
SFB 

823 

A nonparametric constancy A nonparametric constancy A nonparametric constancy A nonparametric constancy 

test for copulas under mixing test for copulas under mixing test for copulas under mixing test for copulas under mixing 

conditionsconditionsconditionsconditions    

D
is

c
u

s
s

io
n

 P
a

p
e

r 

 
Maarten van Kampen, Dominik Wied 

 

 

 

 
Nr. 36/2010 

 

 

 

 

 

 

 

 

 



 



A nonparametric constancy test for copulas under

mixing conditionsI

Maarten van Kampena,b, Dominik Wiedb

aRuhr Graduate School, D-45128 Essen, Germany
bFakultät Statistik, Universität Dortmund, D-44221 Dortmund, Germany

Abstract

This paper generalizes some recently proposed tests which examine if a copula
is constant over time. The i.i.d. assumption underlying these tests is relaxed
by imposing only strong mixing and it is shown that the resulting tests are
consistent against the alternative of a structural break.
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1. Introduction

In econometric applications dependence measures such as linear correla-
tions often change over time. A fortiori, the same applies to copulas. Patton
(2006) and Jondeau and Rockinger (2006) examine if a time-varying copula
model represents the dependence structure of the data better than a time-
invariant copula. A serious drawback of their approach is that the results
might depend on the choice of the functional form of the copula and the way
the copula is allowed to change over time.

Recently, Busetti and Harvey (2008) and Krämer and Van Kampen (2009)
proposed a nonparametric test to examine whether a copula is constant over
time. The nonparametric test avoids the specification of a specific functional
form as well as the specification of a transition mechanism. The test is based
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on the stationarity test of De Jong et al. (2007), who modified the original
KPSS test (see Kwiatkowski et al. (1992)) by using indicators for whether
the data is below or above the median instead of using deviations from the
mean. Busettti and Harvey (2007) constructed a quantile constancy test
which generalizes the previous idea for arbitrary quantiles. The underlying
idea of the copula constancy test is to use the fact that a (bivariate) copula
C(τ1, τ2) gives the probability that the each of random variables takes values
below their τi-quantile, i = 1, 2, and to construct suitable indicators for this
event. This idea can easily be extended to more than two dimensions.

The copula constancy test has been developed under the assumption that
the observations are independent and identically distributed. This assump-
tion is often violated in empirical applications. Kwiatkowski et al. (1992)
and De Jong et al. (2007) constructed their tests under the assumption that
the observations are strong mixing, thereby allowing for weak dependence.

In this paper we likewise relax the i.i.d. assumption underlying the copula
constancy test by imposing strong mixing conditions. We also show that the
test has the same asymptotic null distribution for filtered observations. This
result is useful if the marginal distributions are changing over time. Finally,
we show that the resulting test is consistent against the alternative of a single
structural break.

2. Testing for constancy under i.i.d. assumption

Consider the bivariate i.i.d. series {yt}Tt=1 with yt = (y1t, y2t). Let ξi(τi)
be the τi-quantile of yit where τi ∈ (0, 1), i = 1, 2. The copula C(t)(τ1, τ2)
gives the probability that each variable takes values below or equal to its
τi-quantile

C(t)(τ1, τ2) = P (y1t ≤ ξ1(τ1), y2t ≤ ξ2(τ2))

We examine if this probability changes over time. The hypothesis pair is

H0 : C
(t)(τ1, τ2) = C(τ1, τ2) for all t = 1, . . . , T

H1 : C
(t)(τ1, τ2) ̸= C(t+1)(τ1, τ2) for some t ∈ {1, . . . , T − 1}

where C(τ1, τ2) is a time-invariant copula.
The test is based on indicators of the event {y1t ≤ ξ1(τ1), y2t ≤ ξ2(τ2)}.

Let I(·) be the indicator function taking the value 1 if the event between
brackets is true and zero otherwise. Define

I(yt, ξ(τ)) := I(y1t ≤ ξ1(τ1), y2t ≤ ξ2(τ2))
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and let CT (τ1, τ2) := T−1
∑T

t=1 I(yt, ξ(τ)) be the empirical copula. Note that
under the null hypothesis I(yt, ξ(τ)) is a Bernoulli variable with probability
C(τ1, τ2) and thus Qt := Q(yt, ξ(τ)) := C(τ1, τ2)− I(yt, ξ(τ)) has expectation
zero and variance C(τ1, τ2)(1− C(τ1, τ2)).

Define ST (r) := 1/(σ
√
T )
∑[rT ]

t=1 Qt where σ2 = C(τ1, τ2)(1 − C(τ1, τ2)),
r ∈ [0, 1] and [rT ] denotes the integer part of rT . Then, using a functional
central limit theorem (FCLT), we have

ST (·)
d−→ B(·) (1)

where B denotes a Brownian motion.
Replacing C(τ1, τ2) by its empirical estimate CT (τ1, τ2) gives, using the

terminology of Busetti and Harvey (2008), the bivariate τ−quantics

BIQ(yt, ξ(τ)) := CT (τ1, τ2)− I(yt, ξ(τ))

Note that these are the mean deviations of Qt, i.e. BIQ(yt, ξ(τ)) = Qt −
T−1

∑T
t=1Qt. Therefore, for S̃T (r) := 1/(σ

√
T )
∑[rT ]

t=1 BIQ(yt, ξ(τ)) we have

S̃T (·)
d−→ V (·)

where V (r) := B(r)− rB(1) denotes a Brownian bridge.
The BIQ(yt, ξ(τ)) are unobserved since they depend on the popula-

tion quantile ξ(τ). Let ξ̂(τ) denote the sample quantile, let ĈT (τ1, τ2) :=
T−1

∑T
t=1 I(yt, ξ̂(τ)) be the empirical copula based on the sample quantiles

and let BIQ(yt, ξ̂(τ)) = ĈT (τ1, τ2)−I(yt, ξ̂(τ)) be the corresponding bivariate
τ -quantics. Define

ŜT (r) := 1/(σ
√
T )

[rT ]∑
t=1

BIQ(yt, ξ̂(τ)) (2)

Then Busetti and Harvey (2008) show that

sup
r∈[0,1]

∣∣∣ŜT (r)− S̃T (r)
∣∣∣ p−→ 0

The copula constancy tests are different functionals of ŜT (·). Using the
continuous mapping theorem we obtain the asymptotic distribution under
the null hypothesis. The test based on the squares is given by

1

T 2σ̂2
iid

T∑
t=1

(
t∑

j=1

BIQ(yj, ξ̂(τ))

)2
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where σ̂2
iid := ĈT (τ1, τ2)(1 − ĈT (τ1, τ2)) is the estimate of σ2. The test is

distributed as Cramér-von Mises and some useful critical values are 0.743
(1%), 0.461 (5%) and 0.347 (10%).

Krämer and Van Kampen (2009) propose complementary tests based on
the maximum and the range of ŜT (·)

1√
T σ̂iid

max
t=1,...,T

∣∣∣∣∣
t∑

j=1

BIQ(yj, ξ̂(τ))

∣∣∣∣∣
1√
T σ̂iid

[
max

t=1,...,T

t∑
j=1

BIQ(yj, ξ̂(τ))− min
t=1,...,T

t∑
j=1

BIQ(yj, ξ̂(τ))

]

Some useful critical values for the maximum test are 1.63 (1%), 1.36 (5%),
1.22 (10%) and for the range test are 2.001 (1%), 1.747 (5%) and 1.620 (10%).

3. Testing for constancy under a mixing assumption

In this section we relax the i.i.d. assumption by imposing strong mixing
conditions. For i = 1, 2, the sequence {yit}∞t=−∞ is said to be strong-mixing
if limm→∞ α(m) = 0, where

α(m) := sup
t

sup
A∈Ft

−∞,B∈F∞
t+m

|P (A ∩B)− P (A)P (B)|

and, F t
−∞ and F∞

t+m are sigma-fields based on respectively (. . . , yi,t−1, yit) and
(yi,t+m, yi,t+m+1, . . .), see e.g. Davidson (1994, p.209). So a strong mixing
sequence satisfies asymptotic independence.

To construct a copula constancy test, we adopt similar assumptions as in
De Jong et al. (2007).

Assumption 1.

1. The observations yit are strictly stationary and ξi is the unique popu-
lation quantile of yit.

2. yit is strong mixing with mixing coefficient α(m) = O(m−p/(p−2)) for
some finite p > 2 (see remark (i)).

3. yt − ξ has a continuous joint density f12(u1, u2) in a neighborhood
[−η, η]2 of 0 for some η > 0, and inf(u1,u2)∈[−η,η]2 f12(u1, u2) > 0

4. Long run variance σ2 ∈ (0,∞)
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Remark:

(i) Application of a FCLT for mixing variables requires that yit is Lp −
boundend, E|yit|p < ∞, for some finite p > 2 (see Davidson 1994,
p.482).

(ii) The bound on the mixing coefficients is required to establish Lemma
1 in De Jong et al. (2007). This restriction allows, for example, for
ARMA processes with Gaussian innovations, see Withers (1981). Lind-
ner (2009, Theorem 8) gives conditions such that GARCH processes
are strong mixing. However, in this case the copula constancy tests are
subject to size distortions (see discussion below).

(iii) The joint density f12(u1, u2) can written as

f(u1, u2) = c(F1(u1), F2(u2))f1(u1)f2(u2)

where fi(·) and Fi(·) are respectively the marginal density and distri-
bution of yit − ξi, and c(·, ·) is the copula density. Assumption 1.3 is
satisfied if c(F1(u1), F2(u2)) and fi(ui), i = 1, 2, are nonzero and con-
tinuous for (u1, u2) ∈ [−η, η]2. Note that we do not require that the
copula density is continuous on its complete domain [0, 1]2.

Under Assumption 1, ST (·) satisfies a functional central limit theorem.

Provided T−1E(
∑T

t=1Qt)
2 → σ2 with 0 < σ2 < ∞, we have ST (·)

d−→ B(·),
see e.g. Corollary 29.7 of Davidson (1994). In addition

S̃T (·)
d−→ V (·). (3)

The HAC estimator, σ̄2, for σ2 is given by

σ̄2 = T−1

T∑
t=1

T∑
s=1

k((t− s)/γT ) ·Qt ·Qs (4)

where the bandwidth, γT , and the kernel, k(·), satisfy the following condi-
tions:
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Assumption 2.

1. k(·) satisfies
∫∞
−∞ |ψ(w)|dw <∞, where

ψ(w) = (2π)−1

∫ ∞

−∞
k(x) exp(−iwx)dw.

2. k(·) is continuous at all but a finite number of points, k(x) = k(−x),
|k(x)| ≤ l(x) where l(x) is non-increasing and

∫∞
0

|l(x)|dx < ∞, and
k(0) = 1.

3. γT/
√
T → 0, and γT → ∞ as T → ∞.

Remark:

(i) Assumption 2 ensures that the variance estimate remains nonnegative.
The Bartlett, Parzen, Tukey-Hanning and Quadratic Spectral kernel
satify this assumption. The truncated kernel does not satify this as-
sumption, see De Jong and Davidson (2000).

(ii) Assumption 2.3 strengthens the rate of the bandwidth parameter com-
pared to De Jong et al. (2007). Andrews (1991) points out that optimal
growth rates of γT (in terms of a MSE criterion) are typically less than
o(T 1/2). Imposing o(T 1/2) can therefore be regarded as a mild require-
ment.

The HAC estimate (4) is not feasible since Qt depends on the true un-
observed copula C(τ1, τ2) and on the population quantile ξ(τ). Replacing
C(τ1, τ2) by the empirical copula CT (τ1, τ2) and ξ(τ) by the sample quantile
ξ̂(τ) gives the feasible HAC estimator

σ̂2 = T−1

T∑
t=1

T∑
s=1

k((t− s)/γT ) ·BIQ(yt, ξ̂(τ)) ·BIQ(ys, ξ̂(τ)). (5)

We make the following assumption on the empirical quantile process.

Assumption 3.
√
T (ξ̂i(τ)− ξi(τ)) = Op(1), for i = 1, 2.

Remark: Assumption 3 follows from asymptotic normality of
√
T (ξ̂i(τ) −

ξi(τ)). Sufficient conditions for asymptotic normality are given by Koenker
(2005, p.71-72) for the i.i.d. case, De Jong et al. (2007) for the strong mixing
case but only for τ = 0.5 and Sun and Lahiri (2006) for the general strong
mixing case.

Theorem 1 establishes the result of the previous section for the case that
the observations are strong mixing. The proof is given in Appendix A.
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Theorem 1. Under Assumptions 1, 2 and 3

ŜT (·)
d−→ V (·)

and σ̂2 p−→ σ2.

Busetti and Harvey (2008) show that the test is subject to size distortions
if the marginal distributions are changing over time. This is, for instance,
the case if the series exhibit stochastic volatility. A solution is to use the
standardized observations yit(θ̂T ) := xit/hit(θ̂T ) where xit are the observa-
tions, h2it(θ̂T ) is an estimate of the volatility and θ̂T is an q × 1 vector of
parameter estimates of the true population parameter, θ0, at sample size T .
This approach is only legitimate if we can substitute yt(θ0) by yt(θ̂T ) and
σ2
t (θ0) by σ

2
t (θ̂T ) in Theorem 1.

Since marginal distributions can also change for other reasons than stochas-
tic volatility, we extend Theorem 1 to the general case where yt(θ) depends
on a parameter vector θ ∈ Θ, and where Θ denotes the compact parameter
space. Let ξ(θ, τ) denote the quantile function of yt(θ) and let ŜT (θ, ·) be as
ŜT (·) but with yt replaced by yt(θ).

We impose the following additional assumption:

Assumption 4.

1.
√
T (θ̂T − θ0) = Op(1).

2. For ε > 0 and finite constants cy,ε, cξ > 0, supθ∈Θ |∂y(θ)/∂θ| < cy,ε
with probability 1− ε and supθ∈Θ |∂ξ(θ, τ)/∂θ| < cξ.

3. yt(θ)−ξ(θ, τ) has a continuous differentiable joint density f12(u1, u2) in
a neighborhood [−η, η]2 of 0 for some η > 0, and inf(u1,u2)∈[−η,η]2 f12(u1, u2) >
0.

Remark:

(i) Assumption 4.1 follows from asymptotic normality of
√
T (θ̂T−θ0) which

is satisfied for GARCH models estimated by maximum likelihood (see
e.g. Gouriéroux (1997, p.44)).

(ii) Suppose the volatility hit(θ) (in the example of the main text) is es-
timated using a GARCH model. Then Assumption 4.2 is satisfied if
∂hit(θ)/∂θ exist and the volatility is unequal to zero. Existence of
∂hit(θ)/∂θ is also imposed to obtain the asymptotic variance-covariance
matrix.
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Theorem 2. Under Assumptions 1, 2, 3 and 4 we have

ŜT (θ̂T , ·)
d−→ V (·)

and σ̂2(θ̂T )
p−→ σ2.

An application of the continuous mapping theorem after Theorem 1 or 2
gives the same tests as established in the i.i.d. case.

Finally, we can evaluate the test at several τ values or construct an over-
all constancy test by combining BIQ values defined on different quadrants.
Although we focus in the remainder of this paper on the asymptotic power
and direct application of the copula constancy test described above, an inter-
esting complementary approach is to make use of the relationship between
dependence measures such as Spearman’s ρ and the copula (see Nelson (2006,
chapter 5)). Fluctuation tests for Spearman’s ρ, such as the one proposed
in Dehling et al. (2010), can be written as a properly scaled integral (with
respect to τ) of the partial sums of the BIQ values as well and can so be seen
as an alternative way to analyze if the copula is constant.

4. The asymptotic power of the test

4.1. Consistency

We consider first a fixed alternative of a single break in the copula at
some fraction z∗ ∈ (0, 1) of the sample. Let C(τ1, τ2) and C

∗(τ1, τ2) be two
different bivariate copulas. The copulas C(τ1, τ2) and C∗(τ1, τ2) may come
from the same family but should then have different parameter values.

The hypothesis pair is

H0 : C(t)(τ1, τ2) = C(τ1, τ2)

H1 : C(t)(τ1, τ2) = (1− g(t, T ))C(τ1, τ2) + g(t, T )C∗(τ1, τ2) (6)

where g(t, T ) = 0 for t/T ≤ z∗ and g(t, T ) = ω for t/T > z∗, ω ∈ (0, 1].
Define

Q1(yt, ξ(τ)) := (1− g(t, T ))C(τ1, τ2) + g(t, T )C∗(τ1, τ2)− I(yt, ξ(τ))

Theorem 3. Provided that T−1E
(∑T

t=1Q
1(yt, ξ(τ))

)2
→ σ2

1 for σ
2
1 ∈ (0,∞),

the copula constancy tests are consistent against the alternative (6).
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Remark:

(i) Note that under the fixed alternative (6), the variance of the terms in
the partial sum process change over time.

(ii) In the special case when observations are i.i.d. the condition stated in
the theorem is clearly satisfied since

T−1E

(
T∑

j=1

Q1(yj, ξ(τ))

)2

= z∗C(τ1, τ2)[1− C(τ1, τ2)] + (1− z∗)C1(τ1, τ2)[1− C1(τ1, τ2)],

where C1(τ1, τ2) := (1− ω)C(τ1, τ2) + ωC∗(τ1, τ2).

4.2. Local Alternatives

Next consider a sequence of local alternatives

(1− g(t, T ))C(τ1, τ2) + g(t, T )C∗(τ1, τ2), (7)

where g(t, T ) : [0, T ] × R+ → (0, 1) is defined as g(t, T ) = T−1/2h(t/T ) for
some function h(t/T ) satisfying supx h(x) <∞. Berg and Quessy (2009) use
a similar setup to analyze the asymptotic behavior of goodness of fit tests
for copulas.

Theorem 4. Under local alternatives (7)

ŜT (·)
d−→ σ1

σ
V (·) + 1

σ
[C(τ1, τ2)− C∗(τ1, τ2)]

(∫ (·)

0

h(s)ds− (·)
∫ 1

0

h(s)ds

)

and σ̂2 p−→ σ2
1.

This shows that the copula constancy test is inconsistent against local
alternatives (7) but does converge to a fixed limit. In section 5.2 we show by
simulation that if the magnitude of ω and the difference between the copulas
C(τ1, τ2) and C

∗(τ1, τ2) is sufficiently large, then the power might still tend
to 1.

5. Finite sample

In this section we examine the finite sample properties of the test. The
results are generated using Ox (see Doornik (2005)) and the G@RCH package
of Laurent and Peters (2006).
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5.1. Size of test

To examine the size of the test, we simulate 50000 replications of 500
observations from the following Copula-ARMA-GARCH model

xit = θ1xi,t−1 + εi,t + θ2εi,t−1

εit = hitε
†
it (8)

h2it = θ3 + θ4ε
2
it + θ5h

2
i,t−1

where ε†it = Φ(uit), Φ(·) denotes the univariate normal CDF and ut =
(u1t, u2t) is simulated from a copula C with parameter such that Kendall’s
tau equals 0.25.

For the ARMA (and GARCH) recursion, we simulate 1000 additional
observations and discard these afterwards. We examine the properties of the
test using a Clayton, Gaussian and Student copula where we assume that the
latter has 4 degrees of freedom. Following Kwiatkowski et al. (1992), we use
the Bartlett window with respectively bandwidth rule γ1T = [4(T/100)1/4]
and γ2T = [12(T/100)1/4] to calculate the HAC estimator of the variance.

First, we consider the size of the test if the DGP is not subject to stochas-
tic volatility (i.e. θ3 = 1, θ4 = 0 and θ5 = 0). Table A.1 shows that the size
of the test is close to its nominal value for the i.i.d. case (i.e. θ1 = θ2 = 0)
but it exceeds the nominal value if there exists serial correlation in the data
and we do not use a HAC estimator. If serial correlation is high then, even
if we use a HAC estimator, there are still size distortions. As long as the
data is not independently distributed, the size based on γ2T is closer to its
nominal value. These results are robust among the different copulas.

[Table A.1 about here]

Second, to illustrate the effect of stochastic volatility we set θ1 = θ2 = 0
and let θ4 and θ5 take positive values. Table A.2 shows the size of the test
as applied to the original data and without HAS estimator. We also give the
results for filtered data yit(θ̂) = xit/hit(θ̂), where θ̂ = (θ̂3, θ̂4, θ̂5)

′ are the ML
estimates. In summary, we have that the test is subject to size distortions
if the DGP contains stochastic volatility. Filtering as well as the use of a
long-run variance estimator reduces the size distortions. The results based
on filtered data are clearly better but we should take into account that in
practice the GARCH model might be misspecified.

[Table A.2 about here]
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5.2. The power of the test

We first we consider the power of the test against the fixed alternative
(6). We assume that C and C∗ are from the same copula family with copula
parameter corresponding to kendall’s tau = 0.25 and to kendall’s tau = 0.1,
0.5 and 0.75, respectively. The break point fraction z∗ takes the values 0.3,
0.5 and 0.7 and the break magnitude ω takes the values 0, 0.5 and 1. Note
that ω = 0 implies that the copula is time-invariant and ω = 1 corresponds
to a standard structural break in the copula parameter.

Table A.3 shows that the power is highest if the break occurs around half
of the sample (z∗ = 0.5). The power increases in w and in kendall’s tau value
of C∗. This is also expected since in both cases the deviation between the
copula under the null and alternative hypothesis increases.

[Table A.3 about here]

Second, we simulate the local asymptotic power curves using 50000 repli-
cations of 2500 observations for the step pattern. The simulation setup is as
above. Figure A.1 shows that, although the test is inconsistent against the
local alternative (7), the power goes to 1 if the magnitude of the change in
the copula parameter and the weight ω are sufficiently high.

[Figure A.1 about here]

6. Empirical application

Next, we consider stock returns from the US, UK, France, Germany and
Japan. The dataset is provided by MSCI and consists of monthly returns
from January, 1970 through November, 2009. Longin and Solnik (2001)
consider a similar dataset but observed at a different period (January, 1959
through December, 1996).

We model the marginal distributions using a GARCH (1,1) model with
Gaussian, Student and Skewed-Student distributed innovations. The model
is like (8) but the mean equation only contains a constant term and no lag
values. In addition, the innovations ε†t are modelled for each series using
a Gaussian, Student or Skewed-Student distribution. All parameters are
estimated using maximum likelihood. Using the AIC information criterium,
we selected the GARCH model with skewed-student distributed innovations
for all countries (except Japan; see below). The disturbances are from a
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symmetric student distribution if the logarithm of the asymmetry parameter
(as reported in Table A.4) equals 0, see Laurent and Peters (2006).

Table A.4 contains the parameter estimates. For Japan we report the
model with standard student distributed innovations, since the asymmetry
parameter is insignificant. In summary, all reported coefficients are signif-
icant at the 5% level except the constant for Germany and θ3 for the UK
and Japan. The θ4 parameter for the UK is only significant at the 10% level.
The result for the UK might be affected by the severe spike at January 1975.
Including a dummy variable in the mean equation improved the model. The
results for the copula constancy test (not reported here) are almost the same
as the ones below. Explicit results are available upon request.

We apply the Ljung-Box test to the standardized residuals as well as the
squared standardized residuals. For all countries we do not reject the null
of no serial correlation for the squared standardized residuals. For France,
Germany and Japan the standardized residuals are serial correlated. As long
as the dependence structure satisfies the mixing assumption made in section
3, Theorem 2 allows us to apply the copula constancy test to the standardized
innovations.

[Table A.4 about here]

Since quantiles can also change for reasons different from stochastic volatil-
ity, we perform the quantile constancy test proposed by Busettti and Harvey
(2007). Table A.5 shows that the GARCH (1,1) model performs reasonably
well for all countries except Japan. For Japan we detect some time-varying
behavior at the lower quantiles (at the 5% and 1% level). It is reasonable that
results of the copula constancy tests for Japan are affected by this. Since the
purpose of this section is solely to illustrate the effect of stochastic volatility
we will not analyze more advanced models for Japan.

[Table A.5 about here]

We apply the copula constancy test to the original return series as well as
to the standardized residuals of the GARCH(1,1) models. Table A.6 shows
that we clearly reject the null hypothesis for some country pairs at the 5%
significance level if we apply the test to the return series and we do not use a
HAC estimate. In particular, the range test provides strong evidence against
the null hypothesis. However, if we make use of a HAC estimator then we

12



are hardly able to reject the null hypothesis at the 5% level. Applying the
test to filtered observations gives a similar result. This example, therefore,
clearly illustrates the importance of controlling for changes in the marginal
distributions.

[Table A.6 about here]

Finally, we would like to emphasize that we should not conclude that
this implies that for some country pairs the copula is time-invariant. Be-
sides the fact that failing to reject the null hypothesis does not imply that
the null hypothesis is true, we can indeed reject the null hypothesis if we
consider other events than {y1t ≤ ξ1(τ1), y2t ≤ ξ2(τ2)}. In particular, using
the Quadrant Association Test of Busetti and Harvey (2008) (which is based
on the same idea but uses the events {y1t ≤ ξ1(τ1), y2t ≤ ξ2(τ2)} as well
as {y1t > ξ1(τ1), y2t > ξ2(τ2)}) we obtain, even if we control for stochastic
volatility, strong evidence against the null hypthesis.
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Appendix A. Proofs

The proof of Theorem 1 and 2 follows the one of De Jong et al. (2007).
We extend their proof in two ways. First, in our case the indicator series
depends on a vector series instead of a scalar series. Second, the indicator
series depends on a parameter vector θ which needs to be estimated.

The structure of the proof is the following: Lemma 1 shows uniform
convergence for some specific terms that occur in the proof of Theorem 1. To
proof Lemma 1, we show pointwise convergence and stochastic equicontinuity
in Lemma 2 and 3, respectively.

Lemma 1. Write yt = yt(θ0) and ξ(τ) = ξ(θ0, τ). For M > 0, we have
under Assumption 1

sup
ϕ∈[−M,M ]2

sup
r∈[0,1]

T−1/2

[rT ]∑
t=1

∣∣dt(ϕ)− E[dt(ϕ)]
∣∣ p−→ 0,

where
dt(ϕ) = I(yt, ξ(τ) + ϕT−1/2)− I(yt, ξ(τ)) (A.1)

Proof. The parameter space of ϕ is compact since it is closed and bounded.
Compactness implies that it is also totally bounded (see e.g. Davidson (1994,
Theorem 5.5)). Therefore, using Davidson (1994, Theorem 21.9) and noting
that [−M,M ]2 is dense in the parameter space itself, it is sufficient to show

that supr∈[0,1] T
−1/2

∑[rT ]
t=1 |dt(ϕ)−E[dt(ϕ)]|

p−→ 0 for each ϕ ∈ [−M,M ]2 and

that the sequence {supr∈[0,1] T
−1/2

∑[rT ]
t=1 |dt(ϕ) − E[dt(ϕ)]|, T = 1, 2, . . .} is

stochastically equicontinuous. Lemma 2 proves pointwise convergence and
Lemma 3 proves stochastic equicontinuity.

Lemma 2. Let M > 0. Then, under Assumption 1, for each ϕ ∈ [−M,M ]2

sup
r∈[0,1]

T−1/2

[rT ]∑
t=1

∣∣∣∣dt(ϕ)− E[dt(ϕ)]

∣∣∣∣ p−→ 0

Proof. First, it is sufficient to show that E supr∈[0,1]( T
−1/2

∑[rT ]
t=1 |dt(ϕ) −

E[dt(ϕ)]|)2 → 0 for T → ∞.
Second, for p > 2 (see remark below Assumption 1) and i = 1, 2 we

have that I(yit ≤ ξi(τi)) is strong mixing of size −p/(p − 2), because the
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indicator function I(·) is a measurable function (Theorem 3.27, Davidson
(1994, p.53)) and every measurable transformation of yit is also strong mixing
with the same size as yit (Theorem 14.1, Davidson (1994, p.210)). Using the
same arguments, I(yt, ξ(τ)) = I(y1t ≤ ξ1(τ1))I(y2t ≤ ξ2(τ2)) is measurable
(Theorem 3.33, Davidson (1994, p.56)) and thus also strong mixing with size
−p/(p−2). This implies that we can make use of Lemma 1 in De Jong et al.
(2007).

Let F (·, ·) denote the joint distribution of y1t− ξ1(τ1) and y2t− ξ2(τ2) and
let F ′

i (·, ·) denote the derivative with respect to argument i = 1, 2.
Take ϕ ∈ [−M,M ]2 arbitrary. For all η > 0 (as in Assumption 1.3) there

exists a T0 such that MT−1/2 ≤ η for all T ≥ T0. For T ≥ T0, we obtain
using Lemma 1 of De Jong et al. (2007) and for some constants c1 > 0, c2 > 0
and c3 > 0,

E sup
r∈[0,1]

T−1/2

[rT ]∑
t=1

|dt(ϕ)− E[dt(ϕ)]|

2

≤ c1T
−1

T∑
t=1

∥I(yt, ξ(τ) + ϕT−1/2)− I(yt, ξ(τ))∥2p

≤ c2T
−1

T∑
t=1

(
F (MT−1/2,MT−1/2)− F (−MT−1/2,−MT−1/2)

)2/p
≤ c3

(
sup

(a1,a2)∈[−η,η]2
F ′
1(a1, a2)(2MT−1/2) + sup

(a3,a4)∈[−η,η]2
F ′
2(a3, a4)(2MT−1/2)

)2/p

where the last inequality follows using the mean value theorem. Since F ′
i (·, ·),

i = 1, 2, is finite under assumption 1, letting T → ∞ gives the required result.

Lemma 3. The sequence {supr∈[0,1] T−1/2
∑[rT ]

t=1 |dt(ϕ) − E[dt(ϕ)]|, T =

1, 2, . . .} on the metric space ([−M,M ]2, ρ) with ρ(ϕ, ϕ̈) = |ϕ1−ϕ̈1|+ |ϕ2−ϕ̈2|
is stochastically equicontinuous.

Proof. Define

vT (ϕ) := sup
r∈[0,1]

T−1/2

[rT ]∑
t=1

|dt(ϕ)− E[dt(ϕ)]|

15



We have to show (see Davidson (1994, p336)) that for all ε > 0 there exists
a δ > 0 such that

lim sup
T→∞

P ( sup
ϕ∈[−M,M ]2

sup
ϕ̈∈Bρ(ϕ,δ)

∣∣∣vT (ϕ)− vT (ϕ̈)
∣∣∣ ≥ ε) < ε,

where Bρ(ϕ, δ) = {ϕ̈ : ϕ̈ ∈ [−M,M ]2, ρ(ϕ, ϕ̈) < δ}.
Write {ϕ, ϕ̈ : |ϕi−ϕ̈i| < δ} := {ϕ, ϕ̈ ∈ [−M,M ]2 : |ϕ1−ϕ̈1| < δ, |ϕ2−ϕ̈2| < δ}.
Then

sup
ϕ∈[−M,M ]2

sup
ϕ̈∈Bρ(ϕ,δ)

∣∣∣vT (ϕ)− vT (ϕ̈)
∣∣∣ ≤ sup

ϕ,ϕ̈:|ϕi−ϕ̈i|<δ

∣∣∣vT (ϕ)− vT (ϕ̈)
∣∣∣

Subsequently, we have using the same arguments as in Lemma 2 of De Jong
et al. (2007) that

P ( sup
ϕ∈[−M,M ]2

sup
ϕ̈∈Bρ(ϕ,δ)

∣∣∣vT (ϕ)− vT (ϕ̈)
∣∣∣ ≥ ε)

≤ o(1) + 2I

(
sup

ϕ,ϕ̈:|ϕi−ϕ̈i|<δ

T−1/2

T∑
j=1

∣∣∣Edj(ϕ)− Edj(ϕ̈)
∣∣∣ > ε/4

)

Therefore, it is sufficient to show equicontinuity of T−1/2
∑T

j=1 |Edj(ϕ)− Edj(ϕ
′)|.

For all M > 0 and for all η > 0 (as in Assumption 1.3) we can find an
index in the sequence, T , such that MT−1/2 ≤ η. Therefore,

sup
ϕ,ϕ̈:|ϕi−ϕ̈i|<δ

T−1/2

T∑
j=1

∣∣∣Edj(ϕ)− Edj(ϕ̈)
∣∣∣

= sup
ϕ,ϕ̈:|ϕi−ϕ̈i|<δ

T−1/2

T∑
j=1

∣∣∣F (ϕ1T
−1/2, ϕ2T

−1/2)− F (ϕ̈1T
−1/2, ϕ̈2T

−1/2)
∣∣∣

≤ sup
ϕ,ϕ̈:|ϕi−ϕ̈i|<δ

T−1/2

T∑
j=1

(
sup

(a1,a2)∈[−η,η]2
F ′
1(a1, a2)|ϕ1T

−1/2 − ϕ̈1T
−1/2|

+ sup
(a3,a4)∈[−η,η]2

F ′
2(a3, a4)|ϕ2T

−1/2 − ϕ̈2T
−1/2|

)
≤ δ

(
sup

(a1,a2)∈[−η,η]2
F ′
1(a1, a2) + sup

(a3,a4)∈[−η,η]2
F ′
2(a3, a4)

)
Since F ′

i (·, ·) is finite under assumption 1, selecting δ sufficiently small gives
the required result.
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Proof of Theorem 1:
Define ϕ∗ := T 1/2(ξ̂(τ)− ξ(τ)) and dt(ϕ) as in (A.1). Then

1

σT 1/2

[rT ]∑
t=1

BIQ(yt, ξ̂(τ)) (A.2)

=
1

σT 1/2

[rT ]∑
t=1

BIQ(yt, ξ(τ))−
1

σT 1/2

[rT ]∑
t=1

dt(ϕ
∗) +

[rT ]

T

1

σT 1/2

T∑
t=1

dt(ϕ
∗)

=
1

σT 1/2

[rT ]∑
t=1

BIQ(yt, ξ(τ))−
1

σT 1/2

[rT ]∑
t=1

(dt(ϕ
∗)− E[dt(ϕ

∗)])

+
[rT ]

T

1

σT 1/2

T∑
t=1

(dt(ϕ
∗)− E[dt(ϕ

∗])

Under Assumption 3 we have that for all ϵ > 0 there exits a M > 0 such
that P (|ϕ∗| ≥M) ≤ ϵ. Therefore, using Lemma 1 and the triangle inequality
the second and third term converge uniformly in probability to zero.

It remains to show that σ̂2 p−→ σ2. Define the HAC estimate based on
the empirical copula and the population quantiles as

σ̃2 := T−1

T∑
t=1

T∑
s=1

k((t− s)/γT ) ·BIQ(yt, ξ(τ)) ·BIQ(ys, ξ(τ)) (A.3)

The proof consists of two steps. First we show that σ̂2 p→ σ̃2. Subse-
quently, we show that σ̃2 is asymptotically equivalent to σ̄2 defined in (4).
Finally, using Theorem 2.1 in De Jong and Davidson (2000) we have then

that σ̄2 p→ σ2.
Step 1 : Write

BIQ(yt, ξ̂(τ)) = BIQ(yt, ξ(τ))− at + bT (A.4)

where at := [dt(ϕ
∗)− E(dt(ϕ

∗))] and bT := 1
T

∑T
k=1[dk(ϕ

∗)− Edk(ϕ
∗)]. Then

σ̂2 = T−1

T∑
t=1

T∑
s=1

k((t− s)/γT )(BIQ(yt, ξ(τ))− at + bT )(BIQ(ys, ξ(τ))− as + bT )

The cross products, except the ones consisting ofBIQ(yt, ξ̂(τ))·BIQ(ys, ξ̂(τ)),
converge to zero using arguments as in De Jong et al. (2007).
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Step 2 : It is sufficient that |σ̃2 − σ̄2| p→ 0. Write Ît := I(yt, ξ̂(τ)). Then

|σ̃2 − σ̄2| =

∣∣∣∣T−1

T∑
t=1

T∑
s=1

k ((t− s)/γT )

×
{
[CT (τ1, τ2)− Ît][CT (τ1, τ2)− Îs]− [C(τ1, τ2)− Ît][C(τ1, τ2)− Îs]

}∣∣∣∣
=

∣∣∣∣T−1

T∑
t=1

T∑
s=1

k ((t− s)/γT )×
{
C2

T (τ1, τ2)− C2(τ1, τ2)

+ Ît(C(τ1, τ2)− CT (τ1, τ2)) + Îs(C(τ1, τ2)− CT (τ1, τ2))

}∣∣∣∣
For some constant c1 > 0

|T−1

T∑
t=1

T∑
s=1

k ((t− s)/γT ) [(C(τ1, τ2)− CT (τ1, τ2))Ît]|

= |
√
T (C(τ1, τ2)− CT (τ1, τ2)) · T−3/2

T∑
t=1

T∑
s=1

k ((t− s)/γT ) Ît|

≤ |T−1/2

T∑
m=1

(C(τ1, τ2)− Îm) · c1T−3/2

T∑
t=1

T∑
j=−T

k(j/γT )|

= |c1 ·Op(1) ·
γT√
T

· 1

γT

T∑
j=−T

k(j/γT )|

= Op(γT/
√
T )

and likewise for some constant c2 > 0

|T−1

T∑
t=1

T∑
s=1

k ((t− s)/γT ) [C
2
T (τ1, τ2)− C2(τ1, τ2)]

= |[CT (τ1, τ2) + C(τ1, τ2)][CT (τ1, τ2)− C(τ1, τ2)]
√
T · T−3/2

T∑
t=1

T∑
s=1

k ((t− s)/γT ) |

≤ c2 ·Op(1) ·Op(γT/
√
T )

Noting that, under assumption 2, γT/
√
T → 0 as T → ∞ completes the

proof.
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The following lemmas are used to prove Theorem 2. The structure of the
proof is similar as for Theorem 1. Lemma 4 shows uniform convergence of
some terms that occur in the proof of Theorem 2 below. To proof Lemma 4,
we show pointwise convergence in Lemma 5 and stochastic equicontinuity in
Lemma 6.

Lemma 4. For M > 0 and N > 0 we have under Assumption 1 and 4

sup
r∈[0,1]

sup
ϕ∈[−M,M ]2

sup
ζ∈Υ

T−1/2

[rT ]∑
t=1

∣∣∣∣d∗t (ϕ, ζ)− E[d∗t (ϕ, ζ)]

∣∣∣∣ p−→ 0

where Υ := {ζ ∈ [−N,N ]q : θ0 + ζT−1/2 ∈ Θ} and

d∗t (ϕ, ζ) = I[yt(θ0 + ζT−1/2), ξ(θ0 + ζT−1/2, τ) + ϕT−1/2]

−I[yt(θ0), ξ(θ0, τ)]

Proof. Write d∗t (ϕ, ζ) = d†t(ϕ, ζ) + dt(ϕ), where

d†t(ϕ, ζ) = I[yt(θ0 + ζT−1/2), ξ(θ0 + ζT−1/2, τ) + ϕT−1/2]

−I[yt(θ0), ξ(θ0, τ) + ϕT−1/2]

and dt(ϕ) as defined in (A.1).
Using the triangle inequality

T−1/2

[rT ]∑
t=1

∣∣d∗t (ϕ, ζ)− E[d∗t (ϕ, ζ)]
∣∣

≤ T−1/2

[rT ]∑
t=1

∣∣∣d†t(ϕ, ζ)− Ed†t(ϕ, ζ)
∣∣∣+ T−1/2

[rT ]∑
t=1

|dt(ϕ)− Edt(ϕ)|

Since the second part converge uniformly to zero by Lemma 1, it is sufficient
to prove that the first part converge uniformly to zero as well. Using the
same arguments as in Lemma 1, it is sufficient to show that for each (ϕ, ζ) ∈
[−M,M ]2 × Υ, supr∈[0,1] T

−1/2
∑[rT ]

t=1

∣∣∣d†t(ϕ, ζ)− Ed†t(ϕ, ζ
∣∣∣ p−→ 0 and that

the sequence {supr∈[0,1] T
−1/2

∑[rT ]
t=1

∣∣∣d†t(ϕ, ζ)− Ed†t(ϕ, ζ)
∣∣∣ , T = 1, 2, . . .} is

stochastically equicontinuous. Lemma 5 proves pointwise convergence and
Lemma 6 proves stochastic equicontinuity.
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Lemma 5. Let M > 0 and N > 0. Then, under Assumption 1 and 4, for
each (ϕ, ζ) ∈ [−M,M ]2 × [−N,N ]q

sup
r∈[0,1]

T−1/2

[rT ]∑
t=1

∣∣∣d†t(ϕ, ζ)− Ed†t(ϕ, ζ)
∣∣∣ p−→ 0

Proof. By Lemma 1 in De Jong et al. (2007) and the mean value theorem
we have for some points θ∗1 and θ∗2, constants c1 > 0, c2 > 0 and c3 > 0, and
p as defined in Assumption 1

E sup
r∈[0,1]

∣∣∣∣∣∣T−1/2

[rT ]∑
t=1

d†t(ϕ, ζ)− Ed†t(ϕ, ζ)

∣∣∣∣∣∣
≤ c1T

−1

T∑
t=1

(
E

∣∣∣∣I[yt(θ0 + ζT−1/2), ξ(θ0 + ζT−1/2, τ) + ϕT−1/2]

− I[yt(θ0), ξ(θ0, τ) + ϕT−1/2]

∣∣∣∣p
)2/p

= c1T
−1

T∑
t=1

(
E

∣∣∣∣∣I[yt(θ0) + ∂yt
∂θ

∣∣∣∣
θ∗1

· ζT−1/2,

ξ(θ0, τ) +
∂ξ

∂θ

∣∣∣∣
θ∗2

· ζT−1/2 + ϕT−1/2]

− I[yt(θ0), ξ(θ0, τ) + ϕT−1/2]

∣∣∣∣∣
p)2/p

≤ c2T
−1

T∑
t=1

(
F ([M + c3N ]T−1/2, [M + c3N ]T−1/2)

− F (−[M + c3N ]T−1/2,−[M + c3N ]T−1/2)

)2/p

The last expression converges to zero as T → ∞ using the same arguments
as in Lemma 2.

Lemma 6. The sequence {supr∈[0,1] T
−1/2

∑[rT ]
t=1

∣∣∣d†t(ϕ, ζ)− Ed†t(ϕ, ζ)
∣∣∣ , T =

1, 2, . . .} on the metric space ([−M,M ]2×[−N,N ]q, ρ) with ρ((ϕ, ζ), (ϕ̈, ζ̈)) =
|ϕ1 − ϕ̈1|+ |ϕ2 − ϕ̈2|+

∑q
j=1 |ζj − ζ̈j| is stochastically equicontinuous.
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Proof. Using the same arguments as in Lemma 3, it is sufficient to establish

stochastic equicontinuity of T−1/2
∑T

j=1

∣∣∣Ed†j(ϕ, ζ)− Ed†j(ϕ̈, ζ̈)
∣∣∣, where ϕ̈ ∈

Bρ(ϕ, δϕ) and ζ̈ ∈ Bρ(ζ, δζ) and with scalars δϕ > 0, δζ > 0 .
Define the q × 1 vectors

c∗j := −∂yj(θ)
∂θ

∣∣∣∣
θ0

+
∂ξj(θ, τj)

∂θ

∣∣∣∣
θ0

j = 1, . . . , T

and let F ′
i and F ′′

ik denote, respectively, the first and second derivative of F
with respect to argument i and k where i, k ∈ {1, 2}. Using the mean value
theorem and a first order Taylor expansion

T−1/2

T∑
j=1

∣∣∣Ed†j(ϕ, ζ)− Ed†j(ϕ̈, ζ̈)
∣∣∣

= T−1/2

T∑
j=1

∣∣∣∣F(T−1/2ζ ′c∗j + ϕ1T
−1/2, T−1/2ζ ′c∗j + ϕ2T

−1/2
)
− F (ϕ1T

−1/2, ϕ2T
−1/2)

−
{
F
(
T−1/2ζ̈ ′c∗j + ϕ̈1T

−1/2, T−1/2ζ̈ ′c∗j + ϕ̈2T
−1/2

)
− F (ϕ̈1T

−1/2, ϕ̈2T
−1/2)

}∣∣∣∣
= T−1/2

T∑
j=1

∣∣∣∣T−1/2ζ ′c∗j [F
′
1(ϕ1T

−1/2, ϕ2T
−1/2) + F ′

2(ϕ1T
−1/2, ϕ2T

−1/2)] +O(T−1)

−
{
T−1/2ζ̈ ′c∗j [F

′
1(ϕ̈1T

−1/2, ϕ̈2T
−1/2) + F ′

2(ϕ̈1T
−1/2, ϕ̈2T

−1/2)] +O(T−1)

}∣∣∣∣
≤ sup

j=1,...,T
|ζ ′c∗j | ·

∣∣F ′
1(ϕ1T

−1/2, ϕ2T
−1/2) + F ′

2(ϕ1T
−1/2, ϕ2T

−1/2)

− F ′
1(ϕ̈1T

−1/2, ϕ̈2T
−1/2)− F ′

2(ϕ̈1T
−1/2, ϕ̈2T

−1/2)
∣∣

+ sup
j=1,...,T

|(ζ ′ − ζ̈ ′) · c∗j | · |F ′
1(ϕ̈1T

−1/2, ϕ̈2T
−1/2) + F ′

2(ϕ̈1T
−1/2, ϕ̈2T

−1/2)|+O(T−1/2)

≤ sup
j=1,...,T

|ζ ′c∗j | ·
{
|F ′′

11(b1, b2) + F ′′
21(b3, b4)| · |ϕ̈1T

−1/2 − ϕ1T
−1/2|

+ |F ′′
12(b1, b2) + F ′′

22(b3, b4)| · |ϕ̈2T
−1/2 − ϕ2T

−1/2|
}

+ sup
j=1,...,T

|(ζ ′ − ζ̈ ′) · c∗j | · |F ′
1(ϕ̈1T

−1/2, ϕ̈2T
−1/2) + F ′

2(ϕ̈1T
−1/2, ϕ̈2T

−1/2)|+O(T−1/2)

where (b1, b2) and (b3, b4) are points between (ϕ1T
−1/2, ϕ2T

−1/2) and (ϕ̈1T
−1/2, ϕ̈2T

−1/2).
Under Assumption 4, F ′

i , F
′′
ik and c∗j are bounded, so that for some constants
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c1 and c2

T−1/2

T∑
j=1

∣∣∣Ed†j(ϕ, ζ)− Ed†j(ϕ̈, ζ̈)
∣∣∣ ≤ c1T

−1/2δϕ + c2δζ +O(T−1/2)

Selecting δϕ and δζ sufficiently small completes the proof.

Proof of Theorem 2
Using ϕ∗ = T 1/2(ξ̂(τ)− ξ(τ)) and ζ∗ = T 1/2(θ̂T − θ0), write

1

σ
√
T

[rT ]∑
t=1

BIQ(yt(θ̂T ), ξ̂(θ̂, τ))

=
1

σT 1/2

[rT ]∑
t=1

BIQ(yt(θ0), ξ(θ0, τ))−
1

σT 1/2

[rT ]∑
t=1

d∗t (ϕ
∗, ζ∗)− E[d∗t (ϕ

∗, ζ∗)]

+
[rT ]

T

1

σT 1/2

T∑
t=1

d∗t (ϕ
∗, ζ∗)− E[d∗t (ϕ

∗, ζ∗)]

Following Davidson (1994, Theorem 21.6), the second and third term con-

verge to zero if (a) θ̂T
p→ θ0 and (b) it converge uniformly. We have consis-

tency by assumption and by selecting M and N sufficiently large we have,
using the same arguments as Theorem 1, uniform convergence by Lemma 4.

Remains to show that σ̂2(θ̂) is asymptotically equivalent to σ2. Write

σ̂2(θ̂T )− σ2 =
(
σ̂2(θ̂T )− σ̂2

)
+
(
σ̂2 − σ2

)
The last part converge to zero by Theorem 1. It is sufficient to show that

|σ̂2(θ)− σ̂2| p−→ 0

Write

BIQ(yt(θ̂T ), ξ̂(θ̂T , τ)) = BIQ(yt(θ0), ξ(θ0, τ))− [d∗t (ϕ
∗, ζ∗)− E(d∗t (ϕ

∗, ζ∗))]

+
1

T

T∑
k=1

[d∗k(ϕ
∗, ζ∗)− E(d∗k(ϕ

∗, ζ∗))]

=: BIQ(yt(θ0), ξ(θ0, τ))− at(θ̂T ) + bT (θ̂T )
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So that

|σ̂2(θ̂T )− σ̂2| =
∣∣∣T−1

T∑
t=1

T∑
s=1

k((t− s)/γT )

× {(BIQ(yt(θ0), ξ(θ0, τ))− at(θ̂T ) + bT (θ̂T ))(BIQ(ys(θ0), ξ(θ0, τ))− as(θ̂T ) + bT (θ̂T ))

− (BIQ(yt(θ0), ξ(θ0, τ))− at + bT )(BIQ(ys(θ0), ξ(θ0, τ))− as + bT )}
∣∣∣ (A.5)

where aTt and bT are defined in (A.4). We show that the difference of the
cross-products converge to zero. Write

|T−1

T∑
t=1

T∑
s=1

k((t− s)/γT ){at(θ̂T )as(θ̂T )− atas}|

=
∣∣T−1

T∑
t=1

T∑
s=1

k((t− s)/γT ) (A.6)

× {1
2
(at(θ̂T ) + at)(as(θ̂T )− as) +

1

2
(at(θ̂T )− at)(as(θ̂T ) + as)}

∣∣
Since for constants c1 > 0 and c2 > 0

|T−1

T∑
t=1

T∑
s=1

k((t− s)/γT )
1

2
(at(θ̂T )− at)(as(θ̂T ) + as)|

≤ c1|T−1

T∑
t=1

T∑
s=1

k((t− s)/γT (at(θ̂T )− at)|

≤ c2|T−1/2

T∑
t=1

(at(θ̂T )− at)× T−3/2

T∑
j=1

k(j/γT )|

= Op(γ/
√
T )

because the first term is op(1) by Lemma 4. Using the same idea for the first
term in (A.6) gives the required result.
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Furthermore,

|T−1

T∑
t=1

T∑
s=1

k((t− s)/γT ){b2T (θ̂T )− b2T}|

=
∣∣T−1

T∑
t=1

T∑
s=1

k((t− s)/γT ){(bT (θ̂T ) + bT )(bT (θ̂T )− bT )}
∣∣

≤ c1|bT (θ̂T )− bT | · T−1

T∑
t=1

T∑
s=1

k((t− s)/γT )

≤ c2T
−1/2|bT (θ̂T )− bT | · T−1/2

T∑
j=−T

k(j/γT )

where T−1/2|bT (θ̂T )− bT | = op(1) by Lemma 4.
The other cross products in (A.5) follow a similar argument.

Proof of Theorem 3
Define the bivariate τ -quantics corresponding to the alternative hypothesis
(6) as

BIQ1(yt, ξ(τ)) := Q1(yt, ξ(τ))−
1

T

T∑
j=1

Q1(yj, ξ(τ))

Then

BIQ(yt, ξ(τ)) = BIQ1(yt, ξ(τ)) + ∆C · [g(t, T )− 1

T

T∑
j=1

g(j, T )] (A.7)

where ∆C := C(τ1, τ2)− C∗(τ1, τ2). Furthermore,

1/(
√
T )

[rT ]∑
t=1

BIQ(yt, ξ(τ))

= 1/(
√
T )

[rT ]∑
t=1

BIQ1(yt, ξ(τ)) + ∆C · ω [z
∗T ]√
T

(
[rT ]

T
− 1

)
(A.8)

Provided that T−1E
(∑T

t=1Q
1(yt, ξ(τ))

)2
→ σ2

1 for σ2
1 ∈ (0,∞), we have

under the alternative hypothesis that the first term on the right hand side is
Op(1) and the last term Op(

√
T ) for r ̸= 1.
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Note that we used the population quantiles ξ(τ) instead of the sample
quantiles ξ̂(τ). This does not affect the result in view of the fact that we can

rewrite 1/(
√
T )
∑[rT ]

t=1 BIQ(yt, ξ̂(τ)) like (A.2) in Appendix A and show using
similar arguments as in the proof of Theorem 1 (but with F (·, ·) this time de-

pending on t) that this is asymptotically equivalent to the 1/(
√
T )
∑[rT ]

t=1 BIQ(yt, ξ̂(τ)).

We show σ̂2 is Op(
√
T ) under the alternative. From (5) and (A.7)

σ̂2 = T−1

T∑
t=1

T∑
s=1

k((t− s)/γT )
{
BIQ1(yt, ξ̂(τ)) + g̃t

}{
BIQ1(ys, ξ̂(τ)) + g̃s

}
where g̃t := ∆C · [g(t, T )− 1

T

∑T
j=1 g(j, T )]. Then

∣∣σ̂2 − σ2
1

∣∣ = ∣∣∣∣T−1

T∑
t=1

T∑
s=1

k((t− s)/γT )

{
BIQ1(yt, ξ̂(τ))BIQ

1(ys, ξ̂(τ)) (A.9)

− BIQ1(yt, ξ̂(τ))g̃t −BIQ1(ys, ξ̂(τ))g̃s + g̃tg̃s −Q1(yt, ξ(τ))Q
1(ys, ξ(τ))

∣∣∣∣}
Note ∣∣∣∣T−1

T∑
t=1

T∑
s=1

k((t− s)/γT )g̃tg̃s

∣∣∣∣ ≤ c1|T−1

T∑
t=1

T∑
j=−T

k(j/γT )|

= c1|
√
T
γT√
T

T∑
j=−T

k(j/γT )|

=
√
TOp(γT/

√
T )

is Op(
√
T ) since γT/

√
T → 0 as T → ∞ under assumption 2. The other

cross products require similar arguments and thus σ̂2 is Op(
√
T ).

Combining the previous results we have that the tests are Op(
√
T ). In

other words, the square, maximum and range statistics defined in section
2 become infinity large as T → ∞, and thus the probability that the test
statistic exceeds the critical value goes to 1 as T → ∞.

Proof of Theorem 4
The asymptotic distribution follows from (A.7) and the FCLT. Setting

g(t/T ) = T−1/2h(t/T ) in (A.9) gives |σ̂2 − σ2
1| = op(1) using arguments as in

the proof of Theorem 3.
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Figure A.1: Local asymptotic power curve. The DGP is given by (8) with θ1 = θ2 = θ4 =
θ5 = 0 and θ3 = 1. The parameter of the copula C corresponds to kendall’s tau = 0.25
and the parameter of the copula C∗ corresponds to kendall’s tau as given in the panel.
#obs. = 500, #rep. = 50000.
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Table A.4: Maximum Likelihood Estimates and Goodness-of-Fit statistics of a
GARCH(1,1) model with skewed student-t innovations.

US UK France Germany Japan
const(mean) 0.566∗∗∗ 0.665∗∗∗ 0.599∗∗ 0.386∗ 0.643∗∗∗

θ3 1.027∗∗ 1.502 3.756∗∗∗ 2.333∗∗ 0.517
θ4 0.124∗∗∗ 0.143∗ 0.159∗∗∗ 0.156∗∗∗ 0.090∗∗

θ5 0.831∗∗∗ 0.815∗∗∗ 0.745∗∗∗ 0.783∗∗∗ 0.901∗∗∗

log(assym) -0.220∗∗∗ -0.232∗∗∗ -0.261∗∗∗ -0.199∗∗∗ -
Tail 7.512∗∗∗ 5.474∗∗∗ 10.101∗∗ 6.918∗∗∗ 5.778∗∗∗

AIC 5.731 6.033 6.319 6.181 6.117
Q(1) 0.735 0.238 7.955 4.245 8.572

(0.391) (0.626) (0.005) (0.039) (0.003)
Q(2) 0.813 1.439 8.092 4.865 10.364

(0.666) (0.487) (0.017) (0.088) (0.006)
Q(3) 1.321 1.448 9.381 5.452 12.491

(0.724) (0.694) (0.025) (0.142) (0.006)
Q(6) 8.059 6.930 12.284 8.149 13.147

(0.234) (0.327) (0.056) (0.227) (0.041)
Q(12) 10.357 9.754 19.428 14.140 18.726

(0.585) (0.637) (0.079) (0.292) (0.095)
Q2(1) 0.114 0.345 0.150 0.191 0.165

(0.735) (0.557) (0.698) (0.662) (0.685)
Q2(2) 0.561 0.405 0.775 0.586 0.497

(0.755) (0.817) (0.679) (0.746) (0.780)

The table shows the parameter estimates of the GARCH(1,1) model with skewed student

distributed innovations. For Japan we report the GARCH(1,1) with student distributed

innovations. Significance levels denoted by: 1%(∗∗∗), 5%(∗∗), 10%(∗).

The statistics below the parameters are the Akaike Information Criteria (AIC) and the

Ljung-Box statistics for serial correlation with p-values indicated in brackets (H0 : no

serial correlation). Q and Q2 refer to the Ljung-Box statistic based on the standardized

innovations and the squared standardized innovations, respectively.
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Table A.5: quantile constancy test based on quantics. Significance levels denoted by:
1%(∗∗∗), 5%(∗∗), 10%(∗)

quantile US UK France Germany Japan
0.10 0.112 0.084 0.076 0.162 0.583**
0.25 0.128 0.150 0.081 0.115 0.831***
0.50 0.436* 0.135 0.287 0.190 0.355*
0.75 0.126 0.080 0.362* 0.340 0.394*
0.90 0.107 0.655** 0.172 0.134 0.131
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