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Abstract

This paper presents a descriptive model of stock market confidence
conditional on stock market uncertainty in a first-order copula-based
Markov approach. By using monthly closing prices of the V IX as a
stock market uncertainty proxy for the United States and the copula
of Fang et al. (2000) a stable nonlinear relation between confidence
and uncertainty is derived. Based on the existence of a specific de-
pendence structure uncertainty-reducing policies by US institutions
which are intended to recover stock market confidence are evaluated
with respect to its efficiency. The model implication for high uncer-
tainty regimes is an aggressive uncertainty-reducing policy in order
to avoid sticking in an uncertainty trap. Furthermore, uncertainty
driving profit expectations force an uncertainty level which does not
correspond to high confidence and calls for regulatory actions. Ad-
ditionally, the methodological approach is appropriate for conditional
quantile forecasts and a potential tool in risk management.
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1 Introduction

Missing confidence is the core problem of the latest financial market crisis
started in the US and spilled over the whole world and led, for instance, to
a drop of interbank transactions. In general, economic transactions which
are based on confidence towards business partners are strongly effected by a
state of misconfidence. In response much effort has been placed on the recov-
ery of confidence in financial markets by means of an uncertainty-reducing
policy. For example, between the emergence of the recent financial crisis in
the summer of 2007 and January of 2009, the federal funds rate was brought
down by 325 basis points. ”In historical comparison, this policy response
stands out as exceptionally rapid and proactive” (Bernanke, 2009). If an
uncertainty-reducing policy increases confidence in financial markets, a sta-
ble relationship between uncertainty and confidence must exist. The aim
of this paper is the derivation of a descriptive model which allows for the
evaluation of such an uncertainty policy.

In a recent paper, Bloom (2009) identifies the so-called V IX index, which
deals with implied volatility, as a canonical proxy for financial market uncer-
tainty. The index is designed to measure the market’s expectation of 30-day
variability implied by at-the-money S&P 500 option prices and is published
by the Chicago Board Options Exchange since 1990. Especially the tempo-
ral dependence structure of the V IX is important with respect to confidence
and will be analyzed in this paper. Regarding variance risk premium mea-
surement the temporal dependence of high-frequency intra-day V IX data is
an issue for real-time trading and is investigated by Bollerslev et al. (2009).
However, investors with a medium-run strategy, say one month, interested
in futures and options contracts based on implied volatility have a stake in
the monthly development of the V IX. From a central bank’s perspective
intra-day uncertainty measures are also less important with respect to mon-
etary policy, due to the focus on uncertainty trends. Following Clarida et al.
(1998, 2000) a forward-looking Taylor rule is the best available framework for
evaluation and simulation of monetary policy. The incorporated economic
indicators expected inflation, interest rate and output gap are available in a
monthly frequency. Hence, an uncertainty augmented forward-looking Tay-
lor rule should contain monthly uncertainty proxies. Jovanović and Zimmer-
mann (2010) show that pacifying financial markets by interest rate cuts is
part of the US Federal Reserve Bank (Fed) monetary reaction function for
more than 25 years. Therefore, in case of a description of temporal depen-
dence of the V IX it is possible to generate uncertainty forecasts as a decision
support for monetary policy. Consequently, the derivation of a descriptive
model of temporal dependence of the monthly V IX is also interesting for
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medium-run investors and institutions.
In order to derive a descriptive model of stock market confidence copula-

based Markov models are applied as the methodological framework. By the
theorem of Sklar (1959) any multivariate distribution can be expressed in
terms of its marginal distributions and its copula function. A copula func-
tion is a multivariate distribution function with standard uniform marginals,
which captures the scale-free dependence structure of the multivariate dis-
tribution function. The copula-based approach has the advantage of sepa-
rating the information about the marginal distributions from the scale-free
dependence structure. Darsow et al. (1992) extent this approach to Markov
processes. By coupling different marginal distributions with different copula
functions, copula-based time series models are able to model a wide vari-
ety of marginal behaviors (such as skewness and fat tails) and dependence
properties (such as clusters, positive or negative tail dependence). Chen
and Fan (2006) develop a two-step estimation procedure for parametric cop-
ula functions and make this methodological approach usable for economic
applications. By the formulation of a so called generalized semiparametric
regression transformation model they derive the basis for a wide range of
applications in behavioral economics.

The rest of the paper is organized as follows. Section 2 reviews the
methodological concept of copula-based Markov processes and the two-step
estimation procedure of Chen and Fan (2006). Furthermore, a definition of
conditional variability of temporal dependence and a definition of conditional
temporal dependence is derived. Section 3 presents an economic model of
stock market confidence and section 4 deals with the V IX data. Section 5
outlines the statistical results, whereas section 6 presents economic implica-
tions. Section 7 concludes. Tables and technical details are relegated to the
appendix.

2 Methodology

Copula-based first-order Markov processes build the main methodological
approach for the economic model and its implications. Based on Sklar’s
general copula theory (see Sklar (1959)) Darsow et al. (1992) convey this
methodology to first-order Markov processes. Chen and Fan (2006) derived
a consistent estimation procedure of the first-order case and Ibragimov (2009)
provides a charecterization for higher-order Markov processes.
Let {Yt} be a stationary first-order Markov process with continuous state
space. Then the joint distribution function H(yt−1, yt) = P (Yt−1 ≤ yt−1, Yt ≤
yt), (yt−1, yt) ∈ IR2, of Yt−1 and Yt completely determines the stochastic
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properties of {Yt}. Due to Sklar’s theorem, it is possible to express H(yt−1, yt)
in terms of the marginal distribution G(yt) = P (Yt ≤ yt), yt ∈ IR, of Yt and
the dependence function of Yt−1 and Yt. This dependence function

C(G(yt−1), G(yt)) = H(yt−1, yt) (1)

is known under the name of copula. Hence, C(ut−1, ut) = P (Ut−1 ≤ ut−1, Ut ≤
ut), (ut−1, ut) ∈ [0, 1]2, is the joint distribution function of the two random
variables Ut−1 = G(Yt−1) and Ut = G(Yt). h(·, ·), c(·, ·) and g(·) are the
associated (joint) density functions. We will consider in this paper three
frequently used copulas (Gauss, Clayton, Frank) and one rarely used copula
(Fang). For details see the appendix. One obvious feature of the copula-
based time series approach is the possibility to seperate the time dependence
structure from the marginal distribution. Especially in Economics this issue
becomes important, due to plenty of economic information reflected by the
marginal distribution (see section 4). We consider the following set of as-
sumptions:

(A1) {Yt}n
t=1 is a sample of a stationary first-order Markov process generated

from the true marginal distribution G(·) - which is invariant and absolutely
continuous with respect to the Lebesgue measure on the real line - and the
true parametric copula C(·, ·; α) - which is absolutely continuous with respect
to the Lebesgue measure on [0, 1]2.
(A2) G(·) and the d-dimensional copula parameter α ∈ IRd are unknown.
(A3) C(·, ·; α) is neither the Fréchet-Hoeffding upper bound (C(ut−1, ut) =
min(ut−1, ut)) nor the lower bound (C(ut−1, ut) = max(ut−1 + ut − 1, 0)).

If (A3) would not be true, it is well-known that Yt would be almost surely
a monotonic function of Yt−1. Therefore, the resulting time series would be
deterministic and in case of stationarity, Yt = Yt−1 for the upper bound and
Yt = G−1(1 − G(Yt−1)) for the lower bound would follow. We abandon from
these cases to focus on stochastic samples of stationary first-order Markov
processes. Due to Sklar’s Theorem of equation (1) the copula density function

c(ut−1, ut; α) = ∂2C(ut−1,ut;α)
∂ut−1∂ut

equals h(yt−1,yt)
g(yt−1)·g(yt)

. Hence, the conditional density
of yt given yt−1, . . . , y1 is

h(yt|yt−1) = g(yt)c(G(yt−1), G(yt); α) . (2)

As far as the conditional density is a function of the copula and the marginal,
the vt-th, vt ∈ [0, 1], conditional quantile Qvt

of yt given yt−1 is a function of
the copula and the marginal,

Qvt
(yt|yt−1) = G−1

(
C−1

t|t−1[vt|G(yt−1); α]
)

. (3)
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Ct|t−1(ut|ut−1; α) = P (Ut ≤ ut|Ut−1 = ut−1) = ∂C(ut−1,ut;α)
∂ut−1

denotes the con-
ditional distribution of Ut given Ut−1 = ut−1, which we assume to exist.
Therefore, C−1

t|t−1[vt|G(yt−1); α] is the vt-th conditional quantile of ut given
ut−1. Considering assumption (A2) the unknown marginal distribution G(·)
and the unknown copula parameter vector α have to be estimated. Chen
and Fan (2006)1 derive the following semiparametric two-step procedure:

Step 1: Estimate G(y) by the rescaled empirical distribution

Ĝ(y) =
1

n + 1

n∑

t=1

1{Yt ≤ y} . (4)

Step 2: Estimate the copula parameter vector by

α̂ = arg max
α

1

n

n∑

t=2

log c(Ĝ(Yt−1), Ĝ(Yt); α) . (5)

α̂ is root-n consistent and has approximately a normal distribution.
According to Chen and Fan (2006) the following generalized semipara-

metric regression transformation model exists:

Λ1(G(Yt)) = Λ2(G(Yt−1)) + νt , E(νt|Yt−1) = 0 (6)

Λ1(·) is a parametric increasing function of Ut, Λ2(ut−1) := E(Λ1(Ut)|Ut−1 =
ut−1), and the conditional density of νt given Ut−1 = ut−1 is

fνt|Ut−1=ut−1
(νt) = c(ut−1, Λ

−1
1 (νt + Λ2(ut−1)); α)

/
dΛ1(νt + Λ2(ut−1))

dνt

. (7)

It follows in general

Λ2(ut−1) = E(Λ1(Ut)|Ut−1 = ut−1) =
∫ 1

0
Λ1(ut)c(ut−1, ut; α)dut (8)

and for the special case of identity mapping Λ1(ut) = ut

Λ2(ut−1) = E(Ut|Ut−1 = ut−1) = 1 −
∫ 1

0
Ct|t−1(ut|ut−1; α)dut . (9)

In particular, the variability of temporal dependence between the ran-
dom variables Ut−1 and Ut is important in copula-based time series Econo-
metrics. Generally, by selecting a bivariate copula it is possible to de-
scribe the variability of the dependence structure between two random vari-
ables X and Y conditional on the realization level of these random vari-
ables. Analogously, in case of Markov processes copulas describe the condi-
tional temporal dependence structure. Conditional on the realization level

1Instead of using the rescaled empirical distribution function, one could use an adequate
kernel estimator of the distribution function. Furthermore, they offer an appropriate
bootstrap method to construct statistical inference procedures for the estimated quantiles.
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of Ut−1 and Ut the variability of temporal dependence varies, i.e. tempo-
ral dependence is heteroskedastic. Bivariate tail dependence is one way to
focus on variability of temporal dependence. This concept relates to the
amount of dependence in the lower-quadrant tail or the upper-quadrant tail
of a bivariate distribution (see e.g. Joe (1997)) and is relevant for depen-
dence in extreme values. A copula has lower tail dependence if λL ∈ (0, 1],
where λL = limu→0 P (Ut−1 ≤ u|Ut ≤ u), and no lower tail dependence if
λL = 0. Similarly, a copula has upper tail dependence if λU ∈ (0, 1], where
λU = limu→1 P (Ut−1 > u|Ut > u), and no upper tail dependence if λU = 0.

In order to receive an intuitive impression of the variability of the de-
pendence between two random variables in the entire domain of attraction
(and not only in extreme regions like the tail dependence concept examines),
contour plots of the copula density are frequently used (see e.g. Härdle and
Okhrin (2010)). According to the intuitive approach we use a proxy for
variability of temporal dependence in a probabilistic context.

Consider the unit square with realizations ut−1 of the random variable
Ut−1 on the abscissa and realizations ut of the random variable Ut on the
ordinate. The diagonal through the origin separates the unit square into two
regions. ”A” marks the region above the diagonal and ”B” stands for the
region below the diagonal. The contour line of the bivariate copula density
function on a specific density level, say p, in Region ”A” can be mirrored by
the diagonal to region ”B”. A straightforward proxy for conditional variabil-
ity of temporal dependence between Ut−1 and Ut given a value ut−1 is the
distance from point b = (ut−1; ut) on the contour line in Region ”B” and its
mirrored point a = (ut; ut−1) on the contour line in Region ”A”. Assume that
ut−1, the copula C and p are given, the calculation of ut = C−1

t|t−1(p|ut−1; α)
is possible. Because of the mirrored symmetry of the contour lines around
the diagonal, the distance between ”a” and ”b” is the length of the diagonal
of a square with side length ut−1 − ut, ut = C−1

t|t−1(p|ut−1; α), and equals a
conditional first difference. Furthermore, the following assumption will be
considered:

(A4) The regarded contour lines do not tangent the diagonal of the unit
square.

If (A4) is not true the variability according to the following proxy always
converges to zero for values of ut−1 and ut which cause contour lines near
by the diagonal. If (A4) is true the contour line of Region ”B” tangents
the abscissa in point (u∗

t−1; 0). Analogously, the contour line of Region ”A”
tangents the ordinate in point (0; u∗

t ). Consequently, the following definition
of conditional variability of temporal dependence will be considered:
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Definition 1 :

The proxy for conditional variability of temporal dependence between the

random variables Ut−1 and Ut given ut−1, a copula C and a p-density level is

defined by:

var(Ut−1, Ut|ut−1, C, p) :=





|ut−1 − C−1
t|t−1(p|ut−1; α)|

√
2 , if ut−1 ≥ u∗

t−1

|ut−1 − C−1
t|t−1(p|u∗

t−1; α)|
√

2 , if ut−1 < u∗
t−1

u∗
t−1 marks the value on the ut−1 axis of the unit square of ut−1 and ut, where

the contour line tangents the ut−1 axis.

Hence, by selecting a specific copula and density level p it is possible to
describe the variability of temporal dependence between Ut−1 and Ut condi-
tional on the level of ut−1. The higher the variability of conditional temporal
dependence the lower the temporal dependence itself. Therefore, the follow-
ing definition of conditional temporal dependence will be considered:

Definition 2 :

The proxy for conditional temporal dependence between the random vari-

ables Ut−1 and Ut given ut−1, a copula C and a p-density level is defined

by:

dep(Ut−1, Ut|ut−1, C, p) := var(Ut−1, Ut|ut−1, C, p)−1

Although the copula parameters - which can be transformed to the cor-
relation coefficient according to Kendall or Spearman - are treated as time
invariant (α and not αt) the copula itself allows for a variation of temporal
dependence conditional on the level of ut−1.

3 Economic model

Confidence in terms of reasonable expectation is a long-standing issue in Eco-
nomics. The higher the confidence, the easier to find a transaction partner
and superiority of market conditions. Especially the latest financial market
crisis - which could be described as a confidence crisis - bare the fundamen-
tal function of confidence in Economics. Much effort has been placed on the
recovery of confidence in the stock market by means of stock market uncer-
tainty reduction. If uncertainty reduction is intended to increase confidence,

7



a stable relationship between these variables should exist and motivate un-
certainty reduction. To the best of my knowledge the existence of a stable
relationship justified by real world data is not described in the literature.
Therefore, the aim of this paper is the derivation of a descriptive model of
stock market confidence which is empirically stable.

Consider the random variable Y ?
i,t which stands for the sensation of stock

market uncertainty of investor i = 1, . . . ,m at time t = 1, . . . , n. Due to the
heterogeneity of investors different valuation rules of uncertainty are possible.
Hence, a microeconomic founded structural description of Y ?

i,t for all i seems
not to exist. Instead of a structural form we examine a time series approach.
The current individual feeling of uncertainty is dependent on previous un-
certainty Y ?

i,t−1 and an unpredictable uncertainty shock which is induced by
changing stock market conditions. Applying the marginal distribution Gi of
Y ?

i,t leads to the quantile U ?
i,t = Gi(Y

?
i,t). Without loss of generalization the

generalized semiparametric regression transformation model of equation (6)
can be applied for the case of identity mapping in the following way,

U?
i,t = Λ3(U

?
i,t−1) + e?

i,t , (10)

where Λ3(u
?
i,t−1) := E(U ?

i,t|U ?
i,t−1 = u?

i,t−1) = 1 − ∫ 1
0 Ct|t−1(u

?
i,t|u?

i,t−1; αi)du?
i,t

and E(e?
i,t|Y ?

i,t−1) = 0 holds. It is assumed that the copula is invariant across
individuals i and time t, whereas the copula parameter individually varies.
Consequently, the individual sensation of stock market uncertainty is ex-
plained by a first-order copula-based Markov process.

With respect to the level of individual sensation of stock market uncer-
tainty the market participants choose an investment strategy. By selecting a
specific strategy the investor believes that this strategy is relative beneficial
to treat available information and to achieve relative high profits. Hence,
uncertainty itself is not evaluated but acts like a determinant of the strat-
egy choice. Regarding the number of alternative investment strategies in
face of stock market uncertainty we reduce the dimension to two. Aoki and
Yoshikawa (2007) show that about 95 percent of the total market participants
belong to the two largest subgroups of agents by types. With two largest clus-
ters, there are two regimes; one with a cluster of investors with strategy 1 as
the largest share, and the other with a cluster of investors using strategy 2 as
the largest share. Namely, fundamentalists dominate the market in regime
1 and chartists dominate the market in regime 2. Corresponding to Fama
(1970) these strategies reflect theoretically inefficient and weak efficient mar-
kets. In case of inefficient markets asset prices do not reflect historical price
information and lead to more stock market uncertainty. Thus, it is possible
to earn excess returns by being a chartist in case of higher uncertainty. On
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the other hand, if the market is rather weak efficient, asset prices reflect his-
torical price information and leads to less stock market uncertainty. Then
it is possible to achieve excess returns by being a fundamentalist in case of
lower uncertainty. Hence, the decision in period t of a market participant i
being a fundamentalist (yi,t = 1) or a chartist (yi,t = 0) is determined by the
individual sensation of stock market uncertainty y?

i,t:

yi,t =

{
0 , if y?

i,t ≥ ϕi

1 , if y?
i,t < ϕi

ϕi marks the individual threshold for being a chartist or a fundamentalist.
If investors have confidence in their strategy yi,t they will not change their
strategy. From this it follows that the variability of yi,t over time is low. A
low variability of the evolution of yi,t implies low variability of the progress
of y?

i,t. Hence, low variability of the process y?
i,t is achieved, if the conditional

variance of e?
i,t, V (e?

i,t|Y ?
i,t−1), is low. Therefore, V (e?

i,t|Y ?
i,t−1) is dependent on

the level of y?
i,t and the process y?

i,t itself is autoregressive and heteroskedastic.
If the conditional variance of e?

i,t, V (e?
i,t|Y ?

i,t−1), is low changes of market con-
ditions are moderate. This leads to the conclusion that high individual stock
market confidence (the believe of moderate changes of market conditions) is
connected to low variability of stock market uncertainty which causes high
temporal dependence of individual stock market uncertainty, and vice versa.
This argumentation is in line with the general definition of confidence accord-
ing to Luhmann (2000) and is understood as the assumption of an expected
development (reasonable expectation) with the availability of different al-
ternatives of taking actions. Analog to Definition 1 and 2 the definition of
individual stock market confidence is:

Definition 3 :

The proxy for individual stock market confidence κi,t|t−1 equals the con-

ditional temporal dependence between individual stock market uncertainty

Y ?
i,t−1 and Y ?

i,t given y?
i,t−1, a copula C, a p-density level and is defined by:

κi,t|t−1 := dep(Gi(Y
?
i,t−1), Gi(Y

?
i,t)|Gi(y

?
i,t−1), C, p)

Gi marks the marginal distribution of Y ?
i,t.

An analytical derivation of a specific structure of heteroskedasticity and with
it a specific structure of conditional temporal dependence necessarily needs
behavioral assumptions about investors. Various assumptions could be plau-
sible, so we concentrate on the methodological and economic framework
which will be driven by data. In that sense this investigation is descriptive.
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Leaving the individual level by averaging over all market participants
leads to the market structure St, 0 ≤ St ≤ 1, which is determined by St =
m−1∑m

i=1 yi,t. St = 0 stands for a zero share of fundamentalists and St = 1
stands for a zero share of chartists. If St < 0.5 chartists dominate the market
and if St > 0.5 fundamentalists dominate the market. According to Aoki
and Yoshikawa (2007) the fluctuation of stock prices becomes greater when
chartists dominate than when fundamentalists dominate the market. Hence,
the fluctuation of stock prices STDt is a decreasing function f of the market
structure St

STDt = f(St) . (11)

Section 4 provides a definition of stock market uncertainty over the whole
market according to Bloom (2009) as a random variable Yt in terms of ex-
pected (Et) future stock market variability (STDt+1), hence,

Yt = Et(STDt+1) . (12)

The quantile of Yt is Ut = G(Yt), whereas G marks the marginal distribution
of Yt. If the market participants make rational expectations, the process of
market wide uncertainty Yt mimic the process of individual uncertainty Y ?

i,t of
equation 10. Consequently, stock market uncertainty over the whole market
equals a first-order Markov process

Ut = Λ4(Ut−1) + et , (13)

where Λ4(ut−1) := E(Ut|Ut−1 = ut−1) = 1 − ∫ 1
0 Ct|t−1(ut|ut−1; α)dut and

E(et|Yt−1) = 0 holds. The individual description of stock market uncer-
tainty of equation (10) leads canonical to a market wide description of stock
market uncertainty of equation (13). Analog to Definition 3 the following
definition of market wide stock market confidence will be considered:

Definition 4 :

The proxy for market wide stock market confidence κt|t−1 equals the condi-

tional temporal dependence between market wide stock market uncertainty

Yt−1 and Yt given yt−1, a copula C, a p-density level and is defined by:

κt|t−1 := dep(G(Yt−1), G(Yt)|G(yt−1), C, p)

G marks the marginal distribution of Yt.

Knowing the correct copula leads to the description of stock market confi-
dence. Hence, copula-based Markov models seem to be useful tools in confi-
dence theory.
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4 US stock market uncertainty

The empirical application of this paper deals with the issue of US stock
market confidence. By Definition 2 stock market confidence equals the condi-
tional temporal dependence of stock market uncertainty. According to Bloom
(2009) a proxy for stock market uncertainty is the volatility index V IX of
the S&P 500 created by the Chicago Board Options Exchange (CBOE).
The V IX reflects the market expectation in period t of future stock market
variability, t + 1, whereas stock market variability can be quantified by the
standard deviation of the S&P 500.

We use data from Thompson Datastream for the period January 1990
to August 2010. Define the logarithmic growth rτ := log spτ − log spτ−1 as
the daily closing return of the S&P 500, spτ , with daily time index τ =
1, 2, . . . ,m. STDt marks the standard deviation of the daily returns during
a month t = 1, 2, . . . , n. V IXt denotes the monthly closing price of the V IX.
Hence, the number of observed month is n = 248.
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Figure 1: Line graph of the V IX (left) and scatter plots of the level data

(middle: ρ̂s = 0.885; right: ρ̂s = 0.803)

In Figure 1 ρ̂s stands for the estimated Spearman correlation coefficient.
By inspecting the scatter plots of level data, one merges information about
marginal distributions and temporal dependence structures, respectively, and
considers scale-conditioned dependence structures. Transforming the scale-
dependent level data into scale-free data by using the empirical distribution
leads to empirical quantiles. The scatter plots of the empirical quantiles
(Figure 2) concentrate on the pure dependence structures (not influenced by
marginal distributions). The left scatter plot gives an impression of the tem-
poral dependence structure between V IXt and V IXt+1 and the right scatter
plot shows the cross dependence structure between V IXt and STDt+1.

Comparing Figure 1 and 2 it is obvious that the marginal distributions
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Figure 2: Line graph of the empirical V IX quantiles (left) and scatter plots

of the empirical quantiles

contain information which are not important with regard to the temporal
dependence structures. Basically the uncertainty proxy V IX depends on
options and belongs to the category of assets, whereas stocks are the driving
forces for options. Consequently, the marginal distributions of the V IX as
well as the STD incorporate information about the stock prices.

According to neoclassical theory stock prices are essentially dependent on
the real economy. The correct stock price equals the future profits of the stock
(present value), which are emitted by firms. Therefore, neoclassical theory
postulates a general equilibrium of stock prices determined by supply and
demand of the real economy (Diamond (1967)). From that point of view stock
prices, as well as consumption and production, are dependent on preferences
and technologies and are connected to the real economy. The causality runs
from the real economy to stock prices under neoclassical assumptions and
implies no stock market bubbles. This consequence obviously thwarts reality.

In return the literature concerning ”financial accelerator” (see Minsky
(1957), Bernanke and Gertler (1989), Bernanke et al. (1996)) emphasizes the
importance of financial markets for the real economy. Macroeconomic risk
always emerges when valuation risk exceeds a certain level and spills over
to the real economy. The resulting economic downturn leads to even higher
uncertainty so that risk spreads even rise and a further economic downturn
emerges. The adverse feedback loop between financial markets and the real
economy is the so-called financial accelerator. How strong this feedback
effect is, depends, among other factors, on the quality of assets that serve
as collateral for liabilities. In the recent financial crisis the quality of these
assets was often poor and the economic downturn diminished the value of
these assets further.

Not only in light of the financial accelerator literature the neoclassical the-
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ory appears to be theoretically doubtful. Even from an empirical perspective
the neoclassic seems to be unrealistic. Based on the ”variance-bound tests”
Shiller (1981) concludes that due to too high stock price volatility the prop-
erty of exponential growth of real economy variables is not observed in finan-
cial markets. Accordingly, the discussion of ”excess volatility” is boosted by
empirical facts. Since Mandelbrot (1963) the distribution of stock prices is an
important issue in the literature. At present it is widely accepted that stock
price changes follow power-law distributions (see e.g. Gabaix et al. (2003,
2007), Huang and Solomon (2001)) and not exponential distributions like
real economy variables. Because of the great number of market participants
with individual strategies and the great number of market transactions the
quantity of micro growth events on stock markets is high. This issue leads
to power-law distributions of returns. On the other hand the quantity of
growth events in the real economy is rather small and causes exponential
distributions of real indicators. Hence, Figure 1 is strongly affected by the
power-law property of the return distribution. In order to extract the pure
temporal dependence structure, one has to abstract from economic founded
information of the power-law property of the marginal distribution.

5 Statistical results

Table 1 of the appendix contains estimation results and further technical
details concerning the regarded copulas. The hypothesis that the Fang copula
captures the time dependence structure of the V IX can not be rejected on
any plausible level of significance. Based on empirical tests the correctness
of the remaining copulas can be rejected. Hence, the Fang copula seems to
be the only correct copula in the set of copulas.

In order to test the correctness of a copula in a first-order Markov frame-
work, consider the following hypothesis test of interest:

H0: {Yt} is a first-order Markov process with copula C

H0 is equivalent to

H ′
0 : Vt = Ct|t−1(Ut|Ut−1; α) is uniformly on [0, 1] distributed and not auto-

correlated

We reject H0 if H ′
0 is rejected. According to the distributional transform the

random variable Vt must be uniformly distributed on [0, 1] (see e.g. Fergu-
son (1967)) and the quantile transform - which is exactly the inverse of the
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distributional transform - satisfies Ut = C−1
t|t−1(Vt|Ut−1; α), a.s.. In case of a

misspecified copula C? the resulting conditional copula C?
t|t−1 is misspecified.

Consequently, V ?
t = C?

t|t−1(Ut|Ut−1; α) is not anymore the true distributional
transform of Ut given Ut−1 and V ?

t contains residual information concerning
the time dependence between Ut and Ut−1. Hence, the residual time depen-
dence yields to time dependence between V ?

t and V ?
t−l, l ∈ {1, 2, . . . , n}. In

a practical situation realizations for Ut are unobservable and will be substi-
tuted due to the empirical distribution, as it is known to converge to the
true distribution. Denote the nonparametrical estimation of the realizations
based on the empirical distribution with ût = n+1

n
Ĝ(y), where Ĝ(y) stands

for the rescaled empirical distribution of equation (4). The unknown cop-
ula parameter vector α can be substituted by the consistent ML-estimator
α̂ described in section 2. Straightforward, V̂t = Ct|t−1(Ût|Ût−1; α̂) is uni-
formly distributed on [0, 1] and is an adequate substitute for Vt. Even in
a quasi maximum likelihood situation, where α̂ is consistent, the fact of a
misspecified copula leads to the same conclusions for V̂ ?

t like V ?
t because of

the incorrect modelling of temporal dependence.
Based on the goodness-of-fit test (see Table 1) a discrimination of the

non-Fang copulas is impossible. The remaining time dependence between
the realizations v̂t = Ct|t−1(ût|ût−1; α̂) and v̂t−1 = Ct|t−1(ût−1|ût−2; α̂) leads
to the unique selection of the Fang copula.

To control for the robustness of the superiority of the Fang copula ascer-
tained by the joint hypothesis test, we use the results and technical notes of
Table 2 (see appendix). Consider the nonparametric estimated conditional
quantiles ût, which contain no information about a parametric copula. On
the other hand if a parametric copula is selected, it is possible to calculate
copula implied conditional quantiles which are used to construct a copula-
based confidence interval of the conditional quantiles. Regarding the level of
significance ε it follows for the upper interval bound

ût,ε = C−1
t|t−1(1 − ε/2|ût−1; α̂) (14)

and for the lower interval bound

ût,ε = C−1
t|t−1(ε/2|ût−1; α̂) . (15)

The ,,overall region” of Table 2 reports the estimated error rates for all
conditional quantiles ût, t = 2, . . . , n. Therefore, given ût, ût,ε and ût,ε copula-
based error rates are:

ε̂overall = 1 −
(

1

n − 1

n∑

t=2

1{ût,ε ≤ ût ≤ ût,ε}
)

(16)

14



Focusing the tails of the bivariate copula leads to further information about
the copula adequacy. The calculation of the estimated error rates of the
,,lower region” of Table 2 is analog to (16), but only valid for lower ût. We
define the region for lower quantiles by ût < π with π = 1/3.2 According to

ε̂lower = 1 −
(

1

n

n∑

t=2

1{ût,ε ≤ ût ≤ ût,ε and ût < π}
)

(17)

the estimated error rate for the lower region are computed. Consequently,
for the ,,upper region”

ε̂upper = 1 −
(

1

n

n∑

t=2

1{ût,ε ≤ ût ≤ ût,ε and ût > 1 − π}
)

(18)

holds. n stands for the cases with ût < π and n for the cases with ût > 1−π.
Table 2 shows additionally the root mean squared error of the true and
estimated error rates separated according to different regions. The Fang
copula is also superior with respect to this criterion. Obviously, the data
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Figure 3: Contour with scatter plot of the empirical quantiles (left) and

perspective plot (right) of the Fang copula, with α̂ = 0.173 and β̂ = 0.9994

obey tail dispersion, which can not be modelled by the Gauss and Clayton
copula. Even the Frank copula as a representative of a copula with symmetric
tail dispersion is inferior in comparison to the Fang copula. Only the Fang
copula is able to deal with asymmetric tail dispersion.

Summing up the hypothesis tests and the robustness checks the correct-
ness of the Fang copula is indicated. This is likewise supported by the cop-
ula implied Spearman correlation coefficient of the Fang copula according to

2Also for varying π similar error rates are observed.
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Figure 4: Conditional variability v̂ar(Ut−1, Ut|ût−1, C, p), conditional tem-

poral dependence d̂ep(Ut−1, Ut|ût−1, C, p), p = 0.05, and empirical quantiles

ût−1

equation (22), ρ̂s(α̂, β̂) = 0.81, which is in the neighbourhood of the non-
parametric estimated coefficient, ρ̂s(ût−1; ût) = 0.88.

Identifying the Fang copula as the appropriate copula, Figure 3 allows
for a graphical inspection of its density based on the parameter estimates
(see Table 1). The copula shows more density mass in in the lower and
upper tails and seems to exhibit asymmetric tail dispersion. Formalizing
this impression in terms of the conditional variability proxy of Definition 1,
Figure 4 confirms this intuition on the p = 0.05 density level.3 The estimated
conditional variability proxy v̂ar(Ut−1, Ut|ût−1, C, p) is computed according
to





|ût−1 − C−1
t|t−1(p|ût−1; α̂, β̂)|

√
2 , if ût−1 ≥ û∗

t−1

|ût−1 − C−1
t|t−1(p|û∗

t−1; α̂, β̂)|
√

2 , if ût−1 < û∗
t−1

(19)

whereas ût−1 marks the ascending sorted empirical quantiles and û∗
t−1 =

0.3785 holds. According to Definition 2 the probabilistic conditional temporal
dependence proxy is calculated as

d̂ep(Ut−1, Ut|ût−1, C, p) = v̂ar(Ut−1, Ut|ût−1, C, p)−1. (20)

3For alternative density levels similar results can be derived.
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Due to the fact that the inverse of the conditional distribution C−1
t|t−1 does not

exist in closed form, ut = C−1
t|t−1(p|ut−1; α, β) can be obtained from the equa-

tion p = Ct|t−1(ut|ut−1; α, β) using a numerical root-finding routine (here:
Newton’s procedure). Hence, numerical imprecisenesses of the root-finding
routine lead to small jags in the curve progression of Figure 4 and can be ne-
glected. Figure 4 is a very important statistical result and have deep impact
on economic implications of section 6.

6 Economic implications

The main economic implication of the economic model and the statistical
investigation is that US stock market confidence is dependent on the level of
US stock market uncertainty in a stable and nonlinear manner.4 Transform-
ing the quantile treatment based on the empirical distribution of Figure 4 to
level data of US stock market uncertainty in terms of the V IX, the following
Figure 5 summarizes the dependence structure between confidence and un-
certainty. Conditional on the uncertainty level confidence varies. The latest
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Figure 5: Dependence between stock market uncertainty (VIX) and stock

market confidence, p = 0.05

financial crisis which can be characterized as a confidence crisis shows actu-

4Concerning the definition of stock market confidence see section 3 and for the empirical

implementation see section 5.
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ally the importance of confidence in the financial market. Very low interest
rates by the US Federal Reserve Bank, a planned increase of the minimum
reserve of banks and temporary suspension of short-sales are only prominent
examples of institutional reactions which are intended to reduce uncertainty
and finally increase confidence. This policy is empirically indicated by the
descriptive model.

For low uncertainty levels an uncertainty-reducing policy with the aim of
recovery of confidence is inefficient. Lower uncertainty leads not to higher
confidence due to the rigidity of confidence toward uncertainty. Based on
the Fang copula estimation and a density level p = 0.05 visualized in Fig-
ure 5 the region of inefficient policy is up to a V IX value of approximately
16. The region of uncertainty levels between 16 and 19 is also characterized
by an inefficient and counterproductive uncertainty-reducing policy. Lower
uncertainty leads to lower confidence. Values larger than 19 agree with an
efficient uncertainty-confidence policy. A decrease of uncertainty increases
confidence. Furthermore, the confidence behavior of the market is asymmet-
ric in terms of extreme uncertainty values. Uncertainty values larger than
25 correspond to confidence below regimes characterized by very low uncer-
tainty and saturated confidence. In that sense this region of uncertainty is
abnormal and could be interpreted as a call for institutional actions. This
situation is currently observable and according to the model and empiricism
justified. For very large uncertainty values, say greater than 30, there is
a kind of uncertainty trap evident. In that region a diffident uncertainty-
reducing policy - which causes only a small uncertainty decline - is relative
inefficient, because of low sensitivity of confidence. Hence, in times of ”excess
misconfidence” an aggressive uncertainty-reducing policy is indicated. Even
this model implication supports the current way of policy making.

A second implication of the model is shown in Figure 3. Much density
mass is observable for small and large uncertainty values V IXt−1 and V IXt.
This is a result of the well known issue of volatility clusters of financial
market data. More interesting is the fact that the high confidence region
corresponds to low density mass. Although, confidence is high V IX values
feature no cluster in the high confidence region. Uncertainty as an outcome
of investment behaviour is apparently not driven by stock market confidence.
According to basic financial theory profit expectations are the driving forces
of investment behavior and finally uncertainty. Hence, the uncertainty level
linked to high confidence is not compatible with the uncertainty level of the
expected profits desired by the market. The political implication of this cir-
cumstance is that financial market rules should be established, which provoke
a coincident of confidence and expected profits on the same uncertainty level.
That would mean that profit expectations push the market to an uncertainty
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level which is in line with low changes of market conditions (stable market)
approximated by the stock market confidence proxy. This is undoubtedly
an important issue on the current and future regulation agenda of financial
markets.

A by-product of the first-order copula-based Markov characterization of
the V IX is the possibility to calculate conditional quantiles for risk manage-
ment. As shown by Jovanović and Zimmermann (2010) pacifying financial
markets by interest rate cuts is part of the US Federal Reserve Bank mone-
tary reaction function for more than 25 years. Hence, in order to implement
forward-looking risk management support the statistical framework could be
used.

7 Conclusions

The main result of the paper is the derivation of a descriptive model of stock
market confidence in a first-order copula-based Markov approach. Based on
monthly closing prices of the US volatility index V IX of the Chicago Board
Options Exchange - which acts like a proxy for US stock market uncertainty -
an empirically stable nonlinear relationship between stock market confidence
and stock market uncertainty exists. Hereby the economic interpretation of
conditional temporal dependence of uncertainty - defined by the inverse of
the variance of temporal dependence conditional on the uncertainty level - is
confidence. The parametric copula developed by Fang et al. (2000) captures
the structure of heteroskedasticity of the autoregressive V IX process and
allows for a description of a stock market confidence proxy.

An uncertainty-reducing policy which intends to increase US stock mar-
ket confidence is efficient or inefficient dependent of the level of uncertainty
itself. For V IX values smaller than 16 an uncertainty-reducing policy is
inefficient due to the rigidity of confidence. V IX values between 16 and
19 are also connected to policy inefficiency and moreover counterproductive
due to decreasing confidence in face of decreasing uncertainty. Policy effi-
ciency is evident for V IX values larger than 19. In case of uncertainty levels
larger than 25 confidence follows which is below the saturation level of low
uncertainty regimes and can be characterized as abnormal. This behavior
of confidence implies a kind of asymmetry regarding very small and large
uncertainty values. Excess misconfidence is evident for uncertainty values
larger than 30 and leads to an uncertainty trap. Small uncertainty changes
effect confidence only marginal. Hence, in times of excess uncertainty an ag-
gressive uncertainty-reducing policy is indicated. This economic implication
of the descriptive model justifies the current way of uncertainty-reducing US
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policy which is intended to recover confidence in financial markets.
Another conclusion of the model is that the uncertainty level correspond-

ing to high confidence does not coincide with the uncertainty level which
corresponds to profit expectations. Therefore, profit expectations cause mar-
ket uncertainty which corresponds not to high confidence, i.e. stable market
conditions. Regulatory changes should try to establish profit expectations
which lead to high confidence.

As a by-product of the paper the copula-based Markov approach is ad-
equate for conditional quantile forecasts and could be used in risk manage-
ment.

Finally, due to the possibility of a structural description of heteroskedas-
ticity of autoregressive processes commonly found in Economics the method-
ological framework - particularly the generalized semiparametric regression
transformation model of Chen and Fan (2006) - of copula-based Markov
processes seems to be a useful tool in behavioral economics in general and
could build the basis for behavioral econometrics. If the economic model
leads to an autoregressive representation, the description of economic behav-
ior is data driven. Especially the Fang copula allows for the description of
various forms of heteroskedasticity constituted by data. Hence, data driven
behavioral assumptions could be used in behavioral economics instead of the-
oretical behavioral assumptions and would bring more reality in behavioral
economics.
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Appendix

Copula review:

I. The Gauss copula (e.g. Joe (1997))

C(ut−1, ut; α) = Φα[Φ−1(ut−1), Φ
−1(ut)]

with the standard normal distribution function Φ(·), the bivariate normal dis-

tribution function Φα(·, ·) with means zero and variances 1 and the correlation

coefficient |α| < 1 is an elliptical copula. Its lower tail dependence parameter is

λL = 0 und its upper tail dependence parameter is λU = 0. Therefore, it exhibits

neither dependence in the negative tail nor in the positive tail. The copula density

function c(ut−1, ut; ·) is:

(1 − α2)−1/2 exp

{
−1

2
(1 − α2)−1[u2

t−1 + u2
t − 2αut−1ut]

}
exp

{
1

2
[u2

t−1 + u2
t ]

}

Due to the linearity of the Gauss copula according to Chen and Fan (2006)

Φ−1(ut) = αΦ−1(ut−1) + εt with εt ∼ N(0;
√

1 − α2) follows. Consequently,

ut = Φ(αΦ−1(ut−1) + εt) and vt = Φ(εt/
√

1 − α2) follows.

II. The Clayton copula (Clayton (1978))

C(ut−1, ut; α) =
(
u−α

t−1 + u−α
t − 1

)− 1

α ,

α > 0, is an asymmetric Archimedean copula. Its lower tail dependence parameter

is λL = 2−
1

α und its upper tail dependence parameter is λU = 0. Therefore, it

exhibits greater dependence in the negative tail than in the positive tail. The

copula density function is:

c(ut−1, ut; α) = (1 + α) (ut−1ut)
−α−1(ut−1

−α + ut
−α − 1

)−2−1/α

The inverse of the conditional distribution is:

C−1
t|t−1(vt|ut−1; α) = ut = [(v

−α/(1+α)
t − 1)u−α

t−1 + 1]−1/α
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III. The Frank copula (Frank (1979))

C(ut−1, ut; α) = − 1

α
log

(
1 +

(e−αut−1 − 1) (e−αut − 1)

(e−α − 1)

)
,

α = (−∞, +∞)\{0}, is a symmetric Archimedean copula. Its lower tail depen-

dence parameter is λL = 0 and its upper tail dependence parameter is λU = 0.

Therefore, it exhibits neither dependence in the negative tail nor in the positive

tail and shows more tail dispersion than the Gauss copula. The copula density

function is:

c(ut−1, ut; α) = αηe−α(ut−1+ut)/[η − (1 − e−αut−1)(1 − e−αut)]2, η = 1 − e−α

The inverse of the conditional distribution is:

C−1
t|t−1(vt|ut−1; α) = ut = −α−1 log{1 − (1 − e−α)/[(v−1

t − 1)e−αut−1 + 1]}

In order to allow for a more flexible copula specification the following two

parameter copula will be applied.

IV. The Fang copula (Fang et al. (2000))

C(ut−1, ut; α, β) =
ut−1ut[

1 − β
(
1 − ut−1

1

α

) (
1 − ut

1

α

)]α (21)

considers the parameters α > 0 and 0 ≤ β ≤ 1. When β = 0, Ut−1 and Ut are inde-

pendent. When β = 1, C(ut−1, ut; α, 1) in (21) becomes the bivariate Clayton cop-

ula. As α = 1, C(ut−1, ut; 1, β) is the Ali-Mikhail-Haq copula (Ali et al. (1978)) and

the generalized Eyraud-Farlie-Gumbel-Morgenstern copula (Cambanis (1977)). By

means of some stochastic transforms, some bivariate distributions can be induced

by the Fang copula, such as the generalization of Gumbel’s bivariate logistic dis-

tribution given by Satterthwaite and Hutchinson (1978). Moreover, it can be

shown that if β < 1, limα→0 C(ut−1, ut; α, β) = limα→∞ C(ut−1, ut; α, β) = ut−1ut.

Therefore, Ut−1 and Ut are independent as α → 0 and α → ∞. To asses the

correlation between two random variables, copulas can be used to define Spear-

man’s ρs (see Joe (1997)) in general. Analog to the general case the Spearman’s

correlation coefficient of the Fang copula between Ut−1 and Ut is representable by

a hypergeometric function. A hypergeometric function of x is defined as

pFq(a1, · · · , ap; b1, · · · , bq; x) =
∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

xk

k!
,
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where (a)k = Γ(a+k)/Γ(a) and a1, . . . ap, b1, . . . , bq are parameters. Γ(z) stands for

the gamma function
∫∞
0 e−ttz−1dt. Then, the Spearman’s correlation coefficient

ρs(α, β) of the Fang copula in (21) between Ut−1 and Ut is given by

ρs(α, β) = 3(3F2(1, 1, α; 1 + 2α, 1 + 2α; β) − 1) . (22)

The copula density function is:

c(ut−1, ut; α, β) =
(β2 + β/α)(ut−1ut)

1/α + (β − β2)(u
1/α
t−1 + u

1/α
t ) + (1 − β)2

[1 − β(1 − ut−1
1/α)(1 − ut

1/α)]α+2

C−1
t|t−1 does not exist in closed form. ut = C−1

t|t−1(vt|ut−1; α, β) can be obtained

from the equation vt = Ct|t−1(ut|ut−1; α, β) using a numerical root-finding routine

(here: Newton’s procedure).
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Table 1: V IX estimation results of the copula models

Copula ML-estimation Estimated autocorrelation G-o-f

α β 1 2 3 4

Gauss 0.851 -0.173? 0.034 -0.084 0.032 0.834

(0.030) (0.007) (0.601) (0.197) (0.625) (0.490)

Clayton 1.994 0.053 0.242? 0.068 0.121 1.271

(0.118) (0.410) (0.000) (0.290) (0.061) (0.079)

Frank 10.898 -0.132? 0.029 -0.069 0.055 0.574

(0.793) (0.038) (0.654) (0.290) (0.392) (0.897)

Fang 0.173 0.9994 -0.084 0.047 -0.032 0.058 0.629

(0.015) (0.0004) (0.191) (0.461) (0.614) (0.367) (0.823)

Notes: Sample: 1990:1-2010:8 • Initial value of the one parameter copulas is 1 and of the

Fang copula are α̂1 = 0.4 and β̂1 = 1 • ML-estimates are different from zero at any level of

significance (standard error in brackets) • Spearman’s correlation coefficients and p-values

of the hypothesis ρs(Vt, Vt−l) = 0, l = 1, 2, 3, 4, in brackets • ? indicates a significant

autocorrelation on the 5% overall error rate using Bonferroni’s adjustment (see e.g. Sokal

and Rohlf (1995)) • 2 is the number of tests performed (correlation test up to a specific

lag and goodness-of-fit (G-o-f) test) • Finite sample adjustment of the Kolmogorov test

and corresponding p-values of the hypothesis Vt ∼ U [0, 1] in brackets (see e.g. D’Agostino

and Stephens (1986))
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Table 2: Estimated conditional quantile error rates of the V IX

Copula Lower region Upper region Overall region

ε ε ε

0.10 0.05 0.10 0.05 0.10 0.05

Gauss 0.17 0.11 0.09 0.07 0.09 0.07

(0.06) (0.02) (0.01)

Clayton 0.22 0.17 0.07 0.04 0.10 0.07

(0.12) (0.02) (0.01)

Frank 0.10 0.01 0.13 0.07 0.10 0.03

(0.03) (0.03) (0.02)

Fang 0.07 0.02 0.11 0.02 0.09 0.04

(0.03) (0.02) (0.01)

Notes: Sample: 1990:1-2010:8 • The estimated conditional quantiles ût are computed by

the empirical distribution. By assuming a certain parametric copula a level of significance

ε determines a (1−ε) confidence interval of the nonparametric estimated conditional quan-

tiles ût. With respect to the inverse conditional distributions for the upper interval bound

vt = 1 − ε/2 and for the lower bound vt = ε/2 holds. The unknown copula parameters

are substituted by appropriate ML-estimates according to Table 1. • The copula specific

numbers are the relative frequencies for the nonparametric estimated conditional quan-

tiles outside the parametric confidence interval. The lower quantile region is defined by

quantiles in a range of (0; 1/3). For the upper quantile region (2/3; 1) holds. • Root mean

squared errors of the regions in brackets
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