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Asymptotic Distribution of Two-Sample Empirical U-Quantiles
with Applications to Robust Tests for Structural Change

Herold Dehling1 and Roland Fried2

We derive the asymptotical distributions of two-sample U-statistics and
two-sample empirical U-quantiles in the case of weakly dependent data. Our
results apply to observations that can be represented as functionals of abso-
lutely regular processes, including e.g. many classical time series models as
well as data from chaotic dynamical systems. Based on these theoretical re-
sults we propose a new robust nonparametric test for the two-sample location
problem, which is constructed from the median of pairwise differences be-
tween the two samples. We inspect the properties of the test in the case of
weakly dependent data and compare the performance with classical tests such
as the t-test and Wilcoxon’s two-sample rank test with corrections for depen-
dencies. Simulations indicate that the new test offers better power even than
the Wilcoxon test in case of skewed and heavy tailed distributions, if at least
one of the two samples is not very large. The test is then applied for detecting
shifts of location in some weakly dependent time series, which are contami-
nated by outliers.
KEY WORDS: Functionals of absolutely regular processes; Hodges-Lehmann
estimator; Two-sample location problem; U-statistics; Weak dependence.

1 Introduction

Consider the classical two-sample problem where X1, . . . , Xn1 are F -distributed and Y1, . . . ,

Yn2 are G-distributed with unknown distribution functions F, G. In the case when all
the observations are independent and when F and G are normal distributions with means
µ1, µ2, respectively, and common variance σ2, the minimum variance unbiased estimator
for µ1 − µ2 is given by the difference of the sample means X̄ − Ȳ . Denoting the pooled
variance of the samples by s2

p, the uniformly most powerful unbiased test for the hypoth-
esis H0 : µ1 = µ2 against the alternative µ1 > µ2 under these assumptions rejects the
hypothesis for large values of the t-test statistic

T =
X̄ − Ȳ√

( 1
n1

+ 1
n2

)s2
p

.
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A robust alternative to the estimator X̄− Ȳ was proposed by Hodges and Lehmann (1963).
The two-sample Hodges-Lehmann estimator for the difference in location is defined as

median{Xi − Yj, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}

The goal of this paper is to investigate the asymptotic distribution of estimators of the
Hodges-Lehmann type and of related statistics in the case of dependent data. For this we
will study the two-sample empirical U -process and empirical U -quantiles. Given a kernel
f(x, y), we define the empirical U -distribution function

Un1,n2(t) =
1

n1 n2

#{1 ≤ i ≤ n1, 1 ≤ j ≤ n2 : f(Xi, Yj) ≤ t}.

The empirical U -quantile function is defined as the generalized inverse of Un1,n2(t), i.e.

Qn1,n2(p) = inf{t ∈ R : Un1,n2(t) ≥ p}.

The Hodges-Lehmann estimator is a special case of the empirical U -quantile, namely
Qn1,n2(

1
2
) for the kernel f(x, y) = x − y. We will investigate the asymptotic behavior

of the empirical U-process and the empirical U-quantiles under rather weak assumptions
on the dependence structure of the processes (Xi)i≥1 and (Yi)i≥1. The population analogues
of Un1,n2(t) and Qn1,n2(p) are

U(t) = P (f(X, Y ) ≤ t) and Q(p) = inf{t ∈ R : U(t) ≥ p}.

We will show asymptotic normality of the empirical U-process and the empirical U -quantile
process, defined by

√
n1 + n2(Un1,n2(t)− U(t))

and
√

n1 + n2(Qn1,n2(p)−Q(p)),

respectively.
In the course of our work, we will further study the asymptotic distribution of two-

sample U -statistics with kernel h(x, y),

Un1,n2(h) =
1

n1 n2

∑
1≤i≤n1

∑
1≤j≤n2

h(Xi, Yj),

again in the case of dependent data. For one-sample U -statistics of dependent data, there
are results by Yoshihara (1976), Denker and Keller (1983, 1986), Borovkova, Burton and
Dehling (2001) and Dehling and Wendler (2010). To the best of our knowledge, general
two-sample U -statistics of dependent data have not been investigated before.

In this paper, we allow the sequences (Xi)i≥1 and (Yj)j≥1 to be weakly dependent.
Specifically, we will assume that (Xi)i≥1 and (Yj)j≥1 are both stationary ergodic processes
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that can be represented as functionals of absolutely regular processes. Given a probability
space (Ω,F , P ) and two sub-σ-fields A and B of F , let

β(A,B) = sup
m∑

i=1

n∑
j=1

|P (Ai ∩Bj)− P (Ai) P (Bj)|,

where the supremum is taken over all partitions of Ω into sets A1, . . . , Am ∈ A, all par-
titions of Ω into sets B1, . . . , Bn ∈ B and all m,n ≥ 1. A stochastic process (Xi)i∈Z is
called absolutely regular, if

β(k) = sup
n

β(Fn
−∞,F∞

n+k) → 0,

as k → ∞. Here F l
k denotes the σ-field generated by the random variables Xk, . . . , Xl. A

process (Xi)i≥1 is called a functional of an absolutely regular sequence if there exists an ab-
solutely regular process (Zn)n∈Z and a function f : RZ → R such that Xi = f((Zi+n)n∈Z).

The process (Xi)i∈Z is called a 1-approximating functional with coefficients (ak)k≥1 if

E (|Xi − E(Xi|Zi−k, . . . , Zi+k)|) ≤ ak.

Analogously we call (Xi)i≥1 a one-sided functional of the absolutely regular process (Zn)n≥1

if Xi = f(Zi, Zi+1, . . .).
The concept of functionals of absolutely regular processes is wide enough to cover all

relevant examples from statistics except long memory processes, as well as a large class of
examples from dynamical systems. E.g., let (Xi)i≥1 be an infinite order moving average
process, i.e. Xi =

∑∞
n=0 ψnZi−n where (Zn)n∈Z is an i.i.d. process with finite mean. If the

coefficients (ψn)n≥0 are absolutely summable, we get

E (|Xi − E(Xi|Zi−k, . . . , Zi+k)|) = E

(
|
∞∑

n=0

ψnZi−n −
k∑

n=0

ψnZi−n|
)

≤ E(|Z1|)
∞∑

n=k+1

|ψn|.

Thus, in this case (Xi)i≥1 is a 1-approximating functional of an i.i.d. process with coef-
ficient ak = E(|Z1|)

∑∞
n=k+1 |ψn|. A large number of further examples of processes that

can be represented as functionals of absolutely regular processes can be found, e.g. in
Borovkova et al. (2001).

In the two-sample case, there are essentially two different settings in which dependent
observations can arise.

1. The two samples (Xi)i≥ and (Yj)j≥1 are independent of each other, but there is de-
pendence within the samples. E.g. both processes might be functionals of two inde-
pendent absolutely regular processes.
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2. We have a single process (Xi)i≥1 that is a functional of an absolutely regular process,
and Yj = Xn1+j , 1 ≤ j ≤ n2.

In the course of this work we will develop the theory under the model (2). This model is
especially relevant for applications to change-point problems. All our results continue to
hold under the first model, albeit with slightly different proofs.

The rest of the paper is organized as follows. Section 2 states the main theoretical
results. Section 3 outlines asymptotical inference based on the Hodges-Lehmann estimator.
We derive a test for a difference in location, which can be seen as a variant of the modified
Wilcoxon test for strongly mixing processes (Serfling 1968), which is a smaller class of
processes than the functionals of absolutely regular processes considered here. Section 4
compares the performance of the new test to a modified version of the t-test for dependent
data. Section 5 provides some applications. Section 6 states some conclusions. The proofs
are deferred to an appendix.

2 Statement of main theoretical results

This section presents the main theoretical results of our paper. Details of the proofs will
be given in the appendix. We present our results for the case when we have a single un-
derlying process (Xi)i≥1. The two samples are thus the initial segment X1, . . . , Xn1 and
the following segment Xn1+1, . . . , Xn1+n2 of this one sequence of observations. Identical
results hold in the case of two processes (Xi)i≥1 and (Yi)i≥1 that are independent of each
other.

The first fundamental result of this paper concerns two-sample U -statistics, defined as

Un1,n2(h) =
1

n1 n2

n1∑
i=1

n2∑
j=1

h(Xi, Xj)

for some kernel h(x, y). In order to formulate the theorem, we introduce the Hoeffding
decomposition of the kernel h(x, y), given by

(1) h(x, y) = θ + h1(x) + h2(y) + g(x, y),

where the constant θ and the functions h1(x), h2(y) and g(x, y) are defined by

θ = Eh(X, Y )

h1(x) = Eh(x, Y )− θ

h2(y) = Eh(X, y)− θ

g(x, y) = h(x, y)− h1(x)− h2(y) + θ,

with X, Y being independent random variables with the same distribution as X1.
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In order to prove limit theorems for U -statistics of functionals of absolutely regular
processes, we have to require continuity properties of the kernel h. The kernel h(x, y) is
called p-continuous, if there exists a function φ : [0,∞) → [0,∞) such that for all ε > 0

(2) E
(|h(X, Y ′)− h(X, Y )| 1|Y−Y ′|≤ε

) ≤ φ(ε),

for all random variables X, Y, Y ′ such that X, Y, Y ′ all have the same marginal distribution
as X1 and such that (X,Y ) have joint distribution PX1,Xk

for some k or PX1 × PX1 . The
notion of p-continuity was introduced by Borovkova et al. (2001), who present many exam-
ples of p-continuous kernels. Note that p-continuous kernels are not necessarily continuous
functions. E.g., the kernel 1x≤y is p-continuous provided that the marginal distribution of
the process has a bounded density; for details see Borovkova et al. (2001).

Theorem 2.1 Let (Xi)i≥1 be a 1-approximating functional with constants (ak)k≥1 of an ab-
solutely regular process with mixing coefficients (βk)k≥1 and assume that

∑∞
k=1 k2 (ak + βk) <

∞. Suppose moreover that supi,j E|h(Xi, Xj)|2+ε < ∞ for some ε > 0, and assume that
the kernel h(x, y) is 1-continuous. Then, as n1, n2 → ∞ in such a way that n1

n1+n2
→ λ ∈

(0, 1), we get √
n1 + n2(Un1,n2 − θ) → N(0, σ2),

where

σ2 =
1

λ

(
Var(h1(X)) + 2

∞∑
i=1

Cov(h1(X1), h1(Xi+1))

)

+
1

1− λ

(
Var(h2(X)) + 2

∞∑
i=1

Cov(h2(X1), h2(Xi+1))

)
.

Next we will study the asymptotic distribution of the empirical U -distribution function

Un1,n2(t) =
1

n1 n2

#{1 ≤ i ≤ n1, n1 + 1 ≤ j ≤ n1 + n2 : f(Xi, Xj) ≤ t},

where f(x, y) is a given kernel. We define the auxiliary functions

Ht,1(x) = P (f(x, X1) ≤ t) and Ht,2(y) = P (f(X1, y) ≤ t).

Theorem 2.2 Let (Xi)i≥1 be a 1-approximating functional with constants (ak)k≥1 of an ab-
solutely regular process with mixing coefficients (βk)k≥1 and assume that

∑∞
k=1 k2 (ak + βk) <

∞. Suppose moreover that U(t) is Lipschitz-continuous. Let n1, n2 → ∞ in such a way
that n1

n1+n2
→ λ ∈ (0, 1). Then

√
n1 + n2(Un1,n2(t)− U(t))t∈R → (Wt)t∈R,
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in the sense of weak convergence of all finite dimensional marginals. Here (Wt)t∈R is a
mean-zero Gaussian process with variance

Var(Wt) =
σ2

1(t)

λ
+

σ2
2(t)

1− λ

where

σ2
1(t) = Var(Ht,1(X1)) + 2

∞∑

k=2

Cov(Ht,1(X1), Ht,1(Xk))(3)

σ2
2(t) = Var(Ht,2(X1)) + 2

∞∑

k=2

Cov(Ht,2(X1), Ht,2(Xk))(4)

and with autocovariance structure

Cov(Ws,Wt) =
ρ1(s, t)

λ
+

ρ2(s, t)

1− λ

where

ρ1(s, t) = Cov(Hs,1(X1), Ht,1(X1)) +
∞∑

k=2

Cov(Hs,1(X1), Ht,1(Xk))(5)

+
∞∑

k=2

Cov(Hs,1(Xk), Ht,1(X1)

ρ2(s, t) = Cov(Hs,2(X1), Ht,2(X1)) +
∞∑

k=2

Cov(Hs,2(X1), Ht,2(Xk))(6)

+
∞∑

k=2

Cov(Hs,2(Xk), Ht,2(X1))

Remark 2.3 (i) Convergence in the above theorem holds in the function space D([0, 1]),
too. The proof, however, is technically quite involved and uses empirical process tech-
niques as developed by Borovkova et al. (2001) for the one sample empirical U -process.

(ii) Empirical U -processes in the one sample case have been introduced by Serfling (1984).
Serfling also proved the first invariance principle for empirical U -processes in the case of
i.i.d. observations. Arcones and Yu (1994) proved the empirical U -process central limit
theorem for absolutely regular observations. Later, this was extended to functionals of ab-
solutely regular observations by Borovkova et al. (2001).

(iii) In the classical case when the process (Xi)i≥1 is i.i.d., the formulae for the variance
and covariance simplify to

σ2
1(t) = Var(Ht,1(X1)), σ2

2(t) = Var(Ht,2(X1))

ρ1(s, t) = Cov(Hs,1(X1), Ht,1(X1)), ρ2(s, t) = Cov(Hs,2(X1), Ht,2(X1))
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(iv) In case of the Hodges-Lehmann estimator, i.e. for the kernel f(x, y) = x − y, we
obtain

Ht,1(x) = P (x−X1 ≤ t) = P (X1 ≥ x− t) = 1− F (x− t)

Ht,2(y) = P (X1 − y ≤ t) = P (X1 ≤ t + y) = F (y + t),

where F is the distribution function of X1. In this case, the formulae for the limiting
variance and covariance become

σ2
1(t) = Var(F (X1 − t)) + 2

∞∑

k=2

Cov(F (X1 − t), F (Xk − t))

σ2
2(t) = Var(F (Y1 + t)) + 2

∞∑

k=2

Cov(F (Y1 + t), F (Yk + t))

ρ1(s, t) = Cov(F (X1 − s), F (X1 − t)) +
∞∑

k=2

Cov(F (X1 − s), F (Xk − t))

+
∞∑

k=2

Cov(F (Xk − s), F (X1 − t))

ρ2(s, t) = Cov(F (Y1 + s), F (Y1 + t)) +
∞∑

k=2

Cov(F (Y1 + s), F (Yk + t))

+
∞∑

k=2

Cov(F (Yk + s), F (Y1 + t)),

Now we investigate the asymptotic distribution of the empirical U -quantiles, defined as
generalized inverses of the empirical U -distribution function, i.e. Qn1,n2(p) = U−1

n1,n2
(p).

Theorem 2.4 Let (Xi)i≥1 be a 1-approximating functional with constants (ak)k≥1 of an ab-
solutely regular process with mixing coefficients (βk)k≥1 and assume that

∑∞
k=1 k2

(
a

2/3
k + β

1/2
k

)
<

∞. Suppose moreover that U(t) is differentiable in Q(p) and Lipschitz-continous. Let
n1, n2 →∞ in such a way that n1

n1+n2
→ λ ∈ (0, 1). Then

√
n1 + n2(Qn1,n2(p)−Q(p)) −→ 1

U ′(Q(p))
WQ(p),

where Wt is defined as in Theorem 2.2. The limit random variable has a normal distribution
with mean zero and variance

Var(WQ(p))

(U ′(Q(p)))2 =
1

(U ′(Q(p)))2

(
σ2

1(Q(p))

λ
+

σ2
2(Q(p))

1− λ

)
,

where σ2
1(Q(p)) and σ2

2(Q(p)) are defined as in Theorem 2.2.
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The quantile process can be studied with the help of a Bahadur representation,

Qn1,n2(p) = Q(p) +
p− Un1,n2(Q(p))

U ′(Q(p))
+ Rn,

where Rn(t) is a remainder term which has to be controlled. The Bahadur representation
is motivated by the approximation of the derivative of the empirical U -distribution by the
derivative of its limit, which is U(t).

3 Statistical inference

Now we come back to the two-sample problem stated in the introduction, assuming that G

is a shifted version of F , such that a ∆ ∈ R exists for which G(x) = F (x + ∆) for all
x ∈ R. This two-sample location problem generalizes the homoscedastic normal situation
mentioned at the beginning of the introduction. We are interested in statistical inference
for ∆ and want to test the null hypothesis of equal levels, H0 : ∆ = 0.

The classical estimator of ∆ is the difference of the sample means, for which asymp-
totically

T (c)(∆) =

√
n1n2

n1 + n2

Ȳ − X̄ −∆√√√√
∞∑

h=−∞
Cov(X1, Xh)

a∼ N(0, 1)(7)

for a large class of weakly dependent stationary processes. In the case of our model (1),
i.e. for two independent samples, this follows from the central limit theorem of Ibragimov
and Linnik (1971), Theorem 18.6.2. In the case of model (2), one can apply an invariance
principle of Philipp and Stout (1975), Theorem 7.1. Both references require the under-
lying processes to be functionals of strongly mixing processes, which is weaker than the
assumptions made in this paper. A pivotal quantity for ∆, which generalizes the pivot
underlying the two-sample t-test, can be derived by plugging in an estimator of the denom-
inator σ2 =

∑∞
h=−∞ Cov(X1, Xh). In the setting of one sample X1, . . . , Xn, i.e. n = n1,

Peligrad and Shao (1995) suggest the estimators

σ̂p =

(
cp

n− ln + 1

n−ln∑
j=0

(
|Sj(ln)− lnX̄|√

ln

)p)1/p

with Sj(ln) =
∑j+ln

i=j+1 Xi and cp = 2−p/2
√

π/Γ((p + 1)/2) (e.g. c1 =
√

π/2 and c2 = 1).
Assuming (Xi : i ≥ 1) to be a stationary ρ-mixing process with finite moments of order
2 ∨ p, p ≥ 1, they show σ̂p to be a consistent estimator of σ, provided that ln → ∞
and ln/n → 0. Their results indicate that the estimator σ̂2 with p = 2 has the smallest
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asymptotical variance within this class of estimators if X1 possesses fourth moments. We
call the resulting procedure a corrected t-test or a corrected mean difference test, with
the latter name resembling the median difference test introduced below. Note that the
condition of ρ-mixing is stronger than necessary for the derivation of the theory in Section
2. Doukhan, Jakubowicz and León (2010) treat the asymptotics of subsampling variance
estimators related to σ̂p under a broad range of weakly dependent processes.

Using Theorem 2.4, we can alternatively base our inference on the median difference
Qn1,n2(0.5) between the samples. If n1, n2 →∞ and n1

n1+n2
→ λ ∈ (0, 1), we have

T (r)(∆) = H ′(0)

√
λ(1− λ)

σ2
1(0)

√
n1 + n2(Qn1,n2(0.5)−∆)

= H ′(0)

√
n1n2

n1 + n2

Qn1,n2(0.5)−∆√
σ2

1(0)

a∼ N(0, 1)

where σ2
1(0) =

∑∞
k=−∞ Cov(F (X1), F (Xk)), which needs to be estimated. Again in the

one sample setting, Dewan and Prakasa Rao (2003) show in case of an associated se-
quence that a consistent estimator of four times this sum is obtained replacing Sj(ln) by∑j+ln

i=j+1(1 − 2Fn(Xi)) and X̄ by n−1
∑n

i=1(1 − 2Fn(Xi)) in the above definition of σ̂1.
Although the consistency of this estimator of σ2

1(0) has only been proved in case of posi-
tive dependencies, we apply it also in case of negative dependencies in the next section and
obtain good empirical results.

In case of two independent large samples, model (1), we can pool the estimates σ̂2
1(0)

and σ̂2
2(0) derived from x1, . . . , xn1 and y1, . . . , yn2 , respectively, and use their weighted

sum n1σ̂
2
1(0)/(n1 + n2) + n2σ̂

2
2(0)/(n1 + n2) as a pooled estimate of σ2

1(0) = σ2
2(0) under

H0. In case of two dependent samples, model (2), we found a joint estimator derived from
all observations without level correction, constructed under H0, to give test sizes closer to
the nominal significance levels.

For appropriate scaling, we need to estimate additionally the density H ′(0) at zero. We
tried several kernel density estimates and will comment on three of them in the next section,
all constructed using the R function density (R Development Core Team 2010) with the
default Gaussian kernel and bandwidth selection as proposed by Sheather and Jones (1991).
One of the estimates is constructed under H0 and uses all pairwise differences within the
full sample x1, . . . , xn1 , y1, . . . , yn2 without level correction, while the other two are valid
also under the alternative and based on all pairwise differences within the two samples
separately or on all pairwise differences between the samples, correcting both samples by
their sample medians.

The above pivots with ∆ = 0 and the mentioned scalings can be used to construct
asymptotical significance tests for the null hypothesis H0 of equal levels, ∆ = 0, and
identical distributions, F = G. The arising test statistics T (r) = T (r)(0) and T (c) = T (c)(0)
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are compared to appropriate percentage points of the standard normal distribution. T (r) and
T (c) are both derived from unbiased estimators of ∆ if X1, . . . , Xn1 and Y1, . . . , Yn2 are
identically distributed samples from F and G, respectively, and n1 = n2 or F and G are
symmetric. Comparing the asymptotical powers of the two tests against local alternatives
is then equivalent to comparing the asymptotical standard deviations of the underlying
estimators. In case of independent observations, the asymptotic efficiency of the test based
on T (r) is the same as that of the Wilcoxon-Mann-Whitney (WMW) test, which is locally
more powerful than the test based on T (c) iff

√
12γ0H

′(0) > 1 (see e.g. Lehmann 1963).
This is no surprise since the median difference is the location estimator corresponding to the
WMW test. In the case of weakly dependent data considered here the comparison is more
difficult since we need to take additionally the double infinite sums

∑∞
k=−∞ Cov(X1, Xk)

and
∑∞

k=−∞ Cov(F (X1), F (Xk)) into account.
Therefore we perform a simulation study in the next section, considering different dis-

tributions, different strengths of autocorrelation and situations with and without outliers.
Additionally we include a modified version of the WMW test for dependent data into the
comparison, which has been developed by Serfling (1968) for strongly mixing processes
and verified by Dewan and Prakasa Rao (2003) for associated sequences. Although the test
based on T (r) is asymptotically equivalent to the WMW test under our basic assumptions,
we will observe some differences in case of finite samples and particularly in the presence
of strongly deviating observations caused by skewness, heavy tails or outliers.

Another advantage of our approach based on the median difference is that an explicit
asymptotical confidence interval for ∆ can be constructed from the pivot T (r)(∆), namely

[
Qn1,n2(0.5)− z1−α/2

√
n1 + n2

n1n2

σ̂1(0)

Ĥ ′(0)
, Qn1,n2(0.5) + z1−α/2

√
n1 + n2

n1n2

σ̂1(0)

Ĥ ′(0)

]
,

where z1−α/2 denotes the 1 − α/2-quantile of the standard normal. Application of this
asymptotic confidence interval is more convenient than an implicit approach, where we
include all values of ∆ not rejected by a WMW test applied to the modified samples, with
∆ subtracted from Y1, . . . , Yn2 .

4 Simulations

We concentrate on model (2) presented in the introduction, where X1, . . . , Xn1 and Y1, . . . , Yn2

are subsequent stretches from the same time series. To check whether the asymptotical tests
described above keep their nominal significance levels, we consider first order autoregres-
sive (AR(1)) processes with different lag one autocorrelations φ and different continuous
innovation distributions, generating 20000 time series for each of several lengths n1 + n2.
We split the time series into two dependent samples of sizes n1 and n2 and derive the em-
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pirical rejection rates to estimate the sizes of the tests at a nominal .05 level, see Figure
1.

We observe that the two-sample t-test and the median difference test without correction
for dependencies are severely oversized even in case of small autocorrelations, φ = 0.2,
and Gaussian innovations, whereas the asymptotic corrections work well already in case
of moderate sample sizes n1 = n2 = 50 under these circumstances. Only the t-test for
dependent data is slightly liberal even for n1 = n2 = 100 if φ = 0.2. All tests become
increasingly liberal with increasing value of φ. The median difference test with density
estimation from all differences performs best in this respect and becomes liberal only for
φ ≥ 0.7 in case of n1 = n2 = 100 and Gaussian innovations, while the WMW test
becomes liberal slightly earlier for φ ≥ 0.6. In case of skewed χ2

1-distributed innovations
and φ = 0.5, the corrected t-test and the test based on the median difference with density
estimation from the pairwise differences within the samples perform slightly liberal even if
n1 + n2 = 400. In case of heavy tailed t3-distributed innovations or unequal sample sizes
n1 = b5n2/3c, this also applies for the median difference test with density estimation from
the corrected differences between the samples. When fixing n2 = 11 and increasing only
the size n1 of the first sample, all tests perform liberal, but the size of the tests gradually
decreases with n1. The median difference test with density estimation from all differences
without correction performs best then, jointly with the corrected WMW test, while the
uncorrected tests (not shown here) lead to empirical sizes of about 0.25 throughout.

In summary, the median difference test with density estimation from all differences
between the full set of all data points x1, . . . , xn1 , y1, . . . , yn2 , without correcting for a dif-
ference in location, keeps the nominal significance level better than its competitors, includ-
ing the corrected WMW test, but is sometimes somewhat conservative. Similarly, using
all the observations without corrections gave the best scaling by the double infinite sum
of autocovariances

∑∞
k=−∞ Cov(X1, Xk) and

∑∞
k=−∞ Cov(F (X1), F (Xk)), respectively.

An explanation is that we can use larger subsamples for the estimations when using the full
data set. The correction appears to be more difficult for the t-test, as it is slightly oversized
except for zero and negative values of φ. These results for the t-test corrected with σ̂2 still
look better than those with correction by σ̂1 (not shown here).

To compare the power of the corrected tests in case of different values ∆ 6= 0, different
innovation distributions, and different numbers and sizes of outliers, we generate 2000
time series for each of several scenarios. Figure 2 illustrates that the corrected t-test is
only slightly more powerful than the corrected tests based on the median difference or
the corrected WMW test in case of a Gaussian AR(1) model with φ = .5. The small
differences between the several versions of the median difference and the WMW test agree
with their different empirical sizes, i.e. density estimation from the corrected pairwise
differences between the samples or from the differences within the samples leads to slightly
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Figure 1: Empirical sizes of the tests in case of AR(1) processes with different lag one
correlations φ: φ = 0.2 and increasing sample sizes n1 = n2 (top left) or different values
of φ = −0.9,−0.8, . . . , 0.9, n1 = n2 = 100 (top right), both with Gaussian innovations;
φ = 0.5 with t3- (center left) or χ2

1-innovations (center right), both with growing sample
sizes n1 = n2; φ = 0.5 with Gaussian innovations and n1 = b5n2/3c (bottom left) or
n2 = 11 fixed and n1 increasing (bottom right).
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more power than the WMW test, which in turn is slightly more powerful than the median
difference test with density estimation from all pairs of observations. The t-test loses its
superiority in case of a single outlier of size 10, heavy tailed t3-innovations or skewed χ2

1-
innovations. The small differences between the median difference and the WMW tests are
similar to the pure Gaussian case, except for the skewed case, where the median difference
with density estimation from the corrected pairwise differences between the samples seems
to be the best choice due to its better power than the WMW test and smaller size. Moreover,
about five percent outliers of size 10 in one of the samples destroy the power of the t-test
almost completely even if ∆ = 1 is rather large. The WMW and the median difference tests
are more robust and show some power even if there are about 15 percent outliers in one
sample, with the median difference tests performing somewhat better than the WMW test
in case of isolated outliers. Note that about 20% outliers can lead to detection of a location
difference into the wrong direction when using the corrected t-test test in this scenario.

Finally, Figure 3 illustrates the power of the tests in case of sample sizes n1 = 100

and n2 = 11, for φ = 0.5. The small differences in case of Gaussian innovations again
correspond to the somewhat different empirical sizes of the tests. As for the case n1 =

n2 = 100, the corrected t-test is outperformed by the other tests in case of heavy tailed
t3-innovations. It loses all its power in case of a single very large outlier, and also in
case of 5% moderately large patchy outliers in the larger sample. The median difference
test outperforms the WMW test w.r.t. robustness against outliers here, particularly, if the
corrected pairwise differences between the samples are used for density estimation. Similar
to the case of two large samples, this option again leads to the best size-power behavior in
case of skewed innovations: it is less oversized than the other tests in case of χ2

1-distributed
innovations, but nevertheless leads to larger power than the WMW test.

5 Application

We illustrate the performance of the tests by two applications: one for model (1) presented
in the introduction and two large samples, and one where we apply the tests for sequential
monitoring of a time series comparing the data in a short test window to a large reference
window.

5.1 Application to climate data

The investigation of climate change is a major research topic nowadays. We analyze cli-
mate data from Potsdam, Germany, where one of the earliest weather stations founded re-
ports daily weather data since 1893, with only a four day break in april 1945 because of the
second world war. The temperature in Potsdam is known to match the average temperature
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Figure 2: Power of the tests in case of jumps of increasing height in an AR(1) process
with φ = 0.5, n1 = n2 = 100: Gaussian innovations without (top left) and with one
additive outlier of size 10 (top right); scaled t3- (center left) and χ2

1-innovations (center
right); ∆ = 1 and Gaussian innovations with an increasing number of patchy (bottom left)
or isolated outliers (bottom right) of size 10 in one sample.
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Figure 3: Power of the tests in case of jumps of increasing height in an AR(1) process with
φ = 0.5, n1 = 100, n2 = 11: Gaussian without (top left) and with one additive outlier of
increasing size (top right); scaled t3- (center left) or scaled χ2

1-innovations (center right);
Gaussian innovations with an increasing number of isolated (bottom left) or patchy outliers
(bottom right) in the larger sample.

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

location difference Delta

po
we

r o
f t

he
 te

st

cor. mean difference
cor. Wilcoxon
cor. median diff. betw.
cor. median diff. all
cor. median diff. within

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

outlier size

po
we

r o
f t

he
 te

st

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

location difference Delta

po
w

er
 o

f t
he

 te
st

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

location difference Delta

po
w

er
 o

f t
he

 te
st

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

number of outliers

po
we

r o
f t

he
 te

st

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

number of outliers

po
we

r o
f t

he
 te

st

15



on the northern hemisphere quite well, so that these data are particularly interesting.
In a first step we aggregate the daily time series into monthly averages and deseasonal-

ize the monthly data by subtracting the average of all values for the same calendar month.
Figure 4 depicts the deseasonalized monthly temperatures resulting from the minimum and
the maximum daily temperature. as well as the daily amplitude.

Figure 4: Saisonally adjusted monthly averages of daily temperature maxima (left) and
minima (right).
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In the following we test these two time series as well as the average daily amplitudes,
i.e. the difference between the maximum and the minimum temperature, whether its level
has changed significantly from the early to the late period of industrialization, comparing
the 50 years of data corresponding to the period 1895-1944 and the 50 years from 1960 to
2009. The autocorrelation and partial autocorrelation functions suggest AR(1) models for
both periods in each case, with AR(1) coefficients of about 0.25. The median difference
test with any scaling (results for between sample scaling are shown here) gives results very
similar to the WMW test for all three comparisons, and the results for the corrected t-test
are neither very different, see Table 1: we find significant increases of both the maximum
and minimum temperature of about 0.5 degrees on average, while there does not seem to be
a change in the daily temperature amplitude. The confidence intervals for ∆ obtained from
the mean and from the median difference test closely agree. Confidence intervals would
have been harder to obtain from the WMW test. Note that the uncorrected versions of the
tests would have indicated highly significant differences due to ignoring the dependencies
in the data.

To challenge the robustness of the tests, we replace some observations by the value -9.9.
In the original data set, this value stands for missingness. This had been overlooked in our
first data analysis, what resulted in some strange findings. Replacing an increasing number
of observations at the start of the second period by the value -9.9 artificially creates some
not very large outliers, which could be caused by encoding missingness or by measurement
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Table 1: Test results and confidence intervals for the deseasonalized Potsdam climate time
series at an asymptotic α = .05 error level

Variable ȳ − x̄ CI T (c) Q(0.5) CI T (r) WMW T
(c)
unc. T

(r)
unc.

Max.Temp. .48 [.04 ; .92] 2.12 .47 [.04 , .90] 2.17 2.16 3.74 3.66
Min.Temp. .52 [.12 ; .92] 2.55 .50 [.15 ; .86] 2.86 2.83 4.79 5.25
Amplitude -.45 [-.21 ; .12] -0.54 -.02 [-.17 ; .14] -0.19 -0.19 -0.71 0.25

artifacts. In case of the average maximum temperatures, the corrected t-test no longer
detects a shift at the 5% significance level, when two observations have been replaced. For
the WMW test, six replacements are needed to make it non-significant, while the median
difference test still resists this number and needs one more outlier. In case of the average
minimum temperatures, the corrected t-test resists five such outliers before it becomes non-
significant, while the WMW and the median difference test resist even 21 outliers.

These results confirm that the corrected median difference test, like the corrected WMW
test, performs very similarly to the corrected t-test in case of uncontaminated data sets
which are not far from normality. Here, qqplots of the deseasonalized temperature data
point at tails somewhat heavier than the Gaussian, so that the results of the nonparamet-
ric tests are more reliable. The next example illustrates that the differences between the
methods are larger if at least one of the samples is small.

5.2 Application to intensive care data

As a second example we consider a monitoring time series representing the arterial blood
pressure of a patient in intensive care, which is observed once a minute, see Figure 5. The
interest here is detection of abrupt changes in the varying level of the time series with only
short delays. Since there are periods with monotone trends and some outliers in the data,
we first detrend the series by subtracting the online trend estimate provided by the weighted
repeated median (Fried, Einbeck and Gather 2007) with triangular weights and a window
width of n = 60 observations, corresponding to one hour of measuring. Then we apply
the tests sequentially to the detrended time series in order to detect a jump after any of the
time points not too close to the start or the end of the series. For this we compare the data
in a moving test window consisting of the most recent n2 = 11 observations to the data
in a reference window with the n1 = 60 immediately preceding observations. In this way
the testing procedure can adapt to only locally valid stationarity conditions. A very small
significance level of α = .001 is chosen for the tests at each time point because of the
multiple testing. Keeping the overall significance level is not the goal here, we just want to
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avoid getting many false alarms. Our primary objective is not to miss relevant jumps.
The corrected t-test detects not only the three obvious relevant shifts in the time series,

but also alarms close to the occurrence of a few outliers at about time 170. As opposed to
this, the corrected median difference test detects only the relevant changes. Given that the
shifts occur in several subsequent steps, it even detects almost all of the time points where
steps occur. The uncorrected tests (not shown here) give many false alarms even at this
very small significance level, while the corrected WMW test does not detect any change at
α = .001, due to its inferior power and robustness when one of the windows is short.

Figure 5: Time series representing arterial pressure and time points where a corrected t-
test (left) or a corrected median difference test (right) applied to the detrended series using
moving windows of widths n1 = 60 and n2 = 11 detect a significant change at an α = .001

significance level.
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6 Conclusion

We investigate for the first time the asymptotic distribution of general two-sample U-
statistics and empirical U-quantiles for dependent data. Our results hold for data that can
be represented as functionals of an absolutely regular process. This class includes e.g. all
short memory time series models as well as many chaotic dynamical systems.

Based on the derived asymptotical distributions and following Lehmann (1963), we
have constructed an asymptotically distribution-free two-sample test for a difference in
location between weakly dependent data sets based on the Hodges-Lehmann two-sample
estimator, which is the median of all pairwise differences. This test, like Serfling’s (1968)
version of the Wilcoxon Mann Whitney test for dependent data, performs very similarly
to a corrected t-test in case of uncontaminated data sets which are not far from normal-
ity. However, our simulations indicate that the median difference test is to be preferred to
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the other methods in case of heavy tails, skewness or outliers, although the differences to
the WMW test become small if both samples are very large, according to the asymptotic
equivalence of the tests. If at least one of the samples is only moderately large, the statistic
of the WMW test takes a moderate number of different values only. Changing a single
measurement a lot can strongly affect the significance of this test statistic. This is different
for the median difference, so that the test based on it is more reliable for heavy tailed and
skewed distributions, because observations largely deviating from the others are common
in such situations. The price to be paid is an increase of computational costs, what is not a
big problem in most applications nowadays.
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Appendix: Proofs of Theorems

6.1 Proof of Theorem 2.1

Here we study two-sample U -statistics of the type

Un1,n2(h) =
1

n1 n2

n1∑
i=1

n1+n2∑
j=n1+1

h(Xi, Xj),

where (Xi)i≥1 is a stationary process that can be represented as a functional of an absolutely
regular process. From the Hoeffding decomposition (1) of the kernel h(x, y) we obtain the
Hoeffding decomposition of the two-sample U -statistic

(8) Un1,n2 = θ +
1

n1

n1∑
i=1

h1(Xi) +
1

n2

n1+n2∑
j=n1+1

h2(Xj) +
1

n1 n2

n1∑
i=1

n1+n2∑
j=n1+1

g(Xi, Xj).

Observe that, by definition, the functions h1(x), h2(y) and g(x, y) have the properties

Eh1(X) = Eh2(Y ) = 0,(9)

Eg(X, y) = Eg(x, Y ) = 0,(10)

where X, Y are random variables with the same distribution as X1. A kernel satisfying
property (10) is called degenerate.

The proof of Theorem 2.1 consists of two parts. First we will show that the last term
in the Hoeffding decomposition, i.e.

∑n1

i=1

∑n1+n2

j=n1+1 g(Xi, Xj) is negligible compared to
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the other terms. In the case of independent observations, this follows from the fact that
the summands g(Xi, Xj) are uncorrelated and thus the variance of the last term equals
n1 n2Var(g(X1, X2). In the case of dependent observations, estimation of the variance of∑n1

i=1

∑n1+n2

j=n1+1 g(Xi, Xj) is more difficult and requires subtle calculations. In the second
part of the proof, we will apply the central limit theorem for partial sums of dependent
data to the terms

∑n1

i=1 h1(Xi) and
∑n1+n2

i=n1+1 h2(Xi). Note that by (9), both are sums of
mean-zero random variables.

Computing the 2nd moment of
∑n1

i=1

∑n1+n2

j=n1+1 g(Xi, Xj) leads to terms of the type

E(g(Xi1 , Xj1)g(Xi2 , Xj2))

with indices 1 ≤ i1, i2 ≤ n1, n1 + 1 ≤ j1, j2 ≤ n1 + n2. For independent processes
(Xi)i≥1, these expectations are equal to zero unless i1 = i2 and j1 = j2. The following
proposition provides a bound on these expectations in case (Xi)i≥1 is a functional of an
absolutely regular process.

Proposition 6.1 Let (Xi)i≥1 be a 1-approximating functional with constants (ak)k≥1 of
an absolutely regular process with mixing coefficients (βk)k≥1 and let g(x, y) be a 1-
continuous bounded degenerate kernel. Then we have for all 1 ≤ i1, i2 ≤ n1, n1 + 1 ≤
j1, j2 ≤ n1 + n2

|E (g(Xi1 , Xj1)g(Xi2 , Xj2))| ≤ 2Mφ(a[max(|j2−j1|,|i2−i1|)/3])

+4M2(
√

a[max(|j2−j1|,|i2−i1|)/3] + β[max(|j2−j1|,|i2−i1|)/3])

+4φ(
√

a[(min(j1,j2)−max(i1,i2))/3])

+8M2(
√

a[(min(j1,j2)−max(i1,i2))/3] + β[(min(j1,j2)−max(i1,i2))/3])

where M = supx,y |g(x, y)|.

PROOF. Let (Yj)j≥1 be a copy of the (Xj)j≥1-process that is independent of (Xj)j≥1. Then

E (g(Xi1 , Xj1)g(Xi2 , Xj2)) = E (g(Yi1 , Xj1)g(Yi2 , Xj2))

+E (g(Xi1 , Xj1)g(Xi2 , Xj2)− g(Yi1 , Xj1)g(Yi2 , Xj2)) .(11)

We now treat the two terms on the right hand side of (11) separately, beginning with the
first term. Define k := max(|j2− j1|, |i2− i1|). Without loss of generality, we may assume
that k = j2 − j1. According to Proposition 2.16 of Borovkova et al. (2001) copies (X ′

i)i≥1

and (X ′′
i )i≥1 of the process (Xi)i≥1 exist with the following properties

(X ′′
i )i≥1 is independent of (Xi)i≥1(12)

There exists a set A with P (A) ≥ 1− β[k/3] and E(|Xj2 −X ′
j2
|1A) ≤ 2a[k/3](13)

E(|X ′
j1
−X ′′

j1
|) ≤ 2a[k/3](14)
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The processes (X ′
i)i≥1 and (X ′′

i )i≥1 can moreover be chosen independently of the process
(Yj)j≥1. Then we get

E (g(Yi1 , Xj1)g(Yi2 , Xj2)) = E
(
g(Yi1 , X

′
j1

)g(Yi2 , X
′
j2

)
)

= E
(
g(Yi1 , X

′′
j1

)g(Yi2 , Xj2)
)

+E
(
g(Yi1 , X

′
j1

)(g(Yi2 , X
′
j2

)− g(Yi2 , Xj2))
)

+E
(
g(Yi2 , Xj2)(g(Yi1 , X

′
j1

)− g(Yi1 , X
′′
j1

)
)
)

= E
(
g(Yi1 , X

′
j1

)(g(Yi2 , X
′
j2

)− g(Yi2 , Xj2))
)

+E
(
g(Yi2 , Xj2)(g(Yi1 , X

′
j1

)− g(Yi1 , X
′′
j1

))
)
,

because g(x, y) is a degenerate kernel. Concerning the first term on the right hand side, we
obtain

E
(
g(Yi1 , X

′
j1

)(g(Yi2 , X
′
j2

)− g(Yi2 , Xj2))
)

≤ ME|g(Yi2 , X
′
j2

)− g(Yi2 , Xj2)|
≤ ME|g(Yi2 , X

′
j2

)− g(Yi2 , Xj2)|1{|X′
j2
−Xj2

|≤
√

2a[k/3]} + 2M2P (|X ′
j2
−Xj2| >

√
2a[k/3])

≤ Mφ(
√

2a[k/3]) + 2M2(
√

2a[k/3] + β[k/3]),

where we have made use of the fact that

P (|X ′
j2
−Xj2| >

√
2a[k/3]) ≤ P (|X ′

j2
−Xj2|1A >

√
2a[k/3]) + P (Ac)

≤ √
2a[k/3] + β[k/3].

In a similar way, we obtain for the second term

E
(
g(Yi2 , Xj2)(g(Yi1 , X

′
j1

)− g(Yi1 , X
′′
j1

))
) ≤ Mφ(

√
2ak/3) + 2M2

√
2ak/3.

We now consider the second term on the r.h.s. of (11). We define l = min(j1, j2) −
max(i1, i2), and we assume without loss of generality that l = j1 − i2. Applying Proposi-
tion 2.16 of Borovkova et al. (2001), we obtain copies (X ′

j)j≥1 and (X ′′
j )i≥1 of the original

process (Xj)j≥1 such that (X ′′
i )i≥1 is independent of (Xi)i≥1 satisfying

E(|X ′
i1
−X ′′

i2
| ≤ 2a[l/3](15)

E(|X ′
i1
−X ′′

i2
| ≤ 2a[l/3](16)

E(|Xj1 −Xj′1|1A) ≤ 2a[l/3](17)

E(|Xj2 −Xj′2|1A) ≤ 2a[l/3](18)

for some set A with P (A) ≥ 1− β[l/3]. Thus we obtain
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E (g(Xi1 , Xj1)g(Xi2 , Xj2)− g(Yi1 , Xj1)g(Yi2 , Xj2))

= E
(
g(X ′

i1
, X ′

j1
)g(X ′

i2
, X ′

j2
)− g(X ′′

i1
, Xj1)g(X ′′

i2
, Xj2)

)

= E
(
(g(X ′

i1
, X ′

j1
)− g(X ′′

i1
, Xj1))g(X ′′

i2
, Xj2)

)
+ E

(
g(X ′

i1
, X ′

j1
)(g(X ′

i2
, X ′

j2
)− g(X ′′

i2
, Xj2))

)

≤ ME|g(X ′
i1
, X ′

j1
)− g(X ′′

i1
, Xj1)|+ ME|g(X ′

i2
, X ′

j2
)− g(X ′′

i2
, Xj2)|

≤ M(E|g(X ′
i1
, X ′

j1
)− g(X ′

i1
, Xj1)|+ E|g(X ′

i1
, Xj1)− g(X ′′

i1
, Xj1)|

+E|g(X ′
i2
, X ′

j2
)− g(X ′

i2
, Xj2)|+ E|g(X ′

i2
, Xj1)− g(X ′′

i2
, Xj2)|).

In the final step we consider the four terms on the r.h.s. separately. Each of the terms
can be treated with similar arguments; we give the details for the first term. Let D =

{|Xj1 −X ′
j1
| ≥ √

2a[l/3]} and note that P (D) ≤ √
2a[l/3] + β[l/3]. Thus we get

E|g(X ′
i1
, X ′

j1
)− g(X ′

i1
, Xj1)| = E|g(X ′

i1
, X ′

j1
)− g(X ′

i1
, Xj1)|1Dc + 2 M P (D)

≤ φ(
√

2a[l/3]) + 2M(
√

a[l/3] + β[l/3]).

and thus the proposition is proved. 2

Proposition 6.2 Let (Xi)i≥1 be a 1-approximating functional with constants (ak)k≥1 of
an absolutely regular process with mixing coefficients (βk)k≥1 and let g(x, y) be a 1-
continuous bounded degenerate kernel. Assume moreover that

∑∞
k=1 k (βk+

√
ak+φ(ak)) <

∞. Then we have for some constant C, not depending on n1 and n2, that

(19) E

(
n1∑
i=1

n1+n2∑
j=n1+1

g(Xi, Xj)

)2

≤ C n1 n2

PROOF. We can write

E

(
n1+n2∑

j=n1+1

g(Xi, Xj)

)2

=
∑

1≤i1,i2≤n1

∑
n1+1≤j1,j2≤n1+n2

E (g(Xi1 , Xj1)g(Xi2 , Xj2))

=

n1+n2∑
j=n1+1

E(g(Xi, Xj))
2 +

′∑
E (g(Xi1 , Xj1)g(Xi2 , Xj2)) ,

where
∑′ indicates that we are taking the sum over all indices 1 ≤ i1, i2 ≤ n1 < j1, j2 ≤

n1 + n2 satisfying i1 6= i2 or j1 6= j2. To each of the summands in
∑′ we can apply
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Proposition 6.1. We thus obtain

′∑
|E (g(Xi1 , Xj1)g(Xi2 , Xj2))|

≤ 2M
∑

1≤i1,i2≤n1

∑
n1+1≤j1,j2≤n1+n2

φ(a[max(|j2−j1|,|i2−i1|)/3])

+4M2
∑

1≤i1,i2≤n1

∑
n1+1≤j1,j2≤n1+n2

(
√

a[max(|j2−j1|,|i2−i1|)/3] + β[max(|j2−j1|,|i2−i1|)/3])

+4M
∑

1≤i1,i2≤n1

∑
n1+1≤j1,j2≤n1+n2

φ(
√

a[(min(j1,j2)−max(i1,i2))/3])

+8M2
∑

1≤i1,i2≤n1

∑
n1+1≤j1,j2≤n1+n2

(
√

a[(min(j1,j2)−max(i1,i2))/3] + β[(min(j1,j2)−max(i1,i2))/3]).

We now treat the first sum. Define k = max(|i2 − i1|, |j2 − j1| and keep for the moment
k fixed. Then k = |i2 − i1| or k = |j2 − j1|. In the first case, there are at most n1 ways
to choose i1 and then exactly 2 ways to choose i2. Concerning j1, we have n2 to pick this
index and then at most k ways to choose j2. Similarly we can bound the number of indices
if k = |j2 − j1|. Finally we get

∑
1≤i1,i2≤n1

∑
n1+1≤j1,j2≤n1+n2

φ(a[max(|j2−j1|,|i2−i1|)/3]) ≤ 2 n1 n2

∞∑

k=1

k φ(a[k/3])

Using the assumptions of the proposition, we finally obtain the stated result. 2

We can now finish the proof of Theorem 2.1. By the Hoeffding decomposition (8) we
have

√
n1 + n2(Un1,n2 − θ) =

√
n1 + n2

n1

1√
n1

n1∑
i=1

h1(Xi) +

√
n1 + n2

n2

1√
n2

n1+n2∑
i=n1+1

h2(Xi)

+

√
n1 + n2

n1 n2

n1∑
i=1

n1+n2∑
j=n1+1

g(Xi, Xj).

By Poposition 6.2 we have

E

(√
n1 + n2

n1 n2

n1∑
i=1

n1+n2∑
j=n1+1

g(Xi, Xj)

)2

≤ C
n1 + n2

n1 n2

= C

(
1

n1

+
1

n2

)
→ 0,

as n1, n2 → ∞. Thus the remainder term in the Hoeffding decomposition converges to 0

in probability. To the linear terms we can apply the central limit theorem for partial sums
of functionals of absolutely regular processes; see Theorem 4 in Borovkova et al. (2001).
We get

1√
n1

n1∑
i=1

h1(Xi) → N(0, Var(h1(X1)) + 2
∞∑
i=1

Cov(h1(X1), h1(Xi+1)),
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and similarly for the second sum. Moreover, 1√
n1

∑n1

i=1 h1(Xi) and 1√
n2

∑n1+n2

i=n1+1 h2(Xi)

are asymptotically independent and thus we obtain joint convergence
(

1√
n1

n1∑
i=1

h1(Xi),
1√
n2

n1+n2∑
i=n1+1

h2(Xi)

)
→ (Z1, Z2),

where Z1 and Z2 are two independent normally distributed random variables with mean
zero and the above variances. 2

6.2 Proof of Theorem 2.2

Here we study the empirical U -distribution function

Un1,n2(t) =
1

n1 n2

#{1 ≤ i ≤ n1, 1 ≤ j ≤ n2 : f(Xi, Xj) ≤ t}

=
1

n1 n2

n1∑
i=1

n2∑
j=1

1{f(Xi,Xj)≤t}.

We will first show convergence of the one-dimensional marginals, i.e.

(20)
√

n1 + n2(Un1,n2(t)− U(t))
D−→Wt.

Convergence of all finite-dimensional marginals follows with the help of the Cramér-Wold
device. In order to prove (20), we observe that Un1,n2(t) is a two-sample U -statistic with
kernel ht(x, y) = 1{f(x,y)≤t}. The elements of the Hoeffding decomposition of ht(x, y) are

θ = E(1{f(X,Y ) ≤ t}) = P (f(X,Y ) ≤ t) = U(t)

ht,1(x) = P (f(x, Y ) ≤ t)− U(t) = Ht,1(x)− U(t)

ht,2(y) = P (f(X, y) ≤ t)− U(t) = Ht,2(y)− U(t)

Now (20) follows directly from Theorem 2.1.

6.3 Bahadur Representation of Two-Sample U -Quantiles

In this section we will consider the two-sample U -quantiles

Qn1,n2(p) = inf{t : Un1,n2(t) ≥ p}.

Recall that Q(p) is the generalized inverse of U(t). First we derive the Bahadur represen-
tation of Qn1,n2(p); this will later be our main technical tool in the proof of the asymptotic
normality of Qn1,n2(p).
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Theorem 6.3 Let (Xi)i≥0 be a stationary, absolutely regular process with mixing coeffi-
cients β(k) satisfying

∑∞
k=1 kβ(k) < ∞. Then for any 0 < p < 1 we have

(21) Qn1,n2(p) = Q(p) +
p− Un1,n2(Q(p))

U ′(Q(p))
+ Rn1,n2

where Rn1,n2 = oP ( 1√
n1+n2

).

PROOF. Following the lines of the proof of Ghosh (1971), we have to show that for all
t ∈ R
√

n1 + n2

((
Un1,n2

(
Q(p) +

t√
n1 + n2

)
− Un1,n2(Q(p))

)
−

(
U

(
Q(p) +

t√
n1 + n2

)
− U(Q(p))

))

converges to zero in probability. We introduce for abbreviation the kernel

ht,p(x, y) = 1{Q(p)<f(x,y)≤Q(p)+ t√
n1+n2

}

and note that(
Un1,n2

(
Q(p) +

t√
n1 + n2

)
− Un1,n2(Q(p))

)
−

(
U

(
Q(p) +

t√
n1 + n2

)
− U(Q(p))

)

=
1

n1 n2

n1∑
i=1

n1+n2∑
j=n1+1

(ht,p(Xi, Xj)− E(ht,p(X,Y ))) .

We then apply the Hoeffding decomposition to the kernel ht,p(x, y) and denote the resulting
functions by ht,p,1(x), ht,p,2(y) and gt,p(x, y). Thus we get

(
Un1,n2

(
Q(p) +

t√
n1 + n2

)
− Un1,n2(Q(p))

)
−

(
U

(
Q(p) +

t√
n1 + n2

)
− U(Q(p))

)

=
1

n1

n1∑
i=1

ht,p,1(Xi) +
1

n2

n1+n2∑
i=n1+1

ht,p,2(Xi) +
1

n1 n2

n1∑
i=1

n1+n2∑
j=n1+1

gt,p(Xi, Xj).

Observe that the summands in the linear terms have mean zero and that gt,p is degenerate.
Using Lemma 3.1 of Borovkova et al (2001), with δ = 2, we obtain

E

(
1√
n1

n1∑
i=1

ht,p,1(Xi)

)2

≤

E

(
1√
n1

n1∑
i=1

ht,p,1(Xi)

)4



1
2

≤ C
(
E (ht,p,1(X))4) 1

6 ≤ C
(
E(ht,p,1(X))2

) 1
6 ,

where the second inequality follows from the fact that 0 ≤ ht,p(x, y) ≤ 1. By definition of
ht,p,1(x), we get

E(ht,p,1(X))2 ≤
∫ (∫

ht,p(x, y)dPY (y)

)2

dPX(x)

≤ P

(
Q(p) < f(X,Y ) ≤ Q(p) +

1√
n1 + n2

)

= U

(
Q(p) +

t√
n1 + n2

)
− U(Q(p)).
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Thus we get, in total,

E

(√
n1 + n2

n1

n1∑
i=1

ht,p,1(Xi)

)2

≤ n1 + n2

n1

(
U

(
Q(p) +

t√
n1 + n2

)
− U(Q(p))

)1/6

→ 0,

as n1, n2 →∞. In the same way, we can show that E
(√

n1+n2

n2

∑n1+n2

i=n1+1 ht,p,2(Xi)
)2

→ 0.

Concerning the third term in the Hoeffding decomposition, we can apply the same ar-

guments as in the proof of Proposition 6.2 and get E
(∑n1

i=1

∑n1+n2

j=n1+1 gt,p(Xi, Xj)
)2

=

O(n1 n2) and thus

E

(√
n1 + n2

n1 n2

n1+n2∑
j=n1+1

gt,p(Xi, Xj)

)2

= O

(
n1 + n2

n1 n2

)
.

Hence all three terms in the Hoeffding decomposition converge to zero in L2 and thus in
probability. 2

6.4 Proof of Theorem 2.4:

By the Bahadur representation (21) we obtain

√
n1 + n2(Qn1,n2(p)−Q(p)) = − 1

U ′(Q(p))

√
n1 + n2 (Un1,n2(Q(p))− U(Q(p)))

+
√

n1 + n2Rn1,n2

By Theorem 2.2 we obtain
√

n1 + n2(Un1,n2(Q(p))−U(Q(p))) → WQ(p). By Theorem 6.3
we get

√
n1 + n2Rn1,n2 → 0. Thus Theorem 2.4 follows from an application of Slutzky’s

lemma. 2
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