Evolution of Quantum Algorithms
Using Genetic Programming

Dissertation
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
der Universitat Dortmund
am Fachbereich Informatik
von

André Leier

Dortmund

2004

Contents

1 Introduction and Motivation

2 Basic Concepts of Quantum Computing
Short History of Quantum Computing
The State Space of Quantum Mechanical Systems

2.1
2.2
2.3

2.4

2.5
2.6

2.7
2.8

Quantum Information
2.3.1 A Single Qubit
2.3.2 Multiple Qubit
Quantum Gates . . .

S e

24.1 Single Qubit Gates
2.4.2 Controlled Operations

2.4.3 Sets of Univers
2.4.4 Decomposition
2.4.5 Oracle gates .

al Quantum Gates
of unitary transformations

Projective Measurements oo

Quantum Circuits .

2.6.1 Intermediate Measurements,
2.6.2 Circuit Complexity Measures
Quantum Computational Complexity
Basic Programming Techniques and Simple Quantum Algorithms
2.8.1 The Deutsch-Jozsa Problem

2.8.2 Quantum telep

ortation

3 Genetic Programming Fundamentals

3.1

GP’s Scientific Roots

3.2 Fundamental Program Structures

3.3

3.2.1 Tree GP . ..

3.2.2 Linear and Linear-Tree GP
3.2.3 Graph and Linear-Graph GP

Genetic Operators .
3.3.1 Mutation . .
3.3.2 Recombination

39
39
42
42
44
46
47
47
47

3.4 Fitness and Selection L L L
3.4.1 Fitness Functions o oL
3.4.2 Selection Algorithmso

3.5 Basic GP Algorithms: Generational vs. Steady-State

3.6 Introns and Neutrality oL

Quantum Algorithms and their Classification
4.1 The Quantum Fourier Transform and Algorithms Based on It
411 From DFT to QFT
4.1.2 Phase Estimation o000
4.1.3 Order-Finding and Other Applications
4.1.4 Fourier Transform on Arbitrary Groups
4.1.5 The Hidden Subgroup Problem
4.1.6 A coarse outline on QFT-based algorithms
4.2 Quantum Search Algorithms
4.2.1 Grover’s Algorithm oo
4.2.2 Quantum Counting: Combining Grover Operator and Phase Esti-
mationo e e e
4.2.3 Applications of Grover’s Algorithm
4.2.4 Quantum Search and NP Problems
4.2.5 Hogg’s Algorithm
4.3 Quantum Simulation oL oo
4.4 Speedup Limits for Quantum Algorithms

Evolution of Quantum Algorithms

5.1 Quantum Circuit Simulation o0 oo
5.1.1 Representation of Quantum Circuits
5.1.2 Matrix-Vector vs. Matrix-Matrix Multiplications
5.1.3 Implementation and Time Measurements
5.1.4 Circuit Reduction o 0o
5.1.5 Intermediate Measurements

5.2 Searching the Space of Quantum Circuits
5.2.1 Suitable Problems for GP-based Quantum Circuit Design
5.2.2 Time Consumption for Individual-Evaluations in GP-Search

5.3 Previous Work
5.3.1 Automated Circuit Design by Williams & Gray
5.3.2 Quantum Circuit Evolution by Spectoretal.
5.3.3 Rubinstein’s GP Scheme o000
5.3.4 GAs for Quantum Circuit Design according to Yabuki & Iba . .

5.4 Implemented GP Systems for Quantum Circuit Evolution
5.4.1 Genome Structure - linear vs. linear-tree GP

5.4.2 Genetic Operators
5.4.3 Fitness Cases and Fitness Functions

6 Results and Analyses
6.1 Evolution and Scalability

6.1.1 Evolving Quantum Circuits for 1-SAT
6.1.2 Evolving Quantum Circuits for Deutsch-Jozsa

6.1.3 Pre-Evolved Initial Populations . .
6.1.4 Disruptive Crossover
6.2 Search Space Analysis

6.2.1 Fitness Landscapes and Analysis Methods

6.2.2 Landscape Analysis.
6.3 Comparison of Selection Strategies
6.3.1 Selection Strategies
6.3.2 Experiments and Empirical Results

7 Discussion and Outlook
About the Author
Bibliography

Index

121
122
123
126
130
135
136
138
139
150
150
151

165

169

171

185

Acknowledgments

First I would like to express my gratitude to Prof. Dr. Wolfgang Banzhaf for his trusting
cooperation, support, and guidance on the way towards this thesis.

Furthermore, I thank the members of the Chair of Systems Analysis at the Dept.
of Computer Science at the University of Dortmund for creating a pleasant working
atmosphere. Especially, I am greatly indebted to Dipl.-Inform. Michael Emmerich, Dipl.-
Inform. Christoph Richter and Dipl. Phys. Ralf Stadelhofer for numerous discussions and
helpful comments on quantum computing, and for proofreading various versions of this
document.

Parts of this thesis were completed while I was a visiting student at the Memorial
University Dept. of Computer Science. [am very grateful to its members for their
hospitality and some prolific discussions about the topic. Special thanks go to Dwight
Kuo for proofreading most parts of this thesis and never tiring of improving my English.

This work was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG)
within the Ph.D. program GK 726 “Materials and Concepts for Quantum Information
Processing”.

In this context I would also like to thank the supervisors, scholarship holders and all
other participants in the GK 726, ensuring that I got deep insights in one of the most
exciting fields of research: quantum computing.

1 Introduction and Motivation

The full range of physically
computable functions is now
within the scope of GP, which is
beginning to find interesting new
programs that humans had not
previously discovered.

Lee Spector [137]

In the last decade non-standard computing' concepts have received more and more at-
tention since they raise the hope of computational power far beyond that of conventional
computers. These innovative computational architectures were based on the interdis-
ciplinary combination of biology, chemistry or physics on the one hand with computer
science on the other. The trend towards alternative models of computation results in
several new research fields including DNA or molecular computing, computational chem-
istry, optical computing, and last but not least quantum computing [58].

The pursuit of new, unexploited computational power inevitably leads to the physical
limits of computing. Assuming that the miniaturization of microelectronics will approxi-
mately continue as predicted by Moore’s law?, this shrinkage will reach atomic dimensions
within the next 10 to 15 years, or even earlier [78, 130]. As a consequence, physical lim-
its will prevent the development of smaller conventional computer architectures. Thus,
quantum effects must be taken into consideration with subsequent adaptation of compu-
tational concepts.

Roughly speaking, quantum computation is computation based on the principles of
quantum mechanics. That is, quantum computers use coherent atomic-scale dynamics to
store and process information. Asimpressively demonstrated by Peter Shor’s polynomial
time quantum algorithm for integer factorization [132] (a problem of unknown classical
complexity, classically solvable only in exponential time up to now) certain computational
problems can be solved on a quantum computer with lower complexity than possible on

!In this context, the notion “non-standard” relates to computation concepts which differ from the
classical von-Neumann concept.

2Moore’s law, first identified by Gordon Moore in 1965 but reformulated several times in the last decades
is nowadays associated with the prediction that computing power is doubled every 18 months at fixed
cost.

1 Introduction and Motivation

classical computers.

Yet, quantum computing would not have any practical relevance if quantum com-
puters were merely abstract machines. Different physical systems are tested and used
as fundamental quantum computing models, such as optical photons, cavity quantum
electrodynamical systems, ion traps, and nuclear spin systems. However, all of these
approaches run into fundamental obstacles making a scalable, general-purpose quantum
computer seem attainable only in the distant future, if at all. The best experimental
realization so far is a seven-qubit NMR (nuclear magnetic resonance) quantum computer
developed by a group of scientists from the IBM Almaden Research Center and the Solid
State and Photonics Laboratory of Stanford University. They implemented Shor’s fac-
toring algorithm and proved that the quantum computer is able to compute the prime
factors of a small integer [154].

In view of the demonstrable potential of quantum computing, finding further “killer”
applications and the design of new quantum algorithms is desirable. Of course, the ul-
timate ambition is to develop quantum algorithms which are better than any classical
algorithm, since for all other problems conventional computers will be the first choice.
Unfortunately, the development of quantum algorithms is extremely difficult since they
are highly non-intuitive and their simulation on conventional computers is very compu-
tationally intensive. Williams and Clearwater remarked in 1997 [166]:

“Of course, computer scientists would like to develop a repertoire of quantum
algorithms that can, in principle, solve significant computational problems
faster than any classical algorithm. Unfortunately, the discovery of Shor’s
algorithm for factoring large composite integers was not followed by a wave of
new quantum algorithms for lots of other problems. To date, there are only
about seven quantum algorithms known.”

Currently, the situation is basically the same even though the nature of quantum com-
puting is understood more deeply in general. There is still only a very narrow class of
problems known to be sped up by quantum algorithms. Unfortunately, progress is still
slow, yet aside from the development of quantum hardware the development of quantum
algorithms seems to be crucial for future prospects of quantum computing.

Difficulties in manual quantum circuit design motivate the search for computer-aided or
even automatic design techniques. In computer science automatic programming methods
(making computers generate program code) were well studied over the last decades.
Rooted in the field of machine learning (automatic improvement of algorithms through
experience) and inspired by natural evolution, Genetic Programming (GP) emerged in
the early 1990s [87]. Originally focused on evolving tree structures, GP is nowadays an
umbrella term for all forms of automatic program induction by means of evolution [§].
Due to its large number of applications, e.g., in classical circuit design, data mining,
image processing, pattern recognition, and robotics, GP turned out to be a promising
approach for automatic generation of computer programs.

This thesis deals with the evolution of quantum algorithms using genetic programming.
The idea of using GP for quantum circuit design is not novel; rather, it was inspired first
by the results of Williams and Gray [167] and Spector et al. [140]. Strictly speaking, they
deal with different problems in quantum circuit design: Williams and Gray use GP for
circuit analysis, that is, the GP system already has knowledge about the quantum circuit
(given in the form of a unitary matrix) and tries to find a decomposition of the circuit
into elementary gates. Spector et al. use GP for circuit synthesis, that is, the GP system
evolves quantum circuits only from knowledge about the desired input-output behavior.
Using GP for both analysis and synthesis is possible at least for simple problems. In
general, because of the missing information about the circuit to be evolved, synthesis has
to be considered the much harder problem. In the following, evolving quantum circuits
relates to the circuit synthesis, if not stated otherwise.

In the course of this thesis a linear and a linear-tree GP system with an integrated
quantum computer simulator were implemented. Their practicality in evolving quantum
circuits will be shown in different experiments. These experiments will also reveal that
the evolution of quantum circuits is practically feasible only for sufficiently small problem
instances. In this context, scalability and the detection of scalability becomes very im-
portant. Roughly speaking, scalability means that from quantum circuits solving smaller
problem instances quantum circuits solving larger problem instances can be inferred. It
is shown that scalable quantum circuits are also evolvable, that is, the general quantum
algorithm circuit can easily be inferred from the evolved solutions for small instances of
the given problem. Furthermore, investigations of search spaces, fitness landscapes and
selection strategies are made, with the aim of improving the efficiency of evolutionary
search. Three publications resulted from these examinations [97, 98, 99].

This thesis is organized as follows: After this introduction, Chapter 2 outlines the fun-
damentals of quantum computing, especially those essential to understand the mathemat-
ical principles on which the idealized, decoherence-free simulation of pure-state quantum
algorithms depends. However, this chapter cannot compensate for a complete and pro-
found introduction to quantum computing as is provided in [65, 107]. Chapter 3 explains
the basics of genetic programming. This comprises the underlying theory of evolution,
fundamental program structures in GP, genetic operators, the principle of fitness and
selection mechanisms and basic GP algorithms. Furthermore, it briefly discusses the
occurrence and possible effects of introns and neutrality. Chapter 4 summarizes most
of the quantum algorithms developed thus far and the problems they may be applied
to. It deals with possible characteristics of quantum algorithms and explains in detail
quantum algorithms based on the quantum Fourier transform and quantum search al-
gorithms. Furthermore, it touches briefly on quantum simulation algorithms and the
known limits of quantum computing. The linear and linear-tree GP systems and the
quantum computer simulator are explained in Chapter 5 as they are used for quantum
circuit evolution. In addition, the difficulties of quantum circuit evolution are addressed
and analyzed. Results and analysis concerning the evolution of quantum circuits for the

1 Introduction and Motivation

Deutsch-Jozsa problem and the one-satisfiability problem are explained in Chapter 6. It
comprises the evolvability of scalable quantum algorithms, the analysis of search spaces
or fitness landscapes respectively, and a comparison of selection strategies for faster evo-
lutionary search. Finally, Chapter 7 summarizes results, draws conclusions and gives an
outlook on the common future of quantum computing and genetic programming.

Present research on quantum computing is still dealing with fundamental, theoretical
and experimental issues of the computation concept and not yet with programmable
desktop quantum machines.

Julio Gea-Banacloche, Editor of Physical Review A, on a plenary debate
session on quantum computing, June 2003 [1]:
“We are not building this so that we can run Microsoft Office on it.”

2 Basic Concepts of Quantum
Computing

All science is either physics or
stamp collecting.

E. Rutherford (1871-1937)

Quantum computation is a
qualitatively new way of
harnessing nature.

D. Deutsch [45]

Quantum computation results from the link between quantum mechanics, computer sci-
ence and classical information theory [144]. It uses quantum mechanical effects, espe-
cially superposition, interference and entanglement, to perform new types of computation
which show promise to be more efficient than classical computations. It is the essential
trait of the theory of quantum mechanics to make (exclusively) probabilistic predictions,
i.e. for a quantum mechanical experiment the theory predicts possible results and their
probabilities to occur. This is what makes quantum computing probabilistic’.

This chapter describes the fundamental principles of quantum computing. It introduces
the quantum circuit model of computation, which provides a “language” to describe
quantum algorithms, and explains its basic building blocks: quantum bits, quantum
operations (gates) and quantum measurements.

The mathematical framework describing the concepts and principles of quantum me-
chanics is of course also the theoretical basis of quantum computing. Therefore, it is
necessary to deal with the basic postulates of quantum mechanics which connect the
physical world with its mathematical model. These postulates directly relate to the
modeling of the key elements of quantum computation:

e quantum mechanical systems which inherently contain quantum information,

!That does not mean that deterministic quantum computations are impossible, but that the nature of
quantum computing is based on probabilities.

2 Basic Concepts of Quantum Computing

e compositions of such systems,
e operations on quantum systems for the purpose of information processing, and
e the readout (measurement) of information from quantum systems.

Within this chapter the postulates of quantum mechanics are specified in the subsections
dealing with the corresponding topics.

In more detail this chapter is organized as follows: In Section 2.1 background and
history of (theoretical) quantum computing are briefly outlined. Most of the informa-
tion is borrowed from [107, 121]. A good historical review on quantum computing can
also be found in the theory component of [146]. Section 2.2 begins the introduction to
the mathematical concepts of quantum computing. It establishes the “working space”
of quantum computing which is based on ideal, noiseless and therefore only theoretical
quantum systems. However, in principle this is sufficient for quantum circuit design,
since for practical operations of quantum algorithms, error-correcting mechanisms are
already known. Section 2.3 describes the quantum analogous concept of a classical bit,
the quantum bit or qubit for short. It can be roughly defined as the simplest (smallest)
quantum mechanical system. Furthermore, this chapter deals with multiple qubits and
composite quantum systems which enable the full range of quantum computations and
allow the effect of entanglement. Section 2.4 shows how to perform quantum operations
on quantum bits. It starts with a detailed study of single qubit gates and continues with
the description of controlled gates and so-called black-box or oracle gates. This section
concludes with a discussion of universal quantum gate sets. Section 2.5 describes mea-
surements and their effects on quantum mechanical systems and Section 2.6 explains the
most important differences between classical and quantum circuits. Classically, there are
two important models for computation, the Turing machine model and the circuit model.
Both models have quantum analogies which are mathematically equivalent. Since the
quantum circuit model of computation is simple and more intuitive, it is used through-
out this thesis. Like a classical circuit a quantum circuit consists of wires and gates,
which have in quantum circuits (only) roughly the same meaning as in classical circuits.
Temporarily, this intuitive understanding of the term “quantum circuit” is still sufficient.
A rather brief introduction into quantum computational complexity is presented in Sec-
tion 2.7. Two essential quantum complexity classes are explained and their relations to
classical complexity classes described. Finally, Section 2.8 discusses elementary quantum
programming techniques and demonstrates their use exemplarily for the Deutsch-Jozsa
problem and quantum teleportation.

Basic knowledge of linear algebra and the tensor product is assumed, but the necessary
mathematics can also be found in [107]. The postulates of quantum mechanics can also
be found, too. To get a deeper insight into quantum computing and quantum algorithms
the following broad-ranging references might be of interest: [65, 71, 107, 121]. They also
form the basis of this chapter.

2.1 Short History of Quantum Computing

2.1 Short History of Quantum Computing

The theory of quantum mechanics was established in the mid-1920s. Main contributions
were made by M. Born, P. Dirac, W. Heisenberg, E. Schrédinger and others. With
quantum mechanics it was possible to explain unknown phenomena raised from various
experiments and to resolve inconsistencies in the theories of physics, now designated as
classical physics (classical mechanics and classical electrodynamics).

Information can be regarded as not abstract no matter whether it is in someone’s mind,
written in a book or stored on a magnetic layer of a hard disc — in the words of Rolf
Landauer: “Information is physical” [93|. It is physics, which sets the main limitations
to process and to manipulate information. Since the early beginnings of analog and
digital computers classical physics provided the laws for computing devices. The idea of
using the laws of quantum physics for information processing did not emerge until the
early 1980s. Important influences on the development of the new computation concept
are ascribed to Bell (1964), who demonstrated non-local correlations between different
parts of a quantum system, as well as Landauer and Bennett, who both dealt with
the connection between energy consumption and irreversibility? of computation. In 1961
Landauer showed that erasure of information, which is peculiar to irreversible operations,
requires the dissipation of energy (Landauer’s principle). Based on Landauer’s work
Charles Bennett [13] proved in 1973 that all computation can be performed in principle
in a logically reversible manner and therefore does not require dissipation. This result lead
in 1980 to Paul Benioff’s discovery that quantum systems could perform computations
in a coherent manner and to his model of a Quantum Turing Machine (QTM) [12|. With
this proposal the field of quantum computation was born.

In 1982 Richard Feynman pointed to the difficulties of classical computers to efficiently
simulate quantum physical systems and suggested using computers based on quantum
mechanical principles to handle these difficulties. Benioff’s QTM was further developed
by Deutsch [43], who also invented the quantum circuit model of computation [44]. It
can be shown that both models are (nearly) equivalent [169, 108]. Furthermore, Deutsch
formulated an oracle problem (cf. Section 2.4.5), today known as Deutsch’s problem, for
which he demonstrated the first (randomized) quantum algorithm that performs better
than any comparable classical algorithm. The Deutsch-Jozsa problem [46], a generaliza-
tion of Deutsch’s problem, was the first one that was found to need only linear time on
a quantum computer but exponential time on a deterministic Turing machine (although
it needs only polynomial time on a probabilistic Turing machine) [65].

A major breakthrough in quantum computing happened in 1994. First, Simon [134]
proposed a quantum algorithm solving an oracle problem in polynomial time on a quan-
tum computer but exponential time on a classical, even probabilistic computer. Simon’s

2A logical gate or function is reversible, if the input is uniquely determined by the output, i.e. an
inverse function exists mapping the output to its unequivocal input. Otherwise it is irreversible.

2 Basic Concepts of Quantum Computing

work was based on a quantum algorithm introduced by Bernstein and Vazirani [16]. In-
spired by Simon’s results Shor published his polynomial time quantum algorithms for
integer factorization and discrete logarithm [132]. These quantum algorithms were the
first to solve problems of great practical relevance. Both problems are considered to
be hard on classical computers. This difficulty is the basis of many modern public-key
cryptography systems such as RSA. Another quantum algorithm attracted attention in
1996 when Grover presented a quadratic speed-up quantum search algorithm [61]. In the
period following, newly discovered quantum algorithms were mainly based on the work
of Shor and Grover. It turned out that both computational approaches could be applied
to classes of similar problems. Unfortunately, no other conceptually new quantum al-
gorithms were presented which had such a deep and pioneering impact like Shor’s. A
summary of most quantum algorithms is given in Chapter 4.

2.2 The State Space of Quantum Mechanical Systems

The model of a quantum computer used here is based on a closed or isolated quantum
mechanical system. This is an ideal system without perturbations and noisy interactions
with its surrounding, which are referred to as decoherence. Systems in the real world are
never absolutely closed. There is always a coupling with the environmental system result-
ing in a decay of information in the quantum computing device. However, decoherence
can be corrected in principle by using error correcting codes which also protect against
defective quantum operations. Both kinds of quantum errors, imperfect operations and
quantum noise, are left out of account here. For a detailed introduction on quantum
error-correction and fault-tolerant quantum computing see Chapter 7 of [120].

The mathematical formalism of quantum mechanics models a closed quantum mechan-
ical system as follows:

Postulate 1. Associated with any closed quantum mechanical system is a Hilbert space
H which is a complete (complex) inner-product space.® This vector space is also known
as the state space of the system. Its unit norm vectors are called (pure) states.

In quantum computation the state space is limited to finite dimensions. Each state
can be regarded as a complete description of the physical system.

Notation (Bra/Ket). The standard quantum mechanical notation for (column) vectors
in a Hilbert space H is |¢). Here, 1 is just a label of the vector. The notation (1| is
used for the vector dual to |¢)). This is a row vector, which corresponds to the complex
conjugated and transposed column vector [i). A column vector |¢) is sometimes referred

3 A vector space is complete if every Cauchy sequence in the space converges, concerning a given norm,
to an element in the space. In Hilbert spaces the norm is induced by the inner product. Complex
inner product spaces are also called unitary vector spaces.

2.3 Quantum Information

to as a ket, its dual vector (¢| is referred to as a bra. This notation, also called bra-/ket-
notation, was invented by Paul Dirac [47]. The inner product of two vectors [¢) and |p)

is defined by (1](10)) = (1),

An alternative formalism, especially necessary to deal with open and composite quan-
tum systems, uses the density operator or density matriz notion respectively and the
concept of mized states. Both approaches are mathematically equivalent and lead to
the same results. The postulates of quantum mechanics can be formulated using both
formalisms. As pointed out by Gruska [65] (in Theorem 2.3.46), “the model of quantum
circuits with mixed states is polynomially equivalent, in computational power, to the
standard model of quantum circuits over pure states.”

Note, within this thesis that a quantum computer is regarded just as an abstract, math-
ematical object without reference to a specific implementation. Its physical realization
is irrelevant; the same applies to possible sources of error.

2.3 Quantum Information

The simplest possible two-level quantum system and therefore the basic information unit
in quantum computing is the quantum bit, or qubit for short.

2.3.1 A Single Qubit

Like its classical counterpart a qubit has two basic states denoted |0) and |1) by analogy
with the two values 0 and 1 of a classical bit. But unlike the classical bit a qubit can
also be in a superposition of its two basic states. Only after the qubit is read out it is
with a certain probability in one or the other basic state.

According to the state vector formalism (Postulate 1), a qubit is a unit vector in
a two-dimensional complex vector space H = C? with inner product. The states or
vectors respectively, |0) and |1), also known as the computational basis states, form an
orthonormal basis (ON-basis) of this space. Usually |0) and |1) are identified with the
standard basis vectors in C2, (1,0) and (0,1). A qubit in H can be any arbitrary state
formed by linear combination of |0) and |1):

[¥) = a0l0) + aa[1)., (2.1)

with ag, a1 € C and |ag|? + |a1|? = 1. Here, with ag, a1 # 0 the qubit labeled 1 is in a
superposition state.

The normalization condition relates to equivalence classes of vectors that differ only
by a nonzero complex factor. They always describe the same physical state and it is
therefore useful to choose unit vectors as representatives of the states. Moreover, the
additional condition |ag|? + |a1|? = 1 relates to the readout or measurement of qubits:
Classical bits have to be read to determine their values or states 0 or 1 — the same

2 Basic Concepts of Quantum Computing

applies to qubits. However, in quantum computing the outcome of a (single qubit)
measurement, ‘0’ or ‘1’, is not deterministic but probabilistic. Measurement of qubit |¢)
gives either the result ‘0’ with probability |ag|? or the result ‘1’ with probability |aq]|?.
From the normalization condition of probability measures it follows |ag|* + |a1|* = 1.
By measurement any superposition state collapses to the computational basis state |k)
according to the measurement result ‘k’. But it also means that, although a qubit is very
different from a classical bit, it is not possible to gain more information from a qubit than
from a classical bit.* Especially, the values of the amplitudes o, a; are not accessible
by measurement. Measurements are discussed in detail in Section 2.5.

A geometrical representation of the state of a single qubit is provided by the Bloch
sphere. It is often used to illustrate the effect of single qubit operations, which are
elementary in quantum computing. Unfortunately, there is no equivalent representation
for multiple qubits. The Bloch sphere representation of a qubit reads as follows:

0 0
|Y) = e (cos 5]0} + €' sin 5[1}) .

It is obtained from Equation 2.1 by rewriting the complex numbers «q, a; in polar coor-
dinates, ag = re*? and oy = se® with 7,5,v,5 € R and r, s > 0, and a suitable choice of
the parameters ¢ = 6 — v and 6 = 2arccosr. It is a property of measurement that global
phase factors like €'V can be ignored. Then, a single qubit state i) can be visualized as
a point (cos psin ,sin psin @, cos §) on the unit sphere in R? as it is illustrated in Figure
2.1. The z-, y- and z-axis are defined by the states 1/v/2(|0) +11)), 1/v/2(|0) +2|1)) and
|0).

2.3.2 Multiple Qubits

A quantum register is a quantum mechanical system composed of several quantum bits.
Considering a system of n qubits, its state space is the 2"-dimensional Hilbert space
H™ .= C2". Similar to the 1-qubit case, the computational basis states of H(™, labeled

’k> = ’kn—l R k0>, with k; € {0, 1},

compare to the 2" possible states of a classical n-bit register. Here, k,_1...ko is the
binary representation of k, where k; is associated with the i-th qubit. In the case where
the system is in a computational basis state each qubit has a definite value, either |0)
or |1). Note that within this thesis the qubits are counted starting with 0 from the
rightmost position in the ket vector (the least significant qubit), as is usual in computer
science.

* Superdense coding allows to communicate two classical bits by transmitting a single qubit of a pair of
entangled qubits [107]. At first sight, this might contradict the above statement. However, one needs
two qubits to perform superdense coding and both qubits must be measured (in the Bell basis).

10

2.3 Quantum Information

)
Figure 2.1: Bloch sphere.

Any linear combination or superposition of the basis vectors is an allowed state of the
system (superposition principle). Thus, the general (superposition) state of an n-qubit
register can be written as

2n 1
) = D aulk), or€C,0<k<2"—1.
k=0
Because of the normalization condition of state vectors it is 7o' |ax|> = 1. The

probability for the quantum register being in state |k) (measurement result ‘&) is |og|?.
By convention the 2" basis states are identified with the standard basis vectors:

1 0 0

0 1 0

‘O> = 0) ’1> = 0)) ’271 1> =
: 0

0 0 1

Mathematically, the extension from one to many qubits or the union of two or more
quantum registers to a larger register is made by means of the tensor product ®:

Postulate 2. The state space of a composite system is the tensor product of the state
spaces of the component systems. Let [14) be the state of system A with state space
H4 and |[¢p) the state of system B with state space Hp. Then, the Hilbert space of
the bipartite system AB is Hap = Ha ® Hp and the joint state of the total system is

[Ya) @ |[¢B).

11

2 Basic Concepts of Quantum Computing

Moreover, if {|v)a} is an ON-basis for H4 and {|u)p} is an ON-basis for Hp, then
{lv)a ® |p)B} is an ON-basis for Hap. In accordance with the tensor product of vector
spaces, the dimension of H 4p is the product of the dimensions of H 4 and Hp. Therefore,
the state space of a quantum register increases exponentially with the number of qubits.
Abbreviated notions for the tensor product |1)) ® |¢) of two arbitrary states |¢)) and |¢)
are [1)]6) = |1, 6) = [19).

As an example, consider a system of two qubits A and B. The computational basis
states (]00),|01),/10),|11)) for system AB result from the basis states of A and B (|0),|1))
by tensor multiplication: |z1z0) = |21) ® |70), V¥ (20, 21) € {0,1}2.

In multiple qubit systems there are states which cannot be expressed as a tensor prod-
uct of states of its single qubit components. This property is referred to as entanglement
or nonseparability. Let |1)ap) be a bipartite state. If there are any two states |¢p4) in
Ha and |¢p) in Hp, such that [Yap) = |pa) ® |¢B), the state is called separable (or
unentangled); otherwise it is entangled (or unseparable). The following examples for
entangled states of a two qubit system are known as the Bell or EPR states (due to
Einstein, Podolsky and Rosen):

1 _ 1
|67) = 75 00) + (1)), |o7) = 5(\00> —[11)),

1 _ 1
[ty = ﬁ(101>+\10>),) = =

When performing a measurement on a subsystem of a composite system with entangled

state, another way of thinking about entanglement becomes noticeable. How entangle-
ment is characterized by measurement is described in detail in Section 2.5.

(101) —[10)).

2.4 Quantum Gates

Roughly speaking, quantum computation means just transforming a state of a given
quantum system into another state, usually followed by a measurement. Physicists call
this state transformation a (time) evolution of the quantum system, which can be math-
ematically represented by a unitary operator®:

Postulate 3. The evolution of a closed physical system in a time interval [to, t1], to < t1,
is described by a unitary operator U(tg,¢1) which depends only on ¢y and t;. Let |))
denote the state of the system at time t, then it is

‘¢t1> = U(t07t1)‘wto> :

®The matrix representation U of a linear operator is unitary (and therefore the operator itself), if
UtU = I, where U = (UT)* is the complex conjugate transpose of the U matrix and I is the
identity operator.

12

2.4 Quantum Gates

A unitary transformation on n qubits, and thus a vector in H(™, is a unitary 2" x 2"
matrix. The set of all unitary matrices of same size is a group in the algebraic sense with
the matrix multiplication as group operation. In particular, it follows:

Theorem 1. If U and V are two unitary matrices (of suitable dimension), then UV is
unitary as well.

Note that there are infinitely many unitary matrices of a fixed size.

Geometrically, unitary transformations preserve inner products between vectors and
with it the length of vectors and the angles between vectors. They are imaginable as
rotations of the vector space. Moreover, unitary operators are bijective and therefore
reversible.

Following the nomenclature of electrical circuits which consist of wires and logic gates,
unitary transformations are called quantum gates. This analogy is further discussed in
Section 2.6. Like many classical gates the most important quantum gates have a certain
graphical representation. A general quantum gate U operating on n qubits is illustrated
in Figure 2.2(a). The short wires correspond to the incoming (left) and outgoing qubits
(right). Usually, the bottom-most wire corresponds to the least significant qubit (qubit
0). Suppose U is a product of unitary transformations Uy and U, U = UsUj, then
an equivalent schematic symbol notation, or quantum circuit respectively, is depicted in
Figure 2.2(b). Note the different order of U; and Us in the product notation and in the
graphical representation.

n-1 — |— — -
n-2 — |— — -

(a) (b)

Figure 2.2: a) A general n-qubit gate, denoted U. The qubits are counted from bottom
(0) to top (n-1). b) Quantum circuit implementing U = UsU; by means of U; and Us.
Time and control flow in the quantum circuit model goes from left to right.

2.4.1 Single Qubit Gates

A single qubit gate is identified by a unitary 2 X 2 matrix. Some important quantum
gates are defined by the so-called Pauli matrices, denoted X, Y and Z:

() () ().

13

2 Basic Concepts of Quantum Computing

Their graphical representation, including the action on an arbitrary single qubit state,
is shown in Figure 2.3. The X-gate is equivalent to quantum NOT. Alternative symbols
are a box labeled with NOT and the @ symbol.

al0) +6[1) — X — Bl0) +all)

al0) +6]1) — Y — —16]0) +a|1)

al0) +6l1) — Z — al0) - 1)

Figure 2.3: The Pauli matrices.

By exponentiation of the Pauli matrices further unitary matrices emerge: calculating
the matrix exponentials e7*%Y for U € {X,Y,Z} and 0 < ¢ < 2r results in rotations
about the z-, y- and z-axis of the Bloch sphere. From the resulting matrices the following
rotation operators Rx, Ry and Rz can be easily derived (using cos(y)) = cos(—v) and

sin(~) = —sin(y)):
Re(o) = (S 1Y)

1sin¢g cos ¢

Ry (¢) = (cos¢p sing) ’

—sin¢g cos ¢

o) = (0)

According to this definition a gate Ru[¢], u € {x,y,2}, is a rotation by 2¢ about the
u-axis. In literature, Rx, Ry and Rz are usually defined in a way that they perform
rotations by ¢ (by inserting a factor of 1/2).

The corresponding schematic gate symbols are shown in Figure 2.4.

— Rx[¢] — — Ryld] [— — Rz[g] [—

Figure 2.4: Symbols of the single-qubit gates Rx, Ry and Rz.

An arbitrary unitary operator on a single qubit can be written in different ways as
a product of rotation matrices together with an overall phase shift factor. One way is
provided by the following theorem [107]:

Theorem 2. (X-Y decomposition of rotations) Let U be a unitary single qubit operator.
Then «, 0, ¢,7 € R exist such that

U = e Rx(¢)Ry(0) Rx(¢)) .

14

2.4 Quantum Gates

In particular, each Rz operator can be written as a product of Rx and Ry rotations.
Moreover, there is also an analogous Z-Y decomposition, where in Theorem 2 Rx is
substituted by Rz. Occasionally, such a general one-qubit unitary operator is denoted

UQ(aa 0, ¢a w)

Rz-gates can also be designated as phase gates. This becomes clear when writing them

R () = e"¢(N) -

Applied to a single qubit state the diagonal coefficient e'?? becomes a relative phase
factor regarding the |1) amplitude of the state. Because of a peculiarity of quantum
measurements the global phase factor is unimportant and can be ignored. The factor 2
in the exponent can be eliminated by defining

o =12

Up to a global phase factor this class of gates is equivalent to Rz.
Besides this definition, the following gate is sometimes referred to as the phase gate:

S— PH(r/2) — (é 0 > .

7

in the form

The square root of gate S is gate T, the so-called 7/8 gate®:

T = PH(r/4) = (o o) .

Another important single qubit gate is the Hadamard gate (H):

714

It maps |0) to 1/v/2(]0) + [1)) and |1) to 1/v/2(|0) — [1)). Furthermore, it is H> = I.
In order to be applicable to an n-qubit quantum register with a 2”-dimensional state
vector, quantum gates operating on less than n qubits have to be adapted to higher

a b
o= (5 a)
be an arbitrary single qubit gate applied to qubit ¢ (0 < q < n) of an n-qubit register.

Then the entire n-qubit transformation, here denoted with U, can be written as a tensor
product in the form:

dimensions. For example, let

U=1®..0IURI®...01.
—— ——
n—(gq+1) q

5The equivalent Rz-gate has diagonal coefficients e™*™/5.

15

2 Basic Concepts of Quantum Computing

What was intuitively clear is now confirmed: an empty wire in the graphical representa-
tion of quantum gates can be identified with the identity matrix. The matrix U consists
of 2=+t major “blocks” on the diagonal, where each block contains 29 matrices U
which are diagonally arranged and shifted by one position. The structure of U with
n =4 and ¢ =1 is illustrated in Figure 2.5.

Calculating the new quantum state requires 2" ~! matrix-vector-multiplications (each
block, each submatrix) of the 2 x 2 matrix U (cf. Section 5.1.2). It is easy to see that
the costs of simulating quantum circuits on conventional computers grow exponentially
with the number of qubits.

In the same way as Uisa composition of I gates and U, other transformations can
be built by tensor multiplication from single qubit gates which operate in parallel on
different qubits. More generally:

Theorem 3. Let U be a unitary operator on H("™ and V a unitary operator on H ™.
Then, U ® V is a unitary operator on H(™"),

For example, applying the Hadamard gate on each qubit of an n qubit quantum register
realizes the unitary transformation

H® --® H=: H®".
———
n times

But there are also multiple qubit gates which cannot be decomposed into a tensor
product of single qubit transformations, i.e., they are wunseparable. This, of course,
relates to entanglement of quantum states, as entangled states can only be generated by
using unseparable gates.

2.4.2 Controlled Operations

The controlled-NOT gate, also referred to as CNOT, operates on two qubits, a control
qubit and a target qubit. The action of the CNOT is as follows: it flips the target qubit
if the control qubit is set to |1) and leaves it unchanged otherwise. Suppose two qubits
|ct) are given where the first qubit is the target qubit and the second is the control qubit.
Then, the effect of CNOT on the computational basis states is given by |c)[t) — |c)|[t®¢),
with ¢,t € {0,1}. Its matrix representation and gate symbol is shown in Figure 2.6. It is
easy to prove that the CNOT cannot be decomposed into a tensor product of two single
qubit transformations.

In a similar way the (CKNOT) gate is defined on k + 1 qubits. It flips the target-
qubit if the k£ control-qubits are 1. For k = 2 this gate is called a Toffoli gate or
CCNOT. 1t acts on the computational basis states as follows: |a,b,c) — |a,b,c @ ab)
for a,b,c € {0,1}, where a and b denote the two control qubits and ¢ the target qubit.
Essentially, by preparing qubit ¢ to 1 the outgoing target qubit becomes —(ab). Another

16

2.4 Quantum Gates

Figure 2.5: With n = 4 and ¢ = 1, U consists of four major blocks on the diagonal,
where each block contains the matrix U twice. Within one block the structure of the
2 x 2 matrices is “broken open” and the matrices overlap each other.

D %o %
/1 0 0 0
%1 0100 |c) |c)
|l 0 0 0 1
\0 010 |t>£ It & c)

Figure 2.6: The CNOT gate operates on two qubits: the solid circle indicates the control
qubit and the & indicates the target qubit. The bit tuples labeling the matrix rows and
columns indicate the order of basis states.

17

2 Basic Concepts of Quantum Computing

Figure 2.7: The SWAP gate and the equivalent quantum circuit using CNOT gates. The
matrix of SWAP is obtained by multiplication of the corresponding CNOT matrices.

useful 2-qubit operation is SWAP which interchanges the states of the two input qubits:
la,b) = |b,a). It can be implemented as a sequence of three CNOT's. Its schematic
symbol and decomposition in CNOT gates is shown in Figure 2.7.

More generally, let U be an m-qubit unitary operator. Then, a controlled operation
C*(U) on k+m qubits acts on the m target qubits like the U-gate, provided all k control
qubits are 1. Otherwise it has no effect. For example, controlled phase gates with control
qubit 1 and target qubit 0 are given by

100 0
010 0
CPH@)=1 4 g 1 o
0 0 0 e

Similar to single-qubit gates, controlled quantum gates have to be adapted to higher di-
mensions, if required by the Hilbert-space. Regarding a controlled operation C*(U) with
single-qubit gate U, the number of matrix-vector-multiplications of U for calculating the
new quantum state is reduced to 2" '~%. In that case, all diagonal coefficients, assigned
to basis states which do not meet the control conditions, are set to 1, as exemplified by
Figure 2.8.

2.4.3 Sets of Universal Quantum Gates

A gate or a set of gates is defined to be universal for classical computing, if any arbitrary
gate or function can be computed requiring only those gates. Since the NAND gate is
universal in classical computing and has a quantum equivalent provided by the Toffoli or
CCNOT gate, the set of all quantum circuits comprises all classical circuits. However,
this is only a small subset. In contrast to the discrete space of all classical operations
the set of quantum operations is continuous. Therefore, the concept of universality for
a discrete set of quantum gates rests on “good approximations” of arbitrary unitary
operations.

In this context it is quite helpful that the sufficiently strong causality principle - similar
causes have similar effects - applies also to quantum circuits, that is, small changes or
errors in a single unitary operation or a gate sequence cause only small changes in the
outcome of the circuit. Specifically, considering a computation where several quantum

18

2.4 Quantum Gates

Figure 2.8: Controlled-U transformation with control qubits {0, 3} and target qubit 1 on a
4-qubit quantum computer. To calculate the new quantum state, only two multiplications
of U with the corresponding subvector of the current state vector are required.

19

2 Basic Concepts of Quantum Computing

gates with a common bounded error are applied to an initial state [¢), the accumulated
error in the resulting state grows linearly with the length of the circuit. This motivates
the following definition:

Let U and V be unitary operators acting on a Hilbert Space H™. V is called an
approzimation of U with error e, if

€= rﬁlf;XH(U =)l

with i) € [l = 1.

A set of quantum gates is called universal, if any unitary transformation can be ap-
proximated to arbitrary accuracy by a quantum circuit consisting of the gates from that
set.

The following two theorems [107] comprise the most important results about the uni-
versality of quantum gates and the approximation of quantum circuits.

Theorem 4. (Universality of single qubit and CNOT gates) An arbitrary unitary op-
eration U on n qubits (U : H™ — H"™) can be realized ezactly by a quantum circuit
requiring O(n?22") gates from the set of CNOT and single qubit gates.

Theorem 5. (Universality with a discrete set) The discrete gate set {H, CNOT, T}
forms a universal basis for quantum computation. Moreover, let U be an arbitrary
unitary operation which can be realized exactly by a quantum circuit containing m gates
from the set of CNOT and single qubit gates. Then, this circuit can be approximated
to an accuracy e using O(mlog®(m/e)) gates from the discrete gate set, where c is a
constant approximately equal to 2. By adding gate S, the approximations can be done
fault-tolerantly.

Unfortunately, most unitary transformations cannot be efficiently implemented from
a small set of elementary gates, i.e. given a unitary transformation U on n qubits, there
is no circuit of size polynomial in n approximating U [107].

2.4.4 Decomposition of unitary transformations

Theorem 4 is proven by explicitly constructing a decomposition of an arbitrary unitary
matrix into single qubit and CNOT gates. In the following, this construction is outlined
briefly. In this context, an improvement of this construction is mentioned which was
introduced by Aho and Svore [5]. Here, only the idea behind their approach is described.

The construction of a decomposition can be done in two steps: first, expressing the
general unitary matrix of dimension d as a product of at most d(d — 1)/2 two-level
unitary operators, that is, matrices which act only non-trivially on two or fewer vector
components, as shown in Figure 2.9, and second, implementing an arbitrary two-level
matrix by single qubit and CNOT gates.

20

2.4 Quantum Gates

Figure 2.9: A two-level unitary matrix Us; with a 2 X 2 (unitary) component matrix U
consisting of a,b,c,d € C. The coefficients a and b are in row s, the coefficients ¢ and d
are in row t.

The first step is also called the two-level decomposition. In [37] G. Cybenko describes
this decomposition in terms of traditional algebraic operations as a classical triangulation
or QR-factorization. Since classical QR-factorization is typically based on real-valued
Givens rotations, which are matrices like the one in Figure 2.9, except that the component
matrix is a real-valued rotation matrix

- < cos¢p sing >

—sing cos@

he calls the two-level unitary matrices quantum Givens operations.

The algorithm for the second part of the construction is explained as done in [37].
Alternatively it can be explained by means of Gray code sequences [5, 107]. Now, let
be s and t the n-bit binary representations of the two basic states, a two-level matrix
Us with component matrix U acts on. Let bit k be a bit, for which s and ¢ differ.
Then, the quantum circuit for the two-level operator is performed by the following three
steps: First, apply CNOT, with bit k£ as the control bit, on every bit for which s and ¢
differ (except bit k) and apply NOT on every bit of s which is 0 (except bit k). Second,
apply U on qubit k with all other qubits being control qubits (C"~(U)). Finally, apply
all the NOT and CNOT gates of the first step again, but in reverse order, undoing all
permutations. The entire implementation requires O(n) gates. Of course, the C"~1(U)
gate can be reduced to a sequence of CNOT and single-qubit operations as well, requiring
another O(n) gates. Thus, the entire implementation of an arbitrary unitary matrix uses
O(n?2?") single qubit and CNOT gates.

21

2 Basic Concepts of Quantum Computing

In their recent paper [5] Aho and Svore present a decomposition algorithm” with an
improved two-level decomposition phase using a technique, which they call Palindrome
Transformation. The idea behind this technique is, to find an optimal ordering of two-
level operations in the first phase, such that the ordering of the palindromic subcircuits
of self-inverting gates®, resulting from the second phase, leads to a maximal amount of
cancellations of the self-inverting gates: A palindromic subcircuit A is a gate sequence
of the form

A1Ag. . ARV A ... AgAq .

Two successive palindromic subsequences A and B can have a subsequence of self-
inverting gates in common, like

- Aj+1Aj - A2A1A1A2 . Aij+1 ey

with By = A;... Bj = A; which can be reduces to ... A; 1 Bji1....

It is shown that the Palindromic Optimization Algorithm (POA) achieves a large ben-
efit, resulting in significantly smaller decompositions than those obtained by the con-
ventional method. However, even for small numbers of qubits, the resulting quantum
circuits are still large. For more details see [5].

It is unknown, whether there exist more efficient decomposition algorithms. Therefore,
other approaches might be necessary to find even shorter decompositions. Such a different
approach to find optimal quantum circuits is provided by evolutionary algorithms (cf.
Section 5.3.1) [167].

2.4.5 Oracle gates

In computer science an oracle is a black-box function, that is, a function whose internal
working is unknown. An input for the oracle is directly processed into an output. It is
said that the oracle responds on the query immediately. This implies that the costs of
operating a black-box are irrelevant for complexity analysis.

An oracle gate in quantum computing is usually a “variable” gate. It enables the en-
coding of problem instances and represents in this way the input of a quantum algorithm.
Oracle gates may change from instance to instance of a given problem, while the “sur-
rounding” quantum circuit remains unchanged. Consequently, a proper quantum circuit
solving a given problem has to achieve the correct outputs (after measurement) for all
oracles representing problem instances.

In certain quantum algorithms, like Grover’s (cf. Chapter 4.2) or Deutsch’s (cf. Section
2.8.1), oracle gates are permutation matrices computing Boolean functions f : {0,1}" —

"They call the process that generates for an arbitrary unitary matrix an exact decomposition a quantum
circust compilation.

80f course, a gate A is called self-inverting, if AA = I. Examples are the Hadamard gate H and the
NOT and CNOT gates.

22

2.5 Projective Measurements

100 00O0O0O0
01 00O0O0O00QO0
0001 0O0O0O0
001 0O0O0O00QO0
000 0O0OT1TO0O0
000O01O0O00QO0
000 0O0O0TO01
000 0O0O0T10Q0

Figure 2.10: Example for an oracle matrix implementing the OR function of two inputs.
The right-most qubit is flipped, if at least one of the two other qubits is ‘1’.

{0,1}. The transformation can be defined by the map Uy : |z,y) — |z,y ® f(x)), where
|z) is an n — qubit state, |y) is a single qubit state and @ indicates the addition modulo
2. For y = 0 the final state of the single qubit becomes |f(x)). The oracle matrix
for f inverts the output qubit, iff f yields “1” on the input qubits. In this case, the
matrix swaps the amplitudes between the states differing only with respect to the output
bit. As an example, Figure 2.10 shows a reversible matrix implementing OR on two
input bits. The symbol representation of an oracle gate is usually just an appropriately
labeled box, covering all the qubits the oracle is operating on. In cases where the oracle
gate corresponds to a Boolean function the target qubit with the function value may be
marked by the @ symbol.

Behind every oracle gate is a particular quantum circuit calculating the output. Such
a quantum circuit usually gets additional inputs and needs also additional ancillary
qubits which are left out in the symbol representation of the oracle. This can be done,
because the additional qubits are not needed for the remainder of the computation and
using a technique called uncomputing, one can get rid of the “garbage” assigned to the
ancillary qubits and put them back to the initial base state. For instance, a quantum
circuit for Uy might have additional input qubits encoding a Boolean function f which
is then calculated at the output. Since any classical circuit can be simulated efficiently
(in linear time) by a quantum circuit, usually one does not need to deal with the exact
implementation.

2.5 Projective Measurements

Quantum information processing is useless without readout or measurement respectively.
It is the final step in quantum algorithms, since there is no other way to gain information
about the quantum system than by measurement. This section deals only with the pro-
jective or von Neumann measurement in the computational basis, which is a special case

23

2 Basic Concepts of Quantum Computing

of a more general quantum measurement described by measurement operators. However,
all other kinds of measurements proved to be equivalent to unitary transformations, using
auxiliary qubits, so-called ancillae, if necessary, followed by projective measurements.

Before explaining the effects of projective measurements on quantum systems the con-
cept of observables is introduced. An observable M is a property of a physical system
that can be measured. Mathematically M is a Hermitian (self-adjoint) operator in a
Hilbert space with a spectral decomposition M =), A;|7)(i|, where A; are the eigenval-
ues of M. The corresponding eigenstates |i) of M form an ON-basis in the vector space.
Here, P; := |i)(i| is the projector onto the eigenstate |i).

Postulate 4. A projective measurement on a quantum system is described by an ob-
servable M. The possible outcome of a measurement of M is an eigenvalue \; of M.
After the measurement, the quantum state is an eigenstate of M corresponding to the
measured eigenvalue. If the quantum state of the system just before the measurement is
|1}, then the probability of getting result \; is given by

Pr(i) = |B)|I* = | P|y) -
If the outcome is A;, the normalized post-measurement state becomes

Pil)

VPr(i)

A projective measurement in the computational basis {|k)} implies the use of projectors
Py, = |k)(k| to perform the projective measurement. For measurements in the standard
basis the numerical outcomes \; are identified with ‘4’. In this case, a superposition state
prior to the measurement collapses with the measurement to |i). Furthermore, it is not
important to know the eigenvalues \; (and thus M), since probabilities Pr(i) and post-
measurement states do not depend on their numerical values. In the following, the term
“measurement” always refers to projective measurements in the computational basis.

A partial measurement of a single qubit ¢ in an n-qubit register with outcome ‘i’ is a
projection into the subspace, spanned by all computational basis vectors with ¢ = ¢. The
probability Pr,(7) of measuring a single qubit with result ‘4’ is the sum of the probabilities
for all basis states with ¢ = ¢ and the post-measurement state is just the superposition of
these basis states, re-normalized by the factor 1/4/Pry(i). For example, measuring the
first (right-most) qubit of |¢)) = a|00) +a1|01) + a2|10) +a3|11), with ag, a1, e, a3 € C
and |ap|? + |a1|? + |aa]? + |as|? = 1, gives ‘1’ with probability |a1|? + |as|?, leaving the
post-measurement state [¢)') = 1/4/|a1|? + |a3]?(a1]01) + a3|11)). The projectors are
just P, = I ® |i)(i]. It can be proved that multiple qubit measurements can be treated
as a series of single qubit measurements.

Note that quantum measurements are irreversible operators, though it is usual to call
these operators measurement gates. In this thesis a single qubit measurement is assigned
the schematic symbol illustrated in Figure 2.11.

24

2.6 Quantum Clircuits

M

Figure 2.11: Circuit symbol for a single qubit measurement.

The quantum effect of entangled states was already discussed in Section 2.3.2. Measure-
ments provide another equivalent way to define entanglement. A multiple qubit quantum
state is not entangled if the measurement of one single qubit has no effect on any other
single qubit measurement. Consider the entangled Bell state |¢T) = 1/v/2(|00) + |11)).
Provided the second qubit has not been measured before, the probability of measuring
the first qubit to be |0) is 1/2, and vice versa. If a measurement is performed either on
the first or the second qubit, the measurement of the other qubit in each case gives the
same result. That is, the measurement of one qubit has an effect on the measurement of
the other — the measurement outcomes are correlated.

An important principle about measurements in the context of quantum circuits is
discussed in the following section.

2.6 Quantum Circuits

The quantum circuit model of computation [44] is analogous to the classical circuit model.
A classical circuit is made of gates computing Boolean functions and wires that connect
gates.” A quantum circuit has nearly the same structure, but with some restrictions.

Of course, gates in quantum circuits are quantum gates. Their graphical representa-
tion is already described in Section 2.4. Wires, symbolized by horizontal lines, connect
quantum gates and indicate input and output of a quantum circuit. Each wire represents
a certain qubit. However, wires generally do not correspond to physical wires, but refer
instead to a “time line”. The quantum circuit fixes the chronological order of unitary
transformations (plus some measurements) which are applied successively to an initial-
ized quantum state. If not stated otherwise the input state of an n-qubit quantum circuit
is the computational basis state |0)®" = |0) ® - - - ®|0). By convention a quantum circuit
has to be read from left to right. The simplest quantum circuit is a single quantum gate.
However, to implement this gate, it usually has to be decomposed into a sequence of
elementary gates.

The following rules specify the restrictions of quantum circuits compared with classical
circuits and define allowed connections of quantum gates in the common quantum circuit
model:

%Formally, it can be described by a (acyclic) directed graph whose vertices represent the gates and
whose directed arcs represent wires.

25

2 Basic Concepts of Quantum Computing

e Only acyclic circuits are valid quantum circuits, i.e. loops are not allowed. A
quantum gate which is to be applied repeatedly has to be wired as many times in
the quantum circuit.

e Also, wire crossings are not allowed since arbitrary qubit permutations can be
realized by SWAP operations.

e As a result of the reversibility of operations in quantum circuits it is not allowed to
perform the FANIN operation, which joins several wires to a single wire containing
the bitwise OR of the inputs.

e Moreover, the number of input and output wires or qubits respectively is exactly
the same.

e In contrast to classical circuits, it is not possible to split a wire into two or more
identical wires, which means, the FANOUT operation is not allowed. This corre-
sponds to the following theorem.

Theorem 6. (No-cloning theorem) It is not possible to make a copy of an unknown
quantum state!

A proof of this theorem is given e.g. in [107]. Even though (universal) cloning is not
possible, classical information can be copied with perfect fidelity, as any particular pair
of orthogonal states can be cloned perfectly.

In the following, the main aspects of quantum circuits are summarized, beginning with
a working definition of a quantum circuit and continued with explanations on inputs and
outputs of quantum circuits.

A gquantum circuit is a quantum computational model operating on a finite number
of qubits. A quantum circuit on n qubits is a unitary operation on H(which can
be represented by a finite concatenation of quantum gates. In practice, the unitary
operation is to be composed of elements from a (small) finite set of quantum gates which
form a universal basis for quantum computation. Since discrete, universal gate sets
realize any unitary operation with arbitrary accuracy (Theorem 4 and 5), this restriction
(also important in the context of circuit evolution) does not limit the set of computable
functions.

A quantum circuit can get its input in two ways: (i) by the initial quantum state
(the state of the qubits) or (ii) by input gates (or oracle gates), that is, unitary opera-
tions which depend on the input. The first approach is more intuitive and corresponds
to the way classical circuits obtain their input. However, encoding inputs may lead to
quantum systems with several qubits. Since the costs for circuit evaluations on conven-
tional computers increase exponentially with the number of qubits, large numbers must
be avoided (cf. Chapter 5). This is possible using the second approach. Oracle or input

26

2.6 Quantum Clircuits

gates usually substitute much larger quantum circuits and hide qubits necessary to en-
code further problem inputs and ancillary qubits. Yet, the use of oracle gates leads to
a different complexity measure, if it is assumed, that the oracle performs its operation
in a single time step (cf. Section 2.6.2). Using input gates does not contradict to the
definition of quantum circuits given above. The input gate is merely integrated in the
unitary operation and can be seen as an element of the elementary gate set.

Applying the quantum circuit means multiplying the unitary operation with the ini-
tial quantum state. The resulting vector provides the probabilities for all measurement
outcomes. A measurement is necessary to obtain any information. From this the output
of the quantum circuit can be inferred. How this is done is essentially a convention. For
instance, for a decision problem one can define a particular qubit to carry the answer.
In a different way the output of the Deutsch-Jozsa algorithm (described at the end of
this chapter) is obtained. Here, the measurement result of the entire quantum system is
decisive for the outcome: One basis state encodes the answer “f is constant”, all others
the answer “f is balanced”. Moreover, for optimization problems every quantum state
may encode a certain solution. So, there are usually many ways to define the output
modalities and the decision in favor of either way will affect the quantum circuit solving
a given problem.

Note, it is still an open issue whether there exist other models of computation which
are more powerful than the quantum circuit model.

2.6.1 Intermediate Measurements

The final element in quantum circuits is the measurement. In circuits without explicit
measurements at the end they are implicitly assumed. However, measurements can also
be performed as an intermediate step in the circuit. Moreover, they allow conditional
branchings in quantum circuits. The advantage of intermediate measurements is that
they tend to make quantum circuits more “readable” and interpretable, when they are
used in a clever and effective way.

In case of a single-qubit intermediate measurement, dependent on the measurement
result ‘0’ or ‘1’ one of two quantum subcircuits is applied and describes now the con-
tinued evolution of the quantum system. Multiple-qubit intermediate measurements are
composed of single-qubit intermediate measurements. Therefore, it is sufficient to focus
on the latter. The possibility to use intermediate measurements extends the quantum
circuit model described above and requires a new definition: A gquantum circuit on n
qubits with intermediate measurements is a binary tree with quantum (sub)circuits on
n qubits as nodes. In addition, all inner nodes of the tree are labelled with a single-
qubit measurement (the qubit it acts on). By definition the left subtree corresponds to
measurement outcome ‘1’, the right to measurement outcome ‘0’.

Applying such a circuit means evaluating a path from the root to a leaf: The quantum
circuit in the root is applied to an initial quantum state. Each application of a quantum

27

2 Basic Concepts of Quantum Computing

circuit belonging to an inner node is followed by a single qubit measurement which
determines the next subtree and the new quantum state the subcircuit is applied to.

According to the quantum principle of deferred measurement, “measurements can al-
ways be moved from an intermediate stage of a quantum circuit to the end of the circuit”
[107]. Of course, such a shift has to be compensated by some other changes in the
quantum circuit. The transfer of a quantum circuit with intermediate measurements to
a quantum circuit without them might lead to a much larger quantum circuit (in the
number of elementary quantum gates).

Note that this circuit model with intermediate measurements seems to be different to
the circuit model (with intermediate measurements) roughly described by Nielsen and
Chuang [107]. Moreover, the quantum circuit models with and without intermediate
measurements are computationally equivalent, but it is not quite clear how the circuit
size of a quantum circuit with intermediate measurements is related to the circuit size of
its equivalent circuit without intermediate measurements.

2.6.2 Circuit Complexity Measures

There are two important measures to quantify the “costs” of a quantum program: first,
the total number of quantum gates concerning a given elementary gate set and, second,
the number of qubits needed to implement the circuit. To find the optimal quantum
circuit both parameters have to be optimized which might be a conflicting objective.
However, suppose a sufficient number of qubits is available. Then, the efficiency can
also be measured by the time passing from the initialization of the system state to the
final measurement, which corresponds to the number of computational steps. Here, a
computational step means the application of (maximally) parallel quantum gates. Figure

2.12 gives an example.
— H H

U

Figure 2.12: The left quantum circuit consists of five elementary quantum gates. Since
two Hadamard gates before and after CNOT each can be applied parallel the quantum
circuit consists of three computational steps. However, the right quantum circuit is
equivalent to the left circuit but consists only of a single CNOT gate.

If choosing the number of quantum gates as a measure, the simple uniform valuation
model, i.e., each gate contributes the same costs, may be replaced by a more “realis-
tic” measure, depending on a certain physical realization, which e.g. weights the costs
according to the gate type. Independent of the physical implementation it might make
sense, for instance, to rate controlled gates higher than single qubit gates.

28

2.7 Quantum Computational Complexity

Comparisons between quantum algorithms which use oracle gates, so-called quantum
black-box algorithms, and their corresponding classical algorithms are based on the num-
ber of accesses to input data, that is, the number of oracle calls, instead of the number
of computational steps, or the number of elementary gates respectively (cf. also Section
4.4). This complexity measure is also denoted as query complezity or decision tree com-
plexity. Of course, a comparison of quantum and classical algorithms on the basis of
oracle calls is only reasonable, if both algorithms use the same oracle.

Behind this is another computation model, the decision-tree or query model. Strictly
speaking, in the quantum version of this model (deterministic and randomized decision-
trees are two other kinds) quantum circuits are studied which can be described by a
unitary transformation A = Up - O -Up_1 -0 -Up_o---0 - Uy - O - Uy, where the U;
denote fixed, input-independent unitary transformations and the gate O an oracle call
(input-dependent unitary transformation). Relevant from the viewpoint of complexity
is the number of queries T. A survey on the decision-tree model and its complexity is
given in [26].

Why investigating such a restricted model? As it is not possible to make decisive
complexity theoretical statements in more powerful computation models (this would
comprise the answer to the question, whether quantum computing is more powerful than
classical computing), simpler and more limited models of computation are analyzed. The
hope is that understanding of such easier models will lead to a better understanding of
the more complex models.

2.7 Quantum Computational Complexity

Like other promising non-standard computing approaches, quantum computing raised the
hope that NP-Complete problems which seem to be intractable for classical computers
could be solved efficiently. Due to the merely quadratic speedup and the optimality
of Grover’s quantum search algorithm (cf. Section 4.2), it is obvious that approaches
primarily based upon (unstructured) quantum search cannot yield efficient solutions to
the problems in NP, in particular to the NP-complete problems. This can be considered
to be an indication that the class of NP-complete problems cannot be solved efficiently
on a quantum computer. However, up to now this is neither proven nor disproven.
Apart from NP-complete problems, there are some problems, which seem to be inter-
mediate in difficulty between P and NPC problems. This class of (decision) problems is
denoted NPI (NP-incomplete) and it is NPI:=NP-NPC-P. Ladner (92| has shown that
NPT is not empty, iff NP=£P. Thus, finding a problem in NPI would solve the most im-
portant and famous problem in computer science. For instance, the decision problem of
factoring!? is regarded as a candidate for NPI. Another problem which is still believed to

0Given a composite integer m and I < m, decide whether m has a non-trivial factor less than I.

29

2 Basic Concepts of Quantum Computing

be in NPI is graph isomorphism. Such problems appear to be hard classically, but they
can perhaps be solved efficiently on a quantum computer, as it was shown for factoring.

Another example for a classically hard problem, but not proven to be in NP-complete,
which perhaps can be efficiently solved on quantum computers is the shortest lattice
vector problem (SVP)'. Like factoring, the difficulty of this problem ensures security
in public key encryption systems (by using the inverse of this problem as a one-way
function). However, the provability of Micciancio’s number theoretical conjecture would
lead to SV P € NPC [150], and this would argue against an efficient quantum solution.

From these short and unfinished reflections, it becomes convincing that quantum com-
puting needs a separate complexity theory to understand the potentials and limitations
of quantum computing compared to classical computing.

Different complexity measures for quantum circuits were already explained at the end
of the last section. Another computation model is the Quantum Turing Machine (QTM)
which is not explained here. While quantum circuits (like Boolean circuits) are a non-
uniform computation model, because they have only constant input length, QTMs (like
clagsical TMs) are uniform, as they work on arbitrary input lengths. As in classical
complexity theory, the uniform quantum complexity of computational problems is of
particular interest. Therefore, analogous to uniform Boolean circuit families, uniform
quantum circuit families'? are considered. They allow a comparison of the computational
power of the more abstract QTMSs and the more practical (uniform) quantum circuits: It
can be shown that QTMs with polynomial runtime can be simulated by uniform quantum
circuits of polynomial size (with bounded error probability) and vice versa [169, 108]. See
[108] for a more detailed investigation on the equivalence of the computational powers of
uniform quantum circuit families and QTMs.

The following paragraph summarizes some results about quantum complexity classes
(defined over QTMs) and their relation to classical complexity classes. In [17] Bernstein
and Vazirani introduce quantum analogons to the classical complexity classes P and
BPP'3 EQP corresponds to P and denotes the class of problems solved error-free on
a QTM in polynomial time. BQ@QP, the quantum version of BPP, denotes the complex-
ity class of all computational decision problems that can be solved with bounded error
probability on a QTM in polynomial time.

"The shortest lattice vector problem consists in finding the shortest non-trivial vector of a lattice L
generated by d linear independent vectors in the vector space Q¢

12 A uniform quantum circuit family is an infinite sequence of circuits C, for each input length n such
that C can be generated by a QTM on input n in polynomial time O(poly(c(n))) where c(n) is the
size of quantum circuit C,, based on a given elementary gate set.

13BPP (probabilistic polynomial with bounded error) is the classical complexity class of decision prob-
lems that can be solved in polynomial time on a probabilistic Turing machine with bounded error
probability.

30

2.8 Basic Programming Techniques and Simple Quantum Algorithms

How EQP and BQP exactly relate to the classical complexity classes P, NP, PP'4,
BPP and PSPACE® is unknown. What is known is that

BPP C BQP C PP C PSPACE and P C EQP C BQP.

It is still an open problem to determine which of the inclusions are proper inclusions and
which are not. Especially it is not proven that BQP # BPP, that is, that quantum
computers have capabilities beyond those of classical computers, although there is strong
evidence suggesting this.

2.8 Basic Programming Techniques and Simple Quantum
Algorithms

It is assumed that certain computational problems can be solved on a quantum computer
with a lower complexity than possible on classical computers since there are problems
which are efficiently solvable by quantum algorithms but not classically up to now. In
doing so, quantum algorithms take advantage of basic computational techniques, namely
superpositioning, quantum parallelism and quantum interference. Additionally, entan-
glement seems to be a source of computational power quantum algorithms can benefit
from.

In this section fundamental programming techniques are discussed on the basis of the
simple quantum algorithms for Deutsch’s problem or its generalization, the Deutsch-Jozsa
problem. Also, a quantum algorithm for quantum teleportation is explained, demon-
strating the power of quantum entanglement. Both problems, quantum teleportation
and Deutsch-Jozsa, were already used as test problems for quantum circuit evolution (cf.
Chapter 5.3).

2.8.1 The Deutsch-Jozsa Problem

Given a Boolean function f : {0,1}" — {0,1} as a black-box, promised to be either
constant, f(z) = ¢,VYo € {0,1}" and ¢ € {0,1}, or balanced, i.e., as the result of f, 0
occurs as many times as 1, the Deutsch-Jozsa problem (DJ for short) is to determine
which of the two properties f has. This problem is also referred to as the early promise
problem. For n = 1, the task is also known as Deutsch’s problem.

The number of Boolean functions being either constant or balanced amounts to 2 +
(22:). In classical (deterministic) computing f, has to be evaluated 2"~! + 1 times in
the worst case; in quantum computing a single application of the corresponding input

PP is the classical complexity class of problems solved by randomized algorithms with unbounded
error probability.

I5PSPACE is the classical complexity class of all decision problems which can be solved on a deterministic
Turing machine using polynomial space and arbitrary time.

31

2 Basic Concepts of Quantum Computing

(—1)7(00) 0 0 0
0 (—1)F 00D 0 0
0 0 (—1)7010) 0
0 0 0 (—1)70D)

Figure 2.13: Example for an oracle matrix implementing a Boolean function f on two
input qubits.

matrix is sufficient [31]. The description of the quantum circuits solving DJ is restricted
to the case where the input matrix is a permutation matrix defining f. An example
for such a unitary input matrix was already given in Figure 2.10. Using this matrix
representation of a Boolean function, n + 1 qubits are necessary to solve the problem on
a quantum computer. Though, there is also a reduced n qubit version of this algorithm
which does without an additional ancillary qubit, using a diagonal representation matrix
with coefficients (—1)7®) (cf. Figure 2.13).

Mathematically expressed, the input gate Uy acts on the computational basis for any
Boolean function f as follows:

[2)]y) — [x)ly @ f(x))

where |z) is the “data” register describing the input for f and |y) is a single “target”
qubit. Here, & stands for addition modulo 2.

The quantum algorithm solving the Deutsch-Jozsa problem is discussed in detail in
[65, 107]. In the following, a short summary is given with a view to the basic programming
techniques.

Superpositioning
The preparation of an equal superposition is a decisive step in most quantum algorithms.

Since
1

Hlz) = ﬁzgl(—l)mld,

for + = 0 and x = 1, applying H®" on an arbitrary basis state |z) € H", z € {0,1}"

results in the state)
H®"|z) = > (=1)7Fz), (2.2)
\/2_71 z€{0,1}"

1
\/on

where z - z = 2121 + - - - + xp2zn. The even superposition with amplitude for every

base state is achieved by applying H®" to |0).

32

2.8 Basic Programming Techniques and Simple Quantum Algorithms

It may help to grasp the benefit of superpositioning by interpreting the resulting su-
perposition state as 2" classical equally weighted computation paths that the quantum
computer follows simultaneously. In this sense, superpositioning is the first step on the
way to quantum parallelism.

Quantum Parallelism

This is another fundamental feature of quantum computing used in many quantum al-
gorithms — usually in those where black-box or oracle gates are applied to compute a
function ¢ : {0,1}" — {0,1}™. Since the mapping =z — (z,g(z)), = € {0,1}", is re-
versible, there is a unitary transformation U, simulating the classical circuit calculating
(x,g(x)), such that |z,y) — |,y ® g(z)) for any y € {0,1}™. Ancillary qubits, which
are needed to implement the reversible circuit are omitted.

The “black-box” transformation Uy, described above, is such a unitary transformation
related to the given Boolean function f : {0,1}" — {0,1}. If |y) is initially in state
|0), it receives after applying Uy the output of f(x) and the resulting state is |z, f(x)).
Quantum parallelism now refers to the effect resulting from the application of Uy on
a superposition state, representing different values of x. For instance, applying Uy to
[2,9) = [4,0) with 1

) = H*"|0) = Non PRE)

ze{0,1}m

results in

Uyl.0) = j2_ S 15), (2.3)
z€{0,1}"

a superposition of all possible function values. Thus, a single function or “black-box”
evaluation!® is sufficient to calculate f(z) for all its possible inputs in parallel. However,
only one function value is actually accessible by measurement because readout always
collapses superposed states to a single basis state.

Computing a Function Into the Phase
Appling Uy to the superposition |¢) := 1/v/2(]0) — 1)) in the single target qubit leads to

1
Uslz,d) =

T 1 _(_)|
5z, (@) — |z, 18 f(2)) = (—1))\w>ﬁ(!0> — 1)) = (~1)/@z,g).

£ 3l

Neglecting |1}, this can be shortened by defining a new transformation

Vi i lz) = (=1)/@a).

16 A single application of the hidden quantum circuit.

33

2 Basic Concepts of Quantum Computing

Thus, V}; enables the computation of the function values into the phase or, in other
words, it transfers the values of f from the basis states to the amplitudes relative to the
basis states. Now, applying V on [¢)) produces the state

') = Vi) = jQ_ S (—1)/G)). (2.4)

n
z€{0,1}m

This corresponds to UfH®(”+1)(\O>®"\1>) neglecting the target qubit.

Quantum Interference

The effect of interference is best described (following [115]) considering the Hadamard
transformation and its action on |0), [1), [+) = 1v/2(|0)4|1)). Tt is quite clear that H|0) =
|4+) and H|1) = |-), defining |-) = 1+/2(]0) — |1)). So, both resulting states, Hadamard
applied to |0) and Hadamard applied to |1), have the same probability distribution.
Furthermore, |+) is only a superposition of both |0) and |1). Therefore, classically
one could assume that the resulting state of Hadamard applied to |+) shows the same
probability distribution, however, H|+) = 1v/2(]4+)-+|—)) = |0). That is, the probabilities
interfere with each other; they add on one hand and cancel on the other. Interference
allows computations on superposed states to interact[115].

Interference is also the source for solving DJ: Applying H®™ on |¢') (using Equations
2.4 and 2.2) results in

D DD SR e LY (25)

z€{0,1}" z€{0,1}n

This state is actually the result of the quantum circuit solving the Deutsch-Jozsa
problem. Considering the property of f, the solution of the question, whether f is
constant or balanced, is directly readable: The amplitude for [0)®" is > (—1)f(®) /2n. 1f
f is constant, this amplitude becomes +1 and the measurement outcome is with certainty
|0)®™. If f is balanced, the contributions to the amplitude of |0)®" cancel out and the
amplitude becomes 0. A final measurement will measure anything but [0)®". Thus, the
quantum algorithm determines clearly the property of f.

The entire quantum algorithm for the general Deutsch-Jozsa problem is summarized
below, Figure 2.14 illustrates the quantum circuit.

34

2.8 Basic Programming Techniques and Simple Quantum Algorithms

|0) —— H®" {— z r — H®" |—
Uy
0) «b— H—y yofl@)———

Figure 2.14: Quantum circuit implementing the general Deutsch-Jozsa algorithm. The
top wire carries n qubits. The Uy gate represents a black-box quantum circuit which
maps the input |z,y) to |z,y & f(z)).

Quantum Algorithm 2.8.1: Deutsch-Jozsa

1. Create the superposition:

2D 1
—

5 X 1|50 -m)

0)*" 1)

2. Calculate f in parallel:

U 1 01 [Loy -
ﬂ_”ze%}n() r>[() u>>}

3. Consider only the n-qubit register and cause interference by applying H®":

LY Y o

2€{0,1}" z€{0,1}"

4. Measure quantum state with output z:

M| z= 0: f is constant
z# 0: f is balanced

2.8.2 Quantum teleportation

Quantum teleportation [15, 22] is described here for two reasons. First, as already men-
tioned, it is also used as a test problem for quantum circuit evolution [167, 168], and
second, quantum teleportation is an important application of entanglement.

35

2 Basic Concepts of Quantum Computing

The task is to move an unknown quantum state |¢) = a|0) + (|1) of a single qubit
(source) to another remote qubit (target) by communicating just two classical bits, as-
suming that the target qubit is not directly accessible, but instead is entangled to a
third qubit, which is accessible. This problem is usually explained in the ordinary “Alice
(A) and Bob (B) scenario”. A wants to transmit a single qubit state to B. A cannot do
this directly. However, she can send classical information to B. The idea of quantum
teleportation depends on entangled states.

In short, the procedure solving the problem is:

1. A or B or a third party generates an EPR pair (cf. Section 2.3.2)
1/v2(|00) +[11)) .

and both, A and B, receive one qubit of this entangled pair. Assume, qubit 0 is
given to B, qubit 1 is given to A (Figure 2.15, left).

2. A entangles this qubit with the source qubit (Figure 2.15, middle), with the result:

1/2[(]0) + 51))]00) + (a[1) + 5]0))[01) + («[0) — B]1))[10) + (a[1) — 5|0))[11)] .

3. A measures the two qubits in her possession, influencing also B’s qubit, and sends
the (classical) outcome to B (Figure 2.15, middle). For example, if A measures and
transmits 11, B knows that his qubit state changed to «a|1) — 3|0).

4. Knowing the state zy, makes it easy for B to restore |¢) using two qubits, prepared
to |zy), and two controlled gates, CNOT and CZ (Figure 2.15, right). For 11, he
has to apply both, a bit flip (by applying NOT) and a phase flip (by applying Z):

ONOT (al0) — B11) 1) ZZ (al0) + A1)

(al1) — 5|0))[11)
In the following some reflections on the difficult nature of entanglement are summa-
rized.

Entanglement
The mathematical definition of entanglement was already given in Section 2.3.2. A
simple fact about entangled states (in the present mathematical model) is usually given
to emphasize their impact on quantum computing: The number of parameters, needed
to describe a (pure) unentangled state in H™ which is just a tensor product of single
qubits, increases only linearly with the number of qubits n. But describing a general state
(unentangled and entangled) still requires exponentially many (2") vector coefficients.
Yet, the question of whether entanglement is a key resource for computational power
or not has no simple answer. In [81] Jozsa and Linden discuss this topic in more detail.
They prove that for any quantum algorithm operating on pure states it is necessary

36

2.8 Basic Programming Techniques and Simple Quantum Algorithms

A B

6) IH_ A .
M
I S
Z H- 19)

EPR pair

Figure 2.15: The three parts of the entanglement algorithm: generation of the EPR pair,
A’s “send” and B’s “receive”-part. The dotted part of the wires indicate the classical
transmission. On receipt, B has to prepare two qubits according to the classical infor-
mation.

that the number of entangled qubits increases unbounded with the input size to speed
up classical computation. Furthermore, they show that only quantum algorithms with
small amount of entanglement can be efficiently simulated by a classical algorithm within
a certain tolerance. Independently, G. Vidal establishes in [159] how to simulate slightly
entangled quantum computations efficiently on a classical computer with cost growing
linearly in the number of qubits and exponentially in the entanglement.

These are strong arguments in favor of entanglement as a driving force (in pure state
quantum dynamics). However, Jozsa and Linden also argue that, “It is nevertheless mis-
leading to view entanglement as a key resource for quantum computational power”, since
the significance of entanglement is not independent of the underlying mathematical for-
malism, namely the amplitude description. Instead, for other mathematical formalisms
entanglement seems to have no certain meaning [81]. Moreover, to rate the genuine com-
putational power it is also important to consider that the information actually accessible
by measurement is still linear despite the exponential growth of the Hilbert space [119].
Therefore, the above argument might be misleading.

Increasing multi-partite entanglement is exemplarily shown for Shor’s factoring algo-
rithm [81]. For quantum search, which has only a quadratic speed up over classical search,
it is proven that there exists also a better-than-classical quantum algorithm, which does
not require entanglement [100] but instead is based on interference. For the reduced
Deutsch-Jozsa algorithm it can be shown that entanglement does not occur until n > 3
[34].

The power of quantum computing is not fully understood. Not all of its beneficial
sources seem to be identified or are at least not independent of the mathematical mod-
els used. The answers to both questions, “What is the excess of computational power
provided by quantum mechanics?” and “What gives the extra power to quantum com-
puting?” still remain as great challenges.

37

2 Basic Concepts of Quantum Computing

38

3 Genetic Programming Fundamentals

That which is static and
repetitive is boring. That which
is dynamic and random is
confusing. In between lies art.

John A. Locke (1642-1704)

The term genetic programming, GP for short, and its underlying programming technique
goes back to J. Koza and his treatise entitled “Genetic Programming. On the Program-
ming of Computers by Means of Natural Selection.” [87]. Briefly, genetic programming
is an automatic programming method based on Darwinian principles of evolution forcing
the induction and synthesis of computer programs.

In the present chapter, the basics of GP are discussed. In Section 3.1 GP is considered
in the context of its scientific roots: machine learning, Darwinian evolution theory and
evolutionary computation or evolutionary algorithms, respectively. Section 3.2 deals with
program structures in GP, introducing tree GP, linear and linear-tree GP, and graph and
linear-graph GP. Section 3.3 describes how genetic operators act on GP individuals.
Fitness functions and selection mechanisms are discussed in Section 3.4. The two basic
GP algorithms, generational and steady-state GP, are introduced in Section 3.5. Finally,
Section 3.6 goes into more profound subjects of evolution: introns and neutrality and
their effects on evolution.

A detailed and comprehensive introduction to GP can be found in [8]. This textbook
also forms the basis of this chapter.

3.1 GP’s Scientific Roots

The field of automatic programming focuses on inducing computers to develop programs
or algorithms which enable them to perform certain tasks. The process of improving
computer algorithms iteratively through a “gain of experience” is called machine learning
(ML) [103]. Experience is acquired by training computer programs on a set of training
instances which are examples of the relationship between inputs and desired outputs
related to a given task or problem. In GP, these training instances are called fitness
cases. By comparing the outputs of the programs (applied to the training inputs) with

39

3 Genetic Programming Fundamentals

the correct outputs, the ML system is able to “learn”. The distance (based on a defined
metric) of the result to the desired output is a measure for the excellence or fitness of
this program. This learning approach is also called supervised learning and is typical
for GP systems!. However, in this context “learning” does not only mean to realize the
weakness of considered computer programs but also to improve them, i.e. to search in
the space of all computer programs for those which are better adapted to the training
conditions. The final goal of the learning process is a computer program that is able
to calculate the desired outputs of the training set from the inputs. The quality of
learning can be appraised by applying the best solutions of the ML system to a test set
containing examples of input-output instances different from the training set. There are
many different learning algorithms in ML according to the problem representation. The
main differences are how solutions (computer programs) are represented, the selection of
search operators (for searching through the solution space) and the search strategy, e.g.
blind search, hill climbing or beam search? which is GP’s search strategy.

GP’s learning algorithm is inspired by the theory of biological or natural evolution.
Slightly simplified, biological evolution is genetic change in a population from one gener-
ation to another. Speed and direction of this change are variable with different biological
species. Genetic variation in a population is the result of two principal mechanisms,
mutation and (primarily homologous sexual) reproduction through recombination®. In
principle, changes in an organism’s genetic code, the genotype (genome), can lead to
changes in the organism’s phenotype (phenome), the set of its observable properties. In
other words, some of the variations in the phenotype of individuals within a population
are reflections of variations in the genotype. The phenotype is where natural selection —
evolution’s main engine — acts upon: In the struggle for life, individuals with properties
best adapted to their environmental conditions will have the best chance to survive and
to reproduce. Charles Darwin called this principle of preservation “survival of the fittest”
[39]. Those adaptions which are inheritable (by means of genetic code transfer), will be
passed on to the offspring. In this sense heredity is a key mechanism in evolution. As
a result of evolution over the course of time, species modify their phenotypes in ways
permitting them to succeed in their (sometimes changing) environment. It remains to
be shown, how these biological principles and mechanisms are implemented and how
artificial, computer-controlled evolution works in GP.

Since the end of the 1950’s in computer science diverse branches of research emerged
using the principle of evolution for problem solving. Evolutionary programming (EP)
[53, 54|, evolutionary strategies (ES) [124, 131] and genetic algorithms (GA) [74] are

Tn ML other learning approaches are known which can be found in e.g. [8] and are not listed here.

2In beam search a constant number of possible solutions, the “beam”, is considered. The best solutions
concerning a certain evaluation metric are selected for further transformation by applying some search
operators. All other solutions are discarded and replaced by the newly obtained solutions. Together
with the selected solutions they build a new beam.

3In bacteria also non-homologous (non-sexual) transfer of genetic material is possible.

40

3.1 GP’s Scientific Roots

counted among GP’s most influential predecessors. Nowadays, techniques for simulating
evolution are included in the umbrella term evolutionary algorithms (EA). Although
these techniques may differ in essential aspects, the basic ingredients are nearly the same
[8]. These are:

e populations of solutions (enabling a parallel search process),

e innovation (by mutation) and conservation (by recombination) operators,
e quality differentials (fitness measure),

e selection mechanism.

In contrast to other evolutionary approaches, the search space of all possible problem
solutions in GP consists of computer programs. Like any other EAs, GP operates on a
population, usually a small random subset of the entire solution space. During an evolu-
tionary process as is illustrated in Figure 3.1, GP optimizes the fitness of the population,
that is, ideally GP transforms the pool of individuals from a more or less random initial
population to a pool of best-adapted individuals.

Analogous to nature, GP rates individuals (computer programs) according to their
fitness — the quality of their environmental adaptation. GP evaluates the individual’s
fitness on the basis of a given fitness function. Through the selection step those individ-
uals with better fitness values prevail over weaker individuals: the latter are eliminated
from the population and replaced by variants of the former. Thus, individuals of higher
fitness participate with higher probability in the evolution. The variants or offspring of
individuals are created performing so-called genetic operators like mutation and recom-
bination operators. They correspond to the search operators in ML. The evolutionary
process is not stopped until a certain termination criterion is met, e.g. an individual
with a sufficiently “good” fitness value is evolved or a maximum number of generations
is reached.

This is only a rough description of the basic evolution scheme in GP. There are many
different GP systems differing in program structure, selection mechanism, fitness function
or genetic operators. In the following sections these components are inspected more
closely. With regard to the overall subject of this thesis some remarks and examples
address the evolution of quantum computer programs.

Even though GP is rather young compared to other disciplines in computer science it
provides for a large number of practical relevant applications in science, computer science
and engineering. [8] gives an extensive outline of problems GP was successfully applied
to, including robotics [111, 113, 28], electrical circuits design [90, 91|, image classification
[147, 38|, biochemistry data mining [123] or articulated figure motion animation [60].

41

3 Genetic Programming Fundamentals

?,?i?g'ate evaluate Are termination _besF _
population " | fitness function criteria met ? individuals
A no
start \i
new _
population Selection
created
Y
Variation
(Recombination / Mutation)

Figure 3.1: Structure of GP algorithms: the evolutionary loop of GP consists of fitness
evaluation, Darwinian selection and the generation of variants (by genetic operators).
The cycle is iterated until solutions are sufficiently good, or other termination criteria
are met.

3.2 Fundamental Program Structures

The structure and assembling of computer programs in GP have both been unconsidered
so far. Usually GP programs consist of basic “building blocks”, like constants, inputs to
the GP program, operators or certain functions. These are the primitives (the genome of)
a GP program is composed of. In the case of evolving quantum programs, quantum gates
or matrices respectively are the main components of GP individuals. The building blocks
are combined in defined program structures which determine the program execution, use
and locality of memory, and the application of genetic operators.

In principle three different variants of program structures are used in GP: tree, linear
and graph. Besides these basic representation forms there are newer developments of GP
structures like linear-tree and linear-graph.

3.2.1 Tree GP

Koza’s original GP system was based on a tree structure as program representation
[87, 88]. To implement his approach, Koza used the applicative programming language
LISP, in which individuals are stored as symbolic expressions (S-expressions). An S-
expression is a list of expressions, where the first is an operator and the additional
expressions are its arguments, which can be either atoms, the values in LISP, or other S-
expressions, whose return values, when evaluated, are atoms again. A simple example is

42

3.2 Fundamental Program Structures

1Ry [3/4x] i

(b)

Figure 3.2: (a) Tree structure: example for an individual representing a quantum circuit.
The colored tree nodes represent well-known quantum gates. A quantum gate (operator)
for which all inputs, i.e. its parameters, are available is added to an initially empty
quantum circuit. Like all operators (inner nodes) in tree GP quantum gates have to
return a certain value, too. For example, define the Hadamard Gate H taking one
argument (a valid qubit index) and returning this, the rotation gate Ry taking two
arguments (qubit index from the left and rotation angle from the right subtree) and
returning the first and the CNOT gate taking two arguments (control qubit index from
the left and target qubit index from the right subtree) and passing on the first argument.
(b) Using postfix order, tree execution results in a (probably useless) quantum circuit
for a 3-qubit quantum computer.

(+(xab)c) which multiplies @ and b and adds the result to c. S-expressions are equivalent
to expression trees — binary, ordered trees, where atoms are the leaves of the tree. In this
way, LISP is cut out for representing and manipulating GP tree structures. However, tree
GP can be implemented in other programming languages, too. Therefore, tree structures
are considered now more generally. The parameters of a function or an operator node,
respectively, are given by its child nodes, that is, every inner node needs to return a
value (operand) to its father node. Tree leaves may contain constants, input values
or zero-argument functions. There are different orders to execute tree structures as
programs. The standard convention for tree execution is the so-called postfiz order:
a postfix traversal visits the left subtree first, then the right subtree and finally the
root. Tree structures do not need external memory since the operands are always locally
accessible to the operator node. Figure 3.2(a) gives an example for a tree-structure
individual, interpretable as a quantum computer program. The corresponding graph of
the quantum circuit on a three-qubit quantum computer is shown in Figure 3.2(b).

43

3 Genetic Programming Fundamentals

The mapping from a tree (Figure 3.2(a)) to a quantum circuit (Figure 3.2(b)) is gov-
erned by certain conventions. In particular, the return value that nodes specifying the
type of a quantum gate pass on to their father nodes and the interpretation of arguments
received by those nodes have to be defined. The order of quantum gates in the generated
circuit depends on the tree execution order. As soon as a quantum gate with all of its
parameters is determined during tree execution, it is added to the quantum circuit.

Note that there is also a trivial mapping from quantum circuits to binary trees. The
idea of construction is as follows: Arrange the gates (gate types) of the given circuit in
a linear list. This can be seen as a (degenerated) tree with the last gate in the root and
the first gate as a leaf. To provide the gates with the correct parameters further nodes
have to be added to the tree resulting in branchings. The adjustment of parameters may
require the change of subtrees and the addition of arithmetical operator nodes.

3.2.2 Linear and Linear-Tree GP

Another widespread GP scheme is linear GP [7, 109]. Here, all instructions or operations
build a linear list which is executed from top to bottom. The only exception of the
linear program flow are jump instructions. Operators get their operands from external
memory. In this context linear GP systems are distinguished according to the way in
which they store additional data. In Stack-based GP [118] operators get their arguments
from a stack and push the result back onto it. In register-based and machine-code GP
[109, 110] data is available in a small number of memory registers. Instructions take their
arguments from one or more (globally accessible) registers and store the result in another
register. In contrast to register-based programs which are interpreted before execution,
machine code instructions are executed directly by the CPU, highly accelerating the
individual’s execution speed. Common machine-code GP individuals are two- or three-
address register machines.

An example of a linear program is given in Figure 3.3.

Essentially, linear-tree GP [82] is a synthesis of linear GP and tree GP. The structure
itself can be regarded as a tree where each node consists of a linear program part and a
branching function. In contrast to pure tree-GP, during the interpretation of the linear-
tree structure only the nodes of one path from the root node to a leaf are visited. For
each visited node the linear program is executed. Afterwards the branching function
is evaluated defining the node which is to be visited next. The genetic operators are
performed as it is done in standard tree-based GP on the tree structure and in linear GP
on the linear program part (see below).

In quantum computing, intermediate measurements are suitable for branching func-
tions. Depending on the result of the (partial) measurement, a linear quantum subpro-
gram is executed. Figure 3.4 illustrates the individual structure of a linear-tree scheme
representing a quantum circuit.

44

3.2 Fundamental Program Structures

SR
H1

NOT 1
CNOT 0 {1}
CNOT 1 {2}
H2
CNOT 0 {1}

CPH 0 {2} [7]
~

(a)

(b)

2 J\ H '
Nl |
0 D D PH [7] —

Figure 3.3: (a) Example for a quantum algorithm with linear genome structure. (b) The
corresponding quantum circuit representation. Incidentally, this is a quantum teleporta-
tion circuit which moves the quantum state of qubit 2 to qubit 0 provided both qubit 0
and 1 are prepared to |0).

1

M=0 !
0 —Ry[)] —

I

HHME—

I

I

i

I
17—

M=1
I

Figure 3.4: (a) Linear-tree structure of a quantum circuit using a single intermediate
measurement on qubit 1. Depending on the result, the left or right subtree is executed.
(b) Quantum circuit representation of (a). By the way, with angle parameter 6 = 0.0749
this quantum circuit computes OR of a black-box Boolean one-bit function f,i.e. f(0)V
f(1), on output-qubit 0 with error probability 0.1. This is better than any classical
algorithm with a single function evaluation.

45

3 Genetic Programming Fundamentals

start
Op
@ next
node ?
end

(a) (b)

Figure 3.5: (a) Structure of a graph individual in the PADO system. Start and end node
are marked. (b) Structure of a single node. When executed a node performs a certain
function or operation (Op) and determines the node to be executed next.

3.2.3 Graph and Linear-Graph GP

Although graph-based GP structures are not part of this thesis and are not used in pre-
vious publications to evolve quantum circuits, graph and linear-graph GP are mentioned
here for the sake of completeness. Since there are many different representatives of graph
structures, a standard example of graph GP is discussed here: the PADO system by
Teller and Veloso [147]. Graph edges are directed and define the program flow between
processing nodes. The program execution starts at a certain distinguished node. At
each node operations are performed reading the required operands from and writing the
results back to a stack. Aside from the stack PADO also uses a globally accessible in-
dexed memory. The next node to execute is determined by the branching function of the
node. Reaching a special end node or meeting other certain conditions concludes the ex-
ecution. In PADO, loops and recursions are possible preventing termination. Therefore
the runtime of the program execution is limited. The structure of the PADO system is
visualized in Figure 3.5.

Linear-graph GP [83] is a further development of linear-tree GP. The structure of a
node in linear-graph GP is the same as in linear-tree GP: it consists of a linear program
part and a branching function. However, the overall program structure is a graph which
makes program flow more natural in the sense of computer programs hand-written in
higher level languages.

The choice of an appropriate program structure in GP seems to be essential to the
success and the performance of evolution. Differences in structure may lead to significant
differences in the speed of the evolutionary process. Furthermore, the program structure
affects the expressiveness and readability of code.

46

3.3 Genetic Operators

3.3 Genetic Operators

During the evolutionary process genetic operators ensure changes in the individual’s
genome and as a result improve the overall fitness of the population.

The three fundamental GP genetic operators are mutation, recombination (crossover)
and replication. The replication operator simply copies the individual. The copy is placed
in the population.

3.3.1 Mutation

This operator is applied to a single individual changing its genome randomly at one or
more positions. There are many different types of mutation for each kind of program
structure. In tree GP one type of mutation operator selects a node in the tree randomly
and replaces it by a newly generated node. Another type of mutation replaces the entire
subtree rooted at the selected node by a randomly created subtree. In linear GP a single
instruction from a given individual is selected and its operands and/or arguments are
changed. Mutations on graph-based individuals are even more diverse. Besides changes
in the operation of a single node its branching function (and therefore the edges of the
node) can be altered.

In the case of quantum circuit individuals, a single (one-step) mutation can change
for instance the type of a quantum gate or the qubit the gate is applied to or it can
replace the entire gate by a new gate. Further mutation operators on quantum circuit
individuals are conceivable.

3.3.2 Recombination

In the (sexual) recombination or crossover operation, parental individuals reproduce by
exchanging parts of their genomes. The resulting individuals are the children. The
realization of the crossover operator depends on the structure of the individuals.

Any kind of recombination starts with the selection of the two individuals (the parents),
participating in the crossover. The next steps in tree-based crossover are to select ran-
domly a subtree in each parent and to swap these subtrees between the two individuals,
resulting in two new individuals. In linear crossover, random sequences of instructions
are mutually replaced in both individuals creating the two offspring. Tree-based crossover
is visualized in Figure 3.6, linear crossover is described in Figure 3.7. Graph crossover
is of course possible, but it is not treated here. In many GP systems crossover is the
predominant genetic operation, i.e. it is performed with high probability.

47

3 Genetic Programming Fundamentals

Parent 1 Parent 2

Child 1 Child 2

Figure 3.6: Tree-based crossover. The children are created from the parents by exchang-
ing the colored subtrees.

Parents Children

()) (G

)

)

N—————————

Figure 3.7: Linear crossover. The children are created from the parents by exchanging
the colored sequences.

48

3.4 Fitness and Selection

3.4 Fitness and Selection

The fitness function assigns every individual a certain value, the fitness value or fitness
for short. This is a measure of the quality of a GP individual, i. e. of how well it performs
a given task or solves a given problem, respectively. Depending on the fitness of the
GP individuals, the selection algorithm decides whether an individual remains in the
population or not and determines which individuals of the population are subject to the
genetic operators. The selection mechanism forces evolution by competition between
individuals in a population.

3.4.1 Fitness Functions

A fitness function is very problem specific. It is calculated on a training set of fitness
cases {(x;,y;)}; where x; is the input and y; is the corresponding desired output of fitness
case 7. Let y} be the output of a given GP individual on input x;. Then, the fitness of
the individual is calculated on both, y; and y,. For instance, a simple fitness function for
a training set of n fitness cases is

n
> lyi = will
i=1

Often, the fitness is calculated on the basis of further criteria such as the program length
of GP individuals. Then the fitness function is designated as multiobjective.

Fitness functions are continuous if smaller (larger) improvements in an individual’s
performance are related to smaller (larger) improvements in the fitness. Usually, fitness
functions are also standardized and normalized. The first property refers to fitness func-
tions in which the fitness value zero is assigned to the fittest individual. The second
property means, that the fitness value is always between zero and one.

3.4.2 Selection Algorithms

In general, selection is the result of a competition between individuals in a population.
The better the individual’s fitness in comparison with all other individuals in the popu-
lation, the higher is its selection probability.

Most selection algorithms are embedded in one of the following two main selection
schemes: (i) the mating selection, also called the GA scenario, and (ii) the overproduction
selection, also called the ES scenario. In the mating selection, parental individuals are
selected from the given population to build the basis of a new generation which is filled
with their offspring. The overproduction selection chooses randomly parents from a
given population to generate a set of offspring that is usually larger than the original
population. By selection, the pool of offspring and (depending on the implementation)
even their parents are reduced to the original size resulting in a new generation. Here,

49

3 Genetic Programming Fundamentals

competition results from an overproduction of individuals and the selection pressure
depends on the ratio of the number of offspring (plus parents) to the population size. In
both scenarios the result is a new generation, i.e. a complete population. That is why
a selection algorithm following one of these schemes is called generational. The most
popular generational selection algorithms are

e fitness-proportional selection (GA scenario),
e (1)) selection (ES scenario), and
e ranking selection (in GA and ES scenario conceivable).

In fitness-proportional selection — a mating selection method — each individual ¢ (with
fitness f;) is given a probability p; = ¢;/ >, ¢; with ¢; = 1 — f; for being able to pass
offspring into the next generation.

The (u,) selection is due to Schwefel [131] and others and originally used in ES-
algorithms.* p parents are allowed to breed X offspring, out of which the best u are used
as parents for the next generation. A variant of that method is the (u + A) selection
[124], where offspring and parents participate in the selection. Both methods belong to
the overproduction selections.

In ranking selection the individuals of a population are sorted according to their fitness.
Then, the selection probability is assigned to an individual as a function of its rank.

Another important selection mechanism, tournament selection, does not belong to
generational selection algorithms. Instead, it is based on competition within only a
(usually small) subset of the population. The number of individuals taking part in
the tournament is selected randomly according to the tournament size. In the smallest
possible tournament, two individuals compete. The better individuals (the winners) are
subject to genetic operators and replace the losers of the tournament. A higher selection
preasure can be adjusted by a larger tournament size.

3.5 Basic GP Algorithms: Generational vs. Steady-State

In principle there are two basic GP algorithms implementing the evolutionary loop: a
steady-state approach and a generational approach. Both terms relate to the selection
algorithm used. Generational GP works explicitly on generations and employs a gen-
erational selection algorithm. Generations are well-defined by the number of executed
evolution cycles, which consists of the core steps: fitness evaluation, selection, and vari-
ation. At the end of each cycle a new generation is created from its predecessor genera-
tion and replaces the older one. Steady-state GP, however, causes a continuous change
within a population. It is based on tournament selection and waives explicit generations.

“To be more precise, this method originates in population genetics under the term truncation selection,
where it was used by biologists since the early 1970s.

50

3.6 Introns and Neutrality

Nevertheless, the progress in the evolutionary process is measured also in generations.
Steady-state generations are usually the intervals in which the fitness is evaluated for the
same number of individuals as the population size.

The Figures 3.8(a) and 3.8(b) illustrate the features of generational and steady-state
GP algorithms. The grey boxes mark the part of the algorithms in which a (completely
or partially) new population is created. It comprises especially the selection and the
variation mechanism.

3.6 Introns and Neutrality

Those parts of a program which are semantically redundant, that is, which do not directly
have a meaning and an effect on the program’s output, are designated as introns. An
example of an intron is the instruction z = = or the identity function, respectively. In
biology introns are well-known as regions on a gene (in eucaryotic DNA), which do not
code for proteins and have no functions at all regarding the regulation of genes. Whether
introns have further hidden functions is unknown.

Despite their uselessness for the single individual and its fitness, introns seem to be
of great importance for the evolutionary process as they allow for neutral mutations:
Inserting or removing introns has no effect, or rather has a neutral effect on the behavior
of the individual. However, in view of evolution this seems to be far from neutrality. It can
be shown that introns have a beneficial effect on the global and structural protection of
exons which are the working code affecting the fitness of an individual, against destructive
crossover [114].

Another source for neutrality are functional redundancies, i.e., two or more different
genotypes mapping to the same phenotype. An example of redundancy in quantum
programs is given in Figure 2.12, where two functionally identical quantum circuits are
illustrated. A genetic transformation from one genotype to another, both representing
the same phenotype, is neutral.

Another form of neutrality is explored in [170]. In contrast to the above described
implicit neutrality, explicit neutrality is provided by an additional structure, which allows
activation and deactivation of certain parts or “genes” of the program. Genetic changes
on inactive genes have neutral effect, while genetic changes on active genes are exposed
to the selection mechanism. Results of the evolution of classical circuits solving a certain
Boolean benchmark problem (even-3-parity) indicate a positive effect of neutrality on
evolvability.

ol

3 Genetic Programming Fundamentals

generate
initial

generate
initial

population population

Y

choose random
subset (the competitors)

evaluate fitness
of each individual

output —
best Are termination

individual criteria met ?

evaluate fitness of
each competitor

no

Y
= select individual(s)

select winners

Y

perform genetic operations
on selected individuals

Y

perform genetic operations
on selected individual(s)

replace losers with the
results of the previous step

insert result(s) into
the new population

Is population fully
no| populated ?

\i

Are termination
criteria met ?

yes

L output
replace old with best
new population individual

(a) (b)

Figure 3.8: Schematic view of (a) the generational GP algorithm and (b) the steady-state
GP algorithm.

92

4 Quantum Algorithms and their
Classification

Do not take the lecture too
seriously. . . just relax and enjoy
it. 1 am going to tell you what
nature behaves like. If you will
simply admit that maybe she
does behave like this, you will
find her a delightful, entrancing
thing. Do not keep saying to
yourself “But how can it be like
that?” because you will get [...]
into a blind alley from which
nobody has yet escaped. Nobody
knows how it can be like that.

Richard P. Feynman (1918-1988)

Quantum algorithms consist of a fixed number of computational steps, represented by
quantum gates which are comparable to single, elementary instructions in classical com-
puter programming. More complex programming instructions and constructs known
from classical programming languages like while-loops which lead to a variable number
of steps, are not implementable in the (non-uniform) quantum circuit model." Hybrid
algorithms remedy this deficiency. They are made of a classical program with quantum
subprograms, built by elementary quantum operations. Most of the quantum algorithms
(relevant in practice) are hybrid. However, this chapter focuses mainly on quantum
subprograms.

It is the aim of this chapter to provide a summary of quantum algorithms which pro-
vide an advantage over known classical algorithms and which are based on the quantum
circuit model of computation. Although there are not many different quantum algo-
rithms or quantum subprograms respectively, there is no claim to completeness because
not all improvements and implementations by means of using other gate sets are men-
tioned. Furthermore, one must distinguish between the quantum algorithms and the

'In uniform computation models like the Quantum Turing Machine loops are implementable [17].

93

4 Quantum Algorithms and their Classification

problems they are applied to since some algorithms (subprograms) solve more than just
one problem or even class of problems. Finally, it cannot be ruled out that there are
some more insignificant? quantum algorithms which escaped thorough investigation as
it stands at the mid-year of 2003. It should be noted that all these quantum algorithms
were exclusively developed by hand.

Since there exist only a few quantum algorithms, classifying them may tend to be
arbitrary. However, there are characteristics which can lead to partitions of quantum
algorithms. One possible classification depends on the technique that the algorithms
use: The first class consists of all algorithms which are based on determining a common
property of all the output values. A representative of this class is Shor’s algorithm, where
the period of the function f(x) = a®mod N is calculated®. The second class contains
those algorithms which use amplitude amplification, like Grover’s algorithm. The third
class contains algorithms which derive benefit from both methods characterizing the
previous two groups, such as the approximate counting algorithm [24].

In a slightly different way, Nielsen and Chuang divide quantum algorithms into three
classes. The first class consists of those algorithms based on quantum versions of the
Fourier transform. Examples are the Deutsch-Jozsa algorithm as well as Shor’s algo-
rithms for factoring and the discrete logarithm. Most of these problems are instances
of the hidden subgroup problem in group theory. The second class of quantum algo-
rithms are the quantum search algorithms. At last, the third class of algorithms includes
quantum simulations, i.e. algorithms, which simulate a quantum physical system on a
quantum computer.

A classification based on the programming technique seems tempting. However, the
preparation of an equally weighted superposition which can also be regarded as an ap-
plication of the quantum Fourier transform (QFT), seems to be an imperative step in
any quantum algorithm and cannot serve as a distinguishing mark. Whether this can be
interpreted as a Fourier transform depends on the problem. The best example is Grover’s
algorithm, where there are no reasons to read the superpositioning as a QFT. Deutsch’s
problem, however, can also be regarded as a group theoretic hidden subgroup problem.
Therefore, the interpretation of the superposition step as a QFT might be appropriate.

Amplitude amplification means to increase the amplitudes of solution states while
decreasing the amplitudes of non-solution states by using a generalization of Grover’s
iteration. This characterizes many quantum search algorithms. Hogg’s algorithm for
structured combinatorial search problems, such as highly constrained k-SAT, is an ex-
ception, since it is also a quantum search algorithm, but does not use Grover’s technique.
Instead, its power seems to come from a clever exploitation of the hidden problem struc-
ture. The algorithm is described in more detail in Section 4.2.5. Another algorithm,

Insignificant in this context means that these quantum algorithms do not have such a big impact like
Shor’s and Grover’s and, therefore did not attract much attention.

3The period of a function f:0,1" — 0,1™ is the value r, 1 < r < 2", with f(x) = f(x 4 rm), where
m is an integer, such that z,z +rm € 0,1,...,2" — 1.

o4

4.1 The Quantum Fourier Transform and Algorithms Based on It

which does not seem to be integrable into these classifications mentioned above is the
route finding algorithm by [106]. It finds routes between specified start and end nodes
in an undirected, weighted graph which contains no edges, connecting a node to itself,
and no multiple edges between the same two nodes. It is mainly based on the idea of
superpositional graphs and the realization of a special quantum AND operator, which is
iteratively applied until an entangled state is generated, which, when measured, collapses
to a state representing a path from start to end. A detailed description is omitted.

In Section 4.1 the quantum Fourier transform and the quantum algorithms mainly
based on it are represented. Quantum search algorithms, namely Grover’s algorithm,
other algorithms based on it, including the approximate counting algorithm, and Hogg’s
algorithm are explained in Section 4.2. Quantum mechanical simulations are briefly
discussed in Section 4.3. Finally, Section 4.4 sums up some known limits of quantum
computing.

4.1 The Quantum Fourier Transform and Algorithms Based
on It

4.1.1 From DFT to QFT

The classical discrete Fourier transform (DFT) on N input values z;, 0 < j < N —1, is
defined as

N-1
yk:_ zjwif 0<k<N -1, (4.1)
VN j=0
with wy := e*™/N denoting the N*" root of unity. Its inverse transformation is xT; =
—jk
\ﬁzk 0 yk;WN] 4

Considering the different notations the quantum Fourier transform (QFT) corresponds
exactly to the classical DFT in Equation 4.1. Here, the QFT is defined® to be the linear
operator with the following action on an arbitrary n-qubit state:

N-1 o Nl
Z $J|J Z Yk k)
j=0 k=0

*In some quotations the coefficient is 1/N instead of 1/v/N. In this case, the inverse transformation
has no factor 1/\/N If the z; are values of a function f at some sampling points, it is often written
f; instead of x; and fk instead of yy.

°In literature the definition of the Fourier transform is not consistent. The DFT and its inverse trans-
form are interchanged. In most original papers (e.g. [132]) the QFT is defined as above. However,
both the classical Fourier transform and its inverse transform can be deduced from the general form
of a Fourier transform (Equation 4.3).

95

4 Quantum Algorithms and their Classification

l71) Ry P--{RTHH R, } |0)-+e27i0-n |1)
|52) l HE ARy oHRy_1F |0)+e270-dn—17n|1)

|jn—1> R2 |O>+62ﬂi0‘j2“‘j" ‘1>
|]n> |O>+62”0‘j1“‘j” ‘1>

Figure 4.1: A quantum circuit for QFT.

with N = 2". The y; are the Fourier transforms of the amplitudes x; as defined in
Equation 4.1. In product representation, the QFT looks like

(10) + €m0 [1))(|0) + 2mOIn-1dn[1)) - - - (0) 4 €202 In 1))

7 (4.2)

|j1, cee a]n> -
This leads to an efficient circuit for the QFT [107] which is shown in Figure 4.1. The
gate Ry corresponds to the phase gate PH (27/2%) (cf. Section 2.4.1). At the end of the
circuit, swap gates reverse the order of the qubits to obtain the desired output. The
circuit uses n(n — 1)/2 Hadamard and conditional phase gates and at most n/2 swap
gates in addition. Therefore, this n-qubit QFT circuit has a ©(n?) = ©(log? N) runtime.
Of course, QFT~! can be performed in ©(n?) steps, too. In contrast, the best classical
algorithms (like the Fast Fourier Transform) need ©(n2") classical gates for computing
the DFT on 2" elements. That is, the speedup of the QFT compared with the best
classical algorithms is exponential. Note that the size of the circuit can be reduced to
O(npoly(logn)) by neglecting the phase shifts of the first few bits as this amounts only
to an “acceptable” small error. The best known approximate quantum Fourier transform,
described in [66], requires only O(nlogn).

Nevertheless, there are two major problems concerning the use of the QFT: First, it is
not known how to efficiently prepare any original state to be Fourier transformed, and
second, the Fourier transformed amplitudes cannot be directly accessed by measurement.

4.1.2 Phase Estimation

An important application of the QFT is the phase estimation on which in turn many
other applications are based. Given a unitary operator U with eigenvector (or eigenstate)
|u), the phase estimation problem is to estimate the value ¢ of the eigenvalue >
(Ulu) = €2™®|u)). To perform the estimation it is assumed that black-boxes (so-called
oracles) are available which prepare the state |u) and perform the controlled-U 2! operation
for integers [> 0. Figure 4.2 shows the phase estimation procedure. It works on two
registers, a n-qubit register initially in state |0) (n depends on the number of digits of

56

4.1 The Quantum Fourier Transform and Algorithms Based on It

1)

0) = B - QFT™! — |9)

u) v o [loz2 [(o Jus)

UJ

Figure 4.2: A quantum circuit for the phase estimation procedure.

accuracy in the estimate for ¢ and the probability that the procedure is successful) and
a register in the initial state |u). The circuit begins by applying the n-qubit Hadamard
transform H®™ to the first quantum register, followed by the application of controlled
U-operations on the second register, with U raised to successive powers of two. This
sequence maps

2n—1 2n—1
1 - 1 Tidh | -
Ol — 5275 2 V) = g 3).
j=0 j=0

With ¢ = 0.¢; ... ¢, this state may be rewritten in product form which is equivalent
to the product representation (Equation 4.2). If ¢ is exactly expressed in n qubits
the application of the inverse QFT to the first qubit register leads to the state |¢) =
|p1 ... 0n), or a good estimator |¢~)> otherwise. Computing QFT™! can be seen as the
actual phase estimation step.

A final measurement of the first register yields to the result ¢ or qE respectively. To
estimate ¢ with k-bit accuracy and probability of success at least 1 — €, choose n =

k + [log(2 + 2%)} This algorithm, summarized below, computes the approximation ¢,
to ¢, using O(n?) operations and one query to the controlled-U’ oracle gate.

Even if the eigenvector |u) is unknown and cannot be prepared, running the phase
estimation algorithm on an arbitrary state |¢)) = > c,|u) (written in terms of eigenstates
|u)) yields a state), cu]<b~u>\u>, where ¢, is a good approximation to ¢,. Assuming that
n is chosen as specified above, the probability for measuring ¢, with k-bit accuracy is at
least |c,|2(1 — €).

o7

4 Quantum Algorithms and their Classification

Quantum Algorithm 4.1.1: Quantum phase estimation

1. Create the equally weighted superposition:

2" -1

o) T2 s S L
=0

2. Apply the quantum oracle:

2" -1 2n—1
1

vio 1 Rp— mig|.;
L S) = o S)
=0 =0

3. Calculate the inverse quantum Fourier transform and measure the first register:

QFT— ! ~ My ~

— [d)|u) — ¢

4.1.3 Order-Finding and Other Applications

The order-finding problem reads as follows: for z, N € N, z < N, ged(z,N) = 1,
determine the least » € N, such that " = 1mod N. It is believed to be a hard problem
on classical computers. Let n = [log N| be the number of bits needed to specify N. The
quantum algorithm for order-finding is just the phase estimation algorithm applied to
the unitary operator Uly) = |xry mod N) with y € {0,1}" and |u) = |1), a superposition
of eigenstates of U (for N <y < 2" — 1, define zy mod N := y).

The entire sequence of controlled-U 2 operations can be implemented efficiently using
modular exponentiation: It is

2U%ly) = U Uy
= 12" 7 x . x 222)ymod N) = |2)|z*ymod N) .

In a first step modular multiplication is used to compute successively (by squaring)
2% mod N from 22~ for all 7=1...t—1. In a second step z*mod N is calculated by
multiplying the ¢ terms (zZ' 2 mod N)... (z%2’ mod N). On the basis of this proce-
dure the construction of the quantum circuit computing U? : |2)|y) — |2)|x*y mod N)
is straightforward, using O(n?) gates in total.

To perform the phase estimation algorithm, an eigenstate of U with a nontrivial eigen-
value or a superposition of such eigenstates has to be prepared. The eigenstates of U

o8

4.1 The Quantum Fourier Transform and Algorithms Based on It

are
lus) = w**|zF mod N,
\/_Z

for 0 < s <r—1. Since 1/\/722;(1) lus) = |1) it is sufficient to choose |u) = |1).

Now, applying the phase estimation algorithm on ¢ = 2n+ 1+ [log(2+1/2¢)| qubits in
the first register and a second quantum register prepared to |1) leads with a probability
of at least (1 —¢€)/r to an estimate of the phase ¢ ~ s/r with 2n + 1 bits accuracy. From
this result, the order r can be calculated classically using an algorithm, known as the
continued fraction expansion. It efficiently computes the nearest fraction of two bounded
integers to ¢, i.e. two integers ', ¢ with no common factor, such that s'/r' = s/r.
Under certain conditions this classical algorithm can fail, but there are other methods to
circumvent this problem [107].

An application of the order-finding quantum subroutine is Shor’s factorization algo-
rithm [132, 133]. Other problems which can be solved using the order-finding algorithm
are period-finding and the discrete logarithm problem. These and some other problems
can be considered in a more general context, which will be explained in the following two
subsections.

Quantum Algorithm 4.1.2: Order-finding

1. Create superposition:
2t—1

2. Apply the black-box oracle U, y : |7)|k) — |27k mod N), with z co-prime to N:

I
-

2t r—12t—1
UzN

) 1 27rzs r
= 57 7)|27 mod N) ~ 2t/2\/_zz 37 15) us)

i s=0 j=0

I
=)

3. Calculate the inverse QFT of the first register and measure this:

-1

Z [s/r)lus) = [s/7)

=0

99

4 Quantum Algorithms and their Classification

4.1.4 Fourier Transform on Arbitrary Groups

The more general definition of the Fourier transform FT g on an arbitrary group G needs
some background in algebra and in representation theory over finite groups. See chapter
2 in [69] or appendix 2 in [107] for a brief introduction in the required mathematics.
Let G be a finite group of order N and f : G — C. The Fourier transform of f at the
irreducible representation® p of G (denoted f(p)) is defined to be the d, x d, matrix

F0) =% 5 sonto). (4.3

geG
e is designated as the Fourier transform of f. Thus,
the Fourier transform maps f into |C§' | matrices of varying dimensions which have totally
>0 d? = |G| entries. This means that the |G| complex numbers (f(g))gec are mapped
into |G| complex numbers organized into matrices. Furthermore, the Fourier transform
is linear in f (f?i—\fg(p) = f1(p) + fa(p)) and f(p) is unitary for all p € G.

If G is a finite Abelian group, all irreducible representations have dimension one. Thus,
the representations correspond to the |G| (irreducible) characters x : G — C* of G. It is
(G, +) ~ (@, -). This is quite useful to simplify the notation by choosing an isomorphism
g Xg- R

With the operation (x1 - x2)(9) = x1(9) - x2(g) the set G of all characters of G is
an Abelian group, called the dual group of G. Any value x(g) is a |G| root of unity,
i.e. x(¢9)!¢! = 1. For instance, if G = Zy then the group of characters is the set
{x(j) = wg\f]j, k=0...N — 1} and the Fourier transform corresponds to the classical
DFT. For G = Zj the Fourier transform FTzy corresponds to the Hadamard transform
H®"

By the structure theorem of finite Abelian groups, G is isomorphic to products of cyclic
groups Z,, of prime power order with addition modulo p; being the group operation, i.e.
G >~ Zp, X ... X Lp,,. Any g € G can be written equivalently as (gi,...,gm), Where
9i € Zy,. This naturally leads” to the description of the characters x© on G as the
product of the characters x%»i on Lo, - 1t is

The collection of matrices (f(p))

m

m
Zp, N , o
X5 (9) = [(gi) = [[e¥moet/er = e2mi(igihia)

=1 i=1

A representation p of a finite group G is a homomorphism p : G — GL(V), where V is a C-vector
space. The dimension of V is called the dimension of the representation p, denoted d,. p is said to
be irreducible, if no other subspaces W are G-invariant, i.e. p(¢)W C W, Vg € G, except 0 and V.
Up to isomorphism, a finite group has a finite number of irreducible representations. G denotes such
a set of irreducible representations, which is a complete system of representatives of all isomorphism
classes.

"The following mapping is used: (g1,...,9m) — [[I", X%:i (9:)

60

4.1 The Quantum Fourier Transform and Algorithms Based on It

with h = (h1,...hy) and g; := N/p;. Note that x,(g) = x4(h).
With Equation 4.3, the Fourier transform of a function f : G — C may be written as

Zf Xg

gEG

with h € GG. Using the conventional notation, the QFT on an Abelian group G acts on
the basis states as follows:

QFTg|h) = ng

gEG

4.1.5 The Hidden Subgroup Problem

Nearly all known problems that have a quantum algorithm which provides an expo-
nential speedup over the best known classical algorithm can be formulated as a hidden
subgroup problem (HSP). Problem instances are for example order-finding, period-finding
and discrete logarithm [80, 105|. The HSP is:

Let G be a finitely generated group, H < G a subgroup, X a finite set and
f: G — X a function such that f is constant on cosets § = gH € G/H and
takes distinct values on distinct cosets, i.e. f(g1) # f(g2) for g1 # g2. Find
a generating set for H!

Define H° := {g € G : x4(h) = 1, Vh € H}, also called the annihilator group of H.
Note that H° is equivalent to the perp subgroup H+ = {x : H C ker x}, which in turn
is isomorphic to the dual of G/H. The algorithm for solving the HSP uses the following
two properties of the Fourier transform over G [67, 158|:

e The FT of the convolution x of two vectors is the pointwise product - of the FT of
each vector:

QFT()_ alk) Zﬂlu il [QFT Zauk QFT(ZW»] (4.4)
k l

e The superposition state, uniform on H, is mapped to H®:
QFT \H
T 2 g 2 1R (45)
heH keHo

61

4 Quantum Algorithms and their Classification

Using this, it follows for a coset state 1/y/|H | cp |90h):
ﬁ > nen l9oh) = |go) * ﬁ 2onem M)

QFTg, Egs. 4.4,4.5 H|
—

H
| et xoal9) - S 19| = /T S xa(anl
So, the QFT takes a coset state to the annihilator group state of the corresponding
subgroup where the coset is encoded in the phase of the basis vectors.

Assume that GG is Abelian. A hybrid algorithm to solve the Abelian HSP consists of
the following quantum subroutine:

Quantum Algorithm 4.1.3: Abelian HSP

1. Create a random coset state:

0y QFTee! By
10)[0) \/‘?ZLCJ \/’?Z|9|f Z;{Igo

geG gelG

2. Fourier sample the coset state:

QFTG
Z\o \/ ZXk90’k>—>k€Ho
VIH| g ‘G‘ keH®

M; denotes the measurement of the i-th quantum register. The process of computing
the Fourier transform over a group G and measuring subsequently is also called Fourier
sampling. After applying Ms, it is sufficient to observe the first register. The last mea-

surement results in one out of |G|/|H| elements k; € H® with probability H—g“ Repeating

this process t = poly(log|G|) times [67] leads to a set of elements which describe the
xi € H'. Thus, H can be classically computed as the intersection of the kernels of y;:
H = ﬂf;(l) ker ;. The efficient quantum circuit for the Abelian HSP is shown in Figure
4.3.

Generalizations of the Abelian HSP quantum algorithm to the non-Abelian case have
been attempted by many authors [126, 49, 50, 67, 69, 59, 79|, unfortunately only with
limited success. Up to now, the problem is still open, except for only a few particular
instances.

4.1.6 A coarse outline on QFT-based algorithms

Table 4.1 shows an overview on problems efficiently solvable by means of quantum al-
gorithms based on the QFT. The following explanations and annotations refer to single
problems given below in the table.

62

4.1 The Quantum Fourier Transform and Algorithms Based on It

‘0)7/—QFTG I QFTGM M —

0) A Uy | M

Figure 4.3: A quantum circuit for the Abelian HSP.

Abelian group stabilizer problem: Let G be an Abelian group acting on a set X. Find
the stabilizer G, := {g € Glg -z =z} for z € X.

Decomposing finite Abelian groups: Any finite Abelian group G is isomorphic to a
product of cyclic groups. Find such a decomposition. For many groups no classical
algorithm is known which performs this task efficiently.

The quantum algorithm described in [30] mainly uses the quantum algorithm for
HSP to solve a partial problem. The rest is done classically.

An application of this algorithm is the efficient computing of class numbers (as-
suming the Generalized Riemann Hypothesis) [162].

Deutsch’s problem: Determine whether a black-box binary function f: {0,1} — {0,1}
is constant (or balanced) (cf. Section 2.8.1).

Hidden linear function problem: Let f : Z*¥ — S be a function for an arbitrary range S
with f(z1,...,2) = h(z1 + agwe + ... + agxy) for a function h with period ¢ and
a; € Z. Recover the values of all the a;(mod ¢) from an oracle for f. This problem
is an instance of the HSP.

Inner product problem (Bernstein-Vazirani): For a € {0,1}", let f, : {0,1}" — {0,1}
be defined by f,(z) = a - z. Calculate a! This problem is not directly an instance
of the HSP. Nevertheless, Fourier sampling helps finding a solution, too.

Orders of finite solvable groups: The problem is described in [162].

Pell's Equation: Given a positive non-square integer d, Pell’s equation is 2> — dy? = 1.
Find integer solutions. The quantum algorithm developed in [68] calculates the
regulator of the ring Z[\/E], which is a closely related problem. The necessary
background in computational algebraic number theory can be found in [32]. The
quantum step in this algorithm is a procedure to efficiently approximate the irra-
tional period S of a function in time polynomial in In S.

Principal ideal problem: Given an ideal I, determine (if existing) an o € Q(v/d) such
that I = aZ[\/E]. The algorithm reduces to a discrete log type problem.

63

4 Quantum Algorithms and their Classification

Shifted Legendre symbol problem (SLSP): Given a function fs; and an odd prime p
such that fs(z) = (“Tfs), for all x € Z,, find s! Variants of this problem are the

shifted Jacobi symbol problem and the shifted version of the quadratic character
over finite fields Fy (shifted quadratic character problem). The classical complexities
of these problems are unknown.

Simon’s problem: Let a € {0,1}" and f: {0,1}" — {0,1}" a function with f(z @ a) =
f(z) (&: bitwise xor). Calculate a! Simon’s problem was the first that was shown
to have an expected polynomial time quantum algorithm but no polynomial time
randomized algorithm [134]. Brassard and Hoyer devised in [23] an exact quantum
polynomial-time algorithm to solve this problem.®

Two other transformations which can be recovered from the DFT are the discrete
cosine transformation and the discrete sine transformation. In [86] Klappenecker and
Rétteler show that both transformations of size N x N and types I-IV can be realized
in O(log? N) operations on a quantum computer instead of O(Nlog N) on a classical
computer. Another class of unitary transforms, the wavelet transforms, are efficiently
implementable on a quantum computer, as shown in [52]. For a certain wavelet transform,
a quantum algorithm is designed using the QFT.

4.2 Quantum Search Algorithms

Search problems are well-known and intensively investigated in computer science. Gen-
erally spoken, a search problem is to find one or more elements in a (finite or infinite,
structured or unstructured) search space, which meet certain properties.

Suppose, a large database contains N > 1 items in a random order. On a classical
computer it takes O(N) comparisons to determine the item searched for. However,
there is a quantum search algorithm, also called Grover’s algorithm, which requires only
O(V/N) operations. Grover’s algorithm is optimal for unstructured search problems.

Also in some cases of structured search spaces quantum algorithms can do better than
classical as demonstrated by Hogg’s algorithm for 1-SAT and highly constrained k-SAT.

4.2.1 Grover's Algorithm

It is assumed that N = 2". The database is represented by a function f which takes
as input an integer x, 0 < x < N — 1 (the database index), with f(z) = 1 if z is a
solution to the search problem and f(x) = 0 otherwise. Let £ be the set of solutions,
ie, L = {z|f(x) = 1,z € {0,...,N — 1}} and M = |L| the number of solutions.

8For that purpose they used a generalized version of the Grover operator (see Section 4.2.1)

64

4.2 Quantum Search Algorithms

| Problem | Runtime | References

(discrete) QFT O(n?) or [35, 132]
O(nlogn) resp. [66]

Deutsch' 1 oracle query [43, 31]

Deutsch-Jozsal 1 oracle query [46, 31]

Bernstein-Vazirani 1 oracle query [17]

Simon O(n) repet. with [134, 135, 23]
1 oracle query each

Period-finding’ 1 oracle query, [107]

f with f(z+7r) = f(z), O(n?) operations

z,r € Ng, 0 < r <27,

a periodic function, output r!

Phase estimation O(n?) + 1 oracle query [107]

Order-finding’ O(n3) [132, 133]

Factoring! O(n3) operations, [132]
O(n?lognloglogn) [133]

Discrete logarithm polyn. time QA [133]

given: a,b = a®mod N;

determine s

Hidden linear function problems’ | polyn. time QA [19]

Abelian stabilizer! polyn. time QA [85]

Shifted Legendre symbol problem | polyn. time QA [153]

and variants

Computing orders of polyn. time QA [162, 79]

finite solvable groups

Decomposing Finite polyn. time QA [30]

Abelian Groups

Pell’s Equation & polyn. time QA [68]

Principal Ideal Problem

Table 4.1: The quantum Fourier transform and algorithms based on it. Problems marked
with T are special instances of the HSP. The parameter 7 is the input length of the given

problem.

65

4 Quantum Algorithms and their Classification

Furthermore, let be

1 1
|04>:\/N7_7Mx¢2£|$>a |5>:\/—MZ|$>

zel

N-1
9) =\ Tl | 9 = = X).
x=0

This algorithm works on two quantum registers |z)|y), where |z) is the index register
and |y) is a single ancilla qubit. Let U, be the black-box which computes f. Then,
applied to the state 1/v/2[z)(]0) — |1)), the oracle “marks” all solutions by shifting the
phase of each solution (see Section 2.8: computing a function into the phase). Ignoring
the single qubit register, the action of U, may be written as

and

) — (1) @)

or
Ua =T —=2[B){B].

Geometrically, U, induces a reflection about the vector |a) in the plane defined by |a)
and |3). Another important operation, denoted with Uy, is the so-called inversion about
the mean:

Uy = H"(2/0)(0] — I)H?" = 2|¢)(¢] — I . (4.6)
Applying Uy to a general state |a) = Y, ay|k) leads to

Ugla) = 2[s)(sla) —la) =2 Alk) = > arlk) =) (24— ay)[k)
k k

k

using that (s|a) = \/% S ar = V2"A, where A = 5= 3", ay, is the mean of the ampli-
tude. Thus, the amplitudes are transformed as Uy : ar, — 24 — ay, i.e., the coefficient
of |k) is reflected about the mean value of the amplitude. In other words, Uy is a reflec-
tion about the vector ¢ in the plane spanned by |«) and |3) The combination of both
operators U, and Uy leads to the Grover operator?, defined to be

U = UsUs = —H"(2(0)(0] —)HE"(2|8)(8] - I) (4.7)

(see Figure 4.4). Thus, the product of the two reflections!'® U, and Uy is a rotation in
the two-dimensional subspace spanned by |a) and |3) rotating the space by an angle 0,
defined by sin@/2 = \/M /N, as shown in Figure 4.5.

°In many papers the Grover operator is called Grover iteration. This is misleading, as the iterated
application of the Grover operator is in fact the iteration and applying Ug is just a single step within
it.

'0This interpretation of the Grover operator was first pointed out by [4].

66

4.2 Quantum Search Algorithms

U, Uyp
nqubits | L[]0y —]0)]
|y —|z) — (—1)f(x)|x> H®" L |z) — —|@) [H®" Ug|x)
T T VYz>0 [

oracle «A

workspace

Figure 4.4: Quantum circuit for the Grover operator.

18)

/) 19)
— 0/2 o
_0/2 '-:; [

Figure 4.5: Geometric visualization of a single step in the Grover iteration.

Repeating the Grover operator T' ~ 7/4\/N/M = O(y/N/M) times rotates the initial
system state ¢ close to |3). Observation of the state in the computational basis yields
a solution to the search problem with probability at least p > 1/2. When M < N this
probability is at least 1-M /N, that is nearly 1. Figure 4.6 illustrates the entire quantum
search algorithm. It should be mentioned that the quantum search algorithm is optimal,
i.e. no quantum algorithm can perform the task of searching N items using fewer than
Q(v/N) accesses to the search oracle [21, 14].

A concluding note: In the basis {|«),|3)} the Grover operator may also be written as

cosf) —sinf
UG_(sinH cos9>

where 0 < 0 < 7/2, assuming without limitation that M < N/2. Its eigenvalues are
e If it is not known whether M < N/2, this can be achieved for certain by adding a
single qubit to the search index, doubling the number of items to be searched to 2N. A
new augmented oracle ensures that only those items are marked which are solutions and
whose extra bit is set to zero.

67

4 Quantum Algorithms and their Classification

O(VN)

n qubits
|0>4H®n~ U¢ +H Ug — = — Ug —

oracle ﬁ% L

workspace

Figure 4.6: Quantum circuit for the quantum search algorithm.

A generalization of the Grover iteration to boost the probability of measuring a solution
state is called amplitude amplification. According to Gruska [65], there are at least two
(only slightly different) methods which meet this condition, one proposed by Grover [63],
the other by Brassard et al. [24]. The most general version of a Grover operator is
presented by Bihan et al. [18]. All methods have in common, that they use an arbitrary
unitary transformation U instead of the Hadamard transformation H®™ as in the original
Grover operator (Equation 4.7). The following transformation might be deemed as the
generalized Grover operator:

Ug = —UI?U*I},

where I =T — (1 — e")|s)(s| is a rotation of a fixed basis state |s) by an angle 3 and
I} =", e"f@|z) (x| is a rotation by an arbitrary phase 7.

4.2.2 Quantum Counting: Combining Grover Operator and Phase
Estimation

Provided that M is known, Grover’s algorithm can be applied as described above. If M is
not known in advance, it can be determined by applying the phase estimation algorithm
to the Grover operator Ug, estimating one of its phases +6. Figure 4.7 shows a quantum
circuit for performing approximate quantum counting. From the equation'! sin?(9/2) =
M/2N and the estimate for 6 it follows an estimate for the number of solutions M.
Further analysis shows, the error in this estimate for M is less than (vV2M N + 2,c%)Q_k,

provided that @ has a k-bit accuracy. Summarizing, the algorithm requires O(v/N) oracle
calls to estimate M to high accuracy. Finding a solution to a search problem when M
is unknown requires to apply both algorithms, first the quantum counting and then the
quantum search algorithm. Errors arisen in the estimates for § and M affect the total
probability to find a solution to the search problem. However, the probability can be
increased close to 1 by a few repetitions of the combined counting-search algorithm.

"' The search space is expanded to 2N to ensure that M < N/2. As already described above this is done
by adding a single qubit to the search space.

68

4.2 Quantum Search Algorithms

n qubits 17) o
oy L E QFT™ L 16)
tqubiti]]
0) <|H ||l UE ||vE | U
U

Figure 4.7: Circuit for the quantum counting algorithm, an application of the phase
estimation procedure to estimate the eigenvalues of the Grover operator Ug which enables
to determine the number of solutions M to the search problem. The first register contains
n qubits and the second register contains ¢ qubits, sufficient to implement the Grover
operator on the augmented search space of size 2IN. The state of the second register is
initialized to >__) by H®". But this is a superposition of the two eigenvectors of Ug
with corresponding eigenvalues e’ and e/>"=9) . Therefore, applying the phase estimation
procedure results in an estimate for 6 or 2w — 6 which is equivalent to the estimate for 6

(sin?(0/2) = sin?((27 — 6)/2)).

Counting the number of solutions and, consequently, determining the solvability of
a search problem has many applications, including decision variants of NP-complete
problems.

4.2.3 Applications of Grover’'s Algorithm

The quantum search algorithm or at least its main operator can be applied to solve many
kinds of search problems. Table 4.2 presents a survey of these problems. Some of them
are now described briefly.

Claw finding: Given two functions f: X — Zand g: Y — Z, find a pair (z,y) € X XY
such that f(z) = g(y).

Collision finding: Given a function f: X — Y, find two different z1, xo (21 # x2), such
that f(z1) = f(z2) under the promise that such a pair exists.

Database retrieval: Given a quantum oracle which returns |k, y @ X) on an n+ 1 qubit
query |k, y), the problem is to obtain all N = 2" bits of X}.

Element distinctness: Given a function f : X — Y, decide whether f maps different
x € X to different y € Y.

69

4 Quantum Algorithms and their Classification

Minimum-finding: Let T[0... N — 1] be an unsorted table of N (distinct) items. Find
the index y of an item such that T'[y| is minimal.

Scheduling problem: Given two unsorted lists of length N each. Find the (promised)
single common entry. In [70] the complexity is measured in quantum memory
accesses and accesses to each list.

String matching: Determine whether a given pattern p of length m occurs in a given
text ¢ of length n. The algorithm combines quantum searching algorithms with
deterministic sampling, a technique from parallel string matching. Grover’s search
algorithm is applied twice in conjunction with a certain oracle in each step.

Triangle-finding: Given an undirected graph G=(V,E), find distinct vertices a,b,c € V
such that (a,b), (a,c),(b,c) € E.

Weighing matrix problem: Let M be a W (n, k) weighing matrix!2. A set of n functions
Mo d1,. . n} — {=1,0,+1} for s € {1,...,n} is defined by fM(i) := M.
Determine s!

‘ Problem ‘ Runtime ‘ References ‘
Quantum database search O(VN), [61, 62]
(Grover’s algorithm) quadr. speedup
Quantum counting O(V'N) [21, 24, 104]
Scheduling problem O(N3/*1og N) [70, 64]
Minimum-finding O(V'N) [48]
Database retrieval N/2 + O(V/N) [151]

String matching O(y/nlog \/Zlogm [122]
+/mlog? m)

Weighing matrix problem 2 oracle queries [152]

Element distinctness comparison complexity [27]

Collision finding always better than

Claw finding classical

Triangle-finding

Table 4.2: Algorithms based on quantum searching.

4.2.4 Quantum Search and NP Problems

Solving problems in the complexity class NP may also be sped up using quantum search.
The entire search space of the problem (e.g. orderings of graph vertices) is represented

2A matrix M € {—1,0,+1}"*" is called a weighing matriz, iff M - M* =k - I,, for some k,0 < k < n.

70

4.2 Quantum Search Algorithms

by a string of qubits. This string has to be read as defined by the problem specifica-
tions (e.g. the string consists of blocks of the same length storing an index of a single
vertex). In order to apply the quantum search algorithm, the oracle which depends on
the problem instance must be designed and implemented. It marks those qubit strings
which represent a solution. As the verification of whether a potential solution meets the
requirements is much easier than the problem itself, even on a classical computer, it is
sufficient to convert the classical circuit to a reversible circuit. Now, this circuit can be
implemented on a quantum computer. Thus, the quantum counting algorithm which de-
termines whether or not a solution to the search problem exists requires the square root
of the number of operations that the classical “brute-force” algorithm requires. Roughly
speaking, the complexity changes from O(2°(") to O(29(")/2) where 6 is some polyno-
mial in n. Nonetheless, the complexity is still exponential and in the sense of complexity
theory these problems are not efficiently solved.

4.2.5 Hogg's Algorithm

Certain structured combinatorial search problems can be solved effectively on a quantum
computer as well, even outperforming the best classical heuristics. In [72, 73] Hogg
introduced a quantum search algorithm for 1-SAT and highly constrained k-SAT.

The satisfiability problem (SAT)

A satisfiability problem (SAT) consists of a logical formula in n variables vy, ..., v, and
the requirement to find an assignment a = (aq,...,a,) € {0,1}" for the variables that
makes the formula true. For k-SAT the formula is given as a conjunction of m clauses,
where each clause is a disjunction of k literals v; or v; respectively with i € {1...n}.
Obviously there are N = 2™ possible assignments for the formula. A solution must satisfy
every clause. Clauses which become false for a given assignment are called conflicts.
Let c(a) denote the number of conflicts for assignment a. A k-SAT problem is called
mazimally constrained if the formula has the largest possible number of clauses for which a
solution still exists. Thus, any conceivable additional clause will prevent the satisfiability
of the formula. For k& > 3 the satisfiability problem is NP-complete and, in general, the
computational costs grow exponentially with the number of variables n. For k = 1,
k = 2, and some k-SAT problems with a certain problem structure, there are classical
algorithms which require only O(n) search steps, that is, the number of sequentially
examined assignments. Also, quantum algorithms can exploit the structure of these
problems to improve the general quantum search (ignoring any problem structure) and
perform better than classical algorithms.

Hogg's quantum algorithm for 1-SAT

Hogg’s quantum algorithm for 1-SAT primarily requires n qubits, one for each variable.
A basis state specifies the values assigned to each variable and consequently, assignments
and basis states correspond directly to each other. Information about the particular

71

4 Quantum Algorithms and their Classification

o O O
o O o oo
OO oo oo

cocoococooc o~
cCooc oo o = O
cCoo0 oo = OO0
|
,_.
cocoosoocoo
|l ccocoocooco

o O O O

Figure 4.8: Input matrix for the logical formula f(vi,ve,v3) = v1 A U2 A U3. The matrix
has diagonal coefficients (%), . . (11D} For instance, the assignment a = 101 (v; =
true, vy = false, v3 = true) makes two clauses false, i.e. ¢(101) = 2 and i? = —1.

problem to be solved is accessible by a special diagonal matrix R (of dimension 2™ x 2™),
where

Raq = 199 (4.8)

is the matrix entry at position (a,a). Thus, the problem description is entirely encoded
in this input matrix by the number of conflicts in all 2" possible assignments to the
given logical formula. For the moment it is assumed that such a matrix can be imple-
mented efficiently. Further implementation details will be given in the next paragraph.
Figure 4.2.5 exemplifies the input matrix R for a 1-SAT problem with n = 3 variables.
Furthermore, let U be the matrix defined by

U = 2—n/2ei7r(n—m)/4(_,[:)d(r,s) ’

where d(r, s) is the Hamming distance between two assignments r and s, viewed as bit
strings. U is independent of the problem and its logical formula. The first step of the
quantum algorithm is the preparation of an unbiased, i.e. equally weighted, superposi-
tion. As already demonstrated, this is achieved by applying the Hadamard gate on the
n qubits (H®™) initially in state |0). Let |¢) denote the resulting quantum state. Then,
applying R and U to [|¢) gives

#) = UR[Y).

It can be proven that the final quantum state is the equally weighted superposition of
all assignments a with c¢(a) = 0 conflicts. Thus, considering a soluble 1-SAT problem, a
final measurement will lead with equal probability to one of the 2"~ solutions. If there
is no solution of the problem, the measurement will return a wrong result. Hence, finally
the resulting assignment has to be verified.

72

4.2 Quantum Search Algorithms

Implementation

The matrices R and U have to be decomposed into elementary quantum gates to build
a practical and implementable algorithm. The operation R can be performed using a
reversible (quantum) version of the classical algorithm to count the number of conflicts of
a 1-SAT formula and a technique to adjust the phases which are powers of 2. Therefore,
two ancillary qubits are necessary which are prepared in the superposition

%) = £]00) — 2J01) — [10) +4[11)),

where the local phases correspond to the four possible values of R, for any assignment
a. As suggested by Hogg, the superposition |¥) can be constructed by applying H on
qubit 1 and ¢+ Rx(3/4m) on qubit 0, both of the qubits being initially prepared to |1).
Then, the reversible operation

F :la,x) — |a,x 4+ c(a) mod 4)

acts on |1, U) as follows

[, W) — 2723 "4 @ja)|w)

performing the required operation R. To see this, further intermediate calculation steps
are necessary which can be read up in [73]. Note that after applying F', the ancillary
qubits reappear in the original superposition form and can therefore be dropped, since
they do not influence U. In a single application of F', ¢(a) is evaluated once.
The matrix U can be implemented in terms of two simpler matrices H®" and I', where
I" is diagonal with
Tu = Jlal

Here |a| is the number of 1-bits in the bit string of assignment a. Using this definition,
it is U = H®"T'H®". For implementing I', Hogg suggests to use similar procedures to
those for the implementation of the matrix R, using a quantum routine for counting
the number of 1-bits in each assignment instead of the number of conflicts [73]. Thus,
the elements of the matrix I' can be computed easily and the operation U is efficiently
computable in O(n) bit operations: 2n Hadamard gates plus another C' - n elementary
single qubit gates, with a constant C' > 1, for the computation of " (to give a rough
estimation). In 6.1 it is shown as a result of the GP evolution of a 1-SAT quantum
algorithm that U = Rx(3/4m)®", and consequently it can be implemented even more
efficiently by n elementary rotation gates.

73

4 Quantum Algorithms and their Classification

Once again, Hogg’s algorithm consists of the following steps:

Quantum Algorithm 4.2.1: 1-SAT / mazimally constrained k-SAT

1. Apply H®" on |0).

2. Compute the number of conflicts with the constraints (clauses) of the problem into
the phases by applying the input gate R.

3. Applying U = H®"I'H®" results in an equally weighted superposition of solution
states.

An experimental implementation of Hogg’s 1-SAT algorithm for logical formulas in
three variables is demonstrated in [117].

Performance

The matrix operations and the initialization of |¢)) contribute O(n) bit operations to the
overall costs. Evaluating the number of conflicts results in costs of O(m) for a k-SAT
problem with m clauses. In total the costs of the quantum algorithm amount to O(n+m).
This corresponds to the costs of a single search step of a classical search algorithm which
is based on examinations of neighbors!® of assignments. While the quantum algorithm
examines all assignments in a single step, the best (local search based) classical algorithm
needs O(n) search steps.

A slide modification of Hogg’s algorithm for 1-SAT can also be applied to maximally
and highly constrained k-SAT problems for arbitrary k& to find a solution with high
probability in a single step. For all 1-SAT and also maximally constrained 2-SAT prob-
lems, Hogg’s algorithm finds a solution with probability one. Thus, an incorrect result
definitely indicates the problem is not soluble [72, 73].

Note that a comparison of Hogg’s algorithm with any classical algorithms according
to the number of search steps is only permissible, if the classical algorithms are based
on local search, especially on the examination of the number of conflicts. Otherwise, the
comparison must be based on a more fundamental measure. Local search is not always
the best solution. For instance, it is unreasonable to solve 1-SAT using local search since
it is trivial to find an assignment satisfying the given Boolean formula in O(m).

4.3 Quantum Simulation

The third class of quantum algorithms consists of those algorithms which simulate quan-
tum mechanical systems. Commonly, the problem of simulating a quantum system is

'3These are assignments that differ in a single value.

74

4.3 Quantum Simulation

classically (at least) as difficult as simulating a quantum computer. This is due to the
exponential growth of the Hilbert space which comprises the quantum states of the sys-
tem. Therefore, simulation of quantum systems by classical computers is possible, but in
general only very inefficiently. A quantum computer can perform the simulation of some
dynamical systems much more efficiently, but unfortunately not all information from the
simulation is accessible. The simulation leads inevitably to a final measurement collaps-
ing the usually superimposed simulation state into a definite basis state. Nevertheless,
quantum simulation seems to be an important application of quantum computers.

A rough outline of the quantum simulation algorithm described in [107] is presented
now. Further reading matter are the original papers dealing with the simulation of
quantum physical systems on a quantum computer, among them [2, 116, 148, 164, 171,
172].

Simulating a quantum system means “predicting” the state of the system at some time
tr (and/or position) as accurately as possible given the initial system state. Simulation is
mainly based on solving differential equations. Unfortunately, the number of differential
equations increases exponentially with the dimension of the system to be simulated.
The quantum counterpart to the simple differential equation dy/dt = f(y) in classical
simulations is i d|¢) /dt = H|+)) for a Hamiltonian H. Its solution for a time-independent
H is |¢(t)) = e *H|$(0)). However, e~ is usually difficult to compute. High order
solutions' are possible especially for those Hamiltonians which can be written as sums
over local interactions: H = 2#1 Hj;, acting on an n-dimensional system, L = poly(n),
where each Hamiltonian H acts on a small subsystem. Now, the single terms e~*/7x!
much easier to approximate by means of quantum circuits than e *#*. How to calculate
e *Ht from e~"Hk? In general et #£], e ! because of [H;, Hy] # 0.'5 Instead,
approximate e *Ht with e. g.

ez‘(A+B)At _ eiAAt/ZeiBAteiAAt/2 + O(Atg))

This and other approximations are derived from the Trotter formula

lim (eiAt/neiBt/n)n _ 6i(A-i—B)t)
n—00

Now, let the n-qubit state |1ﬁ> approximate the system. Assume further, that the op-
erators e kA have efficient quantum circuit approximations. Then, the approximation
of ¢!k Hi)At can be efficiently implemented by a quantum circuit Ua;. With it, the
quantum simulation algorithm can be formulated as follows:

10Often the easier computable first order solution (I —iH&t)|1(t)) is insufficient.
'5[A, B] := AB — BA is the commutator between two operators A and B.

75

4 Quantum Algorithms and their Classification

Quantum Algorithm 4.3.1: Quantum simulation algorithm

1. Initialization: |1ﬁ0> (initial system state at time ¢t = 0), j = 0;
2. Iterative evolution: do |1,Z~)j+1> = UAt|7,Z~)j>§ Jj =J+1; until jJAt > ¢

3. Output: \iﬁ(tf» = Wﬁ

4.4 Speedup Limits for Quantum Algorithms

This section summarizes some theoretical results about the limitations of quantum com-
puting. The methodologies to prove lower bounds for the complexity and the speedup
of quantum algorithms are not the subject matter, but they can be read up in the given
literature.

An interesting result on limitations of quantum algorithms refers to black-box algo-
rithms [11]. Many quantum algorithms use oracle or black-box gates, which hide an
unknown function, or they are at least expressible as a black-box algorithm. Accessing
the black-box can be thought of as a special subroutine call or query whose invocation
only costs unit time. Speaking more formally, let X = (xg,...,zy_1) be a such an
oracle, containing N Boolean variables z; € {0,1}. On input 7 the oracle returns x;.
A property f of X which is any Boolean function f : {0,1}" — {0,1} is only deter-
minable by oracle queries. The complexity of a black-box algorithm is usually rated by
the number of queries necessary to compute the property. Then, Beals et al. prove in [11]
that black-box quantum algorithms for which no inner structure is known, i. e., for which
no promises are made restricting the function!'6
speedup compared to probabilistic and deterministic classical algorithms. In addition,
they specify exact bounds for the (worst case) quantum complexity of AND, OR, PAR-
ITY and MAJORITY for different error models (assuming exact -, Las Vegas - and
Monte-Carlo algorithms). For the ezact setting (the algorithm returns the correct result
with certainty) the quantum complexities are N for OR and AND, N/2 for PARITY and
O(N) for MAJORITY. The bound for the parity problem was independently obtained
by Farhi et al. [51].

As shown by Buhrman et al. [27] the following problems cannot be solved more effi-
ciently on a quantum computer:

, can achieve maximally a polynomial

'6Then, the function is said to be total.

76

4.4 Speedup Limits for Quantum Algorithms

Parity-collision problem: Given a function f: X — Y, find the parity of the cardinality
of the set {(x1,22) € X x X|z1 < 23 A f(21) = f(22)}.

No-Collision problem: Given a function f: X — Y, find an element x € X that is not
involved in a collision, i.e., f~1(f(z)) = {z}.

No-range problem: Given a function f : X — Y, find an element y € Y such that

y ¢ f(X).

Hgyer et al. [75] determined the quantum complexity for further problems.

Ordered searching: Given a sorted list of N numbers (zg,z1,...,2N-1), T; < Tit1,
and a number y < zx_1, find the minimal index ¢ such that y < z;. This prob-
lem can be regarded as a non-Boolean promise problem. The best known quan-
tum lower bound is 1/m(In(N) — 1) queries. In [75], a quantum algorithm using
logs(N) 4+ O(()1) ~ 0.6311ogy(N) queries is presented. A slightly better algorithm
(0.526 log,(N') queries) is given in [51].

Sorting: Given a list of numbers (zg, z1,...,2N_1), output a permutation o on the index
set such that the list (z4,, Zoy, - .., Toy_,) 18 in non-decreasing order. The quantum
lower bound for this problem is given by (N log N) binary comparisons.

Element distinctness: Given a list of numbers (zg,z1,...,2y-1). Decide whether they
are all distinct. The problem has a quantum lower bound of Q(v/ N log N) binary
comparisons.

77

4 Quantum Algorithms and their Classification

78

5 Evolution of Quantum Algorithms

Everything what is possible
happens, if only there is enough
time to.

Herodotus (484-425 BC)

Evolution of quantum circuits faces two major challenges, increasing costs for simulating
quantum algorithms for multiple qubits on conventional computers and the complex and
large search spaces of quantum programs. On one hand the exponential growth of the
state space (with the number of qubits) makes simulation increasingly time consuming,
but on the other hand the same state space is the source of entangled and superposed
states responsible for the power of quantum computation. Thus, for quantum comput-
ing and the development of better-than-classical quantum algorithms, the Hilbert space
seems to be likewise a curse and a blessing. The exponential growth of the search space
is due to the impact of combinatorics, in the form of the number of variations (with
repetitions) a certain number of gates can be chosen from a given set of gates. The
complexity and structure of the search space depends on the problem.

In this chapter the problematic nature of the evolution of quantum circuits is con-
fronted and addressed. The second considerable part deals with implemented GP sys-
tems, those described in previous work and those developed in the course of this thesis.
In detail this chapter is organized as outlined in the following paragraphs:

Section 5.1 deals with the simulation of quantum circuits on a classical computer and its
complexity. It describes the quantum computer simulator as it is used in all experiments
for this thesis, discusses implementation details and the time consumption for quantum
circuit evaluation.

Designing a quantum circuit to solve a given problem is highly non-intuitive and there-
fore difficult for a human programmer. Unfortunately, empirical studies in the scope of
this work showed that large search spaces in apparently simple problems together with
the usually exponentially or even super-exponentially increasing number of fitness cases
render evolutionary approaches nearly unable to achieve breakthrough solutions in the
development of new quantum algorithms. Section 5.2 makes some more general re-
marks about searching the space of quantum circuits and discusses possible test- and
benchmark-problems, which are unfortunately not present in large numbers.

79

5 Evolution of Quantum Algorithms

Using genetic programming to evolve quantum circuits is not a novel approach. It
was pioneered in 1997 by Williams and Gray [167]. Since then, several other papers
[9, 10, 57, 127, 137, 136, 140, 139, 168| dealt with the connection of quantum computing
and genetic programming or genetic algorithms, respectively. The different approaches
to GP/GA-based quantum circuit design described in these papers are inspected more
closely in Section 5.3.

Finally, Section 5.4 describes both GP systems, linear-tree and linear GP; the former
supporting intermediate measurements, the latter preventing them. It also discusses
different kinds of fitness functions.

5.1 Quantum Circuit Simulation

Quantum computer simulators are computer programs simulating the action of a quan-
tum computer on a classical computer. Since (universal) quantum computer hardware
is not yet available! simulations on classical hardware enable researchers to develop and,
in particular, to test quantum algorithms.

There are a lot of quantum simulators available on the Internet, and a detailed, up-
to-date overview of them was presented for some time on the former homepage of Julia
Wallace at the University of Exeter, UK. Unfortunately, this page no longer exists. Yet, in
[161] of October 1999, she offers a (at that time) topical review on a variety of different
simulators available to download. They are all programmed to simulate the behavior
of a quantum mechanical system and operations applied to it. From the multitude
of (special purpose) quantum computer simulators, QCL by B. Omer is noteworthy,
because of its additional functionality. QCL (Quantum Computation Language) is a high
level programming language with classical syntax, containing variables and expressions,
operators and program constructs, such as loops, subroutines and conditional branchings.
Quantum algorithms are programmed in QQCL and run on an interpreter, simulating the
quantum computer with an (in theory) arbitrary number of qubits.

For quantum circuit evolution the quantum computer simulator has to meet certain
requirements. Especially, it has to be very efficient, since unnecessary costs multiply
rapidly during the evolutionary process. The simulator described in this section is that
used in the linear and linear-tree GP systems (cf. Section 5.4) and is, like the GP systems,
implemented in C++. It simulates quantum algorithms, based on the idealized, noiseless,
i.e., decoherence-free, quantum circuit model. The task of the simulator is simply: to
read and to interpret the quantum circuit given as a sequence of descriptive instructions,
to read the initial system state, and to calculate (from this information) the final state
vector. Using intermediate measurements will naturally lead to further calculations of

!Here, the seven-qubit realization [154] is not regarded as a quantum computer — in the same way as
a pocket calculator is not comparable to a PC. This is not to disrespect the value of this research
achievement, but to point out that its applications are highly restricted.

80

5.1 Quantum Circuit Simulation

state vectors, since for the overall assessment of a quantum circuit, all possible outcomes
must be considered.

In the following subsections some of the implementation details, such as the repre-
sentation and storage of quantum circuits, the calculation of the final vector (using
matrix-vector or matrix-matrix multiplications) and intermediate measurements are dis-
cussed. Time measurements of circuit evaluations on the implemented simulator convey
an impression of the time consumption. In addition, quantum circuit reduction based on
substitution rules is also touched upon.

5.1.1 Representation of Quantum Circuits

Strictly speaking, the representation of quantum circuits for use in the quantum computer
simulator does not necessarily correspond to their representation as individuals in the GP
system. Disregarding intermediate measurements which provide branchings and, conse-
quently, a (linear-)tree structure, naturally quantum circuits are absolutely linear. Only
in conjunction with classical program control constructs — resulting in hybrid algorithms
— other program flow structures, such as simple loops, are implementable. In contrast
to the pure linear representation used in the simulator, the individual representation of
quantum circuits in a GP system might be based on trees or even graphs.

In the quantum computer simulator quantum circuits are represented and described as
sequences (lists) of instructions, each entirely determining a certain quantum gate. An
instruction consists of a shorthand expression of the gate’s type, such as H, Rx, or CNOT
(cf. Section 2.4) followed by different type-specific parameters. For all single-qubit gates,
the first parameter is the number of the qubit the gate acts on. Some rotation gates
need an additional real-valued angle parameter. A global system parameter restricts the
resolution of the angle parameters to r bits allowing only rotations as multiples of 27 /2".
For all controlled-gates, the first parameter is the target qubit. The second parameter
is, in the case of the CPH gate, a single control qubit followed by an angle parameter
defining the phase shift and, in the case of a C*NOT gate, a set of control qubits.
The parameters of the SWAP gate are merely two qubits, which are to be swapped.
Intermediate measurements, indicated by the gate type M and the qubit which is to
be measured, require an additional structure in which the branching instructions along
with their pre-measurement vectors and the branching probabilities are stored. This
is explained in more detail in Section 5.1.5. The linear-tree GP scheme (cf. Section
5.4.1) arises naturally from the use of intermediate measurements which provide quantum
circuits with an additional tree structure. The identity ID needs no further parameters,
as it has no effect at all. The only reason for the use of this gate is its action as an intron
in the context of evolution (cf. Section 3.6). Thus, it provides additional (implicit)
neutrality or neutral mutations respectively. Though, there are already gates working as
introns, such as Rx(0), Ry (0) or Rz(0). A special gate is the input gate (INP) which
is provided by the GP system and the problem description. It is a placeholder for one

81

5 Evolution of Quantum Algorithms

or more unitary matrices encoding the problem instance. To distinguish between several
input gates these gates are numbered. Moreover, a certain input gate could have to be
applied more than once within a quantum circuit to allow problem solving. Both cases
are possible and can be handled in the quantum simulator. The number of input gates
in a circuit is restricted by a global system parameter.

The set of quantum gates (gate types) implemented in the quantum computer simulator
(except measurements) is

{ID, H,NOT(= X), Y, Z, C*NOT, Rx (¢), Ry (¢), Rz (¢), CPH (¢), SWAP, INP} .

For the evolution of quantum circuits usually a universal subset of these gates were
used. All gates are administered in a pool, that is, they are globally accessible and the
memory to hold the matrix coefficients is allocated only once during the initialization of
the simulator and the entire GP system. For the NOT and C*NOT gates, which are
in principle only permutations, it is of course sufficient to store just the qubits they are
applied to and not necessary to store the NOT matrix. The use of a gate pool saves
much time otherwise arising from periodical allocations and deletions.

5.1.2 Matrix-Vector vs. Matrix-Matrix Multiplications

The costs for evaluating a linear quantum program depend essentially on the number
of qubits, that is, the dimension of the vector space, and the length of the quantum
algorithm, in other words, the number of elementary quantum gates. It is obvious that
the impact on the costs is larger by adding a qubit than by adding another quantum
gate.

Single Quantum Circuit Evaluation

Consider a quantum computer consisting of n qubits. Each operation on that quantum
computer corresponds to a unitary 2 x 2" matrix. As already mentioned, quantum
gates operating on m < n qubits have to be adapted to higher dimensions. However,
they are still referred to as m-qubit gates, since all other qubits are not affected. From
the information of a given instruction — be it a single-qubit gate U or a controlled-gate
C*(U) of a single-qubit operation U — such a higher dimensional matrix can be assembled,
as explained in the Sections 2.4.1 and 2.4.2. This matrix solely consists of the 2"~! or
2n=1=k qubmatrices U, respectively. Hence, in the worst case, a quantum circuit is only
made of elementary single-qubit gates. For now, input matrices are left out.

Consider a quantum circuit of L elementary (single-qubit) quantum gates, denoted
UiUsy---Uyp. Let vg be the initial system state or vector, respectively. When the quan-
tum algorithm is applied to an initial quantum state, there are basically two possible
approaches to calculate the final state vector UpUp_q - - - UsUqvg:

82

5.1 Quantum Circuit Simulation

1. by matrix-vector multiplications, i.e., successively applying the transformations of
the sequence on the present state vector:

Ujvg =:v1; Usvy =:w9; ... Upvr_1 =:vp
or

2. by matrix-matrix multiplications, i.e., calculating the entire transformation matrix
Uaig of the quantum algorithm and performing a single matrix-vector multiplication
at the end:

UUp—1... 03U =: Uyyg; Uggvo =: vr, .

A short analysis shows what was to be expected: the first approach is more efficient
than the second for all parameter settings of n and L. The comparison is based on
the overall number of multiplications and additions of two complex values needed to
calculate the result. Concerning the first approach, the number of multiplications of a
2 x 2 submatrix with a subvector of the entire state vector amounts to L -2"~!, resulting
in L - 2! multiplications of two complex values in total. The number of additions is
L -2™. Also the second technique benefits from sparse transformation matrices. Using
the standard “quick and dirty” method the number of multiplications in C involved in
producing the product of two N x N matrices requires N3 multiplications of two complex
values. However, multiplication of an arbitrary 2" x 2" matrix by a transformation matrix
of a single-qubit gate requires only 22"+ multiplications of two complex numbers, since
such a matrix has in each row and column only two coefficients not equal to zero. The final
matrix-vector multiplication contributes an additional 22" multiplications. In summary,
this approach needs (L — 1) - 227! 422" multiplications of complex values. The number
of additions is (L — 1) - 22 for the matrix-matrix multiplications and 2"(2" — 1) for the
final matrix-vector multiplication.

Possibilities for improvements are not in sight. Using Strassen’s fast algorithm for
matrix multiplication [145] is not helpful in this particular case. This algorithm requires
N'og27 multiplications to multiply two arbitrary N by N matrices, with N = 2*. But
the power of the “divide and conquer”-algorithm is based on the idea of partitioning
matrices, which basically has no effect here because of the special matrix form. So,
savings could mainly result from simple 2 x 2 matrix multiplications, where Strassen’s
algorithm only needs 7 instead of 8 multiplications of numbers. Unfortunately, then the
number of additions and subtractions increases from 4 to 18. Moreover, even assuming
there could be a benefit from Strassen’s algorithm, experimental results suggest that it
would not outperform the standard method until N' > 100 [33] (this would correspond
to about 7 qubits). The current best result for matrix multiplication is Coppersmith and
Winograd’s O(N2.376) algorithm [36]. However, this has more of a theoretical rather
than a practical relevance since the asymptotic gain of this method is noticeable only
for “astronomical matrix dimensions” [25]. Finally, though one of the matrices is very

83

5 Evolution of Quantum Algorithms

sparse, 22" has to be the lower bound for the number of multiplications since it is assumed
that the other matrix is dense and each of its matrix coefficients has to be multiplied at
least once. In this respect, 22"*! multiplications are an acceptable result. Note, it still
remains an unsolved problem in algebraic computational complexity theory to determine
the minimum number of arithmetic operations required for matrix multiplication.

Reuse of Results in the Multiple Fitness Case Scenario

In a broader context, the number of fitness cases within the scope of the GP evolution
has to be considered. At first sight, the second approach might be especially expedient
for large numbers of fitness cases when the higher costs of the matrix-matrix multiplica-
tions pay off because of the reuse of certain results: This method calculates all invariable
components of the quantum algorithm only once. Then, for each fitness case, it combines
the resulting matrices with one or more variable input matrices to build the transforma-
tion matrix of the given fitness case. At the end, a single matrix-vector multiplication
is performed. In contrast, if the fitness cases do not differ in the initial system state on
which the quantum algorithm has to be applied, the first method can save computational
costs by calculating the last system state before applying the (first) input matrix and,
afterwards, using this result for each fitness case to compute the final outcome. However,
the savings are not too large if the (first) input matrix is placed in the beginning of a
quantum circuit right after creating a superposition state using n Hadamard gates. In
any case, considering also the use of the simulator within the GP system may change the
efficiency rating of the two approaches.

For a closer inspection, let ¢ be the number of fitness cases which are described by a
single input matrix. Furthermore, let the initial state vector be the same for all fitness
cases. For the first method, the analysis is done without considering possible savings
by any precalculations, whereas for the second approach, it is supposed that the input
matrix divides the quantum circuit into two parts no matter where this happens. Finally,
it is assumed that the input matrix is a dense matrix, as in principle any unitary matrix
can be an input matrix — although this is usually a permutation or even a diagonal
matrix. These assumption are justified in the sense of a worst-case analysis. Then, for
the first method the number of multiplications in C comes to

c-(L—1)-2"" 4.2,

The additive ¢ - 22" corresponds to the costs caused by multiplications with the input
matrices. The second method calculates the two invariable parts of the quantum circuit
(U’, U") — before and after the input matrix (Us,p) — requiring (L — 3) - 22"+ multiplica-
tions. For each fitness case, an additional 2 - 23" multiplications arise for calculating the
entire transformation matrix (U” - Ujp, - U’) including the input matrix using the stan-
dard method, plus 22" multiplications resulting from the final matrix-vector product.
This adds up to
(L—?)) i 22n+1 +ec- (2 _23n+22n)

84

5.1 Quantum Circuit Simulation

multiplications in C. As already pointed out, there is only a rather small scope for
improvements in the two multiplications of the two dense matrices when using Strassen’s
algorithm. The Figures 5.1-5.3 visualize the costs of both methods for n = 2...4 and
different settings for L and c.

The exact number of additions of two complex numbers is

c-(L—-1)-2"+¢-2"(2" - 1),
for the first method and
(L—3)-22"4¢c-(2-22"(2" — 1) +-2"(2" — 1))

for the second. The number of additions inevitably has the same order of magnitude as
the number of multiplications.

Multiplications

20000

i
P
HETH T
iy
di i]
F s

40000 ﬁ,.l‘g'"ll

- 77

BO00D

20000

il

e Z7
s

o Vii..."..'.......:.,..:.. 40

Figure 5.1: Comparison of i) the matrix-vector multiplication and ii) the matrix-matrix
multiplication approach for quantum circuit evaluation for n = 2 qubits.

As a first result revealed by the plots, both the length of the quantum algorithm and
the number of fitness cases have to exceed certain thresholds, so that the second method
should be favored. In particular, the threshold for the circuit length L is much larger
than the threshold for the number of fitness cases c. The curve of intersection is given
by the following equation:

(L —3)2"
e
The formula and its inverse specify the asymptotes for L and ¢. The threshold for ¢
amounts to 2. Since the number of fitness cases usually increases exponentially or even

CcC =

85

5 Evolution of Quantum Algorithms

Multiplications

000D

i
400000

4
200000 i Lir
T E A 1

Fitness Cases 200

Figure 5.2: Comparison of i) the matrix-vector multiplication and ii) the matrix-matrix
multiplication approach for quantum circuit evaluation for n = 3 qubits.

Multiplications

BES

BES

4E8

00

2E8 400

CED:

200 | ength

100 100

400
Fitness Cases 500

Figure 5.3: Comparison of i) the matrix-vector multiplication and ii) the matrix-matrix
multiplication approach for quantum circuit evaluation for n = 4 qubits.

86

5.1 Quantum Circuit Simulation

super-exponentially with the number of qubits (such as is the case for the Deutsch-Jozsa
problem and the satisfiability problem) it will in general not be decisive for the choice of
evaluation methods. Provided a sufficiently large number of fitness cases, L has to exceed
the limit of 14 22", Thus, the threshold for L is rather huge already for only few qubits:
for n = 2...5 qubits the threshold values are 17, 65, 257, and 1025. Moreover, with an
increasing number of qubits it becomes harder and harder for the second approach to
prevail against the first method.

Provided the usually sparse input matrices, such as diagonal or permutation matrices,
the second method performs better and the threshold for L reduces to 227~! 4 271
which is roughly speaking a little bit more than half the value of the general thresh-
old. As already mentioned above, the first method (matrix-vector multiplications) can
even do better by reusing the once calculated quantum state, which is the last state
before applying the input gate. Assuming, that the input matrix is in the middle of
the quantum algorithm, the method can save about (¢ —1) - | L/2] - 2"*! multiplications
(although, according to the quantum algorithms already given, the input matrix is to
be expected more likely at the beginning, right after building a usually equally weighted
superposition). This would again increase the threshold by a factor of two.

As a consequence of the analysis above, the first method is implemented. Even for
small numbers of qubits the quantum circuits have to be very large so that the second
method might become interesting. However, the number of elementary quantum gates
used to implement already known quantum algorithms is below the threshold. Further
possibilities for speed-ups cannot be ruled out, but are not apparent.

5.1.3 Implementation and Time Measurements

In the following, a program subroutine is specified implementing the application of a
general single-qubit gate to an arbitrary quantum state. So, let a,b,c and d be any
complex numbers such that
a b
v=(%0)

is unitary. Suppose U acts on qubit ¢ of n qubits in total and is applied to a quantum
state v in the 2™ dimensional vector space, i.e.

I®..0IURI®...QI) v.
——— ————
n—(g+1) q

Compare also to Figure 2.5 in Chapter 4, which gives a simple example for the form of
the composed matrix, with its blocks and submatrices, illuminating the working of this
algorithm.

87

5 Evolution of Quantum Algorithms

Algorithm
(* bl is the number of major matrix blocks; sm is the number of 2 x 2 submatrices
within a block; step is the step size from one block’s first row to the next block’s first
row; posy and poss are the vector positions, affected by the submatrix multiplication;
a1 and ap are auxiliary variables; v,,s, and vps, are the components of vector v at
position pos; and poss; *)

1. bl 2r—a-t

2. sm <« 21

3. step <« 2xsm

4. for i <0 to (bl — 1)

d. do (x for each block x*)

6. for j —0 to (sm —1)

7. do (x for each submatrix within the block x)
8. pOS1 < i x step + j

9. POS2 «<— Pos1 + sm

10. a1 < Uposl

11. a2 < Vpos2

12. Upos, < @ * a1+ b*as
13. Uposy < C* a1 +d * as

Since calculating powers of base two up to an exponent n is a recurrent task in the
evaluation routine and therefore is quite expensive, the powers are calculated in advance
during the initialization of the quantum simulator and stored in a globally accessible
array.

As already reported, for controlled gates the number of multiplications with submatri-
ces is reduced to 2"~ 17F where k is the number of control qubits. Aside from this, the
implementation of the gate, being applied to a quantum state, is nearly the same and
therefore left out. Obviously, for NOT and controlled-NOT gates, it is not necessary to
perform any multiplications. Since those gates just act as permutations, it is sufficient
to carry out swap operations on the state vector.

To get an impression of how time-consuming quantum circuit evaluation is, several
time measurements are performed using the first method (matrix-vector multiplications)
for different numbers of qubits n and circuit lengths L. Table 5.1 provides the time in
seconds required by the quantum simulator to evaluate 10, 000 randomly created quantum
circuits of given length L. The instructions of the quantum circuits are chosen from the
gate (type) set {H,NOT, CNOT, Rx(¢), Ry (¢), Rz(¢)}. Identity gates, input gates or
intermediate measurements are not allowed. In particular, creating quantum circuits
without input gates implies also that the evaluations are independent of any problem
instance and any fitness cases. Moreover, the number of control qubits for CENOT is
restricted to just one qubit. The quantum circuit generator does not select randomly from
the set of all (concrete) gates. Instead, it first selects the gate type (equally distributed)

88

5.1 Quantum Circuit Simulation

and, afterwards, the specific gate from the pool of all gates of this type. Every quantum
circuit is applied to the first base vector (1,0,...,0). The evaluations are performed on
an Intel Pentium M processor with 1500MHz.

Qubits n

L 2 3 4 5 6 7 8 9 10 15

510111 0.161 0.26 0.351 0.501 0.821 1472 2.764 5.378 178.547
10 | 0.201 0.291 0.36 0.52 0.851 1472 2754 5.378 10.516 341.251
151028 0.341 045 0.691 1.151 2.093 3.996 7.802 15.282 507.83
20 | 0.31 0.401 0.541 0.852 1.462 2.835 5.227 10.335 20.499 671.06
2510331 0.44 0.631 1.072 1.823 3.395 6.469 12.719 25.307 834.3
30 1 0.381 0.501 0.731 1.192 2.123 3.986 7.751 15.282 30.464 992.43
351042 0.561 0.811 1.372 2424 4.667 8993 17.875 3526 1163.08
40 | 0.451 0.611 0.911 1.532 2.784 5.298 10.315 20.239 40.248 1324.71
451 0.481 0.671 1.001 1.703 3.114 5.858 11.827 23.073 45.275 1491.75
50 |1 0.521 0.721 1.091 1.873 3.445 6.549 12.808 25.577 50.383 1645.97

Table 5.1: Time consumption (in seconds) for the evaluation of 10,000 arbitrary quantum
circuits of length L = 5,10,15,...,50 on n = 2,3,...,10,15 qubits, performed on a PC
with 1500MHz Intel Pentium M processor.

A quick glance of the measured times seems to be quite acceptable. However, the
slowdown caused by the exponentially increasing Hilbert space is evident, as can be seen
in Figure 5.4.

The effect on the evolution of quantum circuits is revealed only by considering the
overall number of evaluations which depends on the “extent” of the problem, given by
the number of fitness cases, and the complexity of the search space. As a matter of fact,
huge and, above all, complex search spaces make evolutionary search difficult. It is not
necessary to always evaluate a given quantum circuit for all fitness cases. Instead, doing
this in a more restrictive manner can save much time. The time analysis is continued in
the next section in the context of GP-based search.

5.1.4 Circuit Reduction

The frequent evaluation of quantum circuits causes high computational costs. Therefore,
it goes without saying to search for methods which reduce these costs. Simplification of
the usually redundant quantum circuits before evaluation seems to be an obvious way:
Applying reduction rules, such as H- H— I or Rx(¢) - Rx(¢)) — Rx(¢ + 1) may reduce
the length of a circuit and hence the effective costs (multiplications and additions in C)
for its evaluation. These rules replace parts of the quantum circuit by smaller circuits

89

5 Evolution of Quantum Algorithms

Time consumption for 10.000 evaluations of quantum
circuits of length L on n qubits
60

50

40 - —A—L=10
g —=—1=20
% 30 —*—L=30
E —— =40
2 - —=— =50

[
o
L

qubits n

Figure 5.4: Graphical view of the time consumption as given in Table 5.1. The expo-
nential increase of the evaluation time with an increasing number of qubits becomes
visible.

or even remove parts, if they act like the identity. Naturally, it will depend on the set of
rules whether a circuit reduction is possible. Specifically, the minimal quantum circuit
consisting of gates from the elementary gate set needs not to be derivable by using these
rules. Moreover, the application of rules will usually not be deterministic, that is, more
than just one rule may be applied and at more than only a single position within the
circuit. Besides, two rules can exclude each other if they are applicable to overlapping
parts.

Given a set of reduction rules, to find the shortest derivable quantum circuit every
possible sequence of applicable rules must be tracked. However, in general this will be
an unreasonable approach as it exceeds the computational costs it saves by reducing
the circuit length. Instead, a heuristics is suggested which works as follows: Scan the
quantum circuit from left to right and for each circuit position the list of rules from top
to bottom. If possible apply a rule. The substitution step is iterated until no further
rule can be applied.

Assuming only rules which reduce a gate pair, in a single substitution step two elemen-
tary gates are substituted by another elementary gate or by the empty gate, i.e., they
are removed. To find a substitutable gate pair, the algorithm has to run through the
circuit, that is, O(L) gate pairs, each pair comparing with the left-hand side of R rules.
In total, the circuit reduction results in O(L?R) term comparisons. The exact number

90

5.1 Quantum Circuit Simulation

of substitutions depends on the rule set and on the frequencies substitutable gate pairs
occur.

Note that the reduction phase is not implemented in the current quantum simulator.
Furthermore, the reduction phase should act only on a copy of the individual. A reduc-
tion of the individual can affect the evolutionary process, since introns and functional
redundancies might be removed. They can be regarded as a source for beneficial changes
in the genotype (cf. Section 3.6).

A selection of simple substitution rules for the gate set

S :={H,NOT,CNOT,Rx(¢), Ry (¢), Rz (¢)}

is presented in Table 5.2. Indices refer to the qubits a gate acts on. Whenever gates are
substituted by e they are removed from the circuit (and not substituted by I).

Substitution Rules:

R1 Rz, (0) — €

R2 NOT,-NOT, — €

R3 Hy-H;,— €

R4 Ru, (¢) - Rvg (¥) — Rug (¢ + ¢), Vv € {z,y, 2}

R5 CNOT;. - CNOT;. — €

R6 CNOT;.— € if control qubit c is definitely |0)

R7 NOT,- Ry, (7/47) — H,

RS U1q1 . U2q2 — U2q2 . U1q1 s Ul, U; € S\{CNOT}, q1 7& qo
R9 Rz, (¢) - CNOT; 4 — CNOT 4 - Rzq (9)

R10 Rx,(¢)- CNOT,. — CNOT, .- Rz, (¢)

Table 5.2: A set of rules for gate substitutions. The indices indicate the qubit the gate
is applied to. In case of CNOT} 4, the first index refers to the target, the second to the
control qubit. € is the empty gate.

Not all substitution rules, in principle useful for circuit reduction, have to be length
reducing by themselves but may prepare a subsequent reduction. Good examples are the
substitution rules R8, R9 and R10 in Table 5.2.

The described problem of quantum circuit reduction using certain substitution rules
can also be viewed in the more general context of so-called rewrite systems. They are
defined as sets of directed substitution rules used to compute by repeatedly replacing
elements of a given expression with other elements until the simplest form possible is
obtained [42]. Rewrite systems are extensively studied in computer science and mathe-
matics, especially in the context of symbolic algebraic computation, automated theorem
proving, program specification and verification. The problem of finding the shortest ex-
pression for a general set of rules especially including expansion rules (rules expanding
the expression) is not computable. For general information on the subject of rewrite
systems, see e.g. [20, 41, 42, 84].

91

5 Evolution of Quantum Algorithms

5.1.5 Intermediate Measurements

The use of intermediate measurement necessarily leads to higher administrative costs.
In particular, for each intermediate measurement one final state vector has to be calcu-
lated additionally. However, storing the provisional results and the probabilities for the
measurement outcomes at the branching nodes in a buffer reduces the computational
overhead to a minimum, since each quantum gate is still applied only once. Then, com-
parable to the infix traversal of trees, after evaluating the measurement gate (the node),
first the subprogram following outcome “0” (arbitrarily defined to be the left subtree) and
then the subprogram following outcome “1” (consequently the right subtree) is executed.
Of course, the order of subprogram evaluations can also be switched. The result is a
probability distribution of certain outcomes regarding a final measurement.

Using density matrices? does not change the necessity to run through the entire linear-
tree structure. Let m be the number of intermediate measurements. For each of the
m + 1 paths from the root to a leaf a certain density matrix p; = |¢;)(¢pi| evolves,
where |¢;) is the corresponding pure state and ¢ = 0...m. Another density matrix
p can be used to compactly represent the ensemble of (pure) states which result from
the traversal: p = Y. pipi = >, pil¢i)(¢i| where p; is the probability corresponding to
state |¢;). Instead of calculating the measurement probabilities for every single pure
state and adding them up to a total probability, it is of course possible to calculate
this probability from the density matrix. The benefit of this approach depends on the
number of intermediate measurements m, on the number of qubits n, and on the number
of (single qubit) measurements at the end of the computation. For small numbers m
and n (as they are used in the GP experiments) the benefit is negligible since also the
generation of p contributes costs.

h

5.2 Searching the Space of Quantum Circuits

Quantum circuit evolution actually means searching the space of all possible or allowed
quantum circuits, referred to as the search space, to find a circuit which is assigned the
best or at least approximately the best fitness value. This does not necessarily mean
that this circuit solves the problem it is designed for. In fact, a solution does not have
to exist.

The search space is basically limited by two constrains: (i) the number of gates, and
(ii) the maximum length of a quantum circuit. In particular, the search space is finite
(discrete) provided that the additional (angle) parameters for certain gates are discrete, as
well. Yet, this is important since otherwise a search can get lost in the infinite parameter
subspaces. Furthermore, the number of gates is determined by the number of qubits.

’Readers unfamiliar with density matrices are referred to [107].

92

5.2 Searching the Space of Quantum Circuits

Figure 5.5 shows how the size of the search space scales for different numbers of qubits
n and circuit lengths L for the gate set {H, NOT, CNOT, Rx(¢), Ry (¢),Rz(¢)} with
angle parameter ¢ restricted to four bits allowing rotations as multiples of (1/8)7.

Search Space

1E+80
1E+70

1E+60 -
——n=1
1E+50

% // —mn=2
2 1E+40 —+—n=3
O _
1E+30 - —>—n=4
—*—n=5
1E+20
1E+10
1
5 10 15 20 25 30
L

Figure 5.5: Number of quantum circuits forming the search space. The gate types H and
NOT contribute n specific gates, Rx(¢), Ry (¢) and Rz(¢) contribute n - 24 gates and
CNOT contributes n(n — 1) gates to the overall number of gates X. Then, the number
of circuits is just X%. To grasp the size and the growing of the search space: the number
of circuits for five qubits and length L = 32 finds its physical analogy approximately in
the number of atoms in the universe, which is estimated to be 1077 without dark matter
[129]. Note the logarithmic scaling on the vertical axis.

There are of course other search heuristics than GP which could be used, but there
are good reasons in favor of GP:

e It is very difficult to characterize the structure of the solution space. Not even
knowledge about the unitary transformation matrix U helps to reduce the search
space [167]. This has to be considered when choosing a search strategy.

e Local search strategies are very expensive since the entire solution must be evalu-
ated in order to evaluate the effect of a local change in a circuit candidate. Here,
GP seems to be more effective than other search strategies.

e The search method has to be “capable of considering solution structures of variable
length”[167]. GP is able to work with structures of varying sizes.

93

5 Evolution of Quantum Algorithms

5.2.1 Suitable Problems for GP-based Quantum Circuit Design

First of all, those problems for which quantum circuits could already be evolved success-
fully, are per definition suitable. Here, “successfully” means that the evolved circuit was
either at least equivalent to the existing quantum algorithm developed by hand or better
than any classical algorithm solving this problem. In Section 5.3, the different approaches
to evolutionary quantum circuit design are described in detail. Yet, the problems treated
in the related work are anticipated in Table 5.3. All these quantum algorithms, except
for 2-AND/OR, existed already and did not need to be evolved de novo.

Problem No. of max. No. of min. Circuit cf.

Qubits (n) | Fitness Cases (c) Length Section
Quantum Teleportation 3 s 8 2.8.2,534
Deutsch’s problem (2 bit) 3 8 5 2.8.1,5.3.2
Quantum search (4 items) 3 4 9/16 421,532
2-AND/OR problem 3 16 10 5.3.2
maximum entanglement 2-5 1 2 2.3.2,5.3.3

Table 5.3: List of problems for which quantum circuits could be evolved. For quantum
teleportation the number of fitness cases (third column) is theoretically infinite, since for
an appropriate quantum circuit, any quantum state has to be teleported correctly. In
practice, a small set of fitness case evaluations per individual is sufficient. However, to be
effective they have to change during the evolution. The minimal circuit length necessary
to solve the problem (fourth column) naturally depends on the elementary gate set. Here,
this length corresponds to the number of gates in the shortest solution circuit known for
a certain gate set used in the corresponding evolutionary algorithm. The circuit length
for two different elementary gate sets is shown for the 2-bit (4 items) quantum database
search problem. However, the order of magnitude is of importance, not the exact value.
A description of the problem and information about the evolutionary algorithms used
for circuit design can be found under the stated references.

What makes these problems suitable for quantum circuit evolution? First of all, only
a small number of qubits is necessary to encode the problem instances. Second, proper
quantum circuits solving the problems need only a small number of qubits. Third, the
length of the quantum circuits solving the problems are moderate. And finally, the
number of fitness cases is rather small. Only quantum teleportation has an infinite
number of fitness cases. As experiments show, for this problem it is still sufficient to look
at only a few fitness cases to evolve solutions.

Another problem suitable for automatic quantum circuit design is 1-SAT, for which
a scalable quantum circuit already exists (cf. Section 4.2.5). It has all the beneficial
properties which characterize the problems above: problem instances for n variables
need only n qubits and the number of fitness cases amounts to Y ;_, (Z) 2k which is

94

5.2 Searching the Space of Quantum Circuits

sufficiently small for small n. Due to Hogg’s implementation, the best minimal circuit
length one could expect for a certain elementary gate set including the Hadamard gate
was C'-n with a small constant C > 4. Hogg suggests the use of the input matrix plus 3n
Hadamard gates plus another diagonal matrix, which can be implemented at best using
another n gates. This is however far from being obvious. In Section 6.1, it is proven that
2n Hadamard and n Rx(3/4m) gates are still sufficient. Note, these considerations hold
only for problem instances, where the input matrix is given in Hogg’s diagonal matrix
form.

PARITY? is another suitable problem. Recently, Stadelhofer [142] presented results
on the evolution of pure and mixed state quantum algorithms solving PARITY. For n
qubits, the values of N = 2" variables x; are represented by an oracle matrix. A proper
quantum circuit has to compute o ®z1 ® ... ®xny_1. The number of fitness cases is N,
The evolved pure state circuit meets the lower bound for the query complexity, that is
the number of oracle gates applied within the circuit, which is N/2 as proven by Farhi
et al. [51]. In total, the number of gates in the n-qubit circuit adds up to N + 1.

Approzimate quantum copying, also called approzimate cloning, is possible in contrast
to exact copying (cf. Section 2.6). An optimal quantum duplicator or quantum copier,
generating two identical copies, is presented in [29]. It needs three qubits and nine gates,
six CNOT and three Rx gates. Of course, the number of fitness cases is theoretically
infinite. This should not prevent a successful evolution of such a circuit. Also a quan-
tum triplicator network, producing three copies, is suggested. However, it is not known
whether this is optimal. Moreover, it is not clear how to construct the best general mul-
tiplicator, i.e., a quantum circuit producing multiple copies. In other words, it is still a
challenge to find a “good” scalable approximate copy transformation.

It is difficult to find other problems which are prospectively suitable for quantum
circuit evolution. Common problems in computer science usually need much more qubits
to represent even smallest problem instances. Besides, proper quantum computations
may need additional ancillary qubits to work. Furthermore, only those problems are of
interest for which an evolved quantum circuit stands a chance to be better than any
classical solutions. Ultimately, this is the point!

Thinking about suitable problems must also consider “suitable” input encodings, which
are crucial for the success of quantum circuit evolution. Looking at the quantum algo-
rithms in Chapter 4 reveals: inputs (or problem instances) are often encoded as quantum
gates (input gates) and not as the initial base state of the quantum system. For example
this is the case in the Deutsch-Jozsa algorithm and in Hogg’s algorithm. Recapitulating
the meaning of input gates explained in Section 2.4.5, an input gate is a black-box hiding
a more or less complex quantum circuit which in general needs additional input and
ancillary qubits. Input gates replace the intuitive problem inputs in the form of qubit

®Here, the parity problem is whether a given Boolean function f : {0,1}™ — {0, 1} returns an even or
odd number of 1s on the 2" different inputs.

95

5 Evolution of Quantum Algorithms

assignments and provide the inputs in a preprocessed way. How this preprocessing is
implemented is of secondary importance for the quantum circuit where the input gate is
used in. Usually, the operation inherent to the input gate can be performed efficiently
by a classical circuit from which the reversible quantum circuit can be derived. The
knowledge about this is sufficient and the specific black-box circuit is not elaborated ex-
plicitly. By hiding the inside of the input gate, quantum circuits become more “legible”
and structured as they focus only on the substantial part of the algorithm.

In the context of quantum circuit evolution, the choice of the input encoding by means
of the input matrix is very important, since it influences the minimum number of qubits
and gates needed to generate a quantum circuit solving the problem. For instance, the
input matrix of Hogg’s algorithm conceals an extensive quantum circuit which calculates
the number of conflicts (cf. Section 4.2.5). To evolve this circuit, additional qubits and
quantum gates would be required making evolution much more time consuming and more
difficult. Whether a given input coding is suitable may be hard to decide in advance. In
any case, the choice of the input encoding has an effect on the evolution and the quantum
circuit solution being evolved (if at all).

The experiments and investigations made within the scope of this thesis mainly refer
to the evolution of quantum circuits for the Deutsch-Jozsa problem and 1-SAT. Addi-
tional experiments were done for the 2-AND/OR problem and the 2-bit quantum search
problem. The evolved quantum algorithms (using linear GP) correspond to the known
algorithms of Spector and Grover, but these results are not discussed here.

5.2.2 Time Consumption for Individual-Evaluations in GP-Search

The time consumption analysis, started in Section 5.1.3, is continued, now considering
the overall costs of individual evaluations arising from the evolutionary search. To do
that, it is easiest to regard the number of fitness cases as an average value, averaged over
all evaluated individuals. Section 5.4 reports about the early termination mechanism,
implemented in the GP systems to avoid further evaluations of fitness cases for individuals
which are already classifiable as being “bad”.

To convey an impression about the accumulated costs of quantum circuit simulations
during the evolutionary process, Tables 5.4 and 5.5 specify the time consumption for
different qubit numbers, average circuit lengths, different numbers of fitness cases and
individuals (10,000, 100,000, 1,000,000), each being evaluated for all fitness cases. The
selection of parameter values is based on “real” problems: the Deutsch-Jozsa problem (Ta-
ble 5.4) and the 1-SAT problem (Table 5.5). In particular, the number of fitness cases
relates to the problem specifications. The percentage values in Table 5.4 (Deutsch-Jozsa)
refer to the ratio of the number of fitness cases to its total number, which is 2 4 (2,2:1)
for a given number of qubits n. For 1-SAT, only the maximum number of fitness cases,
> by (g) 2k = 3" — 1, are considered. Moreover, the circuit lengths are chosen appropri-
ate to the problem instances, that is, they are a little larger than the optimum circuit

96

5.2 Searching the Space of Quantum Circuits

sizes. Evolution on the “edge” of the search space, caused by excessive constraints, is
generally less successful. Consequently, the maximum circuit length should always allow
adaptations to solutions from both directions, coming from the search subspace com-
prising smaller circuits and from that comprising larger circuits. However, the optimal
solution size is usually unknown in advance and it seems to be a matter of experience to
find the adequate setting.

To avoid misunderstandings, the indicated times are not determined by any GP runs
but only by multiplying the number of fitness cases, the number of individuals and the
time consumption for a single circuit evaluation, extracted from Table 5.1.

Qubits n | Length L | No. of fitness cases No. of evaluated individuals

10,000 100,000 1,000,000
2 10 8 100% 1.6 sec 16 sec 2:40 min
2 15 8 2.2 sec 22.4 sec 3:44 min
3 10 72 100% 21 sec 3:30 min 34:55 min
3 15 72 25 sec 4:06 min 40:55 min
4 15 129 1% 58 sec 9:40 min 1:36 h
4 15 1288 10% 9:40 min 1:36 h 16:06 h
4 15 12872 100% 1:36 h 16:06 h 6 days, 17 h
5 15 60108 0.001% 11:32 h 4 days, 19 h 48 days
5 15 601080 0.01% | 4 days, 19 h 48 days 480 days
5 15 6010804 0.1% 48 days 480 days 13 years

Table 5.4: Accumulated time consumption (according to Table 5.1) for the evaluation
of a multitude of quantum circuits of average length L acting on a given number of
qubits (n = 2...5). The settings for the number of fitness cases are closely related to
evolutionary runs for instances of the Deutsch-Jozsa problem.

Qubits n | Length L | No. of fitness cases No. of evaluated individuals
10,000 100,000 1,000,000
2 10 8 1.6 sec 16 sec 2:40 min
3 15 26 7.5sec 1:15 min 12:36 min
4 15 80 36 sec 6 min 1h
) 15 242 2:47 min 27:52 min 4:39 h
6 20 728 | 17:44 min 2:57h 1lday,5h

Table 5.5: Accumulated time consumption (according to Table 5.1) for the evaluation
of a multitude of quantum circuits of average length L acting on a given number of
qubits (n = 2...5). The settings for the number of fitness cases are closely related to
evolutionary runs for instances of the 1-SAT problem.

97

5 Evolution of Quantum Algorithms

Looking at the tables, the core problem becomes visible: the rapidly increasing time
consumption is jointly caused by the exponentially increasing Hilbert space and com-
binatorics. The overall number of inputs depends on the problem the quantum circuit
has to solve, and as seen for the Deutsch-Jozsa problem, may have a big impact on the
overall performance. Irrespective of this effect, even for smaller numbers of fitness cases
such as it is the case for 1-SAT, the evolutionary search has to make rapid progress, since
otherwise time is adding fast on the overall costs, owing to the large number of evaluated
individuals. These findings indicate that any evolution of a quantum algorithm, which
can find a “promising” solution, is limited to quantum systems with rather few qubits.

The following Table 5.6 supports this estimation in another way. Here, for each number
of qubits n = 2...10 and a given reasonable average circuit length L, the (average)
number of fitness case evaluations is indicated for which the evolution requires at most
one hour, expecting 100,000 examined circuits. This is of course an arbitrary example,
however, it shows very well the complexity of quantum circuit evolution.

Qubits n 2 3 4 5 6 7 8 9 10
Length L 10 10 15 15 15 20 20 25 25
No. of fitness cases | 1792 1238 800 521 313 127 69 29 15

Table 5.6: Assuming that the fitness of 100,000 quantum circuits of given length L on
n qubits has to be calculated, the table specifies the maximum number of fitness case
evaluations for each individual (on average) for which the evolution requires at most one
hour. The data is inferred from Table 5.1.

Some further comments on the tables above and on evolutionary search of quantum
circuits in general appear relevant:

e The measurements consider only time consumption in the context of quantum
circuit evaluations, that is, matrix-vector multiplications. They do not consider
the fitness function evaluation, and other costs resulting from the GP system, e. g.
by applying genetic operators.

e As already mentioned, the circuit lengths are chosen appropriately following al-
ready known minimum solutions. For other problems the mandatory number of
circuits might be much larger. The time consumption would increase to astro-
nomical numbers, assuming the present upper limit for the length of an arbitrary
quantum circuit decomposition (into elementary gates) to be the maximum length
of quantum circuits (cf. Section 2.4.4).

e In this context, it is also important to realize that requiring smallest possible solu-
tions usually makes evolution substantially harder. In [94] W.B. Langdon analyzes
evolutionary search of reversible classical circuits solving the Boolean Six Multi-

98

5.3 Previous Work

plexor problem. He concludes that “these examples provide additional evidence,
that requiring tiny solutions hurts evolvability”.

e The tables do not state anything about the influence of the (in length L) expo-
nentially increasing search space on the evolutionary search. The structure of the
search space (when assigning each individual its fitness value) is, of course depen-
dent on the problem. In fact, in the case of the Deutsch-Jozsa problem, the number
of evaluated individuals on the average until a proper individual is found increases
rapidly with the problem size, i. e., with any additional qubit (cf. with various plots
in Chapter 6).

e Even when early termination or other mechanisms for saving fitness evaluations
are applied, a quantum circuit is only a solution if it works properly on every input
and, sooner or later, the circuit has to be applied to all inputs.

e The termination criterion of the evolutionary runs determines the duration of the
evolution. Such a criterion might be a fitness threshold which is achieved or a
certain number of evaluations of GP individuals which is exceeded. The search for
a shortest quantum circuit solving a given problem is usually much more difficult
and therefore time consuming. An approximately good solution may be “good
enough”. Besides, optimizing such a solution in a postprocessing step might be
much faster than continued searching for the shortest result.

e The times are determined on a certain computer. Of course, other computers
are much faster and will reduce the time consumption. Furthermore, matrix-vector
multiplications with matrices of the given block-structure are well suited for parallel
computations. This can again save much time.

5.3 Previous Work

5.3.1 Automated Circuit Design by Williams & Gray

The idea of using genetic programming to design quantum circuits was discussed first in
[167]. Given a unitary matrix U representing a desired quantum computation the aim
was to find its decomposition into a sequence of simple quantum gate operations. In
contrast to subsequent GP schemes for the evolution of quantum circuits, a circuit for
the given problem is already known.

Williams and Gray focused on demonstrating a GP-based search heuristic which finds
a correct circuit more efficiently than the exhaustive enumeration strategy. For this
purpose they applied successfully a GP algorithm to the problem of discovering quantum
circuits for the ‘send’” and ‘receive’ parts of quantum teleportation [15, 22]. In ten runs
26.4 generations were required on the average until the ‘send circuit’ with three qubits was

99

5 Evolution of Quantum Algorithms

Algorithm: generational GP

Program Structure: | linear

Function Set: finite, approximate-universal quantum gate set;
adequate undercomplete subsets, e.g. {CNOT, L, R}

Terminal Set: the initial system state, e.g. |0),

the qubits acted on by the gate,
continuous gate parameters (were not implemented)

Representation: a 3-tuple consisting of the gate matrix or its name respectively,
gate parameters if any and the embedding (the qubits, the gate
is working on followed by the total number of qubits);

e.g. {H, params[], {1;3}}

Fitness Function: f(S,U) =37, Z?il \Uij — Sij|, where S,U € U(2");

S is the unitary matrix of the quantum circuit generated by GP,
U is the unitary matrix of the target circuit

Selection: ranking-based scheme;

the selection probability corresponds to a quadratic form P(r) =
ar? + br + ¢, where r is the individual’s ranking

Genetic Operators: | mutation, i.e. changing only a gate’s embedding,

substitution (replacing existing gates),

crossover (given two circuits A and B, only one child is created),
transposition (inserting a subcircuit of A in circuit B),
insertion (of a randomly constructed gate sequence),

deletion (of a random subcircuit)

Termination: f(S,U)=0

Table 5.7: The GP algorithm by Williams and Gray, used to evolve decompositions of
the unitary matrices representing the ‘receive’ and the ‘send circuit’.

found, using a population size of 100 circuits. The evolved ‘receive circuit’ (Figure 5.6)
was even better than the best known teleportation receiver so far. For both evolutions
the gate selection set consisted of the three gates L= X H, R= Z- H and CNOT. The
specifications of the utilized GP algorithm are summarized in Table 5.7.

5.3.2 Quantum Circuit Evolution by Spector et al.

To evolve new quantum algorithms, in [140] Spector et al. draw up three GP schemes:
the standard tree-based GP (TGP) and both stack-based and stackless linear genome
GP (SBLGP/SLLGP). These are applied to evolve algorithms for Deutsch’s two-bit
early promise problem using TGP, the scaling majority-on problem using TGP as well,
the quantum four-item database search problem using SBLGP, and the two-bit-and-

100

5.3 Previous Work

or problem using SLLGP. The scaling majority-on problem is the same as Deutsch’s
problem, except that f may be any arbitrary Boolean function, that is, not necessar-
ily constant or balanced. A program has to determine if the majority of the function’s
outputs are ‘1’. The two-bit-and-or problem is to determine whether the expression
(f(0) Vv f(1)) A(f(2) V f(3)) is true or false for a Boolean two-bit function f. Better-
than-classical algorithms could be evolved for all but the scaling majority-on problem.
TGP and SBLGP are also designed to find scalable quantum algorithms using a second-
order encoding technique. That is, the GP system evolves a classical program which,
when executed generates a quantum algorithm dependent on the size of the problem
instance it is applied to. In the following, the three GP schemes are described in more
detail.

The TGP approach (Table 5.8) uses three different kinds of functions: algorithm-
building functions, iteration control structures and arithmetic functions. The former add
gates from the set { H, RY (0), CNOT, NOT-CCNOT, ORACLE } to an initial empty
quantum algorithm. The number and kind of arguments of these functions depend on
the gate they represent. The return value is only a copy of one of its input arguments.
Thus, in the sense of functional programming, the quantum algorithms are built by
‘side-effects’ of the algorithm-building functions. As the apparent pointless return values
are again inputs to any other functions, this may still affect the construction of the
quantum algorithm. The iteration control structures were included to help evolve scalable
quantum algorithms. Arithmetic functions operating on terminals and return values of
other functions are +, 14, —, 1—, %, %2, sqrt, %p (protected division), %2, and 1/z.

In the SBLGP system (Table 5.9), a linear program consists of functions, which can
use a global stack for temporary data storage. For that purpose the algorithm-building
functions and arithmetic functions of TGP are easily adapted: The algorithm-building
functions do not return any values on the stack and the arithmetic functions take their
arguments from the stack and return the result on it. Stack-based iteration mechanisms
replace the iteration structures from TGP. Furthermore, some stack-related functions like
pop (to remove the top stack element) are added. To get to a degree constant memory
requirement during the evolution, the program length is fixed. To still allow for shorter
programs, a non-functional noop operator is used.

The SLLGP scheme (Table 5.9) abandons the iteration structures, which allow for
scaling of quantum algorithms. As it is not necessary for the gates to share parameter
values, stack and return values are dispensable. Thus, the function set can be reduced to
the noop function and so-called encapsulated gates, which combine the gate type and its
essential parameter values. SLLGP uses ephemeral-random-quantum-gate, a function
which creates an encapsulated gate at random.

The fitness function is the same for all three GP schemes. The evaluation depends on
three components: misses, which is the number of fitness cases in which the program
failed, the total error of these fitness cases and the program length, and the number of
gates in the quantum algorithm. Here, ‘failed’ means that the probability for a correct

101

5 Evolution of Quantum Algorithms

T
Rt

Figure 5.6: An efficient ‘receive circuit’ found by GP.

Algorithm: generational GP

Program Structure: | tree

Initialization: ramped half-and-half method

Function Set: algorithm-building functions for a set of gates;

iteration control structures;
arithmetic functions

Terminal Set: system constants: number of qubits, number of input/output
qubits;
random floating point constants and other useful constants
(0,1,2,m,1)

Representation: functions/operations in prefix notation

Fitness Function: standardized, 3-component (misses,error,length) function with

lexicographic ordering

Selection: tournament

Genetic Operators: | reproduction, tree crossover (at any point/ at function points),
mutation
Termination: max. generations exceeded or threshold fitness achieved

Table 5.8: The standard TGP algorithm by Spector et al., used to evolve solutions for
Deutsch’s two-bit early promise problem and the scaling majority-on problem.

102

5.3 Previous Work

Algorithm: generational GP

Program Structure: | linear, stack-based (SBLGP) or stackless (SLLGP)

Function Set: SBLGP:

algorithm-building functions for a set of gates, incl. noop, arith-
metic functions, stack-related functions (pop, etc.), iteration
control structures (optional);

SLLGP:
ephemeral-random-quantum-gate, noop
Terminal Set: SBLGP:
random floating point constants and other useful constants
(0,1,2,m,1)
Fitness Function: standardized, 3-component (misses,error,length) function with

lexicographic ordering

Selection: tournament

Genetic Operators: | several linear crossover and mutation operators

Termination: max. generations exceeded or threshold fitness achieved

Table 5.9: Both stack-based and stackless linear GP (SBLGP/SLLGP) algorithms, ap-
plied to solve the quantum four-item database search problem and the two-bit-and-or
problem.

output is below 0.48. The three components are used in the above mentioned order
(misses (most significant), error, length (least significant)) in a standardized lexicographic
fitness function.

Without doing a thorough comparison, Spector et al. point out some pros and cons of
the three GP schemes. The tree structure of individuals in TGP simplifies the evolution
of scalable quantum circuits as it seems to be predestined “for adaptive determination of
program size and shape” [140]. For that reason, in addition to constants for the qubit
operands and some parameter values, the terminal set also contains a constant for the
number of qubits in the quantum system. Then, the scalability of a quantum program
can be tested with several input values for the number of qubits. A disadvantage of
the tree representation is its higher costs of time, space and complexity. Furthermore,
possible return-value/side-effect interactions may make evolution more complicated for
GP. The linear representation in SBLGP/SLLGP seems to be better suited to evolution
because the quantum algorithms are themselves sequential. Moreover, the genetic oper-
ators in linear GP are simpler to implement and the memory requirements are perspic-
uously reduced compared to TGP. The return-value/side-effect interaction is eliminated
in SBLGP, as the algorithm-building functions do not return any values. Overall, Spec-
tor et al. state that applied to their chosen problems, results appeared to emerge more
quickly with SBLGP than with TGP. If scalability of the quantum algorithms is not so
important, the SLLGP approach is to be preferred.

103

5 Evolution of Quantum Algorithms

Some parameter settings for runs on the different problems are listed in tables 5.10

and 5.11.

Concerning the evolved results, it is noted that though the best evolved quantum cir-
cuit for Deutsch’s two-bit early promise problem is better than classical, it is clearly worse
than Deutsch’s algorithm (max. error prob. is 0.3). For the scaling majority-on problem,
the GP system found a quantum algorithm comparable to a probabilistic classical algo-
rithm, but not better than classical. The solution found for the 4-item database search
problem essentially matched Grover’s algorithm, except for some unimportant algebraic
sign changes for some computational basis states. A better-than-classical quantum algo-

rithm could be evolved for the two-bit and-or problem.

Population Size:
Max. Generations:
Max. Tree Depth of New Individuals:

Max. Depth after Crossover:
Reproduction Prob.:

Crossover Prob. (any points):
Crossover Prob. (function points):
Mutation Prob.:

Tournament Selection Size:

Max. Depth of New Subtrees for Mutants: | 4

10000
1001
6

12
0.2
0.1
0.5
0.2
)

Table 5.10: Parameter settings in the GP algorithms for Deutsch’s two-bit early
promise problem and the scaling majority-on problem for n-bit oracles with

n=1...4.
4-DBSP 2-AND/OR

Max. Generations: 1001 1000
Population Size: 1000 100
Max. Number of Gates: 256 32
Reproduction Prob.: 0.5 0.2
Crossover Prob.: 0.1 0.4
Mutation Prob.: 0.4 0.4
Tournament Selection Size: | 5 8

Table 5.11: GP parameters for runs on the quantum four-item database search problem
(4-DBSP) and the two-bit-and-or problem (2-AND/OR).

104

5.3 Previous Work

Spector et al. improved their stackless linear GP system. Their newer system, presented
in [139] and [10], is steady-state* and supports true variable-length genomes. The func-
tion set is composed of the following gates: H, U(0) := Ry (—0), Us [, 0, ¢, 9] (general
one-qubit gate in Z-Y decomposition), CNOT, CPH (v»), ORACLE (or Uy respectively),
MO0, M1, M. The measurement gates Mz terminate the computation if the result x is
obtained. The fitness components were completed by expected-queries, the number of or-
acle queries being expected, averaged over all fitness cases. Genetic Operators included
in the system are

e Reproduction: produces a new copy of an individual;

e (Crossover: produces a new individual by appending an initial segment of one parent
to a tail segment of the other parent;

e Mutation: substitutes a single instruction (gate) by a randomly generated instruc-
tion;

e Insertion: inserts a gate sequence, randomly created or chosen from another indi-
vidual, in a given individual;

e Deletion: removes a gate sequence from a given individual;
e Angle-Mutation: works only on gates with angle parameters;

e Minimization: each gate in the individual is checked, whether it can be removed to
achieve a better fitness;

e Pair-Minimization: like minimization, but examines every pair of gates for possible
removal;

e Multiple-Angle-Perturbation: creates a new individual by adding small constants
to a sample of angle parameters randomly chosen from another individual

Both minimization and pair-minimization perform a local hill-climbing search, which is
very expensive, but whose profit is not sufficiently proven. Moreover, the evolution can
be distributed across a cluster of workstations. Applied to the two-bit-and-or problem,
the new GP scheme found an improved quantum algorithm. A hand-tuned version is
illustrated in Figure 5.7.

Lee Spector compiles these and additional results in his book [138] which will probably
be available later on this year. There, he intensively deals with the application of genetic
programming to the automatic programming of quantum computers.

“Note: The GP systems described above are supposed to be generational, not steady-state, but it is
not specified how the tournament selection is implemented in this context.

105

5 Evolution of Quantum Algorithms

2 U@+ HH Mo
Uy
1 — H — H — Ml
0 < Ry()H Z H M |—

Figure 5.7: Quantum circuit for the 2-AND/OR-problem, with § = 7/4 and ¢ =
0.0749.. ..

5.3.3 Rubinstein’s GP Scheme

In [127], another GP scheme is presented and its working demonstrated by generating
quantum circuits for the production of between two and five maximally entangled qubits
(Figure 5.8) in the form 1/v/2(|00...0)+|11...1)). In this scheme, gates are represented
by a gate type and by bit-strings coding the qubit operands and gate parameters. Qubit
operands and parameters have to be interpreted appropriate to the gate type. Assigning
a binary key to each gate type, the gate representation is completely based on bit strings.

M

%
M
% %
N N
% %

4H4Q7 4H4‘7

N N
N N

Figure 5.8: Quantum circuits for the four and five-entangled qubit problem

Two examples: assuming a 3-qubit circuit and a function set of eight quantum gates,
the bit-string 011 100 001 might decode to the CNOT gate (011) with the leftmost qubit
as the control qubit (100) and the rightmost qubit as the target (001) whereas the bit-
string 1000101100101 might decode to a simple rotation gate RY (100) acting on the
middle qubit (010) with a real-valued parameter (1100101) specifying the rotation angle
when mapped to a specific interval, e.g. [—7, 7].

The genetic operators, applied in this GP scheme are:

e mutation of a quantum gate by replacing it with a new random gate;

e crossover between two parent circuits, i.e. swapping all gates between the parents

106

5.3 Previous Work

after randomly chosen gates, the crossing points, in the parent circuits (standard
linear crossover);

e crossover between binary strings of like structure (qubit or parameter strings), i.e.
swapping the bits between two strings after a randomly chosen crossing point.

The two crossover operators are combined using uniform and weighted crossover. In
uniform crossover, a gate, a qubit operand or a parameter are chosen at random from a
parent circuit, deciding which crossover operator has to be applied. In weighted crossover,
a gate, qubit operand (normal, target or control qubit) and parameter binary string have
associated weights for the random selection.

A fitness case consists of the input quantum register and the corresponding desired
output quantum register. A measure for the fitness of an individual is the error (see Table
5.12), the sum of magnitudes of the differences between the amplitudes of the outcome
register and the desired output for all fitness cases. To get a standardized fitness function,
i.e. the fitness value lies in the range [0,1], the calculated error is divided by the error
of the worst individual so far.

Further specifications of the GP algorithm are shown in Table 5.12, some parameter
settings for the GP runs on the n-entangled qubit problem are listed in Table 5.13.

Algorithm: generational GP
Program Structure: | linear
Function Set: adequate finite quantum gate set (incl. measurement gate)
Representation: bit-strings
Terminal Set: number of qubits n and
the bit length for gate parameters
Fitness Function: error =y, 25261 loij — dij|, where o, is the amplitude of the

outcome register and d;, the amplitude of the desired output
register for each fitness case i

Selection: roulette wheel selection

Genetic Operators: | mutation (with very small probability)
gate crossover (linear crossover)
qubit and parameter bit-string crossover (fixed length crossover)

Termination: max. generations exceeded or
threshold fitness achieved

Table 5.12: The GP scheme by Rubinstein, applied to evolve maximally entangled quan-
tum states.

107

5 Evolution of Quantum Algorithms

Generations: 50
Population Size: 5000
n (Number of Qubits): | 2...5
Max. Number of Gates: | 3

Threshold Fitness: 0.001

Crossover Prob.: 0.8

Mutation Prob.: 0.01

Kind of Crossover: uniform

Quantum Gates: ID, H, NOT, CNOT, NOT-

CCNOT, CPH(0), RY (0), M

Table 5.13: Some parameter settings in Rubinstein’s GP scheme for the n-entangled qubit
problem.

5.3.4 GAs for Quantum Circuit Design according to Yabuki & Iba

In [168], Yabuki and Iba present a genetic algorithm® to evolve a quantum circuit for
quantum teleportation (cf. Section 2.8.2). They use the same set of gates {CNOT, L, R}
as Williams and Gray. Quantum circuit individuals are represented by strings of fixed
length (genes) over a four letter alphabet. The string is composed of codons each consist-
ing of three letters. One of the four letters is used to separate the string into three parts,
provided that it is found at the first position of a codon: One part for the EPR pair
generation, one for Alice (A) and one for Bob (B). The second occurrence of this letter,
separating between A’s “send”™ and B’s “receive’-circuit, is always connected to a single
measurement of the first and second qubit at the end of A’s part. Other occurrences are
without any relevance. The interpretation of a codon as a quantum gate depends on the
part the codon is in. Further constraints were given, for example that in the EPR-part
only the zeroth and first qubit and in A’s part only the first and the second qubit can
be operated.

Further specifications of the GA algorithm are shown in Table 5.14. Some parameter
settings for the GA runs are listed in Table 5.15.

The simplest evolved quantum circuit for quantum teleportation uses eight gates in-
cluding A’s measurement, two for generating the EPR pair, and three gates each for the
“send”- and “receive’-circuit.

5The main difference between GP and GA is the representation of individuals, which is modeled on
genes, and their fixed length.

108

5.3 Previous Work

Algorithm:

fixed length GA

Program Structure:

linear

Function Set:

adequate (problem specific) finite quantum gate set;

Representation:

string over a four letter alphabet, composed of three letter
codons, each codon represents a specific gate, different codons
may encode identical gates

Terminal Set:

the initial system state;
for the particular problem: (p|0) 4 ¢|1)) ® |0) ® |0);

Fitness Function:

problem specific; for the particular problem: [= 1/(1 +
10>, errorj), where error; is a certain error function rating
the difference between the actual output and the desired output
for each fitness case.

Selection:

roulette wheel selection

Genetic Operators:

mutation
two-point crossover

Termination:

max. generations exceeded

Table 5.14: GA scheme by Yabuki and Iba, used to evolve a quantum teleportation circuit.

Generations: 1000
Population Size: 5000
n (Number of Qubits): | 3
String (Gene) length: | < 150

Crossover Prob.: 0.7
Mutation Prob.: 1/(gene length)
Quantum Gates: {CNOT, L, R};

(corresponds to < 50 gates)

a single measurement is im-
plicitly provided

Table 5.15: Some parameter settings for teleportation circuit evolution.

109

5 Evolution of Quantum Algorithms

5.4 Implemented GP Systems for Quantum Circuit
Evolution

In the course of this thesis, two GP systems were implemented in the programming
language C++, a linear and a linear tree GP. This section specifies these GP systems
according to their genome structure and describes the implemented genetic operators.
Furthermore, it gives some additional information on the evaluation of individuals and the
used fitness functions. Special implementations such as additional selection mechanisms
which are part of certain explorations are explained in the corresponding Sections.

Two other GP systems were implemented, this thesis does not deal with this (but
nevertheless they should be mentioned):

Inspired by [65, 94|, a modified linear GP sytem was built to evolve CNOT circuits,
i.e. circuits exclusively using CNOT gates or C*NOT gates with k < n for circuits on
n qubits. They can be identified as classical circuits, if they are exclusively applied to
basis states. These gates are not universal for quantum computation but they suffice to
build any classical Boolean circuit as the Toffoli gate (CCNOT) is universal for classical
reversible computation. Some simple arithmetical circuits for addition and multiplication
modulo N could be evolved.

Another GP system was implemented for matrix decomposition based on elementary
quantum gates, such as they are used in NMR quantum computing. This was applied
to the 2- and 3-qubit QFT resulting in suitable, experimentally implementable quantum
algorithms.

5.4.1 Genome Structure - linear vs. linear-tree GP

Intermediate measurements in quantum circuits compare to conditional branchings in
programming languages. Due to this, quantum circuits have a natural linear-tree struc-
ture. Linear-tree GP naturally supports the use of measurements as an intermediate step
in quantum circuits. It was built to achieve more “degrees of freedom” in the construc-
tion and evolution of quantum circuits compared to stricter linear GP schemes (like in
[127, 140]). Moreover, the linear-tree structure may simplify legibility and interpretation
of quantum algorithms. A simple example, given in [107], is the quantum teleportation
circuit, described in Section 2.8.2 and shown in Figure 2.15. In principle the teleportation
circuit can be transformed into another circuit having no intermediate measurement in
A’s part. In this case, the resulting circuit would hardly be interpreted as a quantum
teleportation circuit.

However, the principle of deferred measurements suggests a purely sequential circuit
structure. The advantage of the linear genome structure is the disadvantage of the linear-
tree structure of quantum circuits, where higher costs for administration and fitness
evaluation arise from the additional tree structure.

110

5.4 Implemented GP Systems for Quantum Circuit Evolution

The structure of individuals in the linear-tree GP system consists of linear program
segments, which are sequences of unitary quantum gates (instructions), and branchings
caused by single qubit measurement with respect to the standard basis {|0), |1)}. Depend-
ing on the measurement result, ‘0’ or ‘1’, the corresponding linear program branch, the
‘0’- or ‘1’-branch is executed. That is, the measurement gate is employed to conditionally
control subsequent quantum gates, like an “if-then-else’-construct in a programming lan-
guage. Since measurement results occur with certain probabilities, usually both branches
have to be evaluated. Therefore, the quantum gates in the ‘0’- and ‘1’-branch have to be
applied to their respective post-measurement states. From the branching probabilities
the probabilities for each final quantum state can be calculated.

For an arbitrary individual, information about its structure is administered, including
the start and the branching nodes, the length of their linear subprograms (‘0’- and ‘1’-
branch), the number of branchings and the total program length (number of unitary
gates plus measurements). The start node is a special node without any functional
meaning. By convention, the start node has (only) a ‘0’-branch and the ‘1’-length is
set to 0. This information is helpful for implementing the linear and tree crossover
operators. Figure 5.9 illustrates the genome structure and shows the information stored
for the exemplary individual. The maximum number of possible branches is set by a
global system parameter; without using any measurement gates genomes have just a
linear structure. Nevertheless, also an independent merely linear GP system without any
structural overhead was implemented. The overall length or size of a quantum circuit,
i.e. the number of quantum gates, is limited by a global parameter value as well.

5.4.2 Genetic Operators

For the linear GP scheme a crossover operator and different mutation operators are
implemented. The linear crossover operator is already described in Section 3.3.2, Figure
3.7. The following mutation operators used are

e random deletion of a single quantum gate in the quantum circuit,

e insertion of a single quantum gate randomly chosen from the pool of quantum
gates at a random position,

e random replacement of a single quantum gate by a randomly chosen quantum gate
from the pool,

e alteration of parameters of a randomly chosen single quantum gate (if a gate has
more than one parameter, the parameter to be mutated is chosen randomly), and

e random swap of two neighboring quantum gates in the circuit.

Crossover and mutation rate can be set by global system parameters. Either both ge-
netic operators are applied or only one of them which is controlled by another system

111

5 Evolution of Quantum Algorithms

start

structural information:

no. 0 1 2
knots R N
‘0’-length: 3 1 1
‘1’-length: 0 2 1
program length: 10

number of branchings: 2

(17 (07
(a) Program structure. (b) Stored program information.

Figure 5.9: Individual with linear-tree genome. Solid circles represent single qubit mea-
surements, open circles correspond to instructions and the pattern filled circle marks the
start of the quantum program.

112

5.4 Implemented GP Systems for Quantum Circuit Evolution

parameter. Which mutation operator is applied is determined at random considering the
different number of possibilities for each mutation operator. That means, for example
that a certain swap operation of L — 1 possible swap operations in a circuit of length L
is as likely as any of the possible L deletions or replacements. Therefore, on average a
replacement will occur more often than a swap or a deletion.

The linear-tree GP scheme uses linear and tree crossover. For linear crossover, two
randomly chosen linear program sequences are swapped. For tree crossover, in each in-
dividual a subtree — not necessarily the left or right subtree belonging to a a branching
instruction — is randomly chosen and completely swapped. The mutation operators
implemented in linear-tree GP are just random deletion, random insertion and random
replacement. Applied to a non-branching (non-measurement) instruction the operators
act as in the linear GP scheme. If a measurement gate is deleted, then one of its sub-
trees is randomly chosen and deleted as well. If a measurement gate is inserted, then
the remaining subtree is randomly connected either as the ‘0’- or the ‘1’-branch of the
measurement. The replacement operator is implemented accordingly to these directions.

5.4.3 Fitness Cases and Fitness Functions

The fitness value decides whether an individual participates in the evolutionary process
and, thus contributes or not to the evolution of a solution. The fitness value is calculated
by a fitness function on the basis of fitness cases, which are pairs of inputs and the
corresponding desired outputs of a certain given problem. There are many ways to
define fitness cases, especially the outputs, and the fitness function which may lead to
completely different search spaces and fitness landscapes which result from assigning each
individual its fitness value. In the following, two of them are described exemplarily for the
Deutsch-Jozsa problem (cf. Section 2.8.1). The GP systems can handle both descriptions
of fitness cases and have implemented the appropriate fitness functions described below.

Specific Basis State Representation
Desired outputs for problem instances of the Deutsch-Jozsa problem (and also 1-SAT)
can be defined as certain basis states or superpositions of certain basis states representing
a solution (or several solutions as in the case of 1-SAT) to the problem. For example,
for n = 2 (three qubits), any superposition state 22:0 ag|2)|1) with Y |a,|* = 1 might
represent a constant function while any other state represents a balanced function. Then,
measuring the state would lead to a basis state | — —1) for the two constant and | — —0)
for the six balanced function, where a '—’ (don’t care) allows any replacement by 0 or 1.
An individual’s fitness is basically determined by the probabilities for each fitness case
of measuring a wrong basis state, i.e., | — —0) when a basis state | — —1) is demanded
and vice versa.

The fitness function takes a few specific values of the individual’s evaluation into
account:

113

5 Evolution of Quantum Algorithms

e the number of misses M, that is, the number of fitness cases, where the probability
for a correct result of the individual is below a certain threshold value, e.g., 0.52,

e the mazimum error €,4s, which is the maximum probability for an incorrect result
over all fitness cases,

e the total error €,.., which is the error accumulated over all fitness cases, and

e the number of quantum gates, num, the individual consists of; this is optionally
used to force the evolution to find smaller solutions.

These fitness components enter the fitness function with varying weights. The number
of gates is the input parameter of a special penalty function p(num). It is defined as

p(num) = (1/7) - [arctan(0.5 - (num — ip)) + arctan(0.5 - ip)],

where ip is a system parameter fixing the inflection point and shifting the function
along the x-axis if altered. Figure 5.10 shows a typical graph of the penalty function.
Of course, other penalty functions are conceivable. As is the case for this function,
the penalty should be still very small and increase slowly for circuit lengths as long as
they are below a certain threshold. Higher penalty values put enhanced pressure to the
evolution of small individuals but simultaneously reduce the pressure to the evolution of
good solutions. That is, the larger the penalty value the higher the risk that the evolution
favors smaller individuals above better but larger individuals.

Example of a (Weighted) Penalty Function

1
—
0.8 /
> 0.6
S
% /
& 04 /
0.2
0
0 20 40 60 80 100
No. of Gates

Figure 5.10: Example for a penalty function already weighted with 0.1 to illustrate the
real penalty. The system parameter ip defines the position of the inflection point. The
plot shows 0.1 - p(num) for ip = 50.

114

5.4 Implemented GP Systems for Quantum Circuit Evolution

The fitness function then reads as follows:
f=M/c-04+ €nar - 0.3+ €4ec/c - 0.2+ p(num) - 0.1 (5.1)

where the values of M, €4z, €ace and num relate to a given individual and c is the
number of fitness cases. The fitness function is standardized and normalized.

The idea of using fitness components is adopted from [140]. Instead of combining these
components in lexicographic ordering as recommended in [140], the fitness value is calcu-
lated as the sum of the weighted components. The weighting is developed by experience.
Although other values might be suitable, it is a useful prioritization of the components.
The components misses, mazimum error and total error are not independent of each
other. The three goals in the optimization are to some extent complementary. A nec-
essary criterion for an individual to be a solution is that the number of misses is zero.
Therefore, the number of misses gets the highest weight. The maximum error is weighted
higher than the total error. In doing so, solutions with smaller maximum error are favored
above those with a smaller total error. Since too much emphasis on minimal solutions
is counterproductive to evolution, the weight of the number of quantum gates is rather
small.

Assessing Classification

Actually, the Deutsch-Jozsa problem is a classification problem, that is, a solution has to
distinguish inputs of several different classes. In the case of the Deutsch-Jozsa problem,
these are the class of constant Boolean functions (A) and the class of balanced Boolean
functions (B).

A fitness case for a Deutsch-Jozsa problem instance then consists of a Boolean function
f, represented by a suitable oracle matrix Uy (cf. Section 2.4.5), and a tag determining
the property of the function and therefore the class this fitness case belongs to. The
fitness of a quantum program is then calculated according to the program’s quality to
identify the class of every input (for DJ: the property of a given function f).

To obtain a fitness value, a quantum circuit is evaluated for each input matrix. For
this purpose, the sequence of gates is applied to the initial basis state resulting in a
final quantum state. The initial basis state is [0...0) by default, but this can also be
changed from fitness case to fitness case. For the Deutsch-Jozsa problem, there is no need
for other initial bases states. After circuit evaluation, the results, i.e., the probability
vectors corresponding to fitness cases of each class are compared with the probability vec-
tors corresponding to the fitness cases of every other class. In case of the Deutsch-Jozsa
problem, the outputs corresponding to balanced functions are compared with those cor-
responding to the two constant functions. On the basis of the measurement probabilities
(for every basis state) the determinability of the classification by the quantum algorithm
is quantified by the fitness value.

6 A similar fitness approach is implemented by R. Stadelhofer in his GP system for NMR-based quantum
circuit design [141].

115

5 Evolution of Quantum Algorithms

Going into detail, the probability vector coefficients p1[z] and ps[x] corresponding to
base state |z) are compared to p = 1/2", which is the probability for measuring any
n-qubit basis state of an equally weighted superposition. If both coefficients are larger
or equal to p, this is interpreted as a misclassification, since for both fitness cases there
is a reasonable probability of measuring the same result |z), which would not make both
cases distinguishable. Misclassifications are counted only once for a pair of fitness cases.
However, the probabilities are also added to the undecidability value of the corresponding
fitness case. It is also rated as an undecidability when both probabilities p;[z] and pa[z]
are smaller than p. Added up over all z, the larger amount of the two undecidability
values for the respective fitness cases is added to an overall undecidability value. If one
probability is larger and the other smaller than p, the outcome |z) might be a distinctive
characteristic of the two fitness cases. But there might be still an error, which is summed
up in a separate variable. The whole calculation is summarized in the following algorithm.

Algorithm

(* Cl is the set of all classes; ¢; and co are fitness cases from two of these classes
(C1 and C%); p1 and py are the 2™-dimensional probability vectors resulting from
the evaluation of the given quantum circuit for the two fitness cases ¢; and ca; p
is a constant representing a threshold value for misclassification and undecidability;
misclassifications are notified in misclass and summed up in the variable miss;
undecy, undecy are the undecidabilities for every two compared fitness cases; undec
is the sum of the maximum of undecidabilities over all pairs of fitness cases of
different classes; err stores the error, summed up over all pairs of fitness cases of
different classes; x)

1. p<1/2"

2. for all{Cl,Cg} with Cl,CQ S Cl,Cl 7& CQ

3. do (x for all two different classes x)

4. for 311(61,02) € C1 x Oy

D. do (x for all pairs of fitness cases from C; and Cs *)
6. undecy < 0

7. undecy «— 0

8. misclass «— false

9. forz —0to2" -1

10. do (x for all possible basis states)
11. if (p1[z] > p) and (p2[z] > p)

12. then misclass «— true

13. undecy < undecy + p1[z]
14. undecy «— undecs + pa|z]
15. if (p1]x] < p) and (p2]z] < p)

16. then undec; «— undec; + p1[x]
17. undecy «— undecy + pa[z]

116

5.4 Implemented GP Systems for Quantum Circuit Evolution

18, if (¢ [2] < p) and (pafz] > p)
19. then err «— err + pi[x]

20. if (p1[z] = p) and (p2[z] < p)
21. then err < err + pa[z]

22. if (undecy > undecs)

23. then undec «— undec + undecy

24. else wundec «+— undec + undecy

25. if (misclass)

26. then miss + +

Finally, concerning a certain individual, the number of pairs of fitness cases where
misclassification is detected (miss), the undecidability value (undec), the total error (err)
and the number of gates (num) enter the fitness function. The first three components
are normalized, i.e., divided by the number of fitness case comparisons ¢. The number
of gates enters the penalty function p(num), and all four resulting values are weighted.
The fitness function reads then as follows:

f=miss/c-0.4+ undec/c-0.3+err/c-0.2 + p(num) - 0.1 (5.2)

Here, the weighting is chosen as it is already used in the fitness function previously
introduced (Equation 5.1). A higher number of quantum gates in a genotype leads
to a slightly increased fitness value due to the size penalty. The fitness function is
standardized. The values of the fitness components are normalized, as is the fitness
function. However, some fitness components depend on each other, excluding that they
both get their highest possible value at the same time. This is the reason why for the
“classification assessment” 0.7 is the highest possible value (neglecting the size penalty):
The number of misclassifications is at maximum equal to ¢ and each misclassification
contributes an undecidability of 1. In this case, there are no other errors adding to the
overall fitness value.

The threshold p, the detection of misclassifications is based on, is debatable. Consider
for example the case that pi[0] = p2[0] = p = 1/2", p1[1] = 1 —p, p2[2] = 1 — p for a pair
of fitness cases from different classes. Then, this would be counted as a misclassification
although for large n the probability for a correct classification or differentiation of these
two fitness cases is close to 1. However, for small numbers of n as they are used in the ex-
periments described below (n < 4), the value of p is large enough to not exclude problem
solutions from being evolved. In the experiments concerning the evolution of quantum
circuits for the Deutsch-Jozsa problem this fitness function was successfully applied. Yet,
for further experiments (with larger n) the fitness function should define misclassifica-
tions in a different way or even omit them and assess the quality of classification only on
the basis of undecidability.

117

5 Evolution of Quantum Algorithms

Training Sets and Early Termination

Usually, a GP-system works on a training set of fitness cases to evolve a proper solution
of a given problem. To appraise the true quality of the best evolved solutions, they are
applied to a test set of fitness cases not included in the training set. The GP systems used
for the investigations in the course of this thesis do not distinguish between training and
test sets of fitness cases, i.e., there is no assessment step other than fitness calculation
based on the training set.

It should be the aim to find solutions for any possible inputs and not only for some
subsets. This applies especially to those problems where proper quantum algorithms
already exist. Anything else than finding true solutions would be very unsatisfactory.
Selecting all possible fitness cases as the training set ensures, unfortunately at great
expense, that an evolved quantum circuit is a solution of the problem and not only for
certain fitness cases.”

Some evolutionary runs made for DJ and 1-SAT using small random subsets of the
entire set of fitness cases did not lead to quantum circuits properly solving all possible
fitness cases. Yet, these experiments do not have statistical evidence due to the small
number of runs. However, they indicate that evolution of good solutions is difficult when
using only small subsets of fitness cases for certain problems and that the selection of
training sets is a demanding task. Conversely, for some other problems like quantum
teleportation it is possible to evolve universally valid solutions (quantum circuits) using
only a rather limited number of fitness cases even though the set of all fitness cases is
infinite [168]. It is apparently a characteristic of the problem whether and how fitness
cases build “groups of representatives”, comparable to equivalence classes, where for each
group one fitness case is as “good” as any other to be chosen for the training set, but where
also a selection of representatives of each class is necessary for a successful evolution of
a problem solution.

Entailing huge costs, large numbers of fitness case evaluations per individual for fitness
calculation are a general problem in GP. Consequently, different subset selection methods
were developed allowing an individual’s fitness to be calculated only on a small subset
of all fitness cases, namely historical subset selecion [56], random subset selection [56],
stochastic sampling [112, 8|, stochastic subset sampling [95, 96] (based on a fitness case
topology), dynamic subset selection (DSS) [56] and active data selection [173].

In the following paragraph, DSS is explained briefly, since it is already implemented as
an optional enhancement in the linear GP system. A small number of experiments was
already performed. The evolutionary runs were not promising, however, for a detailed
analysis more runs are necessary.

DSS assigns to every fitness case ¢ a difficulty D; and an age A;. The difficulty is
increased every time an individual fails on that particular fitness case, while the age is
increased every time the fitness case is not part of the training (sub-)set. Both, difficulty

TOf course, using this approach there is no need for a test set as there are no fitness cases left.

118

5.4 Implemented GP Systems for Quantum Circuit Evolution

and age are reset to zero if the fitness case is selected to be in the subset. The update
is done in every generation®. The sum of A; and D;, each taken to the power of certain
parameters a and d, works as a weight W; = A¢ + Df. This weight determines the
probability P; of fitness case ¢ of being selected for a subset of fixed size S from T fitness
cases in total: P, = W;-S/ erzl W;. This method assumes that it is of benefit to focus
on those cases, which are frequently “miscalculated” and which have not been selected
for several generations or tournaments.

On one hand for some problems it seems to be necessary to evaluate individuals for
almost all fitness cases to evolve proper quantum circuits, on the other hand, as already
discussed in Section 5.2.2, if individuals are evaluated for all fitness cases, the huge
number of fitness cases makes evolution very time consuming. Therefore, it is very
important to reduce the number of fitness case evaluations for individuals for which
an exhaustive evaluation is not necessary, as they do not represent solutions. This is
done using the early termination method, which means that after a certain number
of fitness cases on which the individual fails a further evaluation of the individual is
abandoned. The individual’s fitness is then set to a value dependent on the number of
fitness cases. This saves time, wasted in the evaluation of “bad” individuals. Both fitness
calculation methods described above can use early termination, however, when using the
classification approach it should be guaranteed that constantly all classes are represented
in the subset selection. Concerning this, up to now there are not any experiments done
yet.

Other methods for subset selection and reduction of fitness case evaluations are not
implemented. Combined with the comparison of these approaches this should be a further
step. There seems to be a large scope for speeding up evolution, which is highly important
for evolutionary quantum circuit design.

8For steady-state GP this might happen after a certain number of tournaments.

119

5 Evolution of Quantum Algorithms

120

6 Results and Analyses

Making intelligent mistakes is a
great art.

Federico Fellini (1920-1993)

This chapter comprises the most important results of evolutionary runs performed in the
course of this thesis and further experiments concerning different aspects of quantum
circuit evolution using genetic programming:

Quantum circuits have a natural linear structure. If one takes intermediate mea-
surements (which compare to conditional branchings) into consideration, this structure
becomes linear-tree. Whether the use of intermediate measurements is useful or even per-
missible! seems to be still under debate [65]. In Section 6.1 the linear and linear-tree GP
system are applied to instances of 1-SAT and the Deutsch-Jozsa problem. Aside from
the question of whether intermediate measurements help evolve quantum algorithms,
this section essentially deals with the scalability of quantum algorithms. Evolution often
starts with random populations. However, to evolve scalable algorithms, the iterative
approach using evolved solutions for smaller problem instances to generate the initial
population for the next larger instance turns out to be very effective. Another aspect of
evolution is the choice of genetic operators. In many GP systems, the crossover operator
is important for a rapid evolution of good solutions. As shown in this section (and Section
6.2), there seems to be no benefit of crossover for the evolution of quantum algorithms.

Section 6.2 presents a study of search spaces and fitness landscapes in the context of
the evolution of quantum programs. The relationship between landscape characteristics
and quantum algorithm evolution can be useful for improving the efficiency of the search
process. Problem instances of the DJ and 1-SAT are considered as a starting point for the
exploration of search spaces of quantum algorithms. The structure of fitness landscapes
is analyzed using autocorrelation functions and information measures.

In Section 6.3 different selection strategies are analyzed, such as tournament selection,
(1, A) and (p+ A) ES selection, which are applied to the Deutsch-Jozsa problem and the
1-SAT problem using the linear GP system. Moreover, it is demonstrated that additional
randomness added to the selection mechanism of a (1,10) selection strategy can boost
the evolution of quantum algorithms on particular problems.

'Intermediate measurements mostly change pure states into mixed states [65].

121

6 Results and Analyses

There is an abundance of adjustable parameters in the GP systems which are not
investigated. In this sense, the following explorations are only a part of what could
be analyzed in the context of evolutionary quantum circuit design and return mostly
“experiences” acquired in dealing with the implemented GP systems. In many cases,
parameter values are adjusted due to experience gathered in evolutionary runs done in the
past. As a result of a continual development of the GP systems, “incompatibilities” arose.
For example, from the beginning, the progress in evolution (using tournament selection)
was measured according to the number of tournaments. To achieve a more accurate
measure and to make the resulting plots comparable to the outcomes of evolutionary runs
using other selection methods, progress in evolution was measured later on according to
the number of individual evaluations. However, this does not affect the results and their
interpretation at all.

6.1 Evolution and Scalability

A quantum algorithm is scalable if the size of the problem can be increased while the
efficiency of the algorithm is maintained. In general, a scalable quantum algorithm can
be regarded as a “scheme” specifying quantum circuits which solve instances of a certain
problem of any (but fixed) size. Following this scheme, a quantum algorithm for a small
problem instance can be easily upgraded (with only slight modifications) to solve a larger
problem instance. However, in scalable algorithms these changes affect the efficiency of
the algorithm only insignificantly, that is, the complexity of the scalable algorithm is
independent of the problem instance.

Two examples of a scalable algorithm are the Deutsch-Jozsa algorithm (cf. Section
2.8.1) and Hogg’s algorithm (cf. Section 4.2.5). A scalable quantum algorithm (its
scheme) for DJ is shown in Figure 2.14 in Section 2.8.1. This algorithm does not only
work on n- but also on n+ 1-bit functions f. The overall structure of the algorithm is still
the same independent of the problem instance. Only another qubit and two additional
Hadamard-gates are necessary to build the quantum circuit for the increased problem
instance.

Scalability and detecting scalability of quantum algorithms is important, because as
discussed in the Sections 5.1 and 5.2 evolution of quantum circuits is basically possible
only for very few qubits, or small problem instances respectively. Hence, scalability can
compensate for the restricted simulation of quantum circuits on conventional computers
and the limited use of GP-based quantum circuit evolution on small quantum systems.
Even if non-scalable quantum algorithms might be of interest, scalable quantum algo-
rithms are more relevant and favored.

In this section results of the evolution of quantum circuits for the Deutsch-Jozsa prob-
lem (n = 1...3) and 1-SAT (n = 2...4) are presented. For each problem instance,
quantum algorithms can be evolved using the linear-tree and linear GP system. It should

122

6.1 Evolution and Scalability

be emphasized that in contrast to the GP systems developed by Spector et al. (cf. Section
5.3.2) the linear and linear-tree GP system were not designed to directly evolve scalable
quantum circuits. Nevertheless, evolution of quantum algorithms for problem instances
of varying size may lead to “visibly” scalable quantum algorithms, as it is shown for the
1-SAT problem. In this context, it is also found that the mixing matrix in Hogg’s algo-
rithm can be implemented more efficiently by using simple Rx gates. Moreover, using
the best solutions of a problem instance of size n to generate the initial population for
evolutionary runs for problem size n + 1 boosts the evolution and helps to find scalable
quantum algorithms. The positive effect of this kind of pre-evolved initial population is
demonstrated for both 1-SAT and Deutsch-Jozsa using the linear GP system.

The experiments described in the following are done without any previous optimization
of relevant GP parameters. For instance, the population size was often chosen wrongly
for a good performance of the evolutionary runs (cf. Section 6.3). In addition, later in-
vestigations reveal that crossover affects the evolutionary process adversely and therefore
should be omitted. Evolutionary runs supplying evidence are provided in the last part of
this section. The impact of crossover is also addressed in Section 6.2 in terms of crossover
landscapes. Statements as to the choice of the population size in tournament selection
are made in Section 6.3.

Independent of the GP system, the selection strategy, and other aspects of the evolu-
tionary process, the GP systems always stores the fitness of the best individual found so
far. These data form the basis of all empirical results.

6.1.1 Evolving Quantum Circuits for 1-SAT

The 1-SAT problem for n variables is already described in Section 4.2.5. It is also
discussed in Section 5.2.1 as a possible suitable problem for GP-based quantum circuit
design.

The linear-tree GP system was applied to 1-SAT with n = 2...4 variables. Each of the
> re1 (7)2" fitness cases consists of an input state (always [0)®"), an input matrix for the
formula and the desired output, which is described in a certain basis state representation
(cf. Section 5.4.3). For example,

(100), [=0)

o= O O
= O O O

o O O
O O = O

is the fitness case for the 1-SAT formula U5 in two variables v1,vo. The desired output
state is described as | — 0), since only the rightmost qubit is essential to the solutions
{v1 = true/false, vo = false}. That means, an equally weighted superposition of all
solutions is not required.

123

6 Results and Analyses

GP Structure linear-tree
Selection tournament, elitist
Tournament Size 2
Population Size 5000
Basic Gate Types H, Rx, Ry, Rz, CENOT, INP, M
Max. No. of Gates 10
Max. No. of Measurements n /0%
Number of Input Gates 1
Mutation Rate 1
Crossover (XO) Rate 0.1
Linear XO Probability 0.9 /1%

Table 6.1: Parameter settings for the 1-SAT problem with n = 2...4. * indicates special
settings for n = 4.

Table 6.1 gives some parameter settings for GP runs applied to the 1-SAT problem.
However, after evolving solutions for n = 2 and n = 3, intermediate measurements seemed
to be irrelevant for searching 1-SAT quantum algorithms since all evolved solutions did
not use them. Therefore, the evolutionary runs for n = 4 did without using intermediate
measurements. Without intermediate measurements (gate type M), which constitute
the tree structure of quantum circuits, tree crossover is not applicable. In GP runs for
n = 2,3 the maximum number of intermediate measurements was limited by the number
of qubits.

For the two-, three- and four-variable 1-SAT problem, 100 GP runs were done recording
the best evolved quantum algorithm of each run. Finally, the overall best quantum
algorithm was determined. For each problem instance, the linear-tree GP system evolved
solutions (Figures 6.1 and 6.2) that are essentially identical to Hogg’s algorithm. This
can be seen at a glance when noting that U = Rz[3/47]®", which can be proven as
follows:

Rz[3/4m]®" = % Zi\x®y\(_1)n—\x®y\‘x><y’ _ (_/%ln Z (—i)|$®y|\x><yl

where |z ® y| is the number of bits that = and y differ in. Thus,

U, Y= Lneifr(nfm)ﬂl(_i)\x@y\ _ eiﬂ(n*m)/zl(—1)"(R1‘[3/47T]®n)x y
) \/5)
and U is equal to Rz[3/47]®™ up to a global phase factor which of course has no influence
on the final measurement results.
Differences in fitness values of the best algorithms of each GP run are negligible, though
they differ in length and structure, i.e., in the arrangement of gate-types. Details of the

124

6.1 Evolution and Scalability

Misses: 0

Max. Error: 8.7062e-05
Total Error: 0.0015671
Oracle Number: 1

Gate Number: 10

Fitness Value: 0.00025009
Individual:

H 0

H 1

H 2

INP

RX 6.1083 0

RX 2.6001 0

RX 3.0818 0

RX 2.3577 1

RX 2.3562 2

RZ 0.4019 1

Figure 6.1: Extracted from the GP system output: After 100 runs this individual was
the best evolved solution to 1-SAT with three variables. Here, INP denotes the specific
input matrix R.

H0
H0 H1
HO H1 H 2
H1 H 2 H3
INP INP INP
Rx[3/4 Pi] 0 Rx[3/4 Pi] 0 Rx[3/4 Pi] 0
Rx[3/4 Pi] 1 Rx[3/4 Pi] 1 Rx[3/4 Pi] 1
Rx[3/4 Pi] 2 Rx[3/4 Pi] 2
Rx[3/4 Pi] 3

Figure 6.2: The three best, slightly hand-tuned quantum algorithms to 1-SAT with
n =2,3,4 (from left to right) after 100 evolutionary runs each. Manual postprocess-
ing was used to eliminate introns, i.e. gates which have no influence on the quantum
algorithm or the final measurement results respectively, and to combine two or more ro-
tation gates of the same sort into one single gate. Here, the angle parameters are stated
more precisely in fractions of . INP denotes the input gate R as specified in the text.
Without knowledge of Hogg’s quantum algorithm, there would be strong evidence for
the scalability of this evolved algorithm.

125

6 Results and Analyses

performance and convergence of the averaged fitness values over all GP runs can be seen
in the three graphs of Figure 6.3 and 6.4.

Further GP runs with different parameter settings hint at other strong parameter
dependencies. For example, the adequate limitation of the maximum number of gates
leads more rapidly to good quantum algorithms. In contrast, stronger limitations (some-
what above the length of the best evolved quantum algorithm) make convergence of the
evolutionary process more difficult. Some experiments addressed different gate sets. Un-
fortunately, for larger gate sets “visible” scalability is not detectable. Due to the small
number of these runs with other parameter settings the results do not have any statistical
validity and are therefore not described here.

6.1.2 Evolving Quantum Circuits for Deutsch-Jozsa

Also for the second problem (DJ), the use of intermediate measurements has no noticeable
positive effect. Evolutionary runs are performed using a fitness calculation based on
desired outputs in basis state representation (no classification assessment). For example,

(|000>, f(:Cl,SCQ) =T XOR:CQ, | - —1>)

is the fitness case for the XOR function of two variables x1,z9 (n = 2). The desired
output state for balanced functions is described as | — —1), that is, measuring the zeroth
qubit as ‘1’ signals that the function is balanced and not constant. Any superposition
of base states with second qubit ‘1’ is acceptable. The desired output state for the two
constant functions is | — —0), that is, the final measurement of the zeroth qubit has to
yield ‘0’ to make the function’s property identifiable. The choice of the decisive qubit is
arbitrary, as is the measurement outcome for balanced and constant functions. Defining a
certain qubit to carry the property tag reduces the number of possible quantum circuits
solving DJ. The quantum algorithm presented in Section 2.8.1 classifies the Boolean
functions (balanced or constant) in a different way. Thus, this algorithm is not evolvable
due to the precondition given by the fitness cases (strictly speaking, by the definition of
desired outputs). A side-effect of this definition is that scalable quantum algorithms are
harder to find.

Figures 6.5 and 6.6 show the progress of evolution for the Deutsch-Jozsa problem
instances with n = 1...3 averaged over 100 runs for n = 1,2 and 30 runs for n = 3
respectively. The most important parameter settings for these runs are given in Table
6.2. Many of them are comparatively chosen arbitrarily, such as the population size. Yet,
it was not the focus of these experiments to optimize the parameter setting but to check
whether the use of intermediate measurements has any advantage.

Not many of the evolved quantum circuits solving DJ did use intermediate measure-
ments. For the problem instance n = 3 there were no evolved solutions using a single
intermediate measurement. In most circuits (for n = 1,2), using intermediate measure-
ments had no effect at all, i.e., they could be removed without changing the final prob-

126

6.1 Evolution and Scalability

1-SAT, n=2
0.6 T T T T T T T
05 |]
04 []
e 03 [1
T
02t]
01t H J{]
0 \ \ ij}{if%%&jr%? ————— z
0 5000 10000 15000 20000 25000 30000 35000 40000
Tournaments
(a)
1-SAT, n=3
0.6
05 1
04 1
2
s 03} 1
T x
0.2 1
o }\H‘H%H i |
0 I %;7%{:%%%}V%N}{"}’}’¥"f”}r*}~{ff{———%——
0 10000 20000 30000 40000 50000
Tournaments
(b)

Figure 6.3: Two graphs illustrating the course of 100 evolutionary runs for quantum
algorithms for the two- and three-variable 1-SAT problem. Errorbars show the standard
deviation for the averaged fitness values of the 100 best evolved quantum algorithms
after a certain number of tournaments. The dotted line marks averaged fitness values.
Convergence of the evolution is obvious.

127

6 Results and Analyses

1-SAT, n=4

0.4
0.35
0.3 ff

%ﬂﬂ%ﬁﬂm

0.2

Fitness

0.15

0.1

o Wy,

0 50000 100000 150000 200000
Tournaments

Figure 6.4: The course of 100 evolutionary runs for quantum algorithms for the four-
variable 1-SAT problem. Errorbars show the standard deviation for the averaged fitness
values of the 100 best evolved quantum algorithms after a certain number of tournaments.
The dotted line marks averaged fitness values. Convergence of the evolution is obvious.

GP Structure linear-tree
Selection tournament, elitist
Tournament Size 2
Population Size 500
Basic Gate Types H, Rx, Ry, Rz, C*NOT, INP, M
Max. No. of Gates 10 (for n =1,2) / 15 (for n = 3)
Max. No. of Measurements n+ 1 (no. of qubits)
Number of Input Gates 1
Mutation Rate 1
Crossover (XO) Rate 0.1
Linear XO Probability 0.9

Table 6.2: Parameter settings for evolutionary runs for the Deutsch-Jozsa problem with
n=1...3.

128

6.1 Evolution and Scalability

Fitness

L =

0 2000 4000 6000 8000 10000
Tournaments

(a)

DJ, n=2
0.5 T T T T

04 +

Fitness

0 200000 400000 600000 800000 1e+006
Tournaments

(b)

Figure 6.5: Two graphs illustrating the course of 100 evolutionary runs for quantum
algorithms for the Deutsch-Jozsa problem with n = 1,2. Errorbars show the standard
deviation for the averaged fitness values of the 100 best evolved quantum algorithms after
a certain number of tournaments. The line marks averaged fitness values.

129

6 Results and Analyses

DJ, n=3

0.35

Fitness
o
N

0.15

0.05

0 1 1 1 1
0 200000 400000 600000 800000 1e+006

Tournaments

Figure 6.6: The course of 100 evolutionary runs for quantum algorithms for the Deutsch-
Jozsa problem with n = 3. Errorbars show the standard deviation for the averaged fitness
values of the 100 best evolved quantum algorithms after a certain number of tournaments.
The line marks averaged fitness values.

ability measures. For example, for n = 2 in about 80% of the evolved quantum circuits
with intermediate measurements the measurements were obviously useless. Moreover, for
n = 2,3 the evolution frequently failed to find a proper solution in the given maximum
number of tournaments. For n = 2 (n = 3) about 40% (10%) of the evolutionary runs
did not lead to a proper quantum circuit.

These results were decisive for stopping evolving quantum algorithms using interme-
diate measurements and programming a separate linear GP system. However, this does
not mean that intermediate measurements are dispensable in general. Rather, both
1-SAT and DJ have scalable solutions of such a “simple” structure that any intermediate
measurement can only interfere with this.

Scalability is not (or not easily) detectable, not least because of the design of the fitness
cases. A mere visual comparison of solutions for the problem instances was unsuccessful.
However, the structure of the original Deutsch-Jozsa algorithm “shines through” most of
the evolved quantum algorithms.

6.1.3 Pre-Evolved Initial Populations

The benefit of using “pre-evolved” initial populations for the evolution of scalable quan-
tum algorithms is now demonstrated for the linear GP system.

130

6.1 Evolution and Scalability

GP Structure linear
Fitness Assessment Method classification,

with gate number penalty
Selection tournament, elitist
Tournament Size 2
Population Size 1500
Basic Gate Types H, Rx, Ry, Rz, NOT, CNOT, INP
Max. No. of Gates 10 (n=1) /15 (n=2,3)
Number of Input Gates 1
Genetic Operator mutation
Early Termination no
Gate No. penalty 50

Table 6.3: Parameter settings for the Deutsch-Jozsa problem with n = 1...3. Evolution-
ary runs with random initial population and those with pre-evolved initial population
have the same parameter settings.

The GP system reads the individuals, evaluated solutions of a smaller problem instance,
from a file and feeds with them the initial population. If there are still individuals missing
in the population it is filled up with individuals from the file, which are mutated to a
maximum of 25% of their length before adding them to the population. That is, for a
quantum circuit of length 20, five mutations are performed at the most, adding random
gates or replacing randomly chosen gates by random gates. This is of course arbitrary,
and there might be other approaches which promote evolution even better. However, the
aim of these experiments is just to show that the use of pre-evolved start populations
can effect an accelerated evolution.

For the Deutsch-Jozsa problem with n = 1 (2 qubits) 100 solutions are evolved. Each
of them is mutated 14 times to generate the initial population of 1500 individuals for
the Deutsch-Jozsa problem with n = 2 (3 qubits). The best solutions of 100 runs are
again mutated 14 times. Mutations and original individuals build the initial population
of size 1500 for DJ with n = 3 (4 qubits). For this problem only 20 evolutionary runs
are performed. The fitness of each newly found best individual is stored along with the
number of individual evaluations done, until termination criteria are met. The most
important parameters are shown in Table 6.3.

The plots in Figure 6.7 and 6.8 illustrate the course of fitness averaged over all evolu-
tionary runs with randomly created and with pre-evolved initial population. Standard
deviations are plotted as errorbars.

The same approach is applied to 1-SAT. For n = 2 (2 qubits) 100 solutions are evolved.
Each of them is mutated four times to generate the initial population of 500 individuals

131

6 Results and Analyses

DJ, n=2
1 .
random pop. e
pre-evolved pop. -
0.8
., 06
3
= ,
T 04
0.2
0 2000 4000 6000 8000

Evaluations

10000

Figure 6.7: The average course of 100 evolutionary runs for the Deutsch-Jozsa problem
with n = 2 using a random and a pre-evolved initial population. The latter is based on
the results of 100 evolutionary runs for the Deutsch-Jozsa problem with n = 1.

DJ, n=3
1 . . | | |
random pop.
pre-evolved pop. -
0.8
0.6

Fitness

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Evaluations

Figure 6.8: The two plots show the averaged fitness courses of the 20 best evolved quan-
tum algorithms for the Deutsch-Jozsa problem with n = 3 using random and pre-evolved
initial population. The plots contain also the standard deviations. The pre-evolved ini-
tial population is based on the results of 100 evolutionary runs for the Deutsch-Jozsa

problem with n = 2.

132

6.1 Evolution and Scalability

GP Structure linear
Fitness Assessment Method basis state,

with gate number penalty
Selection tournament, elitist
Tournament Size 2
Population Size 500
Basic Gate Types H, Rx, Ry, Rz, NOT, CNOT, INP
Max. No. of Gates 10 (n=1) /15 (n=2,3)
Number of Input Gates 1
Genetic Operator mutation
Early Termination no
Gate No. penalty 50

Table 6.4: Parameter settings for the 1-SAT problem with n = 2...4. Evolutionary runs
with random initial population and those with pre-evolved initial population have the
same parameter settings.

for 1-SAT with n = 3 (3 qubits). The best solutions of 100 runs are again mutated
four times. Mutations and original individuals build the initial population of size 500
for 1-SAT with n = 4 (4 qubits). For this problem again 100 evolutionary runs are
performed. The most important parameters are shown in Table 6.4.

The plots in Figure 6.9 and 6.10 illustrate the course of fitness averaged over all evo-
lutionary runs with randomly created and with pre-evolved initial population. Standard
deviations are plotted as errorbars.

For both problems the positive effect on the evolution using pre-evolved initialized
populations is obvious. This might not be a surprise: if the evolved algorithms for the
smaller problem instance are scalable algorithms (in the sense that they are based on
a general algorithm solving the problem of arbitrary size), then the individuals in the
initial population should be close to the solutions. For example, the 1-SAT solutions
of problem sizes n = 2 and n = 3 (or n = 3 and n = 4) presented in Figure 6.2 have
only a “distance” of two mutation steps. It remains to find out whether this approach
is still of value for more difficult problems which have a more complex structure and a
larger “distance” between the (scalable) algorithms of two consecutive problem instances
(of size n and n + 1).

Another benefit can be derived from the use of pre-evolved individuals in the initial
population: The evolution is not only faster, evolved scalable solutions are also easier to
identify. Figure 6.11 gives an example for three evolved quantum circuits for DJ with
n = 1,2,3 which obviously hint at a general scalable algorithm.

133

6 Results and Analyses

1-SAT, n=3

1 . .
random pop. -
pre-evolved pop.

Fitness

0 5000 10000 15000 20000
Evaluations

Xy .

Figure 6.9: This graph illustrates the average course of 100 evolutionary runs for the
three-variable 1-SAT problem using a randomly initialized population and a pre-evolved
initial population. The pre-evolved initial population is based on the results of 100 GP
runs for the two-variable 1-SAT problem. Errorbars show the standard deviation.

1-SAT, n=4
1 T

‘random pop. -+
pre-evolved pop. —

Fitness

f I SN Lo M
0 5000 10000 15000 20000 25000 30000 35000 40000
Evaluations

Figure 6.10: Average course of 100 evolutionary runs for the four-variable 1-SAT problem
using a randomly initialized population and a pre-evolved initial population. The pre-
evolved initial population is based on the results of 100 evolutionary runs for the three-
variable 1-SAT problem. Errorbars show the standard deviation.

134

6.1 Evolution and Scalability

Ry[5/4 Pi] 0
Ry[5/4 Pi] 0 H1
Ry[5/4 Pi] 0 H1 H 2
H1 H 2 H3
INP INP INP
H1 H1 H1
H 2 H 2
H3

Figure 6.11: Hand-tuning was not necessary: these three quantum algorithms for
Deutsch-Jozsa with n = 1...3 are evolved according to the method described above
(using pre-evolved initial populations for n = 2,3). The “scheme” of the scalable quan-
tum algorithm for arbitrary n is obvious. The angle parameter is stated more precisely
in fractions of .

To sum it up, it can be said that the use of pre-evolved initial populations provides a
cost-effective alternative to GP systems directly evolving scalable quantum algorithms.
This approach cannot only be used to speed up evolution but also to improve detection
of scalability.

6.1.4 Disruptive Crossover

In many GP systems crossover is the predominant search operator. The idea behind this is
that of good “building blocks™ subprograms improving the fitness which are worth being
multiplied and spread over the population while evolution proceeds. When crossover is
of benefit to evolution, then it has the function of preserving good schemata (GP schema
theorem [8]). Unfortunately, on quantum circuit evolution crossover does not seem to
have any positive effect as the following experiments for the Deutsch-Jozsa problem with
n = 2 and 1-SAT with n = 3 demonstrate.

As a result of tournament selection, winners replace losers and are modified by genetic
operators. In the experiments, a single-step mutation is always applied to the winners
and with a certain rate (linear) crossover is also performed between the two winners of
two parallel tournaments. The crossover operator is modified in a way that should favor
its effect on evolution: applied to quantum algorithms with a single input gate, it either
exchanges subcircuits before or after the single input gate. Thus, there is no swap of
subcircuits including the input gate. Crossover rates and other system parameters are
listed in Table 6.5.

Figure 6.12 shows the plots of evolutionary progress averaged over 100 runs for different
crossover rates. It is obvious that using the crossover operator adversely affects the
evolution of quantum circuits for both problems with different fitness functions with
increasing crossover rate. The analysis of crossover landscapes in Section 6.2 confirms

135

6 Results and Analyses

1-SAT / DJ

GP Structure linear
Fitness Assessment Method basis state / classification

with gate number penalty
Selection tournament, elitist
Tournament Size 2
Population Size 500 / 1500
Basic Gate Types H, Rx, Ry, Rz, NOT, CNOT, INP
Max. No. of Gates 10 / 15
Number of Input Gates 1
Genetic Operator mutation, crossover
Mutation Rate 1.0
Crossover Rate 0.0, 0.3, 0.5, 0.7, 1.0
Early Termination no
Gate No. penalty 50

Table 6.5: Parameter settings for 1-SAT and Deutsch-Jozsa for evolutionary runs exam-
ining the effect of crossover.

that using the crossover operator (at least for these two problems) damages rather than
benefits evolution.

6.2 Search Space Analysis

In evolutionary search methods, the population moves on the so-called fitness land-
scape[143, 157] by means of evolutionary operators. Roughly speaking, a fitness landscape
in evolutionary computation is a search space — the space of all phenotypes, represented
by their genotypes — extended by the corresponding genotype’s fitness values as the “al-
titude” and (optionally) a neighborhood structure. The fitness (dependent on the prob-
lem) decisively influences the contour and surface of the landscape. The neighborhood of
genotypes is determined by an evolutionary (genetic) operator, typically an elementary
mutation or a one-point crossover. Mathematically, in finite (discrete) spaces a fitness
landscape can be considered to be a graph whose vertices are genotypes including an
assigned fitness value and whose edges are defined by the evolutionary operator, obeying
the so-called “one-operator, one-landscape”™concept [157].

Here, the considered mutation operator consists of random deletion, insertion and
replacement of a single quantum gate. The mutation is randomly selected (equally dis-
tributed) from the set of all possible mutations. The linear crossover operator used has
already been described in Section 6.1.4. The experiments analyzing the fitness landscapes
for 1-SAT and Deutsch-Jozsa problem instances use the linear GP system.

136

6.2 Search Space Analysis

DJ, n=2
1 : : . .
xo-prob.: 0.0 ——
xo-prob.: 0.3 -
0.8 X0-prob.: 0.5]
. xo-prob.: 0.7
Xo-prob.: 1.0 ------
I 0.6 |
3
=]
=
0 2000 4000 6000 8000 10000
Evaluations
(a)
1-SAT, n=2
1 i . .
X0-prob.: 0.0 ——
xo-prob.: 0.3 -~
08 | x0-prob.; 0.5]
' X0-prob.: 0.7
xo-prob.: 1.0 ------
[%2]
=

0 5000 10000 15000 20000
Evaluations

(b)

Figure 6.12: These graphs illustrate the unfavorable impact of crossover on the evolution
of quantum circuits for (a) the Deutsch-Jozsa problem with n = 2 and (b) 1-SAT with

n=3.

137

6 Results and Analyses

The fitness of a quantum program for DJ is assessed according to its quality of clas-
sification as described in Section 5.4.3. In the case of 1-SAT, the fitness is calculated
as stated previously in Section 5.4.3 and 6.1.1. There is no size penalty for large quan-
tum circuits. Experiments are conducted using the universal gate set {H, NOT, CNOT,
CCNOT, Rx, (¢), Ry, (¢), Rz, (¢), INP}.

6.2.1 Fitness Landscapes and Analysis Methods

A landscape can be characterized by its ruggedness and neutrality. Ruggedness refers to
the average correlation between neighboring genotypes, neutrality refers to the size of flat
landscape areas [125]. Since the study of landscape structures helps to understand the
ability of evolutionary algorithms to perform efficiently, techniques for revealing these
characteristics are important. Rugged and neutral fitness landscapes are usually consid-
ered to be difficult to evolve.

The structure of fitness landscapes regarding DJ and 1-SAT is analyzed using two ap-
proaches: the autocorrelation analysis by Weinberger [163] and the information analysis
by Vassilev et al. [155, 156, 157]. Both techniques are based on time series {f;};~, ob-
tained by random walks on the mutation and crossover landscape. f; is the fitness value
of the genotype reached after ¢ steps from the starting point.

The autocorrelation function of a time series is defined by

p(s) = E|ft fivs] ‘;[?tgft]E[fH-s]

where E[f;] is the expectation value and V[f;] the variance. It is a measure for the corre-
lation between points on the landscape that are separated by s steps, i.e. s applications
of the mutation operator. The correlation length 7 = —m is an important measure
for the ruggedness of a landscape.

Information analysis is used to investigate the structure in more detail, especially
features related to flat areas (fitness plains), isolated points (locally isolated maxima or
minima in the search space), and landscape structures having neither characteristic. The
information measures being considered are

e information content H(e), to estimate the diversity of landscape shapes,
e partial information content M (€), to measure the modality of the landscape path,

The information content is obtained by transforming the time series {f;}}-, into a
string S(€) = s189...5s, of symbols s; € {1,0,1}, where

Lif fiog— fi < —e

si=q Liftfiqg—fi>e
0, otherwise

138

6.2 Search Space Analysis

for € € [0,1] where [is the maximum difference between two fitness values (the highest
elevation in the fitness landscape). Then, the information content of the time series
is H(e) = — 3,24 Ppg 1086 Ppq), where Py = npyg/n and ny, is the number of oc-
currences of pg, p,q € {1,0,1}, in S(¢). Thus, Py, is the share of pg-blocks in S(e).
Increasing ¢ is like zooming out from the landscape, from a closer inspection to a rough
overview.

The partial information content is determined from S(e) by counting the number of
slopes p(e) in the landscape path which is equivalent to the number of changes in the
fitness trend (plus 1). To evaluate p(e) consider the string S(e). Remove all symbols 0
and replace all sequences (runs) of equal symbols by a single symbol. The resulting string
S’(€) is of the form 111111 ... or 111111. .. and p(e) is just the length of S’ (€). Thus, u(e)
indicates the modality of the landscape path. With it, the partial information content
is given by M(e) = p(e)/n. For example, for S(e) = 0111111100110110 it is p(e) = 8
and M = 0.5 since S’(¢) = 11111111. The number of optima in the landscape path is
2u(e)).

Another information measure is the density-basin information h(e), used to estimate
the variety of flat and smooth areas. It is also based on the string S(e):

he)=— D Ppplogs Py
pe{1,0,1}

. However, this information measure is not used here, as it does not really contribute
new insights.
For further information on the information landscape analysis, refer to [157].

6.2.2 Landscape Analysis

For this analysis, random walks on problem-specific mutation and crossover landscapes
are performed for quantum circuits from 2 up to 4 qubits (n = 1...3 for DJ and
n =2...4 for 1-SAT) and maximum circuit sizes L = 10, 15, 20, 25, 30.

Random walks on a mutation landscape start with a random genotype and continue
successively by random (one-point) mutation from one genotype to a neighbor. Ran-
dom walks on a crossover landscape [160] start with two random genotypes to which
the crossover operator is applied generating two offspring. From those, one is chosen
randomly to mate with another random genotype. For each landscape defined by L and
n, 100 walks are performed, each consisting of 100,000 steps. Both methods, autocorre-
lation analysis and information analysis are applied to the same time series.

Autocorrelation Analysis
The averaged autocorrelation functions of random walks on the mutation landscapes
for different L and n for the Deutsch-Jozsa problem and the corresponding standard

139

6 Results and Analyses

deviations are depicted in Figure 6.13. Figure 6.14 represents the averaged autocorrela-
tion functions and standard deviations for random walks on crossover landscapes. For
1-SAT, Figure 6.15 and 6.16 show the autocorrelation functions and standard deviations
of mutation and crossover landscapes. The correlation length can also be defined as the
displacement for which p(s) is equal to 1/e (=~ 0.3678). In the autocorrelation plots the
horizontal line marks this value making the correlation length directly readable.

Problem independent, the plots show that correlations of (one-point) mutation land-
scapes are extremely low compared, for instances, to the autocorrelation of mutation
landscapes for digital circuit evolution [156]. However, for crossover landscapes the au-
tocorrelations are even lower. The correlation lengths are below two, that is, the points
on the crossover landscapes are almost entirely uncorrelated. This confirms the experi-
mental results presented in Section 6.1.4 which were decisive for refraining from using a
crossover operator in subsequent evolutionary runs.

For the autocorrelation functions based on random walks on mutation landscapes for
1-SAT: With increasing n (or number of qubits respectively) the autocorrelations in-
crease, but only slightly, while on the contrary with increasing circuit length L the corre-
lations of the landscapes decrease. This is similar to the autocorrelation functions for DJ,
although the plots are here clearly closer together. Any effect of a larger circuit length L
on the autocorrelation is hard to detect here. The correlation lengths show that beyond
three steps, the points on the mutation landscape path become almost uncorrelated.

From these observations it can be concluded that the fitness landscapes are rather
rugged and seem to become only slightly smoother for larger n. Rugged landscapes
make evolutionary search very difficult, though not impossible. The existence of crossover
operators with better landscape characteristics cannot be ruled out.

Information Analysis

The following has focused exclusively on mutation landscapes as the crossover operator
is apparently of no importance for efficiency improvements of the evolutionary search
process.

The information characteristics H(e) and M(e) for DJ are depicted in Figure 6.19
(n =2) and 6.20 (n = 3). Those for 1-SAT are represented in Figure 6.17 (n = 3) and
6.18 (n = 4). Since the plots for DJ with n = 1 and 1-SAT with n = 2 do not contribute
to further conclusions they are skipped. For calculating the information characteristics
the value of € is varied with a stepsize of 0.001 between 0 and 1. In the following,
important characteristics of the plots are explained and analyzed.

All plots have in common that they become increasingly smoother with increasing
maximum circuit size L. Since the plots are step functions, one can conclude an increas-
ing number of altitude levels, that is, an increasing number of different fitness values,
and consequently an increasing number of differences of fitness values of neighboring
genotypes. This number, also referred to as the degree of (ir)regularity [157]|, can be
interpreted as a measure of the complexity of the random walks. Accordingly, the figures
reveal an increased complexity for increasing L.

140

6.2 Search Space Analysis

WWWNNN PP
(il el okl okl ol el el el

ju B e B B e B e B B
I I

Autocorrelation

0.05

WWWNNN =
Ll ol el el ol el ol ol

0.04

0.03

OSSO 3535353353535
I Il

0.02

Standard deviation

0.01

0 10 20 30 40 50
Steps

(b)
Figure 6.13: (a) Autocorrelation function of mutation landscapes for Deutsch-Jozsa prob-

lems with n =1...3 and L = 10, 20, 30 averaged over 100 walks. The correlation length
is between two and four. (b) The standard deviation is always < 0.03.

141

6 Results and Analyses

Autocorrelation

Standard deviation

Figure 6.14: (a) Autocorrelation function p(s) of crossover landscapes for Deutsch-Jozsa
problems with n =1...3 and L = 10, 20,30. The correlation length is close to one. (b)
The standard deviation is < 0.015 considering p(s) averaged over 100 walks.

142

1 T T
n=1,L=10
n=1, L=20
n=1,L=30 ------
n=2, L.=10 ------
n=2, L.=20 -
n=2, L=30 -
n=3, L=10 -~
n=3,L.=20 ——
n=3, L=30 -

6 8 10 12 14
Steps
(a)

0.05 ‘ ‘

n=1, L=10 —
0.045 n=1,L=20
n=1, L=30

0.04 n=2,L=10 -~
n=2,1=20 -

0.035 n=2,L=30 -
n=3, L=10 -

0.03 n=3, L=20 -

0.025 n=3,L=30 ——

0.02

0.015
0.01
0.005
0

20 25 30 35

Steps

(b)

40

45

6.2 Search Space Analysis

1 T
n=2, L=
n=2, L= .
n=2, L=
n=3, L= .
n=3, L=
n=3, L= b
& n=4, L=
ks n=4, L= 7
[n=4, L=
g 0.5
5 0.4
<
0.3
0.2
0.1
0 2 4 6 8 10 12 14
Steps
(a)
0.05
n=2, L=
n=2, L=
n=2, L=
0.04 n=3, L= .
n=3, L=
o n=3, L=
o
= n=4, L=
g 0.03 n=4, L= .
3 n=4, L=
o
]
° 0.02
[
)
0.01 {
0
0 10 20 30 40 50

Steps
(b)
Figure 6.15: (a) Autocorrelation function of mutation landscapes for 1-SAT with

n=2...4 and L = 10,20,30 averaged over 100 walks. The correlation length is be-
tween two and four. (b) The standard deviation is always < 0.03.

143

6 Results and Analyses

1 T T T
n=2,L=10 —
0.9 n=2, L=20 |
n=2,L=30 -
0.8 n=3, L=10 ------ .
» n=3, L=20 -
0.7 18 n=3, =30 - -
S L n=4,L=10 ——
k= n=4,1=20 ——
= n=4, =30 ——
3
S
=}
I
6 8 10 12 14
Steps
(a)
0.05 :
n=1,L=10 ——
0.045 n=1, L=20 - i
n=1, L=30
0.04 n=2,L=10 .
n=2, L=20 ------
g 003 n=2, L=30 - -
= n=3,L=10 -
§ 0.03 n=3, L=20 - .
S n=3, =30 ——
S 0025
3
° 0.02
S
90015
0.01
0.005
0

Figure 6.16: (a) Autocorrelation function of crossover landscapes for 1-SAT with
n=2...4 and L = 10,20,30. The correlation length is close to one. (b) The stan-

10 15 20 25 30 35 40 45 50
Steps

(b)

dard deviation is < 0.015 considering p(s) averaged over 100 walks.

144

6.2 Search Space Analysis

0.6
S o4
0.2
0
05

=

0.2

0.1

1-SAT, n=3

[l ol el el
IR

0.3

0.4

0.5

[l ol el el
IR

0.3

0.4

0.5

Figure 6.17: Information characteristics for 1-SAT with n = 3. (a) Averaged information
content H (e). (b) Averaged partial information content M ().

145

6 Results and Analyses

1-SAT, n=4

08

o
IR

0.6 * _

04

0.2 0.3 0.4 0.5

0.5 T T T

04

o
IR

03k ;
02 b]

01}

0.2 0.3 0.4 0.5

Figure 6.18: Information characteristics for 1-SAT with n = 4. (a) Averaged information
content H (e). (b) Averaged partial information content M (e).

146

6.2 Search Space Analysis

DJ, n=2

0.8

[l ol el el
IR

m -
0.5
€
(a)
DJ, n=2
0.5 T T T T
L=10 ——
L=15 ——-
L=20 -
04 B L=25 T
L=30 ------
=
0.5

Figure 6.19: Information characteristics for Deutsch-Jozsa with n = 2. (a) Averaged
information content H(e). (b) Averaged partial information content M (e).

147

6 Results and Analyses

DJ, n=3
1 .
L=10 ——
L=15 -
L=20
08 r L=25 1
L=30 ------
= _
0.4 0.5
€
(a)
DJ, n=3
0.5 T
L=10 ——
L=15 -
L=20
04 r L=25 T
L=30 ------
03]
=
0.4 0.5

Figure 6.20: Information characteristics for Deutsch-Jozsa with n
information content H(e). (b) Averaged partial information content

148

M(e).

3. (a) Averaged

6.2 Search Space Analysis

Along with this, it can be seen for both problems and values of n that the averaged
information content H (0) and the averaged partial information content M (0) increase as
L increases. This indicates a higher diversity of the landscape for larger L which together
with the increased modality (number of local optima) implies more rugged landscapes.
However, the increase of H(0) is much more visible for the Deutsch-Jozsa problem than
for 1-SAT, where H(0) only increases over a small interval. This suggests, that for D.J the
landscape type changes more distinctly with the maximum length of quantum circuits
than for 1-SAT. Moreover, the value of H(0) is in all four cases (for both problems
and two different values of n) significantly larger than logg 2 which can be seen as an
indication for some flat landscape areas [157|. For larger L the averaged information
content H (€) tends to increase for increasing e from 0 up to small values, e.g. 0.006 for
DJ with n = 3 and L = 30 (Figure 6.20a). This is another hint for differences in the
diversity of landscape shapes for different L.

For both problems it can be observed that the information functions are steeper for the
higher value of n. Since steeper information functions characterize smoother landscapes
while less steep functions correspond to more rugged landscapes, the fitness landscapes
become smoother for higher values of n. This corresponds to the results in the auto-
correlation analysis. It is difficult to establish this for increasing L. However, for the
Deutsch-Jozsa problem with n = 2 and n = 3, the plots seem to become steeper as well.
A higher steepness of M (e) indicates in other words a minor diversity of optima in terms
of their magnitude.

Comparing the graphs for 1-SAT with those for DJ it is obvious that the former are
far steeper than the latter and thus the mutation landscapes for 1-SAT are smoother
than those for DJ. This might be the reason why evolutionary search with ES selection
strategies (especially plus strategies) performs better on the 1-SAT landscapes, whereas
on DJ landscapes supplied additional randomness for ES selection or tournament selec-
tion is more successful, as shown in the following section. The number of local optima
given by the partial information content M(e€) is a little larger for 1-SAT than for DJ
but, as already stated above, in the case of 1-SAT it decreases much faster as € increases.

To sum up, it can be said that the information analysis hints at rugged landscapes
for both problems. In comparison to DJ landscapes, 1-SAT landscapes are a little bit
smoother. The modality is high but the magnitude of peaks is mostly very low which
might benefit certain evolutionary approaches. In contrast, in DJ landscapes the diversity
of optima is very high and multi-peak configurations seem to prevail over flat plains or
plateaus. Evolution runs a higher risk here of getting stuck in a local optimum. For a
larger number of qubits (a larger n) the landscapes tend to become smoother making
evolutionary search at least in principle easier. Information analysis is a useful tool as it
provides additional information about fitness landscapes which autocorrelation analysis
cannot and can help to adjust the search method. However, the interpretation of its plots
is not a simple task and requires more experience in dealing with fitness landscapes.

149

6 Results and Analyses

6.3 Comparison of Selection Strategies

At present one must be content to evolve essentially already existing quantum algorithms
and to analyze the search space of these quantum circuits in order to improve the effi-
ciency of evolutionary search. If simulation of quantum circuits cannot be sped up, then
the only way to novel, complex quantum circuits is via accelerated evolution.

This is the motivation for examining and comparing different selection strategies with
respect to their effectiveness. Using the linear GP system, in addition to the tournament
selection as part of the steady state GP the (u,A) and (u + A) ES selection as part
of a generational GP approach are implemented. Moreover, the (1,10) ES selection
strategy is combined with additional randomness and tested independently with step size
adaptation. The experiments are exemplarily performed on the Deutsch-Jozsa problem
with n = 2 (three qubits) and n = 3 (four qubits) and the 1-SAT problem with n = 3
(three qubits) and n = 4 (four qubits).

6.3.1 Selection Strategies

In general, selection is the result of a competition between individuals in a population.
The better the individual’s fitness in comparison with all other individuals in the popula-
tion, the higher its selection probability. Some popular generational selection algorithms
are the (4 A) and (u, A) ES selection as well as tournament selection. A coarse ex-
planation of the comma and plus selection strategy is already given in Section 3.4. An
algorithmic description of both selections (u + A) and (u, A) follows:

1. Generate the initial population; population size is:

e i+ A (for (u+ A) selection)
e)\ (for (u,A) selection)

2. Evaluate the fitness of each individual;
3. Select the winners:

e the best y individuals in the entire population (for (u + A) selection)

e the best u newly created individuals or offspring respectively (for (i, \) selec-
tion)

4. Perform one-point mutation on each winner to generate A\ offspring (about A\/pu
offspring per winner);

5. Evaluate the fitness of the offspring;

6. Go to step 3 unless termination criteria are met.

150

6.3 Comparison of Selection Strategies

For further experiments, the (1, 10) selection is extended by adding randomness. After
fitness evaluation of the offspring, instead of the best offspring, individuals are chosen
randomly with a given probability p. In this case, step two of the algorithm above is as
follows:

2. Let w = unif ([0, 1]) uniformly distributed; if v < p, then choose the winner ran-
domly from the set of offspring and go ahead to step 4, otherwise evaluate the
fitness of each individual,

Furthermore, the (1,10) selection is used with self-adaptation [131] of step-sizes. The
self-adaptation routine is due to [128] and is as follows:

u = unif ([0, 1])
if u<0.5

then mx = 1.3
else m/ =1.3

Nt = geo (u, m)

The parameter n,,,; determines the step size, i.e. the number of mutations. It is drawn
from a geometric distribution. In more detail,

In(1 —w)

geo (u,m) = \‘m

m
, where =1-—F.
J P 1+ V1+m?

The variable m denotes the mutation strength. Its value determines the average dis-
tance of an offspring individual to its parent individual after a mutation. By mutating
the mutation strength before the mutation is carried out it is possible to control the
mutation strength by a process which is termed self adaptation. Due to Schwefel [131]
and others, the proposed mutation rule for the step size enables this self-adaptation
for a broad range of problems provided that a surplus of offspring is generated in each
generation, i.e., p << A The initial value of m has to be chosen appropriately.

6.3.2 Experiments and Empirical Results

For each problem instance 20 evolutionary runs were performed for each selection method.
The results were averaged over the runs. A GP run terminated when the number of
single individual (quantum program) evaluations exceeded 107 or the fitness of a new
best individual under-ran a given threshold, which is close to zero. The length of the
quantum circuits was limited to 15 gates. The initial population was randomly created.
The selection strategies and parameter settings used in the linear GP system are:

151

6 Results and Analyses

e Comma- and Plus-strategies: (1,10), (5,20), (1+10), (5+20);

e (1,10) with step-size adaptation. The value of 7,,,; (the step size) was bounded
to 5 mutations. The start value of m is set to 3. This might seem arbitrary, but
experiments with larger values showed no or virtually no effect. A more detailed
analysis is for future work.

e (1,10), combined with additional random selection.

e Tournament selection with different population sizes (100, 500, 1000, 1500, 2000).
Tournament size is 2.

Figures 6.21a and 6.24a show four graphs each, illustrating the course of the evolu-
tionary runs for the Deutsch-Jozsa problem for n = 2 and n = 3 using pure comma-
and plus-selection strategies. The (1,10) strategy achieved the best results. In the case
of n = 3, for this strategy 25% of the runs did not lead to an acceptable result and for
other strategies the failure rate was even larger.

Tournament selection can outperform these runs when applied with a suitable popu-
lation size of about 500 to 1000 individuals for n = 2 and 1500 to 2000 individuals for
n = 3, as shown in Figure 6.21b (n = 2) and Figure 6.24b (n = 3). For larger populations
the performance decreases more and more. Yet, even for tournament selection not every
run was successful within the required number of evaluations.

Performance of the (1,10) selection can be visibly boosted using step size adaptation
which was, all in all, the best selection strategy. In Figure 6.23 and 6.26 the plot essen-
tially runs below the plots relating to all other selection strategies. Curiously enough,
the figures also reveal a comparable good performance achieved by using the (1,10) strat-
egy combined with 10% random selection. Further experiments demonstrated that even
higher percentages of random selection predominate over the pure comma- and plus-
strategies as exemplarily shown in Figure 6.23 and 6.26 for (1,10) ES with additional
20% randomness. In all runs the resulting quantum circuit was a solution of the test
problem. Thus, considering the number of successful runs, this strategy behaves even
better than tournament selection on the given problem.

The corresponding standard deviations are depicted in the Figures 6.22, 6.23b, 6.25,
and 6.26b. The number of evolutionary runs might be to small, especially, since the
standard deviations are comparatively large. Further runs are necessary to verify the
conclusions.

This result confirms the analysis of the mutation landscape of the Deutsch-Joza prob-
lem. Because of the high ruggedness, the high modality and only a few paths to global
optima the evolution is often caught in local optima. Larger steps or - what seems to
help as much - additional randomness appears to compensate for this.

Applied to the 1-SAT problem instance a completely different result is obtained. Here,
the best strategies are tournament selection with a population size of about 500 in-
dividuals, as shown in Figure 6.29a, and (1+10) selection, as shown in Figure 6.29b.

152

6.3 Comparison of Selection Strategies

Furthermore, Figure 6.29b illustrates, that plus-strategies perform far better than the
comma-strategies. Step size adaptation does not improve evolution and additional ran-
domness rather deteriorates the evolutionary search (Figure 6.29a). Moreover, for each
of the tested selection strategies all 20 evolutionary runs were successful on this problem.
Standard deviations are illustrated in the Figures 6.28 and 6.30. The values are between
0 and 0.25. This shows that the fluctuation in evolution is very high. Here, further
evolutionary runs have to be done to confirm the results.

The experiments reveal that depending on the population size, tournament selection
can be very effective on either test problem. Self-adaptation is similarly effective and
enables comma-selection to compete against tournament selection.

The comma-strategy with random selection seems to be useful on complex problems
with rugged fitness landscapes that are difficult for standard evolutionary selection mech-
anisms. Under those circumstances it can be effective or for smaller populations even
better than tournament selection.

Further experiments on the influence of adding randomness for very difficult fitness
landscapes would help to judge, whether this is more than just a pleasant side effect.
Unfortunately there is only a small set of test problems available and evolution of quan-
tum circuits on larger state spaces is prohibitively time consuming.

153

6 Results and Analyses

DJ, n=2

0.4
0.35 (5,20) i

03 s

0.25

0.2

Fitness

0.15

0.1

0.05

1000 10000 100000 1e+006
Evaluations

(a)

DJ, n=2

0.4
0.35 T 500 - 1

0.3

0.25

Fitness

0.2 Pc
045 [K
0.1

0.05

1000 10000 100000
Evaluations

(b)

Figure 6.21: Impact of different selection strategies on the evolution of quantum circuits
for the Deutsch-Jozsa problem with n=2: (a) comma- and plus-strategies; (b) tournament
selection for different population sizes; Note the logarithmic scaling on the x-axis.

154

6.3 Comparison of Selection Strategies

DJ, n=2

0.4

0.35 (5.20)
0.3 (5+20)

0.25
0.2

0.15

Standard deviation

01 F
0.05

1000 10000 100000 1e+006
Evaluations

(a)

DJ, n=2
0.4

0.35 T500 - 4

0.3
0.25

0.2

0.15
NN j

0.1 =

Standard deviation

0.05

1000 10000 100000
Evaluations

(b)

Figure 6.22: Standard deviation for the plots in Figure 6.21.

155

6 Results and Analyses

Fitness

Standard deviation

0.4

0.35 poos

0.3
0.25
0.2
0.15
0.1
0.05

0.4
0.35
0.3
0.25
0.2
0.15
0.1

0.05 fon™

DJ, n=2

]

100

1000

Evaluations

(a)

DJ, n=2

10000

100000

100

1000

Evaluations

(b)

100000

Figure 6.23: a) Different selection strategies applied to the Deutsch-Jozsa problem with
n=2: tournament selection, pure (1,10) selection, (1,10) selection with step size adapta-
tion (marked with *) and (1,10) selection plus 10% or 20% random selection respectively.
Note the logarithmic scaling on the x-axis. b) Standard deviation.

156

6.3 Comparison of Selection Strategies

DJ, n=3
0.4 ;
(1,10) ——
[1s T I N S (5,20) ———
. . (1+10) —
0.3 et : T (5+20)
0.25 \
£ 0.2
g AR
0.15
0.1 L
0.05
0
100 1000 10000 100000 1e+006 1e+007
Evaluations
(a)
DJ, n=3
0.4
T100 ——
T500 i
0.35 T1000
T 1500 i
03 T2000
0.25
2 \
IS 0.2 e
iT L e
0.15
0.1 S
0.05
; .
1000 10000 100000 1e+006
Evaluations
(b)

Figure 6.24: Plots of averaged evolutionary runs for the Deutsch-Jozsa problem with
n=3 using different selection strategies: (a) comma- and plus-strategies; (b) tournament
selection for different population sizes; Note the logarithmic scaling on the x-axis.

157

6 Results and Analyses

DJ, n=3
0.4 T
(1,10) ——
(5,20) ———-
0.35 (1+10) -
0.3 (5+20)
- .
2
B 025
g
S 02
3
2 015
[}
n
0.1
0.05 —
o b
100 1000 10000 100000 1e+006 1e+007
Evaluations
(a)
DJ, n=3
0.4
T100 ——
T500 ——]
035 T 1000 -
T 1500 i
e 03 T2000 -~
S
B 025
3
©
S 02
R e —— .
2 015
IS ;
s s
0.1 e
0.05 p~==
0
1000 10000 100000 1e+006
Evaluations
(b)

Figure 6.25: Standard deviation for the plots in Figure 6.24.

158

6.3 Comparison of Selection Strategies

DJ, n=3

[72]
=
0 T -5
1000 10000 100000 1e+006
Evaluations
(a)
DJ, n=3
0.4
(1,100 ——
T1000 —— i
035 10% ,,,,,,,,,,,,
20% |
e 03 (L10)* -
=]
ks 0.25
3
©
3 0.2
- L
3 0.15 a MR
(7] \x\
0.1 . -
0.05
0 i
1000 10000 100000 1e+006
Evaluations
(b)

Figure 6.26: a) Behavior of evolution of quantum circuits for the Deutsch-Jozsa problem
with n=3 using tournament selection, pure (1,10) selection, (1,10) selection with step
size adaptation (marked with *) and (1,10) selection plus 10% or 20% random selection
respectively. Note the logarithmic scaling on the x-axis. b) Standard deviation.

159

6 Results and Analyses

1-SAT, n=3

0.6

0.5

0.4

0.3

Fitness

0.2

0.1

100 1000 10000 100000

0.6 — :

0.5

0.4

0.3

Fitness

0.2

0.1

100 1000 100000

Evaluations

(b)

Figure 6.27: Different selection strategies for the 1-SAT problem with n=3: (a) Tourna-
ment selection for different population sizes and (1,10) selection strategy with 10% or
20% randomness, respectively. (b) (1410), (5+20), (1,10) and (5,20) ES selection plus
(1,10) selection with step size adaptation (marked with *). Note the logarithmic scaling
on the x-axis.

160

6.3 Comparison of Selection Strategies

1-SAT, n=3
0.6
10%
20%
0.5 30% i
T 500
5 T 1000 ------
g 04
©
3
©
S 03
<
=}
S
n
100 1000 10000 100000
Evaluations
(a)
1-SAT, n=3
0.6
(110) ——
(5.20)
0.5 (1+10) .
(5+20)
I T —
(1,0)*
2 04
©
2
S 03
3
©
S
n

100 1000 10000 100000
Evaluations

(b)

Figure 6.28: Standard deviation for the plots in Figure 6.27. (a) Tournament selection
for different population sizes and (1,10) selection strategy with 10% or 20% randomness,
respectively. (b) (1410), (5420), (1,10) and (5,20) ES selection plus (1,10) selection with
step size adaptation (marked with *).

161

6 Results and Analyses

1-SAT, n=4

2
S
=
100 1000 10000 100000 1e+006
Evaluations
(a)
0.6 ;
(1,10) —
(5,20) ——
0.5 1+10) -
(5+20)
1,10)* -
0.4 (4,10
A
£ 03
=
0.2
0.1 RN
100 1000 10000 100000 1e+006
Evaluations

(b)

Figure 6.29: Different selection strategies for the 1-SAT problem with n=4: (a) Tourna-
ment selection for different population sizes and (1,10) selection strategy with 10% or
20% randomness, respectively. (b) (1410), (5+20), (1,10) and (5,20) ES selection plus
(1,10) selection with step size adaptation (marked with *). Note the logarithmic scaling
on the x-axis.

162

6.3 Comparison of Selection Strategies

1-SAT, n=4
0.6
10%
20%
05 T100 .
T 500
5 T 1000 ------
S 04
©
3
©
S 03
<
=}
S
n
100 1000 10000 100000 1e+006
Evaluations
(a)
1-SAT, n=4
0.6 T
(110) ——
(5,20)
0.5 (1+10) .
(5+20)
c 10y
(1,10)*
S 04
©
2
S 03
3
©
S
»

100 1000 10000 100000 1e+006
Evaluations

(b)

Figure 6.30: Standard deviation for the plots in Figure 6.29. (a) Tournament selection
for different population sizes and (1,10) selection strategy with 10% or 20% randomness,
respectively. (b) (1410), (5420), (1,10) and (5,20) ES selection plus (1,10) selection with
step size adaptation (marked with *).

163

6 Results and Analyses

164

7 Discussion and Outlook

In order to attain the impossible
one must attempt the absurd.

Miguel de Unamuno y Jugo
(spanish philosopher, 1864-1936)

Difficulties seem to exist only in
order to be overcome.

E. T.A. Hoffmann (1776-1822)

The evolution of quantum algorithms using genetic programming causes difficulties which
are not easy to overcome. Originally, starting with the challenging objective of evolving
novel quantum algorithms which solve relevant problems such as approzimate pattern
matching' better than any classical algorithm, it did not take long to realize that this
aim is for many reasons not within reach — at least not yet. The conclusion is disil-
lusioning: With only a few exceptions, the evolutionary search approach did not lead
to new realizations so far. In contrast to this, manual quantum computer programming
had much more success though further breakthrough solutions comparable to Shor’s fac-
torization algorithm or Grover’s search algorithm did not follow. Of course, this raises
the question whether other “killer” applications of quantum computing exist at all — a
question which could not be answered in this thesis.

Summary

In the course of this thesis two GP-systems were developed: one based on purely linear
genome structures, the other based on linear-tree genome structures allowing the use of
intermediate measurements. The latter was built to achieve more “degrees of freedom”
in the construction and evolution of quantum circuits compared to stricter linear GP
schemes. However, this turned out to be of no benefit for the evolutionary process,
probably because of the simplicity of the problem solutions. Yet, it was possible to evolve
quantum circuits. Apart from the result that evolution of (small) quantum algorithms
is possible using the linear and linear-tree GP system (it was demonstrated already
by Lee Spector that it is in principle possible), a simpler implementation for Hogg’s

!For this problem, both automatic programming and manual quantum circuit design failed.

165

7 Discussion and Outlook

mixing matrix was found. Moreover, although not explicitly designed to evolve scalable
quantum algorithms, scalability of the evolved quantum algorithms was evident and
visible. In addition, it could be shown that by using pre-evolved initial populations,
evolution is accelerated and (even more) forced to produce scalable quantum algorithms.
Focusing on the performance of quantum circuit evaluation, the quantum simulator was
optimized based on considerations summarized in Section 5.1. The next step aimed at
improving the efficiency of evolutionary search. Due to major obstacles identified as
the exponential growth of computational costs, the huge search spaces, and complex
problem landscapes making evolutionary search very difficult, evolution has to perform
effectively. The investigations lead to the exclusion of the crossover operator, which
was proved to be detrimental to the evolution of quantum circuits for the Deutsch-
Jozsa problem and 1-SAT. For both problems, the structure of mutation landscapes was
analyzed using autocorrelation functions and information measures for characterization.
The relationship between landscape characteristics and quantum algorithm evolution
can be useful for improving the efficiency of the search process. Here, it is shown to be
useful to explain different behaviors of evolution resulting from a comparison of different
selection strategies for evolutionary quantum circuit design.

Future Work

The experiments performed so far convey an “impression” of the evolvability of quantum
circuits using genetic programming. However, it seems unlikely that the search spaces
and fitness landscapes of DJ and 1-SAT are in any way representative of other problem
search spaces. For the lack of existing test problems this is hard to decide.

A big problem is to find suitable test problems having instances which only need a
few qubits, including ancillary qubits, and/or have only a small number of fitness cases.
A few suggestions are already made in Section 5.2.1, however, this does not seem to
be sufficient to obtain further insights and to help quantum computing find relevant
applications.

There are still further ways to improve and to modify the GP-systems. For example,
not considered up to now are suitable error models since an error-free circuit model of
computation was assumed. Decoherence and faulty quantum operations must be consid-
ered if a more realistic quantum computational model is demanded. Unfortunately, this
will again slow down the evolution. The quantum circuit model is based on pure quan-
tum states. Evolution on the basis of density matrices is another approach which already
showed promising results [142]. Another consideration refers to the role of entanglement
and Vidal’s method simulating slightly entangled quantum computations efficiently on a
classical computer. Is this also a suitable approach to boost the simulation and quantum
circuit evaluation?

Some predictions of trends and developments of technology made in the past and dis-
proven today give reference that it is difficult and dangerous to predict what the future
has in store for certain technologies. However, a major breakthrough in quantum soft-

166

and hardware is not to be realistically expected (at least) in the near future. A special
case of quantum computing which seems to be more feasible technologically and of more
practical relevance is reversible computing “quantum computing’s practical cousin”[55].
The benefits and differences of reversible computing compared to quantum computing
are explained at great length in [55]. Briefly, in the physical sense, reversible computing
means ideally computing without (hardly any) energy consumption. That is, considering
computing as a conversion of information reversible gates operate without loss of infor-
mation. Instead, irreversible operations always lead to lost or erased information. That is
the reason why reversible computing will require less energy and will emit less heat, both
of which will reduce limiting factors of conventional irreversible computing. It remains
to be seen whether “reversible computing will be the foundation for most 21st-century
computer engineering”, as predicted in [55].

GP & QC: A Common Future?
Genetic Programming is suitable for circuit analysis (the decomposition of quantum
circuits or matrices into elementary gates) as shown by Williams and Gray (cf. Section
5.3.1) and confirmed by experiments on the decomposition of the QFT matrix. Beyond
this, the synthesis of quantum algorithms is possible but only for rather small quantum
systems. In isolated cases this might be possible for more than seven or eight qubits, in
most cases with problems having huge numbers of fitness cases this is only possible for
smaller quantum systems. And with only such a few quantum bits being available, it
is difficult to find problems with sufficiently small instances. The evolution of quantum
circuits for in some ways “artificial” problems such as Deutsch’s or Simon’s might help
to gain solutions for more relevant problems.

Perhaps, genetic programming and quantum computing will have a brighter common
future, as soon as quantum programs do not have to be simulated on classical computers,
but can be tested on true quantum computers.

Alex Hamilton on a plenary debate session on quantum computing, June
2003 [1]:

“We don’t have many quantum algorithms, but that’s okay, we don’t have that
many quantum computers to run them on just yet.”

167

7 Discussion and Outlook

168

About the author

From 1993 to 1999 studied computer science at the University of Dortmund, Germany,
attaining a diploma in computer science (Dipl.-Inform.). The study focused on systems
analysis, chaos theory and technical optimization. The diploma thesis dealed with a
subject in biocomputing. In parallel, from 1994 to 1996, studied mathematics finishing
with a pre-degree. Following these studies, from 2000 to 2003, was a scientific associate
in the group of Prof. Dr. Wolfgang Banzhaf at the chair of systems analysis, Univer-
sity of Dortmund. Scientific activities in the field of non-standard computing: at first
biocomputing, later on, quantum computing in connection with genetic programming.
From 2001 to 2003 scholarship holder within the Ph.D. program Materials and Concepts
for Quantum Information Processing. Early in 2004, was a visiting research student for
three month at the Memorial University of Newfoundland, Canada.

Publications

A. Leier and C. Richter and W. Banzhaf and H. Rauhe, Cryptography with DNA binary
strands, BioSystems, 57, pp. 13-22, 2000.

A. Leier and W. Banzhaf, Evolving Hogg’s Quantum Algorithm Using Linear-Tree GP,
in GECCO-03: Proceedings of the Genetic and Evolutionary Computation Conference,
Part I, E. Cantu-Paz et al., eds., vol. 2723 of LNCS, pp. 390-400, Springer, 2003.

A. Leier and W. Banzhaf, Ezploring the Search Space of Quantum Programs, in Proceed-
ings of the 2003 Congress on Evolutionary Computation, R. Sarker et al., eds., vol. I, pp.
170-177, IEEE Computer Society Press, 2003.

A. Leier and W. Banzhaf, Comparison of Selection Strategies for Evolutionary Quantum

Circuit Design, in GECCO-04: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, LNCS, Springer, 2004.

169

170

Bibliography

[1] D. Abbott, Dreams versus Reality: Plenary Debate Session on Quantum Computing,
Jun. 2003, LANL e-preprint quant-ph/0310130. Part of SPIE’s First International
Symposium on Fluctuations and Noise (FaN’03).

[2] D. Abrams and S. Lloyd, Simulation of many-body Fermi systems on a universal
quantum computer, Phys. Rev. Lett., 79 (13), pp. 2586-2589, Sep. 1997, LANL e-
preprint quant-ph/9703054.

[3] ACM, ed., Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
(STOC), Heraklion, Crete, Greece, ACM Press, New York, Jul. 2001.

[4] D. Aharonov, Quantum Computing, in Annual Reviews of Computational Physics VI,
D. Stauffer, ed., ch. 4, pp. 259-346, World Scientific, Singapur, 1999, LANL e-preprint
quant-ph/9812037.

[5] A. Aho and K. Svore, Compiling quantum circuits using the palindrome transform,
Nov. 2003, LANL e-preprint quant-ph/0311008.

[6] P. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, and A. Zalzala, eds., Proceedings
of the 1999 Congress on FEwvolutionary Computation, Washington DC, USA, IEEE
Computer Society Press, Silver Spring, MD, USA, Jul. 1999.

[7] W. Banzhaf, Genetic programming for pedestrians, in Proceedings of the 5th Inter-
national Conference on Genetic Algorithms (ICGA), S. Forrest, ed., p. 628, Morgan
Kaufmann Publishers, San Francisco, 1993.

[8] W. Banzhaf, P. Nordin, R. Keller, and F. Francone, Genetic Programming - An
Introduction, dpunkt Heidelberg and Morgan Kaufmann Publishers, San Francisco,
1998.

[9] H. Barnum, H. Bernstein, and L. Spector, Better-than-classical circuits for OR
and AND/OR found using genetic programming, Jul. 1999, LANL e-preprint quant-
ph/9907056.

[10] H. Barnum, H. Bernstein, and L. Spector, Quantum circuits for OR and AND of
ORs, J. Phys. A: Math. Gen., 33 (45), pp. 8047-8057, Nov. 2000.

171

Bibliography

[11] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf, Quantum lower bounds
by polynomials, in IEEE [77], pp. 352-361, LANL e-preprint quant-ph/9802049.

[12] P. Benioff, The computer as a physical system: A microscopic quantum mechanical
Hamiltonian model of computers as represented by Turing machines, J. Stat. Phys.,

22, pp. 563-591, 1980.

[13] C. Bennett, Logical reversibility of computation, IBM Journal of Research and De-
velopment, 17 (6), pp. 525-530, 1973.

[14] C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses
of quantum computing, STAM J. Comput., 26 (5), pp. 1510-1523, Oct. 1997, LANL
e-preprint quant-ph/9701001.

. Bennett, . Brassard, C. Crepeau, R. Jozsa, A. Peres, an . Wootters, Tele-

15] C. B G. B d, C. C R.J AP d W. W Tel
porting an unknown quantum state via dual classical and Finstein-Prodolsky-Rosen
channels, Phys. Rev. Lett., 70 (13), pp. 1895-1899, Mar. 1993.

[16] E. Bernstein and U. Vazirani, Quantum complezity theory, in Proceedings of the 25th
Annual ACM Symposium on Theory of Computing (STOC), ACM, ed., pp. 11-20,
ACM Press, New York, May 1993.

[17] E. Bernstein and U. Vazirani, Quantum complezxity theory, STAM J. Comput., 26
(5), pp. 1411-1473, Oct. 1997. Preliminary version appeared in Proceedings of 25th
Annual ACM Symposium on Theory of Computing (STOC), May 1993.

[18] E. Biham, O. Biham, D. Biron, M. Grassl, D. Lidar, and D. Shapira, Analysis of
generalized Grover quantum search algorithms using recursion equations, Phys. Rev.
A, 63 (1), Jan. 2001. Article 012310.

[19] D. Boneh and R. Lipton, Quantum cryptanalysis of hidden linear functions, in
Advances in Cryptology — CRYPTO’95, Proceedings of the 15th Annual Interna-
tional Cryptology Conference, D. Coppersmith, ed., vol. 963 of LNCS, pp. 424-437,
Springer, New York, Aug. 1995.

[20] J. Boye and J. Maluszynski, Rewriting systems, 2003. Lecture notes taught at
Link6ping University, http://www.ida.liu.se/~TDDB40/.

[21] M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, Tight bounds on quantum searching,
in Toffoli et al. [149], pp. 36-43, LANL e-preprint quant-ph/9605034.

[22] G. Brassard, Teleportation as a quantum computation, in Toffoli et al. [149], pp. 48—
50.

172

Bibliography

[23] G. Brassard and P. Hoyer, An exact quantum polynomial-time algorithm for Simon’s
problem, in Proceedings of the Fifth Israeli Symposium on Theory of Computing and
Systems (ISTCS), IEEE, ed., pp. 12-23, IEEE Computer Society Press, Silver Spring,
MD, USA, Jun. 1997.

[24] G. Brassard, P. Hgyer, and A. Tapp, Quantum counting, May 1998, LANL e-preprint
quant-ph /9805082.

[25] P. Biirgisser, Algebraische Komplexitatstheorie II - Schnelle Matrizmultiplikation
und Kombinatorik, Séminaire Lotharingien De Combinatoire, 36 (B36b), 1996.

[26] H. Buhrman and R. de Wolf, Complexity measures and decision tree complexity: A
survey, Theoretical Computer Science, 288, pp. 21-43, 2002.

[27] H. Buhrman, C. Diirr, M. Heiligman, P. Hgyer, F. Magniez, M. Santha, and
R. de Wolf, Quantum algorithms for element distinctness, Jul. 2000, LANL e-preprint
quant-ph/0007016.

[28] J. Busch, J. Ziegler, W. Banzhaf, A. Ross, D. Sawitzki, and C. Aue, Automatic
Generation of Control Programs for Walking Robots using Genetic Programming, in
Lutton et al. [101], pp. 259-268.

[29] V. Buzek, S. Braunstein, M. Hillery, and D. Bruf, Quantum copying: a network,
Phys. Rev. A, 56 (5), pp. 3446-3452, 1997, LANL e-preprint quant-ph/9703046.

[30] K. Cheung and M. Mosca, Decomposing finite Abelian groups, Jan. 2001, LANL
e-preprint ¢s.DS/0101004.

[31] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Quantum algorithms revisited,
Proc. R. Soc. London A, 454 (1969), pp. 339-354, 1998, LANL e-preprint quant-
ph/9708016.

[32] H. Cohen, A Course in Computational Algebraic Number Theory, vol. 138 of Grad-
uate Texts in Mathematics, Springer-Verlag, 1993.

[33] J. Cohen and M. Roth, On the implementation of Strassen’s fast multiplication al-
gorithm, Acta Informatica, 6, pp. 341-355, 1976.

[34] D. Collins, K. Kim, and W. Holton, Deutsch-Jozsa algorithm as a test of quantum
computation, Phys. Rev. A, 58 (3), pp. R1633-R1636, Sep. 1998.

[35] D. Coppersmith, An approzimate Fourier transform wuseful in quantum factoring,

Tech. Rep. RC 19642, IBM, 1994.

173

Bibliography

[36] D. Coppersmith and S. Winograd, Matriz multiplication via arithmetic progressions,
in Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC),
ACM, ed., pp. 1-6, ACM Press, New York, May 1987.

[37] G. Cybenko, Reducing quantum computations to elementary unitary operations,
Computing in Science and Engineering, 3 (2), pp. 27-32, 2001.

[38] J. Daida, T. Bersano-Begey, S. Ross, and J. Vesecky, Computer-assisted design of
image classification algorithms: Dynamic and static fitness evaluations in a scaffolded
genetic programming environment, in Koza et al. [89], pp. 279-284.

[39] C. Darwin, On the Origin of Species by Means of Natural Selection or the Preserva-
tion of Favoured Races in the Struggle for Life, Murray, London, UK, 1859.

[40] Y. Davidor, H.-P. Schwefel, and R. Manner, eds., Parallel Problem Solving from
Nature — PPSN III, International Conference on Evolutionary Computation, vol. 866
of Lecture Notes in Computer Science, Jerusalem, Israel, Springer, Berlin, Oct. 1994.

[41] N. Dershowitz, A taste of rewrite systems, in Functional Programming, Concurrency,
Simulation and Automated Reasoning, P. Lauer, ed., vol. 693 of LNCS, pp. 199-228,
Springer, Berlin, 1993.

[42] N. Dershowitz and J.-P. Jouannaud, Rewrite systems, in Handbook of Theoretical
Computer Science, Volume B: Formal Models and Semantics, J. van Leeuwen, ed.,
Elsevier, 1990, pp. 243-320.

[43] D. Deutsch, Quantum theory, the Church-Turing principle and the universal quan-
tum computer, Proc. R. Soc. London A, 400, pp. 97-117, 1985.

[44] D. Deutsch, Quantum computational networks, Proc. R. Soc. London A, 425, pp. 73—
90, 1989.

[45] D. Deutsch, The Fabric of Reality, Penguin Books, 1997.

[46] D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, Proc.
R. Soc. London A, 439, pp. 553-558, 1992.

[47] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford, 1958.

[48] C. Diirr and P. Hoyer, A quantum algorithm for finding the minimum, Jul. 1996,
LANL e-preprint quant-ph/9607014.

[49] M. Ettinger and P. Hgyer, On quantum algorithms for noncommutative hidden sub-
groups, in Proceedings of the 16th Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS), C. Meinel and S. Tison, eds., vol. 1563 of LNCS, pp. 478-487,
Springer, Berlin, Mar. 1999, LANL e-preprint quant-ph/9807029.

174

Bibliography

[50] M. Ettinger, P. Hoyer, and E. Knill, Hidden subgroup states are almost orthogonal,
Jan. 1999, LANL e-preprint quant-ph/9901034.

[51] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, A limit on the speed of quantum
computation for insertion into an ordered list, Dec. 1998, LANL e-preprint quant-
ph/9812051.

[52] A. Fijany and C. Williams, Quantum Wavelet Transforms: Fast Algorithms and
Complete Circuits, in Williams [165], pp. 10-33.

[53] L. Fogel, A. Owens, and M. Walsh, Artificial Intelligence through a Simulation of
Evolution, in Biophysics and Cybernetic Systems: Proceedings of the 2nd Cybernetic
Sciences Symposium, M. Maxfield, A. Callahan, and L. Fogel, eds., pp. 131-155,
Spartan Books, Washington, D.C., 1965.

[54] L. Fogel, A. Owens, and M. Walsh, Artificial Intelligence through Simulated Evolu-
tion, John Wiley & Sons, New York, USA, 1966.

[55] M. Frank, Rewversible Computing: Quantum Computing’s Practical Cousin, May
2003. Invited talk, J.H. Simons Conference on Quantum and Reversible Computation,
Stony Brook, NY.

[56] C. Gathercole and P. Ross, Dynamic training subset selection for supervised learning
in genetic programming, in Davidor et al. [40], pp. 312-321.

[57] Y. Ge, L. Watson, and E. Collins, Genetic algorithms for optimization on a quan-
tum computer, in Proceedings of the 1st International Conference on Unconventional
Models of Computation (UMC), C. Calude, J. Casti, and M. Dinneen, eds., DMTCS,

pp- 218-227, Springer, Singapur, Jan. 1998.

[58] T. Gram#, S. Bornholdt, M. Grof, M. Mitchell, and T. Pellizzari, eds., Non-Standard
Computation - Molecular Computation, Cellular Automata, FEvolutionary Algorithms,
Quantum Computers, Wiley-VCH, 1998.

[59] M. Grigni, L. Schulman, M. Vazirani, and U. Vazirani, Quantum Mechanical Algo-
rithms for the Nonabelian Hidden Subgroup Problem, in ACM [3], pp. 68-74.

[60] L. Gritz and J. Hahn, Genetic programming for articulated figure motion, Journal
of Visualization and Computer Animation, 6, pp. 129-142, 1995.

[61] L. Grover, A fast quantum mechanical algorithm for database search, in Proceedings
of the 28th Annual ACM Symposium on Theory of Computing (STOC), ACM, ed.,
pp. 212-219, ACM Press, New York, May 1996, LANL e-preprint quant-ph/9605043.

[62] L. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys.
Rev. Lett., 79, pp. 325-328, Jul. 1997, LANL e-preprint quant-ph/9706033.

175

Bibliography

[63] L. Grover, Quantum search on structured problems, Chaos, Solitons, and Fractals,
Special Issue on Quantum Computing, 10 (10), pp. 1695-1705, Jun. 1999, LANL e-
preprint quant-ph/9802035. Earlier version in Proceedings of the First NASA QCQC
Conference.

[64] L. Grover, An improved quantum scheduling algorithm, Feb. 2002, LANL e-preprint
quant-ph/0202033.

[65] J. Gruska, Quantum Computing, McGraw-Hill, London, 1999.

[66] L. Hales and S. Hallgren, An improved quantum Fourier transform algorithm and
applications, in Proceedings of the 41st Annual IEEE Symp. on Foundations of Com-
puter Science (FOCS), IEEE, ed., pp. 515-525, IEEE Computer Society Press, Silver
Spring, MD, USA, Nov. 2000.

[67] S. Hallgren, Quantum Fourier Sampling, the Hidden Subgroup Problem and Beyond,
PhD thesis, University of California, Berkeley, 2000.

[68] S. Hallgren, Polynomial-time quantum algorithms for Pell’s equation and the prin-
cipal ideal problem, in Proceedings of the 34rd Annual ACM Symposium on Theory of
Computing (STOC), ACM, ed., ACM Press, New York, May 2002.

[69] S. Hallgren, A. Russell, and A. Ta-Shma, The hidden subgroup problem and quantum
computation using group representations, Aug. 2001. Preliminary version appeared in
Proceedings of 32nd Annual ACM Symposium on Theory of Computing (STOC), May
2000.

[70] M. Heiligman, Finding matches between two databases on a quantum computer, Jun.
2000. LANL e-preprint quant-ph/0006136.

[71] M. Hirvensalo, Quantum Computing, Natural Computing Series, Springer, Berlin,
2001.

[72] T. Hogg, Highly structured searches with quantum computers, Phys. Rev. Lett., 80
(11), pp. 2473-2476, Mar. 1998.

[73] T. Hogg, Solving highly constrained search problems with quantum computers, J.
Artificial Intelligence Res., 10, pp. 39-66, Feb. 1999.

[74] J. Holland, Adaption in natural and artificial systems, MIT Press, Cambridge, MA,
USA, 1992.

[75] P. Hoyer, J. Neerbek, and Y. Shi, Quantum complexities of ordered searching, sort-
ing, and element distinctness, Feb. 2001, LANL e-preprint quant-ph/0102078.

176

Bibliography

[76] IEEE, ed., Proceedings of the 35th Annual IEEE Symp. on Foundations of Computer
Science (FOCS), Santa Fee, New Mexico, USA, IEEE Computer Society Press, Silver
Spring, MD, USA, Nov. 1994.

[77] IEEE, ed., Proceedings of the 39th Annual IEEE Symp. on Foundations of Computer
Science (FOCS), Palo Alto, CA, USA, IEEE Computer Society Press, Silver Spring,
MD, USA, Nov. 1998.

[78] ITRS, International Technology Roadmap for Semiconducters, 2003 Edition, Ezec-
utive Summary, 2003. http://public.itrs.net/Files/2003ITRS/Home2003.htm.

[79] G. Ivanyos, F. Magniez, and M. Santha, Efficient algorithms for some instances
of the non-abelian hidden subgroup problem, Feb. 2001, LANL e-preprint quant-
ph/0102014.

[80] R. Jozsa, Quantum algorithms and the Fourier transform, Proc. R. Soc. London A,
454, pp. 323-337, 1998, LANL e-preprint quant-ph/9707033.

[81] R. Jozsa and N. Linden, On the role of entanglement in quantum computational
speed-up, Mar. 2002, LANL e-preprint quant-ph/0201143.

[82] W. Kantschik and W. Banzhaf, Linear-tree GP and its comparison with other GP
structures, in Miller et al. [102], pp. 302-312.

[83] W. Kantschik and W. Banzhaf, Linear-Graph GP — A new GP Structure, in Lutton
et al. [101], pp. 83-92.

[84] C. Kirchner and H. Kirchner, Rewriting solving proving, 2001. Preliminary version,
http://www.loria.fr/ ckirchne/rsp.pdf.

[85] A. Kitaev, Quantum measurements and the Abelian stabilizer problem, Tech. rep.,
L.D. Landau Institute for Theoretical Physics, Moscow, 1995, LANL e-preprint quant-
ph/9511026.

[86] A.Klappenecker and M. Rotteler, Discrete cosine transforms on quantum computers,
Nov. 2001, LANL e-preprint quant-ph/0111038.

[87] J. Koza, Genetic Programming: On the Programming of Computers by Natural Se-
lection, MIT Press, Cambridge, MA, USA, 1992.

[88] J. Koza, Genetic Programming II, MIT Press, Cambridge, MA, USA, 1994.

[89] J. Koza, D. Goldberg, D. Fogel, and R. Riolo, eds., Genetic Programming 1996:
Proceedings of the First Annual Conference, Stanford University, CA, USA, MIT Press,
Cambridge, MA, USA, 1996.

177

Bibliography

[90] J. Koza, F. B. III, D. Andre, and M. Keane, Automated WYSIWYG design of both
the topology and component values of electrical circuits using genetic programming, in
Koza et al. [89], pp. 123-131.

[91] J. Koza, F. B. III, D. Andre, and M. Keane, Four problems for which a computer
program evolved by genetic programming is competitive with human performance, in
Proceedings of the 1996 Congress on Evolutionary Computation, pp. 1-10, IEEE Com-
puter Society Press, New York, 1996.

[92] R. Ladner, On the structure of polynomial time reducibility, Journal of the ACM,
22, pp. 155-171, 1975.

[93] R. Landauer, Information is physical, Physics Today, 44, pp. 23-29, 1991.

[94] W. Langdon, The Distribution of Reversible Functions is Normal, in Genetic Pro-
gramming - Theory and Practice, R. Riolo and B. Worzel, eds., vol. 6 of Genetic
Programming, pp. 173-188, Kluwer Academic Publishers, Boston, 2003.

[95] C. Lasarczyk, Trainingsmengenselektion auf der Grundlage einer Filnesscase-
Topologie, Diploma thesis, University of Dortmund, Germany, 2002.

[96] C. Lasarczyk, P. Dittrich, and W. Banzhaf, Dynamic subset selection based on a
fitness case topology, Evolutionary Computation, 12 (2), 2004.

[97] A. Leier and W. Banzhaf, Evolving Hogg’s quantum algorithm using linear-tree GP,
in GECCO-03: Proceedings of the Genetic and Evolutionary Computation Conference,
Part I, E. Cantid-Paz, S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M. Potter,
A. Schultz, N. Jonoska, K. Dowsland, J. Miller, J. Foster, K. Deb, D. Lawrence, R. Roy,
U.-M. O’Reilly, H.-G. Beyer, R. Standish, and G. Kendall, eds., vol. 2723 of LNCS,
pp- 390-400, Springer, Jul. 2003.

[98] A. Leier and W. Banzhaf, Ezploring the search space of quantum programs, in Pro-
ceedings of the 2003 Congress on Evolutionary Computation, R. Sarker, R. Reynolds,
H. Abbass, K. Tan, B. McKay, D. Essam, and T. Gedeon, eds., vol. I, pp. 170-177,
IEEE Computer Society Press, Piscataway, NJ, USA, Dec. 2003.

[99] A. Leier and W. Banzhaf, Comparison of selection strategies for evolutionary quan-
tum circuit design, in GECCO-04: Proceedings of the Genetic and Evolutionary Com-
putation Conference, LNCS, Springer, Jun. 2004.

[100] S. Lloyd, Quantum search without entanglement, Phys. Rev. A, 61 (1), Jan. 2000.
Article 010301.

[101] E. Lutton, J. Foster, J. Miller, C. Ryan, and A. Tettamanzi, eds., Proceedings of the
5th European Conference on Genetic Programming (EUROGP), vol. 2278 of LNCS,
Kinsale, Ireland, Springer, Berlin, Apr. 2002.

178

Bibliography

[102] J. Miller, M. Tomassini, P. Lanzi, C. Ryan, A. Tettamanzi, and W. Langdon, eds.,
Proceedings of the Jth European Conference on Genetic Programming (EUROGP),
vol. 2038 of LNCS, Lake Como, Italy, Springer, Berlin, Apr. 2001.

[103] T. Mitchell, Machine Learning, Mc-Graw-Hill, New York, USA, 1996.

[104] M. Mosca, Quantum searching, counting and amplification by eigenvector analysis,
in Proceedings of International Workshop on Randomized Algorithms, R. Freivalds,
ed., pp. 90-100, Aachen University Press, Aug. 1998.

[105] M. Mosca and A. Ekert, The hidden subgroup problem and eigenvalue estimation
on a quantum computer, in Williams [165], pp. 174-188, LANL e-preprint quant-
ph/9903071.

[106] A. Narayanan and J. Wallace, A quantum algorithm for route finding, in Proceed-
ings of the 15th European Meeting on Cybernetics and Systems Research (EMCSR),
R. Trappl, ed., vol. 1, pp. 140-143, Austrian Society for Cybernetic Studies, Apr.
2000.

[107] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cam-
bridge University Press, Cambridge, UK, 2000.

[108] H. Nishimura and M. Ozawa, Computational complexity of uniform quantum cir-
cuit families and quantum Turing machines, Theoretical Computer Science, 276 (1-2),
pp- 147-181, Apr. 2002.

[109] P. Nordin, A compiling genetic programming system that directly manipulates the
machine code, in Advances in Genetic Programming, ch. 14, pp. 311-331, MIT Press,
Cambridge, MA, USA, 1994.

[110] P. Nordin, Ewvolutionary Program Induction of Binary Machine Code and its Ap-
plication, Krehl-Verlag, Miinster, Germany, 1997.

[111] P. Nordin and W. Banzhaf, Genetic programming controlling a miniature robot,
in Working Notes for the AAAT Symposium on Genetic Programming, E. Siegel and
J. Koza, eds., pp. 61-67, AAAI, Menlo Park, CA, 1995.

[112] P. Nordin and W. Banzhaf, An on-line method to evolve behaviour and to control

a miniature robot in real time with genetic programming, Adaptive Behaviour, 5 (2),
pp- 107-140, 1997.

[113] P. Nordin and W. Banzhaf, Real time control of a khepera robot using genetic
programming, Cybernetics and Control, 26 (3), pp. 533-561, 1997.

179

Bibliography

[114] P. Nordin, F. Francone, and W. Banzhaf, Ezplicitly defined introns and destructive
crossover in genetic programming, in Proceedings of the Workshop on Genetic Pro-

gramming: From Theory to Real-World Applications, J. Rosca, ed., pp. 6-22, Tahoe
City, California, USA, Jul. 1995.

[115] B. Omer, Quantum Programming in QCL, Master thesis, Technical University of
Vienna, Institute of Information Systems, Jan. 2000.

[116] G. Ortiz, J. Gubernatis, E. Knill, and R. Laflamme, Quantum algorithms for
Fermionic simulations, Dec. 2000, LANL e-preprint quant-ph/0012334.

[117] X. Peng, X. Zhu, X. Fang, M. Feng, M. Liu, and K. Gao, Ezperimental imple-
mentation of Hogg’s algorithm on a three-quantum-bit NMR quantum computer, Phys.
Rev. A, 65 (042315), Apr. 2002.

[118] T. Perkis, Stack-based genetic programming, in Proceedings of the 1994 IEEE World
Congress on Computational Intelligence, IEEE, ed., vol. 1, pp. 148-153, IEEE Com-
puter Society Press, Jun. 1994.

[119] D. Poulin, Classicality of quantum information processing, Phys. Rev. A, 65
(042319), Apr. 2002, LANL e-preprint quant-ph/0108102.

[120] J. Preskill, Fault-Tolerant Quantum Computation, in Introduction to Quantum
Computation and Information, H.-K. Lo, S. Popescu, and T. Spiller, eds., pp. 213—
269, World Scientific, Singapur, 1998, LANL e-preprint quant-ph/9712048.

[121] J. Preskill, Quantum computation, 2000-01. Lecture notes for course Physics/
CS 219 (formerly Physics 229) taught at California Institute of Technology,
http://www.theory.caltech.edu/people/preskill/ph229/.

[122] H. Ramesh and V. Vinay, String matching in O(v/n + /m) quantum time, Nov.
2000, LANL e-preprint quant-ph/0011049.

[123] M. Raymer, W. Punch, E. Goodman, and L. Kuhn, Genetic programming for
improved data mining: An application to the biochemistry of protein interactions, in
Koza et al. [89], pp. 375-380.

[124] 1. Rechenberg, Ewvolutionsstrategie '93, Frommann Verlag, Stuttgart, Germany,
1994.

[125] C. Reidys and P. Stadler, Neutrality in fitness landscapes, Tech. Rep. 98-10-089,
Santa Fe Institute, 1998.

[126] M. Rotteler and T. Beth, Polynomial-time solutions to the hidden subgroup problem
for a class of non-abelian groups, Dec. 1998, LANL e-preprint quant-ph/9812070.

180

Bibliography

[127] B. Rubinstein, Evolving quantum circuits using genetic programming, in Proceed-
ings of the 2001 Congress on Evolutionary Computation, IEEE, ed., pp. 114-151,
IEEE Computer Society Press, Silver Spring, MD, USA, May 2001. The first version
of this paper already appeared in 1999.

[128] G. Rudolph, An evolutionary algorithm for integer programming, in Davidor et al.
[40], pp. 139-148.

[129] B. Schneier, Applied Cryptography, John Wiley & Sons, New York, 1996.
[130] M. Schulz, The end of the road for silicon?, Nature, 399, pp. 729-730, Jun. 1999.

[131] H.-P. Schwefel, Evolution and Optimum Seeking, Sixth-Generation Computer Tech-
nology Series, John-Wiley & Sons, New York, USA, 1995.

[132] P. Shor, Algorithms for quantum computation: discrete logarithm and factoring, in
[EEE [76], pp. 124-134.

[133] P. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer, SIAM J. Comput., 26 (5), pp. 1484-1509, Oct. 1997, LANL
e-preprint quant-ph/9508027.

[134] D. Simon, On the power of quantum computation, in IEEE [76], pp. 116-123.

. oimon, On the power of quantum computation, . Comput., ,
135| D. Si On th] SIAM J. C 26 (5
pp. 1474-1483, Oct. 1997.

[136] L. Spector, Quantum computation - a tutorial, in GECCO-99: Proceedings of the
Genetic and Evolutionary Computation Conference, W. Banzhaf, J. Daida, A. Eiben,
M. H. Garzon, V. Honavar, M. Jakiela, and R. Smith, eds., pp. 170-197, Morgan
Kaufmann Publishers, San Francisco, Jul. 1999.

[137] L. Spector, The evolution of arbitrary computational processes, IEEE Intelligent
Systems, pp. 80-83, May/Jun. 2000.

[138] L. Spector, Automatic Quantum Computer Programming - A Genetic Programming
Approach, Kluwer Academic Publishers, 2004. Not yet published.

[139] L. Spector, H. Barnum, H. Bernstein, and N. Swamy, Finding a better-than-
classical quantum AND/OR algorithm using genetic programming, in Angeline et al.
[6], pp. 2239-2246.

[140] L. Spector, H. Barnum, H. Bernstein, and N. Swamy, Quantum Computing Appli-
cations of Genetic Programming, in Advances in Genetic Programming, L. Spector,
U.-M. O’Reilly, W. Langdon, and P. Angeline, eds., vol. 3, pp. 135-160, MIT Press,
Cambridge, MA, USA, 1999.

181

Bibliography

[141] R. Stadelhofer, 2003. Personal communication.

[142] R. Stadelhofer, Solving The Parity Problem On A Mized State Quantum Computer,
Tech. rep., University of Dortmund, Chair of Systems Analysis, Feb. 2004. Available
on request.

[143] P. Stadler, Towards theory of landscapes, in Complex-Systems and Binary Net-
works, R. Lopéz-Pena, R. Capovilla, R. Garcia-Pelayo, H. Waelbroeck, and F. Zer-
tuche, eds., vol. 461 of Lecture Notes in Physics, pp. 77-163, Springer, Berlin, 1995.

[144] A. Steane, Quantum computation, Reports on Progress in Physics, 61, pp. 117-173,
1998, LANL e-preprint quant-ph/9708022.

[145] V. Strassen, Gaussian elimination is not optimal, Numer. Math., 13, pp. 354-356,
1969.

[146] Technology Experts Panel, A quantum information science and technology
roadmap, Tech. rep., ARDA, Dec. 2002.

[147] A. Teller and M. Veloso, PADO: A new learning architecture for object recognition,
in Symbolic Visual Learning, K. Ikeuchi and M. Veloso, eds., pp. 81-116, Oxford
University Press, Oxford, UK, 1996.

[148] B. Terhal and D. DiVincenzo, The problem of equilibration and the computation
of correlation functions on a quantum computer, Oct. 1998, LANL e-preprint quant-
ph/9810063.

[149] T. Toffoli, M. Biafore, and J. Leao, eds., Proceedings of the Fourth Workshop on
Physics and Computation (PhysComp), Boston, MA, USA, New England Complex
Systems Institute, Cambridge, MA, USA, Nov. 1996.

[150] F. Vallentin, Zur Komplexitit des “Shortest Vector Problem” und seine Anwedun-
gen in der Kryptographie, Diploma thesis, University of Dortmund, Dept. of Computer
Science, Aug. 1999.

. van Dam, Quantum oracle interrogation: getting all information for half the
151 W D le @) 3 I) half th
price, in IEEE [77], pp. 362-367, LANL e-preprint quant-ph/9805006.

[152] W. van Dam, Quantum algorithms for weighing matrices and quadratic residue,
Aug. 2000, LANL e-preprint quant-ph/0008059.

[153] W. van Dam and S. Hallgren, Efficient quantum algorithms for shifted quadratic
character problems, Nov. 2000, LANL e-preprint quant-ph/0011067.

182

Bibliography

[154] L. Vandersypen, M. Steffen, G. Breyta, C. Yannoni, M. Sherwood, and I. Chuang,
Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic
resonance, Nature, 414, pp. 883-887, Dec. 2001, LANL e-preprint quant-ph/0112176.

[155] V. Vassilev, An information measure of landscapes, in Proceedings of the 7th Inter-
national Conference on Genetic Algorithms (ICGA), T. Béck, ed., pp. 49-65, Morgan
Kaufmann Publishers, San Francisco, 1993.

[156] V. Vassilev, J. Miller, and T. Fogarty, Digital circuit evolution and fitness land-
scapes, in Angeline et al. [6], pp. 1299-1306.

[157] V. Vassilev, J. Miller, and T. Fogarty, Information characteristics and the structure
of landscapes, Evolutionary Computation, 8 (1), pp. 31-60, 2000.

[158] U. Vazirani, Quantum computation, 2000. Lecture notes for course
(CS294-6, Fall 2000, taught at University of California, Berkeley,
http://www.cs.berkeley.edu/ vazirani/quantum.html.

[159] G. Vidal, Efficient classical simulations of slightly entangled quantum computations,
Feb. 2003, LANL e-preprint quant-ph/0301063.

[160] G. Wagner and P. Stadler, Complex adaptations and the structure of recombination
spaces, Tech. Rep. 97-03-029, Santa Fe Institute, 1998.

[161] J. Wallace, Quantum Computer Simulators - A Review, 1999. Version 2.1,
citeseer.nj.nec.com/wallace99quantum.html.

[162] J. Watrous, Quantum algorithms for solvable groups, in ACM [3], pp. 60-67, LANL
e-preprint quant-ph/0011023.

[163] E. Weinberger, Correlated and uncorrelated fitness landscapes and how to tell the
difference, Biological Cybernetics, 63, pp. 325-336, 1990.

[164] S. Wiesner, Simulations of many-body quantum systems by a quantum computer,
Mar. 1996, LANL e-preprint quant-ph/9603028.

[165] C. Williams, ed., Proceedings of the First NASA International Conference on Quan-
tum Computing and Quantum Communications (QCQC), vol. 1509 of LNCS, Palm
Springs, CA, USA, Springer, New York, Feb. 1998.

[166] C. Williams and S. Clearwater, eds., Ezplorations in Quantum Computing,
Springer, New York, 1997.

[167] C. Williams and A. Gray, Automated design of quantum circuits, in Williams [165],
pp. 113-125.

183

Bibliography

[168] T. Yabuki and H. Iba, Genetic algorithms and quantum circuit design, evolving a
simpler teleportation circuit, in GECCO-00: Proceedings of the Genetic and Evolu-
tionary Computation Conference, D. Whitley, D. Goldberg, E. Canti-Paz, L. Spector,
I. Parmee, and H.-G. Beyer, eds., pp. 421-425, Morgan Kaufmann Publishers, San
Francisco, Jul. 2000. Late-breaking papers at the GECCO 2000.

[169] A. Yao, Quantum circuit complezity, in Proceedings of the 34th Annual IEEE
Symp. on Foundations of Computer Science (FOCS), IEEE, ed., pp. 352-361, IEEE
Computer Society Press, Silver Spring, MD, USA, Nov. 1993.

[170] T. Yu and J. Miller, Neutrality and the evolvability of boolean function landscapes,
in Miller et al. [102], pp. 204-217.

[171] C. Zalka, Efficient simulation of quantum systems by quantum computers, Mar.
1996, LANL e-preprint quant-ph/9603026.

[172] C. Zalka, Simulating quantum systems on a quantum computer, Proc. R. Soc. Lon-
don A, 454 (1969), pp. 313-322, Jan. 1998.

[173] B.-T. Zhang and D.-Y. Cho, Genetic programming with active data selection, in
Second Asia-Pacific Conference on Simulated Evolution and Learning (SEAL’98),
B. McKay, X. Yao, C. Newton, J.-H. Kim, and T. Furuhashi, eds., vol. 1585 of
LNCS, pp. 146-153, Springer, Nov. 1998.

184

Index

Symbols
HO 10
B e 14, 23
@ et 11
Us oo 15
U e 23
CIY e 9
Lo 8
) 8, 10
CENOT 16
CF() e 18
CONOT ... 16, 18
ONOT ..o, 16, 17
CPH ..o 18
Hooooooo 15
HO™ 32
ID .o 81
INP .o 81
Mo 25
NOT ... 14
PH . oo 15
Rx oo 14
RY oo 14
RZ. oo 14, 15
SWAP . .. 18
S 15
T e 15
X 13
Y 13
Z 13

A
alteration 111
amplitude amplification.......... 54, 68
ancilla qubit......................... 24
AND/OR problem.............. 94, 101
approximate counting algorithm o4
autocorrelation
analysis................... 138, 139
function.............. ol 138
B
Bell states...........ooiiiiat. 12
black box..........oooiiiiiit 76
black-box oo 22, 31
Bloch sphere................. 10, 11, 14
BQP ... 30
bra.....ooo i 8,9
building blocks 42
C
circuit reduction.............., 89
controlled-NOT 16
correlation length................... 138
CTOSSOVET .. vt veeteeeeeaaeaea e 47
disruptive ~o ol 135
landscape 138, 139
linear ~ 47, 48, 113
tree ~ ... 47,48, 113
D
decoherence L. 8
decomposition 3, 14, 20, 22, 99

185

Index

two-level ~ ... oo 21
deletion 111
density matrix......... ... 9
density operator...................... 9
Deutsch’s algorithm............... 7, 22
Deutsch’s problem ... 31, 63, 94, 96, 100
Deutsch-Jozsa algorithm 35, b4
Deutsch-Jozsa problem ... 7, 31, 96, 113
discrete Fourier transform 95
discrete logarithm................ 59, 61

E
early promise problem............... 31
early termination 99, 118
entanglement. 12, 16, 25, 31, 35, 36

maximum ~ 94, 106
EPR states...................... ... 12
EQP .. 30
error correcting codes................. 8
evolution 12, 40

of quantum algorithms...... 79, 122
evolutionary algorithms.............. 41
evolutionary strategies............... 40
(5510 0 PP o1

F
fitness. ...l 40, 41, 49
fitness case.................. 39, 49, 113

basis state representation..113, 123

classification 115
fitness components............. 114, 117
fitness function.............. 41, 49, 113

normalized ~ 49

standardized ~ 49
fitness landscape 136

analysis........... ...l 139
Fourier sampling..................... 62

G
gate pool....... ... il 82
generational GP 20, 52
genetic algorithm 40, 108

186

genetic operator............. 41, 47, 111
genetic programming. .2, 39, 93, 99, 100
algorithm 42
graph GP 46
linear GP 44, 45, 80, 110
linear-graph GP................. 46
linear-tree GP ..44, 45, 80, 110, 111
program structure............... 42
schema theorem................ 135
stack-based linear GP 100
stackless linear GP............. 100
tree GP..........oo L 42, 43
BENOLYPE . 40
Grover operator 67
generalized ~ 68
Grover’s algorithm......... 8, 22, 54, 64
applications 69

H
Hadamard gate...................... 15
heredityl 40
hidden subgroup problem........ o4, 61
Abelian ~ 62, 63
Hilbert space........... 8, 10, 11, 79, 89
Hogg’s algorithm 54, 71, 74, 95, 123
hybrid algorithm 93

I
individual oo 39
information analysis........... 138, 140
information content............ 138, 139
inner product.............o 9
input gate.................. L. 81
insertionccooviiiii.. 111
instructionl 81
INErON . ..o o o o1
irreversibilityo o 7

K
ket .. .o 8,9

L
Landauer’s principle 7

M
machine learning 39
majority problem............... 76, 101
matrix-matrix multiplication 82-86
matrix-vector multiplication...... 82-86
measurement 9,11, 12, 24
intermediate ~ 27, 92, 110, 121
partial ~ 24
principle of deferred ~ 28
projective ~ Lo 23
single qubit ~........., 10
von Neumann ~ 23
mutation.......... ...l 40, 47
landscape 138, 139

N
neutrality............. 51, 138
explicit ~ ... o o1
implicit ~ ... o1
No-cloning theorem.................. 26
nonseparability 12

(@)
observable............. 24
ON-basis......oovvieinn.e. 9,12, 24
oracle............ 22,32, 76
order-finding 58, 59, 61

P
palindrome transformation........... 22
palindromic optimization algorithm . .22
parity problem................... 76, 95
partial information content 138, 139
Pauli matrices 13, 14
penalty function............... 114, 117
period-finding. 59, 61
phase....... ... 10, 15
computing a function into a ~ .. 33
gate. ...l 15

global ~l 10
phase estimation 56, 58, 68
phenotype......... ... L. 40
population....... ... 40

pre-evolved initial ~ ..123, 130, 133
Projector 24

Q
quantum algorithm 93

classification..................... 54

speedup limits for ~s........... 76
quantum bit ... 9,10
quantum circuit 7,13, 25

analysiso i 3

complexity 28

evaluation................. 82

representation................... 81

simulation.................... ... 80

synthesis 3
quantum computation 1, 5,12

techniques................... ..., 31
quantum computer

simulator................ 80

seven qubit (NMR) ~ 2
quantum COpPYingovveeven.n 26

approximate..................... 95
quantum counting 68
QUANtUM eIror . ..ot eeeen 8
quantum error-correction 8
quantum Fourier transform....... 54-56

algorithms based on ~ 65
quantum gate.................... 13, 25

application 87

self-inverting ~ 22

single qubit ~......... 13

universal ~ o 18, 20

unseparable ~ 16
quantum Givens operator............ 21
quantum interference 31, 34
quantum mechanics

postulates of ~ 8, 11,12, 24

187

Index

quantum multiplicator............... 95
quantum parallelism 31, 33
quantum phase estimation........... 58
quantum register................. 10, 11
quantum search 94
quantum search algorithm 64
quantum search problem............ 101
quantum simulation.............. 54, 74
quantum state 8, 25
entangled ~ 12, 25
separable ~ 12
quantum system 8, 10
closed ~ ... 8
composite ~ ... 11
evolution........................ 12
isolated ~ L. 8
physical implementation.......... 2

quantum teleportation...35, 94, 99, 108
quantum Turing machine (QTM)..7, 30

qubit..... ...l 9, 10, 25
control ~ 16
counting of ~s......... ..., 10
target ~ ... 16

QUETY . oo oottt et e 22
complexity i 29

R

random walk, 138

readout 9

recombination 40, 47

reduction rule oo 89

replacement 111

reproduction.l 40

reversibilityo oo 7, 26

ruggedness ... 138

S

SAT ... 71, 94, 96
constrained ~ 71

SBLGP 100, 103

scalability................. 101, 103, 122

188

search space..............ooieiut. 92
search strategy 40
second-order encoding.............. 101
selection 40, 49
(LX)~ 50
(g A) ~ e 50
fitness-proportional selection ~ ..50
mating ~ ... 49
overproduction ~ 49
ranking ~ ool 50
tournament ~ oL 50
self adaptation 151
Shor’s algorithm o4, 59
Simon’s algorithm 7
Simon’s problem..................... 64
SLLGP ... 100
state
computational basis ~ 9-11
mixed ~ ... 9
PULE A e e 8
superposition ~ 9,11
state space 8, 10, 11, 79
state transformation................. 12
steady-state GP.................. 50, 52
subset selection..................... 118
active data selection............ 118
dynamic ~ oo 118
historical ~ 118
random ~ ...l 118
stochastic sampling............. 118
stochastic subset sampling. 118
superposition.................. 9, 11, 33
superpositioning 31, 32
supervised learning 40
SWAD « v v v ettt e e 111
T
tensor product................... 11, 12
test set ... 40
TGP ... 100, 102
time series. ..o, 138

Index

Toffoli gate 16, 18

tournament. o0

tournament size 50

training set.............. 39, 40, 49, 118
U

unitary operator.......... 12-14, 20, 25

two-level ~l 20

universality i 18, 20

unseparabilityo oL 16
Vv

variationcooiiiiii ., 40

189

Index

190

Erklarung

Hiermit erkléare ich, dass die in dieser Dissertation vorgestellten Ergebnisse von mir er-
arbeitet wurden. Die zur Erlangung der Ergebnisse verwendete Software wurde von mir
entwickelt.

Herr Prof. Banzhaf zeichnet fiir das Projekt verantwortlich. Seine Beteiligung am GK
726 ermdglichte mir die Forschung zum Thema “Evolution von Quantenalgorithmen”.
Als Experte auf dem Gebiet des Genetischen Programmierens floss seine Erfahrung in
den nicht anwendungsspezifischen Teil der Arbeit ein. Zahlreiche Diskussionen fiihrten
zu Anregungen, aus denen wesentliche Ideen fiir die Vertffentlichungen entstanden.

Dortmund, im Mai 2004

André Leier

		2004-07-30T10:25:28+0200
	Universitaetsbibliothek Dortmund - Eldorado

