in (3.11) and the fact that a positive Wronskian determinant is sufficient for the

Chebyshev property of the functions u0, . . . , u2p−1. 2

The following result is now an immediate consequence of Lemma 4.1 and Theorem 3.1 (note

that we do not repeat the statement of uniqueness of the latter result).

Theorem 4.2. Consider the rational regression model (4.1). Assume that s > l− 1 and that

the polynomial Q(x) has only real roots, which are either all smaller than A or larger than

B. Then for any design ξ there exists a design ξ̃ with at most p support points, such that

M(ξ, θ) ≤M(ξ̃, θ). Moreover,

(1) if the index of ξ satisfies I(ξ) ≥ p− 1
2

and all roots of the polynomial Q are smaller than

A then ξ̃ can be chosen such that the support of ξ̃ contains the point B,

(2) if the index of ξ satisfies I(ξ) ≥ p− 1
2

and all roots of the polynomial Q are larger than

B then ξ̃ can be chosen such that the support of ξ̃ contains the point A.

Remark 4.3.

(a) Theorem 4.2 is an extension of Theorem 5 in He et al. (1996) who investigated only locally

D-optimal designs.

(b) Note that Yang (2010) considered the classical weighted polynomial regression model

where the different functions in the information matrix are given by Ψj(x) = λ(x)xj−1, j =

1, . . . , 2p− 1, where λ is a positive function on the interior of the design space, which is called

efficiency function [see Dette and Trampisch (2010)]. His findings can be generalized in the

following way. If there exists a function g(x) such that

∂

∂x

(
(
∂

∂x
λ(x))g(x)

)
= c(4.2)

for some constant c ∈ R, then one can use

Ψ0(x) =

∫ x

0

g(t)dt

and obtains a system of functions satisfying the assumptions of Theorem 3.4. In particular,

in Theorem 9 of Yang (2010) for the case λ(x) = exp(x2) the function g(x) = 1/λ(x) =
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exp(−x2) is appropriate, while the case λ(x) = (1 − x)α+1(1 + x)β+1 requires the choice

g(x) = (1− x)α(1 + x)β. Moreover, the differential equation (4.2) shows that there are many

other efficiency functions for which the de la Garza phenomenon in the weighted polynomial

regression model occurs. For example, if λ(x) = exp(x2n) (n ∈ N) one could use

g(x) =
exp(x−2n)

2n x2n−2

and it follows that for the weighted polynomial regression model with this efficiency function

any optimal design can be based on at most p points. However, for the rational model of the

form (4.1) such a technique seemingly does not work. The alternative way is to prove that the

functions 1, x, . . . , xk, λ(x)−1 generate a Chebyshev system and to use the new Theorem 3.1

to establish the de la Garza phenomenon. Such a method has been realized for the rational

model (4.1) in the proof of Theorem 4.2.
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