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Abstract

In modern computer systems the performance is

dominated by the memory performance. Currently,

there is neither a systematic design methodology

nor a tool for the design of memory systems for

general purpose computers.We present a first

approach to CAD support for this crucial subtask

of system level design. Dependencies between

influencing factors and design decisions are

explicitly represented by constraints and constraint

logic programming is used to make the desing

decisions.

The memory design is optimized with respect to

several objectives by iterating the (re)design cycle.

Event driven simulation is used for evaluation of

the intermediate results. The system is organized

as an interactive design assistant.

1. Motivation

During the recent years, the complexity and capa-

bilities of microelectronic systems has grown sig-

nificantly. As a consequence, the design of these

systems has also become more complex and time-

consuming. Therefore, a powerful tool support is

indispensable for the design of complex micro-

electronic systems. During the course of time,

design automation tools became available at

higher and higher levels of abstraction. Layout edi-

tors, to a large extent, have been replaced by place-

ment and routing tools. These have been

complemented by logic synthesis. Logic synthesis,

in turn, is expected to be complemented by high-

level synthesis. As evidenced by recent commer-

cial announcements, high-level synthesis is cur-

rently made commercially available.

One crucial issue of system level design is memory

synthesis. It is nowadays widely accepted, that the

performance of the memory system for a general

purpose computer such as a workstation or PC domi-

nates the performance of the computer as a whole

[Wulf95]. There is a serious concern that the speed of

memory systems will continue to match the speed of

processors [Wilk95]. Typically, memory access slows

down the execution speed for processor instructions

significantly. Due to the increasing speed of proces-

sors, these memory systems have become more and

more complex to supply the required bandwidth.

Sophisticated techniques such as hierarchical organi-

zation of memory components, complex caches,

interleaving, pipelining, bus snooping etc., which pre-

viously have only been available on expensive main-

frames, have found their application in mass products.

For multiprocessor systems, the design of powerful

memory systems is even more complex.

The synthesis of memory systems is characterized by

numerous influencing factors and design decisions to

be made. There are many complex dependencies

between theses factors and decisions that must be

considered, many one of them being vague, heuristic

or unknown. Therefore, it is hard to get a clear picture

of all relations between influencing factors and design

decisions for memory design. Moreover, memory

design is a multidimensional optimization problem,

i.e., there are several objectives to be considered.

Besides memory performance (average access time,

miss ratio, etc.), for instance the cost of the required

off-chip memory components and the area consump-

tion of on-chip caches have to be taken into consider-

ation.

Despite the crucial importance of memory design for

general purpose computers, there is no systematic

design methodology or theory for this complex task.

Consequently, the design of such memory systems is

governed by rules of thumb. These vague heuristics

reflect the knowledge of “experts” more or less famil-

iar with this area. Simulation is used to validate some

of the design decisions, but the current situation in

processor memory design can be described by the fol-

lowing statements:

• Processor memory synthesis for general purpose

processors is currently more an art than a science,

i.e., it is not an engineering discipline.

• Design decisions are mostly based on the men-

tioned rules of thumb and sometimes time-con-

suming analyses of their consequences (see

below).

• There are no CAD tools supporting memory syn-

thesis for general purpose computers.

As a result, even major industrial companies are
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sometimes surprised by the (lack of) performance

of the memory systems.1

In this paper, a first approach to CAD support of

memory synthesis for general purpose computers

is presented. With this approach, a systematic pro-

cedure of memory synthesis shall be supported.

The consideration and comparison of several

design alternatives is enabled.

Our approach features an explicit representation of

the dependencies between influencing factors and

decisions for memory synthesis. The representa-

tion is based on constraint logic programming. The

implemented prototype creates an initial memory

design that is redesigned and optimized stepwise

according to the objectives. The analysis of each

intermediate design result is performed by an

event-driven simulation. Design decisions can be

influenced and revised by the user, i.e., an interac-

tive design style is supported by the system.

The rest of the paper is organized in the following

way: Section 2 presents current work on memory

synthesis. The memory synthesis task and the main

features of this task, relevant for the organization

of our system, are discussed in Section 3. Section

4 gives a brief introduction into constraint logic

programming. The conception of the new system

for memory synthesis SPEISE is presented in Sec-

tion 6. Results of the implemented prototype and

topics for further research are documented in Sec-

tion 7. Section 8 concludes the paper.

2. Current Work

Until now, only very limited work on CAD for

memory synthesis has been published. Most of

these approaches are on a lower level of abstrac-

tion than the memory synthesis problem addressed

in this paper. The available papers either deal with

ASICs, with a specific, limited class of processors

or are restricted to small subtasks of memory syn-

thesis:

• Memory Synthesis for DSP applications

PHIDEO [vMee92] is a silicon compiler for

digital signal processors. During memory syn-

thesis, instances of the appropriate memory

types are allocated and the addressing mecha-

nisms are selected. The allocated simple mem-

ory modules are used to delay the digital signals

1. This observation can be made for cache design of

modern SPARC systems such as the SPARC-10.

According to our knowledge, cache block sizes and the

interleaving factor are not well balanced.

according to the timing constraints.

• Register allocation

Register allocation is performed in compilers

[Aho86] and high-level synthesis tools [McFa90;

Gajs92].

• Allocation of multi-port memories in high-level

synthesis

Previously allocated, isolated registers are merged

into multi-port memories [Bala88].

• Buffer allocation in high-level synthesis tools

In [Kolk93] a method is presented for minimizing

sizing of communication buffers in an environ-

ment of communicating concurrent processes.

For these specific subtasks of memory synthesis,

methods and algorithms are available. For instance

the number of allocated registers can be calculated

from the maximum number of variables referenced

concurrently during a singe control step. On the other

hand, there is no CAD tool supporting the memory

synthesis problem for general purpose computers,

described above. Instead, there are several publica-

tions about the influence of single memory parame-

ters on the performance of the memory system as a

whole. Most of the analyses are related to cache

parameters. Some examples of these analyses are

listed below:

• In [Smit82; Henn96; Przy90] the effect of the

selected prefetch strategy, the selected strategy for

updating the main memory, the line size, the num-

ber of sets and several other design decisions on

the miss ratio is considered.

• In [Kris96] performance modelling for computer

architecture is described. Analytical models repre-

senting the effects of cache design decisions on the

performance are described in [Agar89; Berg93;

Kris96; Saav95]. These models cannot be used for

memory synthesis, because they deal only with

few design decisions. Models cannot be used to

analytically predict the performance of a designed

memory system. Therefore simulation is necessary

to examine the effect of a design decision on the

performance of the whole memory system.

• In [Rau91] the effect of the input buffer size on the

performance of interleaved memories is analyzed.

Depending on these analyses some exact resp. heuris-

tic dependencies between the input data and the dif-

ferent design decisions can be derived. Typically,

heuristic dependencies are formulated as qualitative

relations. To be used in a memory synthesis system,
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they have to be quantified. Besides, information

about many crucial design decisions is still lack-

ing. Moreover, there is no published work for a

comprehensive treatment of the numerous influ-

encing factors and design decisions for memory

synthesis.

3. Memory Synthesis

In the following we start with a characterization of

the memory synthesis task and then analyze the

task features.

3.1 The Task

As mentioned above, the CPU performance is cur-

rently improved at a much faster rate than that of

memories. To manage the resulting problem, a

sophisticated memory organization must be

designed. A memory system nowadays does not

consist of a single component but of a hierarchy of

memory components ranging from small, fast and

expensive ones, placed near the CPU (i.e., register,

buffer, first level cache), to large, slower and

cheaper ones (i.e., second level cache, main mem-

ory, secondary memory). Registers are allocated

for example, during high-level data path synthesis.

In memory synthesis for general purpose proces-

sors the main component under design is the cache

because it is large enough to hold a moderate

amount of data, more than a register. And further-

more an access to a cache is fast enough for pro-

cessor access because it is now possible to place

the cache on the processor chip.

To speed up a memory reference, data requested by

the CPU, has to be available in a fast memory com-

ponent or the requests must be parallelized. In

either case this requires a good organization of the

memory system. Design decisions are e.g., number

of cache levels, size, associativity, and prefetch

strategy of a cache, size and degree of interleaving

of the main memory, etc.

Which memory system is a “good” one, depends

reg.
buffer

cache
main memory

disc
secundary memory

size
acess

Fig. 1: memory hierarchy

fast

big slow

small

time

on time and order of the different data requests.

These, in turn, depend on two factors: application

programs and underlying computer architecture.

Information about the characteristics of application

programs (i.e., time and locality of the referenced

memory addresses and working set) is necessary. For

instance, if the application programs consists of many

loops accessing the same data in each pass, the

amount of different data that is accessed is small. In

this case the working set of the application program is

also small and the locality is high. This may lead to a

small cache. The exact order and time of the memory

references is also effected by the underlying computer

architecture. Therefore the memory system under

design has to be suitable for the given computer archi-

tecture. For instance, in RISC architectures with pipe-

lining, memory accesses to instructions and data can

be parallelized by designing separate caches for

instructions and data. Another relevant feature is the

cycle time of the processor. This is an upper bound for

the access time of a first level cache.

The main objective in memory synthesis is to config-

ure a memory system that minimizes the access time

of memory references. But there are some other crite-

ria like chip area and cost that restrict the design space

of a memory system.

The memory synthesis task described above can be

summarized as follows:

For a given general purpose computer architecture

and a class of application programs a memory system

has to be designed and optimized according to given

criteria like access time, chip area and cost.

3.2 Problem Features

The structure of memory synthesis task is analyzed in

order to derive design decisions for a memory synthe-

sis tool.

• Memory synthesis for general purpose processors

is a new area of research. As mentioned above

there exists no tool support on this high level of

abstraction. Currently memory synthesis is sup-

ported by tools only for ASICs. For general pur-

pose computer systems only analyses exist. These

analyses have to be combined to get information

required for building a memory synthesis tool. To

collect some experience in modelling and synthe-

sis techniques as fast as possible, it is very helpful

to build a prototype. Logic programming is an ade-

quate paradigm, because it supports an abstract

level of programming that speeds up the program-

ming process rapidly.



Using Constraint Logic Programming in Memory Synthesis for General Purpose Computers
4

• Memory synthesis is a complex synthesis task

(see above).

• The memory synthesis task consists of some

structuring and a lot of dimensioning decisions.

The structuring decisions select the components

of the memory configuration. The number of

different structural decisions is small, because

there exist only few principally different mem-

ory configurations. The dimensioning decisions

determine the features of each memory compo-

nent (i.e., size, block size, replacement strat-

egy). The number of dimensioning decisions is

limited but large.

• The design decisions are of different types:

structural, numerical, boolean or symbolical

(for details see Subsection 6.3.).

• The numerous existing analyses of single

design decisions show that memory synthesis is

dominated by a huge amount of relationships

between different design decisions and the fea-

tures of the design environment (computer

architecture, application programs, and objec-

tives). These relations can be expressed by con-

straints. A programming paradigm supporting

prototype development and constraints is con-

straint logic programming (see Section 5.).

• Up to now most of the relations described

above, especially those between the design

decisions and the objectives, are expressed

qualitatively. For memory synthesis these rela-

tions must be quantified by use of heuristics.

Additionally most of these relations are not

monotone. Increasing the value of some design

decision raises the performance only to a cer-

tain extent. For instance, increasing the cache

size decreases the miss ratio. To a certain extent

the average access time is decreased because

less data has to be fetched from main memory.

But the larger the cache the slower a single

access to the cache and the slower the average

access time. A synthesis tool must be able to

model these dependencies.

• The memory synthesis task is a multidimen-

sional optimization problem (see above).

• Up to now no objective function is known that

quantifies the relations between the design deci-

sion and the objectives in form of a formula.

The only way to measure the performance of

the memory system under design due to the

underlying computer architecture and the appli-

cation programs is simulation. Memory refer-

ences to the synthesized memory system have to

be simulated.

• Due to the lack of a formal description and theory

for memory synthesis, (no quantitative relations

and no objective function, and no compound

method for considering different objectives ade-

quately and concurrently) a stepwise optimization

is necessary by using redesign cycles.

4. Constraint Logic Program-
ming (CLP)

In this section we describe why we use constraint

logic programming for memory synthesis.

4.1 Basic Idea

Constraint logic programming extends logic pro-

gramming by a mechanism for constraints modelling

and processing [Frue93]. Constraints express rela-

tions between technical parameters of the problem.

The idea of CLP is to restrict the search space, as

much as possible, by constraints and to search the

remaining space in a moderate amount of time. The

processes of constraint handling and search are inter-

twined. Each constraint is imposed but the execution

is delayed until the constraint can be evaluated with-

out anticipating any search decisions. When during

the searching phase some technical parameters are

restricted the relevant constraints are resumed and

executed. Additionally this search can be done in a

heuristic, problem specific way.

In memory synthesis the relations between design

decisions and environment features are expressed as

constraints. The process of making design decisions,

called labelling, is done heuristically.

Restricting the search space before and during label-

ling, improves the solution process drastically. In

logic programming without constraints the design

decisions are selected in the unrestricted decision

space. This may cause a lot of wrong decisions and

implies a large amount of backtracking, slowing

down the solution process. Constraint logic program-

ming can avoid most of these wrong decisions and the

resulting backtracking.

4.2 Memory Synthesis as CLP Problem

In memory synthesis as described above, a memory

system can be represented by a generic model. Each

design decision is represented by a parameter with a

domain representing the alternatives of this decision.

For instance, for each cache (data cache, instruction
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cache, or second level cache) there are parameters

for size, block size, associativity, replacement

strategy, write strategy, etc. Restricting the search

space is done by restricting the domains of some

parameters. Decision making corresponds to

instantiating parameters.

The design decisions are of different types: Struc-

tural ones determine the components of the mem-

ory configuration. For each component there are

several dimensioning decisions of boolean, numer-

ical or symbolical type. As denoted above, all deci-

sions are represented by parameters with different

domains. The types of these domains range from

numerical (i.e., size), over symbolical (i.e.,

replacement strategy), to boolean (i.e., on-chip

integration). These types are also used for the

domains of structural design decisions (i.e., avail-

ability of a second level cache is a structural design

decision represented by a boolean parameter). So

for the whole synthesis task it is possible to use a

homogeneous search strategy that can be handled

well by a constraint system.

Architectural features and application features can

be represented as generic models, too. The archi-

tectural parameter values are given by the designer

and the application ones can be extracted by ana-

lyzing memory reference sequences of application

programs (see below).

Memory synthesis, described here, differs from the

standard CLP problem in two ways: Firstly the set

of constraints, extracted from the analyses

described in literature, may be inconsistent. For

this reason each constraint is extended by a weight

expressing the importance of that constraint. If an

inconsistency occurs, constraints with small

weights are relaxed successively. The sum of the

weights of the remaining consistent constraints

should be maximized. Secondly the objectives

cannot be calculated by a formula. They have to be

calculated by simulation of given memory refer-

ence sequences on the synthesized memory config-

uration.

Definition. Let V be a set of variables {v1,...,vn}

representing architectural, application, and mem-

ory parameters, each vi with a domain Di of possi-

ble values. Let C be a set of constraints {c1,...,cm}

expressing the relations between variables in V: cj
⊆ D1 × ... × Dn. A weight function wc(cj) gives the

weight of each constraint denoting the importance.

Let O be a set of objectives {o1,...,or} calculated by

simulation of traces on the memory configuration

and wo(ok) a weight function expressing the user

given priorities to each of the objectives ok. A func-

tion eval(ok) evaluates the quality of the design with

respect to the objective ok. (x1,...,xn) is an optimal

solution of the problem if the following conditions

hold:

•

•

•

with C’ = {c ∈ C| (x1, ..., xn) ∈ c} ⊆
and <o1, ..., or> = simulation(x1, ..., xn).

Each parameter xj of a solution is instantiated to a

value of Dj. The weighted sum of constraints consis-

tent with the solution is maximized. And the weighted

sum of objective evaluations is maximized.

A small example shows the power of constraints in

the domain of memory synthesis: For a simplified

cache synthesis the cache hierarchy consists of 1 or 2

cache levels where the first level cache may be split

into one for instructions and one for data. For each

cache 13 design decisions with varying domain sizes

have to be made. The decision space has a size of 0.5

* 1020. After imposing 20 of 50 constraints the design

space is restricted to 107. After determining 2 of the

design decisions (size and block size of each cache)

the remaining 30 constraints restrict the search space

to 430 design possibilities, which are examined heu-

ristically (Fig. 2).

Tab. 1 gives a concrete example that again illustrates

the power of search space restriction.

The domains of six parameters are shown before and

after restriction by the given constraints. The search

space size (multiplication of the parameter domain

sizes) is reduced from about 6*106 to 18.

i∀ x
i

D
i

∈

w
c

c
j 

 

c
j

C′∈

∑ max→

w
o

o
k 

  eval o
k 

 ⋅
k 1=

r

∑ max→

design space: 0.5*1020

partially restricted design space: 107

totally restricted design space: 430

Fig. 2: design space restriction
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4.3 Alternative Optimization Strategies

The system SPEISE as a whole configures and

optimizes a memory system according to several

objectives. As has been pointed out in the previous

subsection this task is performed by a heuristic

search strategy that utilizes domain specific search

control knowledge for parameter labeling and

redesign.

There are several well-known alternative optimi-

zation strategies. Evolution strategies [Schw81]

consider several candidates in parallel. New candi-

dates are created by syntactic, domain-indepen-

dent mutations of existing ones. An evaluation

function selects the most promising candidates to

be considered further on. This method works well,

if a large set of candidates can be created and eval-

uated with limited computational effort. As the

evaluation of memory configuration involves

time-consuming simulation runs, this condition

does not hold for memory synthesis.

Integer linear programming [Neum75] also pro-

vides an optimization strategy. In contrary to CLP

it is limited to numeric parameter types. The

method requires a target function that can be used

parameter before after

working set

locality

small

big

small

big

size (KB)

line size (B)

associativity

replacement

8 .. 256

4 .. 256

1 .. 32, full

no, rnd, lru

8, 16, 32

16, 32

2, 4, 8

lru

search space 6.236.703 18

constraints

IF working set is small THEN size ≤ 32

IF locality is big THEN line size ≥ 16

line size ≤ size

IF locality is big THEN associativity ≤8

power_of_2(size)

power_of_2(size)

power_of_2(associativity)

IF line size >= 16 THEN associativity >1

IF associativity = 1

THEN replacement = no

ELSE IF associativity ≤ 8

THEN replacement = LRU

Tab. 1: concrete example of search space
 restriction, parameter domains before and
 after restriction by constraints

to determine an (optimal) solution in a single step. In

memory synthesis, an optimal solution cannot be

determined in a single step, as an appropriate com-

pound target function is lacking. Instead, simulation

runs are required to evaluate the quality of a candidate

to be modified later. Therefore integer linear pro-

gramming is not suitable for memory synthesis.

CYCLOPS [Navi91] also uses constraints to represent

conditions and dependencies in the considered

domain. The system uses a modified A* search algo-

rithm to determine a set of pareto optimal solutions.

Like the other approaches mentioned above,

CYCLOPS does not provide a redesign mechanism

that modifies a candidate in a specific way, according

to the results of an analysis. This feature is indispens-

able for memory synthesis.

5. The SPEISE System

SPEISE designs a memory system for a given general

purpose computer architecture and a class of pro-

grams representing the typical applications on this

computer architecture. The memory system is opti-

mized according to several given objectives. Fig. 3

shows the components of SPEISE:

In the following, we will first describ the cooperation

of SPEISE’s components. Afterwards particular as-

pects will be pointed out in detail.

5.1 The Design Cycle

The input data for SPEISE are memory reference

sequences of application programs, architectural fea-

tures and objective weights denoting their im-por-

tance for optimization.

Before starting the design cycle, memory reference

sequences of application programs are analyzed to

examine their typical features (‘trace analysis’).

Constraints sets expressing the relations between

input data and design decisions are selected as a result

of an analysis of the input data (i.e., constraints set for

single/multi-processor systems).

At the beginning of each design cycle, the selected

constraints are imposed to restrict the search space

(‘restriction by constraints’).

After this step, decision making starts (‘parameter

labelling’). The order of making decisions is deter-

mined by a domain specific rating of each decision.

The rating reflects the impact of these design deci-

sions on the performance. For instance, the most

important design decisions for a cache are size, block

size and associativity. The decision process takes
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advantage of the restrictions to the search space

caused by the design constraints. Decisions are

made with respect to the objectives. For instance,

if the objective cost is to be minimized, the size of

a cache is set to the minimum in the remaining

domain.

Components of the designed memory system are

mapped to existing on-chip and off-chip memory

modules described in the technology database

(‘technology mapping’).

An event-driven trace simulation is used to imitate

the accesses of the application programs to the

memory system (‘simulation’). During this simu-

lation values for performance criteria like average

access time and different miss rates for caches are

calculated.

Using the simulation results, the ‘evaluation’ com-

ponent evaluates the synthesized memory configu-

ration. If the quality of the designed memory

system meets a calculated threshold value for each

of the objectives, the memory system is accepted

and presented to the user. Otherwise redesign has

to be performed. This is the typical case for the first

sequence of

trace analysis

application

architecture

restriction by

evaluation

technology deficiencies

redesignparameter

objectives

ok

memory system

Fig. 3: components of the SPEISE

simu

features

tech

data

 constraints

labelling

mapping

planning

analysis

memory references

features

no.

base

lation

design cycle.

If the design is not accepted, the ‘deficiencies analy-

sis’ examines which of the threshold values are

missed. For each of the missed values possible revi-

sions of design decisions are determined(i.e., if the

miss rate of a cache is to high, an increase in size or

associativity is proposed).

‘Redesign planning’ examines the list of possible

changes proposed by the deficiencies analysis. As

these revisions may be contradictory, a consistent

subset of them is selected. This process is guided by

heuristic rules. The changes are expressed in form of

constraints.

To avoid recreations of previous designs, the ‘defi-

ciencies analysis’ and the ‘redesign planning’ take

redesign actions of previous design cycles and their

consequences on the performance into account.

At the beginning of the next design cycle the con-

straints created by the ‘redesign planning’ are

imposed. The cycle is continued with imposing the

constraints in the ‘restriction by constraints’ step.

Redesign stops if the ‘evaluation’ component or the

designer (user of the tool) accept the designed mem-

ory system.

Fig. 4 shows the algorithm for SPEISE’s heuristic

search strategy from an imperative point of view. The

cooperation of the implicit control strategy available

by use of declarative programming and the explicit

control actions performed by the components of

SPEISE is described. The outer WHILE loop guides

the redesign cycle by use of a new non chronological

backtracking strategy: restrict the search space by

imposing constraints, label the parameters, simulate

and evaluate the resulting memory configuration, and

relax constraints or plan redesign if necessary. In the

inner WHILE loop the memory parameters are

labeled one after the other (‘parameter labelling’).

This step is completely guided by the chronological

backtracking mechanism of declarative program-

ming. The relaxation of constraints is guided by a sep-

arate control strategy.

5.2 Selected Aspects

The following selected aspects are pointed out in

detail:

• Provision of Memory Reference Sequences

It is difficult to get adequate memory reference

sequences. If a memory system for an existing

computer architecture is improved, an existing

compiler can be used to generate memory refer-



Using Constraint Logic Programming in Memory Synthesis for General Purpose Computers
8

Fig. 4: algorithm of SPEISE’s heuristic search strategy

search strategy(Application Features, Architectural Features, Objectives)

BEGIN

Constraintsperm := <set of maximal constraints, permanently available>;

Constraintsredesign := <empty>;

<initialize Mem_Config with set of unlabeled memory parameters>;

WHILE (<Mem_Config not acceptable>)

DO

<impose Constraintsredesign>;

<impose Constraintsperm>;

WHILE (<there are unlabeled parameters in Mem_Config>

AND <restricted search space not completely searched>)

DO

<select next parameter Pi to be labeled>;

<label Pi and resume corresponding constraints>;

IF (<there is no value for Pi consistent to Constraintsperm and Constraintsredesign>)

THEN

<chronological backtracking to labelling of the previous parameter Pi-1>;

<select a different value for Pi-1 >;

FI

OD

IF (<no consistent labelling for all parameters in Mem_Config found>)

THEN

<relax Constraintsperm>;

ELSE

<simulate and evaluate Mem_Config>;

IF (<Mem_Config not acceptable>)

THEN

<plan redesign operations>;

Constraintsredesign := <domain restrictions according to redesign operations>;

FI

FI

Mem_Config := <set of unlabeled memory parameters>;

OD

END

ence sequences from application programs.

If the given computer architecture is new but

similar to another one (i.e., to a predecessor

model) in terms of address generation, memory

reference sequences of the predecessor can be

used.

An address sequence can also be made indepen-

dent of poor compilation [McNi88].

Another possibility is the generation of memory

reference sequences. This can be done, if the

features (locality of reference, size of working

set, etc.) of the application programs are known

[Hyat93; McNi88]. In [Hoba89] some features

of symbolic programs are described. SPEISE

offers a generator that creates memory refer-

ence sequences according to given features.

Notice, that the features, relevant for memory syn-

thesis, like locality of reference and working set,

depend rather on the application program than on

the computer architecture and compiler. Therefore

it is feasible to take reference sequences of similar

systems or to generate them.

• Inconsistencies in the Set of Constraints Restrict-

ing the Search Space

The set of constraints in the restriction component

has been derived from an intensive analysis of the

relevant literature [Arar89, Henn96, Przy90,

Smit92, etc.]. Each constraint is marked by a

weight denoting its importance. As described

above the set of constraints may be inconsistent

because it is derived from different analyses and
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quantified heuristically. If imposing of several

constraints results in an inconsistency, the less

important ones are relaxed, to get a consistently

restricted search space.

• Technology Adaptation

As mentioned above, the memory system under

design is mapped to existing memory modules.

For this purpose a technology database is used,

that contains technology dependent information

about memory modules. For on-chip modules

formulas calculating the area and access times

are given, depending on the component size.

For off-chip modules size, access time, and cost

are given. It is easy to adapt SPEISE to new IC

technologies because only the information in

the technology database has to be changed or

extended.

• Combination of Objectives

In SPEISE it is possible to optimize the memory

system according to more than one objective.

The importance of each objective can be

expressed by a weight. SPEISE optimizes the

memory system according to these user sup-

plied weights. Based on these weights a thresh-

old for each objective is calculated. If all

thresholds are met, thresholds for the most

important objectives are tightened successively

as much as possible.

• Alternatives in Redesign Planning

SPEISE can select between two modes of rede-

sign planning. In stepwise mode redesign plan-

ning selects exactly one parameter to change. In

multistep mode several changes of parameters

are performed in one redesign cycle.

5.3 Organization of the System as an

Intelligent Synthesis Assistant

The system SPEISE does not aim at a complete

automation of the memory synthesis process. This

would not be adequate for this complex high-level

synthesis task without standardized synthesis

methodology. Instead, SPEISE is organized as an

intelligent synthesis assistant that supports an

interactive design style. By use of the assistant, the

designer can create, evaluate and compare several

design alternatives quickly.

The user can make decisions and limit the search

space in that way. Decisions performed by the sys-

tem can be changed easily. The consequences of

these changes on other aspects of the memory

architecture under design are propagated automat-

ically by the assistant. In this interactive mode,

SPEISE can be used as an intelligent “editor” that

enables a flexible selection resp. modification of

design decisions and responds by showing the side

effects of these actions. Based on these results the

user can accept the intermediate memory configura-

tion or perform further design changes.

5.4 Implementation

The main part of SPEISE (framed by a bold painted

rectangle in Fig. 3) is implemented in ECLiPSe, a

CLP language from the ECRC [ECLI95], on a SUN

workstation. The first prototype is restricted to single

processor systems and focuses on synthesizing the

cache and TLB hierarchy. As mentioned above, this is

the main task of memory synthesis for general pur-

pose processors. Main memory design decisions,

given by the designer, are taken into account. The

handling of compound objectives is simplified in the

implemented prototype. The memory system is opti-

mized primarily according to the most important

objective. Nevertheless the other objectives have an

impact on some design decisions leading to the final

memory configuration.

The components ‘trace analysis’ (including the mem-

ory reference sequence generator) and ‘simulation’

are implemented in C++.

The prototype of SPEISE has been implemented by

graduated students in an 1-year project [SPEI95].

6. Results

SPEISE has been used to design cache and TLB hier-

archies for several computer architectures. In most

cases few redesign cycles (5 to 10) were sufficient to

(re)design a configuration that meets the performance

thresholds.

Due to the lack of space, only the key features of the

design process and the results are described in follow-

ing example.

6.1 Example

The example shows the design of a cache hierarchy

for a computer architecture similar to a SUN SPARC-

station (Tab. 2) with a main memory given in Tab. 3.

Tab. 4 shows the features of a class of application pro-

grams running on this computer architecture.

They have been extracted by the ‘trace analyzer’ sep-

arately for instruction, data, and mixed references.

Tab. 5 shows the cache configuration designed by

SPEISE after the first synthesis cycle. An accepted
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end configuration was reached after seven design

cycles. The differences between the final and the

first configuration are shown by the values in

parentheses.

For each redesign cycle SPEISE performs a simu-

lation of a trace according to the application

parameters, an evaluation of the simulation results,

a deficiencies analysis to find a set of cache param-

eters as candidates for modification, and redesign

planning to select parameters to change and to

determine the extent of the changes.

Then the next design cycle is started to accommo-

date the other cache parameters. Tab. 6 gives the

Tab. 4: application program features

mixed instr. data

spacial locality big big small

working set small small medium

frequency of ref. small small small

number of reads big big medium

variance small small small

...

Tab. 3: main memory features

size (MByte) 32

page size (KByte) 8

organization segmentation

interleaving degree 8

...

Tab.2: architectural features

clock frequency (MHz) 33

pipeline stages 4

data bus size (bit) 64

address bus size (bit) 32

...

Tab.5: memory configuration after the 1. cycle

and the end configuration in parenthesis

1. I-

cache

1. D-

cache

2. cache ...

adressing virtual virtual real

size (KB) 16 32 512

block size (b) 16 64 128

associativity 8 (full) 2(16) 2

replace. strat. lru lru lru

prefetching tagged tagged tagged

write strat. - copy b. copy b.

...

changes for each redesign cycle.

For instance, during the first redesign cycle (design

cycle 2) the associativity of the instruction cache has

been changed from 8 to 16.

Tab. 7 shows some of the performance parameters

measured by the simulator after each design cycle:

average access time and average values for hit time

and miss ratio of the first level caches.

The performance thresholds to be met are calculated

by SPEISE according to the input parameters (see

above) and the objectives (here access time). For

instance, the hit time threshold has to be below the

clock time (here a clock frequency of 33 Hz implies a

clock time of 30 nsec).

After the first design cycle both thresholds for hit time

and average access time are met, but the miss ratio,

which should be less than 5%, is much to high. To

reduce the miss ratio, the ‘deficiencies analysis’ pro-

poses to increase the associativity or the size of one of

the caches. The ‘redesign planner’ decides to increase

Tab. 6: Changes for each redesign cycle

changes in the redesign plan

(and implied changes)

1. increase the associativity of the

instruction cache from 8 to 16

2. increase the associativity of the

data cache from 2 to 4

3. increase the associativity of the

data cache from 4 to 8

4. decrease the block size of the

instruction cache from 16 to 8

5. increase associativity of instruction cache

from 16 to full (block size of the instruc-

tion cache increases from 8 to 16)

6. increase the associativity of the

data cache from 8 to 16

Tab 7: performance parameters after each

design cycle

design

cycle no

av. access

time (nsec)

hit time

(nsec)

miss ratio

(%)

1 30.53 19.40 30.46

2 30.52 19.40 30.46

3 35.39 20.00 18.07

4 34.60 20.75 22.56

5 34.61 20.76 22.56

6 34.72 22.26 22.56

7 35.93 23.01 4.60
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the associativity of the instruction cache to a value

greater than 8. In the next ‘restriction by con-

straints’ and ‘parameter labelling’ step the value is

set to 16. This is done due to some further analysis

of the simulation results (detailed miss ratios for

each cache like capacity or conflict miss ratio,

etc.). The improvements are minimal. Therefore in

the next redesign cycle the associativity of the data

cache is increased.

After the seventh design cycle the miss ratio finally

meets the corresponding threshold. The average

access time and hit time have been increased but

still meet their thresholds. So the cache configura-

tion is presented to the designer and if he/she

accepts the design the system stops. Otherwise he/

she can propose changes to one or several design

parameters and the system starts the next redesign

cycle.

In this simple example it is adequate to select

changes only for associativity and block size of the

first level data and instruction cache because the

miss ratio is decreased successively without

increasing the time parameters to an unacceptable

value. In other examples SPEISE selects a greater

variety of redesign operations.

6.2 Multi-step mode

The described example was designed in the step-

wise mode: For each redesign cycle exactly one

parameter has been changed (and the others were

readjusted). In this way the effect of this redesign

step can be observed and it can be decided if this

step leads into the right direction. This is important

for further redesign cycles. In multistep mode

SPEISE often terminates successfully in fewer

redesign cycles than in stepwise mode. In multi-

step mode SPEISE synthesizes a memory configu-

ration for the described example that meets nearly

all thresholds after the second design cycle. But it

is difficult to decide which of the changes were

successful because their effects can nullify each

other. This is in particular the case in the domain of

memory synthesis, because the dependencies

between the design parameters and performance

parameters as a whole are not quantified (see

above) and the synthesis process is guided by heu-

ristics and evaluated by simulation. In the stepwise

mode one parameter after the other can be changed

and the known qualitative dependencies between

parameters (as described in literature) can be used

to do this. As a consequence, both modes can be

combined: For the first three redesign cycles mul-

tistep is used. If it does not lead to success, the system

switches to stepwise mode.

6.3 Future Work

Currently, the implemented prototype is enhanced

and extended in different ways:

• One aspect is the improvement of the constraints.

Based on the evaluation of the performed system

runs, additional constraints are formulated.

• A hierarchical organization of the constraint set

will enable an improved constraint relaxation strat-

egy.

• To enable an adequate treatment of trade-offs, cur-

rently a more elaborated handling of multiple

objectives is developed.

• The most important current work is related to the

range of applicability for the system. SPEISE is

extended to memory architectures for multiproces-

sor systems including main memory synthesis.

7. Conclusion

We have presented a first approach to CAD support

for memory synthesis for general purpose processors.

The implemented prototype aims at “closing a gap” in

the current tool support for general purpose comput-

ers. It provides a systematic synthesis methodology

and demonstrates that tool support can be achieved

for this complex task. The system SPEISE does not

aim at complete automation of memory synthesis.

Instead, it is organized as an intelligent synthesis

assistant system that supports an interactive design

style. By use of the assistant, the designer can create,

evaluate and compare several design alternatives

quickly.

The synthesis of memory systems for general purpose

computers is a multidimensional optimization prob-

lem. Objectives like memory performance and cost

have to be considered. Besides that, the task is char-

acterized by numerous influencing factors and design

decisions to be made. Memory synthesis can be for-

malized as a “parameter selection problem”

[Navi91]. Constraint logic programming is an ade-

quate programming paradigm for this application.

Logic programming enables the quick development

of a compact prototype and does not require the

detailed formulation of program control, a character-

istic requirement of most other programming styles.

By use of constraints an adequate, explicit representa-

tion of the exact resp. heuristic dependencies between

influencing factors and design decisions can be for-
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mulated. Constraint weights express the confi-

dence in heuristic dependencies and guide the

relaxation of an overconstrained design state.

Memory synthesis for general purpose computers

must depend on the context and the purpose of the

computer architecture. The organization of the sys-

tem SPEISE reflects this crucial requirement.

Characteristic features of the computer architec-

ture can be provided by the user as input informa-

tion for the synthesis task. Besides that,

information about the class of application pro-

grams for the computer to be designed is consid-

ered. In this way, the design can be tailored to a

narrow resp. broad class of application programs.
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