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Abstract

In many real life applications, it is impossible to observe the feature of interest directly. For

example, scientists in Materials Science may be interested in detecting cracks inside objects, not

visible from the outside. Similarly, non-invasive medical imaging techniques such as Positrone

Emission Tomography rely on indirect observations to reconstruct an image of the patient’s

internal organs. In this paper, we investigate optimal designs for such indirect regression

problems. We determine designs minimizing the integrated mean squared error of estimates

of the regression function obtained by Tikhonov or spectral cut-off regularization. We use the

optimal designs as benchmarks to investigate the efficiency of the uniform design commonly

used in applications. Several examples are discussed to illustrate the results, in most of which

the uniform design or a simple modification thereof is demonstrated to be very efficient for the

estimation of the regression function. Our designs provide guidelines to scientists regarding

the experimental conditions at which the indirect observations should be taken in order to

obtain an accurate estimate for the object of interest.

Keywords and Phrases: Indirect Regression, Optimal Design, Uniform Design, Integrated Mean

Squared Error Criterion, Tikhonov Regularization, Spectral Cut-off Regularization, Radon Trans-

form.
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1 Introduction

Indirect or inverse problems arise in numerous applications such as deconvolution problems [c.f. Fan

(1991); Johnstone et al. (2004)], positron emission and X-ray tomography [Johnstone and Silverman

(1990); Cavalier (2000, 2001)], Wicksell’s problem [Groeneboom and Jongbloed (1995)] and the heat

equation [Mair and Ruymgaart (1996)]. The main difference to “classical” inference is that in these

models the unknown density or regression function of interest m cannot be observed directly. Such

problems have been investigated intensively in the last decades, where most of the work focused

on the construction of estimators of m and the determination of their convergence properties with

respect to the L2-risk assuming that m belongs to a certain smoothness class [cf. e.g. Mair and

Ruymgaart (1996); Cavalier and Tsybakov (2002)] or their pointwise properties [c.f. Fan (1991);

Cavalier (2000); Donoho and Low (1992); Bissantz and Birke (2009)]. In many application areas,

e.g. magnetic resonance imaging (MRI), Positron Emission Tomography (PET) or fluorescence

microscopy, the data are sampled using a uniform design [see e.g. Shepp and Vardi (1982)].

It is well known in direct regression problems that an optimal design can improve the efficiency

of statistical inference substantially and there exists an extensive literature on this subject [see

Pukelsheim (2006) or Randall et al. (2007)]. Most authors concentrate on the construction of

optimal designs for efficient parameter estimation, where various estimation methods have been

considered. Optimal designs for parametric regression models minimizing (integrated) mean squared

error criteria have been discussed in Studden (1977), Spruill (1987), Dette and O’Brien (1999) or

Broniatowski and Celant (2007) among others. Designs minimizing the integrated mean squared

error of a nonparametric estimate in direct regression models have been investigated by Mueller

(1984) and Cheng et al. (1998) among others, while Chan (1992) considered optimal designs for

variance estimation. More recent work discussed the construction of sequential optimal designs in

this context [see Park (2000); Park and Faraway (1998) or Efromovich (2008)].

On the other hand optimal design problems for indirect regression models have found much less

attention in the literature so far. Experimental designs have mainly been considered from an empir-

ical point of view in the context of (geo-)physical problems. Among other approaches, Maurer et al.

(2000) proposed statistical criteria for the selection of an experimental design for electromagnetic

geophysical surveys, while Curtis (1999) modified standard optimality criteria to improve the invert-

ibility of the information matrix. Haber et al. (2008) and Horesh et al. (2010) discussed numerical

methods for the determination of optimal designs with respect to different optimality criteria which

take into account both the bias and stochastic variability of the estimate. Applications of opti-

mal designs have been discussed for borehole tomography and impedance tomography. Moreover,

Stark (2008) focused on the Backus-Gilbert resolution approach controlling the mean squared error

(MSE). Van den Berg et al. (2003) applied Bayesian experimental design techniques to an ampli-

tude versus offset experiment. While most authors concentrate on a matrix-vector representation

of operator, model and data, there exists no systematic investigation of optimal design problems for
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indirect regression models. In particular, there has been no investigation of optimal design problems

for estimation techniques in ill-posed problems, which use the singular value decompositions of the

operator K and its inverse to construct a series estimator for the unknown regression function.

The present paper tries to fill this gap and is devoted to the construction of optimal designs mini-

mizing the integrated mean squared error of the indirect regression estimator, which is constructed

by estimating the coefficients in the singular value decomposition of the corresponding operator. In

Section 2.1 we introduce the necessary notation for estimating m by a singular value decomposition

in the indirect regression model (1) defined below. In particular, we discuss two regularization

schemes (Tikhonov and spectral cut-off regularization) and derive explicit expressions for the inte-

grated mean squared error. Section 2.2 is devoted to the solution of the optimal design problems

and the optimal design density is found explicitly. Since the optimal designs depend on the unknown

regression function and regularization parameter, they require a certain amount of prior knowledge

for implementation. We use the optimal designs as benchmarks against which candidate designs

can be assessed. In Section 3 we illustrate our approach through several examples with a one-

dimensional predictor. The robustness of optimal designs with respect to model misspecifications is

investigated, and an assessment of the commonly used uniform design is provided. Examples with a

two-dimensional predictor are considered in Section 4. In particular, we discuss optimal designs for

the Radon transform, which is widely used in modeling of Positron Emission Tomography [John-

stone and Silverman (1990); Cavalier (2000, 2001)], and demonstrate that in most situations the

uniform design or a straightforward modification thereof is close to the optimal designs in terms of

performance. Finally some technical details are given in the Appendix.

2 Indirect regression

2.1 Model specification and mean squared error

We focus on the indirect regression model with random design, i.e. we suppose that we have N

independent pairs of observations (X1, Y1), . . . , (XN , YN) available from the model

Yk = (Km)(Xk) + εk, (1)

where K is a bounded linear operator between L2-spaces L2(µ1) and L2(µ2), which is compact and

injective. Here µ1 and µ2 are probability measures on the corresponding Borel σ-fields of the sets

X1 and X2 with Lebesgue densities wϕ and wψ, respectively. The random design points Xk have a

µ2-density, say h, defined on the design space X2 ⊂ Rd which has a non empty interior. The εk’s

are independent identically distributed errors, independent of the Xk’s, such that

E[Yi|Xi = x] = (Km)(x), Var(Yi|Xi = x) = σ2(x), i = 1, . . . , N.
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Here x denotes the predictor, andm and σ2 are the regression and the variance function, respectively.

The object of interest is the regression function m : X1 → R, an element of L2(µ1), which is only

observable in the form (Km), i.e. after application of the operator K. For the regression function

m we obtain the Fourier expansion

m =
∞∑
j=1

ajϕj (2)

with coefficients aj = 〈m,ϕj〉µ1 , where {ϕj| j ∈ N} ⊂ L2(µ1) is an orthonormal system which is

part of the singular system {λj, ϕj, ψj} of the operator K, i.e.

λjψj = Kϕj, 〈ϕj, ϕi〉µ1 = δij, 〈ψj, ψi〉µ2 = δij, i, j ∈ N.

〈·, ·〉µ1 and 〈·, ·〉µ2 denote the corresponding inner products on L2(µ1) and L2(µ2), respectively, and

λ1, λ2, . . . are the eigenvalues of K. Similarly, the function (Km) ∈ L2(µ2) has an expansion of the

form

Km =
∞∑
j=1

bjψj =
∞∑
j=1

ajKϕj =
∞∑
j=1

λjajψj,

where the Fourier coefficients bj are given by the inner product bj = 〈Km,ψj〉µ2 . A natural estimator

for the coefficient bj is

b̂j =
1

N

N∑
i=1

ψj(Xi)

h(Xi)
Yi. (3)

It is easy to see that this estimator is unbiased for bj, i.e.

E[b̂j] = E[E[
ψj(X1)

h(X1)
Y1|X1]] =

∫
X2

ψj(x)Km(x) dµ2(x) = bj,

and also, unlike the least squares estimator, avoids the inversion of possibly highdimensional and

ill-conditioned matrices. The estimator of the regression function m is now constructed from the

expansion in (2) by an appropriate regularization. For the sake of definiteness we restrict ourselves

to the Tikhonov and the spectral cut-off regularization [Engl et al. (1996)]. For the Tikhonov

regularization we fix a parameter α > 0 and define

m̂α =
∞∑
j=1

λj
λ2j + α

b̂jϕj (4)

as an estimator of the regression function m. Throughout this paper we call this the Tikhonov

estimator. The second estimator is obtained by truncating the expansion (2) at some index M ∈ N,

yielding

m̂M =
M∑
j=1

b̂j
λj

ϕj, (5)
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and is therefore called spectral cut-off estimator. In the following theorem we specify the integrated

mean squared error IMSE(m̂) =
∫
X1

MSE(m̂(z)) dµ1(z) of the two estimators. Throughout this

paper we assume that the parameters of regularization satisfy M → ∞ or α → 0 with increasing

sample size N →∞.

Theorem 1 If the assumptions specified in this section are satisfied, then the integrated mean

squared error of the Tikhonov estimator (4) is given by

IMSE(m̂α) = ΦT (h, α) =
1

N

∫
X2

gα(x){σ2(x) + (Km)2(x)}
h(x)

dµ2(x) (6)

+ α2

∞∑
j=1

a2j
(λ2j + α)2

− 1

N

∞∑
j=1

λ4ja
2
j

(λ2j + α)2
,

where the function gα is defined by

gα(x) =
∞∑
j=1

λ2j
(λ2j + α)2

ψ2
j (x) . (7)

For the spectral cut-off estimator (5) we obtain

IMSE(m̂M) = ΦC(h,M) =
1

N

∫
X2

gM(x){σ2(x) + (Km)2(x)}
h(x)

dµ2(x) (8)

+
∞∑

j=M+1

b2j
λ2j
− 1

N

M∑
j=1

b2j
λ2j
,

where the function gM is defined by

gM(x) =
M∑
j=1

ψ2
j (x)

λ2j
. (9)

2.2 Optimal designs

In this section we will determine designs which minimize the integrated mean squared error of the

estimators m̂α or m̂M , corresponding to Tikhonov and spectral cut-off regularization, respectively.

This criterion depends on the parameter of regularization, the design density h and the functions m

and σ2. We will assume that m and σ2 are known and determine the optimal design density, which

corresponds to the concept of locally optimal designs [see Chernoff (1953)]. As a consequence,

the designs derived here require some preliminary knowledge about the regression curve in the

specific problem under investigation. On the other hand the important application of our results

consists in the fact that the derived optimal designs serve as a benchmark for the commonly used

designs. In particular we use the optimal designs to demonstrate that in many cases the popular

uniform allocation is extremely efficient with respect to the integrated mean squared error criterion.

5



Moreover, the optimal designs determined in this section can be used in more advanced sequential

design procedures as considered by Park (2000); Park and Faraway (1998) or Efromovich (2008) in

the case of direct nonparametric regression.

While for fixed m and σ2 the optimal design density can be found explicitly, the parameter of

regularization usually has to be determined numerically from experimental data. The following

result specifies the optimal design density.

Theorem 2

(1) For fixed α > 0 the optimal design density minimizing the function ΦT (h, α) defined in (6) is

given by

h∗α(x) =

√
gα(x)

√
σ2(x) + (Km)2(x)∫

X2

√
gα(t)

√
σ2(t) + (Km)2(t) dµ2(t)

, (10)

where the function gα is defined by (7).

(2) For fixed M ∈ N, the optimal design density minimizing the function ΦC(h,M) defined in (8)

is given by

h∗M(x) =

√
gM(x)

√
σ2(x) + (Km)2(x)∫

X2

√
gM(t)

√
σ2(t) + (Km)2(t) dµ2(t)

, (11)

where the function gM is defined by (9).

3 Deconvolution with a one-dimensional predictor

In this section we focus on deconvolution problems of periodic functions in L2[0, 1] which are sym-

metric around 0.5 (in the following denoted by L2
s[0, 1]), i.e. we consider the convolution operator

(Km)(x) = Ψ ∗m(x) =

∫ 1

0

Ψ(x− t)m(t) dt,

with m ∈ L2
s[0, 1] the (unknown) function of interest, and Ψ ∈ L2

s[0, 1] the (known) convolution

function. In this case the operator K is self-adjoint with eigenvalues λj =
∫ 1

0
Ψ(t)ϕj(t) dt, j ≥ 1,

and eigenfunctions ϕj(x) = ψj(x) =
√

2 cos(2(j − 1)πx) for j ≥ 2 and ϕ1(x) = ψ1(x) = 1. The

measures µ1 and µ2 are the Lebesgue measure on the interval [0, 1].

In the subsequent examples, we assume that the eigenvalues λj of the operator K are given by

λj = 1/j1+δ and the coefficients aj in the Fourier expansion of the function m are also given by

aj = 1/j1+δ for some δ > 0. Here, the larger δ is, the smoother is Ψ and, in consequence, the
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smoother is the operator K. The functions gα and gM appearing in the optimal densities h∗α(x) and

h∗M(x) defined by (10) and (11), respectively, simplify to

gα(x) =
1

(1 + α)2
+ 2

∞∑
j=2

j2(1+δ)

(1 + j2(1+δ)α)2
cos2(2(j − 1)πx)

and gM(x) = 1 + 2
M∑
j=2

j2(1+δ) cos2(2(j − 1)πx). (12)

We distinguish two cases in the following discussion corresponding to homo- and heteroscedastic

data.

3.1 Homoscedasticity

For δ = 1, σ2 = 1 and various values of the regularization parameter, the optimal design densities

are depicted in Figure 1. It is interesting to note that the optimal design densities for the Tikhonov

estimator appear to be less oscillating compared to the optimal densities for spectral cut-off estima-

tion. On the other hand, both cases yield designs with a similar form as the uniform design except

in neighborhoods of the points 0, 0.5 and 1.

In what follows, we will use the optimal designs as benchmarks and investigate the performance

of the commonly used uniform allocation hU(x) ≡ 1. For brevity we restrict ourselves to spectral

cut-off regularization; Tikhonov regularization yields similar conclusions.

We seek values for M that balance the contributions of the bias and the variance in the integrated

mean squared error. A simple calculation yields for the integrated squared bias in (8)

∞∑
j=M+1

a2j =
∞∑

j=M+1

1

j2(1+δ)
=

1

(2δ + 1)M2δ+1
+ o(M−2δ−1).

On the other hand, the integral of the function gM defined in (12) with respect to the Lebesgue

measure is of order M2δ+3 and so M has to be chosen proportionally to N1/4(1+δ). Therefore we

consider the choice

M =
⌊
c
(N
τ 2

)1/4(1+δ)⌋
+ 1 (13)

for different values of the constant c, where τ 2 =
∫ 1

0
(σ2(x) + (Km)2(x))dx.

We investigate two examples, namely aj = λj = j−2 and aj = λj = j−1.25. In Table 1 we show the

efficiencies of the uniform design hU with respect to the optimal design minimizing the integrated

mean squared error, i.e.

eff(hU ,M) =
ΦC(h∗M ,M)

ΦC(hU ,M)
.
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Figure 1: The optimal densities h∗α(x) and h∗M(x) minimizing the integrated mean squared error of

the Tikhonov estimator and the spectral cut-off estimator, respectively, for δ = 1, σ2 = 1 and some

selected values of the regularization parameters α and M . Top Left: h∗α(x) for α = 0.1, Top Right:

h∗α(x) for α = 0.01, Bottom Left: h∗M(x) for M = 2, Bottom Right: h∗M(x) for M = 5.

We observe that the uniform design is rather efficient for both examples across all scenarios (at

least 83.9% for δ = 1 and 87.6% for δ = 0.25). For the situation of faster decay of coefficients aj

we observe slightly larger advantages of the optimal design. Similarly, for small sample sizes or if

the value of the constant c used to determine M is 1 the improvement through using the optimal

design can be more substantial. The influence of the size of σ2 appears to be negligible.

In practice, the values for aj, j = 1, 2, . . ., σ2 and M are not known prior to the experiment, and so

the optimal design densities are locally optimal. To assess the robustness of locally optimal designs

under model misspecifications, we find 8 locally optimal designs and compare them across these 8

scenarios. The uniform design is also included in this study. We assume λj = j−2, N = 100, and

specify aj = j−2 or j−1.25 (j = 1, 2, . . .), σ2 = 1 or 0.25 and M = 2 or 5. The efficiencies of the 9

designs under consideration are given in Table 2.
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Table 1: Efficiency of the uniform design for different sample sizes, variances and choices of the

regularization parameter M . The value of M , determined by (13), is shown in brackets.

δ = 1

N σ2 = 0.25 σ2 = 1 σ2 = 4

c = 0.5 c = 1 c = 2 c = 0.5 c = 1 c = 2 c = 0.5 c = 1 c = 2

25 .889 (1) .839 (2) .889 (3) .890 (1) .845 (2) .891 (3) .891 (1) .849 (2) .893 (3)

100 .911 (1) .850 (2) .911 (4) .905 (1) .851 (2) .913 (4) .898 (1) .852 (2) .893 (3)

1000 .916 (2) .895 (3) .926 (5) .901 (2) .895 (3) .928 (5) .941 (1) .877 (2) .915 (4)

δ = 0.25

N σ2 = 0.25 σ2 = 1 σ2 = 4

c = 0.5 c = 1 c = 2 c = 0.5 c = 1 c = 2 c = 0.5 c = 1 c = 2

25 .934 (1) .876 (2) .905 (4) .939 (1) .885 (2) .923 (4) .942 (1) .889 (2) .936 (4)

100 .939 (2) .908 (3) .920 (5) .933 (2) .918 (3) .936 (5) .961 (1) .924 (3) .947 (5)

1000 .991 (2) .951 (4) .942 (8) .989 (2) .952 (4) .952 (7) .979 (2) .948 (4) .961 (7)

Table 2: Efficiencies of the 9 designs under investigation for 8 different scenarios with N = 100.

h∗(aj, σ
2,M) is the locally optimal design for the given selection of (aj, σ

2,M), and hU is the uniform

design.

design \ scenario aj = j−2 aj = j−1.25

σ2 = 0.25 σ2 = 1 σ2 = 0.25 σ2 = 1

M = 2 M = 5 M = 2 M = 5 M = 2 M = 5 M = 2 M = 5

h∗(j−2, 0.25, 2) 1 .681 1 .679 .999 .690 1 .685

h∗(j−2, 0.25, 5) .743 1 .740 1 .830 .999 .805 1

h∗(j−2, 1, 2) 1 .683 1 .681 .998 .692 1 .687

h∗(j−2, 1, 5) .740 1 .739 1 .827 .997 .804 .999

h∗(j−1.25, 0.25, 2) .998 .673 .996 .670 1 .683 .999 .677

h∗(j−1.25, 0.25, 5) .747 .999 .743 .997 .835 1 .809 .999

h∗(j−1.25, 1, 2) 1 .678 .999 .676 .999 .688 1 .682

h∗(j−1.25, 1, 5) .745 1 .742 .999 .831 .999 .807 1

hU .850 .926 .851 .928 .900 .920 .889 .925
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Note that all off-diagonal elements equal to 1 result from rounding to three decimal places. We see

from Table 2 that the uniform design is most robust among its competitors with a minimal efficiency

of 85% across all scenarios. For the locally optimal designs we observe an alternating pattern of very

high and relatively low efficiencies. These imply that misspecifications of the coefficients aj and the

variance σ2 hardly affect the efficiency of the locally optimal designs whereas the misspecification

of M can lead to poor design performance. Following this up, we found that the optimal designs for

the same M but different aj and σ2 are very similar, which explains their similar performance. We

further note that optimal designs for M = 5 are slightly more robust than those for M = 2. From

the bottom panel of Figure 1 we see that h∗5(x) despite its oscillating form resembles a uniform

density more closely than h∗2(x).

3.2 Heteroscedasticity - Poisson distribution

In many applications of inverse problems, e.g. tomography, the data are counts. In such situations

the assumption of constant variance is not realistic and a popular distributional assumption is that

of a Poisson distribution where we have Var(Yi|Xi = x) = E[Yi|Xi = x] = (Km)(x). Therefore

it is of considerable interest to compare the results of the previous section with the corresponding

situation in the heteroscedastic case to assess if the uniform design will also do well in this situation.

Again, we restrict ourselves to the case of spectral cut-off regularization and consider the situation

discussed in the previous paragraph, that is λj = aj = 1/j1+δ, where δ > 0. The optimal design

density is obtained from (11) with σ2(x) = (Km)(x) = 1 +
√

2
∑∞

j=2 j
−2(1+δ) cos(2π(j − 1)x). The

resulting densities are directly comparable with those depicted in the bottom panel of Figure 1, but

not shown here since there are no substantial differences.

In Table 3 we present the corresponding efficiencies of the uniform design, where the parameter of

regularization M again is chosen by the rule of thumb in (13), with τ 2 =
∫ 1

0
[Km(x)+(Km)2(x)]dx.

A comparison with Table 3 shows that in the case of heteroscedasticity the uniform design is

similarly efficient as for homoscedasticity.

Table 3: Efficiency of the uniform design in the Poisson model for different sample sizes and various

choices of the regularization parameter M . The value of M is shown in brackets.

N δ = 0.25 δ = 1

c = 0.5 c = 1 c = 2 c = 0.5 c = 1 c = 2

25 .927 (1) .870 (2) .909 (4) .888 (1) .842 (2) .890 (3)

100 .924 (2) .905 (3) .924 (5) .903 (1) .849 (2) .912 (4)

1000 .987 (2) .943 (4) .941 (7) .899 (2) .894 (3) .926 (5)

We investigate a further example corresponding to a sudden change of signal over a certain period.
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The function m(z) is given by

m(z) = 2 I[ 1
4
, 3
4
](z) + 1, (14)

which yields for the coefficients in the Fourier expansion a1 = 2,

aj =

∫ 1

0

m(z)ϕj(z)dz =
2
√

2(−1)j/2

π(j − 1)
, if j ≥ 2, j even

and aj = 0 otherwise. We consider three different functions with which m(z) is convoluted, resulting

in eigenvalues λj = aj, j
−1.25 or j−2, respectively, for j = 1, 2, . . .. Figure 2 shows the optimal

densities for the choice λj = aj and different values of M . These designs look considerably different

from those found for the previous examples, which is due to the different form of the function

Km(x).
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Figure 2: The optimal density h∗M(x) minimizing the integrated mean squared error of the spectral

cut-off estimator in the case of heteroscedasticity for the step function (14) with λj = aj. Left:

M = 2, Right: M = 5.

Again, we use the optimal designs as benchmarks to assess the performance of the uniform design. To

find values for M through (13) we compute the order of the integrated squared bias as
∑∞

j=M+1 a
2
j =

(8/π2)
∑∞

j=M+1, j even(j − 1)−2 = O(1/M). The order of the integrated variance is O(M2δ+3/N) for

δ = 0, 0.25 and 1, respectively, depending on the choice of eigenvalues.

The efficiencies of the uniform design for various scenarios are given in Table 4. As before, the

uniform design is doing remarkably well.

4 Two-dimensional indirect regression problems

In this section we investigate optimal design problems for two dimensional indirect regression prob-

lems. Throughout this section x, z ∈ R2 denote two dimensional variables. Referring to four partic-
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Table 4: Efficiency of the uniform design for the regression function defined in (14) for different

sample sizes and various choices of the parameter M given in brackets.

N λj = aj δ = 0.25 δ = 1

c = 0.5 c = 1 c = 2 c = 0.5 c = 1 c = 2 c = 0.5 c = 1 c = 2

25 .994 (1) .852 (2) .852 (3) .937 (1) .861 (2) .901 (3) .899 (1) .841 (2) .886 (3)

100 .998 (1) .898 (2) .898 (3) .969 (1) .896 (2) .918 (4) .935 (1) .860 (2) .907 (4)

1000 .979 (2) .979 (3) .885 (6) .975 (2) .935 (4) .941 (7) .943 (2) .913 (3) .922 (5)

ular applications given below, we assume that the bases of the underlying L2-spaces are subspaces

of the complex valued functions and that the corresponding bases are indexed by two parameters,

such that the singular value decompositions of the functions m and Km are given by

m(z) =
∞∑
q=0

∑
p

apqϕpq(z), (Km)(x) =
∞∑
q=0

∑
p

bpqψpq(x),

respectively, where the range of the second index p is finite and depends on the parameter q. The

functions ϕpq and ψpq are known orthonormal bases of the L2-spaces, that is∫ ∫
ϕpq(z)ϕrs(z) dµ1(z) =

∫ ∫
ψpq(x)ψrs(x) dµ2(x) = δprδqs,

where ϕ denotes the complex conjugate of the function ϕ and δij is the Kronecker delta. The

singular values λpq satisfy Kϕpq = λpqψpq and λpqapq = bpq.

For brevity we restrict ourselves to the case of spectral cut-off regularization and consider the

estimators

b̂pq =
1

N

N∑
i=1

ψpq(Xi)

h(Xi)
Yi, m̂(z) =

M∑
q=0

∑
p

b̂pq
λpq

ϕpq(z)

for the coefficients bpq and the regression function m, respectively. From Theorem 1 we obtain for

the integrated mean squared error

IMSE(h,M) =
1

N

∫ ∫
gM(x){σ2(x) + (Km)2(x)}

h(x)
dµ2(x)

+
∞∑

q=M+1

∑
p

|bpq|2

λ2pq
− 1

N

M∑
q=0

∑
p

|bpq|2

λ2pq
,

where the function gM is defined by

gM(x) =
M∑
q=0

∑
p

|ψpq(x)|2

λ2pq
(15)
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and |bpq|2 = bpqbpq is the squared complex modulus. The optimal density minimizing the integrated

mean squared error is obtained from equation (11) in Theorem 2.

4.1 Optimal design for the Radon transform

As a special case of the situation discussed in the previous paragraph we consider the Radon

transform, which appears e.g. in the modeling of Positron Emission Tomography (PET) experiments

[e.g. Johnstone and Silverman (1990), Cavalier (2000)]. PET is concerned with the estimation of

the density of positron emission due to a radioactively labeled metabolite which was injected into

a patient’s body. In the two-dimensional case, which we consider here, the aim is to recover the

density of emission in a slice through the patient’s body. In this case the Radon transform R
represents the line integrals through the emission density in the body, taken along all possible lines

through the slice. Hence, R is an injective integral operator mapping a function in the space of

observations (often called brain space) L2(B, µB) of emission densities in the patient’s body to the

detector space L2(D,µD). In what follows we assume B to be the unit circle, parametrized by

polar coordinates (r, ϑ), and in a similar way D to be parametrized by the angle φ ∈ [0, 2π) of the

detected line through the patient’s body, and its impact parameter s ∈ [0, 1].

In our subsequent analysis we model the PET data as noisy discrete observations in the indirect

regression model (1), where m(r, ϑ) is the emission density in the patient’s body, which is to be

recovered from the observations, and the operator K = R is

Rm(s, φ) =
1

2
√

1− s2

√
1−s2∫

−
√
1−s2

m (s cos(φ)− t sin(φ), s sin(φ) + t cos(φ)) dt. (16)

Unlike for the deconvolution problems considered in Section 3 the system of basis functions consid-

ered here is not orthogonal with respect to the Lebesgue measure. We briefly discuss the singular

value decomposition of R, which is required for the subsequent computations. The Lebesgue densi-

ties of the measures µB and µD corresponding to the L2-spaces L2(B, µB) and L2(D,µD) are given by

wϕ(r, ϑ) = r/π for 0 ≤ r ≤ 1, 0 ≤ ϑ < 2π and wψ(s, φ) = 2(1−s2)1/2/π2 for 0 ≤ s ≤ 1, 0 ≤ φ < 2π.

The orthonormal system of basis functions {ϕpq} of the brain space is defined by the Zernike poly-

nomials ϕp,q(r, ϑ) =
√
q + 1 ·Z |p|q (r)eipϑ, q = 0, 1, 2, . . . , p = −q,−q+ 2, . . . , q, where Zk

m(r) denotes

a polynomial of degree m [see Zernike (1934)] and is defined as

Zk
m(r) =

(m−k)/2∑
j=0

(−1)j(m− j)!
j!((m+ k)/2− j)!((m− k)/2− j)!

rm−2j

if m − k is even and Zk
m(r) = 0 if m − k is odd. Similarly, the associated basis functions of the

detector space are given by ψpq(s, φ) = Uq(s)e
ipφ, q = 0, 1, 2, . . ., p = −q,−q + 2, . . . , q, where

Uq(cos(κ)) = sin ((q + 1)κ) / sin(κ) is the qth Chebyshev polynomial of the second kind [see Szegö

13



(1975)]. Finally, the singular values of the operator R are given by λpq = (q + 1)−1/2 for every

(p, q) ∈ {q ∈ N0; p = −q,−q + 2, . . . , q}, and Rϕpq = λpqψpq. For further details see Johnstone

and Silverman (1990), who studied the PET problem in a density estimation framework. In what

follows we will derive the optimal design density for the Radon transform.

Note that the function gM defined in (15) does not depend on the variable φ, that is

gM(s) = gM(s, φ) =
M∑
q=0

∑
p

(q + 1)U2
q (s) =

M∑
q=0

(q + 1)2U2
q (s). (17)

It follows from Theorem 2 that the optimal density is given by

h∗M(s, φ) =
π2

2

√
σ2(s, φ) + (Rm)2(s, φ)

√
gM(s)∫ 1

0

∫ 2π

0

√
σ2(t, ρ) + (Rm)2(t, ρ)

√
1− t2

√
gM(t) dρdt

,

where the function gM(s) is defined in (17). In what follows, we investigate the performance of the

uniform design with constant density hU(s, φ) ≡ 1 on [0, 1]× [0, 2π] in four examples.

4.2 Specific Examples

We consider: Two objects positioned in the center of the scan field, a solid disc and a polar rose, the

latter representing an object with cracks appearing in several places as e.g. observed in materials

science; a disc shifted to the right of the scan field; a double disc having positive mass throughout

the scan field. A schematic of a slice of each example object, embedded in the detector ring, is

shown in Figure 3.

For each slice of a solid disc of radius r0 < 1, positioned in the middle of the scan field, we obtain

m(r, θ) = 1 if 0 ≤ r ≤ r0, 0 ≤ θ ≤ 2π, and m(r, θ) = 0 otherwise.

Since the observations in tomography applications are usually photon counts, we assume the obser-

vations Y |(S,Φ) = (s, φ) come from a Poisson distribution with parameter

Rm(s, φ) = σ2(s, φ) =
√
r20 − s2/

√
1− s2 I[0,r0](s).

Since Rm(s, φ) does not depend on φ the optimal design density h∗M(s, φ) simplifies to

h∗M(s, φ) =
π

4

√
gM(s)

√√
r20−s2√
1−s2 +

r20−s2
1−s2∫ r0

0

√
gM(t)

√√
r20−t2√
1−t2 +

r20−t2
1−t2 dt

if 0 ≤ s ≤ r0, 0 ≤ φ ≤ 2π

and h∗M(s, φ) = 0 otherwise. Obviously, this design would be useless for objects that extend beyond

distance r0 from the center.

For a polar rose with 8 petals and choosing 0.5 for the maximal extension from the center, each

slice is described by

m(r, θ) = 1 if 0 ≤ r ≤ 0.5 | cos(4θ)|, 0 ≤ θ ≤ 2π (18)
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Figure 3: Schematic of slices of the example objects. Top left: Disc with radius 0.5 positioned in

the center of the detector ring. Top right: Polar rose with 8 petals positioned in the center of the

detector ring. Bottom left: Disc of radius 0.5 positioned on the right hand side of the detector ring.

Bottom right: Double disc with higher density towards its center.

and m(r, θ) = 0 otherwise. The graphs in Figure 4 show the optimal design density h∗M(s, φ) for the

centered disc with radius r0 = 0.5 and the polar rose for different values of M . For both objects,

the densities are zero for s > 0.5.

Numerical calculations suggest that the integrated squared bias is approximately of order M−1

while the integrated variance is of order M3/N . To obtain a balance of orders we consider the

choice M = bc(N/τ 2)0.25c + 1 for the parameter in the spectral cut-off estimator, where τ 2 =∫ 1

0

∫ 2π

0
(Rm(s, φ) + (Rm)2(s, φ)) dµD(s, φ).

In the left panel of Table 5 we show the efficiencies of the uniform design hU for scanning the centered

disc for various values of N and M , while the efficiencies for scanning the polar rose defined in (18)

are displayed in the right panel. These are reasonably good when M is small, i.e. when the bias

dominates the IMSE, but rather poor for larger values of the regularization parameter.
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Figure 4: Plots of selected optimal densities h∗M(s, φ) for scanning a centered disc and a polar rose

for different values of M . Top left: Centered disc, M = 5, Top right: Centered disc, M = 10,

Bottom left: Polar rose, M = 5, Bottom right: Polar rose, M = 10.

Table 5: Efficiency of the uniform design hU for estimating a disc and a polar rose in the middle of

the scan field, respectively, for different sample sizes and various choices of the parameter M used

in the spectral cut-off regularization. The values of M are given in brackets.

N centered disc polar rose

c = 0.5 c = 1 c = 2 c = 0.5 c = 1 c = 2

25 .751 (2) .696 (3) .607 (6) .830 (2) .691 (4) .632 (8)

100 .833 (3) .658 (5) .611 (9) .910 (3) .725 (6) .646 (11)

1000 .915 (4) .733 (8) .620 (15) .950 (5) .842 (9) .679 (18)

10000 .962 (7) .801 (13) .623 (26) .981 (8) .901 (16) .661 (32)
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For calculating the optimal density we used the assumption that we know the exact shape of

the object to be scanned. In some applications, e.g. when looking for interior cracks in an ob-

ject in materials science, information on the outer shape and position of the object may well be

available. Using that the objects do not extend more than 0.5 units from the center of the detec-

tor circle, it seems reasonable to consider the uniform design with constant density hU,0.5(s, φ) ≡
π/(
√

0.75+2 arcsin(0.5)) ≈ 1.642 on [0, 0.5]× [0, 2π]. The efficiencies of this design show a consider-

able improvement compared with the uniform design on the larger space: Across the same scenarios

as in Table 5, the minimal efficiency of hU,0.5 is 96.3% and 91.2%, respectively, for estimating the

centered disc and the polar rose.

We next consider the scanning of a solid disc with radius r0, but this time the object is not located

in the center of the scan field. For the choice r0 = 0.5 for the radius and (0.5, 0) for the center of

the object, we obtain for its density

m(r, θ) = 1 if 0 ≤ r ≤ cos(θ), 0 ≤ θ ≤ 2π

and m(r, θ) = 0 otherwise.

As an example of an object which has positive density everywhere in the scan field we consider two

nested discs of different density. A slice of this double disc is described by

m(r, θ) =

{
1 if 0 ≤ r0, 0 ≤ θ ≤ 2π

0.5 if r0 < r ≤ 1, 0 ≤ θ ≤ 2π,

i.e. the density of the object is higher towards the center.

The optimal densities for scanning the shifted disc and the double disc are depicted in Figure 5 for

different values of the regularization parameter M . Unlike the previous examples, for the shifted

disc the area with zero density depends on both s and φ. For the double disc, the optimal densities

increase with s as s→ 1.

In the left panel of Table 6 we show the efficiencies of the uniform design hU for estimating the

shifted disc for various values of N and M while the efficiencies for estimating the double disc are

displayed in the right panel. For the shifted disc, the uniform design only does well in situations

where the regularization parameter M is small, i.e. where the integrated squared bias dominates

the IMSE. Unlike in the situation of Example 1, where this problem could be fixed by reducing the

domain of the uniform design accordingly, there is no obvious way around this issue in this case.

The double disc can be estimated reasonably well using the uniform design.

5 Conclusions

This is the first paper to provide a systematic approach to optimal design for indirect regression

problems. We have focused on the derivation of designs leading to an efficient estimation of the
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Figure 5: Plots of selected optimal densities h∗M(s, φ) for scanning a shifted disc and a double disc,

respectively, for different values of M . Top left: Shifted disc M = 5, Top right: Shifted disc,

M = 10, Bottom left: Double disc, M = 5, Bottom right: Double disc, M = 10.

Table 6: Efficiency of the uniform design hU for estimating a non-centered disc and a double disc

in the middle of the scan field, respectively, for different sample sizes and various choices of the

parameter M used in the spectral cut-off regularization. The values of M are given in brackets.

N shifted disc double disc

c = 0.5 c = 1 c = 2 c = 0.5 c = 1 c = 2

25 .679 (2) .568 (3) .541 (6) .856 (2) .860 (3) .863 (5)

100 .693 (3) .581 (5) .543 (9) .873 (2) .866 (4) .866 (7)

1000 .864 (4) .644 (8) .554 (15) .920 (3) .873 (6) .866 (12)

10000 .923 (7) .702 (13) .559 (26) .937 (5) .879 (10) .867 (20)
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unknown regression function m. Using the singular value decomposition of the operator K, an

expression for the integrated mean squared error of a natural series estimator was derived. Designs

minimizing this expression were found explicitly. These designs serve as benchmarks for commonly

used designs in indirect regression. Moreover they can be used in more advanced sequential design

procedures as considered by Park (2000); Park and Faraway (1998) or Efromovich (2008) in the

case of direct nonparametric regression. In this paper we worked in the first named direction and

investigated the efficiency of the uniform design in several situations of practical interest. It was

demonstrated that the uniform design is performing efficiently under most scenarios. In particular,

the uniform design is rather robust with respect to the choice of the regularization parameter.
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A Appendix: Proofs

A.1 Proof of Theorem 1

We restrict ourselves to the spectral cut-off estimator. The arguments for the Tikhonov estimator

(4) are similar and therefore omitted for brevity. First note that the bias of the spectral cut-off

estimator m̂M is given by

E[m̂M(z)−m(z)] =
M∑
j=1

E[b̂j − bj]
λj

ϕj(z)−
∞∑

j=M+1

bj
λj
ϕj(z) = −

∞∑
j=M+1

bj
λj
ϕj(z). (19)

For the variance of the estimators we have from definition (3) that

Var(b̂j) =
1

N

{
Var(E[Z1jY1|X1]) + E[Var(Z1jY1|X1)]

}
=

1

N

∫
X2

{σ2(x) + (Km)2(x)}ψ2
j (x)

h(x)
dµ2(x)−

b2j
N
,

where the random variables Zij are given by Zij = ψj(Xi)/h(Xi). The variance of the spectral

cut-off estimator is Var(m̂M(z)) =
∑M

l,k=1 Cov(b̂l, b̂k)ϕl(z)ϕk(z)/(λkλl).

Now note that the functions {ϕ1, ϕ2, . . . } define an orthonormal basis of L2(µ1), which implies for

the integrated variance that∫
X1

Var(m̂M(x))dµ1(x) =
M∑
j=1

Var(b̂j)

λ2j

=
1

N

∫
X2

gM(x){σ2(x) + (Km)2(x)}
h(x)

dµ2(x)− 1

N

M∑
l=1

b2l
λ2l
,
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where the function gM is defined in (9). By a similar argument applied to (19), we obtain for the

integrated mean squared error of the estimator the expression (8), which proves the second assertion

of Theorem 1. 2

A.2 Proof of Theorem 2

Both cases are shown similarly and we restrict ourselves to the case (2) of spectral cut-off regular-

ization. First note that for fixed M ∈ N the optimization of the integrated mean squared error (8)

reduces to minimization of the expression

f(h) =

∫
X2

gM(x){σ2(x) + (Km)2(x)}
h(x)

dµ2(x)

with respect to the design density h. Now Cauchy’s inequality yields

f(h) ≥
(∫
X2

√
gM(x)

√
σ2(x) + (Km)2(x) dµ2(x)

)2

,

where there is equality if and only if

h∗M(x) =

√
gM(x)

√
σ2(x) + (Km)2(x)∫

X2

√
gM(t)

√
σ2(t) + (Km)2(t) dµ2(t)

. 2
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