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Abstract

In this paper we investigate the problem of measuring deviations from stationarity in locally

stationary time series. Our approach is based on a direct estimate of the L2-distance between the

spectral density of the locally stationary process and its best approximation by a spectral density of

a stationary process. An explicit expression of the minimal distance is derived, which depends only

on integrals of the spectral density of the stationary process and its square. These integrals can be

estimated directly without estimating the spectral density, and as a consequence, the estimation of

the measure of stationarity does not require the specification of smoothing parameters. We show

weak convergence of an appropriately standardized version of the statistic to a standard normal

distribution. The results are used to construct confidence intervals for the measure of stationarity

and to develop a new test for the hypothesis of stationarity which does not require regularization.

Finally, we investigate the finite sample properties of the resulting confidence intervals and tests

by means of a small simulation study and illustrate the methodology in three data examples.

AMS subject classification: 62M10, 62M15, 62G10

Keywords and phrases: spectral density, non stationary processes, goodness-of-fit tests, L2-distance,

integrated periodogram, locally stationary process
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1 Introduction

Locally stationary time series models have found considerable interest in the recent literature, because in

many applications time series change their dependence characteristics as time evolves. These phenomena

cannot be adequately described by the assumption of weak stationarity, and locally stationary processes

provide an interesting class of models with more flexibility. These processes have been introduced as

a more realistic theoretical framework for the analysis of time series which allows for the second-

order characteristics of the underlying stochastic process, and, more specifically, for its auto covariance

structure to vary with time. Out of the large literature we mention the early work on this subject of

Priestley (1965), who considered oscillating processes. Neumann and von Sachs (1997) and Nason et al.

(2000) discussed the estimation of evolutionary spectra by wavelet methods. Dahlhaus (1997) gave

a definition of locally stationary processes on the basis of a time varying spectral representation and

established the asymptotic theory for statistical inference in such cases [see also Dahlhaus (2000)]. Some

applications of locally stationary processes to speech signals and earthquake data can be found in Adak

(1998), while Sakiyama and Taniguchi (2004) discussed the problem of discriminant analysis for locally

stationary processes. More recent work in this field can be found in Dahlhaus and Polonik (2006, 2009)

and Dahlhaus (2009) who discussed quasi maximum likelihood estimation, empirical process theory and

its application to statistical inference in locally stationary processes.

Several models for locally stationary processes have been proposed in the literature, including time

varying AR(p) models and time varying ARMA(p, q) models. In contrast to the “classical inference”

mentioned in the previous paragraph, the problem of testing semiparametric hypotheses (such as time

varying autoregressive structure or stationarity) for a time varying spectral density has found much less

attention in the literature. Sergides and Paparoditis (2009) investigated semiparametric hypotheses

and proposed a bootstrap test in this context. Several authors have pointed out the importance of

validating stationarity in locally stationary processes, such that the statistician is able to decide at

an early stage whether an observed time series can be considered as covariance stationary or not.

Sakiyama and Taniguchi (2003) considered the problem of testing stationarity versus local stationarity

in a parametric locally stationary model, while Lee et al. (2003) investigated the constancy over time

of a finite number of autocovariances. von Sachs and Neumann (2000) proposed a multiple testing

procedure based on empirical wavelet coefficients estimated using localized versions of the periodogram,

while Paparoditis (2010) used L2-distances between the local sample spectral density and an overall

spectral density estimator [see also Paparoditis (2009)]. A common feature in many of these methods is

the fact that the statistical inference depends on the choice of a regularization parameter. For example,

Paparoditis (2009) and Paparoditis (2010) compare nonparametric estimators of the spectral density

of the stationary and locally stationary process, and as a consequence, the resulting statistical analysis

depends sensitively on the choice of a smoothing parameter which is required for the density estimation.

An alternative approach in this context is the application of the empirical spectral measure for inference

in locally stationary time series [see Dahlhaus and Polonik (2009)]. In particular Dahlhaus (2009)

proposed a test for stationarity by comparing estimates of the integrated time frequency spectral density

under the null hypothesis of stationarity and the alternative of local stationarity. This approach avoids
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smoothing and under the null hypothesis the corresponding empirical process converges weakly to a

Gaussian process. However, as pointed out in Example 2.7 of Dahlhaus (2009), the calculation of the

limiting distribution of a corresponding Kolmogorov-Smirnov statistic is an unsolved task, because the

limiting process depends in a complicated way on certain features of the data generating process.

The present paper is devoted to an extremely simple alternative method for measuring deviations from

stationarity in locally stationary processes. We propose a measure for stationarity by the best L2-

approximation of the spectral density of the underlying process by the spectral density of a stationary

process. More precisely, we consider the minimal distance

D2 = min
g

∫ π

−π

∫ 1

0

(f(u, λ)− g(λ))2dudλ,(1.1)

where f(u, λ) denotes the spectral density of the locally stationary process (u ∈ [0, 1], λ ∈ [−π, π]) and

the minimum is calculated over the set of all spectral densities g corresponding to stationary processes.

Note that D2 = 0 if and only if there exists a function f : [−π, π]→ C, such that the hypothesis

H0 : f(u, λ) = f(λ) a.e. on [0, 1]× [−π, π](1.2)

is satisfied, i.e. the given locally stationary process is in fact stationary. On the other hand, if the

process is not stationary, D2 could be considered as a measure for the deviation of the locally station-

ary process from stationarity. It will be shown in Section 2 that the minimal L2-distance defined in

(1.1) can be determined explicitly and depends only on integrals of the functions f(u, λ) and f 2(u, λ)

calculated over the full time and frequency domain, which can easily be estimated from the data by

appropriate summations over local periodograms. As a consequence, we obtain an empirical measure of

stationarity which avoids the problem of smoothing the local periodogram. Moreover, it can be shown

that the limiting distribution of this estimate [after an appropriate standardization] is normal, where

the corresponding asymptotic variance can easily be estimated from the data.

The remaining part of the paper is organized as follows. In Section 2 we introduce the necessary notation,

the basic assumptions and explain the main principle of our approach. The asymptotic theory is derived

in Section 3, while the finite sample properties of the estimate for the quantity D2 are studied in Section

4. In particular, we investigate the coverage probability and the power of the constructed confidence

intervals and tests. We also illustrate the methodology by re-analyzing several data examples, which

have been recently discussed in the literature. Finally, some more technical details required in the

asymptotic analysis are deferred to an appendix in Section 5.

2 Measuring stationarity

Let {Xt,T}t=1,...,T (T ∈ IN) denote a sequence of stochastic processes with the representation

Xt,T =
∞∑

l=−∞

ψt,T,lZt−l, t = 1, ..., T ,(2.1)
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where the random variables Zt are assumed to be independent and identically normal distributed,

having mean zero and variance σ2. The assumption of Gaussianity of the errors is imposed to simplify

technical arguments [see Remark 3.5]. The quantities ψt,T,l denote constants which satisfy

∞∑
l=−∞

|ψt,T,l| <∞(2.2)

and are chosen in such a way that there exist twice continuously differentiable functions ψl : [0, 1]→ R

with

∞∑
l=−∞

sup
t
|ψt,T,l − ψl(t/T )| = O(1/T ).(2.3)

Throughout this paper we assume that the conditions

∞∑
l=−∞

sup
u∈[0,1]

|ψl(u)||l|2 <∞,(2.4)

∞∑
l=−∞

sup
u∈[0,1]

|ψ′l(u)||l| <∞,(2.5)

∞∑
l=−∞

sup
u∈[0,1]

|ψ′′l (u)| <∞(2.6)

are satisfied. The time-varying spectral density of the locally stationary process {Xt,T} is defined in

terms of the auxiliary functions ψl, that is

f(u, λ) =
σ2

2π
|ψ(u, exp(−iλ))|2,(2.7)

where the function ψ is given by

ψ(u, exp(−iλ)) :=
∞∑

l=−∞

ψl(u) exp(−iλl).(2.8)

Existence of the time-varying spectral density function follows from condition (2.4), and it is shown in

Dahlhaus (1996) that the time varying spectral density f is unique under the assumptions stated in

(2.4)–(2.6).

The following Lemma provides an explicit expression for the minimal distance between the local sta-

tionary density f(u, λ) and the class of all spectral densities corresponding to stationary processes.

Lemma 2.1 The minimal distance defined in (1.1) is given by

D2 =

∫ π

−π

∫ 1

0

f 2(u, λ)dudλ−
∫ π

−π

(∫ 1

0

f(u, λ)du
)2
dλ(2.9)
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(a) (b)

Figure 1: (a) Plot of the local spectral density f(u, λ)in (2.11). (b) Plot of the best approximation of f

by the spectral density g(u, λ) = g∗(λ) =
∫ 1

0
f(u, λ)du.

Proof. Let g∗(λ) =
∫ 1

0
f(u, λ)du, then we obtain∫ π

−π

∫ 1

0

(f(u, λ)− g(λ))2du dλ =

∫ π

−π

∫ 1

0

(f(u, λ)− g∗(λ))2du dλ+

∫ π

−π
(g(λ)− g∗(λ))2dλ

≥
∫ π

−π

∫ 1

0

(f(u, λ)− g∗(λ))2dλ

=

∫ π

−π

∫ 1

0

f 2(u, λ)du dλ−
∫ π

−π

(∫ 1

0

f(u, λ)du
)2
dλ,

where there is equality if and only if g = g∗. 2

Example 2.1 Consider the tvMA(2) process

Xt,T = cos(2πt/T )Zt − (t/T )2Zt−1,(2.10)

where σ2 = 1. We obtain by a straightforward calculation

f(u, λ) =
1

2π

{
cos(2πu)2 − 2u2 cos(2πu) cos(λ) + u4

}
,(2.11)

and the best approximation via a stationary spectral density is given by

g∗(λ) =

∫ 1

0

f(u, λ)du =
7

20π
− 1

2π3
cos(λ).(2.12)

Plots of the functions f(u, λ) and g∗(λ) are shown in Figure 1.
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Observing the representation of the quantity D2 in Lemma 2.1, an estimate for it can easily be con-

structed by estimating the integrals

F1 =
1

2π

∫ 1

0

∫ π

−π
f 2(u, λ)dλdu,(2.13)

F2 =
1

4π

∫ π

−π

(∫ 1

0

f(u, λ)du
)2
dλ.(2.14)

For this purpose we will use local periodograms and assume (without loss of generality) that the total

sample size T can be decomposed as T = NM , where N and M are integers and N is even. Then we

define the local periodogram by

IXN (u, λ) := |JXN (u, λ)|2,(2.15)

where

JXN (u, λ) :=
1√

2πN

N−1∑
s=0

XbuT c−N/2+1+s,T exp(−iλs)

[see Dahlhaus (1997)] and where we have set Xj,T = 0, if j 6∈ {1, . . . , T}. Since IXN (u, λ) serves as a

local estimate for the spectral density f(u, λ), we obtain global estimates for the two integrals by

F̂1,T =
1

T

M∑
j=1

bN
2
c∑

k=1

IXN (uj, λk)
2,(2.16)

F̂2,T =
1

N

bN
2
c∑

k=1

( 1

M

M∑
j=1

IXN (uj, λk)
)2
,(2.17)

where we use the notation

uj :=
tj
T

:=
N(j − 1) +N/2

T
.

Finally, the estimate of the measure of stationarity is given by

D̂2
T = 2πF̂1,T − 4πF̂2,T .(2.18)

In the following section we will investigate the asymptotic properties of the statistic D̂2
T for an increasing

sample size.

3 Asymptotic properties and statistical applications

In order to establish the asymptotic properties of the estimate proposed in Section 2 we require the

following basic assumptions. As noted above, we have T = NM , and we assume that T,M,N → ∞
such that

N →∞, M →∞,
T 1/2

N
→ 0,

N

T 3/4
→ 0.(3.1)

6



Our first result specifies the asymptotic distribution of the vector (F̂1,T , F̂2,T )T defined by (2.16) and

(2.17).

Theorem 3.1 If the assumptions (2.4)–(2.6) and (3.1) are satisfied, then

√
T
{

(F̂1,T , F̂2,T )T − (F1, F2 + dN,T )T
} D−−→ N (0,Σ),(3.2)

where the covariance matrix Σ and the constant dN,T are given by

Σ =

 5
π

∫ 1

0

∫ π
−π f

4(u, λ)dλdu 2
π

∫ π
−π

(∫ 1

0
f(u, λ)du

∫ 1

0
f 3(u, λ)du

)
dλ

2
π

∫ π
−π

(∫ 1

0
f(u, λ)du

∫ 1

0
f 3(u, λ)du

)
dλ 1

π

∫ π
−π

((∫ 1

0
f(u, λ)du

)2 ∫ 1

0
f 2(u, λ)du

)
dλ

(3.3)

and

dN,T =
N

4πT

∫ 1

0

∫ π

−π
f 2(u, λ)dλdu,(3.4)

respectively.

Proof. For a proof of the asymptotic normality in Theorem 3.1 we use the Cramér-Wold device and

show weak convergence of the linear combination

AT (c) = cT
√
T
{

(F̂1,T , F̂2,T )T − (F1, F2 + dN,T )T
} D−−→ N (0, cTΣc)(3.5)

for all vectors c ∈ IR2, where the quantities F1 and F2 are defined in (2.13) and (2.14), respectively, and

the matrix Σ and the constant dN,T are given in (3.3) and (3.4). For this purpose we show in a first

step that the lth cumulant of the statistic AT (c) satisfies

cuml(AT (c)) = o(1)(3.6)

whenever l = 1 or l ≥ 3. Afterwards, we calculate the variances and covariances of F̂1,T , F̂2,T and obtain

lim
T→∞

T Var(F̂1,T ) =
5

π

∫ 1

0

∫ π

−π
f 4(u, λ)dλdu(3.7)

lim
T→∞

T Var(F̂2,T ) =
1

π

∫ π

−π

((∫ 1

0

f(u, λ)du
)2 ∫ 1

0

f 2(u, λ)du
)
dλ(3.8)

lim
T→∞

T Cov(F̂1,T , F̂2,T ) =
2

π

∫ π

−π

(∫ 1

0

f(u, λ)du

∫ 1

0

f 3(u, λ)du
)
dλ.(3.9)

The assertion then follows because the cumulants of the random variable AT (c) converge to the cumu-

lants of a normal distribution with mean 0 and variance cTΣc. The technical details are given in the

Appendix. 2

Now a straightforward application of the Delta-method yields the asymptotic distribution of the statistic

D̂2
T defined in (2.18).
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Theorem 3.2 If the assumptions of Theorem 3.1 are satisfied, then we have

√
T
(
D̂2
T −D2 + 4πdN,T

)
D−−→ N(0, τ 2),

where the constant dN,T is defined in (3.4) and the asymptotic variance is given by

τ 2 = 20π

∫ 1

0

∫ π

−π
f 4(u, λ)dλdu− 32π

∫ π

−π

(∫ 1

0

f(u, λ)du

∫ 1

0

f 3(u, λ)du
)
dλ(3.10)

+ 16π

∫ π

−π

((∫ 1

0

f(u, λ)du
)2 ∫ 1

0

f 2(u, λ)du
)
dλ.

Note that there appears a non-vanishing bias

4πdN,T =
N

T

∫ π

−π

∫ 1

0

f 2(u, λ)dudλ =
2πN

T
F1

in Theorem 3.2, which vanishes if N = o(
√
T ). However, this condition is excluded by the assumptions

in (3.1). Nevertheless, the bias can easily be estimated by the statistic

BT :=
2πN

T 2

M∑
j=1

bN
2
c∑

k=1

IXN (uj, λk)
2 =

2πN

T
F̂ T
1 .

It follows from the proof of Theorem 3.1 in the Appendix that

√
T
(
BT − 4πdN,T

)
=

2πN

T

√
T
(
F̂1,T − F1

)
P−−→ 0,

and Theorem 3.2 yields

√
T
(
D̂2
T −D2 +BT

)
D−−→ N(0, τ 2).(3.11)

For statistical applications it remains to estimate the asymptotic variance τ 2. In general (if D2 > 0),

this can be accomplished by estimating the three integrals in (3.10) by rescaled versions of

τ̂ 21 =
1

6T

M∑
j=1

bN
2
c∑

k=1

IXN (uj, λk)
4(3.12)

τ̂ 22 =
2

3NM2

bN
2
c∑

k=1

M∑
j1,j2=1

IXN (uj1 , λk)I
X
N (uj2 , λk)

3(3.13)

τ̂ 23 =
2

NM3

bN
2
c∑

k=1

M∑
j1,j2,j3=1

IXN (uj1 , λk)I
X
N (uj2 , λk)I

X
N (uj3 , λk)

2.(3.14)
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Under the assumption of stationarity (i.e. D2 = 0) the asymptotic variance in (3.10) reduces to

τ 2H0
= 4π

∫ π

−π
f 4(λ)dλ,

and one estimates τ 2H0
by τ̂ 2H0

= 4π2τ̂ 21 . The following result shows that the statistics τ̂ 2H0
and

τ̂ 2H1
= 20π2τ̂ 21 − 32π2τ̂ 22 + 16π2τ̂ 23(3.15)

are consistent estimates for the asymptotic variance τ 2 in the cases D2 = 0 and D2 > 0, respectively.

It can be shown in a similar manner as Theorem 3.1 and its proof is therefore omitted.

Theorem 3.3 If the assumptions of Theorem 3.1 are satisfied, we have

τ̂ 21
P−−→ 1

π

∫ 1

0

∫ π

−π
f 4(u, λ)dλdu

τ̂ 22
P−−→ 1

π

∫ π

−π

(∫ 1

0

f(u, λ)du

∫ 1

0

f 3(u, λ)du
)
dλ

τ̂ 23
P−−→ 1

π

∫ π

−π

((∫ 1

0

f(u, λ)du
)2 ∫ 1

0

f 2(u, λ)du
)
dλ

Remark 3.4

(a) If D2 is used as a measure for the deviation from stationarity of a locally stationary process, we

obtain from Theorem 3.2 a consistent estimate, and by Theorem 3.3 it follows that the interval[
0, D̂2

T +BT +
τ̂H1√
T
u1−α

]
(3.16)

is an asymptotic (1 − α) confidence interval for the “parameter” D2, where u1−α denotes the (1 − α)

quantile of the standard normal distribution. The coverage probability of (3.16) in finite sample situa-

tions is investigated in Section 4.

(b) A further important application of the asymptotic results consists in the construction of an asymp-

totic level α test for the hypothesis of stationarity in locally stationary time series. Observing that

the hypotheses (1.2) is equivalent to D2 = 0 this can be accomplished by rejecting the null hypothesis

whenever

D̂2
T +BT ≥

τ̂H0√
T
u1−α(3.17)

where τ̂ 2H0
denotes the estimate of the asymptotic variance under the null hypothesis. Moreover, the

asymptotic power of this test can be approximated by a further application of Theorem 3.2, that is

PH0(“stationarity is rejected”) ≈ Φ
(√

T
D2

τH1

− τH0

τH1

u1−α

)
,
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where τH0 and τH1 denote the (asymptotic) standard deviation of
√
TD̂2

T under the null hypothesis and

alternative, respectively, and Φ is the distribution function of the standard normal distribution.

(c) Note that the results presented in this section provide an asymptotic level α test for the so called

precise hypotheses

(3.18) H0 : D2 > ε versus H1 : D2 ≤ ε ,

[see Berger and Delampady (1987)]. The motivation for considering hypotheses of this type consists

in the fact that in practice a (locally stationary) time series will usually never be precisely stationary,

and a more realistic question in this context would be, if the process shows approximately stationary

behavior [see also the discussion in Remark 3.6]. Therefore the parameter ε > 0 in (3.18) denotes a

prespecified constant for which the statistician agrees to analyse the data under the additional assump-

tion of stationarity. An asymptotic level α test for the hypothesis (3.18) is obtained by rejecting the

null hypothesis, whenever

D̂2
T − ε+BT <

τ̂H1√
T
uα .(3.19)

Note that this procedure allows for accepting the null hypothesis of “approximate stationarity” at

controlled type I error.

Remark 3.5 It should be noted that the results in Theorem 3.2 can be extended to the case where

the innovations are not necessarily normal distributed. This assumption simplifies the argument in

the proof substantially but can be weakened to the case of independent identically distributed random

variables with existing moments of all order. In this general case Theorem 3.2 remains valid with a

different asymptotic variance, i.e.

τ 2g = 20π

∫ 1

0

∫ π

−π
f 4(u, λ)dλdu− 32π

∫ π

−π

(∫ 1

0

f(u, λ)du

∫ 1

0

f 3(u, λ)du
)
dλ

+16π

∫ π

−π

((∫ 1

0

f(u, λ)du
)2 ∫ 1

0

f 2(u, λ)du
)
dλ

+
κ4
κ22

{
4

∫ 1

0

(∫ π

−π
f 2(u, λ)dλ

)2
du− 8

∫ 1

0

(∫ π

−π
f(u, λ)2dλ

∫ π

−π
f(u, λ)

(∫ 1

0

f(v, λ)dv
)
dλ
)
du

+ 4

∫ 1

0

(∫ π

π

f(u, λ)
(∫ 1

0

f(v, λ)dv
)
dλ
)2
du
}

where κ2 and κ4 denote the variance and the fourth cumulant of the innovations. Therefore, even

though τ 2g is in general different from τ 2, both quantites coincide at least in the stationary case.

Remark 3.6 Following Dahlhaus (1997) it is too restrictive to use the more natural definition

Xt,T =
∞∑

l=−∞

ψl(t/T )Zt−l, t = 1, ..., T ,(3.20)
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for a locally stationary process, as in this case even time-varying AR(1)-processes are ruled out. This

explains the need for the more general class of processes introduced in (2.1). As a drawback, the spectral

density function has to be defined via the approximating sequence ψl, and this means in particular that

even f(u, λ) = f(λ) does not imply stationarity of Xt,T , as one can only conclude that the time varying

coefficients ψl,t,T can be approximated by constants ψl. Thus the minimal distance D2 formally plays

the role of a best approximation of the time-varying spectral density by a time-homogeneous function,

but to avoid confusion we still refer to this case as the stationary one. This concept is standard in the

context of investigating stationarity in locally stationary processes [see for example Paparoditis (2009,

2010) or Dahlhaus (2009)].

4 Finite sample properties

In this section we study the finite sample properties of the asymptotic confidence intervals for the

parameter D2 and of the test for stationarity. All results are based on 1000 simulation runs.

4.1 Confidence intervals

The coverage probability of the confidence intervals defined in (3.16) is investigated for the tvMA(2)

model

Xt,T = 2Zt −
{

1 + b cos(2π
t

T
)
}
Zt−1,(4.1)

where different choices for the parameter b are considered and the Zt are independent, standard Gaussian

distributed random variables. Note that the condition (3.1) implies

N = O(T β) with β ∈ (1/2, 3/4),(4.2)

and we recommend to choose the parameter M sufficiently large in order to account for the local struc-

ture of the time series in a satisfying way. The results are displayed in Table 1 for various values of

T and M (which determines N). We observe reasonable coverage probabilities in the cases b = 0 and

b = 0.5. In the case of stationarity (b = 0), the actual coverage probability is in fact larger than the

pre-specified level, while the opposite behavior is observed in the case b = 1. Based on our numerical

experiments, we conclude that the choice M = 16 is sufficient for most of the examples while in some

cases M = 32 leads to better results [see the part corresponding to b = 1 in Table 1]. Table 1 shows

that the coverage probability is satisfying even for smaller values of M if b = 0.5 or b = 0. An intuitive

explanation for these observations is that a smaller value of b yields a lower time-dependency of the

spectral density, and as a consequence, smaller values of the factor M are required for efficient analysis.

4.2 Testing for stationarity

We next study the size and the power of the test in (3.17) by calculating the rejection frequencies for

different values of b in the model (4.1). The corresponding results are displayed in Table 2. Note that

11



b = 0 b = 0.5 b = 1

T N M 95% 90% 95% 90% 95% 90%

256 32 8 0.993 0.968 0.968 0.901 0.828 0.760

512 64 8 0.983 0.941 0.958 0.908 0.838 0.784

1024 64 16 0.966 0.925 0.944 0.906 0.884 0.833

1024 128 8 0.976 0.935 0.944 0.886 0.829 0.764

2048 64 32 0.978 0.949 0.960 0.931 0.911 0.882

2048 128 16 0.945 0.910 0.919 0.872 0.873 0.837

Table 1: Coverage Probability of the asymptotic confidence interval (3.16) in 1000 replications of the

tvMA(2) model (4.1) for different values of b.

H0 : b = 0 H1 : b = 0.5 H1 : b = 1

T N M 5% 10% 5% 10% 5% 10%

256 32 8 0.062 0.138 0.090 0.200 0.266 0.463

512 64 8 0.053 0.125 0.117 0.234 0.430 0.582

1024 64 16 0.079 0.166 0.224 0.381 0.758 0.866

1024 128 8 0.038 0.122 0.140 0.263 0.690 0.825

Table 2: Rejection probabilities of the test (3.17) in 1000 replications of the tvMA(2) model (4.1) for

different values of b.

under the null hypothesis (i.e. b = 0) the spectral density does not depend on u so that even small

values of M lead to a precise approximation of the nominal level of the test. Also, for larger values of

N the approximation of the nominal level is more accurate, whereas on the other hand a larger M leads

to a more satisfying power behaviour. To obtain both a reasonable approximation of the level and a

good behavior of the test, we therefore recommend to choose β [see (4.2)] in the middle of the interval

(1/2, 3/4), i.e. close to 5/8, and for this choice we observe that the test yields reasonable rejection

probabilities under the alternative (b = 0.5, 1.0).

4.3 Validating stationarity

Finally, we investigate the test for the precise hypothesis (3.18) proposed in (3.19) where the bound

for accepting stationarity is chosen as ε = 0.9. Note that for the values b = 1, b = 0.5 and b = 0

we obtain D2
b=1 ≈ 0.972, D2

b=0.5 ≈ 0.239 and D2
b=0 = 0, respectively. Therefore the cases b = 0 and

b = 0.5 correspond to the alternative H1 : D2 < 0.9, while the choice b = 1 gives a scenario for the

12



H1 : b = 0 H1 : b = 0.5 H0 : b = 1

T N M 5% 10% 5% 10% 5% 10%

256 32 8 0.421 0.526 0.348 0.442 0.142 0.209

512 64 8 0.677 0.763 0.464 0.547 0.131 0.185

1024 64 16 0.614 0.69 0.515 0.608 0.096 0.127

1024 128 8 0.841 0.88 0.625 0.697 0.147 0.193

2048 64 32 0.825 0.873 0.559 0.632 0.064 0.082

2048 128 16 0.779 0.847 0.709 0.780 0.091 0.132

Table 3: Rejection frequencies of the test (3.19) for the precise hypothesis (3.18) in 1000 replications of

the tvMA(2) model (4.1) for different values of b.

null hypothesis H0 : D2 ≥ 0.9. The results are depicted in Table 3. As in Section 4.1, we recommend

to choose M ≥ 16 to obtain a satisfying size of the test. In these cases the level of the test is usually

overestimated. This observation can be explained by the fact that for the choice b = 1 there is a strong

deviation from stationarity, and consequently, a reasonable sample size is required in order to obtain a

precise approximation of the nominal level.

4.4 Data examples

In this subsection we illustrate the application of the developed methodology by re-analyzing several

data examples from the recent literature. We begin with an example from neuroscience which has been

considered in von Sachs and Neumann (2000) and Paparoditis (2009). These authors analyzed a data

set of tremor data recorded in the Cognitive Neuroscience Laboratory of the University of Québec at

Montreal. There are 3071 observations and the purpose of the study is a comparison of different regions

of tremor activity coming from a subject with Parkinson‘s disease. In the left part of Figure 2 we show

a plot of the estimate

f̂(u, λ) =
2π

N

N∑
j=1

1

b
K
(λ− 2πj

N

b

)
IXN (u,

2πj

N
)(4.3)

for the two dimensional density f(u, λ), where N = 256 and b = 0.18 [see Paparoditis (2009) for a

similar approach]. The plot indicates some non stationarity in the data and it might be of interest

to investigate this visual conclusion by the statistical methodology developed in this paper. For the

calculation of the test statistic we used N = 192 and M = 16 in order to address for non stationary

behavior of the time series and to keep the bias reasonably small. For the measure D2 of stationarity

we obtain D̂2 = D̂2
T +BT ≈ 3.56× 10−7 with a standard deviation of τ̂H1 ≈ 1.06× 10−5. This yields for

the standardized distance
√
T D2

τ
the estimate

√
3071 D̂2

τ̂H1
≈ 1.884 and the test for stationarity rejects
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Figure 2: Estimate of the spectral density for three data sets. Left panel: neuroscience data. Middle

panel: egg data. Right panel: infant data.

the null hypothesis with a p-value of 0.033. Note that these findings confirm the investigations in

Paparoditis (2009).

In our second example we investigate 1201 observations of weekly egg prices at a German agriculture

market between April 1967 and May 1990. Following Paparoditis (2010) the first-order differences

∆t = Xt−Xt−1 of the observed time series are analyzed. For the calculation of the estimate D̂2 and the

test statistic we chose N = 80, M = 15 and obtain D̂2 = D̂2
T +BT ≈ 0.0013, τ̂H1 ≈ 0.0967, which yields

for the standardized distance
√
T D2

τ
the estimate

√
1200 D̂2

τ̂H1
≈ 0.454. A plot of the density estimate

(4.3) is shown in middle panel of Figure 2, where we used N = 134 and b = 0.112. Although this plot

shows some non stationary behavior for small and large values of u we obtain a p-value of 0.321 and

the null hypothesis of stationarity cannot be rejected. These observations are different to the result

obtained by Paparoditis (2010). An explanation could be that we smooth the differences between the

local spectral density and the best stationary approximation over time while Paparoditis (2010) takes

the maximum as the test statistic.

In our final example we re-analyze a time series, which shows the heart rate electrocardiogram (ECG) of

an 66-day-old infant, sampled at 1/16 Hz and recorded from 21:17:59 to 6:27:18 leading to 2048 observa-

tions. This data set was also considered by von Sachs and Neumann (2000) and Paparoditis (2010). We

investigated the first-order differences and the plot of the estimate of the local spectral density f̂(u, λ)

clearly indicates a non stationary behavior (here we use N = 194 and b = 0.095). We have applied the

methodology developed in this paper with N = 128, M = 16 and obtain D̂2 = D̂2
T + BT ≈ 478.994

and τ̂H1 ≈ 10485.47. This yields for the standardized distance
√
T D2

τ
the estimate

√
2047 D̂2

τ̂H1
≈ 2.081.

The test for stationarity rejects the null hypothesis with a p-value of 0.022. These results confirm the

findings of Paparoditis (2010).
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5 Appendix: technical details

From (2.3) it follows that the error due to the approximation of Xt,T by the corresponding series from

(3.20) is of small order. Therefore we use the latter representation without further mentioning.

5.1 Proof of the estimate (3.6) in the case l = 1

In order to prove (3.6) in the case l = 1 we can treat the statistics F̂1,T and F̂2,T separately because of

the linearity of the expectation. For the sake of brevity, we restrict ourselves to the (more complicated)

statement for the statistic
√
T (F̂1,T − F1) and prove

E

( 1√
T

M∑
j=1

bN
2
c∑

k=1

IXN (uj, λk)
2 −
√
T

1

2π

∫ 1

0

∫ π

−π
f 2(u, λ)dλdu

)
= o(1).(5.1)

In order to show this estimate we introduce some additional notation. We set tj,p = tj − N/2 + 1 + p

and uj,p = tj,p/T and obtain

E

( 1

T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

IXN (uj, λk)
2
)

=
1

T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=−∞

exp(−iλk(p− q + r − s))

× ψl(uj,p)ψm(uj,q)ψn(uj,r)ψo(uj,s)E(Ztj,p−l
Ztj,q−m

Ztj,r−n
Ztj,s−o

) +O(
1

T
).

Since Z is normally distributed by assumption, we have

E(Zi1Zi2Zi3Zi4) = E(Zi1Zi2)E(Zi3Zi4) +E(Zi1Zi3)E(Zi2Zi4) +E(Zi1Zi4)E(Zi2Zi3)

for arbitrary indices i1, i2, i3, i4, and thus we obtain by means of a Taylor expansion

E

( 1

T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

IXN (uj, λk)
2
)

= E1
N,T + E2

N,T + E3
N,T + AN,T +O(

1

T
) +O(

N2

T 2
),(5.2)

15



where we set

E1
N,T =

1

T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=−∞

exp(−iλk(p− q + r − s))ψl(uj)ψm(uj)

× ψn(uj)ψo(uj)E(Ztj,p−l
Ztj,q−m

)E(Ztj,r−n
Ztj,s−o

)

E2
N,T =

1

T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=−∞

exp(−iλk(p− q + r − s))ψl(uj)ψm(uj)

× ψn(uj)ψo(uj)E(Ztj,p−l
Ztj,s−o

)E(Ztj,q−m
Ztj,r−n

)

E3
N,T =

1

T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=−∞

exp(−iλk(p− q + r − s))ψl(uj)ψm(uj)

× ψn(uj)ψo(uj)E(Ztj,p−l
Ztj,r−n

)E(Ztj,q−m
Ztj,s−o

)

AN,T =
1

T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=−∞

exp(−iλk(p− q + r − s))

×
{(
ψl(uj,p)− ψl(uj)

)
ψm(uj)ψn(uj)ψo(uj) + ψl(uj)

(
ψm(uj,q)− ψm(uj)

)
ψn(uj)ψo(uj)

+ ψl(uj)ψm(uj)
(
ψn(uj,r)− ψn(uj)

)
ψo(uj) + ψl(uj)ψm(uj)ψn(uj)

(
ψo(uj,s)− ψo(uj)

)}
×E(Ztj,p−l

Ztj,q−m
Ztj,r−n

Ztj,s−o
).

The terms E1
N,T , E2

N,T , E3
N,T and AN,T are now treated separately showing

E1
N,T =

1

T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

f 2(uj, λk) +O(
1

N
)(5.3)

E2
N,T =

1

T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

f 2(uj, λk) +O(
1

N
)(5.4)

E3
N,T = O(1/N)(5.5)

AN,T = O(
N2

T 2
) +O(

1

T
).(5.6)

The estimates (5.3) and (5.4) follow by similar arguments and we restrict ourselves to a proof of the
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first one. A standard calculation observing that E(Zi1Zi2) = 0 for i1 6= i2 shows that

E1
N,T =

σ4

T (2πN)2

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

∞∑
l,m,n,o=−∞

exp(−iλk(l −m+ n− o))

×ψl(uj)ψm(uj)ψn(uj)ψo(uj) max(0, N − |l −m|) max(0, N − |n− o|)

=
σ4

T (2π)2

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

∞∑
l,m,n,o=−∞
|l−m|≤N−1
|n−o|≤N−1

exp(−iλk(l −m+ n− o))ψl(uj)ψm(uj)ψn(uj)ψo(uj) +O(
1

N
),

where we have used (2.4) in the last equality. With (2.4) it also follows that∑
|l|≥N

sup
u
|ψl(u)| = O(1/N2),(5.7)

and then it is easy to see that the we can drop the restrictions on |l−m| and |n− o| in the summation

as well. Therefore E1
N,T reduces to

E1
N,T =

1

T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

f 2(uj, λk) +O(
1

N
),

which proves (5.3). Similarly, observing (5.7) and the identity

N−1∑
r=0

exp(−i2λkr) =

{
N, k = 0 or k = N

2

0, else
(5.8)

we obtain by a straightforward but tedious calculation

E3
N,T =

σ4

T (2πN)2

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

∞∑
l,m,n,o=−∞

ψl(uj)ψm(uj)ψn(uj)ψo(uj)

×
N−1∑
r,s=0

0≤r+l−n≤N−1
0≤s+m−o≤N−1

exp(−iλk(2r − 2s+ l − n−m+ o))

=
σ4

T (2πN)2

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

∞∑
l,m,n,o=−∞

ψl(uj)ψm(uj)ψn(uj)ψo(uj)

×
N−1∑
r,s=0

exp(−iλk(2r − 2s+ l − n−m+ o)) +O(1/N2)

=
1

TN2

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

f 2(uj, λk)
∣∣∣N−1∑
r=0

exp(−i2λkr)
∣∣∣2 +O(1/N2)

= O(1/N),
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which proves (5.5). Finally, for the estimate of the term AN,T we use a Taylor expansion and the

condition supl∈R supu∈[0,1] |ψ′′l (u)| <∞ to obtain [note that uj,p − uj = (p+ 1−N/2)/T ]

AN,T =
2

T (2πN)2

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=−∞

exp(−iλk(p− q + r − s))

×
[(
ψl(uj,p)− ψl(uj)

)
ψm(uj) + ψl(uj)

(
ψm(uj,q)− ψm(uj)

)]
ψn(uj)ψo(uj)

×E(Ztj,p−lZtj,q−mZtj,r−nZtj,s−o)

=
2

T (2πN)2

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=−∞

exp(−iλk(p− q + r − s))

×
[
ψ′l(uj)ψm(uj) p+1−N/2

T
+ ψl(uj)ψ

′
m(uj) q+1−N/2

T

]
ψn(uj)ψo(uj)

×E(Ztj,p−lZtj,q−mZtj,r−nZtj,s−o) +O(
N2

T 2
).

This expression is now treated by similar arguments as given for the terms E1
n,T and E3

n,T , which yields

the estimate (5.6).

The assertion (3.6) in the case l = 1 now follows from (5.3)–(5.6) and by assumption on the growth of

N and T , observing that the sums in (5.3) and (5.4) can be approximated by the integrals

1

2π

∫ 1

0

∫ π

−π
f 2(u, λ)dλdu

with an error of order O( 1
N2 + N2

T 2 ) each, which is due to the choice of the midpoints uj and λk and to

the periodicity of f in its second component.

5.2 Calculation of the cumulants in the case l ≥ 2

In this final part of the proof we show the convergence of the lth cumulant (l ≥ 2) of the statistic AT (c)

towards that of the normal distribution specified in (3.5). We start with the claim

cuml(AT (c)) = O(T 1−l/2) for l ≥ 2,(5.9)

which shows, inter alia, that the cumulants of degree higher than two converge to zero as requested.

Throughout the proof we restrict ourselves to the case c = (1, 0), as the general one follows from exactly

the same lines with an additional amount of notation.
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As before it suffices to show the assertion for the lth cumulant of

1

T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

IXN (uj, λk)
2

=
1

T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
v,w,x,y=−∞

exp(−iλk(p− q + r − s))

× ψv(uj,p)ψw(uj,q)ψx(uj,r)ψy(uj,s)E(Ztj,p−v
Ztj,q−w

Ztj,r−x
Ztj,s−y

) +O(
1

T
)

after rescaling. Using the multilinearity of the cumulant and the product theorem for cumulants [see

Brillinger (1981) and its terminology] that quantity becomes

T l/2cum
( 1

T

M∑
j1=1

bN
2
c∑

k1=−bN−1
2
c

IXN (uj, λk)
2, . . . ,

1

T

M∑
j1=1

bN
2
c∑

k1=−bN−1
2
c

IXN (uj, λk)
2
)

=
1

(2π)2l

∑
ν

V (ν).(5.10)

In order to define V (ν) we have to use some further notation. First we introduce

Yi1 = Ztji,pi−vi
, Yi2 = Ztji,qi−wi

, Yi3 = Ztji,ri−xi
, Yi4 = Ztji,si−yi

for i ∈ {1, ..., l}. Then we set

V (ν) =
1

T l/2
1

N2l

∞∑
v1,...,yl=−∞

M∑
j1,...,jl=1

N−1∑
p1,...,sl=0

bN
2
c∑

k1,...,kl=−bN−1
2
c

ψv1(uj1,p1) . . . ψyl(ujl,sl)(5.11)

× exp(−iλk1(p1 − q1 + r1 − s1)) . . . exp(−iλkl(pl − ql + rl − sl))
×cum(Yik; ik ∈ ν1) · · · cum(Yik; ik ∈ ν2l),

where the summation in (5.10) is performed with respect to all indecomposable partitions ν = ν1∪. . .∪ν2l
with subsets containing two elements (due to the normality of Z) of the table

(1, 1) (1, 2) (1, 3) (1, 4)
...

...
...

...

(l, 1) (l, 2) (l, 3) (l, 4)

(5.12)

As the number Cl of indecomposable partitions does not depend on T , it suffices to prove that each

V (ν) has the desired properties. Thus we keep ν fixed. Also as ν is indecomposable, we know that each

row of the table communicates with any other one, and thus we can assume without loss of generality

that the ith row hooks with the (i+ 1)th one (otherwise we switch the rows accordingly).

Let us also fix v1, . . . , yl and j1. That the first row hooks with the second one means that a product of

the form cum(Y11, Y23) appears within (5.11). In order for it to be non-zero the corresponding indices

of Z have to be equal, that is there has to exist a relation of the form

tj1 −N/2 + 1 + p1 − v1 = tj2 −N/2 + 1 + r2 − x2 ⇔ r2 = p1 − v1 + x2 + tj1 − tj2 .(5.13)
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Thus r2 has to satisfy both

x2 − v1 + tj1 − tj2 ≤ r2 ≤ x2 − v1 + tj1 − tj2 +N − 1 and 0 ≤ r2 ≤ N − 1,

and since v1 and x2 are kept fixed and as tj1 − tj2 = mN for m ∈ Z, we conclude that there are at most

two options for tj2 (and thus for j2) that lead to a non-zero cumulant. By induction it follows that

given j1 there is only a finite number Dl of valid choices for the indices j2, . . . , jl, and in the following

we keep one of these fixed as well.

We have already seen in (5.13) that there are 2l conditions of the form

p1 − r2 = v1 − x2 + tj2 − tj1(5.14)

that have to be satisfied in order for the cumulants to be non-zero. Since ν is a partition, each variable

p1, . . . , sl appears exactly once within these 2l expressions. Also, we know essentially from (5.8) that

further l equations

pi − qi + ri − si = miN with mi ∈ Z(5.15)

have to be valid as well, and it is obvious that only mi ∈ {−1, 0, 1} is possible. Fix one of the El possible

sequences m1, . . .ml. In the following we will prove that the solution space of the previous system of

3l equations in 4l variables is at most of dimension l + 1. For this assertion it suffices to show that the

solution space of the corresponding homogeneous system has the same properties.

To this end we identify R4l with the variables p1, q1, r1, s1, . . . , pl, ql, rl, sl in that particular order. Then

we set

vi = (0 · · · 0 1 − 1 1 − 1 0 · · · 0)T ∈ R4l for i ∈ {1, . . . , l}(5.16)

and

wi = (0 · · · 0 1 0 · · · 0 − 1 0 · · · 0)T ∈ R4l for i ∈ {1, . . . , 2l},(5.17)

where the vectors vi and wi relate to the homogeneous versions of the equations in (5.15) and (5.14) in

an obvious way: vi refers to the conditions involving pi, . . . , si, whereas wi represents the 2l equations

from (5.14) in arbitrary order. The claim on the dimension of the solution space can be deduced from

the following lemma.

Lemma 5.1 The vectors v2, v3, . . . , vl, w1, . . . , w2l are linearly independent.

Proof. Suppose there are constants α2, α3, . . . αl, β1, . . . β2l such that

α2v2 + α3v3 + . . . αlvl + β1w1 + . . . w2lβ2l = 0.(5.18)

Focus on those wi1 with a non-zero entry among the first four rows. Since v1 is not included in the

sum, the corresponding coefficients βii have to be zero, as otherwise (5.18) would not be satisfied. Now
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the partition is chosen in such a way that first row of the table hooks with the second one, thus there

is a vector wi12 with one non-zero entry within rows 1 to 4 and the second non-zero entry within rows

5 to 8. As βi12 is zero, the same argument as before forces α2 to be zero. The claim now follows by

induction, as we have αj = 0, thus each βij = 0, and the jth row hooks with the (j + 1)st. 2

With the aid of these results the proof of assertion (5.9) is now easy. From the previous discussion we

know that the sum in (5.11) has the following upper bound

|V (ν)| ≤ DlElσ
4l 1

T l/2
1

N2l

∞∑
v1,...,yl=−∞

MN l+1N l sup
u
|ψv1(u)| . . . sup

u
|ψyl(u)| = O(T 1−l/2).

To complete the proof of Theorem 3.1 it remains to show the asymptotic representations (3.7)–(3.9) for

the variances and covariances of the statistics F̂ T
1 and F̂ T

2 . For the sake of brevity, we restrict ourselves

to the case (3.7). All other cases are treated similarly. In order to prove that claim we use (5.9) for

l = 2, a Taylor expansion and the same notation and arguments as before to obtain

4T Var(F̂1,T ) =
1

(2π)4

∑
ν

V (ν) +O(
N

T
) +O(

1

N
),

where

V (ν) =
1

T

1

N4

M∑
j1,j2=1

bN
2
c∑

k1,k2=−bN−1
2
c

∞∑
v1,w1,x1,y1=−∞

∞∑
v2,w2,x2,y2=−∞

N−1∑
p1,q1,r1,s1=0

N−1∑
p2,q2,r2,s2=0

(5.19)

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj2)ψw2(uj2)ψx2(uj2)ψy2(uj2)

× exp(−iλk1(p1 − q1 + r1 − s1)) exp(−iλk2(p2 − q2 + r2 − s2))
×cum(Yik; ik ∈ ν1) · · · cum(Yik; ik ∈ νp).

The main idea now is to single out those partitions ν for which V (ν) is of order one. Following the

proof of (5.9) we know that this is not the case, if all vi and wi are linearly independent, as in this

situation V (ν) has order 1/N . To obtain all indecomposable partitions ν = ν1 ∪ . . . ∪ ν4 of

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

that lead to linearly dependent vectors, one distinguishes two cases: Either there exists exactly one set

of the partition which consists of two elements of the first row (and thus there exists another set within

ν that contains two elements of the second one), or in each set of ν there is one element from the first

row and one from the second row.

Fix a partition ν ′ of the first type. One finds easily that its corresponding vectors vi and wi are linearly

dependent, if and only if those (1, i) and (1, j) (and (2, i) and (2, j)) hook, for which i is even and j

is odd (and vice versa). In total there are 32 such partitions. A partition ν ′′ of the second type falls
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into the class of interest, if either both odd components of the first row hook either with both odd

components or with both even components of the second one, which gives 8 possible choices.

The remainder of the proof consists of a tedious computation of V (ν ′) and V (ν ′′). It turns out that one

obtains

V (ν ′) = V (ν ′′) = (2π)3
∫ 1

0

∫ π

−π
f(u, λ)4dλdu+O(

1

N
) +O(

N

T
),

from which we conclude

4T Var(F̂1,T ) =
40

(2π)4
V (ν ′) +O(

N

T
) +O(

1

N
) =

20

π

∫ 1

0

∫ π

−π
f(u, λ)4dλdu+O(

1

N
) +O(

N

T
),

which completes the proof of Theorem 3.1. 2
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