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Abstract. Estimating the degree of substitution between energy and non-energy

inputs is crucial for any evaluation of environmental and energy policies. Yet,

given the large variety of substitution elasticities, the central question arises as to

which measure would be most appropriate. Apparently, ALLEN’s elasticities of

substitution have been the most-used measures in applied production analysis.

Using data of the U. S. primary metals sector (1958-1996), this paper empirically

illustrates that cross-price elasticities are preferable for many practical purposes.

This conclusion is based on a survey of classical substitution measures such as

those from ALLEN, MORISHIMA, and MCFADDEN. The survey highlights the fact

that cross-price elasticities are their essential ingredients.
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1 Introduction

Estimating the degree of substitution between production factors such as energy

and non-energy inputs is crucial for a host of issues, including environmental and

energy policies such as trading greenhouse gas emission allowances, recycling

energy tax revenues to reduce output or non-energy factor taxes, and the step-

by-step increase of fuel taxes. Another example is the impact of fuel efficiency

gains on energy use, which is also largely driven by the ease of factor substitution

(SAUNDERS 2008, 1992).

Yet, despite the fact that a large number of empirical studies have appeared

since the first energy crisis in the 1970’s, there seems to be little consensus on

the degree and even the direction of energy substitution. For instance, ever since

BERNDT and WOOD’s (1975) finding that the energy aggregate complements cap-

ital, and GRIFFIN and GREGORY’s (1976) results indicating that both factors are

substitutes, the energy-capital debate has remained unresolved – for surveys, see

KINTIS and PANAS (1989), APOSTOLAKIS (1990), and FRONDEL and SCHMIDT

(2002).

Although there are other important causes of divergent results, such as the

industries and regions under study, we would like to focus on one important

source: the large variety of distinct measures of substitution. Since HICKS (1932)

originally defined the unique substitution measure σ for the case of only two in-

puts, often called “the elasticity of substitution”, many different generalizations

of this fundamental concept up to an arbitrary number of inputs have been pro-

vided – see ALLEN and HICKS (1934), ALLEN (1938), UZAWA (1962), MCFAD-

DEN (1963), MORISHIMA (1967), BLACKORBY and RUSSELL (1989). Facing such a

variety of measures and given the variation in perspectives and interpretations

among substitution elasticities, the central question arises as to which substitu-

tion measure would be most appropriate in an empirical study.

Apparently, ALLEN’s partial elasticities of substitution (AES) have played
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a dominant role and have been the most-used measures of substitution in the

production literature – see e. g. HAMERMESH (1993:35), FRONDEL and SCHMIDT

(2002, 2003). AES, however, has been criticized in the production analysis liter-

ature as only being interpretable in terms of cross-price elasticities (CHAMBERS

1988:95). AES is thus argued to add no more information to that already con-

tained in cross-price elasticities (BLACKORBY and RUSSELL 1989:883).

Along the lines of FRONDEL (2004), who focuses on the classical cross-price

elasticities when measuring the ease of substitution among energy and non-

energy inputs, this paper argues that analysts are frequently better served by

appealing to cross-price elasticities. This argument is supported here by a sur-

vey of classical substitution measures including ALLENS’s partial elasticities of

substitution (AES), MORISHIMA’s partial elasticities of substitution (MES), and

MCFADDEN’s shadow elasticities of substitution (SES). The survey illustrates that

all these standard measures are founded on cross-price elasticities. Drawing on

time-series data for the U. S. primary metals sector (1958-1996), one of the most

energy-intensive industries, and the frequently-employed standard translog ap-

proach, we then empirically illustrate why cross-price elasticities are preferable

for many practical purposes.

This article’s main contribution relies on demonstrating that analysts must

take great care in interpreting the standard substitution elasticities commonly em-

ployed. Whenever one draws conclusions from empirical studies on the degree

and direction of substitutability of production factors, it is indispensable to, first,

clearly indicate the particular measure employed to denote two inputs as sub-

stitutes and, second, to interpret empirical results accordingly in order to avoid

harmful policy recommendations. Ultimately, it becomes obvious that there can-

not be a universally applicable substitution elasticity. Instead, the selection of a

particular measure critically depends on the concrete application and question

asked, a conclusion that can be traced to MUNDLAK (1968:234).

The following section provides a summary of classical substitution elastici-
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ties. In Section 3, we will use the empirical example of the U. S. primary metals

sector (1958-1996) to illustrate the argument that, in many cases, cross-price elas-

ticities are preferable. The last section summarizes and concludes.

2 A Survey of Classical Substitution Elasticities

When discussing elasticities of substitution, it is convenient and intuitive to com-

mence with the elasticity of substitution σ, originally introduced by HICKS (1932)

for the analysis of only two factors. σ measures the relative change in the fac-

tor proportion x1/x2 due to the relative change in the marginal rate of technical

substitution fx2/fx1 while output Y is held constant:

σ =
d ln

(
x1

x2

)
d ln

(
fx2

fx1

) . (1)

With more than two factors being flexible, the marginal rate of technical sub-

stitution fx2/fx1 would not be determined uniquely. To avoid such ambiguities

in a multi-factor setting, further assumptions are necessary, leading to an alter-

native definition of σ in the two-dimensional case that BLACKORBY and RUSSELL

(1989) call the HICKS’ elasticity of substitution (HES). Under the assumptions of

perfect competition and profit maximization, fx2/fx1 equals relative factor prices

p2/p1 and hence

HES =
d ln

(
x1

x2

)
d ln

(
p2

p1

) . (2)

It is this definition (2) that serves as a basis for all generalizations of σ for a multi-

factor setting. Since output is assumed to be constant, the following generaliza-

tions inherit this property.

The literature’s consensus of an ideal concept of multi-factor substitution is

to report optimal adjustment in relative inputs xi/xj when the relative input price
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of two arbitrary factors i and j changes, with all inputs being flexible and cost

minimized for fixed output. This measure is often called HICKS-ALLEN elasticity

of substitution (HAES), where

HAESij =

∂ ln

(
xi

xj

)

∂ ln

(
pj

pi

) =
∂ lnxi

∂ ln

(
pj

pi

) − ∂ lnxj

∂ ln

(
pj

pi

) , (3)

and only the relative price of two factors i and j changes. If apart from i and j

all other factors are assumed to be constant, HAESij is in fact HICKS’ elasticity of

substitution HES.1

While HAESij measures the relative change of the input proportion xi/xj ,

and therefore may be termed a measure of relative substitutability, the cross-price

elasticity

ηxipj
:=

∂ lnxi

∂ ln pj

(4)

may be termed a measure of absolute substitutability, because it focuses merely

on the relative change of a single factor i due to a sole change of the price of factor

j, with output and all other prices being fixed. Thus, according to MUNDLAK’s

(1968) classification, ηxipj
is a one-price-one-factor elasticity of substitution.

It is now shown that cross-price elasticities are the common basis of AES,

MES, and SES. First, AES is – see e. g. FRONDEL and SCHMIDT (2004:220) – related

to ηxipj
by

AESij =
ηxipj

sj

, (5)

where sj = xjpj

C
denotes the cost share of factor j. According to CHAMBERS

(1988:95), expression (5) is the “most compelling argument for ignoring the Allen

measure in applied analysis ... The interesting measure is [ηxipj
] – why disguise

it by dividing by a cost share? This question becomes all the more pointed when

1The most general measure of substitution on the basis of (2) would be a concept of total sub-

stitution, where besides pi and pj all other prices are flexible as well. According to MUNDLAK

(1996:232), however, “[a]s a concept it may have little to contribute”.
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the best reason for doing so is that it yields a measure that can only be inter-

preted intuitively in terms of [ηxipj
]”. Nevertheless, AES has been the most exten-

sively used elasticity of substitution in empirical studies – see e. g. HAMERMESH

(1993:35).

Second, MES is most generally defined by

MESxipj
:=

∂ ln(xi/xj)

∂ ln pj

=
∂ lnxi

∂ ln pj

− ∂ lnxj

∂ ln pj

= ηxipj
− ηxjpj

(6)

and is a two-factor-one-price elasticity, where solely the price of factor j is flexible,

again with all other prices being fixed (BLACKORBY and RUSSELL 1989). Sim-

ilar to cross-price elasticities, but unlike AES, MES is asymmetric: In general,

MESxipj
6= MESxjpi

. It becomes transparent from definition (6) that if one were to

classify two factors using MES, one would more frequently conclude that these

factors are substitutes than if one were using AES or cross-price elasticities. The

reason is that even if ηxipj
is negative and thus factor i and j are termed comple-

ments, MESxipj
may be positive, hence indicating substitutability, if the magni-

tude of the always negative own-price elasticity is sufficiently large.

In line with FRONDEL (2004), it is argued here that for many practical pur-

poses, cross-price elasticities should be favored over MES. The reason is that it

is frequently more interesting to get to know how the use of factor i is chang-

ing due to an exogenous increase in the price pj of factor j, rather than to learn

something about the change of the input proportion xi/xj , as would be measured

by MESxipj
. If, for instance, oil prices are soaring, politicians would much rather

want to know how much of a detrimental impact the high prices will have on the

labor input of the economy alone than to know how the labor-energy input pro-

portion changes and whether the use of either labor or energy is more reduced

due the increase in oil prices. Hence, notwithstanding the significance of MES as

the sole true generalization of HICKS’ σ, estimating cross-price elasticities, rather

than any substitution measure involving input ratios, frequently appears to be

more appropriate in empirical studies on issues such as the consequences of en-

ergy price policies.
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Third, the two-factor-two-price elasticity HAESij is a weighted average of

MESxipj
and MESxjpi

.

Proof: Using the chain rule, we have

∂ lnxi

∂ ln(
pj

pi

)
=
∂ lnxi

∂ ln pi

· ∂ ln pi

∂ ln(
pj

pi

)
+
∂ lnxi

∂ ln pj

· ∂ ln pj

∂ ln(
pj

pi

)
= ηxipi

∂ ln pi

∂ ln(
pj

pi

)
+ ηxipj

∂ ln pj

∂ ln(
pj

pi

)
(7)

and
∂ lnxj

∂ ln(
pj

pi

)
= ηxjpi

∂ ln pi

∂ ln(
pj

pi

)
+ ηxjpj

∂ ln pj

∂ ln(
pj

pi

)
, (8)

because merely the prices pi and pj are flexible. Hence,

HAESij =

∂ ln(
xi

xj

)

∂ ln(
pj

pi

)
=

∂ lnxi

∂ ln(
pj

pi

)
− ∂ lnxj

∂ ln(
pj

pi

)

= (ηxipj
− ηxjpj

)︸ ︷︷ ︸
MESxipj

∂ ln pj

∂ ln(
pj

pi

)
− (ηxjpi

− ηxipi
)︸ ︷︷ ︸

MESxjpi

∂ ln pi

∂ ln(
pj

pi

)
, (9)

where the weights add to unity:

∂ ln pj

∂ ln(pj/pi)
+ (− ∂ ln pi

∂ ln(pj/pi)
) =

∂ ln(pj/pi)

∂ ln(pj/pi)
= 1. (10)

The weighted sum given in (9) reflects the fact that there is an infinite number of

changes of prices pi and pj that lead to the same change of price ratio pj/pi. There

are two polar cases: If only pj changes and pi is fixed, HAESij equals MESxipj
,

while, vice versa, HAESij specializes to MESxjpi
.

To complete the survey, it is proved now that MCFADDEN’s shadow elasti-

city of substitution SES, which additionally holds cost constant, is both a weighted

average of MESxipj
and MESxjpi

and a special case of the basic definition (3) as

well.

Proof: Since SES fixes cost C and only two prices pi and pj are supposed to

change, on the basis of SHEPHARD’s Lemma, ∂C
∂pi

= xi, and the chain rule follows:

0 =
∂C

∂(pj

pi
)

=
∂C

∂pi

· ∂pi

∂(pj

pi
)

+
∂C

∂pj

· ∂pj

∂(pj

pi
)

= xi ·
∂pi

∂(pj

pi
)

+ xj ·
∂pj

∂(pj

pi
)
. (11)
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By dividing (11) by C, one obtains

0 = (
1

pi

) · (pixi

C
) · ∂pi

∂(pj

pi
)

+ (
1

pj

) · (pjxj

C
) · ∂pj

∂(pj

pi
)

= si ·
∂ ln pi

∂(pj

pi
)

+ sj ·
∂ ln pj

∂(pj

pi
)
. (12)

Multiplying by pj/pi leads to

0 = (
pj

pi

) · si ·
∂ ln pi

∂(pj

pi
)

+ (
pj

pi

) · sj ·
∂ ln pj

∂(pj

pi
)

= si ·
∂ ln pi

∂ ln(pj

pi
)

+ sj ·
∂ ln pj

∂ ln(pj

pi
)
. (13)

Combining equation (10) and the right-hand side of equation (13) yields

∂ ln pi

∂ ln(pj

pi
)

= − sj

si + sj

and
∂ ln pj

∂ ln(pj

pi
)

=
si

si + sj

. (14)

By plugging both derivatives into the right-hand side of (9), we finally get

SESij = (
si

si + sj

)MESxipj
+ (

sj

si + sj

)MESxjpi
. (15)

The symmetry of this expression indicates that SES is symmetric – like AES.

In sum, two common features of AES, MES, HAES, and SES become appar-

ent in this section. First, all these elasticities ignore output effects and, second,

all are mixtures of cross-price elasticities. While HAES is the most general of

the presented measures, because it captures factor substitution when two fac-

tor prices are flexible, this generality is also the reason for HAES being of minor

practical importance: It is simply not possible to obtain from HAES a single sub-

stitution estimate for any two factors without specifying how these two factor

prices change.

By contrast, apart from SES, which also measures substitution relationships

when two prices are flexible, yet under the additional, restrictive assumption that

output and cost are constant, not just output, all other measures described in this

section are based on the assumption that only one factor price alters. It could

be argued, however, that in modeling practise one is frequently confronted with

counterfactual situations describing what would happen if the price of only a sin-

gle factor were to drastically increase. In modeling industrial energy consump-

tion, for instance, this is a rather typical situation, since, most importantly, oil
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prices are highly volatile and are frequently doubling within short periods of

time.

In any case, this didactic survey should have demonstrated that whenever

one draws conclusions from empirical studies on the degree of substitutability

of two inputs, it is indispensable to, first, clearly indicate the particular measure

employed to denote these inputs as substitutes and, second, to interpret empirical

results accordingly. We now provide an empirical illustration of the differences

in both the estimates of all these elasticities and their interpretations in order

to explain in greater depth why cross-price elasticities are preferable for many

practical purposes.

3 An Empirical Illustration

Similar to JORGENSON and STIROH (2000) and FRONDEL and SCHMIDT (2006), we

draw on JORGENSON’s time-series data set2 of U. S. manufacturing (1958-1996).

The data set includes the inputs and prices of four production factors: capital (K),

labor (L), energy (E), and materials (M ). Since our focus is on the substitution re-

lationship between energy and non-energy inputs, we concentrate on time-series

data for the primary metals sector, one of the most energy-intensive industries of

the available 35 sectors, and apply this data set to the prominent and frequently

employed translog cost function approach. Other recent translog contributions

are, for instance, RYAN and WALES (2000) and YATCHEW (2000).

Translog cost functions are typically of the following structure (CHRIS-

TENSEN et al. 1971:255):

lnC = ln β0 + βY · lnY +
∑
i∈F

βi · ln pi +
1

2

∑
i,j∈F

βij ln pi ln pj +
∑
i∈F

βiT ln pi · T, (16)

2This data set is accessible via internet – see Prof. JORGENSON’s homepage:

http://post.economics.harvard.edu/faculty/jorgenson/data.html
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where Y is a given level of output, F denotes a set of inputs, where F =

{K,L,E,M} in our example, T reflects a linear time trend that is included to

capture technological progress, and symmetry of βij is typically imposed a priori.

Linear homogeneity in prices, an inherent feature of any cost function, re-

quires the following conditions:

βK + βL + βE + βM = 1 , (17)

βKl + βLl + βEl + βMl = 0 for all l ∈ F = {K,L,E,M}, (18)

βKT + βLT + βET + βMT = 0 . (19)

Under the assumptions of optimal behavior and perfect competition, the

cost share si of any factor i ∈ F is given by

si =
xi · pi

C
=
pi

C
· ∂C
∂pi

=
∂ lnC

∂ ln pi

= βi + βiTT +
∑
l∈F

βil ln pl, (20)

where SHEPHARD’s lemma, xi = ∂C
∂pi

, has been employed. Using xi = siC/pi,

the concrete expression of cross-price elasticity ηxipj
resulting from translog ap-

proaches such as (16) can be derived as follows:

ηxipj
=
∂ lnxi

∂ ln pj

=
∂ ln si

∂ ln pj

+
∂ lnC

∂ ln pj

− ∂ ln pi

∂ ln pj

=
1

si

∂si

∂ ln pj

+ sj =
βij

si

+ sj. (21)

The derivation of the own-price elasticity ηxipj
follows in a similar way:

ηxipi
=
∂ lnxi

∂ ln pi

=
∂ ln si

∂ ln pi

+
∂ lnC

∂ ln pi

− ∂ ln pi

∂ ln pi

=
1

si

∂si

∂ ln pi

+ si − 1 =
βii

si

+ si − 1. (22)

Moreover, using the expressions for the cross- and own-price elasticities and

the definition of MES, we obtain the specific formulae of MESxipj
and MESxjpi

that

are valid for translog approach (16):

MESxipj
= ηxipj

− ηxjpj
=
βij

si

+ sj −
βjj

sj

− sj + 1 =
βij

si

− βjj

sj

+ 1, (23)

and for symmetry reasons:

MESxjpi
= ηxjpi

− ηxipi
=
βij

sj

− βii

si

+ 1, (24)
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On the basis of these expressions for MESxipj
, MESxjpi

, and the cross-price

elasticities ηxipj
, we now estimate these measures as well as AESij and SESij , for

which we use formulae (5) and (15). Yet, basically, the calculation of all these rests

on that of cross-price elasticities. The results for those elasticities where energy

is involved are reported in Table 1; maximum likelihood (ML) estimates of the

translog cost function parameters are displayed in Table A in the appendix.

The unknown parameters might be estimated directly from a stochastic ver-

sion of (16). Yet, it is widely known in the econometric literature that efficiency

gains can be realized by estimating a system of cost-share equations (BERNDT

1991:470). In our example, the stochastic version of the cost-share equation sys-

tem may read as follows:

sK = βK + βKK ln(
pK

pM

) + βKL ln(
pL

pM

) + βKE ln(
pE

pM

) + βKT · T + εK

sL = βL + βKL ln(
pK

pM

) + βLL ln(
pL

pM

) + βLE ln(
pE

pM

) + βLT · T + εL, (25)

sE = βE + βKE ln(
pK

pM

) + βLE ln(
pL

pM

) + βEE ln(
pE

pM

) + βET · T + εE ,

where the restrictions (18) and (19) are already imposed and disturbances are

denoted by εK , εL, and εE . In order to avoid the singularity of the disturbance

covariance matrix that arises because cost shares always add to unity, the share

equation for materials (M) has been dropped arbitrarily. The unknown parame-

ters of the seemingly unrelated regression (SUR) model (25) are preferably esti-

mated using ML methods to ensure that results do not depend upon the choice

of which share equation is dropped (BERNDT 1991:473).

Most importantly, the results of Table 1 support the point that qualitative

conclusions regarding substitutability crucially rest on the choice of the substi-

tution concept. On the basis of the MESEpK
estimates, for instance, capital and

energy might be denoted as substitutes, whereas the estimates of the cross-price

elasticities, η̂KpE
and η̂EpK

indicate that both factors are complements, though not

significantly throughout.

These results are to be explained as follows: Since the estimate of the capital-
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price elasticity of energy, η̂EpK
, lies around -0.12 and η̂KpK

(not reported in Table

1) is roughly -0.4, M̂ESEpK
≈ −0.12 − (−0.32) = 0.20 > 0, implying that a 1 %

increase in the price of capital approximately leads to a 0.12 % reduction in the

use of energy and a 0.32 % reduction for capital holding output constant. Relative

to capital, more energy is used when capital gets more expensive. Thus, capital

and energy are MES substitutes, though the input of energy in fact shrinks, as

indicated by η̂EpK
= −0.12, and, therefore, capital and energy are to be denoted

as complements on the basis of cross-price elasticities.

Table 1: Estimates of AES, Cross-Price Elasticities, MES, and SES.

Year AESEK ηKpE
ηEpK

MESEpK
MESKpE

SESKE

1958 -1.33 (0.77) -0.08 (0.04) -0.12 (0.07) 0.25 (0.12) -1.24 (0.11) -0.67 (0.10)

1967 -2.10 (1.01) -0.08 (0.04) -0.22 (0.11) 0.21 (0.14) -2.26 (0.28) -1.59 (0.24)

1977 -1.65 (0.85) -0.12 (0.07) -0.10 (0.05) 0.04 (0.17) -0.81 (0.10) -0.34 (0.10)

1987 -0.92 (0.63) -0.07 (0.05) -0.07 (0.05) 0.23 (0.11) -0.66 (0.10) -0.21 (0.09)

1996 -1.41 (0.77) -0.09 (0.05) -0.12 (0.07) 0.21 (0.11) -1.12 (0.17) -0.55 (0.14)

Year AESEL ηLpE
ηEpL

MESEpL
MESLpE

SESLE

1958 -1.45 (0.55) -0.08 (0.03) -0.32 (0.12) -0.12 (0.13) -1.25 (0.11) -1.02 (0.10)

1967 -2.78 (0.75) -0.11 (0.03) -0.59 (0.16) -0.41 (0.17) -2.29 (0.27) -2.00 (0.24)

1977 -0.65 (0.34) -0.05 (0.03) -0.16 (0.09) 0.07 (0.10) -0.73 (0.09) -0.55 (0.07)

1987 -0.55 (0.35) -0.04 (0.03) -0.14 (0.09) 0.10 (0.09) -0.63 (0.08) -0.45 (0.07)

1996 -1.01 (0.42) -0.06 (0.03) -0.25 (0.11) -0.01 (0.11) -1.09 (0.22) -0.88 (0.14)

Year AESEM ηMpE
ηEpM

MESEpM
MESMpE

SESME

1958 -1.15 (0.32) -0.07 (0.02) -0.73 (0.20) -0.59 (0.23) -1.23 (0.12) -1.18 (0.12)

1967 -2.13 (0.54) -0.08 (0.02) -1.38 (0.35) -1.25 (0.38) -2.26 (0.29) -2.21 (0.29)

1977 -0.69 (0.28) -0.05 (0.02) -0.42 (0.17) -0.28 (0.20) -0.74 (0.11) -0.69 (0.12)

1987 -0.64 (0.24) -0.05 (0.02) -0.38 (0.14) -0.22 (0.18) -0.64 (0.09) -0.59 (0.09)

1996 -1.09 (0.34) -0.06 (0.02) -0.66 (0.21) -0.51 (0.24) -1.10 (0.17) -1.04 (0.17)

Note: Standard errors are given in parentheses and estimated using the delta method. AES and

SES estimates require only one column, since both measures are symmetric.

Finally, this example demonstrates that comparing the reductions of energy
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and capital intensiveness due to higher energy prices by MESKpE
or SESKE might

be less interesting than considering the separate impacts of higher energy prices

on the input of capital and labor, which are measured by the cross-price elastic-

ities ηKpE
and ηLpE

, respectively. In the end, these empirical results and our the-

oretical survey demonstrate that whenever empirical researchers want to draw

conclusions with respect to the substitution relationship between two factors they

are well-advised to, first, estimate a variety of substitution measures starting with

cross-price elasticities as the common basis of all the classical measures and, se-

cond, to interpret empirical results accordingly.

4 Summary and Conclusion

Estimating the economic impact of energy policies necessarily obliges one to re-

sort to measures of the substitution of energy and non-energy inputs. Given the

multitude of generalizations of HICKS’ σ, the unique elasticity of substitution for

the two-factor case, the central question arises as to which measure would be

appropriate to capture energy-non-energy substitution relationships. In a multi-

factor setting, ALLEN’s elasticities of substitution (AES) apparently have been the

most-used measures in applied production analysis. BLACKORBY and RUSSELL

(1989:883), however, criticize that AES adds no more information to that already

contained in cross-price elasticities.

On the basis of a survey of σ’s most prominent generalizations, including

AES, HICKS-ALLEN’s (HAES), MORISHIMA’s (MES), and MCFADDEN’s shadow

elasticities of substitution (SES), this paper argues that cross-price elasticities play

a fundamental role in measuring substitution issues, since they are the common

basis for AES, MES, and SES. Moreover, using the example of the U.S. primary

metals sector, it has been empirically illustrated that cross-price elasticities are

often more relevant in terms of economic content. The ultimate reason for this

conclusion is that cross-price elasticities measure the relative change of only one
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factor due to price changes of another input, whereas HAES, MES, and SES mea-

sure the relative change of a factor ratio due to price changes of either of these two

factors.

While measuring the relative change of a factor ratio appears to be of minor

importance for many applications, it is argued that any substitution measure has

to match the specific task it is employed for and emphasize FUSS, MCFADDEN

and MUNDLAK’s (1978:241) conclusion that there “is no unique natural gener-

alization of the two factor definition ... [and that] the selection of a particular

definition should depend on the question asked”. Hence, a clear understanding

of the differences in interpretations and perspectives captured by the variety of

substitution measures is indispensable.

Yet, all the presented elasticities solely measure pure substitution effects;

that is, they ignore output effects, because constancy of output is the maintained

hypothesis underlying these concepts. Oil price shocks, however, indicate that

it is frequently problematic to ignore output effects in empirical studies of factor

substitution. As it is most likely that output shrinks when the price of a factor

such as energy rises, elasticities capturing gross substitution effects – that is, pure

substitution and output effects – are preferable in any empirical study. Based on

the argument that cross-price elasticities are often more relevant for many prac-

tical purposes, a generalization of cross-price elasticities that allows for output

variations would be a possible candidate concept.
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Appendix

Table A: ML Parameter Estimates of the KLEM Translog Cost Function (16) –

U.S. Primary Metals Sector 1958 - 1996.

Estimates Std. Error Estimates Std. Error

βK -1.694382∗∗ 0.374253 βKT 0.000893∗∗ 0.000189

βL 3.153601∗∗ 0.560144 βLT -0.001458∗∗ 0.000282

βE 0.982211∗∗ 0.381398 βET -0.000458∗∗ 0.000192

βM -1.441419 0.929015 βMT 0.001022∗∗ 0.000467

βKK 0.048876∗∗ 0.007006 βLE -0.030666∗∗ 0.006724

βKL -0.031554∗∗ 0.007506 βLM -0.065845∗∗ 0.018405

βKE -0.012164∗∗ 0.003872 βEE 0.120199∗∗ 0.006724

βKM -0.005158 0.013368 βEM -0.077369∗∗ 0.012110

βLL 0.128065∗∗ 0.012156 βMM 0.148372∗∗ 0.034144

Note: ∗ Significant at the 5 %-level. ∗∗ Significant at the 1 %-level.

To check whether translog cost function (16) is well-behaved, that is,

whether it is, first, non-decreasing and, second, concave in factor prices, we have

verified that, first, fitted cost shares (20) are always positive and, second, the Hes-

sian matrix with the components ∂2C
∂pi∂pj

is negative semi-definite.
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