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Abstract

Let p, g positive integers. The groups U,(C) and U,(C) x U, (C) act on the Heisenberg
group H, ; := M, ,(C) x R canonically as groups of automorphisms where M, ,(C) is the
vector space of all complex p X g-matrices. The associated orbit spaces may be identified
with II; x R and =Z; x R respectively with the cone II, of positive semidefinite matrices
and the Weyl chamber =, = {z ¢ RY: 27 > ... >z, > 0}.

In this paper we compute the associated convolutions on II; x R and Z; x R explicitly
depending on p. Moreover, we extend these convolutions by analytic continuation to
series of convolution structures for arbitrary parameters p > 2¢q — 1. This leads for
g > 2 to continuous series of noncommutative hypergroups on I, x R and commutative
hypergroups on Z; x R. In the latter case, we describe the dual space in terms of
multivariate Laguerre and Bessel functions on II; and Z,. In particular, we give a non-
positive product formula for these Laguerre functions on Z,.

The paper extends the known case ¢ = 1 due to Koornwinder, Trimeche, and others
as well as the group case with integers p due to Faraut, Benson, Jenkins, Ratcliff, and
others. Moreover, it is closely related to product formulas for multivariate Bessel and
other hypergeometric functions of Rosler.

KEYWORDS: Heisenberg convolution, matrix cones, Weyl chambers, multivariate La-
guerre polynomials, multivariate Bessel functions, product formulas, hypergroups, hyper-
group characters.

1 Introduction

For positive integers p > ¢ consider the vector space M, , of all p x ¢ matrices over C.
Consider the associated Heisenberg group Hy, , := M, , x R with the product

(z,a) - (y,b) = (x +y,a+b—Imtr(z"y))

where 7 denotes the trace of the ¢ x ¢ matrix x*y. Clearly, the unitary groups K := U, :=
Up(C) and K := U, x U, act on H, 4 via

u(z,a) = (uz,a) and (u,v)(z,a) ;= (uav®,a) for weUpveUjxeMygack

respectively as groups of automorphisms. The associated orbit spaces may be identified with
II, x R and Z; x R respectively with the cone 1, of complex positive semidefinite matrices



and the Weyl chamber Z;, = {x € R? : 2y > ... > x, > 0} of type B. It is well-known
that the Banach-*- algebras My(Hp 4, K) of all K-invariant bounded regular Borel measures
with the convolution as multiplication are commutative always for K := U, x Uy, and for
K := U, for ¢ =1 only (in which case the cases K := U, := U,(C) and K := U, x Uy lead to
the same result). Moreover, in these Gelfand pair cases, the associated spherical functions
are well-known in terms of multivariate Laguerre and Bessel functions; we refer to [BJR1],
[BJR2], [BJRW], [C], [F], [Kac], [W] and references there for this topic.

In this paper we compute the associated orbit convolutions on II; xR and =, x R explicitly
depending on the dimension parameter p. This computation is similar to that of Rosler [R2]
where the action of U, and U, x U; on M, , is considered for the fields R, C,H, and where
multivariate Bessel functions appear as spherical functions. Moreover, following [R2], we
extend these convolutions by analytic continuation to series of convolution structures for
arbitrary parameters p > 2q¢ — 1 by using the famous theorem of Carleson. This extension
leads for ¢ > 2 to continuous series of noncommutative hypergroups on I, x R and continuous
series of commutative hypergroups on =, x R. In the latter case, we shall describe the dual
spaces in terms of multivariate Laguerre and Bessel functions on II, and Z,. Moreover, we
determine further data of these hypergroups like the Haar measures, the Plancherel measures,
automorphisms and subhypergroups.

The main results will be as follows: For the (for ¢ > 2 noncommutative) hypergroup
structures on I, x R we shall derive in Section 2:

1.1 Theorem. Let ¢ > 1 be an integer and p €]2q — 1,00[. Define a convolution of point
measures on Iy X R by

(5(7’,a) *p,q 5(s,b))(f) (1.1)
= ”p,q/ f(\/r2 + s2 4+ rws + (rws)*,a + b — Im tr(rws)) CA(I, — wrw)P~ 2 du

q

for f e Cy(Ily xR), r,s € 11y, a,b € R, where
By :={w e My, : w'w < Iy, i.e., I; — w*w is positive definite},

A is the determinant of a q x q matriz, and K,, > 0 is a suitable constant. Then this
formula establishes by unique bilinear, weakly continuous extension an associative convolution
on My(Il; x R). More precisely, (II; x R, %p4) is a hypergroup in the sense of Jewett (see
[BH], [J]) with (0,0) as identity and with the involution (r,a) := (r, —a). Moreover,

wpalf) = /H _IWRa)A@y s do

defines a left and right Haar measure.
For the commutative hypergroup structures on =, x R we shall derive in Section 3:

1.2 Theorem. Let ¢ > 1 be an integer and p €]2g—1,00[. Then =4 xR carries a commutative
hypergroup structure with convolution

(5(511 pqé(nb ) (1'2)
= Kp, q/ / \/52 + un?u* + Ewunu* + unurw*€§),a + b — Im tr({wunu*))

A1, — w*w)P~? du dw




for f € Cy(Eq x R), (§,a),(n,b) € E4 x R where du means integration with respect to the
normalized Haar measure on Uy and § € E is identified with the associated diagonal matriz
in I1;. The neutral element of this hypergroup is given by (0,0) € =, x R, and the involution

by (€, a) := (&, —a). Moreover, a Haar measure is given by diy 4(&,a) := hy 4(&) d€ da with
the Lebesgue density

q
hpa(€) = [T&" " T](& - €)™ (1.3)
i=1 i<j

Moreover, the dual spaces of these commutative hypergroups, i.e., the sets of all bounded
continuous multiplicative functions, will be described precisely as a Heisenberg fan consisting
of multivariate Laguerre and Bessel functions which were studied in [BF], [F],[FK],[He] and
many others. As already noticed above, this description is well known for the group cases
with integer p by [BJRW], [F].

In Section 4 we shall use the product formula on Z; x R of Section 3 in order to derive a
product formula for the normalized Laguerre functions

I (22/2) 2 2y /9 Lo (2%)
=P — m _ —(xi+..+2x7)/2Zm

(x e Zy)

for p > 2¢—1 which are introduced, for instance, in [FK]. We shall show that for all partitions
m and all {,n € 5,

Pia(&) - Pra(n) = ﬁpvq/B /U SZ)ngn(rf(\/@ + un?u* + Swunu* + “”“*w*§)>
q v Uq
. e—i.lm tr(fwunu*)A(Iq _ w*w)p—Qq du dw. (1.4)

For ¢ = 1, this formula was derived by Koornwinder [Ko|] who also gave another version of
this product formula using Bessel functions.

We here notice that on all three levels discussed above also degenerated product formulas
are available for the limit case p = 2¢ — 1. We do not consider the case p < 2q — 1.

It is a pleasure to thank Margit Rosler for many valuable discussions about their multi-
variate Bessel convolutions and multivariate special functions.

2 Heisenberg convolutions associated with matrix cones

For positive integers p, ¢ consider the vector space M), , of all p x ¢ matrices over C. Consider
the associated Heisenberg group H,, , := M, , x R with the product

(z,a)- (y,b) = (x+y,a+b—Imtr(z*y))

where tr denotes the trace of the ¢ x ¢ matrix 2*y. Clearly, the unitary group U, := Uy,(C)
acts on H), , via

u(x,a) := (ux,a) for welUy, x€ M,y a€R

as a group of automorphisms. We regard U, as a compact subgroup of the associated semidi-
rect product G,, := U, X H,, in the natural way and consider the double coset space
Gp,q//Up which may be also regarded as the space of all orbits of the action of U, on H,, 4 in



the canonical way. Moreover, using uniqueness of polar decomposition of p X ¢ matrices, we
see immediately that we may identify this space of orbits also with the space II, x R with

I, :={z € M, : z Hermitian and positive semidefinite}
via
Up((;0)) =~ (lz],a),
where |z| := v/z*z € II, stands for the unique positive semidefinite square root of z*z € II,.

Now consider the Banach-x-algebra My(G), 4||U,) of all U,-biinvariant bounded signed
Borel measures on G, , with the usual convolution of measures as multiplication. If we
extend the canonical projection P : G, 4 — Gy, 4//Up ~ II; x R to measures by taking images
of measures w.r.t. P, this extension becomes an isometric isomorphism between the Banach
spaces My(Gp4||Up) and My(II, x R). We thus may transfer the Banach-+-algebra structure
on My(Gypq4||Up) to My(II; x R) by this isomorphism and obtain a probability preserving,
weakly continuous convolution #, , on M;(II; x R) in this way. The pair (II; x R, %, ;) forms
a so-called hypergroup; for general details on hypergroups the the construction above via
double cosets and orbits we refer to [BH] and [J].

Clearly, this Heisenberg-type convolution #,, on (measures on) II; x R is commutative
iff so is My(Gpq||Up) , i-e., iff (Gpq,Up) is a Gelfand pair. As Gelfand pairs associated with
Heisenberg groups were classified completely (see [BJR2], [C], [Kac], [W]), it turns out that
the convolution %, 4 is commutative precisely for ¢ = 1. Moreover, for ¢ = 1, the convolutions
*pq o0 II} x R = [0,00[xR and the associated hypergroup structures were investigated by
several authors; see [Kol, and the monographs [T], [BH] as well as references therein.

We next compute the convolution %, , for arbitrary positive integers ¢ under the technical
restriction p > 2¢q which will become clear below. We do this by using the approach for the
Gelfand pair (U, x M), 4,U,) in [R2] where the double coset space (U, x M), ,//Up) is identified
with II;, and where the same restriction appears. The computation here is only slightly more
involved, and we obtain:

2.1 Proposition. Let p > 2q > 1 be integers. Then the convolution *, 4 of point measures
s given by

(5(7"7&) *p,q 5(s,b))(f) (2'1)
= “p,q/ f(\/?“2 + 82+ rws + (rws)*,a + b — Im tr(rws)) A, — w*w)P~2 dw
B

q

for f € Cy(Ily x R), 7,5 € Iy, a,b € R with I, € My 4 the identity matriz,

By :={we My,: w'w <1y, ie., I, —w wis positive definite},
dw denoting integration w.r.t. Lebesgue measure on Mg 4,

A denoting the determinant of a q X q¢ matriz, and

—1
Kpg 1= </B AT, — wrw)P~2 dw> > 0.
q

Proof. The canonical projection ¢ : H, , — H][;{ ¢ ~ II; x R from the Heisenberg group onto
its orbit space is given explicitly by ¢(x,a) = (|z| :== Va*z,a). Moreover, if we define the

block matrix
I
0o 1= (Oq> € M,,,

4



a “orbit” (r,a) € II; X R has the representative (oor,a) € Hp 4. By the general definition of
the orbit convolution #, 4 (see Section 8.2 of [J] or [R2]) we have

(5(7",(1) *p,q 5(s,b))(f) = (5Up(aor,a) *p,q 5Up(aos,b))(f)
— [ #(ellour.a) - u(os.b)) du

p

= / f(loor + uogs|,a + b — Im tr(rojuoys)) du (2.2)
UP

where du denotes integration w.r.t. the normalized Haar measure on U,. Using the definition

of the absolute value of a matrix above and denoting the upper ¢ x ¢ block of u by u, :=

opuog € My 4, we readily obtain

((5(m) *p.g 5(S,b))(f) = / f(\/r2 + 52 +rugs + (rugs)*,a +b—Im tr(ruqs)) du.
Up

The truncation lemma 2.1 of [R3] now implies the proposition. U

2.2 Remarks. (1) The integral in Eq. (2.1) exists precisely for exponents p —2¢ > —1
which shows that a formula for %, , of the above kind is available precisely for p > 2q.

(2) Let p > 2q > 1 be integers, and let f € Cy(II; x R), r,s € Il;, a,b € R. Formula (2.1)
and a straightforward computation yield that

(5(51’) *p,q 5(r,a))(f)
- ﬂp’q/ f(\/TZ + 2 +rws + (rws)*,a + b+ Im tr(rws)) - A(l; — w w)P 29 dw.

q

If one compares this with Eq. (2.1), the reader can check directly the known fact that
*p ¢ 1S non-commutative precisely for ¢ > 2. For this, take for instance, a = b = 0,

T‘:<(1) g),and8:<g ?)WithOEMqul.

We next extend the definition of the Heisenberg convolution in Eq. (2.1) to noninteger
exponents p €]2q — 1, oo[ for a fixed dimension parameter ¢ by Carlson’s theorem on analytic
continuation. For the convenience of the reader we recapitulate this result from [Ti], p.186:

2.3 Theorem. Let f(z) be holomorphic in a neighbourhood of {z € C: Re z > 0} satisfying
f(z) = O(ec|z|) on Rez >0 for some ¢ < m. If f(z) =0 for all nonnegative integers z, then
f 1is identically zero for Re z > 0.

This theorem will lead to the following extended convolution:

2.4 Theorem. Let ¢ > 1 be an integer and p €]2q — 1,00[. Define the convolution of point
measures on Iy X R by

(6(r,a) *pq 6(s,b))(f) (2'3)
= ”p,q/ f(\/?”2 + s2 + rws + (rws)*,a + b — Im tr(rws)) CA(I, w*w)P =2 dw

q




for f e Cy(Il; x R), r,s € Ily, a,b € R where Ky, 4, dw, A and other data are defined as in
Proposition 2.1 above. Then this formula defines a weakly continuous convolution of point
measures on Il; x R which can be extended uniquely in a bilinear, weakly continuous way
to a probability preserving, weakly continuous, and associative convolution on My(Il; x R).
More precisely, (II; x R, %, ) is a hypergroup with (0,0) as identity and with the involution

(rya) == (r,—a).

Proof. 1t is clear from Eq. (2.3) that the mapping
(g x R) x (g x R) — My(Ily x R),  ((r,a),(5,b)) = d(r.a) *p,q O(s,b)

is probability preserving and weakly continuous. It is now standard (see [J]) to extend this
convolution uniquely in a bilinear and weakly continuous way to a probability preserving
convolution on M;(II; x R).

To prove associativity, it suffices to consider point measures. Solet r,s,t € I, a,b,c € R,
and f € Cyp(Il;). Then

5(1"@) *p,q (5(s,b) *p,q 5(t,c))(f)
= Hi,qA /B f(H(T,a,S,b,t,c;v,w))A(Iq — ’U*U)p72qA(Iq — ’u)*w)p72qd’ud’u) = I(p)
q q

with a certain argument H independent of p. Similar,

(0(r,a) *p.q O(s,0)) *pg O(t,e) () =: I (p)

admits a similar integral representation with some integrand H’ independent of p. The
integrals I(p) and I'(p) are well-defined and holomorphic in {p € C : Rep > 2¢ — 1}.
Furthermore, we know from the group cases above that I(p) = I'(p) for all integers p > 2q.
As

|Kp.ql = O(|p\q2) uniformly in {p € C: Rep >2¢ — 1} for p — 0 (2.4)

(see, for example, Eq. (3.9) of [R2]), we obtain readily that

Fp)==1I(p+2¢—1)—I'(p+2¢—1) = O(]p]*"),

and Theorem 2.3 ensures that I(p) = I'(p) for all p > 2¢g — 1. Thus %, 4 is associative.
Finally, it is clear by Eq. (2.3) that J¢) is the neutral element. Moreover, as the
support supp(d(,.q) *p,q 9(s,5)) of our convolution is obviously independent of p €]2¢ — 1, 00],
all further hypergroup axioms from [BH] or [J] regarding the support of convolution products
are obvious, as they are valid for the group cases with integer p > 2q. O

2.5 Remark. The convolution (2.3) obviously satisfies the following support formula: For
all (r,a),(s,b) € Il x R,

supp(O(r,a) *p.q O(s.p)) C {(t,¢) € Ty x Rz [t < Il + [[sf], el < fal + [o] +[I7[| - [Is]l}
with the Euclidean norm ||z := \/tr(z*z).

We next collect some properties of the hypergroups (II; x R, %, ) for p €]2¢g — 1, 00[. We
first turn to examples of automorphisms. For this we first recapitulate that a homeomorphism
T on II; x R is called a hypergroup automorphism, if for all (r,a), (s,b) € II; x R,

T((S(r,a) * 5@) = 5T(r,a) * 6T(s,b)’

where the left hand side means the image of the measure under 7.



2.6 Lemma. For all u € U, and X > 0, the mappings T, x(r,a) := (Auru*, \2a) are hyper-
group automorphisms on (II; X R, %y ).

Proof. Eq. (2.3) yields

(5Tu_’/\(r,a) >I<p,qéTu_’/\(s,b) ) (f)

= Hp’q/B F W u(r? + 82 + rurwus + (rurwus)*)u*, A*(a + b — Im tr(uru*wusu®))
q
AT, — wrw)P 2 dw.

Using tr(ut) = tr(tu), Vutu* = uv/tu* and the substitution v = w*wu, we see that this
expression is equal to

Hp’q/B Fuy/r2 + 82 + rvs + (rvs)*)u*, A (a + b — Im tr(rvs)) - A(I; — w*w)P~* dw

q

= u7,\((5(r,a) *p,q 5(s,b)) (25)
as claimed. O

2.7 Remark. The Bessel hypergroups on the matrix cones II, of [R2] admit much more
hypergroup automorphisms. In fact, a complete classification of all automorphisms there is
given in [V3]. Due to the additional term Im ¢r(rws) in Eq. (2.3), most of these hypergroup
automorphisms on II; cannot be extended to our Heisenberg convolutions.

We next turn to the (left) Haar measure which is unique up to a multiplicative constant
by [J]:

2.8 Proposition. A left Haar measure of the hypergroup (Il; x R, ,) is given by
wp,q(f) = / f(V/r,a)A(r)P~dr da
IIg xR

for a continuous function f € C.(II; x R) with compact support and the restriction of the
Lebesgue measure dr on the vector space of all Hermitian q X q matrices.
Moreover, this left Haar measure is also a right Haar measure.

Proof. We first recall that the Heisenberg groups H), ; are unimodular with the usual Lebesgue
measure d\ as Haar measure. Therefore, by general results (see e.g. [J]), the image ¢(d\) of
dX under the canonical projection ¢ : Hp,,, — II; x R is a left and right Haar measure on the
hypergroup (II; x R, %, ,). Moreover, the computation in Section 3.1 of [R2] shows that

e(dN\)(r,a) = cpq - A(r)P~9dr da € Mt (11, x R)

with a certain known constant ¢, , > 0. This proves the result for integers p > 2q.
For the general case we must check that

/ / (8r,0) *p. (/) (f) Als)P9ds db

g, JR

:/ /(5(\/§,b) *p,q 5(r,a))(f) A(s)P"ds db
g JR

_ /H q /R F(v/3,b) A(s)P~4ds db (2.6)



for all f € C.(Il; xR), r € Il;, a € R and p € C with Rep > 2g — 1. Clearly, all expressions
are analytic in p for fixed f,r,a,q. Moreover, by Eq. (2.3), all three expressions are bounded
by

Cllfllootipg - MEED

with some constant C' and

M = sup{A(s) : (5,8) € I, x R, (3 %p.g (s ) ()}
—sup{A(s) : (s,b) € (1, —a) #pq supp(/)}.

Using the estimate (2.4) for s, , and the estimate for the support of convolution products
in Remark 2.5, we obtain that the necessary estimate in Carlson’s theorem 2.3 holds when-
ever ||r|| and the support of f are contained in a sufficiently small neighborhood of (0,0).
Therefore, (2.6) holds in this case.

Finally, if f € C.(Il; x R) and r € II, are arbitrary, then we choose a sufficiently small
scaling parameter ) such that A\r and the support of fy(s,a) := f(A~!s, A=2a) are sufficiently
small such that (2.6) holds for Ar and fy. As the scaling map 77, is a hypergroup auto-
morphism, it follows readily that (2.6) for Ar and f) is equivalent to (2.6) for r and f. This
completes the proof. O

2.9 Remark. Eq. (2.3) implies that for p > 2¢ — 1 and (7, a), (s,b) € II; x R with positive
definite matrices r,s, the convolution product d, q) *pg O(sp) admits a density w.r.t. the
Lebesgue measure and hence by the preceding proposition w.r.t. the Haar measure of the
hypergroup (II; x R, %, 4).

In fact, in the case p > 2¢—1 consider the linear map w + (r?+s?4rws-+(rws)*, Im tr(rws))
from B, C R24 to I xR C R?~1 which has a Jacobi matrix with maximal rank ¢ — 1.
As the square root mapping on the interior IIy of II; is a diffeomorphism, the claim follows
immediately from the convolution (2.3).

We next turn to the subhypergroups of (II; x R,%*,,). Recapitulate for this that a
closed set X C II; x R is called a subhypergroup, if for all z,y € X, we have z € X
and {z} * {y} := supp(d, * §y) C X. We next determine all subhypergroups of (II; X R, %, ).
We begin with examples of subhypergroups.

2.10 Proposition. Let p>2¢—1, ke {1,...,q}, and u € U,. Then

r 0 ¥ ~
Xk7u::{<u<0 O>u,a>:r€ﬂk,a€R}

is a subhypergroup of (II; x R,%,,), and the mapping (7,a) — (u( 6 8 >u*,a> is a
hypergroup isomorphism between the Heisenberg-type hpergroup (Il x R, x,, 1) and the subhy-
pergroup (Xp,u, *p,q)-

Proof. The Xy 1, are obviously subhypergroups by Eq. (2.3). Moreover, using the automor-
phism T’ 1 of Lemma 2.6, we see that the X}, , are subhypergroups for arbitrary u € U,.

In order to check that the subhypergroup Xy ,, is isomorphic with (II, x R, %, 1), we may
assume u = I, without loss of generality. Here we first consider the group cases with integer
p = 2q. Here, the inverse image of X} , under the canonical projection ¢ : Hy , — II; x R is

given by the subgroup {(( g > ,a> , T € My, a€ R} of H,, which is isomorphic with

8



H, ) and preserved by the action of U,. Thus, the preceding construction of the orbit
hypergroup structures implies that (X}, *p4) is isomorphic with (I x R, *, ) as claimed
in this case. Therefore, for integers p > 2¢ and all f € Cy(II; x R) and (r,a), (s,b) € II x R,

5(( 0 ) a) *p.q 5(( s 0 > b) (f) = OBra) pk Os,) (fr)
00 ) 00 )

with fx(r,a) := f << g 8 ) ,a). If we use the definitions of these convolutions in Theorem
2.4 for arbitrary p, analytic continuation via Carlson’s theorem yields in the same way as
in the proof of Theorem 2.4 that this equation holds for all p > 2¢ — 1. This completes the
proof. O

2.11 Remark. It follows immediately from Eq. (2.3), that Xy := {0} x R is a normal sub-
group of (Il; x R, %, ;) isomorphic with (R, +). We now may consider the associated quotient
hypergroup (II; x R, %, 4)/Xo which can be identified with II; obviously in a topological way.
Using the definition of the quotient convolution (see e.g. [V2]) as well as Eq. (2.3), this
quotient convolution on I, is given by

(6, % 05)(f) = ﬂp,q/ f(\/T2 + 52+ rws + (rws)*) - A(l; — ww )P4 dw.

q

In other words, (II; x R, %, ,)/X is isomorphic with the Bessel hypergroup structure on the
cone I, of [R2] with index p.

2.12 Lemma. Let p > 2q — 1. Let X be a subhypergroup of (II; x R, %, ,) which is not
contained in the subgroup Xgo. Then Xg C X.

Proof. Consider a subhypergroup X ¢ Xo. Thus there exist r € II; \ {0} and a € R with
(r,a) € X. If we restrict the integration in Eq. (2.3) to matrices w. = (—1/2 4 ci) - I, € B,
with ¢ € [-v/3/2,v/3/2], we conclude from (2.3) and \/2r2 + rw.r + rwir = r that

{r} x [=V3-tr(r?)/2,V3 - tr(rH) /2] C {(r,a)} %pq {(r,—a)} < X.

Therefore, by (2.3), there exists ¢ > 0 such that for all z € [—¢,+¢] we have (0,z) €
{(r,z)} *pq {(r,—2)} C X. As Xp is a subgroup isomorphic with (R,+), it follows that
X, C X. 0

2.13 Proposition. Let X be a subhypergroup of (Ilg x R, %, ,). Then X is a subgroup of Xo
or X 1s equal to one of the subhypergroups Xy, ,, of Proposition 2.10.

Proof. Let X be a subhypergroup which is not contained in Xy. Then Xy C X by Lemma
2.12; and we may consider the quotient subhypergroup X/Xy in the quotient hypergroup
(Il; x R)/ X which is isomorphic with the Bessel hypergroup of [R2] on the cone II; with
parameter p. On the other hand, all subhypergroups of the Bessel hypergroup structures
on the II, were classified in Proposition 4.6 of [V3]. As Xy C X, this classification leads
immediately to the classification above. O

2.14 Remark. Let

B:={yeC%: |yl <1} and S:={yeC?: |yl =1}



By Lemma 3.6 and Corollary 3.7 of [R2], the mapping P : B! — B, with

Y1
Y2l — yfyl)l/Q
s, un) = : 27)
Yq(lg — y;—lyq*1)1/2 (g — ?/Tyl)l/Q

establishes a diffeomorphism such that the image of the measure A(I; — w*w)P~?4dw under
P~!is given by H?Zl(l — |lyjl3)P=9Idyy ... dy,. Therefore, Eq. (2.3) may be written as
(O(r,a) *p.q O(s.5)) (f) (2.8)
= Hp7q/ f(\/r2 +s2+rP(y)s+ sP(y)*r,a+b—Im tr(rP(y)s))
Ba

q

T = w3y dyy ... dy,
7j=1

for p > 2q — 1. Moreover, for p — 2q — 1, this convolution product converges weakly to the
probability measure d(, q) *2q—1,4 O(s,p) € M(II, x R) with

(O(r.a) *2g—1. O(s,0)) (f) (2.9)
= /ﬁigq_Lq/ / f(\/'r2 + 524+ rP(y)s+ sP(y)*r,a+b—Im tr(rP(y)s))
Ba-1

H (1= lly;l13)P~ 0 dyy . .. dyg—1 do(yq)

where o € M1(S) is the uniform distribution on S and k2,-1,, > 0 a suitable normalization
constant.

This convolution is obviously weakly continuous and can be extended to an associative,
weakly continuous, and probability preserving convolution on M (11, xR) by Theorem 2.4 and
taking the limit above. Moreover, all further hypergroup axioms may be also checked readily
for (2.9). Finally, the measure wy,—1,4 defined as in Proposition 2.8 is a Haar measure of this
hypergroup (II, xR, *24_1 4), the mappings T;, A (7, a) := (Auru*, \?a) are also automorphisms
here as in Lemma 2.6, and the subsets X}, , C II; x R defined as in Proposition 2.10 are again
subhypergroups.

3 Heisenberg-type convolutions associated with Weyl cham-
bers of type B

In this section we consider the group U, which acts by Lemma 2.6 as a compact group

{Ty1 : u € Uy} of automorphisms on the Heisenberg hypergroups (II; x R,*,,). As the

orbits of the action of U, on II; by conjugation are described by the ordered eigenvalues

§&1 > & > -+ > & > 0 of a matrix in Il;, we may identify the space of all Uj-orbits of
(IT; x R, %y 4) with the set Z; x R where

Eq:{i:(&,---iq)GRQ:&Z-.-quZO}-

10



The set Z, is a closed Weyl chamber of the hyperoctahedral group B, = S, x ZJ which acts
on R? by permutations of the basis vectors and sign changes. In this section we show how
the convolutions *,, on II; x R for p > 2¢ — 1 lead to orbit hypergroup convolutions o, ,
on =, x R by using methods of [J] or [R3]. In contrast to the hypergroups (II; x R, %),
the hypergroups (£, x R, 0, ,) are always commutative. We shall identify the characters of
these hypergroups in terms of with multivariable Bessel and Laguerre functions associated
with the root system B,.

Let us go into the details. Let ¢ > 1 be an integer and p € [2¢ — 1, 00[. In the situation
described above, the mapping II, — Z;,, r +— o(r), which assigns to each matrix r its
ordered spectrum o(r), is continuous, surjective and open w.r.t. the standard topologies on
both sets. Therefore the orbit space (II, x R)Ys (equipped with the quotient topology) may
be identified with =, x R also in a topological way. We now identify both spaces in the
obvious way and consider the continuous, surjective and open mapping

P:Ig xR—Z, xR, (r,a)— (o(r),a)

which corresponds to the orbit map above. This mapping is a orbital mapping from the
hypergroup (: II; X R, %, ;) onto =4 x R in the sense of Section 13 of [J], and it follows readily
from Section 13 of [J] that =, x R carries a corresponding orbit hypergroup convolution o, ,
as follows: For a,b € R and &,n € =, we choose representatives z,y € II; with o(z) = £ and
o(y) = n and put

5(f,a) Op,q 5(77,b) = (P(é(x,a) *pq (5(y,b))‘ (31)

The properties of this hypergroup convolution can now be derived similar to Section 4 of
[R2]. In particular, we can write down the convolution (3.1) explicitly. For this, we denote
the normalized Haar measure on U, by du, and { € E,; will always be identified with the
diagonal matrix diag(&y,...,&,) € II; without mentioning.

3.1 Theorem. Let g > 1 be an integer and p €]2q—1,00[. Then Z,xR carries a commutative
hypergroup structure with the convolution

(Oc.a) ©p.a On) ) () (3.2)
= ’fp,q/ / f(U(\/fQ + un?u* + Ewunu* + unurw*§),a + b — Im tr({wunu*))
B, Ju,

S A(I — wrw)P ™2 du dw

for f € Cy(Z4 xR), (§,a),(n,b) € 24 x R. The neutral element is given by (0,0) € =, x R,
and the involution by (§,a) := (&, —a).

Moreover, a Haar measure on (24 X R, 0p,4) is given by dwy, ¢(§,a) = hy (§) d€ da with
the Lebesgue density

q
hpa(§) =& (€ — &)*. (3.3)
=1

1<j

Proof. In view of Section 13 of [J] and Section 4 of [R2] on orbit hypergroups, we only have
to check the commutativity of o, , as well as the statement about the Haar measure.

We first turn to the commutativity. We first observe that for integers p > 2¢ — 1 by its
construction, the hypergroup (24 x R, 0, 4) is isomorphic with the orbit hypergroup which
appears when the group U, x U, acts on the Heisenberg group Hy, ;, by (u,v)(z,a) := (uzv*,a)

11



foru € Uy, v € Uy, x € M 4 and a € R. Moreover, it is well known that ((U, xUy) % Hy, 4, U, X
U,) is a Gelfand pair; see [BJR1], [C], [F], [Kac]. Therefore, o, , is commutative for integers
p > 2q. The general case can now be proved by analytic continuation using Carlson’s theorem
2.3 in the same way as in the proof of Theorem 2.4. We omit the details.

On the other hand, we may check commutativity also directly. In fact, let a,b € R and
§,m € Z4. We also regard &, n as real diagonal matrices as described above. We obtain from
invariance of spectrum and trace by conjugations that

(O(n,) ©p.a O(g,0)) (f)
= Hlp7q\/ / f(o'(\/u*n2u + 6‘2 + u*nwu{ + (u*nwu{)*), a -+ b—1Im tT(U*an§)>
Bq Uq

AT — wrw)P~? du dw.

Substitution w — w as well as dw = dw, A(l; — w*w) = A(l; — w*w) > 0, o(x?) = o(x),
tr(z7) = tr(z), € = ¢, and 7 = n imply that this expression is equal to

K. q/ / \/uTn% + &2 + uTnwié + EuTw na), a + b — Im tr(fuTw*mi))
A(I, — w*w)P~2 du dw.

Using the substitution u — u’, which preserves the Haar measure on Uy, as well as the
substitution w + w*w*u, which preserves the Lebesgue measure on B,, we obtain that the
expression above is equal to the right hand side of (3.2). This completes the direct proof of
commutativity.

We finally turn to the Haar measure. By Section 13 of [J], the Haar measure @, €
M*(Z, x R) is just given as the image of the Haar measure wy, € M T (II, x R) under the
projection ®. As here the second component R is not involved, the computation of this image
measure can be carried out in the same way as in the corresponding proof for the matrix
Bessel hypergroups in Theorem 4.1 of [R2]. We therefore omit the details. O

3.2 Remarks. (1) For p = 2¢— 1 the convolution %2, 4 on II; X R introduced in Section
2.14 can be also transfered to a commutative hypergroup convolution og,_1 4 on Z; x R
in the same way as above. We here omit details.

(2) As already mentioned in the preceding theorem, the hypergroups (2, xR, o, ) are orbit
hypergroups associated with the action of U, x U, on the Heisenberg group H, , for
integers p > 2q. Clearly, one may also form the associated orbit hypergroup structures
(Eq x R,0p4) for all integers p > ¢, where then the corresponding convolution for
p=q,q+1,...,2¢ — 1 is degenerated and not longer given by (3.2).

(3) It is clear by the convolution (3.2) that G := {0} x R is a subgroup of (24 X R, 0, 4)
isomorphic with (R, +). We thus may form the quotient hypergroup

(EQXR)/G:{G(&G’):(&R) (67 )EHQXR —Hq

Using this natural identification as well as the canonical projection ¥ : 5, x R — =,
the quotient convolution is defined by

J¢ ®p,g Oy 1= Y (J(¢.0) Op,q 9(5,0));

12



i.e.,
(0¢ ©p,q 0 (3.4)
= kp, q/ / \/{2 + un?u* + Ewunu* + unu*w*ﬁ)) Ay — w*w)P~2 du dw

for f € Cy(Zy), §&,;m € Z4. In other words, the quotient hypergroup ((2, x R)/G, e, )
is precisely the Bessel-hypergroup on the Weyl-chamber =, as studied in Section 4 of
[R2] for the field C, i.e., the parameter d = 2 there.

We next turn to the characters of the commutative hypergroups (2, x R, 0p,4). For this
we first recapitulate some basic notions and facts about commutative hypergroups mainly
from [J] and [BH].

3.3 Some facts and notions on commutative hypergroups. Let (X, *) be a commu-
tative hypergroup. Then there is a Haar measure w € M™(X) which is unique up to a
multiplicative constant. We introduce the dual space

X:={aecCyX): 6= dg(a) = a(x)a(y) forall z,y € X}
and the space of all multiplicative functions
xbo(X) ={a e Cy(X): 6 x0y(a) =a(r)a(y) forall z,ye X},

and equip both with the topology of locally uniform convergence. Both spaces are locally
compact, and for a Gelfand pair (G, K), the space of spherical functions corresponds to
the space x,(X) for the double coset hypergroup (G//K,*). The elements of X are called
characters.

We define the Fourier transform . : L}(X, w) — Co(X) with f(o = [y a(@)-f(z)dw(z).
Then there exists a unique Plancherel measure 7 € M+ (X ) such that the Fourler transform
becomes an L-isometry, i.e., for all f € L'(X,w)NL*(X,w) we have [y |f|*dw = [ || dr,
and the Fourier transform can be extended to an isometric isomorphism between L?(X,w)
and L2(X, 7).

Different to the case of abelian groups, it may occur that supp w # X # xp(X). This is
the case for instance for Gelfand pairs associated with noncompact semisimple Lie groups.
On the other hand, there is a growth criterion in hypergroup theory which ensures supp m =
X = xb(X). To explain this, take a compact set A C X and define recursively the sets A"
by AD = A and At = A() 4 A = Uream yeaw supp(dz * dy). We say that (X, x) has
subexponential growth if for all compact sets A € X and all ¢ > 1 we have w(A™) = o(c")
for n — oo. It was proved in [Vog] and [V1] that for each commutative hypergroup (X, %)
with subexponential growth, supp m = X = Xb(X).

We now return to the hypergroups (£, x R, 0, ,). As the Heisenberg groups have poly-
nomial growth, the following result is not surprising:

3.4 Lemma. The hypergroups (2, X R, 0, 4) have subezponential growth for p > 2q — 1.

Proof. We see from (3.2) that for all (§,a), (n,b) € Z, x R and (7,¢) € supp(d(¢,a) ©p,q S(n,b))
the first (and thus largest) components of the vectors 7,&,n satisfy 7 < & + m; and |¢| <
la| 4+ |b] + &1m. Now let C' C Z; x R be compact. Choose d > 0 such that {; < d and |a| <d
for all (¢,a) € C. A simple induction shows that then for all n € N and all (7,¢) € C™ we

have 0 < 7, < ... <7 < nd and |¢| < nd + @ -d*. As the Haar measure @, , has a
polynomially growing Lebesgue density by Theorem 3.1, the assertion is clear. U
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By the results of Section 3.3 we obtain:
3.5 Corollary. The hypergroups (24 x R, 0, ) satisfy supp ™ = X = Xb(X).

Consider the canonical projection ® : II, xR — =, xR as in the beginning of this section.
This mapping is an orbital morphism in the sense of [J], and we conclude from [J]:

3.6 Corollary. Let p > 2q — 1. For each character a of (24 x R, 0, ), the function cco ® €
Cy(Il; x R) is positive definite on the hypergroup (Il x R, %, ).

We next introduce a set ¥, , of characters of the hypergroups (2, x R, 0, ). Later on we
shall see that this set in fact consists of all characters. This set X, ; consists of two disjoint
sets 21 and 22 of functions where these functions are described in terms of multivariate
Laguerre and Bessel functions respectively as discussed in [FK]. This is not surprising, as
this connection is well-known for ¢ = 1 (see the product formula in [Ko|, [T] and references
cited there) as well as for the group cases with integers p,q > 1; see [F] and references there.
Before going into details, we collect some notions and facts from [BF], [F], [FK], and [Kan].
We start with some basic notions on multivariate special functions:

3.7 Spherical polynomials. Let m = (my,...,my) be a partition of length ¢ with integers
mp > mg > ... > mg > 0. We define its length |m| := m; + ... + my, the generalized
Pochhammer symbol

= [[=-i+1),, (3.5)
j=1

for x € R (note that we here always use d = 2 in the notion of [FK]), as well as the dimension
constant
(P)m(¢)m
T2

h(m)
where h(m) is the product of the hook lengths of m; see pp. 237 of [F] and p. 66 of[M2].
Moreover, for partitions m we define the spherical polynomials

dm =

O (x) = Am(uzu™Ydu for z€ My,
Uq

where du is the normalized Haar measure of U,, Ay, is the power function
Am(z) = Aq(z)™ M2 Ag(x)™2 7™ o Ay(x)™,

and the A;(z) are the principal minors of the determinant A(x), see Ch. XI of [FK] for details.
The ®,, are homogeneous of degree |m| and satisfy ®,(0) = 0 for m # 0, ®¢(0) = 1, and
O (1) =1 for the identity matrix I, € C9.

We also consider the renormalized, so-called zonal polynomials Z,, = ¢y ®m with the
constants

(¢)m|m)!
m = 0. 3.6
This normalization is characterized by
(trz)* Z Zm for k € Ny. (3.7)
|m|=k
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In fact, the normalization constant ¢y can be easily derived from (3.7) and some formulas
on pp. 237-239 of [F]; see also Section XI.5 of [FK] or [Kan]. Clearly, we have Zy () = cm.
By construction, the ®,, and Zy, are invariant under conjugation by U, and thus depend
only on the eigenvalues of their argument. More precisely, for Hermitian z € M, , with
eigenvalues & = (£1,...,&;) € RY, we have Zy(z) = CL,(§) for the Jack polynomials C} (c.f.
[FK], [R2]). They are homogeneous of degree |m| and symmetric in their arguments.
We also introduce the generalized binomial coefficients (':) for partitions m,n by the

unique expansion
m
Om(ly+2) = E <n>@n(az)

In|<|m|

with the identity matrix I, € C%9. These Binomial coefficients satisfy (’fl‘) # 0 only for
n C m, ie. for n; <m; for i =1,...,q. Moreover, it follows from [L] that (') > 0, and that

for integers k,
m)  (|m|
> <n>_<k> (3.8)
In|=k

3.8 Multivariate Laguerre polynomials. According to p. 343 of [FK] we define the
multivariate Laguerre polynomials

L) = 3 (’f) Pl g5, () (3.9)

(P)n

In|<|m|
and the associated multivariate Laguerre functions
P (z):=e @ LP (22) (3.10)

for x € C%%. The functions Ly, and [5, are also invariant under conjugation by U, and may
thus be regarded as functions in their eigenvalues, i.e., as functions on Z;. We shall do this
from now on without separate notation.

With a slight change of notation, these Laguerre polynomials and functions are also
considered by Baker and Forrester [BF] in the context of Calogero-Sutherland models and
Dunkl operators. In fact, a comparison of the notions in [FK] and [BF] shows that our
polynomials L}, (x) defined above agree with the Laguerre polynomials |m|! - L, %(x;1) in
the notion of Proposition 4.3 of [BF|:

LP () = |m|!- LP9(x; 1) (in the sense of [BF]). (3.11)
We next collect some known properties about these Laguerre polynomials:

3.9 Lemma. The polynomials Ly, (x) form an orthogonal basis on the Hilbert space L*(Z,, djp. )

with the measure .

dppg(w) = [ (7l ™) - [[ (i — 2)* da.

i=1 i<j

Moreover, for each partition m,

m[!(p)m
| @) i) = dyg B g
Eq *Cm
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with the normalization constant

T

1dpp q(z).

q

dp,q = Pp,g(Eq) =

Finally, L2a(0) = (p)m.

Proof. For the orthogonality and the normalization we refer to Corollary XV.4.3 of [FK]
or Proposition 4.10 of [BF]. As the L, form a basis of all polynomials in ¢ dimensions
(use e.g. Proposition 4.3 of [BF] and the fact that the Jack polynomials form a basis), the
completeness of the system (Lkh,)m can be derived by a classical Fourier argument like in the
one-dimensional case for Laguerre polynomials. Another possibility here is to use results of
[dJ]. O

We next turn to multivariate Bessel functions of two arguments &, n € C4:

3.10 Multivariate Bessel functions. According to Kaneko [Kan| (see also Section 2.2 of
[R2]) we put

P)mlm|! CL(1,...,1)
For 1 € E, we now define the functions ¢} € C,(Z, x R) by
Y€1) = Jp(€2/2,7% /2) (3.13)
according to Section 4.2 of [R2].We denote the set of all ¢} with n € E, by 212741‘

_1)\|/m| 1 1

The multivariate Bessel functions appear as limits of the Laguerre functions above. For
the group case with integers p, this was observed already by Faraut [F].

3.11 Lemma. Let p > 2q— 1, and let (my); be a sequence of partitions and (M) C R\ {0}
a sequence with A\, — 0 and lim,_,o, A\, - my, = n € Z,. Then, forp > 2q —1,
p 2
i L (A1)
k—o0 Lmk (0)

uniformly on compact subsets for § € Z,.

= Jp(€%/2,1°/2)

Proof. Writing the expansions of the Laguerre polynomials and Bessel functions above in
terms of so-called shifted Schur functions precisely as on pp. 240-241 of [F], it can be
checked as in Proposition 3.3 of [F] that for all partitions n, the coefficients of the expansion of
L, (1\k]€%)
L5, 0

as well as

tend to the corresponding coefficients of J,(£?/2,1?/2). Moreover, using Eq. (3.8)

(p)n > (Q)nl e (Q)nq > ((Q) [In|/q] )q for D= 2q -1
and |y (z)| <1 for ||z]|2 = 1, we have

Lin, (1€ | ) (Ir:)ﬁ [ @a(€?)] - Akl ™

L, (0)
< - APl
zj: g::j ( n > ((2)1j/q))°
(||| Ag])? %)
<D A e el < e
zj: 3t (@) j/q))?
locally uniformly for ¢ € Z. This readily implies the lemma. O
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Let us return to the characters of the hypergroups (=, x R, 0, ).

3.12 Definition. For A € R\{0} and a partition m, we define the function ¢ = € Cy(Z,xR)
by

& () = e I (IN€2/2) _ A AR €2)/2 Lin(NE?)

m(S 17.,(0) Lin(0)

Wlth £ :=(&,...,£). We denote the set of all @im with A € R\ {0} and partitions m by

p’q. We notice that for integers p, the set Z}D’q agrees with the spherical functions (A, m, ., .)

of pp. 238-241 of Faraut [F] where there the Laguerre polynomials are defined with some
parameter shift.

Furthermore, we denote the set of all Bessel functions ¢} with n € Z, by Z§7q. Again,

for integers p > 1, the set 22 5.4 consists of spherical functions by [F]. We note that Faraut

(p. 241 of [F]) uses a slightly different notion for these Bessel functions; in his notion we have

¥(n,€) = Jp(&%m) = V0o(V2-£1)  (t€R arbitrary).

3.13 Theorem. Let p > 2q — 1. Then all functions in X, 4 := Z;,q U Zg,q are characters of
the hypergroup (24 x R, 0, 4).

(3.14)

Proof. By Corollary 3.5, it suffices to show that all functions in ¥, , are multiplicative and
bounded. Taking Remark 3.2(3) and the results of Section 4 of [R2] into account, this is clear
for all functions in 22 b

The proof for the Laguerre functions in E is slightly more involved. Here we first
consider the group cases with integers p > 2q — 1 Where (Eq xR, 0, 4) is isomorphic with the
orbit hypergroup which appears when the group U, x U, acts on the Heisenberg group H,, ;.
In this cases it is well known that the functions in Ezlv,q correspond to bounded spherical
functions on the associated Gelfand pairs; see [F] and references cited there. For general
parameters p > 2q — 1 we again employ analytic continuation by Carlson’s theorem 2.3. For
this we fix a partition m, A € R*, and (§,a), (n,b) € 24 x R, and consider the function

) :SO})j\,m(é" CL) . 90€\7m(n7 b)
~ Fing / / & n (7 (VE + U+ o - unuw €, a + b~ I tr(gwunu”) )
Bq Uq

A1, — wrw)P? du dw

which has zeros for integer values p > 2¢q. Moreover, F' is analytic on W :={p € C: Rep >
2q — 1}. Furthermore, because of

=1 —d+Dm;| =1
j=1

for p € W and the definition of the Laguerre functions gof\ m above, we see that gof\ m Temains
bounded for p € W locally uniformly for (§,a) € =, x R. Therefore, for a suitable constant
C >0,

|F(p)| < C*+C- |mp,q|/B /U |A(I; — w*w)P~2 | dudw < C* + C? - |k 4]
q

with |kp 4| = O(|p|”*) by (2.4) for p € W. Therefore, by Theorem 2.3, F(p) = 0 for all
p > 2qg — 1 which proves that all elements of Zylj,q are multiplicative for all p > 2¢ — 1. We
finally note that the Laguerre functions in Z}D’q are obviously bounded by their definition. [
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As bounded multiplicative functions « on a commutative hypergroup satisfy ||al/c = 1,
we obtain:

3.14 Corollary. For allp >2q—1, A € R\ {0} and all partitions m, ||g0§m||OO =1.

We next turn to the Plancherel measures 7, 4 of the hypergroups (2, x R,0,,). These
measures are well-known for the group cases with integers p by [BJRW], [BJR2], [F], as well
as for ¢ = 1 in the general case; see e.g. Section 8.1 of [T].

3.15 Theorem. Let p > 2q — 1. If the hypergroup (£, x R, 0, ) is equipped with the Haar
measure according to Theorem 3.1, then the associated Plancherel measure 4 € M1 (3, 4)
according to Section 3.3 is given by

Qq ! m
Tp, q(g q /]R\{O} Z nEl m )\) |/\|de)\

for g € Ll(Zp,q,ﬂp,q) where clearly the set Xy, of functions is identified with its describing
parameter set in the obvious way.

Proof. Let f € C.(E4xR). The classical Plancherel formula for (R, +) says that the classical

Fourier transform
F(z,\) = / flz,t) e at
R

w.r.t. the variable ¢ satisfies

1
1185, = 57 o [ ([ 1PN 0A) () o
=q

For fixed A € R\ {0}, we now consider the renormalized Laguerre functions
Pl (2) = B (1X122/2) /15,(0)

which satisfy ©f (z,t) = eMtgofM (z). We then obtain with the Haar density (3.3), the

transformation formula, and hy, 4(cx) = ¢*P479 - h, ,(z) for ¢ > 0 that

D 22 2
rm = [ 18P ale) do = 5 [ ) A (315)

Moreover, according to Lemma 3.9, the functions ¢ /,/¢l.m form an orthonormal basis of

L*(Z4, hp4(z) dz). Therefore, by Parseval’s identity,

1

CA\,m

) o m(fﬁ') ) hp,q(x) dx

d\ (3.16)

1
118, = 5

As by Section 3.3 and Theorem 3.1 the hypergroup Fourier transform f is given by

/ /QOPA f(z,t) dt hyg(z) do



we obtain from Lemma 3.9 that

ufumpqz—szm L

m>0

- e > [ i Bl

= Hsz,ﬂ,,,q

with the measure 7, , introduced in the theorem. As C.(Z, x R) is dense in L%*(Z, x
R, hy () dx dt), the claim follows. O

We next prove that the characters in ¥, , form the complete dual space X of (Eg xR, 0p4).
The following representation of the topology on X as a Heisenberg fan is due to J. Faraut
who considered the group case with integer p:

3.16 Theorem. Let p > 2qg — 1. Then the set X, 4 1s equal to the complete dual space X of
the hypergroup (E4 % R, 0p,4). Moreover, if X =3, , carries the topology of locally uniform
convergence, then the mapping E : ¥y, o — R with

P € Bpg = (A Ama, . Amyg)

and
wg € Zi,q = (Ovpl)"' apq)

establishes an homeomorphism.

Proof. Consider the subgroup G := {0} x R of (£, x R,0,,) as above and the associated
annihilator

AX,G):={aeX: alg=1}.

This set is a closed subset of the dual X and can by [V2] be identified with the dual space
of the quotient hypergroup (2, x R)/G which was studied in Remark 3.2(3). In fact, this
hypergroup (=4 x R)/G is (isomorphic to) a Bessel-type hypergroup on the Weyl chamber
=, as studied in section 4 of [R2]. We thus conclude readily from Section 4 of [R2] and the
general results on annihilators in [V2] that A(X,G) = Zg,q holds, and that the mapping F
above restricted to EJQD’Q is an homeomorphism.

We next turn to the complete dual X. Here we first conclude from Theorem 3.15 and
Corollary 3.5 that the dual X is the closure of 2117#] in Cp(E, x R) w.r.t. the topology of
locally uniform convergence. To prove that this closure is equal to X, ,, we consider some
a € X C Cy(Z, x R) which is the locally uniform limit of a sequence (W};n,mn)nzl - 2117#]
As the restrictions to G also converge locally uniformly, it follows from the definition of the
gpﬁ’m that (An)n>1 C R\ {0} converges to some A € R. We consider two cases:

(1) If X = 0, then it follows from the definition of the ¢!  that a € A(X,@), and the
preceding consideration implies that o € Zz%,q

(2) Let A # 0. If (mp)y>1 remains bounded, we may choose it as a constant sequence
with m,, = m without loss of generality, and we obtain from A\, — A that a =
lim,, gpl)’\mm = gol)’\’m € Z;,q' We thus may restrict our attention to the case where
at least one component of m,, tends to infinity. In this case we take an arbitrary
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multiindex m and conclude from the convergence of normalized Laguerre polynomials
LI)J\n,m to Ll)’\’m (see Section 3.8) and of gof\mmn to «, the boundedness of characters, the
dominated convergence theorem, and a renormalization as in Eq. (3.15) that

[ a0 Tt d5 [

Zq =

L (Aal2%/2) L (Mnl22/2)  _a a1
:/: i ( Lina(0)Lin(0) cem Yy o(2) d
=q n m
1 Lina (22 /2) L (2%/2) e
= i n ) d
| AP n_m/ﬁ L2, (0)L5,(0) € pa(2) dz

Therefore, as a € Cy(Z, x {0}) C L*(E,, e M=lh, ,(2)), and as the Laguerre polynomi-
als (L% )m form an orthogonal basis of L?(Z,, e~ M=, ,(2)dz), it follows that a = 0
a.s. on’Eq x {0} and thus on Z; x R. This is a contradiction of o being a continuous
character with a/(0,0) = 1.

Summarizing, we conclude from our considerations that X,, = X, and that a sequence
(@inmn)nzl C Z;, 4 can converge to a character without loss of generality only in the following
two cases: Either A, — A # 0 and (my,), is finally constant or A\, — 0. In the first case,
locally uniform convergence obviously appears, and in the second case we have locally uniform
convergence for \,m,, — n € 5, by Lemma 3.11. This completes the proof. O

The following observation is clear from Section 2:

3.17 Lemma. Let (§,a),(n,b) € Z4 x R with §, > 0 and ny; > 0. Then, for p > 2q — 1, the
convolution product O q) ©p.q O(np) s absolutely continuous w.r.t. the Haar measure Wy, 4.

Proof. As absolute continuity is preserved under the continuous projection ® : II, x R —
Ey x R, the lemma follows immediately from Remark 2.9. U

As by the Riemann-Lebesgue Lemma (see [J]) the hypergroup Fourier transform maps
functions in L'(Z, x R,@,,) to Cp-functions on the dual space X, the preceding lemma
implies the following.

3.18 Corollary. Let (§,a) € E, x R with &, > 0. Then, for p > 2q — 1, the hypergroup
Fourier transform of §(¢ 4y on the dual space X is a Cy-function. In particular, for § € =,
with § > 0,
(N2
lim M =0.
A-m1—00 lm(O)

4 A product formula for Laguerre functions

In this section we derive a product formula for the multivariate Laguerre functions b, of
Section 3.8 for p > 2q — 1. For ¢ = 1, this formula was established directly by Koornwinder
[Ko] who also discusses its connection with Heisenberg groups. We here derive the product
formula from the product formula (3.2) for p > 2¢—1 and its degenerated version for p = 2¢—1
according to Remark 3.2(1) for the characters gof\’m € Z;,q of the commutative hypergroups
(Eq xR, 0p4). We here shall use the general approach of [RV] where, embedded into a more
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general setting, it is also explained how for ¢ = 1 Koornwinder’s product formula for the one-
dimensional Laguerre functions corresponds to the Heisenberg-type hypergroup convolution
on [0, 00[xR. We now extend this approach from ¢ =1 to ¢ > 1.

For this we recapitulate from Remark 3.2 that G := {0} x R is a subgroup of the com-
mutative hypergroup (£, x R, 0, ;) for p > 2g — 1. Moreover, 7(z,t) := €' defines a function
7 € Cp(E4 x R) with

|7(z,t)| =1, 7((x,t)) =7(x,t), and 7((x,t)-(0,5)) =7(x,t)-7(0,s)

for all z € =, and s,t € R. In other words, 7 is a partial character of (£, x R,0,,) with
respect to G according to Definition 4.1 of [RV]. We now consider the canonical projection

P:E¢xR— (B xR)/G~E,

according to Remark 3.2(3) and recapitulate that the quotient hypergroup (=, x R)/G agrees
with the corresponding Hermitian Bessel hypergroup on =, of Résler [R2], i.e., the corre-
sponding hypergroup involution is the identity mapping. Following Section 4 of [RV], we
now define a deformed quotient convolution of point measures on =, by

O¢ 87 p.q O == (T - ((5(5,0) Op.q (5(,770))) for &,meZ,. (4.1)

According to Section 4 of [RV], this convolution can be uniquely extended in a weakly contin-
uous bilinear way to a commutative Banach-«-algebra (M (Z,), o7,p,¢) with the total variation
norm as norm. More precisely, by Theorem 4.6 and Corollary 4.7 of [RV], (£, e+, 4) becomes
a hermitian signed hypergroup in the sense of [R1]; see also [RV] and [Ross] for the notion
of signed hypergroups.

Let us compute the convolution (4.1) in an explicit way. Eq. (3.2) for p > 2¢ — 1 shows
that for f € Cy(E,) we have

O ®7p.q On(f) = i fdp(T- (5(5,0) °p.q 5(77,0)))
1q

- / F(2) - € d(6(e.0) opa 5n0)) (:1)
¢ xR

= Fp, q/ / \/52 + un?u* + Ewunu* + m]u*w*@) . et mtr(§wunu®)
A(I; — wrw)P™ 24 du dw. (4.2)

For p = 2q — 1 one obtains a corresponding degenerate version of this formula by using
Remark 3.2(1) and Section 2.14. We notice that this convolution is obviously not probability
preserving and usually even not positivity preserving.

Moreover it follows from Theorem 5.2 of [RV] that for p > 2¢ — 1 and all partitions m
the normalized Laguerre functions

5 (2) = lIrJn(mQ/2) _ (@i ta )/2L (z )

) ="y o 5

form all bounded R-valued multiplicative functions on (=, -, ,). In summary, we have the
following product formula:
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4.1 Corollary. For allp > 2q —1, {,n € Z4, and all partitions m,

Pra(&) - Pha(n /‘qu/ / gom \/{2 + un?u* + Ewunu* + unu* w*§)>
CemHmr(Swunit) A (7, — w*w )P~ du dw. (4.3)

Moreover, for p=2q—1,

GRS U B i B CVGETE TEEE O

. e~ Im tr (P (y)umnu”) H (1 - [ly 12)P=977 du dy, . . ~dyg—1 ds(y,)

with y == (y1,...,y,) and B := {y € C: |jy|a < 1}, where s € M'(S) denotes the uniform
distribution on the sphere S := {y € C%: ||y|l2 = 1}, and P is the map defined in (2.7).

As the convolution e, , , of (4.2) is not mass preserving, there does not exist an associated
translation invariant measure m,,, € M1 (Z,) in the usual hypergroup sense. However,
Theorem 4.6 of [RV] ensures that the Haar measure

dmy 4(€) Hng e - )2 ds e M (=)

1<J

of the usual quotient hypergroup (£, x R)/G ~ Z, also admits the following adjoint relation
for e, . If for f € C.(E,) and £ € Z; we define the translate

Tef G /fdés e O):

then we have for all f,g € C.(E,)

| @eny-gdmy, = [ (Teg)- f amy, (14
—q —q

4.2 Remark. Consider the group case with integer parameters p > 2q — 1. Here, all char-
acters of the double coset hypergroup (£, x R, 0, ) correspond to positive definite spherical
functions on the Heisenberg group H) , and admit therefore a dual product formula, i.e., for
all a,3 € ¥, (see Theorem 3.16) there is a unique probability measure p,5 € M1(Z,,)
such that for all (z,t) € 24 x R,

a(zt) - Bla ) = /E () dpas (). (4.5)

Let us take a(z,t) := eMit. % and f(z,t) = e % for A1, A2 # 0 and

partitions m, n.
If we consider the t-dependence of the product in (4.5) for z = 0, we obtain for A;, Ay > 0

that

Iua?/2) ThOo/2) S~ o g g g SO a2

Lin(0) La(0) [k|<[m]|+|n] Li©)
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for unique coefficients c(m, n, k; A\, A2, p, ¢), which satisfy
C(munuk; )\17/\27177(]) Z 0 and Zc(m,n,k; )\17/\27177(]) =1
k
For instance, for n = 0, we get for 0 < A\; < Ao that
LZ,(M2?/2) = c(m, ks p, q) LY (A22?/2)
k

with nonnegative coefficients c¢(m, k; p, q).
On the other hand, for Ay > 0 and —A1 < Ay < 0 we obtain

B Ax? 2 (| Aa|x? P\ Ao)x? /2
(lf:(O)/Q)‘ (‘llj(‘O)/Q) :Zk:c(m,n,k;)\1,)\2>p>Q)' k(( 1;;_(03) / )

We expect that these and further related results also hold for arbitrary (noninteger) p > 2¢—1.

For ¢ = 1, the formulas above are connected with the discrete Laguerre convolution derived
in [AG].
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