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Generalized linear statistics are a unifying class that contains U -statistics,
U -quantiles, L-statistics as well as trimmed and winsorized U -statistics. For
example, many commonly used estimators of scale fall into this class. GL-
statistics only have been studied under independence; in this paper, we estab-
lish the central limit theorem (CLT) and the law of the iterated logarithm
(LIL) for GL-statistics of sequences which are strongly mixing or L1 near
epoch dependent on an absolutely regular process. We first investigate the
empirical U -process. With the help of a generalized Bahadur representation,
the CLT and the LIL for the empirical U -quantile process follow. As GL-
statistics are linear functionals of the U -quantile process, the CLT and the
LIL for GL-statistics are straightforward corollaries.

1 Introduction

U-Statistics and the Empirical U-Process

In the whole paper, (Xn)n∈N shall be a stationary, real valued sequence of random
variables. A U -statistic Un(g) can be described as generalized mean, i.e. the mean of
the values g(Xi, Xj), 1 ≤ i < j ≤ n, where g is a bivariate, symmetric and measurable
kernel. The following to estimators of scale are U -statistics:
∗Martin.Wendler@rub.de
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1 Introduction

Example 1.1. Consider g (x, y) = 1
2

(x− y)2. A short calculation shows that the related
U-statistic is the well known variance estimator

Un (g) =
1

n− 1

n∑
i=1

(
Xi − X̄

)2
.

Example 1.2. Let g (x, y) = |x− y| . Then the corresponding U -statistic is

Un (g) =
2

n(n− 1)

∑
1≤i<j≤n

|Xi −Xj| ,

known as Gini’s mean difference.

For U -statistics of independent random variables, the CLT dates back to Hoeffding
[17] and was extended to absolutely regular sequences by Yoshihara [32], to near epoch
dependent sequences on absolutely regular processes by Denker and Keller [15] and
to strongly mixing random variables by Dehling and Wendler [13]. The LIL under
independence was proved by Serfling [27] and by Dehling and Wendler [14] under strong
mixing and near epoch dependence on absolutely regular processes.

Not only U -statistics with fixed kernel g are of interest, but also the empirical U -
distribution function (Un(t))t∈R, which is for fixed t a U -statistic with kernel h(x, y, t) :=
1{g(x,y)≤t}. The Grassberger-Procaccia and the Takens estimator of the correlation di-
mension in a dynamical system are based on the empirical U -distribution function, see
Borovkova, Burton, Dehling [9]. The functional CLT for the empirical U -distribution
function has been established by Arcones and Giné [3] for independent data, by Arcones
and Yu for absolutely regular data [5], and by Borovkova, Burton and Dehling [9] for
data, which is near epoch dependent on absolutely regular processes. The functional LIL
for the empirical U -distribution function has been proved by Arcones [1], Arcones and
Giné [4] under independence. We will extend the LIL to sequences which are strongly
mixing or L1 near epoch dependent on an absolutely regular process and give a CLT
under conditions which are slightly different from the conditions in Borovkova et al. [9].
Let us now give precise definitions:

Definition 1.3. We call a measurable function h : R×R×R→ R, which is symmetric
in the first two arguments a kernel function. For fixed t ∈ R, we call

Un (t) :=
2

n(n− 1)

∑
1≤i<j≤n

h (Xi, Xj, t)

the U-statistic with kernel h (·, ·, t) and the process (Un (t))t∈R the empirical U-distribution
function. We define the U-distribution function as U (t) := E [h (X, Y, t)], where X,
Y are independent with the same distribution as X1, and the empirical U-process as
(
√
n (Un(t)− U(t)))t∈R.

The main tool for the investigation of U -statistics is the Hoeffding decomposition into
a linear and a so-called degenerate part:

Un (t) = U (t) +
2

n

n∑
i=1

h1 (Xi, t) +
2

n (n− 1)

∑
1≤i<j≤n

h2 (Xi, Xj, t)
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1 Introduction

where

h1(x, t) := Eh(x, Y, t)− U (t)

h2(x, y, t) := h(x, y, t)− h1(x, t)− h1(y, t)− U (t) .

We need some technical assumptions to guarantee the convergence of the empirical
U -process:

Assumption 1. The kernel function h is bounded and nondecreasing in the third argu-
ment. The U-distribution function U is Lipschitz-continuous.

Furthermore, we will consider dependent random variables, so we need an additional
continuity property of the kernel function (which was introduced by Denker and Keller
[15]):

Assumption 2. h satisfies the uniform variation condition, that means there is a con-
stant L, such that for all t ∈ R, ε > 0

E

[
sup

‖(x,y)−(X,Y )‖≤ε, ‖(x′,y′)−(X,Y )‖≤ε
|h (x, y, t)− h (x′, y′, t)|

]
≤ Lε,

where X, Y are independent with the same distribution as X1 and ‖·‖ denotes the Eu-
cledean norm.

Empirical U-Quantiles and GL-Statistics

For p ∈ (0, 1), the p − th U -quantile tp = U−1(p) is the inverse of the U -distribution
function at point p (where one needs additional conditions to ensure that tp is uniquely
determined). A natural estimator of a U -quantile is the empirical U -quantile U−1n (p),
which is the p− th quantile of the empirical U -distribution function:

Definition 1.4. Let be p ∈ (0, 1) and Un the empirical U-distribution function.

U−1n (p) := inf
{
t
∣∣Un(t) ≥ p

}
is called the empirical U-quantile.

Empirical U -quantiles have application in robust statistics.

Example 1.5. Let be h(x, y, t) := 1{|x−y|≤t}. Then the 0.25-U -quantile is the Qn es-
timator of scale proposed by Rousseeuw and Croux [26], which is highly robust, as its
breakdown point is 50%.

The kernel function h(x, y, t) := 1{|x−y|≤t} satisfies Assumption 2 (uniform varition
condition), if Assumption 1 (Lipschitz continuity of U) holds. For every ε > 0

E

[
sup

‖(x,y)−(X,Y )‖≤ε, ‖(x′,y′)−(X,Y )‖≤ε

∣∣1{|x−y|≤t} − 1{|x′−y′|≤t}∣∣]
≤ P

[
t−
√

2ε < |X − Y | ≤ t+
√

2ε
]
≤ U(t+

√
2ε)− U(t−

√
2ε) ≤ Cε.
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1 Introduction

The empirical U -quantile and the empirical U -distribution function have a converse
behaviour: U−1n (p) is greater than tp iff Un (tp) is smaller than p. This motivates a
generalized Bahadur representation [7]:

U−1n (p) = tp +
p− Un (tp)

u (tp)
+Rn(p). (1)

where u = U ′ is the derivative of the U -distribution function. For independent data
and fixed p, Geertsema [16] established a generalized Bahadur representation with
Rn(p) = O

(
n−

3
4 log n

)
a.s.. Dehling, Denker, Philipp [12] and Choudhury and Ser-

fling [11] improved the rate to Rn(p) = O
(
n−

3
4 (log n)

3
4

)
. Arcones [2] proved the exact

order Rn(p) = O
(
n−

3
4 (log log n)

3
4

)
as for sample quantiles. Under strong mixing and

near epoch dependence on an absolutely regular processes, we recently established rates
of convergence for Rn(p) which depend on the decrease of the mixing coefficients [30].
The CLT and the LIL for U−1n (p) are straightfoward corollaries of the convergence of
Rn and the corresponding theorems for Un(tp).
In this paper, we will study not a single U -quantile, but the empirical U -quantile

process (U−1n (p))p∈I under dependence, where the interval I is given by I = [C̃1, C̃2]

with U(C1) < C̃1 < C̃2 < U(C2) and the constants C1, C2 from Assumption 3 below.
In order to do this, we will examine the rate of convergence of supp∈I Rn(p) and use
the CLT and the LIL for the empirical U -process. As we devide by u in the Bahadur
representation, we have to assume that this derivative behaves nicely. Furthermore, we
need U to be a bit more than differentiable (but twice differentiable is not needed).

Assumption 3. U differentiable on an interval [C1, C2] with 0 < inft∈[C1,C2] u(t) ≤
supt∈[C1,C2] u(t) <∞ (u(t) = U ′(t)) and

sup
s,t∈[C1,C2]: |t−s|≤x

|U(t)− U(s)− u(t)(t− s)| = O
(
x

5
4

)
.

The Bahadur representation for sample quantile process dates back to Kiefer [20]
under independence, Babu and Singh [6] proved such an representation for mixing data
and Kulik [21] and Wu [31] for linear processes, but there seem to be no such results for
the U -quantile process.
Furthermore, we are interested in linear functionals of the U -quantile process.

Definition 1.6. Let be p1, . . . , pd ∈ I and J a bounded function, that is continuous a.e.
and vanishes outside of I. We call a statisic of the form

Tn = T
(
U−1n

)
:=

∫
I

J (p)U−1n (p)dp+
d∑
j=1

bjU
−1
n (pj)

=

n(n−1)
2∑
i=1

∫ 2i
n(n−1)

2(i−1)
n(n−1)

J (t) dt · U−1n
(

2i

n (n− 1)

)
+

d∑
j=1

bjU
−1
n (pj)

generalized linear statistic (GL-statistic).
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1 Introduction

This generalization of L-statistics was introduced by Serfling [28]. U -statistics, U -
quantiles and L-statistics can be written as GL-statistics (though this might be some-
what artifically). For a U -statistics, just take h(x, y, t) = 1{g(x,y)≤t} and J = 1 (this only
works if we can consider the interval I = [0, 1]). The following example shows how to
deal with an ordinary L-statistic.

Example 1.7. Let be h(x, y, t) := 1
2

(
1{x≤t} + 1{y≤t}

)
, p1 = 0.25, p1 = 0.75, b1 = −1,

b2 = 1, and J = 0. Then a short calculation shows that the related GL-statistic is

Tn = F−1n (0.75)− F−1n (0.25), (2)

where F−1n denotes the empirical sample quantile function. This is the well known inter
quartile distance, a robust estimator of scale with 25% breakdown point.

Example 1.8. Let be h(x, y, t) := 1{ 1
2
(x−y)2≤t}, p1 = 0.75, b1 = 0.25 and J(x) =

1{x∈[0,0.75]}. The related GL-statistic is called winsorized variance, a robust estimator of
scale with 13% breakdown point.

The uniform variation condition also holds in this case, as h(x, y, t) = 1{ 1
2
(x−y)2≤t} =

1{|x−y|≤√2t} and this is the kernel function of Example 1.5.

Dependent Sequences of Random Variables

While the theory of GL-statistics under independence has been studied by Serfling [28],
there seems to be no results under dependence. But many dependent random sequences
are very common in applications. Strong mixing and near epoch dependence are widely
used concepts to describe short range dependence.

Definition 1.9. Let (Xn)n∈N be a stationary process. Then the strong mixing coefficient
is given by

α(k) = sup
{
|P (A ∩B)− P (A)P (B)| : A ∈ Fn1 , B ∈ F∞n+k, n ∈ N

}
,

where F la is the σ-field generated by random variables Xa, . . . , Xl., and (Xn)n∈N is called
strongly mixing, if α(k)→ 0 as k →∞.

Strong mixing in the sense of α-mixing is the weakest of the well known strong mixing
conditions, see Bradley [10]. But this class of weak dependent processes is too strong for
many applications, as it excludes examples like linear processes with innovations that
do not have a density or data from dynamical systems.

Example 1.10. Let (Zn)n∈N be independent r.v.’s with P [Zn = 1] = P [Zn = 0] = 1
2
,

X0 uniformly distributed on [0, 1], independent of (Zn)n∈N and

Xn+1 =
1

2
Xn +

1

2
Zn+1.

5



1 Introduction

Then the stationary autoregressive process (Xn)n∈N is not strongly mixing, as∣∣∣∣∣∣P
X1 ∈

[
0,

1

2

]
, Xk ∈

2(k−1)⋃
i=1

[
(2i− 2)2−k, (2i− 1)2−k

]
−P

[
X1 ∈

[
0,

1

2

]]
P

Xk ∈
2(k−1)⋃
i=1

[
(2i− 2)2−k, (2i− 1)2−k

]∣∣∣∣∣∣ =
1

2
− 1

2
· 1

2
=

1

4
.

We will consider sequences which are near epoch dependent on absolutely regular
processes, as this class covers the example above and data from dynamical systems,
which are deterministic except for the initial value. Let T : [0, 1]→ [0, 1] be a piecewise
smooth and expanding map such that infx∈[0,1] |T ′ (x)| > 1. Then there is a stationary
process (Xn)n∈N such that Xn+1 = T (Xn) which can be represented as a functional of an
absolutely regular process, for details see Hofbauer, Keller [18]. Linear processes (as in
the example above) and GARCH processes are also near epoch dependent, see Pötscher,
Prucha [25]. Near epoch dependent random variables are also called approximating
functionals (for example in Borovkova et al. [9])

Definition 1.11. Let (Xn)n∈N be a stationary process.

1. The absolute regularity coefficient is given by

β(k) = sup
n∈N

E sup{
∣∣P (A|Fn−∞)− P (A)

∣∣ : A ∈ F∞n+k},

and (Xn)n∈N is called absolutely regular, if β(k)→ 0 as k →∞.

2. We say that (Xn)n∈N is L1 near epoch dependent on a process (Zn)n∈Z with ap-
proximation constants (al)l∈N, if

E
∣∣X1 − E(X1|Gl−l)

∣∣ ≤ al l = 0, 1, 2 . . .

where liml→∞ al = 0 and Gl−l is the σ-field generated by Z−l, . . . , Zl.

In the literature one often finds L2 near epoch dependence (where the L1 norm in
the second part of definition 1.11 is replaced by the L2 norm), but this requires second
moments and we are interested in robust estimation. So we want to allow heavier
tails and consider L1 near epoch dependence. Furthermore, we do not require that the
underlying process is independent, it only has to be weakly dependent in the sense of
absolute regularity.

Assumption 4. Let one of the following two conditions hold:

1. (Xn)n∈N is strongly mixing with mixing coefficients α(n) = O(n−α) for α ≥ 8 and
let be E|Xi|r <∞ for a r > 1

5
.

2. (Xn)n∈N is near epoch dependent on an absolutely regular process with mixing co-
efficients β(n) = O(n−β) for β ≥ 8 with appoximation constants a(n) = O(n−a)
for a = max {β + 3, 12}.

6



2 Main Results

2 Main Results

Empirical U-Process

The CLT and the LIL for the empirical U -process make use of the Hoeffding decompo-
sition, recall that h1(x, t) := E [g(x, Y, t)] − U(t). Under Assumptions 1, 2 and 4, the
following covariance function converges absolutely and is continuous (compare Theorem
5 of Borovkova et al. [9]):

K(s, t) = 4 Cov [h1 ((X1), s) , h1 ((X1), t)]

+ 4
∞∑
k=1

Cov [h1 ((X1), s) , h1 ((Xk+1), t)] + 4
∞∑
k=1

Cov [h1 ((Xk+1), s) , h1 ((X1), t)] .

We need the following assumption on K

Assumption 5. Let K be positive definite on R.

Before we can give our results about the empirical U -process, we have to introduce
the reproducing kernel Hilbert space:

Definition 2.1. We define

Km :=

{
f : R→ R

∣∣f(x) =
m∑
i=1

biK(x, yi), b1, . . . , bm, y1, . . . , ym ∈ R

}
.

For f(x) =
∑m1

i=1 biK(x, yi) ∈ Km1, g(x) =
∑m2

j=1 ciK(x, zi) ∈ Km2, the inner product of
f and g is given by

(f, g) =

m1∑
i=1

m2∑
j=1

bicjK(yi, zj)

and
√

(f, f) is a norm on every Km. We call K =
⋃∞
m=1Km (the completion of the

union) reproducing kernel Hilbert space.

Theorem 1. Under the assumptions 1, 2, 4 and 5 the empirical U-process

(
√
n(Un(t)− Ut(t))t∈R

converges weakly to a centered Gaussian Process (Wt)t∈R with covariance function K.(
(

√
n

2n log log n
(Un(t)− Ut(t))t∈R

)
n∈N

is almost surely compact in the space of bounded continuous functions C(R) (equipped
with the supremum norm) and the limit set is the unit ball UK of the reproducing kernel
Hilbert space K associated wtih the covariance function K.

The first part of this theorem is similar to Theorem 9 of Borovkova, Burton Dehling
[9]. The main differences are that they use a continuity condition that is different from
our Assumption 2 and that our theorem is not restricted to bounded random variables.
Part 2 seems to be the first functional LIL for empirical U -processes under dependence.
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2 Main Results

Generalized Bahadur Representation

Recall that the remainder term in the Bahadur representation is defined as

Rn(p) = U−1n (p)− tp −
p− Un (tp)

u (tp)

and that we write tp := U−1(p)

Theorem 2. Under the Assumptions 1, 2, 3 and 4

sup
p∈I
|Rn(p)| = sup

p∈I

∣∣∣∣U−1n (p)− tp −
p− Un (tp)

u (tp)

∣∣∣∣ = o(n−
1
2
− γ

8 log n)

almost surely with I = [C̃1, C̃2] with U(C1) < C̃1 < C̃2 < U(C2), γ := α−2
α

(if the first
part of Assumption 4 holds) resprectively γ := β−3

β+1
(if the second part of Assumption 4

holds).

Empirical U-Quantiles and GL-Statistics

Using the Bahadur representation, we can deduce the asymptotic bahaviour of the em-
pirical U -quantile process from Theorem 1

Theorem 3. Under the Assumptions 1, 2, 3, 4 and 5(√
n
(
U−1n (p)− tp

))
p∈I

D−→
(

1

u(tp)
W (tp)

)
p∈I

,

where W is the Gaussian process introduced in Theorem 1 and I the interval introduced
in Theorem 3. The sequence((√

n

2 log log n
(U−1n (p)− tp)

)
p∈(U(C1),U(C2))

)
n∈N

is almost surely compact with limit set
{
f
∣∣f(p) = 1

u(tp)
g(tp), g ∈ UK

}
.

As GL-statistics are linear functionals of the empirical U -quantile process, we can
conclude that the CLT and the LIL hold also for Tn:

Theorem 4. Let be p1, . . . , pd ∈ I and J a bounded function. Under the assumptions 1,
2, 3, 4 and 5 for Tn defined in Definition 1.6:

√
n (Tn − ETn)

D−→ N
(
0, σ2

)
with

σ2 =

∫ C̃2

C̃1

∫ C̃2

C̃1

Cov [W (tp),W (tq)]

u(tp)u(tq)
J(p)J(q)dpdq

+ 2
d∑
j=1

bj

∫ C̃2

C̃1

Cov
[
W (tpj),W (tp)

]
u(tpj)u(tp)

J(p)dp+ 2
d∑

i,j=1

bjbj
Cov

[
W (tpi),W (tpj)

]
u(tpi)u(tpj)

8



3 Peliminary Results

Furthermore, we have that

lim sup
n→∞

±
√

n

2σ2 log log n
(Tn − ETn) = 1

almost surely.

3 Peliminary Results

Proposition 3.1. Under the assumptions 1, 2, 4 and 5(
1√
n

(
n∑
i=1

h1(Xi, t)

))
t∈R

D−→
(

1

2
W (t)

)
t∈R

where W is the Gaussian process introduced in Theorem 1 and the sequence((
1√

2n log log n

(
n∑
i=1

h1(Xi)

))
t∈R

)
n∈N

is almost surely compact, where the limit set is the unit ball U 1
4
K of the reproducing

kernel Hilbert space associated with the covariance function of 1
2
W .

Proof. Without loss of generality, we may assume that limt→−∞ U(t) = 0 and limt→∞ U(t) =
1. We first study the case that U(t) = t for t ∈ [0, 1]. Then our proposition reduces
to Theorem A and Theorem B of Berkes and Philipp [8], where the indicator function
1x≤t − t is replaced by h1(x, t). By Assumption 1, Eh(x, Y, t) is nondecreasing in t and
|Eh1(Xi, s) − Eh(h1(Xi, t))| = |s − t|. Furthermore, by Assumption 2, Lemma 3.5 and
3.10 of Wendler [30], (h1(Xn, t))n∈N is a near epoch dependent functional with approxi-
mations constants C

√
ak = O(k−6), so all properties needed in the proof of Theorem A

and Theorem B of Berkes and Philipp [8] hold (see also the proofs in Philipp [24]).
To study the general case, note that Eh1(Xi, tp) = U(tp) = p with tp = U−1(tp),

because U is continuous. So the functional CLT stated in our proposition holds for
the process

(
1√
n

∑n
i=1 h1(Xi, tp)

)
p∈[0,1]

. Furthermore, notice that if U(t) = U(s), when

h1(Xi, t) = h1(Xi, s) almost surely by monotonicity of h, so

n∑
i=1

h1(Xi, t) =
n∑
i=1

h1(Xi, tU(t))

almost surely. The finite dimensional weak convergence of
(

1√
n

∑n
i=1 h1(Xi, t)

)
t∈R

fol-
lows directly, the tightness can also be deduced from the tightness of the transformed
process

(
1√
n

∑n
i=1 h1(Xi, tp)

)
p∈[0,1]

, we just need the fact that by Assumption 1 |U(s)−
U(t)| ≤ C|t − s|, so the functional CLT follows. To prove the LIL in the general case,
use the same transformation.

9



3 Peliminary Results

Lemma 3.2. Let be C3 ∈ R. Under Assumptions 1, 2 and 4, there exists a constant C,
such that for all s, t ∈ R with |s− t| ≥ C3n

− β
β+1 and all n ∈ N

E

(
n∑
i=1

(h1 (Xi, s)− h1 (X1, t))

)4

≤ Cn2 (log n)2 |s− t|1+γ ,

where γ is defined in Theorem 2.

This lemma is a direct consequence of Lemma 3.4 and Lemma 3.6 of Wendler [30].

Lemma 3.3. Under Assumptions 1, 2 and 4, there exists a constant C, such that for
all t ∈ R and all n ∈ N

n∑
i1,i2,i3,i4=1

E |h2(Xi1 , Xi2 , t), h2(Xi3 , Xi4 , t)| ≤ Cn2.

This is Lemma 4.4 of Dehling, Wendler [12].

Lemma 3.4. Under the Assumptions 1, 2 and 4

sup
t∈R

∣∣∣∣∣ ∑
1≤i<j≤n

h2 (Xi, Xj, t)

∣∣∣∣∣ = o
(
n

3
2
− γ

8

)
almost surely with γ as in Theorem 2.

In all our proofs, C denotes a constant and may have different values from line to line.

Proof. We define Qn(t) :=
∑

1≤i<j≤n h2 (Xi, Xj, t). For l ∈ N chose t1,l, . . . , tk−1,l with

k = kl = O
(

2
5
8
l
)
, such that

−∞ = t0,l < t1,l < . . . < tk−1,l < tk,l =∞

and |ti,l − ti−1,l| ≤ 1

2
5
8 l
, so that we have

|U(ti,l)− U(ti−1,l)| ≤ C
1

2
5
8
l
.

10



3 Peliminary Results

By Assumption 1, h and U are nondecreasing in t, so we have for any t ∈ [ti−1,l, ti,l]

|Qn(t)| =

∣∣∣∣∣ ∑
1≤i<j≤n

(h (Xi, Xj, t)− h1(Xi, t)− h1(Xj, t))− U(t))

∣∣∣∣∣
≤ max

{∣∣∣∣∣ ∑
1≤i<j≤n

(h (Xi, Xj, ti,l)− h1(Xi, t)− h1(Xj, t)− U(t))

∣∣∣∣∣ ,∣∣∣∣∣ ∑
1≤i<j≤n

(h (Xi, Xj, ti−1,l)− h1(Xi, t)− h1(Xj, t)− U(t))

∣∣∣∣∣
}

≤ max {|Qn(ti,l)|, |Qn(ti−1,l)|}

+ (n− 1) max

{∣∣∣∣∣
n∑
i=1

(h1(Xi, ti,l)− h1(Xi, t)))

∣∣∣∣∣ ,
∣∣∣∣∣
n∑
i=1

(h1(Xi, t)− h1(Xi, ti−1,l)))

∣∣∣∣∣
}

+
n(n− 1)

2
|U(ti,l)− U(ti−1,l)|

≤ max {|Qn(ti,l)|, |Qn(ti−1,l)|}

+ (n− 1)

∣∣∣∣∣
n∑
i=1

(h1(Xi, ti,l)− h1(Xi, ti−1,l)))

∣∣∣∣∣+ 2
n(n− 1)

2
|U(ti,l)− U(ti−1,l)|.

So we have that

sup
t∈R
|Qn(t)|

≤ max
i=0,...,k

|Qn(ti, l)|+ max
i=1,...,k

(n− 1)

∣∣∣∣∣
n∑
i=1

(h1(Xi, ti,l)− h1(Xi, ti−1,l)))

∣∣∣∣∣
+ max

i=0,...,k
n(n− 1)|U(ti,l)− U(ti−1,l)|.

We will treat these three summands separately. For 2l ≤ n < 2l+1, we have for the last
summand that maxi=0,...,k n(n−1)|U(ti,l)−U(ti−1,l)| ≤ Cn2− 5

8 = o
(
n

3
2
− γ

8

)
by the choice

11



3 Peliminary Results

of t1, . . . , tk−1. For the first summand, we obtain

E[ max
n=2l,...,2l+1−1

max
i=0,...,k

|Qn(ti,l)|2]

≤
k∑
i=0

E

( l∑
d=1

max
i=1...2l−d

∣∣Q2l−1+i2d−1(ti,l)−Q2l−1+(i−1)2d−1(ti,l)
∣∣)2


≤
k∑
i=0

l

l∑
d=1

2l−d∑
i=1

E
[(
Q2l−1+i2d−1(ti,l)−Q2l−1+(i−1)2d−1(ti,l)

)2]
≤

k∑
i=0

l

l∑
d=1

2l+1∑
i1,i2,i3,i4=1

E |h2(Xi1 , Xi2 , ti,l), h2(Xi3 , Xi4 , ti,l)|

≤ Ckl222(l+1) ≤ Cl22(2+ 5
8
)l,

where we used Lemma 3.2 in the last line. With the Chebyshev inequality, it follows for
every ε > 0

∞∑
l=1

P

[
max

n=2l,...,2l+1−1
max
i=0,...,k

|Qn(ti,l)| > ε2l(
3
2
− γ

8
)

]
≤

∞∑
l=1

1

ε22l(3−
γ
4
)
E[ max

n=2l,...,2l+1−1
max
i=0,...,k

|Qn(ti,l)|2] ≤
∞∑
l=1

1

ε22l(3−
γ
4
)
l22(2+ 5

8
)l <∞,

as γ ≤ 1, so by the Borel Cantelli lemma

P

[
max
i=0,...,k

|Qn(ti,l)| > εn
3
2
− γ

8 i.o.
]
= P

[
max

n=2l,...,2l+1−1
max
i=0,...,k

|Qn(ti,l)| > ε2l(
3
2
− γ

8
) i.o.

]
= 0

(the meaning of the abbreviation i.o. is “infinitely often”). It remains to show the
convergence of the second summand:

E

(
max

n=2l,...,2l+1−1
max
i=1,...,k

(n− 1)

∣∣∣∣∣
n∑
i=1

(h1(Xi, ti,l)− h1(Xi, ti−1,l)))

∣∣∣∣∣
)4

≤ 24(l+1)

k∑
i=1

E

(
max

n=2l,...,2l+1−1

∣∣∣∣∣
n∑
i=1

(h1(Xi, ti,l)− h1(Xi, ti−1,l)))

∣∣∣∣∣
)4

≤ C26ll2k( max
i=1,...,k

|ti,l − ti−1,l|)1+γ ≤ Cl22(6− 5
8
γ)l,

where we used Corolarry 1 of Móricz and Lemma 3.2 to obtain the last line. Remember

12



3 Peliminary Results

that k = kl = O
(

2
5
8
l
)
and that |ti,l − ti−1,l| ≤ 1

2
5
8 l
. We conclude that

∞∑
l=0

P

[
max

n=2l,...,2l+1−1
max
i=1,...,k

(n− 1)

∣∣∣∣∣
n∑
i=1

(h1(Xi, ti,l)− h1(Xi, ti−1,l)))

∣∣∣∣∣ > ε2( 3
2
− γ

8
)l

]

≤
∞∑
l=0

C

ε42l(6−
γ
2
)
E

(
max

n=2l,...,2l+1−1
max
i=1,...,k

(n− 1)

∣∣∣∣∣
n∑
i=1

(h1(Xi, ti,l)− h1(Xi, ti−1,l)))

∣∣∣∣∣
)4

≤
∞∑
l=0

C

ε42l(6−
γ
2
)
l22(6− 5

8
γ)l =

∞∑
l=0

Cl2

ε42
γ
8
l
<∞.

The Borel Cantelli lemma completes the proof.

Lemma 3.5. Let be F a nondecreasing function, c, l > 0 constants and [C1, C2] ⊂ R. If
for all s, t ∈ [C1, C2] with |t− s| ≤ l + 2c

|F (t)− F (s)− (t− s)| ≤ c,

then for all p, q ∈ R with |p− q| ≤ l and F−1(p), F−1(q) ∈ (C1 + 2c+ l, C2 − 2c− l)

|F−1(p)− F−1(q)− (p− q)| ≤ c

where F−1(p) := inf
{
t
∣∣F (t) ≥ p

}
is the generalized inverse.

Proof. Without loss of generality we assume that p < q. Let be ε ∈ (0, c). By our
assumptions

F
(
F−1(p) + (q − p) + c+ ε

)
≥ F

(
F−1(p) + ε

)
+ (q − p) + c− c

≥ p+ (q − p) = q.

By the definition of F−1, it follows that

F−1(q) = inf
{
t
∣∣F (t) ≥ q

}
≤ F−1(p) + (q − p) + c+ ε.

So taking the limit ε→ 0, we obtain

F−1(q) ≤ F−1(p) + (q − p) + c.

On the other hand

F
(
F−1(p) + (q − p)− c− ε

)
≥ F

(
F−1(p)− ε

)
+ (q − p)− c+ c

≥ p+ (q − p) = q.

So we have that
F−1(q) ≥ F−1(p) + (q − p)− c− ε,

and hence F−1(q) ≥ F−1(p) + (q − p) − c. Combining the upper and lower inequality
for F−1(q), we conclude that |F−1(p)− F−1(q)− (p− q)| ≤ c.

13



3 Peliminary Results

Lemma 3.6. Under the Assumptions 1, 2, 3 and 4 for any constand C > 0

sup
s,t∈[C1,C2]:

|s−t|≤C
√

log logn
n

|Un(t)− Un(s)− u(s)(t− s)| = o(n−
1
2
− γ

8 log n).

Proof. As a consequence of Assumption 3 and γ < 1

sup
s,t∈[C1,C2]:

|s−t|≤C
√

log logn
n

|U(t)− U(s)− u(s)(t− s)| = o(n−
1
2
− γ

8 log n),

so it suffices to show that

Kn = sup
s,t∈[C1,C2]:

|s−t|≤C
√

log logn
n

|Un(t)− Un(s)− (U(t)− U(s))| = o(n−
1
2
− γ

8 log n).

For l ∈ N chose t1,l, . . . , tk−1,l with k = kl = O
(√

2l

log l

)
, C1 = t0,l < t1,l < . . . < tk−1,l <

tk,l = C2 and ti,l − ti−1,l ≤
√

log l
2l

. Clearly

Kn ≤ 2 max
i=1,...,k

sup
s,t∈[ti−1,l,ti,l]

|Un(t)− Un(s)− (U(t)− U(s))|

≤ 4 max
i=1,...,k

sup
t∈[ti−1,l,ti,l]

|Un(t)− Un(ti−1,l)− (U(t)− U(ti−1,l))| .

Now chose for i = 1, . . . , k and j = 1, . . . ,m − 1 real numbers sj,i,l, such that ti−1,l =

s0,i,l < s1,i,l < . . . < sm−1,i,l < sm,i,l = ti,l and sj,i,l − sj−1,i,l ≤ 2−(
1
2
− γ

4
)l. As Un and U are

nondecreasing, we have for t ∈ (sj−1,i,l, sj,i,l)

|Un(t)− Un(ti−1,l)− (U(t)− U(ti−1,l))|
≤ max {|Un(sj,i,l)− Un(ti−1,l)− (U(t)− U(ti−1,l))| ,
|Un(sj−1,i,l)− Un(ti−1,l)− (U(t)− U(ti−1,l))|}

≤ max {|Un(sj,i,l)− Un(ti−1,l)− (U(sj,i,l)− U(ti−1,l))| ,
|Un(sj−1,i,l)− Un(ti−1,l)− (U(sj−1,i,l)− U(ti−1,l))|}+ |U(sj,i,l)− U(sj−1,i,l)|,

and consequently for 2l ≤ n < 2l+1

Kn ≤ 4 max
i=1,...,k

max
j=1,...,m

|Un(sj,i,l)− Un(ti−1,l)− (U(sj,i,l)− U(ti−1,l))|

+ 4 max
i=1,...,k

max
j=1,...,m

|U(sj,i,l)− U(sj−1,i,l)|

≤ 8 max
i=1,...,k

max
j=1,...,m

∣∣∣∣∣ 1n
n∑

i1=1

h1(Xi1 , sj,i,l)−
1

n

n∑
i1=1

h1(Xi1 , ti−1,l)

∣∣∣∣∣
+ 4 max

i=1,...,k
max

j=1,...,m

∣∣∣∣∣ 2

n(n− 1)

( ∑
1≤i1<i2≤n

h2(Xi1 , Xi2 , sj,i,l)−
∑

1≤i1,i2

h2(Xi1 , Xi2 , ti−1,l)

)∣∣∣∣∣
+ 4 max

i=1,...,k
max

j=1,...,m
|U(sj,i,l)− U(sj−1,i,l)|.

14



4 Proof of Main Results

From Assumption 3, we obtain

max
i=1,...,k

max
j=1,...,m

|U(sj,i,l)− U(sj−1,i,l)| ≤ sup
t∈[C1,C2]

u(t)2−(
1
2
− γ

4
)l = o(n−

1
2
− γ

8 log n).

With the help of Lemma 3.4, it follows that

max
i=1,...,k

max
j=1,...,m

∣∣∣∣∣ 2

n(n− 1)

( ∑
1≤i1<i2≤n

h2(Xi1 , Xi2 , sj,i,l)−
∑

1≤i1,i2

h2(Xi1 , Xi2 , ti−1,l)

)∣∣∣∣∣
≤ 4

n(n− 1)
sup
t∈R

∣∣∣∣∣ ∑
1≤i<j≤n

h2 (Xi, Xj, t)

∣∣∣∣∣ = o
(
n−

1
2
− γ

8

)
.

Furthermore, we have by Lemma 3.2 and Corollary 1 of Móricz [23]

E

( max
n=2l,...,2l+1−1

max
i=1,...,k

max
j=1,...,m

∣∣∣∣∣ 1n
n∑

i1=1

h1(Xi1 , sj−1,i,l)−
1

n

n∑
i1=1

h1(Xi1 , ti−1,l)

∣∣∣∣∣
)4


≤ 1

24l

k∑
i=1

E

( max
n=0,...,2l+1−1

max
m1=1,...,m

∣∣∣∣∣
n∑

i1=1

m1∑
j=1

(h1(Xi1 , sj,i,l)− h1(Xi1 , sj−1,i,l))

∣∣∣∣∣
)4


≤ Ck
1

24l
22ll2

(√
log l

2l

)1+γ

= C
l2(log l)

γ
2

2(2+ γ
2
)l
,

as k ≈
√

2l

log l
So we can conclude that for any ε > 0

∞∑
l=1

P

[
max

n=2l,...,2l+1−1
max
i≤k

max
j≤m

∣∣∣∣∣ 1n
n∑

i1=1

(h1(Xi1 , sj−1,i,l)− h1(Xi1 , ti−1,l))

∣∣∣∣∣ ≥ ε2−(
1
2
+ γ

8
)ll

]

≤ C
∞∑
l=1

2(2+ γ
2
)l

ε4l4
l2(log l)

γ
2

2(2+ γ
2
)l

= C
∞∑
l=1

(log l)
γ
2

l2
<∞.

The Borel Cantelli lemma completes the proof.

4 Proof of Main Results

In all our proofs, C denotes a constant and may have different values from line to line.

Proof of Theorem 1. We use the Hoeffding decomposition

Un (t) = U (t) +
2

n

n∑
i=1

h1 (Xi, t) +
2

n (n− 1)

∑
1≤i<j≤n

h2 (Xi, Xj, t) .

By Theorem 3.1 the CLT and the LIL hold for the linear part 2
n

∑n
i=1 h1 (Xi, t). The

faster convergence of the degenerate part 2
n(n−1)

∑
1≤i<j≤n h2 (Xi, Xj, t) stated in Lemma

3.4 completes the proof.
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4 Proof of Main Results

Proof of Theorem 2. By changing the random variables from Xn to U(Xn), we can with-
out loss of generality assume that U(p) = p = tp on the interval I (Assumption 3 guar-
antees that Rn(p) is only blown up by a constant because of this transformation). Then
we can write Rn(p) as

Rn(p) = U−1n (p)− tp + Un(tp)− p
=
(
U−1n (p)− U−1n (Un(tp)) + Un(tp)− p

)
+
(
U−1n (Un(tp))− tp

)
Applying Lemma 3.6 and Lemma 3.5 with F = Un, c = n−

1
2
− γ

8 log n and l = C
√

log logn
n

,
we obtain

sup
p,q∈I:

|p−q|≤C
√

log logn
n

∣∣U−1n (p)− U−1n (q)− (p− q)
∣∣ = o(n−

1
2
− γ

8 log n).

almost surely. By Theorem 1 we have that supt∈[C1,C2] (Un(tp)− p) ≤ C
√

log logn
n

almost
surely, it follows that

sup
p∈I

∣∣U−1n (p)− U−1n (Un(tp)) + Un(tp)− p
∣∣

≤ sup
p,q∈I:

|p−q|≤C
√

log logn
n

∣∣U−1n (p)− U−1n (q)− (p− q)
∣∣ = o(n−

1
2
− γ

8 log n)

almost surely. It remains to show the convergence of U−1n (Un(tp)) − tp. For every
ε > 0 by the definition of the generalized inverse, U−1n (Un(tp)) − tp > εn−

1
2
− γ

8 log n

only if Un(tp + εn−
1
2
− γ

8 log n) < Un(tp) and U−1n (Un(tp)) − tp ≤ −εn−
1
2
− γ

8 log n only if
Un(tp − εn−

1
2
− γ

8 log n) ≥ Un(tp). So we can conclude that

P

[
sup
p∈I
|U−1n (Un(tp))− tp| > εn−

1
2
− γ

8 log n i.o.
]

≤ P

 sup
t∈[C1,C2−εn−

1
2−

γ
8 logn]

Un(t+ εn−
1
2
− γ

8 log n)− Un(t) ≤ 0 i.o.



≤ P

 sup
s,t∈[C1,C2]

|s−t|=εn−
1
2−

γ
8 logn

|Un(t)− Un(s) + (U(t)− U(s))| ≥ |U(t)− U(s)| i.o.



≤ P

 sup
s,t∈[C1,C2]

|s−t|≤εn−
1
2−

γ
8 logn

|Un(t)− Un(s) + (U(t)− U(s))| ≥ ε log n

n
1
2
+ γ

8 inft∈[C1,C2] u(t)
i.o.


= 0,

where the last line is a consequence of Lemma 3.6.
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4 Proof of Main Results

Proof of Theorem 3. We make use of the Bahadur representation

√
n
(
U−1n (p)− tp

)
= − 1

u (tp)

√
n (Un (tp)− U(tp)) +

√
nRn(p).

From Theorem 1, we have that the finite dimensional distribution of the rescaled empir-
ical U -process

(
− 1
u(tp)

√
n (Un (tp)− U(tp))

)
p∈I

converge to the finite dimensional distri-

butions of the centered Gaussian process
(

1
u(tp)

W (tp)
)
p∈I

. The tightness is inherited of

the process (
√
n (Un (t)− U(t)))t∈[C1,C2]

, as |tp − tq| ≤ |p−q|
inft∈[C1,C2]

u(t)
. The faster conver-

gence of (Rn(p))p∈I (Theorem 2) completes the proof of the first half of this Theorem,
the proof of the second half works in a similar way.

Proof of Theorem 4. T defined in Definition 1.6 is a linear and continuous functional,
so we have that √

n (Tn − ETn) = T
(√

n
(
U−1n − U−1

))
converges weakly to T

((
1

u(tp)
W (tp)

)
p∈I

)
, which is a normal distributed random variable

with variance σ2. Similarly, we have that
√

n
2σ2 log logn

(Tn − ETn) has almost surely the

compact limit set
{

1√
2σ2
T (f)

∣∣f(p) = 1
u(tp)

g(tp), g ∈ UK
}
.

It remains to prove that this limit set is [−1, 1]. This can be easily seen by the following
argument: Let (Wn)n∈N be a sequence of independent copies of the Gaussian process
W introduced in Theorem 1. Then the limit set of W̃n :=

√
1

2n log logn

∑n
i=1Wi is UK by

the LIL for Hilbert space valued random variables, see Ledoux, Talagrand [22]. So the
limit set of 1√

2σ2
T
(

1
u(tp)

W̃n(tp)
)
is
{

1√
2σ2
T (f)

∣∣f(p) = 1
u(tp)

g(tp), g ∈ UK
}
. On the other

hand, by the linearity of T we have that

1√
2σ2

T

((
1

u(tp)
W̃n(tp)

)
p∈I

)
=

√
1

2σ2n log log n

n∑
i=1

T

((
1

u(tp)
Wi(tp)

)
p∈I

)

and has limit set [0, 1], as T ( 1
u(tp)

Wi(tp)) is normal distributed with expectation 0 and
varariance σ2.
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