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Abstract. In contrast to conventional measures, the Focused Information Crite-

rion (FIC) allows the purpose-specific selection of models, thereby reflecting the

idea that one kind of model might be appropriate for inferences on a parameter of

interest, but not for another. Ever since its introduction, the FIC has been increas-

ingly applied in the realm of statistics, but this concept appears to be virtually

unknown in the economic literature. Using a straightforward analytical example,

this paper illustrates the FIC and its usefulness in economic applications.
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1 Introduction

Selecting an adequate model is key for any empirical analysis. Numerous meth-

ods for model choice and validation have been suggested in the literature. Well-

known approaches to model selection include the usage information criteria,

such as AKAIKE’s (1970) AIC and SCHWARZ’ (1978) SIC.1 Alternatively, DETTE

(1999), DETTE, PODOLSKIJ and VETTER (2006), or PODOLSKIJ and DETTE (2008)

propose, among many others, goodness-of-fit tests. Common to all these tests,

measures, and criteria is the idea that they provide us with a single ‘best’ model,

regardless of the purpose of inference. Deviating from this conventional avenue,

CLAESKENS and HJORT (2003) have conceived the Focused Information Criterion

(FIC) to allow various models to be selected for different purposes.

This approach reflects the view that one kind of model might be appropri-

ate for inferences on, say, the cross-price elasticity of capital and labor, whereas a

different sort of model may be preferable for the estimation of another parameter.

Ever since its introduction, the FIC has been increasingly applied in the realm of

statistics, but the concept appears to be virtually unknown in the economic lit-

erature. Using the classical example of the choice among COBB-DOUGLAS- and

translog models for didactic purposes, this paper illustrates the concept and use-

fulness of the FIC, focusing on the substitutability of capital and labor.

The following Section 2 describes the classical example and the focus pa-

rameter. Section 3 explains the core of the FIC, the information matrix, and cal-

culates it for our analytical example. In Section 4, we apply the FIC to the model

selection problem presented in Section 2. The last section summarizes.

1According to KENNEDY (2003:117), AIC tends to select models that are over-parameterized,

whereas SIC, which is also termed Bayesian Information Criterion (BIC), tends to pick up the

true model if this is among the choices. The SIC is considered by most researchers to be the best

criterion, as it has performed well in Monte-Carlo studies.
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2 A Classical Example

We use the frequently employed translog cost function approach – see e. g. FRON-

DEL and SCHMIDT (2002, 2003) for surveys – including here merely two inputs,

capital (K) and labor (L), where pK and pL denote the respective prices:

logC(pK , pL) = β0 + βK log pK + βL log pL

+
1

2
βKK log pK log pK + βKL log pK log pL (1)

+
1

2
βLL log pL log pL.

This approach reduces to the COBB-DOUGLAS function if the second-order coef-

ficients βKK , βLL, and βKL vanish:

H0 : βKK = βLL = βKL = 0. (2)

Given empirical data on input prices, as well as on cost shares of capital (sK)

and labor (sL), an efficient procedure to obtain coefficient estimates is via a cost

share system (BERNDT, 1996:470):

sK = βK + βKK log pK + βKL log pL,

sL = βL + βKL log pK + βLL log pL, (3)

which results from the logarithmic differentiation of translog function (1) with

respect to pK and pL, respectively, as e. g. ∂ logC
∂ log pK

= pK

C
∂C
∂pK

= pKxK

C
= sK , where

according to SHEPARD’s Lemma ∂C
∂pK

= xK .

In this two-factor case, cost share system (3) degenerates to a single cost

share equation:

sK = βK + βKK log(pK/pL), (4)

as both cost shares add to unity, sK + sL = 1, thereby implying the following

restrictions that are already incorporated in (4):

1 = βK + βL, (5)
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0 = βKK + βKL, (6)

0 = βKL + βLL. (7)

On the basis of (4), the classical procedure of selecting either of the two specifica-

tions involves testing whether βKK equals zero:

H0 : βKK = 0. (8)

Alternatively, using the FIC for model selection requires determining a pa-

rameter of interest µ, which is typically a function of the model coefficients. As in

many empirical labor market studies, we focus here on the capital elasticity with

respect to wages, ηKpL
, which for the translog cost function (1) is given by (see

e. g. FRONDEL and SCHMIDT (2006:188))

µ(βK , βL, βKK , βKL, βLL, σ) := ηKpL
=
βKL
sK

+ sL. (9)

This expression degenerates to ηKpL
= sL for the COBB-DOUGLAS function, as

can be seen from hypothesis (8) and restriction (6).

3 Information Measures and Matrices

Using the abbreviation X := log(pK/pL) and re-notating sK by Y := sK , the

stochastic version of the more general specification (4) reads

Y = βK + βKKX + ε, (10)

where ε denotes the error term, whose variance structure is assumed to be ho-

moscedastic: Var(ε) = σ2. In line with CLAESKENS and HJORT (2003:91), specifi-

cation (10) is called here full model. Relative to the so-called narrow model, also

referred to as the null model, the single parameter γ := βKK completes the full

model. For clarity, the parameters estimated from the full model are designated

by θfull := (βfullK , σfull, γfull)T , where γfull = βfullKK , whereas those of the null model

are denoted by θ0 := (β0
K , σ

0, γ0)T . Corresponding to (8), γ0 equals zero: γ0 = 0.
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For comparing competing parametric models on the basis of an n-

dimensional sample that provides observations (x1, ..., xn) and (y1, ..., yn) on X

and Y , respectively, applying FIC requires the maximum likelihood (ML) estima-

tion method (CLAESKENS, HJORT, 2003:91) and the calculation of a (p+q)× (p+q)

information matrix, where p refers to the number of parameters estimated in the

null model and q designates the number of parameters that exclusively belong to

the full model. In our example, p = 2 and q = 1, that is, Ifull is a 3 × 3 matrix and

I00 is a 2 × 2 matrix, whereas I11 is a scalar:

Ifull :=

 I00 I01

I10 I11

 = E


(
∂ logL
∂βK

)2 ∂ logL
∂βK

∂ logL
∂σ

∂ logL
∂βK

∂ logL
∂γ

∂ logL
∂σ

∂ logL
∂βK

(
∂ logL
∂σ

)2 ∂ logL
∂σ

∂ logL
∂γ

∂ logL
∂γ

∂ logL
∂βK

∂ logL
∂γ

∂ logL
∂σ

(
∂ logL
∂γ

)2

 . (11)

The entries of Ifull are based on FISHER’s well-known information measure.

When focusing on parameter γ, the respective entry is given by

I11 = E[

(
∂ logL(βK , σ, γ,X)

∂γ

)2

] = E[

(
∂L(βK , σ, γ,X)

∂γ
/L(βK , σ, γ,X)

)2

].

FISHER’s information measure helps to discriminate between two parameter val-

ues γ1 and γ2 on the basis of the likelihood L(βK , σ, γ,X). Intuitively, the larger

the difference L(βK , σ, γ1, X) − L(βK , σ, γ2, X), the more easy it is to discrimi-

nate between γ1 and γ2. FISHER’s measure captures this difference by the partial

derivative of the likelihood, ∂ logL/∂γ, relative to the likelihood L. This ratio is

squared in order to account for positive and negative relative differences alike.

Finally, to obtain a global measure that is independent of individual samples,

expectations are built.

To determine the entries of information matrix Ifull, we assume normality

of the error term: ε ∼ N(0, σ2). The log-likelihood of ε then reads

logL = − log
√

2π − log σ − 1

2

(
Y − βK − βKKX

σ

)2

. (12)
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Given this log-likelihood, we get

∂ logL

∂θ
|θ0 =


∂ logL
∂βK

∂ logL
∂σ

∂ logL
∂βKK


|θ0

=


Y−βK−βKK ·X

σ
· 1
σ

− 1
σ

+ (Y−βK−βKK ·X)2

σ3

X(Y−βK−βKK ·X)
σ

· 1
σ


|θ0

=


ε0

σ0

(ε0)2−1
σ0

Xε0

σ0

 , (13)

where θ := (βK , σ, γ = βKK)T , θ0 := (β0
K , σ

0, γ0 = 0)T , and ε0 :=
Y−β0

K

σ0 ∼ N(0, 1).

Using vector ∂ logL

∂θ |θ0 as given by (13) and evaluating the information matrix

Ifull at θ0, the common anchor of both models, yields

Ifull|θ0 = E[

(
∂ logL

∂θ
|θ0

)
·
(
∂ logL

∂θ
|θ0

)T
] =


E[( ε

0

σ0 )2] E[ ε
0

σ0
(ε0)2−1
σ0 ] E[ ε

0

σ0
Xε0

σ0 ]

E[ ε
0

σ0
(ε0)2−1
σ0 ] E[( (ε0)2−1

σ0 )2] E[ (ε0)2−1
σ0

Xε0

σ0 ]

E[ ε
0

σ0
Xε0

σ0 ] E[ (ε0)2−1
σ0

Xε0

σ0 ] E[(Xε
0

σ0 )2]



=
1

(σ0)2


1 0 X

0 2 0

X 0 X2

 , (14)

as E[(ε0)2] = Var (ε0) = 1, E[ε0] = 0 = E[(ε0)3], and E[(ε0)4] = 3.

Employing the methods of moments provides an estimate of Ifull|θ0 :

Îfull|θ0 =

 Î00 Î01

Î10 Î11

 =
1

(σ̂0)2


1 0 x̄

0 2 0

x̄ 0 x2

 , (15)

with x̄ := (x1 + ...+xn)/n, x2 := (x2
1 + ...+x2

n)/n, and (σ̂0)2 being the ML-estimate

of (σ0)2.

4 One-Dimensional FIC

In our one-dimensional illustrative example, in which both models differ in

merely the single coefficient γ = βKK , the FIC reduces for the null model to
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(CLAESKENS, HJORT, 2003:907):2

FIC0 = ω2D2, (16)

where

D :=
√
n(γfull − γ0) =

√
nγfull, (17)

as γ0 = 0, and

ω := I10I
−1
00

∂µ

∂ξ
|θ0 − ∂µ

∂γ
|θ0 , (18)

with ξ := (βK , σ)T . For the full model, the FIC is given by

FICfull = 2ω2K, (19)

with

K := (I11 − I10I
−1
00 I01)−1. (20)

Using Îfull|θ0 from (15), we get a familiar estimate of K:

K̂ = (Î11 − Î10Î
−1
00 Î11)−1 = [

x2

(σ̂0)2
− (

x̄

(σ̂0)2
, 0)

 (σ̂0)2 0

0 (σ̂0)2/2


 x̄

(σ̂0)2

0

]−1

= [
x2

(σ̂0)2
− (

x̄

(σ̂0)2
, 0)

 x̄

0

]−1 =
(σ̂0)2

x2 − (x̄)2
, (21)

which is proportional to the variance of the ML-estimate γ̂full = β̂fullKK . Note

that β̂fullKK is the essential ingredient of the estimate D̂ =
√
nβ̂fullKK of bias D =

√
n(γfull − γ0). In short, irrespective of the concrete value of the common term ω,

comparing FIC0 and FICfull in fact reflects the trade-off of bias D versus esti-

mation variability given by K.

While – as a rule of guidance – the (sub-)model with the smallest estimate

of FIC is chosen, for the nontrivial case in which ω 6= 0, the narrow model is

preferred by the FIC over the full model if FIC0 = ω2D2 < 2ω2K = FICfull or,

2Ultimately, it will turn out that the application of the FIC becomes irrelevant in this one-

dimensional case.
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equivalently, if D2/K < 2 (CLAESKENS, HJORT, 2003:907). In our example, this

decision is based on the following estimate of a χ2(1)-distributed test statistic:

D̂2

K̂
=

(β̂fullKK )2

(σ̂0)2

n(x2−(x̄)2)

,

where (σ̂0)2

n(x2−(x̄)2)
is the variance of β̂fullKK and the significance level results from

Pr(χ2(1) ≥ 2) = 0.157.

Although in our example the decision on whether to prefer the null or the

full model does not depend upon the choice of the focus parameter µ at all, for il-

lustrative purposes, we nonetheless calculate the FIC both for our preferred focus

parameter

µ = ηKpL
=
βKL
sK

+ sL =
−βKK

βK + βKK logX
+ 1− (βK + βKK logX), (22)

and, alternatively, for µ = βKK = γ, for which ∂µ
∂γ

= 1, ∂µ

∂ξ = (0, 0)T , and hence

ω = −1, so that FIC0 = D2 and FICfull = 2K.

In contrast, for µ = ηKpL
, we obtain from expression (22)

∂µ

∂γ
|θ0 =

∂µ

∂βKK
|θ0 = (

−βK
(βK + βKK logX)2

−X)|θ0 = − 1

β0
K

−X,

∂µ

∂ξ
|θ0 =

 βKK

βK+βKK logX
− 1,

0

 |θ0 =

 −1

0

 .
Using these derivatives and definition (18), for X = x̄ the estimate of ω reads

ω̂ = Î10Î
−1
00

∂̂µ

∂ξ
|θ0 − ∂̂µ

∂γ
|θ0 = (

x̄

(σ̂0)2
, 0)

 (σ̂0)2 0

0 (σ̂0)2/2


 −1

0

+
1

β̂0
K

+ x̄ =
1

β̂0
K

.

In sum, F̂ IC
full

= 2ω̂2K̂ = 2
(β̂0

K)2
(σ̂0)2

x2−(x̄)2
, which in accord with (σ̂0)2 should be

close to zero if translog function (1) is the true model. Similarly intuitive is that

F̂ IC
0

= ω̂D̂ = n(
β̂full

KK

β̂0
K

)2 should be small or even vanish if COBB-DOUGLAS is the

true model and, hence, βfullKK is close to, or even equals, zero.

It bears noting that ω̂ generally depends upon the concrete value X = x:

ω̂ = −x̄+
1

β̂0
K

+ x, (23)

7



so that the FIC also critically hinges on the individual value X = x. As a con-

sequence, it may well be the case that with this criterion the full model might

be preferred for some, but not for all x. In contrast to other measures, such as

AIC, the FIC therefore does not provide for a unanimous model recommenda-

tion across the whole range of values of the conditional variables.3

More generally, in the q-dimensional case in which the models under

scrutiny may differ in q parameters γ1, ..., γq, the FIC is given by

FIC := (
q∑
j=1

ωjDj1(γj = γ0
j ))

2 + 2
q∑
j=1

ω2
jKj1(γj 6= γ0

j ), (24)

if K is diagonal with entries Kj and where 1(.) denotes the indicator function.

Note that for q = 1 definition (24) specializes to either (16) if γ = γ0 or (19) if

γ 6= γ0, with ω1 = ω being a common ingredient. For q > 1, the factors ω1, ..., ωq,

which vary with the focus parameter µ, generally differ from each other. Thus,

as opposed to the one-dimensional case illustrated here, different models may be

preferred by the FIC in the multi-dimensional case, depending upon the concrete

choice of focus parameter µ.

5 Summary

Econometric studies on factor substitution frequently stress the importance of

choosing the right model for correctly describing the true technology of pro-

duction (e.g. CONSIDINE, 1989). Typically, this choice focuses on a few well-

established functional forms, such as Leontief, linear-logit, and, often, translog.

In seeking the right functional form, however, one might overlook that any para-

metric model represents a highly stylized description of the real production pro-

cess. As a consequence, none of these functional forms can claim to be the true

model, albeit they may capture certain features of reality reasonably well. Rather

than looking for the ultimately true model, an alternative avenue is to look for

3Alternatively, one might use a weighted version of the FIC (see CLAESKENS, HJORT, 2008).
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that functional form that is most appropriate for answering a specific research

question, such as the substitution relationship of energy and capital.

This is precisely the core of the concept of the Focused Information Criterion

(FIC), developed by CLAESKENS and HJORT (2003) to allow for purpose-specific

model selection. Using a one-dimensional analytical example, this paper has il-

lustrated this concept. Its underlying idea is to study perturbations of a paramet-

ric model that rests on the parameters γ0 := (γ0
1 , ..., γ

0
q )
T as a point of departure,

with γ0 being known. A variety of models may then be considered that depart

from γ0 in some or all of q directions: γ 6= γ0.

On the basis of the maximum-likelihood estimates for the parameters of

the altogether 2q (sub-)models, that model for which the FIC is minimal for a

given focus parameter of choice µ = µ(γ) will be selected, a selection procedure

that – except for the one-dimensional case q = 1 – critically hinges on the choice

of the focus parameter µ. In contrast, classical selection criteria are not related

to the purpose of inference. In addition to this feature, the FIC contrasts with

other model selection measures, such as the AKAIKE and SCHWARZ criteria, in

that it is not a global criterion that recommends a single, most preferred model

irrespective of the values of the covariates. Rather, it is a local criterion that may

indicate the appropriateness of various models, depending upon the vicinity of

the conditioning variables.
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