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TIME-INHOMOGENEOUS JUMP DIFFUSION PROCESS

BRICE FRANKE AND THOMAS KOTT

ABSTRACT. This work deals with parameter estimation for the drift of jump diffusion pro-
cesses which are driven by a Lévy process and whose drift term is linear in the parameter.
In contrast to the commonly used maximum likelihood estimator, our proposed estimator
has the practical advantage that its calculation does not require the evaluation of the con-
tinuous part of the sample path. In the important case of an Ornstein-Uhlenbeck-type jump
diffusion, which is a widely used model, we prove consistency of our estimator.

1. INTRODUCTION

In statistical inference for time-continuous stochastic processes, parameter estimators that
are based on the observation of the entire time-continuous path are natural objects to study:
These estimators have often a closed-form representation in terms of stochastic integrals
such that large sample results like consistency and asymptotic normality may be obtained
by using techniques from stochastic analysis, see Section 5. In many situations continuous
time estimators can be fairly approximated by their discrete time versions, see Lemma 3.1
for a representation.

There exists a large number of publications on drift parameter estimation for time-
continuously observed diffusion processes. Maximum likelihood estimation is thereby, as
well as in many other fields of statistical inference, the most commonly used estimation
method. For a continuous diffusion process, which is an important model in many applied
fields, with stochastic differential

(1) dXt - f(t, Xt, H)dt + dBt, 0 S t S T,

where (B;):>o denotes Brownian motion and # the unknown parameter, maximum likelihood
estimation is based on Girsanov’s theorem which provides an expression of the likelihood
function. The resulting maximum likelihood estimator requires the computation of integrals
of the form

@) /0 " bt X, 0)dX,

Asymptotic properties of maximum likelihood estimates from time-continuous realizations
of the process in (1) can be found e.g. in [3] and [15]. Given time-continuous observations
{X:,0 < t < T} the integral in (2) is approximated by an Itd6 sum using time-discrete
increments of the sample path.

Especially in mathematical finance, an important generalization of model (1) is the jump
diffusion process allowing for the possibility of discontinuities and a wide variety of marginal
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2 B. FRANKE AND T. KOTT

distributions, see [2] and [6] for some applications. The jump diffusion process is defined as
the solution to

(3) dX, = f(t, X,,0)dt +dL,, 0<t<T,

where (L;):>0 is a homogeneous Lévy process, and the application of the maximum likelihood
approach to the Girsanov density yields estimators that are based on

T
| rexioax;
0

where X is the continuous part of the process. This integral cannot be computed without
further ado since the continuous part is not observed separately in practice. Large sample
results on the maximum likelihood estimator for jump diffusion processes are derived in [19]
and [20].

In this treatment we present an alternative continuous-time estimator for the drift pa-
rameter 6 of the jump diffusion process given in (3) where the drift term is linear in the
parameter, that means that the process solves

Our estimator is derived by making use of the least squares method. In detail, we first
regard the discretized version of the stochastic differential equation (4) and apply ordinary
least squares estimation. In doing so, we obtain a time-discrete estimator. Thereafter, we
take the limit as the discretization step At goes toward zero and get thereby a continuous
time estimator of the drift parameter. Note that the resulting least squares estimator does
not coincide with the trajectory fitting estimator (see Section 2.2.3 in [16]) which is sometimes
referred to as time-continuous least squares estimator as well.

The crucial point of this work is the fact that, unlike the maximum likelihood estimator,
our estimator requires the computation of integrals of the form (2) which can be calcu-
lated from the given data and which do not require further investigation determining the
continuous part of the sample path.

In Sections 5 and 6 we prove strong consistency of our time-continuous least squares
estimator for a time-inhomogeneous, mean-reverting Ornstein-Uhlenbeck process of the form
(4) provided with a periodic drift. The case of a continuous driving process in this Ornstein-
Uhlenbeck model is studied by the authors in [7]. Note that mean reversion, periodicity
and the occurrence of jumps are meaningful properties of, for example, energy commodity
and particulary electricity data, cf. [10]. In the case of the ordinary Ornstein-Uhlenbeck
process with jumps, [11] studies the large sample behavior of the time-continuous trajectory
fitting estimator, various time-discrete estimation techniques are investigated in [4],[8], [12]
and [21].

2. DESCRIPTION OF THE MODEL

Suppose we are given a filtered probability space (2, F, (F;)i>0, P) where Fy contains
all P-null sets of F and where F; is right continuous, i.e. F; = NystFy. Let (Ly)i>o be a
Lévy process, that is an F;-adapted process which is continuous in probability and which has
independent and stationary increments. Throughout this work we want to consider its unique
cadlag (right-continuous with left limits) modification. The famous Lévy-I1td6 decomposition
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([1], Theorem 2.4.16 on p. 108) gives the path-wise representation

(5) L, = bt + 0B, +/ / xqr(dt, dx) + / / xqr(dt,dz)
|z|<1 |z|>1

where (B;);>0 is a (standard) Brownian motion, b € R, ¢ > 0 and where g1, denotes the
Poisson random measure associated with (L;);>o while ¢y, is the corresponding compensated
measure. In detail, ¢;, is a random measure on R, x (R\{0}) defined by

qu(t, A) =#{0<s<t: AL, € A} = Y 14(AL,)
0<s<t
for all Borel sets A € R\{0}. Thereby, we use the notation ALy, = Ly — Ly, Ly =
lim, .o L,;_. and 14 for the indicator function of the set A. Further, the compensated Poisson
random measure is given by ¢ (dt, dx) = qr(dt, dx) — dtu(dzr) where p is the Lévy measure
associated with (Li)e=o satisfying [p, (2% A Dp(dx) < oco. It holds that b = E(Ly) —

fle zp(dr).
The model of interest is the jump diffusion process (X;):>o solving the stochastic differen-
tial equation

(6) dXt - f(t, Xt)9 dt + st, XO - f,

where
f(t,:l?) = (fl(t>x)a e 7fp(t7x)) , PEN,

and where each f;(t,x) is a known, real-valued function on [0,00) x R. Further, let the
random variable £ be independent of the Lévy process and F(£%) < co. The drift parameter
6 € RP is unknown and has to be estimated. We require that the distribution of ¢ does
not depend on # otherwise the Radon-Nikodym derivative given in Proposition 4.2 would
contain an additional factor, see [16] (p. 37) for details.

Note that equation (6) is a short form of the integral equation

Xt — 5 = /0 f(S,Xs)edS + Lt-

We implicitly assume that the well-known Lipschitz and linear growth conditions on the
drift function f are satisfied (see [13], Theorem I11.2.32 on p. 145) such that a unique cadlag
solution to (6) exists.

3. LEAST SQUARES ESTIMATOR

In this section we introduce a least squares estimator for the drift parameter #. The
derivation is based on a discretization of the stochastic differential equation (6) to which
the ordinary least squares approach is applied. Taking the limit as the refinement improves
yields a time-continuous estimator.

The stochastic differential equation (6) can be discretized on a time interval [0, 7] to the
difference equation

(7) Xiryar — Xiae = fIAL Xing)0 At + (Lgnyar — Line), i=0,1,..., N,

where N = |T/At| — 1 and where At > 0 denotes the constant time increment. Here ||
denotes the integer part of z. The structure of (7) is similar to that of the classical linear
model. Even though the conditions of the Gauss-Markov Theorem for linear models are not
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fulfilled we want to apply least squares estimation which is based on the minimization of the

functional
N

g:0— Z (X(i+1)At — Xiar — f(iAta Xz'At)e At)Q .

i=0
Lemma 3.1. The solution vector 0~T7At to the minimization problem g(0) — min is given by
éT,At = Q:F,lAtRT,At
where Qr.a; = (Zfi o fiGAL, Xing) fuGAL, th)At) e R and

1<j,k<p

N N t
Rroat = (Z F1GAL Xine)(Xanar = Xiae), - Y FoliA, Xine) (X(isnyar — th)) € R
i=0 i=0

Proof. By general theory of least squares estimation in linear models, the solution to the
minimization problem ¢(f) — min is given by

(8) Omin = (A'A)"TA'D
where
11(0, Xo) . 1»(0, Xo) Xar — Xo
A A fl(At‘, Xae) - fp(At‘, Xae) p- Xoat — Xat
JiNAL, Xnae) - [o(NAE, Xnae) Xint1yar — Xna

Hence, the products in equation (8) can be calculated to be
A'D = AtRp

and
ATA = AtQr s

Thus we get 0~T7At = (A'A)7TA'D = QilAtRT,At. O

Now a continuous-time estimator can be derived from the least squares estimator by
considering At — 0. Note that any cadlag function can be uniformly approximated on finite
intervals by a sequence of step functions since it has countably many discontinuities on finite
intervals. Hence, it is Riemann-integrable. This justifies the following convergence of the
entries of Qr s (as At — 0):

N T
(9) > (AL Xinr) (i, Xin) At — / fi(t, Xo) fn(, X, )dt
=0 0

since f;(t, X;) has cadlag paths (because X, has cadlag paths) and the left-hand side of (9)
is a Riemann sum. Regarding the entries of Ry a; it holds that

N T
Z [i(iAL, Xiae) - (X(i+1)At — Xiat) — / fi(t, X )dX,
i=0 0

uniformly on compacts in probability since X; is a semi-martingale with cadlag paths, see
[18] (Theorem I1.21 on p. 64).
We have thus proved the following proposition.
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Proposition 3.2. As At — 0, the least squares estimator 7., converges in probability to
Or = Q7' Rr where Qr = <foT fj(t»Xt)fk(t7Xt)dt) € RP*P and

1<5,k<p
T T t
Ry — (/ fl(t,Xt_)dXt,...,/ fp(t,Xt_)dXt) c RP.
0 0

We call the estimator 67 continuous-time least squares estimator.

Remark 1. We implicitly assumed that Q)7 is invertible. This condition holds for many
reasonable models, like for jump diffusions of Ornstein-Uhlenbeck form. However, in the
case of a singular matrix ()7, one has to find solutions v € R to the normal equations

Qrvy = Ry

and make further constraints in order to determine a proper estimator. Note that we have the
same possible ambiguity of the solution vector in the case of maximum likelihood estimation
which is presented in the next section.

4. MAXIMUM LIKELIHOOD ESTIMATION

We want to demonstrate the practical advantage of the continuous-time least squares
estimator introduced in the previous section over the maximum likelihood estimator. In
order to do so, we require the Lévy process which drives the jump diffusion given in (6) to
fulfill the quite strong conditions (10) and (11), see below. These constraints are needed for
technical reasons and the same shortcoming of the maximum likelihood estimator holds if
(10) and (11) are not satisfied, see Remark 3.

Let D[0,T] denote the space of cadlag functions from [0,7] to R. Denote by Px and Pp
the measures induced by the process (X;)o<;<7 solving equation (6) and by the Lévy process
(Lt)o<t<T, respectively. That is

Px(B) = P(w: X"(w) € B), Py(B)=P(w:L"(w) € B)

for all Borel sets B € D[0,T], XT(w) = {X;(w),0 <t < T}.

The following lemma is a direct application of Theorem 2.1 in [20] (p. 74).
Lemma 4.1. If fOT(f(t,Xt)H)zdt < 00 Px- and Pp-almost surely for all 0, then Px and Py,

are equivalent.

Let the Lévy process satisfy
(10) E (exp(pLy)) < o0

for all p € R. This condition guarantees the existence of moments of all orders of the Lévy
process and the finiteness of f‘x|>1 zp(dx) allowing for the representation

t
o Jr
We further assume that

(11) / o) < o0
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which implies finiteness of the total variation of almost all sample paths t — (L; — o B;) such
that the sum of absolute ‘small’ jumps > _, |ALs|1gar,j<13(ALs) is convergent for almost
every path. B

Referring to Theorem 3.2 in [5] we have the following statement:

Proposition 4.2. Let Px be absolutely continuous with respect to Py and let

B (o ([ st -3 [ (sieentar)) < o

where Ep, denotes expectation with respect to P and where (&)o<i<r 15 an element in the
sample space generated by the process solving (6) with a Lévy process satisfying (10) and
(11). Further, the function & = & — > .., A& is the continuous part of the sample path &,.
Then the Radon-Nikodym derivative dPx /dPy, is given by

dp 17
e =e ([ 63 [ rnenrar).

Remark 2. In our model specified in (6), the Radon-Nikodym derivative has a simpler form
than the one in [5] because X7 (w) and LT (w) exhibit the same jumps since
t t

AXt = hII(I)(Xt — thg) = hm dXt = hm f(t Xt)e dt + hm(Lt Lt,E) = ALt

6—>0t€ <€—>Ot6

Hence, it holds for the point process gx associated with (X;)¢>o that
ax(t, A) = qr(t, A)
for all Borel sets A € R\{0} and all . Consequently, the change of measure from P, to Px

does not change the ‘weights’ of the discontinuities. So, in our framework, the density of Py
with respect to P;, does not include any term that accounts for the jumps.

Remark 3. The assumption (11) simplifies the representation of the continuous part of the
sample path and is not required in [5]. Note that a more general statement without the need
of (10) and (11) can be found in [20] (Theorem 2.1) whereby the corresponding integrator is
again the continuous part of the sample path.

Suppose we observe a sample path X7 = {X;,0 <t < T} of the process with stochastic

differential given in (6). The maximum likelihood estimator 07 is defined by
dP
Op := arg max ﬁ(XT)

where the Radon-Nikodym density dPx /dP, obviously depends on the parameter 6, see the
previous proposition. The partial derivatives of the logarithm of this functional are of the
form

0 dPX . 0
12 5 <dPL ) /aa St Xo)9dX = /ftXt O g, (1 Xvdt,

1=1,...,p, and the single derivatives of the linear drift function are given by % f(t, X;)0 =

fi(t, X;). Setting the derivatives in (12) equal zero results in a system of equations

T T
/ fz(tv Xt—)dXtc - / f(tv Xt)eTfZ(ta Xt)dt = O’ 1= 17 <oy Dy
0 0
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which can be written as 3 §
Ry — Qrbr =0
where Qr = ( T £t X0 fult, Xt)dt> € RP? and

1<j,k<p

T T t
Rr = (/ fl(t,Xt,) dXtc, .. ,/ fp(t,Xt,) dXtC) € RP.
0 0

Proposition 4.3. The mazimum likelihood estimator 07 is given by
Op = Q;FlRT
where Qr and RT are defined above.

Note that the expression for the maximum likelihood estimator 6y is similar to the least
squares estimator O given in Proposition 3.2. The discrepancy lies in the vectors Ry and
Ry. The entries of the latter are of the form fOT fi(t, X;—)d X, and can be calculated in prac-
tice without any difficulty. If time-discrete observations are available these integrals can be
approximated by sums. In contrast to that, the integrals fOT fi(t, X )d Xy in Ry cannot be
computed without further investigation due to the integrator which is the continuous part of
the sample path. In practice, a discontinuous path is observed such that the continuous part
of this path has to be determined by means of further techniques detaching discontinuities.
This is a challenging issue unless the paths of the Lévy process have a finite number of jumps
along the time interval [0,7]. In the case of time-discrete observations the always arising
problem is to distinguish the jumps from the continuous points since the entire time-discrete
sample looks discontinuous.

Remark 4. In the case of an ordinary diffusion process without jumps, that is the process
solving

dX, = f(t,X,)0dt + dB;, Xo=2¢,
where (By):>0 is a Brownian motion, the Radon-Nikodym derivative in Proposition 4.2 takes
the form

zf;); (XT) = exp (/ Ft, X,)0dX, — %/OT(f(t,XO@)Zdt)

for data X7. This expression is in accordance with the famous Girsanov Theorem, see [17]
(Theorem 7.6, p. 246). The first integral is computed with respect to the entire path since
there do not occur any discontinuities in this model. Note that the derivation of the maximum
likelihood estimator goes in line with the considerations glven above, i.e. differentiating and
solving the resulting system of equations, such that 6, = Q7' Ry = 6. That means, in this
continuous diffusion model, the maximum likelihood method provides the same estimator as
our least squares methodology presented in the previous section.

5. CONSISTENCY OF LEAST SQUARES ESTIMATOR

In order to substantiate the convenience of the least squares estimator introduced in Sec-
tion 3 we show (strong) consistency of this estimator for a concrete jump diffusion model. In
the quite general setup with regard to the drift function f in (6) consistency requires general
conditions on the convergence of the matrix ()7 in Proposition 3.2 which are not helpful for
the application in concrete models.
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Let us consider the time-inhomogeneous, mean-reverting Ornstein-Uhlenbeck process with
jumps which we define as the solution to

(13) dXt = ®<t7Xt>0 dt + st, XO = 57

where
Cb(t,ZE) = ((,01(75)7-..,801)(75),_1'), pEN,

with known, real-valued functions ¢y, ..., ¢, and F(£?) < oo, ¢ being independent of the
Lévy process. We denote the parameter vector by 6 = (01,...60,, )" € R? x R,. We assume
that the drift function ® is periodic in t, i.e.

O(t+v,x) = P(t,z) forall x

where v is a known period. Seasonality in the drift is a quite frequent phenomenon in
applications, e.g. in commodity prices or temperature modeling. This assumed periodicity
leads to the requirement ¢;(t + v) = ¢,(t). Due to Gram-Schmidt orthogonalization, we
may assume without loss of generality that ¢q(t), ..., p,(t) form an orthonormal system in
Ly([0,v], £dX), that means that

(14 [ eama={ 5 125

Henceforth, we will assume that we observe an integral multiple of the period length, i.e.
that

(15) T=Nv

for some integer N. Moreover, we will assume without loss of generality that v = 1.

The driving process (L;);>o is the right-continuous modification of a Lévy process of the
form as described in Section 2, that is, as usual, a stochastic process that is continuous in
probability with stationary and independent increments. For this model, we additionally
require

(16) E(L?) <

for all ¢ which is equivalent to the requirement [ . 2?u(dx) < oo where p denotes the Lévy
|z|>1
measure. Further, we consider a centered process, that is

(17) E(L) =0

implying that (L;):>o is a martingale.
Note that under the assumptions (14) and (15) the matrix Q7 in Proposition 3.2 simplifies
to

(18) Qr = ( Tl o )

t

where ar = ([ o1() Xy dt,..., [] @ ()X, dt), by = [/ X?dt and where I, denotes the

(p X p)-identity matrix.

The main result of this section can be formulated now. Its proof is postponed to Section 6.
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Theorem 1. Let {X;,0 <t < T} be observations of the periodic Ornstein-Uhlenbeck process
introduced above satisfying (14), (15), (16) and (17). Then the least squares estimator given
wn Proposition 3.2 is consistent, i.e.

b1 — 0, almost surely,
as T — o0.

Remark 5. In the particular case where the driving process is Brownian motion, asymptotic
normality of the least squares estimator is proved in [7] (Theorem 2). In that continuous
model, least squares and maximum likelihood give the same estimator, see Remark 4.

6. PROOF OF CONSISTENCY
The following representation of the least squares estimator is essential for the proof:

Proposition 6.1. The least squares estimator O can be written as

(19) Or = 0+ Q7'Sr
where
f() Qpl st
(20) Sr = ;
fO gOp st
fo Xi_dL,

and where Qr is given in (18).

Proof. By definition, we have O = Q7' Ry where Qr is given in (18) and

fg Qpl dXt

T pu—
fo SDp (t)dX;
— [T X, dX,

in the model considered here, see Proposition 3.2. Due to the stochastic differential equation
(13) which is generating the data and which can be written as

p
X, = (Z 0,0,(t) — aXt> dt + dL,
j=1

the stochastic integrals in Ry are seen to be

T T T
| wtix. - 29 / eiltiostdt—a [ poxdr+ [ o, =1,
0 0 0
T
/ X, dX; = Ze/ o;(t Xtdt—oz/ XthJr/ X, dL;.
0

Observe that the set {t € [0,T] : X; # X;_} is countable and has thus zero-mass with respect
to dt. Hence, we can conclude from these representations combined with (14) and (15) that

TI, —
Rr= ( e >9+ST

T
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and it follows that Q;lRT =0+ Q;lST.

Due to representation (19) the aim in the sequel is to show that
1
Q7' Sr = (T Q7") (? ST>

converges to zero almost surely as T — oo. Therefor, we will prove that T Q5" converges to
a finite limit and that %ST tends to zero, almost surely respectively. Both of these results
require some auxiliary results.

Lemma 6.2. The solution to the stochastic differential equation (13) is explicitly given by
(21) Xt = eiath + h(t) + Zt

where
= atZQ/e wi(s)ds

t
Zy = eo‘t/ e*dLs.
0

Proof. The 1t6 lemma, see [18] (Theorem 11.32, p. 71) or [14] (Theorem 7.6.1 and 7.6.4, p.
111 and 113), states that it holds for a semimartingale (V;);>o and a C'? function F(t,z)
that

tOF LOF
FY) = PO+ [ Greadst [ G vare g

+ Y (F(s,y;) — F(s,Y, ) — Z—F(S,K—)AK)

X
0<s<t

and

82

5 | Gl v

S

where [Y]¢ is the continuous part of the quadratic variation process [Y]; and AY; = Y, —Y;_.
Now for F(t,z) = e*z and the SDE (13) which can be written as

p
4, = (D05t — aX)dt + dL,
j=1

we obtain

t t
F(t, X)) = Xo+ / e X,ds + / edX 4+ Y (X, — e X, — e AX,)
0

0 0<s<t

t
= Xo—i-ZH/e ©;i(s ds—i—/eo‘des
0

by making use of the equality X, — X, = AX,. Multiplying by e~ finishes the proof. [

Due to the time-dependence of h and Z in (21) the process (X;);>0 is not stationary in the
ordinary sense such that the ergodic theorem is not directly applicable. We will introduce a
solution to the stochastic differential equation (13) with time index ¢ € R instead of ¢ > 0. By
interpreting this process as a sequence of path-valued random variables we prove stationarity
and ergodicity of this sequence.
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Define the process
(22) X, = h(t) + Z
where £ : [0,00) — R is defined by

p t
(23) hit) = e 0 / e p;(s)ds
j=1 770
and
~ t ~
(24) Zy = eo‘t/ e**d L
whereby

ZN—Js = Ls]-{sZO}(S) + Z_—Js]-{s<0} (S)
by taking Ly, when s < 0, to be an independent copy of —L_(s_) (see p. 214 in [1]).
Constructed in this way, the process (Li)ier is a continuation of (L;);>o to R such that

(L¢)ier is also a Lévy process with cadlag paths.
Let D[0, 1] be the space of cadlag functions on [0, 1].

Lemma 6.3. The sequence (Wy)ren of D[0, 1]-valued random variables defined by
Wk(s) = X’C—1+S7 0<s< 17
15 stationary and ergodic.

Proof. Let hg be the restriction of the function h to [0, 1]. Since h is periodic, we have the
decomposition

~ E—1+t ~
Wi(t) = h(k—1+1) 4 e ¢ / e**dL,

. k—1+t k—1 . i

= hO(t) +e a(k1+t)/ e**dLg + Z ea(k1+t)/ edL,.
The time shifted Lévy martingale Egl) = f,s 1 yields

. t ~ k—1 1 i

sz(t) = ho(t) + e—at/ Gadegk_l) + Z e—a(kz—l-‘rt)/ Gadegl_l)
0 l=—o00 0

t 0 1
= ilo(t)—l—e‘o‘t/ easdfjgk—l)+ Z e—a(1+t—j)/ easdigj—&-k—m'
0 0

j=—o0
Consequently, we can write
0

W) = ho(-) + Fo(Yar1) + > eV VF(Yjipo0)

l=—00

by using the almost surely defined functionals

¢
Fy: D[0,1] — DJ[0,1]; w+ (t - e_at/ easdw(s)> :
0
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1
F :DI[0,1] — DI[0,1]; w — (t — eat/ easdw(s))
0
and the D0, 1]-valued random variables
Yl:s»—>(l~;gl)—l~)(()l)), 0<s<l

The sequence (Y});ez consists of independent and identically distributed random variables.
This implies that (Wy)ken is stationary and ergodic since each element of this sequence can
be represented as a measurable function G : (D[0,1])N — D|0,1] of elements of the iid
sequence (Y))ez, i.e.

Wk == G(Yk, kal, . )
0

The conditions (16) and(17) are incorporated into the next lemma. Denote by ((L);)>0
the uniquely determined previsible process with non-decreasing sample paths such that

(25) (L? B <L>f)t20

is a martingale. Usually ((L)¢):>0 is referred to as compensator or bracket process associated
with (L)¢o. Its existence is guaranteed by the Doob-Meyer decomposition of L?.

Lemma 6.4. Let (L;):>o be a Lévy process satisfying (16) and (17). Then the bracket process
((L)1)e>0 in (25) is of the form
<L>t = Cta t 2 07

where ¢ 1s a finite, non-negative constant.

Proof. By the Doob-Meyer decomposition the process (L? — (L););>0 is a martingale. It can
be proved that (L? — [L];);>0 is also a martingale, where ([L];)¢>0 denotes the quadratic
variation process. Hence, ([L]; — (L)¢)i>0 is a martingale. Further, the process ([L];)i>0 is a
Lévy process implying that ([L]; — E([L];)):>0 is a martingale. According to [6] (Example
I11.8.5, p. 266) the quadratic variation process has the form

t
L], = 02t+/ / 22qr(dt, dx)
0 JR\{0}

where ¢, denotes the jump measure associated with (L;);>0. Since by (16) and the funda-
mental properties of the Lévy measure, see Section 2, it holds that fR\ 0 2?u(dr) < oo and

E(qp(dt,dx)) = dtu(dz), it follows that E([L];) = ct.
U

Lemma 6.5. Ast — oo, one has
1X; — Xi| — 0, almost surely.
Proof. We have
[Xe = Xi| < e Xo| + [h(t) = h(t)| + |2 — Zi]

0

P 0
< e Xl +e ™ Z Gi/ e™®|p;(s)|ds + \eo‘t/ e*dLy|.
i=1 /-

—00
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Obviously, the first two terms on the right-hand side converge toward zero as ¢ — oo. Further,
since F(L?) < oo by assumption, it holds by the Itd isometry for stochastic integrals with
martingales as integrators that

E (( /_ (; easczis)2> = F ( /_ OOO 62a8d<i>s)

where (f})s denotes the compensator of~ the Lévy martingale L, obtained from the Doob-
Meyer decomposition such that (L? — (L),), is a martingale. By Lemma 6.4 it is (L), = cs,
where ¢ is a finite, non-negative constant, so that

0 3 0 c
E (/OO ezo‘sd<L>S> = /Oo e**cds = 5a < 0

_\2 N
Hence we have shown that E (f?oo eo‘des) < oo which implies that |ffOO e*dLy| < oo
almost surely. It follows that

0
(26) e_at|/ e*dLg| — 0

as t — 00.

O

Let us now turn to the matrix Q7. Due to its simplified form in this model, see represen-
tation (18), its inverse can be explicitly computed.

Lemma 6.6. The inverse of the matriz Qr given in (18) can be computed to be

Q= 1 (L, +yrArAy —ypAg
r T —yr A% YT

where Ap = (Apa, ..., Arp)t = %aT, see (18), and

1 T p -1
N (T / det—ZA%ﬂ) |
0 i=1

Proof. We make use of a formula for the inverse of a partitioned matrix, also known as
Frobenius matrix inversion formula. It can be found in [9] (p. 73) or one can verify it
directly. It holds for a € RP, b € R that

L a\ L+ fepaa’ —5apa
(27> at b = 1 at 1 ’
al? el

where || - || denotes the usual Euclidean norm on RP. With the notation introduced above,

we can write QQr as
I, —Ar
QT =T T
—AL 5 [ XEdt

and thus apply the above formula for the calculation of Q" 0
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Remark 6. Note that the Frobenius matrix inversion formula holds if and only if the entries
of the matrix on the right hand side of (27) are well-defined. We will see in the proof of
Proposition 6.7 that the limit of %Q;l is well defined since we show that the limit of vy
denoted by ~ is greater than zero. Consequently, %Q;l exists almost surely if 7" is sufficiently
large.

Proposition 6.7. AsT — oo, we have
TQ;1 — C,  almost surely,
where C is the (p+ 1) x (p+ 1) matriz

o < I, + AN —7A>

whereby A = (Ay,...,A,)" and

-1

o= </01(h()) dt + E(Z?%) — ZM)

The function h and the random variable Z; are specified in (23) and (24).

Proof. Consider the entries of the vector Ar first, i.e. %fOT Xipj(t)dt. From Lemma 6.5 we

may conclude that
1" I

almost surely. Since (f( k—1+s)keN 1s stationary and ergodic by Lemma 6.3, the ergodic theo-
rem justifies

= /OTXM Z thp] dt—>E< / X )dt) /0 )t

almost surely. Thus we have established convergence of Ap;, 1 < j < p. For the asymptotic

behavior of 7, it suffices to investigate fOT XZ2dt.
It holds by (26) that

1 T ~ 1 T _ 1 T 0 B
‘T/O (Zt_Zt) dt‘ S ?/Ov ’Zt—Zt|dt:T/0v €at‘/ eanLS|dt—>07

almost surely, as T' — oo. The ergodic theorem gives

1

T
T/o Zodt — B(Zy) =0,

compare the proof of Lemma 6.3 and we may conclude that

1 /T
(28) lim sup —/ Zpdt < oo.
T Jo

T—o0
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Observe that h(t) is bounded and X, < oo almost surely. These facts combined with (28)
and representation (21) justify

1 /7
(29) lim sup —/ X;dt = limsup f/ (e™Xo + h(t) + Z) dt < oo,
0

T—o0 T—o00

almost surely. It follows from (29) and Lemma 6.5 that

1 [T 1 /7 1t .
f/o det—?/o det:?/o (X, + X)) (X, — X,)dt — 0.

Consequently, again by the ergodic theorem, we get

1 [T - 1T k
2 o 2
_T/o X2t = Ej th

o[ )

= E(/ +Zt2dt>

= E(/O dt+2/0 tht+/12t2dt)
(

)2dt + E(Z3).
0
By Bessel’s inequality, we have

ZA2 / (h(t))2dt
and thus ( fo V2t + E(Z2) - Y P_ A} > E(Z2) > 0. O
Lemma 6.8. The term —ST is bounded in L.

Proof. Note that \F fo @;(t) dL; is L*-bounded since

E (%/0 0ilt) st> o (% /OTgol-(t)z d(L)t> - %/OT pi(t)2dt < oo

by making use of the It6 isometry and Lemma 6.4. For the last entry of \/LTST we have to
prove the boundedness of

( /Xtst) :%E (/OTX3d<L>t>

_lp (/ (2e™ " Xoh(t) + 2e™* XoZ; + e 2 XG + 2h(t) Z; + h(t)* + Z7) d(L)t> :
0

T
Again, (L); = ct. Since Z; is a zero-mean random variable the expectation of the second
and fourth term is zero. Moreover, E(Z7) = (1 — e 2*") < oo such that

1 T,
sup = F Zpdt | < oo
730 1 0
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Further, the function h is bounded and F(X3) < oo resulting in

1 T
sup —=F (/ e_o‘thh(t)dt) < 00
0

>0 T

and supps 7 fOT h(t)?dt < cc.

Proposition 6.9. As T — oo, we have

lim —Sp = .
Jm TST 0, almost surely
Proof. Observe that S is a martingale since the Lévy process is a martingale due to con-
dition (17). By Lemma 6.8, \/LTST is L2-bounded. Doob’s maximal inequality for time-

discontinuous submartingales, see Theorem 2.1.5 in [1] (p. 74), provides for any ¢ > 0
that

1
P sup =|S7|>e¢|] < P sup |[Sp]>e2
2k<T<2k+1 ok << ok+1
4
—F Sy [P = 0(275).

S 622%

Applying the Borel-Cantelli theorem, we obtain lim sup;_, %\ST] < ¢, almost surely, and
thus we have shown that Sr/T — 0. O

Proof of Theorem 1. This follows directly from Proposition 6.7 and Proposition 6.9.
O
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