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Summary

In the first part of this work homogenization methods in the context of linear elasticity are
considered. Classical homogenization methods are compared on the basis of the contrast in the
elastic properties of the constituents for spherical inclusion. It is shown that this has a significant
influence on the accuracy of the homogenization methods. In the following three strategies for
dealing with irregular shaped inclusions in the context of homogenization methods are investi-
gated, namely homogenization methods using an analytical description for the Eshelby tensor,
the Mori-Tanaka method with replacement tensor approach (RMTM) and the direct discretiza-
tion of a real microstructure. The study shows that the RMTM method is very good agreement
with FE-results whereas the analytical description did notpredict the correct behavior for all
shapes. For a real microstructure the direct discretization is the best strategy.

In the second part a homogenization method for the material behavior of two-phase com-
posites characterized by a thin-layer-type microstructure is introduced. The basic idea here is
to idealize the thin-layered microstructure as a first-order laminate. Comparison of the method
with existing homogenization schemes as well as with the reference finite-element model for
idealized composites demonstrates the advantage of the current approach for such microstruc-
tures. Further a first extension to a variable interface orientation is given.

The third and fourth part deal with the application of a crystal plasticity material model
to a thin sheet metal specimen with large grains subjected toa tensile test. To this end an
explicit finite-element-, crystal-plasticity-based model is developed for each grain, the grain
morphology, and the thin sheet specimen as a whole. In particular, the crystal plasticity model
is rate-dependent and accounts for (local) dissipative hardening effects. The predictions of the
model are compared with experimental results of Henning andVehoff (2005) for the deforma-
tion behavior of thin sheets of Fe-3%Si loaded incrementally in tension as well as for further
properties like the orientation gradient. To this end attention is restricted to the two slip families
{110} and{112}. At the beginning all hardening is neglected. Even for this oversimplified case
a good correlation with the experimental results is obtained. Even better agreement is obtained
with experiment when hardening is included. Results for GNDs, OGM and local orientation
changes are investigated and discussed.

The last part of this work deals with the characterization and parameter identification of sin-
gle constituents in thermal sprayed coatings as well as for whole coatings. Based on results in
nanoindentation tests the Youngs modulus as well as furthermechanical properties are identi-
fied for each constituent. A general procedure is presented to predict the effective mechanical
properties based on the microstructure, porosity, chemical composition and properties of the
coating after thermal spraying.





Zusammenfassung

Im ersten Kapitel der Arbeit werden Homogenisierungsmethoden im Kontext linearer Elasti-
zität betrachtet. Klassische Homogenisierungsmethodenwerden untersucht und für sphär-ische
Einschlüsse in Hinblick auf den Unterschied in den elastischen Eigenschaften der einzelnen
Materialphasen verglichen. Es wird gezeigt, dass dieser einen entscheidenden Einfluss auf die
Genauigkeit der Homogenisierungsmethoden hat. Im Folgenden werden drei Strategien für
den Einsatz von Homogenisierungsmethoden für nicht-ellipsoide Einschlüsse diskutiert und
untersucht. Zum Einen wird eine analytische Vorgehensweise für die Ermittlung des Eshelby-
Tensors, zum Zweiten die Mori-Tanaka Methode mit einem Ersatztensoransatz (RMTM) und
zum Schluss eine direkte Diskretisierung anhand der realenMikrostruktur diskutiert. Die Studie
zeigte, dass die RMTM die beste Vorhersage gegenüber den FE-Resultaten liefert. Die analyti-
sche Vorgehensweise lieferte für einige Einschlusstypennicht sehr brauchbare Ergebnisse. Für
eine reale Mikrostruktur ist die direkte Diskretisierung als beste Strategie anzusehen.

Im zweiten Kapitel der Arbeit wird eine Homogenisierungsmethode für einen zweiphasigen
Verbundwerkstoff vorgestellt, welcher durch eine dünne schichtartige Mikrostruktur gekenn-
zeichnet ist. Die grundsätzliche Idee ist die Idealisierung dieser Mikrostruktur mittels erster-
Ordnung Laminate. Vergleiche mit existierenden Homogenisierungsmethoden sowie einem RVE
für solche Mikrostrukturen zeigen die Vorteile der vorgestellten Modellierung. Des Weiteren ist
eine erste Erweiterung für variable Interfacerichtungengegeben.

Das dritte und vierte Kapitel dieser Arbeit behandeln die Anwendung eines Kristallplasti-
zitätsmodells auf einen Zugversuch von dünnen Blechproben mit großen Körnern. Zu diesem
Zweck ist ein explizites Finite-Element-Modell, basierend auf Kristallplastizität, entwickelt
worden. Im Besonderen, ist das Kristallplastizitätsmodell dehnratenabhängig und berücksichtigt
lokale dissipative Verfestigungsaspekte. Die Simulationsergebnisse werden mit experimentellen
Ergebnissen von Henning and Vehoff (2005) bzgl. des Deformationsverhaltens von Blechen aus
Fe-3%Si, welche durch inkrementellen Zug belastet worden sind, verglichen. Hierbei werden
nur die zwei Gleitsystemfamilien{110} und{112} betrachtet. Zu Beginn wird keine Verfesti-
gung berücksichtigt. Schon für diesen vereinfachten Fall wird eine guteÜbereinstimmung mit
den experimentellen Ergebnissen bzgl. des Deformationsverhaltens erzielt. Eine noch bessere
Übereinstimmung zeigen die Resultate mit aktiver Verfestigung. Ergebnisse bzgl. geometrisch
notwendiger Versetzungen, dem Orientierungsgradienten sowie lokalen Orientierungsänderungen
werden untersucht und diskutiert.

Das letzte Kapitel der Arbeit behandelt die Charakterisierung und Parameteridentifikation
von einzelnen Materialbestandteilen in thermisch gespritzten Schichten. Basierend auf den Er-
gebnissen aus Nanoindentation werden der E-Modul sowie weitere Materialeigenschaften für
jeden Bestandteil identifiziert. Eine Methode, die effektiven Eigenschaften der Beschichtung,
basierend auf ihrer Mikrostruktur, Porosität und chemischer Zusammensetzung zu ermitteln,
wird vorgestellt.





Chapter 1

Comparison of homogenization methods in the
context of multi-phase elastic composites with
variable shape*

Abstract– In this chapter homogenization methods in the framework oflinear elasticity are
discussed. Classical homogenization methods are recalledand compared on the basis of the
contrast in the elastic properties of the constituents for spherical inclusions. It is shown that this
contrast has a significant influence on the accuracy of the homogenization methods. Further-
more two recently developed approaches, the ESCS and IDD method, are compared to standard
homogenization schemes as well as corresponding finite element results. In the following three
strategies for the homogenization of materials with irregularly shaped inclusions are investi-
gated. Homogenization approaches are used in combination with an analytical expression for
the Eshelby tensor based on its irreducible decomposition.The second strategy to be inves-
tigated is the Mori-Tanaka method with replacement tensor approach which is based on the
result of a calculation of a dilute inclusion embedded in an infinite matrix. Subsequently the
third approach, namely the direct discretization of a real microstructure via finite-elements, is
discussed. Numerous comparisons are carried out in order tocompare the different strategies
mentioned above appropriately.

1.1 Introduction

The prediction of the macroscopic stress-strain response of composite materials is related to the
description of their complex microstructural behavior exemplified by the interaction between
the constituents. In this context, the microstructure of the material under consideration is ba-
sically taken into account by representative volume elements (RVE). In previous decades and
especially in the absence of computers, analytical and semi-analytical approximations based on
RVEs and mean-field homogenization schemes were developed.Mean-field homogenization
methods were first developed in the framework of linear elasticity and are now well-established.
These schemes provide efficient and straight forward algorithms for the prediction of, among
other properties, the elastic constants. These include forexample the Mori-Tanaka method
(Mori and Tanaka, 1973) and the interpolative double inclusion method (IDIM) (Pierard et al.,
2004). For elastic-plastic behavior, there is for example the self consistent scheme (Mercier and
Molinari, 2009; Molinari et al., 1987). Moreover, the results obtained can be shown to be upper
or lower bounds to the true solution of the underlying problem in most cases (e.g., Voigt-Reuss,

* results partly published in Klusemann and Svendsen (2010)
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Hashin-Shtrikman bounds, see Gross and Seelig, 2001; Nemat-Nasser and Hori, 1999). All
these methods are based on two steps to predict the macroscopic response. In a first step, a local
problem for a single inclusion is solved in order to obtain approximations for the local field
behavior as outlined by Eshelby for elastic fields of an ellipsoidal inclusion (Eshelby, 1957).
The second step consists of averaging the local fields to obtain the global ones (e.g. Mercier and
Molinari, 2009).

In this context, the main requirements on homogenization methods for predicting the effec-
tive properties, according to Zheng and Du (2001) are

a) a simple structure which can be solved explicitly, such that a physical interpretation for
the behavior of all the components involved is possible;

b) a valid structure for multiphase composites with variousinclusion geometries, isotropy
and anisotropy;

c) an accurate model for the influence of various inclusion distributions and interactions
between inclusions and their immediate surrounding matrix.

However, none of the aforementioned methods is actually able to fulfill these requirements
completely. The major disadvantages of these methods are exemplified by the fact that inclusion
distributions are unaccounted for and that the properties of the surrounding matrix material do
not enter these methods directly. An interesting approach was presented by Guinovart-Dı́az
et al. (2005), namely the recursive asymptotic homogenization scheme (RAHS), which takes
the variation of properties around cylindrical fibers into account by using multi-phase fibrous
elastic composites, wherein the constituents exhibit transverse isotropy.

A new micromechanical model has been proposed by Zheng and Du(2001), namely the so-
called effective self-consistent scheme (ESCS), which is based on the three-phase model which
corresponds to the generalized self-consistent scheme (GSCS) (see Christensen, 1990). In the
three-phase model, the inclusion is embedded in a matrix which itself is embedded in an un-
bound, initially unknown effective medium. This GSCS method fulfills requirements b) and c)
but is still rather complicated in terms of its application due to its implicit structure and fur-
thermore restricted to spherical or cylindrical inclusion. The ESCS overcomes the restriction of
spherical and cylindrical inclusions and still fulfills requirements b) and c) from above. How-
ever, its structure is as well rather complicated. A simplified and explicit version of the ESCS
method, which is referred to as the Interaction Direct Derivative (IDD) estimate, was proposed
satisfying all three requirements Zheng and Du (2001). Thismethod has a simple structure
with physical meaning of the single constituent parts. Du and Zheng (2002); Zheng and Du
(2001) show results for void distribution, although the formulation is also valid for spherical
inclusions. This encourages a first discussion of this method regarding the inclusion as well as
its comparison to classical homogenization schemes presented in this chapter.

A key point for the determination of the effective elastic properties of heterogeneous materi-
als is the investigation of the influence of single inclusions on the macroscopic stiffness. In ma-
terials science applications, inhomogeneities may have irregular non-ellipsoidal shapes which
invalidate the analytical solution based on on the work of Eshelby (1957). The remarkable result
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found by Eshelby was that the Eshelby tensor fieldSω(x) is uniform inside a 2D ellipse or 3D
ellipsoidal domainω embedded into an isotropic medium. In Gavazzi and Lagoudas (1990) a
numerical scheme was presented for an ellipsoidal inclusion embedded into an anisotropic ma-
trix. For the case of irregular inclusions embedded into an isotropic matrix Rodin (1996) proved
the impossibility of Eshelby’s uniformity result for any domain with corners and Markenscoff
(1997) proved it for domains with flat surface segments. Recently Kang and Milton (2008) and
Liu (2008) proved this result for any irregular inclusion. In general three approaches can be
found in the literature for solving the problem of irregularinhomogeneities which can generally
be classified as follows:

• Analytical procedures for estimating the Eshelby tensor.

Rodin (1996) presented an algorithmic closed-form solution to a problem of classical
elasticity for an infinite homogeneous body that contains a polyhedral subdomain subject
to a uniform transformation strain. In this work the Eshelbytensor was derived by a
double or triple integral which was evaluated by dividing the inclusions into two- or three
dimensional rectangular simplexes. Nozaki and Taya (1997,2001) proposed a procedure
for phase averaging the Eshelby tensor for inclusions with fluctuating microfields. A
complex variable approach to the Eshelby problem is described in Tsukrov and Novak
(2001, 2004), Kawashita and Nozaki (2001) and Ru (1999).

• Direct computation of the effective elastic properties fora given microstructure by dis-
cretizing the domain and using FEM.

Arns et al. (2002) presented a comparison between results for the elastic property-porosity
relationship derived directly from microtomographic images with analytical results. A
similar approach was applied by Tillmann et al. (2010a) and Klusemann et al. (2009a) for
evaluating the elastic properties in thermal sprayed coatings.

• Computation of the contribution of one isolated inclusion into an infinite matrix material
and application to the effective behavior.

Such an approach is used in combination with the Mori-Tanakamethod to predict the ther-
mal conductivity of diamond reinforced composites by Nogales and Böhm (2008). This
method is an alternative approach to the compliance contribution formalism of Kachanov
et al. (1994). Sevostianov et al. (2008) discussed the evaluation of the effective stiffness
as a function of the shape factor concavity-convexity in this context.

The outline of this chapter is as follows: First the basic idea of homogenization methods is
discussed followed by an overview on the ESCS and IDD approach. A comparison of different
homogenization schemes with FE-results for different volume fractions of spherical inclusions
as well as different stiffness ratios are provided in section 1.3. In section 1.4 three approaches for
dealing with irregular shaped inclusions, one based on an analytical evaluation of the Eshelby
tensor, one based on calculating the contribution of one isolated inclusion into an infinite matrix
and one method to discretize the microstructure directly, are described. A comparison of these
methods for different inclusion shapes with FE results is given in the following. The chapter
concludes with a summary and outlook.
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Before we begin, a short word to notation. Use will be made of the dyadic or tensor product
(a ⊗ b)c := (b · c)a of any non-zero Euclidean vectora. Basic operations on second-order
Euclidean tensorsA used here includes symmetrizationsym(A) := 1

2
(A + AT). The orthog-

onal additive splitA := sph(A) + dev(A) of anyA into sphericalsph(A) := 1
3
tr(A)I and

deviatoricdev(A) := A − 1
3
tr(A) I parts is used.

1.2 Determination of effective elastic properties

Basically, a macroscopic material point at a positionX in a fixed Cartesian frame is considered
next. In linear elasticity the macroscopic stressesT macro and strainsEmacro are related via the
macroscopic elasticity tensorCmacro with

T macro = CmacroE
macro. (1.1)

Homogenization procedures are mainly based on the definition of a local surrounding of a
macroscopic material point with microscopic volumeV and the boundary∂V . This volume
V represents a characteristic part of the material in terms ofits structure and behavior, respec-
tively. This implies that the size of heterogeneities at themicrolevel is at least one order of
magnitude smaller than the size of the volumeV of the macropoint. As it is shown by Nemat-
Nasser and Hori (1999) and Gross and Seelig (2001) the Hill-Mandel condition is fulfilled by
applying linear displacement, periodic, uniform tractionor mixed boundary conditions (Pahr
and Zysset, 2008) on∂V .

The previous explanation emphasizes that the macro elasticity tensorCmacro averages out the
heterogeneities on the microlevel and characterizes a homogenous behavior at the macroscopic
level. The constitutive law from the microlevel

T (x) = C(x) E(x) (1.2)

can be rewritten to the macroscale

〈T 〉 = C∗ 〈E〉 (1.3)

with the effective elasticity tensorC∗ = Cmacro for a multiphase composite consisting ofn
phases,cα = Vα/V denotes the volume fraction of each phaseα with respect to the total volume
V of the RVE, which are subjected to the restriction

∑n
α=1 cα = 1. The effective elasticity tensor

has to be approximated for what often mean-field methods are used. These methods provide
relatively simple models to approximate the overall behavior of the composites where the fields
on the microscale entering these methods by their phase averages. Most of the used mean-field
homogenization methods are shown schematically in Figure 1.1. The exact formulation of the
more standart methods can be taken from the literature (Gross and Seelig, 2001; Nemat-Nasser
and Hori, 1999; Pierard et al., 2004) or can also be found in A.2. The following provides an
overview on the recently developed ESCS and IDD approach by Zheng and Du (2001).

1.2.1 ESCS and IDD approach

Effective self-consistent scheme (ESCS)

The effective self-consistent scheme (ESCS), proposed by Zheng and Du (2001) is based on
the three-phase model. In the three-phase model the averagestress〈T 〉i over all type-i in-
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Figure 1.1: A schematic overview on different homogenization schemes for estimating the
average stress or strain, respectively.

clusions is estimated by embedding a single inclusioni in a finite matrix material, the matrix
atmosphere, which is in turn embedded in the unbounded unknown effective medium, shown in
Figure 1.2 a). In the following the inclusion together with its matrix atmosphere will be called
inclusion-matrix cell and will be denoted by a subscript ’D’, which implies that this cell has to
be representative for an inclusion distribution.

Shortly recall the assumptions made in order to obtain the effective elasticity tensor for this
method. For a more detailed description see Du and Zheng (2002). The volumeV is subjected
to the uniform stress distributionT 0. In the first step it is assumed that the inclusion-matrix cell
only consists of the matrix material, leading to stress and strain being uniform according to the
Eshelby theorem and taking the form

ED
i = C−1

M T D
i , T D

i = (I − ΩDiH)−1
T 0 (1.4)

whereΩDi is the eigenstiffness tensor of the cell with respect to the unknown effective medium
which is also often referred as dual of the polarization factor tensor, andH describes the com-
pliance increment, defined by

H = C∗−1 − C−1
M . (1.5)

ΩDi is calculated by
ΩDi = C∗(I − S∗

i ) (1.6)

whereS∗
i denotes the Eshelby tensor for the cell embedded into the unknown effective material.
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In the next step the uniform strainED
i has to be incorporated in the original three-phase

model problem, by applying extra tractionsτD
i n, with the outward normaln on the inclusion

boundary. This additional stress contribution is calculated by

τD
i = (CI,i − CM)ED

i . (1.7)

As depicted in Figure 1.2 b) and c) the solution for the original problem is thus obtained by

T 0

inclusion

effective

matrix

medium

a)

=

T 0

τD
i n

effective

matrix

medium

b)

+
−τD

i n

effective

matrix

medium

c)

m ≈
T D

i

inclusion

matrix

d)

=

T D
i

τD
i n

matrix

e)

+
−τD

i n

matrix

f)

Figure 1.2: A schematic overview on the ESCS approach (Zhengand Du, 2001).

the superposition of two separate problems. A key ingredient in order to establish the ESCS
estimate is the approximation of the average stress, denoted byT ∗

i within the inclusion for the
decomposed problem as shown in Figure 1.2 c). In Du and Zheng (2002) it has been shown,
that this average stressT ∗

i can be approximated by an average stress, denoted byT
′

i , which
occurs in a two-phase reference problem where the effectivemedium is replaced by the matrix
material as shown in Figure 1.2 f). The error due to this approximation is in the second order in
c.
By definition, the stress and strain are uniform in the matrixatmosphere in Figure 1.2 b) and
equal toT D

i andED
i . Therefore a two-phase model with a single inclusion embedded in the

unbounded matrix material is considered, which is subjected to a uniform stress fieldT D
i and

τD
i n on the boundary of the inclusion. The obtained strain field isconstant and equal toED

i .
Therefore the problems in Figure 1.2 b) and e) are completelyequivalent. Next the superposition
of the two problems illustrated in Figure 1.2 e) and f) leads to a much simpler problem of the
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matrix-inclusion problem. The average stress over the inclusion results in

〈T 〉escsi =
(

I + ΩM
i Hi

)−1
(I − ΩDiH)−1

T 0. (1.8)

As mentioned before, the substitution of the problem in Figure 1.2 c) by e) leads to an error
of O(c2) compared to〈T 〉escsi and the exact average stress〈T 〉i in the inclusion for the whole
estimate. Therefore〈T 〉i can be replaced by〈T 〉escsi . The average strain tensor〈E〉 can be
expressed by (see Nemat-Nasser and Hori (1993))

〈E〉 = C−1
M T 0 +

∑

i

ci(C−1
i − CM)〈T 〉i. (1.9)

Adopting the strain-equivalence〈E〉 = C∗−1T 0 yields to the relation

HT 0 =
∑

i

Hi〈E〉i, (1.10)

whereHi are defined as the compliance fluctuations

Hi = C−1
i − CM. (1.11)

Using (1.11) together with (1.4) leads to an implicit equation for the compliance increment
represented by

H = Hd
i (I − ΩDiH)−1 (1.12)

which results in an error of third order dependent of c.Hd
i can be interpreted as the dilute

estimate and is calculated by

Hd
i =

∑

i

ci
(

H−1
i + Ω0

i

)−1
. (1.13)

This relation can therefore be used to determine the effective elasticity tensorC∗, thereby ob-
taining the relation

C∗
(ESCS) = (H + CM)−1 . (1.14)

Zheng and Du (2001) showed that in the case that allΩD,i are identical, denoted byΩD, the
solution of the ESCS method coincides with an effective stress model for the estimation of the
average stress over any inclusion, which is embedded in the unbounded matrix material which
is subjected to a modified uniform far-field stressT D given by

T D = (I − ΩDH)−1 T 0 (1.15)

rather than the real stressT 0 which is also the physical explanation for the name prefixeffective
in the term of ESCS.

Interaction direct derivative (IDD)

Zheng and Du (2001) derived an explicit version for estimatingC∗ instead of an implicit equa-
tion like (1.14), namely the interaction direct derivative(IDD) estimate. First the right side of
(1.12) is expanded to

H = Hd +
∑

i

Hd
i ΩDiH, (1.16)
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whereHd =
∑

i Hd
i . This yields to an error of third order inc. Due to the fact thatΩM

Di is an
approximation ofΩDi with an error of first order inc, this yields to the approximate solution

Hidd =

(

I −
∑

i

Hd
i Ω

M
Di

)−1

Hd (1.17)

and the effective elasticity tensor

C∗
(idd) =

(

Hidd + CM

)−1
. (1.18)

This solution is called interactive direct derivative estimate for the effective elasticity tensor
C∗

(idd). To estimate the average stress and strain, respectively, of any inclusion, this inclusion
is embedded in the matrix material which is subjected to a modified remote boundary traction
T En with

T E =

(

I −
∑

i

ΩM
DiHd

i

)−1

T 0 (1.19)

called the effective stress. As can be seen the IDD estimateC∗
(idd) has always an explicit struc-

ture, which only involves physical and quantitatively well-defined quantities due to its deriva-
tion. The IDD method is valid for any physically possible high concentration of inclusions and
is also capable of taking any inclusion distribution into account. If the inclusions are of the
same type a much easier form can be obtained (see Zheng and Du (2001)). In this case it can
also be shown that the IDD and Mori-Tanaka estimate coincidewith each other in the sense of
energy-equivalence. Note that

T M =

(

I −
∑

i

ΩM
i Hd

i

)−1

T 0 (1.20)

represents the analogous expression to (1.19) in the context of the Mori-Tanaka method.

1.3 Comparison of different homogenization approaches fortwo-phase
composites with spherical inclusions

Throughout this section we assume that the matrix and inclusion are isotropic and only two-
phase composites in isothermal linear elasticity are considered. We compare the prediction of
the macroscopic behavior of different classical mean-fieldhomogenization methods with FE
results obtained from a RVE. Furthermore we will investigate the prediction of these methods
concerning different stiffness ratios of the inclusion-matrix pair. Finally a comparison is made
regarding the ESCS and IDD method. Firstly the well-known mean field homogenization meth-
ods for two different stiffness ratios over the inclusion concentration are investigated. Figure
1.3 shows the predicted macroscopic elastic modulusE∗ for a combination ofEM = 210 GPa
andEI = 430 GPa, where the subscript M is the matrix material and I the inclusion. In the
following the Poisson ratio is assumed to beν = 0.25 for all phases. The concentrationc de-
scribes the volume fraction of the inclusion. Figure 1.4 shows the predicted macroscopic elastic
modulusE∗ for a combination ofEM = 21 GPa andEI = 210 GPa.
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Figure 1.3: Prediction of effective Young’s
modulusE∗ with different homogenization
methods forEM = 210 GPa,EI = 430 GPa
and ν = 0.25. (MT = Mori-Tanaka; SCS
= self-consistent; HS = Hashin-Shtrikman
bounds; IDIM = interpolative double inclu-
sion model)
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Figure 1.4: Prediction of effective Young’s
modulusE∗ with different homogenization
methods forEM = 21 GPa,EI = 210 GPa
and ν = 0.25. (MT = Mori-Tanaka; SCS
= self-consistent; HS = Hashin-Shtrikman
bounds; IDIM = interpolative double inclu-
sion model)

As expected the different methods deviate distinctly from each other for a higher contrast in
the material properties of the matrix and inclusion. For a small contrast, as shown in Figure
1.3 for a ratio of∼2, only small differences in the prediction of the elastic modulus using the
different methods can be seen. In this context we would like to emphasize the well-known fact,
that the Voigt-bound represents the maximum upper bound whereas the Reuss-bound defines
the minimum lower bound of the stiffness. Voigt and Reuss method predict in general a distinct
different Young’s modulus, which can already been seen for asmall stiffness ratio. Numerous
narrow bounds are provided by the Hashin-Shtrikman bounds where all other predictions are
located. To be able to distinguish better between the different homogenization methods, we
investigate the different methods on Figure 1.4 where the predictions are done for a stiffness
ratio of 10. Here the difference between the methods is more clearly visible over the volume
fraction. In this case the Hashin-Shtrikman bounds are alsoquite far from each other. The Mori-
Tanaka method shows a jump in the predicted elastic modulus for concentrations around 50 %
which results from the fact that in the Mori-Tanaka scheme the matrix material is defined as the
material having the higher concentration. This shows that,depending on which material is con-
sidered to be the matrix material, the Mori-Tanaka estimatecoincides with the lower (for matrix
= softer material) or the upper (for matrix = harder material) Hashin-Shtrikman bound. For a
small volume fraction of inclusions up to30% the Mori-Tanaka, self-consistent and IDIM esti-
mate nearly coincide with each other. However, with increasing volume fraction the difference
in the predictions is rather pronounced. The reason for thisis the different approximation of the
effective properties which leads to errors from the first order upwards inc. This leads to wrong
predictions for high volume fractions. Physically it is notpossible to realize volume fractions
higher than74%, as known for face-centered cubic crystal structure, for equal spherical inclu-
sions without letting the inclusion spheres intersect eachother. In Castaneda and Willis (1995)
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Figure 1.5: Prediction of effective
Young’s modulusE∗ of Voigt method
for different concentrationsc and stiff-
ness ratiosEI/EM
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Figure 1.6: Prediction of effective
Young’s modulusE∗ of Reuss method
for different concentrationsc and stiff-
ness ratiosEI/EM
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Figure 1.7: Prediction of effective
Young’s modulus E∗ of Hashin-
Shtrikman upper bound for different
concentrationsc and stiffness ratios
EI/EM
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Figure 1.8: Prediction of effective
Young’s modulus E∗ of Hashin-
Shtrikman lower bound and Mori-
Tanaka estimate, respectively, for
different concentrationsc and stiffness
ratiosEI/EM
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Figure 1.9: Prediction of effective
Young’s modulusE∗ of self-consistent
method for different concentrationsc
and stiffness ratiosEI/EM
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Figure 1.10: Prediction of effective
Young’s modulusE∗ of the interpola-
tive double inclusion model (IDIM) for
different concentrationsc and stiffness
ratiosEI/EM
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it has been proven that the Mori-Tanaka method is generally incorrect for higher concentrations
of inclusions. But it is hard to decide whether the IDIM estimate or the self-consistent scheme
provide better results for higher volume fractions. A comparison with the obtained FE-results
of ideal spherical inclusion for volume fractions up to30% will be provided later in this section.

Further analyses of these homogenization methods for different stiffness ratios and concen-
trations are presented in the following. Figure 1.5 to 1.10 provide 3D-surface plots of the
prediction for the different methods for stiffness ratios up to 20. Due to the fact that it is not
possible to compare the behavior over different stiffness ratios by plotting the surfaces above
each other, in Figure 1.11 and 1.12 the resulting effective elastic modulusE∗ normalized by
EM over the stiffness ratio of inclusion and matrix material isshown. As can be seen from
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Figure 1.11: Prediction of effective Young’s
modulusE∗ with different homogenization
methods for different stiffness ratiosEI/EM

for c = 0.3
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Figure 1.12: Prediction of effective Young’s
modulusE∗ with different homogenization
methods for different stiffness ratiosEI/EM

for c = 0.8

the surface plots, the behavior of the homogenization methods over different stiffness ratios is
changed for different concentrations of the inclusion volume fractionc, however, the general
behavior remains the same. The Voigt estimate shows a lineardependence of the effective elas-
tic modulus with respect to the volume fraction of the inclusion representing an upper bound
as mentioned before. The Reuss estimate is the lower bound which only shows an increase
of the effective elastic modulus in the end. Afore it remainsat a nearly constant level. The
same behavior can be observed for the upper and lower Hashin-Shrikman bounds only at a
higher or lower level, respectively. For a relatively low volume fraction of inclusion the IDIM
and self-consistent estimate coincide, result in curves showing only small increase ofE∗/EM

with respect toEI/EM. For a large amount of inclusions (c = 0.8) both methods deviate from
each other, where the self-consistent shows a nearly linearbehavior with increasing stiffness
ratio, whereas the IDIM estimate shows a more quadratic behavior. Both are quite close to the
Hashin-Shtrikman bounds which is depicted for high concentration c of inclusions in Figure
1.4. As can be seen by interpretation of Figure 1.12, the stiffness ratio has an immense effect
on the effective properties, especially at high volume fractions of inclusion, and therefore the
homogenization methods should also be checked for their behavior for high stiffness ratios as
done here, instead of solely investigating their behavior at different volume fractions.
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Figure 1.13: RVE with randomly dis-
tributed spherical inclusions of a volume
fractionc = 0.2

Figure 1.14: RVE with randomly
distributed voids of a volume fraction
c = 0.2

1.3.1 Comparison with FE-results

Before we compare these well-known homogenization methodswith the ESCS and IDD esti-
mate, first the results obtained so far are compared with Finite-Element simulations. For this
purpose RVEs with randomly distributed inclusions are generated for different volume fractions
using the software DIGIMAT. The model is generated by successively placing randomly dis-
tributed equally sized spheres into the matrix material until the desired volume fraction with
the desired number of spheres or voids is reached. If a randomly placed sphere intersects an-
other already placed sphere, it is attempted to place that particular sphere differently using yet
another random generator. The resulting models with spherical inclusion are shown in Figure
1.13 and with spherical voids in Figure 1.14. The FE simulations were done with the soft-
ware ABAQUS/Standard applying linear displacement boundary conditions to three faces of
the model so that these are fixed in their respective normal direction so that every degree of
freedom is fixed on one single face. The displacement is applied on a further face in its normal
direction.

In Figure 1.15 the results of the different homogenization methods are compared for a stiff-
ness ratioEI/EM = 10 with the obtained results from the FE-simulation up to an inclusion
volume fraction ofc = 0.35. It can be stated that for the case of spherical isotropic inclusion
the IDIM shows the best agreement for higher inclusion volume fractions found earlier by Pier-
ard et al. (2004). However, as seen in Figure 1.16 with increasing stiffness ratioEI/EM, the
FEM-results yield to a softer behavior as the IDIM but which still predicts the best agreement
compared to the other methods.

1.3.2 Investigation of ESCS and IDD approach in the context of spherical inclusions

Now we are investigating the ESCS and IDD method, in order to verify the implementation
of both approaches. Therefore the effective Young’s modulusE∗ is calculated for an isotropic
matrix containing spherical holes, to compare these results with results obtained by Zheng and
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Figure 1.15: Comparison of homogeniza-
tion results for effective Young’s modulus
E∗ with FEM-results forEM = 21 GPa,
EI = 210 GPa andν = 0.25.
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Figure 1.16: Comparison of homogeniza-
tion results for effective Young’s modulus
E∗ with FEM-results for different stiffness
ratiosEI/EM for c = 0.3
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Figure 1.17: Comparison of different ho-
mogenization results and numerical evalua-
tion for the effective Young’s modulusE∗

of homogenously distributed spherical voids
embedded in an isotropic matrix.
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Figure 1.18: Prediction of effective Young’s
modulusE∗ of ESCS method for different
concentrationsc and stiffness ratiosEI/EM

Du (2001). Figure 1.17 shows the resulting effective Young’s modulusE∗ over the void porosity
c for ν = 0. For comparison, we also plot the corresponding self-consistent scheme, IDIM,
Hashin-Shtrikman, Voigt and Reuss bounds as well as the numerical results obtained from FEM-
simulations. The Reuss bound as well as the Hashin-Shtrikman lower bound and IDIM provide
inappropriate results, meaning they are not appropriate for vanishing stiffness of one phase.
The self-consistent scheme also predicts a very soft behavior, where the maximum permitted
porosity isc = 0.5. The ESCS method does not predict a complete loss of stiffness atc = 1

which is of course inappropriate. Here it becomes clear thatthis method is only valid for small
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void porosityc. It can be seen that the IDD method agrees perfectly with the Mori-Tanaka
method or Hashin-Shtrikman upper bound, respectively. Zheng and Du (2001) showed that
the IDD method provides the best agreement for most materials with numerical simulations,
especially forc → 1. The here presented results agree agree with their reportedresults for
voids.
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Figure 1.19: Comparison of homogeniza-
tion results for effective Young’s modulus
E∗ for EM = 21 GPa,EI = 210 GPa and
ν = 0.25.
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Figure 1.20: Comparison of homog-
enization results for effective Young’s
modulusE∗ for different stiffness ratios
EI/EM for c = 0.3

In the following the behavior of the ESCS and IDD method is investigated regarding isotropic
homogeneously distributed spherical inclusions embeddedin an isotropic matrix for different
stiffness ratios. In Figure 1.19 the predicted effective Young’s modulusE∗ is shown over the
inclusion volume fractionc for a stiffness ratioEI/EM = 10. As can be seen for the case
of voids, the IDD method agrees with the Mori-Tanaka estimate. The ESCS predicts a lower
effective stiffness ratioE∗ than the IDD method. Although both methods predict forc = 0.3

and a stiffness ratioEI/EM = 10 a similar effective Young’s modulus, with increasing stiffness
ratio the ESCS methods predicts a slightly lower result as shown in Figure 1.20. Furthermore
the ESCS method has its numerical limits in predicting the effective behavior. Investigating
the behavior in Figure 1.18 shows that this limit depends on both factors, inclusion volume
fraction and stiffness ratio. Therefore this method provides good results only for low stiffness
ratios and low volume fractions, moreover this method is more complex than the IDD method.
The results found here from numerical analysis confirm the results analytically done by Du and
Zheng (2002) where the effective elasticity tensor, here exemplary for the Young’s modulusE,
fulfills the following conditions:

ESCS ≤ E∗ ≤ Eidd ≤ EESCS as EI ≤ EM

EESCS ≤ Eidd ≤ E∗ ≤ ESCS as EM ≤ EI

(1.21)

It should also be mentioned that the Ponte Castañeda-Willis (PW) estimate (cf. Castaneda and
Willis (1995)) coincides with the IDD-method if all inclusion-matrix cells have identical shape
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and orientation for identical inclusion-interaction distribution, however, the PW does not have
an explicit form in all cases which makes the IDD estimate more favorable.

1.4 Dealing with irregular (non-ellipsoidal) inhomogeneities

1.4.1 Eshelby tensor field

Zheng et al. (2006) established the following irreducible decomposition

Sω(x) = S0 χω + Qω(x) (1.22)

for the Eshelby tensor fieldSω(x). S0 describes the isotropic part ofSω for an arbitrary do-
mainω. For isotropic elasticity this part vanishes outside ofω and is uniform insideω. S0 is
identical to the Eshelby tensor for spherical inclusions in3D and circular inclusions in 2D. Due
to the minor symmetry of the Eshelby tensor,Sω might have a maximum of nine independent
components in two dimensions. For the special case of a elliptical inclusion for plain strain and
isotropic material the Eshelby tensorSω can be calculated and written in matrix notation as a
second order tensorSω as

Sω =
1

8(1 − ν)











5 − 4ν 4ν − 1 0

4ν − 1 5 − 4ν 0

0 0 3 − 4ν











, (1.23)

whereν denotes the Poisson ratio. The partQω(x) describes the anisotropic part ofSω. The
formalism (1.22) is valid for arbitrary inclusionω in a two- or three- dimensional isotropic
medium which is a deviatoric fourth- or second-order tensorand independent of the material
symmetry. ThereforeQω has a maximum of fourteen or four independent components in the
3D and 2D case. In the two-dimensional plane strain problemQω results in

Qω(x) =
1 − 2ν

2(1 − ν)
i ⊗ d +

1

2(1 − ν)
d ⊗ i +

1

1 − ν
D, (1.24)

with

d(x) = − 1

2π
sym dev

∫

ω

∂z(ln
1

|z|)dy (1.25)

D(x) = −2

π
sym dev

∫

ω

z ⊗ z ⊗ z ⊗ z

|z|6 dy , (1.26)

wherez ≡ y −x andsym dev denotes the operation of taking the symmetric deviatoric part. d

andD are material-independent and they have at maximum two independent components (Zou
et al., 2010). Following the definition in Zou et al. (2010) weare usingd = dij andD = Dijkl

and the following definitions

p2 ≡ d11, q2 ≡ d12, p4 ≡ D1111, q4 ≡ D1112. (1.27)
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The matrix representation ofQω is given by

Qω =
1

1 − ν











(1 − ν)p2 + p4 νp2 − p4
1−2ν

2
q2 + q4

−νp2 − p4 −(1 − ν)p2 + p4
1−2ν

2
q2 + q4

1
2
q2 + q4 ν 1

2
q2 − q4 −p4











. (1.28)

Zou et al. (2010) derived the following complex-variable integral expression

γ2(x) ≡ p2(x) + iq2(x) = 1
4πi

∮

∂ω
dy
z̄
,

γ4(x) ≡ p4(x) + iq4(x) = 1
16πi

∮

∂ω
zdy
z̄2 ,

(1.29)

from which the entries in (1.28) can be identified. Herei =
√
−1 is the imaginary unit and

the overbar describes the complex conjugated. For the averaged values ofγ2 andγ4 over the
inclusionω Zou et al. (2010) obtained

〈γ2〉 ≡ 〈p2〉 + i〈q2〉 = − 1
8πω

∮

∂ω

∮

∂ω
z
z̄
dydx̄,

〈γ4〉 ≡ 〈p4〉 + i〈q4〉 = − 1
32πω

∮

∂ω

∮

∂ω
z
z̄
dydx.

(1.30)

The decomposition
〈Sω〉 = S0 + 〈Qω〉 (1.31)

can be done similar to (1.22) for the average Eshelby tensor〈Sω〉 in two dimension.

1.4.2 Averaged Eshelby tensor characerized by Laurent polynomials

In complex analysis, it is known that the Riemann mapping theorem states that for an arbitrarily
given simple-closed curve∂ω, there exists a biholomorphic mapping from the outer domainof
the unit diskI onto the outer domain of∂ω (Henrici, 1974; Riemann, 1851). This mapping can
be expressed in terms of the Laurent series

f(w) = f0 + a

(

w +

∞
∑

k=1

bk w
−k

)

, |w| ≥ 1, (1.32)

wheref0 is a unique inner point of the domainω, a is a positive real number and every complex
coefficientbk satisfies|bk| < 1/k (Zou et al., 2010). Without loss of generality, it is possible to
setf0 = 0 anda = 1 which leads to the following expression

f(θ) = eiθ +

∞
∑

k=1

bke
−k iθ, 0 ≤ θ ≤ 2π. (1.33)

This expression can be used to approximate various 2D shapes. Examples for such approxima-
tions are shown in Figure 1.21 with the associated polynomial. Zheng et al. (2006) and Zou
et al. (2010) showed a solution procedure to obtain the average Eshelby tensor based on (1.30)
and using the residue theorem for various inclusions characterized by Laurent polynomials. The
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a)
b)

Figure 1.21: Laurent polynomial approximations for describing various shapes. a) circle:e(i θ),
ellipse: ei π/4[1.5 cos(θ − π/4) + i 0.5 sin(θ − π/4)]. b) hypocycloid:ei θ + λe(2 i π/3) e−3 i θ,
quasi-rectangular:ei θ − 1

8
e−3 i θ.

detailed solution procedure can be taken from there. Here weshortly recall the basic solution
for inclusion characterized by the following Laurent polynomial

f(θ) = eiθ + b1e
−i θ + bne

−i n θ (1.34)

by which the shown shapes in Figure 1.21 can all be approximated. The solution has the fol-
lowing explicit expression for〈γ2〉 and〈γ4〉. (Zou et al., 2010)

• n=even number≥ 2

2ω
π
〈γ2〉 = −b1 (1 − |b1|2 − 2n |bn|2) + n b2n b̄

n
1

8ω
π
〈γ4〉 = −b21 (1 − |b1|2 − 3n |bn|2)

−n b2n b̄n−1
1 [n− (n + 2)|b1|2 − n3 |bn|2]

(1.35)

• n=odd number (n = 2k + 1) ≥ 3

2ω
π
〈γ2〉 = −b1 (1 − |b1|2 − 2n |bn|2) + n b2n b̄

n
1

+n2 |bn|2 b2 |b1|k
8ω
π
〈γ4〉 = −b21 (1 − |b1|2 − 3n |bn|2)

−n b2n b̄n−1
1 [n− (n + 2)|b1|2 − n3 |bn|2]

+n2 b3n b̄
3k+1
1 + bn b̄

k−1
1 (1 − 2|b1|2

−n−1
2
n2 |bn|2 + n+1

2
n2 |b1|2 |bn|2 + |b1|4

)

−n
2
|bn|2 bn b̄k−1

1 ((n− 1)2 − (n+ 1)2 |bn|2

− (3n2+1)(n2−1)n
16

|bn|2
)

.

(1.36)

1.4.3 Mori-Tanaka method with replacement tensor approach(RMTM)

The Mori-Tanaka method approximates the interaction between the phases by assuming that
each inclusionI is embedded, in turn, in an infinite matrix that is remotely loaded by the average
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matrix strainEM or average matrix stressTM, respectively. This implies that the Mori-Tanaka
method estimates the behavior of the composite for a non-dilute volume fraction of inclusions
via dilute inclusions that are subjected to the effective oraveraged matrix strainEM or stress
TM, respectively (Mori and Tanaka, 1973).

EI = A0
IE

M = AI (MT) E0, (1.37)

whereA0
I denotes the dilute strain concentration tensor (influence tensor) of the inclusion,

AI (MT) the Mori-Tanaka strain concentration tensor of the inclusion andE0 the macroscopic
strain. The expression forA0

I is given by Hill (1965) to be

A0
I =

[

I + S0C−1
M (CI − CM)

]−1
. (1.38)

In Benveniste (1987) the method is interpreted in the sense that ”each inclusion behaves like an
isolated inclusion in the matrix seeingEM as a far-field strain”.

The effective elasticity tensor can be obtained via

C∗
(MT) = CM + cI(CI − CM)AI(MT). (1.39)

The Mori-Tanaka gradient concentration tensors of the inclusionAI(MT) can be written for
spherical inclusion as

AI(MT) =
[

cII + cM(A0
I )

−1
]−1

. (1.40)

Nogales and Böhm (2008) presented a framework how to extendthe standard Mori-Tanaka
scheme to inclusions with non-ellipsoidal shape which was done firstly by Duschlbauer (2004).
Although Nogales and Böhm (2008) focuses mainly on thermalproblems their approach can be
applied analogously for elasticity. Therefore a phase averaged dilute ”replacement” elasticity
tensorCred

I and the dilute ”replacement” inclusion gradient tensorA0,red
I have to be introduced.

These replacement tensors have to fulfill the consistency condition

Cred
I = CM +

1

cI,0
(C∗

0 − CM)(A0,red
I )−1, (1.41)

wherecI,0 describes the volume fraction andC∗
0 the effective stiffness tensor in the inclusion in

the dilute case. The name RMTM results from the introductionof these replacement tensors
in the classical Mori-Tanaka scheme. This leads to the following Mori-Tanaka concentration
gradient tensor

AI(RMTM) =
[

cII + cM(A0,red
I )−1

]−1

(1.42)

and to the resulting effective elasticity tensor

C∗
(RMTM) = CM + cI(Cred

I − CM)AI(RMTM). (1.43)

For non-spherical inclusionsA0,red
I andC∗

0 have to be obtained numerically, e.g. with help of
the finite element simulation of a single inclusion of appropriate shape and properties embedded
into an infinite matrix. For ideal interfacesA0,red

I can be obtained from volume averages over
the inclusion. Therefore the 2D model is subjected to three linearly independent load cases,
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a) b)

Figure 1.22: a) An exemplary micrograph obtained from a HVOFsprayed 88WC-12Co coating
with SEM (Tillmann et al., 2008b). b) FE-mesh on microstructure.

namely tension in x-, y-direction and one case of simple shear, all applied as linear displacement
boundary conditions. The volume fraction for the inclusionwas for all presented cases between
0.4 − 0.8% of the total volume. The proposed results in Nogales and Böhm (2008) stating that
the replacement tensor were found to be largely independentof the inclusion volume fraction
could be confirmed in this study.

In the end of this work we will analyze a combination of inclusions shapes. Therefore
we extended the presented framework slightly to a multiphase composite. The Mori-Tanaka
concentration tensor for each inclusioni is then given by

AI(RMTM),i =

[

ciI + cM(A0,red
I,i )−1 +

∑

j

cjA0,red
I,j (A0,red

I,i )−1

]−1

, (1.44)

which results in the effective elasticity tensor

C∗
(RMTM) = CM +

∑

i

ci(Cred
I,i − CM)AI(RMTM),i. (1.45)

1.4.4 Construction of Finite Element Models from Real Micrographs

The investigated microstructure is manufactured by an HVOFthermal spray process of sub-
micron WC-Co powders. In thermal spraying metallic and non-metallic surface coatings are
manufactured by melting the coating materials in the form ofpowders or wires in an oxy-fuel
gas flame, a plasma jet or an electrical arc and accelerating them towards the surface to be
coated by means of the expanding combustion gases or a separate carrier gas. On the surface
the impacting particles flatten, cool and solidify and thereby form a coating on the workpiece.

To perform analysis of real microstructures, micrographs obtained with the Scanning Elec-
tron Micrographs (SEM) are used. These micrographs providethe possibility to distinguish
between the phases which is possible due to their different brightness in the micrograph caused
by regions of atoms with different atomic numbers. Correlating to the huge difference in the
relative atomic weight of tungsten (183.84 g/mol) and cobalt (58.933 g/mol) the phases of the
sprayed WC-Co feature a good contrast. Figure 1.22a) shows an exemplary micrograph ob-
tained from the coating. An image processing tool is used which now identifies the phases and
generates an image consisting of Co- and WC-based alloys only. The differentiation between
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the phases is carried out by finding optimal thresholds basedon the color distribution, from
which the different phases are separated.

To generate a FE-mesh from such an image the software Object Oriented Finite Element
2 (OOF2), from the United States National Institute of Standards and Technology (NIST), is
used. This software was developed to investigate the behavior of microstructures. OOF2 takes
a non-reductionist approach to build a data structure on thedigitized image of the microstruc-
ture whereby it gets connected to the associated material properties. At the end OOF2 creates a
FE-mesh which reflects the shape of the different phases in the microstructure with the associ-
ated material parameters. The mesh is generated by minimizing an energy functional which is
composed of a homogeneity part of the mesh and a shape part of the elements via

E = αEhom + (1 − α)Eshape (1.46)

whereα is an adjustable parameter, enabling the user to control if the mesh should be highly
accurate to the image with bad shaped elements (α = 1) or if the elements are well shaped but
with less accuracy to the shape of the phases in the micrograph (α = 0). Choosing a middle
value will lead to an optimal choice. The homogeneity energyfor triangle elements can be
calculated by

Ehom =
∑

t

N
∏

i=1

(

1 − αi(t)

1 − 1\N

)

(1.47)

in which the pixels are separated into N categories where allthe pixels belong to one material
group. For each mesh elementt, αi(t) describes the percentage of its area that overlies pixels
in categoryi. When the element lies on only one materialαi(t) = 1 so that it is minimized if
an element is completely homogeneous. The shape termEshape is defined by

Eshape =
∑

t

(

1 − 36√
3

At

L2
t

)

(1.48)

in whichAt corresponds to the area of the elementt andLt describes the perimeter. This term
is zero for equilateral triangular elements and one for degenerated ones. For further details and
the features of the program OOF2 the readers are referred to Langer et al. (2001) and Reid
et al. (2008). The resulting mesh can be seen in Fig. 1.22b) which includes≈ 77vol.% WC
particles. It is assumed that the phases are perfectly bonded. To obtain information about the
microstructural behavior and macroscopic properties tension tests are done with plane strain
conditions.

At this point it is assumed that the micrograph fulfills the requirements for a Representa-
tive Volume Element. This is a crucial assumption in order tocompare the obtained results
with those from the homogenization methods. The elastic constants of the microstructure are
obtained by evaluating the reaction forces at the boundaries and the displacement at the free
lateral sides.
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1.5 Comparison of different homogenization approaches forirregular (non-
ellipsoidal) inhomogeneities

Throughout this section we assume that the matrix and inclusion are isotropic and only two-
phase composites in isothermal linear elasticity are considered. We restrict our analysis to the
case of plain strain. We compare the prediction of the macroscopic behavior of different clas-
sical mean-field homogenization methods (Voigt, Reuss, Hashin-Shtrikman, Mori-Tanaka, in-
terpolative double inclusion model) and more recent methods (ESCS and IDD) with FE results
obtained from a RVE. Furthermore we will investigate the prediction of these methods concern-
ing different stiffness ratios of the inclusion-matrix pair and different shapes of the inclusion.
In the following we will use the Mori-Tanaka scheme with the matrix material as the softer
material instead of defining it over the higher volume fraction. Therefore the MT scheme coin-
cides with the lower Hashin-Shtrikman bound for all volume fractions. For irregular inclusions
the averaged Eshelby tensor by Zou et al. (2010) will be used in these methods and the results
will be further compared to the RMTM method. A detailed analysis for spherical inclusions
concerning different stiffness ratios can be found in Klusemann and Svendsen (2010).

A comparison of the classical homogenization methods with the ESCS and IDD method and
FEM results for circular inclusions for a stiffness ratioEI

E
M

= 10 is shown in Figure 1.23 for
C∗

11. The FEM results are obtained for randomly distributed circular inclusions of equal size
(VI ≈ 1.5%V ) applying linear displacement boundary conditions. It hasto be considered that
in the plain strain context the resulting elasticity tensoris anisotropic also called ”geometric
anisotropy” (Bartel, 2009). This results in an uncoupled evolution between tension and shear
components in the elasticity tensor. However, the homogenization results in a similar behavior
of the single components in the elasticity tensor thereforein the following we will concentrate
in a first step onC∗

11 to analyze the behavior of the different methods.

It can be seen that the IDIM method provides the best fit to the FEM results. Further the
IDD method agrees perfectly with the Mori-Tanaka method or Hashin-Shtrikman lower bound,
respectively. The ESCS method predicts untilc = 0.5 sensible results but afterwards the results
are unstable and inappropriate.

1.5.1 Square

As a first irregular shape we investigate a square as shown in Figure 1.25. For the calculation
of the average Eshelby tensor as described in section 1.4.2 the Laurant polynomfsquare(θ) =

ei θ − 1
8
e−3 i θ is used as an approximation of the displayed square.

Figure 1.24 shows the results forC∗
11 for E

I

E
M

= 10 with the different homogenization ap-
proaches. Here the shown FEM results were obtained for randomly distributed square inclu-
sions of equal size (VI ≈ 2%V ) without interpretation of each other. Linear displacement
boundary conditions were applied. The FEM results forc = 0.8 were obtained by aligning the
inclusions perfectly. The prediction with Voigt and Reuss are the same as for circular inclusions
due to the independence of the shape of the inclusion in the formulation. The analysis shows
that the calculated Eshelby tensor for a square is only slightly different compared to a circular
inclusion. Therefore the prediction is only slightly different as shown by the comparison be-
tween the results of the Mori-Tanaka method for square and circular inclusions. As previously



22 CHAPTER 1
C

∗ 1
1
/C

M
,1

1
[−

]

concentrationc [-]

Voigt
Reuss
HS
IDIM
ESCS
IDD
FEM

0

2.5

5

7.5

10

0 0.2 0.4 0.6 0.8 1

Figure 1.23: Comparison of homogeniza-
tion results for effective Young’s modulus
E∗ for EM = 21 GPa, EI = 210 GPa
and ν = 0.3 for circular inclusions. (HS
= Hashin-Shtrikman bounds; IDIM = inter-
polative double inclusion model)
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Figure 1.24: Comparison of homogeniza-
tion results for componentC∗

11 from the ef-
fective elasticity tensorC∗ forEM = 21 GPa,
EI = 210 GPa andν = 0.3 for quadratic
inclusions. (RMTM = Mori-Tanaka method
with replacement tensor approach Nogales
and Böhm (2008); classic MT = results of
Mori-Tanaka method for circular inclusion)

Figure 1.25: Approximated square described byei θ − 1
8
e−3 i θ (dotted line) to calculate average

Eshelby tensor.

seen the IDIM method shows a very good prediction of the effective behavior as calculated via
FEM. However, for smaller volume fractionsc ≤ 0.8 the RMTM method seems to give the best
prediction of the effective behavior. For larger volume fractionsc ≥ 0.9 this method produces
insensible results. The reason for this is the fact that the RMTM converges forc → 1 to Cred

I

rather than toCI which is of course a certain limitation of the RMTM. The IDD method coin-
cides with the lower Hashin-Shtrikman bound in this case andthe ESCS predicts lower values
for C∗

11 as the Hashin-Shtrikman bound and unreasonable results forc ≥ 0.4.

1.5.2 Triangle

Secondly we investigate an acute-angled triangle as shown in Figure 1.26. For the calculation
of the average Eshelby tensor the Laurant polynomftriangle(θ) = ei θ + 0.3 e−i θ + 0.3 e−3 i θ is
used as an approximation of the displayed triangle. Figure 1.27 shows the results forC∗

11 for
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Figure 1.26: Approximated triangle described byei θ + 0.3 e−i θ + 0.3 e−3 i θ (dotted line) to
calculate average Eshelby tensor.

E
I

E
M

= 10 for triangular inclusions. The calculated averaged Eshelby tensor strongly deviates
from the Eshelby tensor for circular inclusions which results in different homogenization results
compared to circular inclusion as can be seen by comparison of the curves for the classical MT
and lower HS bound. However, the general predicted behaviorespecially in comparison to
the RMTM is the same. Again the limitation forc → 1 can clearly be seen. The performed
representative FE results predict a higher value forC∗

11 as most of the methods in which the
upper HS bound shows the closest prediction. This shows the difficulty of the prediction for
inclusions which introduce a high anisotropy due to their shapes.
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Figure 1.27: Comparison of homogeniza-
tion results for componentC∗

11 from the ef-
fective elasticity tensorC∗ forEM = 21 GPa,
EI = 210 GPa andν = 0.3 for triangular in-
clusions.
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Figure 1.28: Comparison of homogeniza-
tion results for componentC∗

11 from the ef-
fective elasticity tensorC∗ forEM = 21 GPa,
EI = 210 GPa andν = 0.3 for hexagonal in-
clusions.

1.5.3 Hexagon

Lastly we investigate a compressed hexagon as shown in Figure 1.29 as a kind of combination
of the previously discussed triangle and square. For the calculation of the average Eshelby ten-
sor the Laurant polynomfhex(θ) = ei θ + 0.2 e−i θ + 0.05 e−5 i θ is used as an approximation of
the displayed hexagon. The results forC∗

11 for E
I

E
M

= 10 for hexagonal inclusions are shown
in Figure 1.28. The averaged Eshelby tensor shows a similar form as for the triangular case.
Therefore the predictions also look quite equivalent. In contrast the RMTM method shows a
completely different behavior as in the previous case. The RMTM predicts a lower value for
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Figure 1.29: Approximated hexagon described byei θ + 0.2 e−i θ + 0.05 e−5 i θ (dotted line) to
calculate average Eshelby tensor.
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Figure 1.30: Prediction of effective
Young’s modulusE∗ of Voigt method
for different concentrationsc and stiff-
ness ratiosEI/EM for hexagonal inclu-
sions
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Figure 1.31: Prediction of effective
Young’s modulusE∗ of Reuss method
for different concentrationsc and stiff-
ness ratiosEI/EM for hexagonal inclu-
sions
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Figure 1.32: Prediction of effec-
tive Young’s modulusE∗ of Hashin-
Shtrikman upper bound for different
concentrationsc and stiffness ratios
EI/EM for hexagonal inclusions
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Figure 1.33: Prediction of effec-
tive Young’s modulusE∗ of Hashin-
Shtrikman lower bound, Mori-Tanaka
estimate and IDD method, respectively,
for different concentrationsc and stiff-
ness ratiosEI/EM for hexagonal inclu-
sions

C∗
11 as the lower HS bound. In general the HS bounds provides the narrowest known bounds

between which the true value has to be. For this inclusion this is not the case as the FEM re-
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sults show. The results of the RMTM are in very good agreementwith the calculated FEM
results. Further analyses of these homogenization methodsconcerning hexagonal inclusions
for different stiffness ratios and concentrations are presented in the following. Figure 1.30 to
1.37 provide 3D-surface plots of the prediction for the different methods for stiffness ratios up
to 20. Due to the fact that it is not possible to compare the behavior over different stiffness
ratios by plotting the surfaces above each other, in Figure 1.38 the resulting effective entryC∗

11

normalized byCM,11 over the stiffness ratio of inclusion and matrix material isshown. As can
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Figure 1.34: Prediction of effec-
tive Young’s modulusE∗ of double-
inclusion method for different concen-
trationsc and stiffness ratiosEI/EM for
hexagonal inclusions
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Figure 1.35: Prediction of effective
Young’s modulusE∗ of ESCS method
for different concentrationsc and stiff-
ness ratiosEI/EM for hexagonal inclu-
sions
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Figure 1.36: Prediction of effective
Young’s modulusE∗ of RMTM method
for different concentrationsc and stiff-
ness ratiosEI/EM for hexagonal inclu-
sions
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Figure 1.37: Prediction of effective
Young’s modulusE∗ of Mori-Tanaka
estimate for different concentrationsc
and stiffness ratiosEI/EM for circular
inclusions

be seen from the surface plots, the behavior of the homogenization methods over different stiff-
ness ratios is changed for different concentrations of the inclusion volume fractionc, however,
the general behavior remains the same. The Voigt estimate shows a linear dependence of the
effective elastic modulus with respect to the volume fraction of the inclusion representing an
upper bound as mentioned before. The Reuss estimate is the lower bound which only shows an
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Figure 1.38: Prediction of effective Young’s
modulusC∗

11 with different homogenization
methods for different stiffness ratiosEI/EM

for c = 0.4 for hexagonal inclusions.

increase of the effective elastic modulus in the end. Afore it remains at a nearly constant level.
The same behavior can be observed for the upper and lower Hashin-Shtrikman bounds only at
a higher or lower level, respectively. As mentioned previously the results for the IDD method
and the Mori-Tanaka method coincide with the lower Hashin-Shtrikman bound. The interpola-
tive double inclusion model shows a behavior between the lower and upper Hashin-Shtrikman
bounds. In the beginning the IDIM shows a similar behavior asthe lower HS bound but with
increasing volume fraction the behavior of the upper HS bound has an increasing influence on
the behavior. It can be seen that the ESCS has a very unstable behavior which depends strongly
on the stiffness ratio. By comparing the results from RMTM for hexagonal inclusions with the
results from the MT scheme for circular inclusions the general behavior is similar, however, the
values are in certain regions of the volume fraction and the stiffness ratio quite different.

As can be seen by interpretation of these surface plots and Figure 1.38, the stiffness ratio
has an immense effect on the effective properties, especially at high volume fractions of inclu-
sion. The gradient in the effective stiffness componentC∗

11 between different stiffness ratios is
decreasing with increasing volume fraction, however, the range over the stiffness ratio where a
gradient is existent is increasing with increasing volume fraction. E.g., the RMTM shows for
c = 0.4 nearly no gradient after a stiffness ratio of five but for smaller stiffness ratios a quite
high gradient. Forc = 0.8 this gradient is very small between the single ratios but still existent
until high ratios. As Figure 1.38 shows, the different homogenization methods behave very
differently over different stiffness ratios which is also visible in the surface plots.

Therefore the homogenization methods should also be checked for their behavior for differ-
ent stiffness ratios, as done here, instead of solely investigating their behavior at different vol-
ume fractions. It was shown that the IDD method coincides with the Mori-Tanaka estimate for
all investigated inclusion shapes if the material is isotropic. Anisotropic material behavior will
be investigated in future work. The ESCS shows no sensible results in this study and therefore
will not be considered further. However, it has to be reconsidered in how far the IDD method is
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valid due to the fact that this method is derived from the ESCS. The analytical solution for the
Eshelby tensor is quite simple to evaluate due to its explicit form and shows quite good results
for the triangular and square shaped inclusion, however, for the hexagonal inclusion the predic-
tion was wrong. It is to be expected that the results for non-convex shaped inclusions would
lead to larger errors as seen for the convex hexagonal inclusion. This implies that the analytical
solution for the Eshelby tensor for non-ellipsoidal inclusions cannot directly be applied without
considering that the prediction is valid. The investigatedRMTM show a very good agreement
for the presented inclusion shapes. Only for very high volume fraction this method predicts un-
reasonable results. However, the potential of this method is promising and could be combined
with a database approach (e.g., Temizer and Wriggers, 2007;Temizer and Zohdi, 2007) to ob-
tain the elastic behavior for a distribution of different irregular shaped inclusions. In general the
homogenization schemes predicted acceptable results for non-ellipsoidal inclusions where the
RMTM gave the best prediction. Also the IDIM showed good results for triangular and square
inclusions, however, the quality depends on the validity ofthe analytic approximated Eshelby
tensor.

1.5.4 Distribution of shapes

In this section the effective elasticity tensor for a distribution of inclusion shapes is calculated
with the previously compared methods. Further these results are compared with results obtained
from a discretized exemplary microstructure. It is assumedthat the analyzed microstructure can
be representatively described via the previously three analyzed shapes. The amount of each
inclusion shape is anticipated due to the fact that we do not have a software which can do this
automatically. Therefore the following shape distribution is assumed:chex = 0.4, ctri = 0.19

andcsquare = 0.18. Figure 1.39 shows the corresponding results. It can be seenthat the RMTM
method predicts the same values for higher stiffness ratiosas the IDD method with analytical
Eshelby tensor. However, both do not predict the correct behavior of the microstructure. The

C
∗ 1
1
/C

M
,1

1
[−

]

EI/EM [-]

Voigt
Reuss
MT
IDD
RMTM
RMS

0

2

4

6

8

10

12

14

0 5 10 15 20

Figure 1.39: Prediction of effective Young’s
modulusC∗

11 with different homogenization
methods for different stiffness ratiosEI/EM

for chex = 0.4, ctri = 0.19 andcsquare = 0.18.
(RMS = real microstructure)
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main reason for this is that the three shapes are not sufficient and also the orientation of the in-
clusion has to be taken into consideration. With a detailed characterization it would be possible
to determine this information, however, a lot of work has to be done which results in the fact
that it is ”cheaper” to discretize directly the microstructure.

In Figure 1.40 another comparison for a distribution with lower volume fraction is shown.
The presented FEM results are obtained from an ideal microstructure where the inclusions are
randomly distributed. As it can be seen the RMTM predicts best the FEM results for all stiffness
ratios. Also the MT and IDD method with analytical Eshelby tensor predict the FEM results
more accurately compared to the results with the classic MT scheme for circular inclusions.
Generally this shows that also the effective properties fora distribution of irregular inclusion
shapes can be calculated via RMTM and also with the homogenization methods which use an
analytical expression of the Eshelby tensor for each irregular inclusion.

1.6 Summary and outlook

In this paper, a number of standard homogenization methods are reviewed and their behavior is
compared. The comparison was performed with regard to the inclusion volume fraction, which
can usually be found in the literature, but also regarding the contrast in the elastic constituents.
It was shown that the contrast has a significant influence on the estimates of these methods
and therefore has to be taken into consideration. Results obtained from FEM were compared
with these predictions. It was shown that especially the IDIM agrees quite well with the FEM
results. Furthermore two relatively new approaches, the ESCS and IDD method, were recalled
and compared to the classical homogenization results. The results obtained show that a further
analysis of the IDD method especially in comparison to the Mori-Tanaka estimate, is reasonable
due to its formulation. The IDD estimate has an explicit structure, with a physical explanation
of the involved components and it is valid for multiphase composites. It also takes into account
the influence of the interaction between inclusions and their surrounding matrix. Formally
the method has a universally applicable form to various inclusion distributions. Therefore this
method fulfills the main requirements on homogenization methods as mentioned before.

Further three strategies have been evaluated to determine the effective properties of elastic
media with irregular shaped inclusions. An analytical procedure for determining the Eshelby
tensor based on the irreducible decomposition of the Eshelby tensor (Zheng et al., 2006) was
implemented and used in classical homogenization schemes and compared with results obtained
via the Mori-Tanaka method with replacement tensor approach. This method is based on the
computation of the contribution of a dilute volume fractionof one inclusion into an infinite
matrix material. These comparisons were carried out for three different irregular shaped inclu-
sions. Further these methods were also applied to a distribution of different irregular inclusion
shapes and the results were compared with a discretized realmicrostructure and a discretized
ideal microstructure. All investigations were not limitedto the volume fraction but rather to
different stiffness ratios between matrix and inclusion which has an immense influence on the
results of the homogenization schemes.

It was shown that the IDD method coincides with the Mori-Tanaka estimate for all investi-
gated inclusion shapes if the material is isotropic. Anisotropic material behavior will be inves-
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tigated in future work and it will be checked if a case can be obtained in which both methods do
not agree. Due to the structure of the IDD method, with a physical explanation of the involved
components, this method will be considered in further work.The ESCS shows no sensible
results in this study and therefore can not be recommended infurther studies. This study has
shown that the RMTM gives the best prediction of the effective properties as long as the volume
fractions do not reach values of80% or higher. However, the evaluation is quite time consum-
ing. In our opinion this could be decreased by using this method in combination with a database
approach which would make the method really applicable to distribution of inclusion shapes.
Also the homogenization methods using an analytical expression for the Eshelby tensor show
for most inclusion shapes good results. Also for a combination of different inclusion shapes
these method show acceptable results. However, for every shape it has to be checked if the
solution is valid or not.

A procedure for discretizing a real micrograph was presented and the results were compared
with the previous mentioned method. It was not possible to determine the exact distribution of
shapes and therefore the results of the comparison were rather poor. To determine the elastic
properties of a real microstructure it is recommended to usea discretization instead of using
another method. For ideal microstructures these homogenization methods show valid results.





Chapter 2

Homogenization modeling of two-phase composites
with a layered microstructure

Abstract– The purpose of this chapter is to introduce a homogenization method for the mate-
rial behavior of two-phase composites characterized by a thin-layer-type microstructure. Such
microstructures can be found for example in thermally-sprayed coating materials like WC/Fe
in which the phase morphology takes the form of interpenetrating layers. The basic idea here is
to idealize the thin-layered microstructure as a first-order laminate. Comparison of the methods
with existing homogenization schemes as well as with the reference finite-element model for
idealized composites demonstrates the advantage of the current approach for such microstruc-
tures. For completeness, the current method is also appliedto the classical case of two-phase
microstructure with spherical inclusions, which demonstrates clearly the limits of the approach.
Further a first extension to a variable interface orientation is presented.

2.1 Introduction

The modeling of the material behavior of composites is generally based on a model for the be-
havior of each constituent or phase of the composite together with one for the interaction of the
phases. Traditionally, highly-idealized analytical and semi-analytical models were developed
for this purpose with the help of volume-averaging or homogenization methods (e.g., Reuss,
Voigt, Hashin-Shriktmann, and so on (see Nemat-Nasser and Hori, 1999), and are limited to
linear thermoelasticity. More recently, methods for this purpose based on the assumption of
scale-separation and the concept of representative volumeelement (RVE) have been developed
and applied (e.g., the Mori-Tanaka method (e.g., Benveniste, 1987), the double inclusion model
(e.g., Pierard et al., 2004), Interaction Direct Derivative (IDD) method (Du and Zheng, 2002;
Zheng and Du, 2001), or self-consistent schemes such as Molinari et al. (1987) or Mercier and
Molinari (2009), for a further overview and details see Gross and Seelig (2001); Nemat-Nasser
and Hori (1993, 1999). Generally-speaking, these latter methods consist of two steps. In the first
step, a local problem for a single inclusion is solved in order to obtain a model for the material
behavior at the RVE-level. The prototype here is the approach of Eshelby (1957) for the case
of an ellipsoidal elastic inclusion in an infinite matrix. The second step consists of averaging
the RVE-fields to obtain those for the composite as a whole (e.g., Mercier and Molinari, 2009).
As before, the focus here has been on linear thermoelasticity, also in order to exploit linearity
in the mathematical formulation. By analogy, extensions ofthese methods to the inelastic case
are generally based on linearized incremental formulations (e.g., Ponte Castaneda and Suquet,
1998) pertaining mainly to metal inelasticity. As discussed by, e.g., Molinari et al. (1997), many
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of these neglect the interactions between the phases, something which results in too stiff behav-
ior. Because of this, more recent models take phase interaction into account in some fashion
(e.g., Lebensohn and Tome, 1993; Molinari et al., 1987). As in the classical case of Eshelby,
many of these are based on particular assumptions about the morphology of the microstructural
phases. This leads sometimes to limited use of the presentedmethods. If the size of the RVE is
very small, size effects can occur, which are not accounted for at the macroscale. Furthermore,
large spatial gradients at the macro-scale cannot be resolved by these methods and they are in
general restricted to standard continuum mechanics theory. Full extension to second-order to
incorporate size-effects of the underlying microstructure can be found by several authors (e.g.,
Geers et al., 2010; Jänicke et al., 2009; Kouznetsova et al., 2004). Describing local deformation
state of microstructured materials by extended continuum theories is done (, e.g., Forest, 2008;
Jänicke et al., 2009). In other cases, e.g., in Böhlke et al. (2008) texture related microstructural
effects are accounted for by using orientation distribution functions and texture coefficients to
predict the resulting anisotropy in sheet metals and the path-dependent mechanical properties.

The purpose of the current work is to introduce a homogenization approach for two-phase
composites whose microstructure is characterized by beinglayer- or lamellar-like. Such mi-
crostructures are present for example in thermally-sprayed coatings. The layered phase mor-
phology arising here is determined among other things by thenature of the manufacturing pro-
cess. The current homogenization strategy is based on the idealization of such microstructure
as first-order laminate (e.g., Silhavy (1997)). Although well-known as a model for the transfor-
mation interface between, e.g., austenite and martensite in the realm of phase transformations
(e.g., Kouznetsova et al., 2009), its application in the current context of structural two-phase
composites is novel.

The paper begins in section 2.2 with a brief summary of the viscoplastic material model
for each phase of the two-phase composite under consideration. For comparison with the cur-
rent approach, existing homogenization methods, in particular that based on the assumption of
phase-wise constant plastic strain, are briefly reviewed insection 2.3. The current approach as
based on first-order laminate theory is introduced in section 2.4. After investigating the behavior
of this model with the help of simple deformation cases in section 2.5, a comparison of results
from the laminate model with analogous ones from selected existing homogenization models
(e.g., Taylor, phase-wise constant plastic deformation) is given in section 2.6 together with cor-
responding FE results for layered composites. As discussedfor example in Pierard et al. (2007),
most of the available results for viscoplastic composites focus on composites containing spher-
ical particles which are periodically distributed within the matrix. To demonstrate the limits of
the current approach, it is applied as well to this case, i.e., the “canonical” case of a two-phase
composite with spherical inclusions. Followed by a discussion of a variable interface direction
in section 2.7. The work ends (section 2.8) with a summary andconclusions. For simplicity,
the current work is restricted to small deformation. In workin progress, the method is being
extended to large deformation.
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2.2 Material model

In the current work, material models are formulated in the context of continuum thermodynam-
ics. In this context, the material behavior is related to energetic and dissipative processes. As
usual, the energetic part is determined by the free energy density ψ. For simplicity, attention
is restricted here to quasi-static conditions and metallicmaterials exhibiting small deformation
and Voce (i.e., saturation) isotropic hardening. In this case, the additive form

ψ(EE, αP) =
1

2
EE · CEEE + sH

{

αP +
1

cH

(

e−c
H

α
P − 1

)

}

(2.1)

of ψ into elastic and hardening contributions, respectively, is assumed. In particular, the former
depends on the elastic strain

EE = E − EP , (2.2)

corresponding inelastic strainEP, and total (small) strainE = sym(F − I ), with F the
deformation gradient. Here,sym(A) := 1

2
(A + AT), represents the symmetric part of any

second-order tensorA. The evolution ofEP depends on that of the accumulated equivalent
inelastic deformationαP, as shown in (2.6) below. Material properties here include the elastic
stiffness tensorCE, the differencesH between the initial and saturated values of the yield stress,
and the ratecH of hardening saturation. As usual, the free energy determines in particular the
stress

T = ∂
E

E
ψ . (2.3)

Assuming dislocation glide as the dominant mechanism of inelastic deformation, the inelastic
behavior is determined by an inelastic potentialφP modeled by the simple viscoplastic form

φP(ςP) = σD α̇r

{

exp

(〈ςP − σA〉+
σD

)

− 〈ςP − σA〉+
σD

}

(2.4)

for the activation of dislocation motion and inelastic deformation. Here,〈f〉+ := 1
2
(f + |f |)

represents the ramp function. In particular, this potential determines the flow rule

α̇P = ∂〈ς
P
−σ

A
〉+
φP (2.5)

for αP. Here,σA is the initial activation (yield) stress,σD represents the drag stress, andα̇r

is the characteristic deformation rate associated with dislocation motion. In addition,ςP =

σvM − ∂α
P
ψ is the thermodynamic conjugate toαP for the current model, whereσvM(T ) =

√

3 dev(T ) · dev(T )/2 represents the von Mises equivalent stress measure. Here,dev(A) :=

A − 1
3
tr(A) I represents the deviatoric part, andtr(A) the trace, of any second-order tensor

A. The evolution ofEP is assumed to be activated by that ofαP. Consider in this regard the
constitutive relation

ĖP = α̇P NP (2.6)

for the evolution ofEP quasi-linear inα̇P, with NP = ∂
T
σvM(T ) the flow direction. Here we

have assumed that the deformation is small enough so that no significant grain rotation and no
texture development takes place.
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For simplicity, the inelastic homogenization models to be considered in what follows are
based on the following explicit algorithm. This is formulated on an arbitrary time interval
[tn, tn+1] of durationtn+1,n := tn+1 − tn. The algorithm begins with the forward-Euler update

αP n+1,n =















0 ςP n 6 σA

tn+1,n α̇r

{

exp

(

ςP n − σA

σD

)

− 1

}

ςP n > σA

(2.7)

for αP from (2.5), withαP n+1,n := αP n+1 − αP n. In turn, this induces the update

EEn+1 = En+1 − EP n+1 = En+1 − EPn − αP n+1,n NPn (2.8)

of the elastic strain, and so that

Tn+1 = CE[EE n+1] (2.9)

of the stress. Consequently, the history variables for eachphase includeαP andEP here.

The above model contains the material propertiesCE, sH, cH, σA, σD, andα̇r, which are to
be specified for each phase in what follows. This completes the short summary of the material
model for each phase. Now we turn to the homogenization schemes of interest in this work.

2.3 Model based on phase-wise constant plastic strain

The homogenization approaches to be discussed in what follows are all based as usual on the
assumption of scale separation, which lies at the heart of the RVE concept. From the numerical
point of view, this facilitates the restriction of microstructural effects on the material behavior
to the integration-point level of a corresponding finite-element simulation. In the current purely
mechanical incremental inelastic context, this involves as usual the specification of deformation
gradientsFn andFn+1 at the beginning (t = tn) and end (t = tn+1) of the current time interval
[tn, tn+1], as well as the valuesαP n andEP n of the internal variables at the beginning of this
interval. In this case, the total strainEn = sym(Fn − I) andEn+1 = sym(Fn+1 − I) at the
beginning and end of this interval, respectively, are specified.

The assumption of phase-wise constant plastic strain is a special case of the so-called Trans-
formation Field Analysis (TFA) proposed by Dvorak (1992). TFA offers an interesting way
of reducing the number of macroscopic internal variables byassuming that phase fields are
phase-wise constant. In particular, this assumption is reasonable for microstructures consisting
of plastically-homogeneous domains. In general, however,it results in a model for the effective
behavior of the composite which is too stiff. Indeed, this method prohibits the localization of
inelastic deformation at phase boundaries as a means of stress relaxation, resulting in unrealis-
tic stress concentration there and generally higher stresses. On the other hand, in special cases,
e.g., the current one of thin layer-like composites, the relative uniformity of the stress and strain
fields almost everywhere may minimize this error and lead to reasonable results.

To begin, consider an elastic problem with the same boundaryconditions as the inelastic



2.3 Model based on phase-wise constant plastic strain 35

case. The kinematically allowable fields are given by

u(x) = E0 x ,

Ẽ(x) = A(x) E0 ,

〈Ẽ〉 = E0 .

(2.10)

Here,Ẽ(x) is the strain field of the elastic problem with uniform displacement boundary con-
dition u, and〈f 〉 represents the volume average off . Further,E0 is the applied strain at the
boundary, andA represents the influence tensor whose form is determined by solution of the
boundary value problem (e.g., Gross and Seelig, 2001). Scalar multiplication of the stress-strain
relationT = CE[E − EP] from (2.2) and (2.3) in terms ofEP with Ẽ and averaging yields

〈T · Ẽ〉 = 〈(ATCE)Ẽ〉 · E0 − 〈(ATCE)EP〉 · E0 ,

= CE∗[〈Ẽ〉 − ĒP] · E0 ,
(2.11)

where
CE ∗〈Ẽ〉 := 〈(ATCE)Ẽ〉 (2.12)

“defines” the effective elasticity tensorCE ∗ of the composite, and

ĒP := C−1
E ∗〈(ATCE)EP〉 (2.13)

represents the effective inelastic strain tensor. In particular, for the current case of a two-phase
material with constant plastic deformation in every phase,i.e.,

〈EP〉 =







EP 1 in P1

EP 2 in P2

(2.14)

one obtains
ĒP = C−1

E ∗

∑2

ω=1
λω (AT

ωCE ω)EP ω (2.15)

for this tensor in terms of the phase properties and the volume fractionλ1 ≡ λ of phase 1 and
λ2 ≡ 1 − λ1 of phase 2 in the composite. Via the Hill-Mandel condition〈T · Ẽ〉 = 〈T 〉 · 〈Ẽ〉
= 〈T 〉 · E0, the arbitrariness ofE0 in (2.11) then implies

〈T 〉 = CE ∗[〈Ẽ〉 − ĒP] (2.16)

for the effective stress-strain relation of the inelastic composite. Identifying then the composite
(mixture) stressT with 〈T 〉, the composite (mixture) strainE with 〈Ẽ〉, and the composite
(mixture) inelastic strainEP with ĒP, the form

T = CE ∗[E − EP] (2.17)

follows for the effective stress of the composite dependingon the effective elasticity tensorCE ∗.

Consider next the relations
E =

∑2

ω=1
λω Eω (2.18)
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and

T =
∑2

ω=1
λω Tω =

∑2

ω=1
λω CE ω[Eω − EPω] (2.19)

for the mixture strain and stress, respectively, the lattervia (2.3). Enforcing equality between
(2.17) and (2.19) then results in the algorithmic system

R
E

=
∑2

ω=1
λω Eω − E ,

R
T

=
∑2

ω=1
λω CE ω[Eω − EPω] − CE ∗[E − EP]

(2.20)

to solve for theE1 andE2. Given or known here are the total strainE , the volume fractions
λ1 andλ2, as well as the material propertiesCE 1 andCE 2 of each phase. As discussed above,
the effective composite elasticity tensorCE ∗ is determined via analytical solution of the cor-
responding elastic homogenization problem using for example the Mori-Tanaka method (e.g.,
Nemat-Nasser and Hori (1999)).

Algorithmically the solution is obtained as follows. For the current time stepEn andEn+1

are known. The constant plastic strainsEtr
P 1 andEtr

P 2 are calculated via trial values forEtr
1n+1

andEtr
2 n+1. Etr

P can be found with (2.15). With help of the Newton-Raphson algorithm, the
algorithmic system (2.20) can be solved





∂E1
R

E
∂E2

R
E

∂E1
R

T
∂E2

R
T





(k)

n+1





E
(k+1)
1 − E

(k)
1

E
(k+1)
2 − E

(k)
2





n+1

= −





R
E

R
T





(k)

n+1

(2.21)

for E
(k+1)
1 n+1 andE

(k+1)
2 n+1 , which are used to calculate the newE

(k+1)
P n+1, E

(k+1)
P 1 n+1 andE

(k+1)
P2 n+1. This

algorithmic system is iteratively solved until|R
E
| and|R

T
| are smaller than10−9. Using the

converged results, one can then calculate

Tω n+1 = CE ω[Eω − EP ω] (2.22)

and the total stress via (2.19). The corresponding stress tangent

∂En+1
Tn+1 =

∑2

ω=1
λω ∂En+1

Tω n+1 (2.23)

results from a simple mixture of the stress tangents of the single materials. Note that the iterative
solution is particularly efficient in this case due to the fact that the plastic strain is constant.

2.4 Laminate model

As discussed in the introduction, layer or laminate-like microstructures arise in technological
processes such as thermal spray coating. Both from this point of view, and as an alternative
means to model the interaction of the phases in a composite with the corresponding morphology,
it is interesting to formulate the corresponding homogenization model and compare it with
selected existing ones for the inelastic case. For simplicity, attention is restricted here as in the
previous section to the case of small deformation. For the case of micron-thick thermal spray
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coatings, for example, this assumption is certainly reasonable. In this case, the kinematics of
the two-phase system is determined by the mixture relation

F = λF1 + (1 − λ) F2 = F2 + λ [[F ]] (2.24)

for the deformation gradientF , where[[f ]] = f1 − f2 represents the ”jump” off across the
phase interface. In particular, in the laminate context (e.g. Silhavy, 1997), the jump[[F ]] in de-
formation state across the phase interface is modeled constitutively via the rank-one connection

[[F ]] = h ⊗ m (2.25)

determined by the interface deformation vectorh and interface unit normalm. In this case,
note thath = [[F ]]m and[[F ]] (I−m⊗m) = 0 hold at the interface. Solving (2.24) and (2.25)
for Hi = Fi − I, i = 1, 2, we obtain

H1(H , λ,h,m) = H + (1 − λ) h ⊗ m ,

H2(H , λ,h,m) = H − λ h ⊗ m .
(2.26)

In turn, these yield the corresponding strains

E1(E , λ,h,m) = E + (1 − λ) sym(h ⊗ m) ,

E2(E , λ,h,m) = E − λ sym(h ⊗ m) ,
(2.27)

as functions of the mixture strainE , the volume fractionλ of phase 1, and the interface proper-
tiesh andm. Like the deformation and strain, the free energy density ofthe mixture is modeled
as a volume-fraction-weighted convex combination

ψ(E , λ,h,m,EP1, αP1,EP2, αP 2)

= λ ψ(E1(E , λ,h,m)− EP 1, αP 1)

+ (1 − λ)ψ(E2(E , λ,h,m)− EP2, αP2)

(2.28)

of the corresponding phase quantities, withψ given by (2.1). In this case, we neglect any
additional possible contributions, e.g., coming from the interface itself. In these relations, the
total strainE is given, and the phase quantitiesEP1,2 andαP 1,2 are determined by the evolution-
constitutive relations (2.5) and (2.6), respectively. This leavesλ, h andm as independent
constitutive variables in the model yet to be determined. Inparticular, sinceλ is basically
determined by the technological process and known, we modelit as constant here. In addition,
we begin by assuming that the orientationm of the laminate interface is fixed and parallel to
the thickness direction of the coating / composite. To determineh, we assume that it is purely
energetic in nature and require its value to satisfy mechanical equilibrium

0 = ∂
h
ψ = λ (1 − λ)[[T ]]m (2.29)

at the interface (λ 6= 0). This yields an implicit equation forh.
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On this basis, we can use the following algorithm to solve themodel relations formulated
as follows. As already stated above, for the current time-step, En = sym(Fn+1 − I) and
En+1 = sym(Fn+1 −I) are known. In addition,hn, EP1 n, αP 1 n, EP2 n, andαP 2 n are known.
From the explicit update of the inelastic phase variables outlined in section 2.2, we then have
αP ω n+1 andEPω n+1. Using these, one can then calculate

EEω n+1(h) = Eω n+1(En+1,h) − Eω
Pn+1 ,

Tω n+1(h) = CE ωEEω n+1(h) ,
(2.30)

and so solve (2.29) forhn+1. A convergence study for the number of iteration steps for the
solution ofh was carried out. The exact solution was defined for a deviation of 10−12 between
hn+1 andhn. It was found that after one iteration step the deviation between this value and the
exact solution is less than 0.1%. Therefore only one iteration step is necessary. Givenhn+1

and the corresponding current phase stressesT1 n+1 andT2 n+1, (2.19) determines the current
composite stress, and

∂a
E

n+1
Tn+1 = λ ∂a

E
n+1

T1 n+1 + (1 − λ) ∂a
E

n+1
T2 n+1

= λ {∂
E

n+1
T1 n+1 + (∂

h
n+1

T1 n+1)(∂
a
E

n+1
hn+1)}

+ (1 − λ) {∂
E

n+1
T2 n+1 + (∂

h
n+1

T2 n+1)(∂
a
E

n+1
hn+1)} ,

(2.31)

the corresponding stress tangent.

2.5 Model behavior

To apply the laminate model to a given microstructure, the volume fractionλ of phase 1 and
normal directionm, which are considered fixed and known here in the case of manufactured
composites, have to be chosen. In general, these could be chosen arbitrarily. On the other hand,
in the case of thin coatings, the layered microstructure hasa normal direction approximately
parallel to the thickness direction of the coating, as shownin Figure 2.1. As discussed in section
2.2, we investigate the laminate model for a composite consisting of isotropic, thermoelastic,
viscoplastic phases, one being soft and the other hard. Thisis roughly analogous to the case of
WC-FeCSiMn coatings shown in Figure 2.1. The parameter values chosen for the two phases
are given in Table 2.1. In addition,α̇r is fixed at10−3 s−1, corresponding to quasi-static loading

material E [GPa] ν [-] σA [MPa] sH [MPa] cH [-]

soft 210 0.3 130 240 10

hard 430 0.19 2000 0 0

Table 2.1: Material properties of the two phases in the modelmicrostructure.σD = 100MPa
andα̇r = 0.001s−1 are for both phases the same.

conditions.
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Figure 2.1: Example of a layered microstructure in an arc sprayed WC-FeCSiMn coating which
has been thermally sprayed at 700 K onto a steel (Ck45) substrate at room temperature. The
original micrograph was processed by an image processing software (Klusemann et al., 2009b).
Green and white regions represent Fe- and WC-based alloys, respectively; blue regions signify
pores. Note that the normal direction to the interface between layers is on average more or less
parallel to the thickness direction of the coating, which corresponds to the vertical direction in
the figure.

Realistically speaking, we should model a hard ceramic phase like WC as thermoelastic and
brittle. For simplicity, however, we restrict attention toa model microstructure in which the
hard phase is modeled as being thermoelastic and ideal viscoplastic. In particular, for lack of
more specific information, the value ofσA for the hard phase was set equal to the maximum
strength of WC/Co at low cobalt content (e.g., Han and Jr, 1990; Okamoto et al., 2005).

Consider next the behavior of the model for this microstructure with the help of the follow-
ing four deformation conditions: (i)F33-extension parallel to the layers, (ii)F11-compression
parallel tom, (iii) F21-shear parallel to the layers, and (iv)F23-shear of both phases parallel
to the interface. These are shown schematically in Figure 2.2. Below, we will investigate the
stress-strain response of the composite subject to these four deformation conditions predicted
by different homogenization methods, including the current laminate-based one. Before doing
this, we first investigate the behavior of the laminate modelusing single-element calculations.
To this end, uniform displacement boundary conditions are applied to one face in the normal
direction while the three other faces are fixed in their respective normal directions.

We begin with cases (i) and (ii), i.e.,F33-extension parallel to the layers, andF11-compression
parallel tom, respectively. The corresponding results are shown in Figure 2.3. As shown here,
the soft phase (solid squares) is almost immediately inelastic, whereas the hard phase (solid
circles) has a more pronounced elastic range. Note that the elastic-inelastic transition forF33-
extension takes place in the composite almost at the same deformation state as in the hard
phase alone, numerically 4% later. On the other hand, this transition is displaced to more than
15% larger deformation in theF11-compression case. As deformation proceeds in the inelastic
range, the stress-strain response of the composite for these two cases converges. Mechanical
equilibrium requires the normal traction at the interface to be continuous. Because of this, the
elastic and inelastic strengthening effect of the hard phase is slightly more pronounced in the
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phase 1

phase 2
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Figure 2.2: Deformation conditions for investigation of the composite behavior.
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Figure 2.3: Von Mises stressσvM in the com-
posite subject to different normal deformation
conditions as a function ofF11(compression)
or F33 (extension) for soft-phase volume frac-
tion of λ = 0.5. Also shown for comparison is
the behavior of the pure hard (solid circles) and
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Figure 2.4: Relative normal deforma-
tion h · m across the interface forF11-
compression andF33-extension atλ = 0.5.

F11-compression perpendicular to the interface than inF33-extension parallel to the interface.

Consider next the development of the normal(h · m) m component ofh at the interface
during extension and compression deformation as shown in Figure 2.4. Relative to the coordi-
nate system in Figure 2.2, note thath ·m = [[F11]] holds. In addition, note that[[F22]] = −[[F33]]

follows from continuity of the tangential deformation state at the interface. Consequently, as
exhibited in Figure 2.4,h · m is much larger inF11- than inF33-compression. After transition
to the inelastic regime,h · m decreases slightly due to hardening in the soft phase.

The behavior in the case of shear is different than for extension-compression. In particular,
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for theF23-shear case, the results seem to be quite similar to those observed in the extension-
compression case. In this case, the interface lies in the shear plane, and both phases are loaded
equally. Because of this, the resulting behavior is quite similar to the behavior of the Taylor
model (Taylor, 1938). On the other hand, inF21-shear case, the laminate model shows com-
pletely different behavior. As shown in Figure 2.5,F21-shear is dominated by the behavior of
the soft phase. The stress-strain curve of the composite is nearly coincident with the curve for
the soft material. This result is quite similar to the behavior of the Sachs model (Sachs, 1928).
This behavior can be understood schematically as shown in Figure 2.6.

σ
v
M

[G
P

a]

000

0.5

1

1.5

2.5

2

0.10.1 0.20.2
F21, F23

soft
hard
F23-shear
F21-shear

Figure 2.5: Von Mises stressσvM in the
composite subject to different shear defor-
mation conditions as a function of strain
in the form of displacementu divided by
length l for soft-phase volume fraction of
λ = 0.5. See text for details.
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Figure 2.6: Schematic behavior of laminate
model for shear parallel to the laminate, e.g.,
for F21-shear.

Figure 2.7: FE-model for laminate with ap-
plied loading cases.

The externally applied strain leads to large deformation ofthe softer phase while the hard
phase undergoes only small deformation due to a nearly-uniform stress distribution. Before
comparing different homogenization approaches below, a verification of the laminate model
will be carried out with the help of the FE-model shown in Figure 2.7. The FE model consists
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of layers of hexahedral finite elements of the type C3D8 with 8integration points where the
different layers are tied together. To verify that the response of the structural model is not
influenced by boundary effects the comparison between both models is done on the structural
model. In this regard, the results for the laminate model areobtained from the structural model
by applying the same material parameters in both layers. Thefinite material model used for the
structural laminate model can be seen in section 2.2.

In contrast to the single element test, displacement boundary conditions are applied in such
a fashion that material flow which would otherwise lead to formation of bulges at the faces
is prevented. This reflects that in a real compression experiment, e.g. formation of a bulge
due to material flow would be prevented for interior regions by surrounded material. Therefore
the faces of the different layers are coupled for every side via coupling equations for example
in order to couple the displacement into 1-direction on the side with their normal parallel to
1-direction the following equation hold

ul1
1 − uRP1

= 0

ul2
1 − uRP1

= 0
(2.32)

whereul1
1 describes the displacement of layer 1(l1) andul1

1 the displacement of layer 2(l2)
into 1-direction as shown in Figure 2.8.RP1 describes a reference point which facilitates a

uRP1
RP1

ul1
1

ul2
1layer 2 (l2)

layer 1 (l1)

1
2

Figure 2.8: Applied boundary conditions
and coupling conditions for one-element
case.
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Figure 2.9: Comparison between the FE
model and the laminate model forλ = 0.5.
Both models show the same behavior un-
der the applied loads.

displacement in the 1-direction equal at the faces of layer 1and layer 2 on the corresponding
side. These boundary conditions guarantee that the deformation conditions considered lead to
homogeneous deformation in every phase. Figure 2.9 shows the resulting stress-strain curves
for the FE-model and homogenized laminate model. It can be seen that their behavior agrees
quite well, i.e., in the case of homogeneous deformation.

Consider next inhomogeneous conditions. These are relevant for example to the technolog-
ical case of compaction of the coating via incremental forming methods. Related to this is the
material testing of such coatings with the help of indentor tests. Consequently, consider the in-
dentation of the coating using a spherical indentor. Since we expect ideal RVE-related boundary
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conditions being employed in this work not to be completely correct in this case, the relation of
the microstructural size to the indentor radius is examinedhere. In particular, we examine the
dependence of the results on the ratiow/r of the widthw of the structure to the radiusr of the
indentor. As this ratio increases, the boundaries are farther away from the region of loading.
Consequently, the difference in the stresses predicted by the homogenization model and the FE
model should decrease as this ratio increases.

The results of the indenter test are shown in Figure 2.10. It is clear that the stress distribution

Figure 2.10: Comparison of von Mises stress distribution inthe structure predicted by the FE
model (above) and by the laminate model (below) forw/r = 2 (left) andw/r = 10 (right).
Although more inhomogeneous in the FE-case, the stress distribution in both cases is quite
similar. As shown, with increasingw/r, better agreement is obtained (red impliesσvM ≥ 1000
MPa).

is more homogeneous for the homogenized laminate model due to the fact that in the FE-model
there is a sharp transition at the interface between the layers due to the contrast in material
properties. In addition, the results as a function ofw/r clearly show the decrease of boundary
effects (especially near the indentor at the top) on the vertical stress distribution. As shown and
as expected, the agreement improves the boundary influence decreases, i.e., asw/r increases.
Except for the differences due to such boundary effects, then, we are justified in concluding
that the laminate homogenization model is a reasonable “mean-field” approximation to the FE
model results.

2.6 Comparison with other homogenization approaches

In this section, the current laminate-based homogenization model is compared to standard ho-
mogenization assumptions like Taylor, as well as to that of phase-wise constant plastic deforma-
tion (EPc) considered in section 2.3. All of these are compared with the laminate model. These
comparisons are carried out both for the thin-coating- or thin-film-like layered microstructure
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considered in the previous sections. These are carried out for the loading conditions shown in
Figure 2.2. In addition, for completeness, we carry out thiscomparison for the “standard” ho-
mogenization case of a metal-matrix composite with spherical inclusions. As one might expect,
the laminate model performs poorly in the latter context.

To begin, consider first the compression and extension of thethin-coating-like layered mi-
crostruture from Figure 2.7. Figure 2.11 shows the stress-strain curves for the different homog-
enization methods. In the elastic range, the Taylor model agrees quite well with the laminate
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Figure 2.11: Comparison of stress-strain be-
havior predicted by different homogeniza-
tion approaches forλ = 0.5.
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Figure 2.12: Comparison of stress-strain
behavior of different homogenization mod-
els for λ = 0.6 andλ = 0.3. Different
homogeneous methods show analogous re-
sults as described in Figure 2.11.

model in the case of extension, whereas the EPc-model agreeswith the laminate model in the
case of compression. In contrast to the laminate model, the EPc model exhibits the same behav-
ior for different loading cases in the elastic range. In addition, for the chosen material parameter
combination, the Taylor and EPc models show a behavior between the extension and compres-
sion response of the laminate model in the inelastic range. In particular, the yield stress of
both models lies between the extremal values of the laminatemodel for extension and com-
pression. With increasing deformation the Taylor model response converges to the response of
the compression case of the laminate model, whereas the EPc-model response converges to the
extension case. The same behavior can also be observed for different volume fractionsλ as
shown in Figure 2.12. Clearly, model differences are magnified upon increase of the volume
fraction of the soft phase, especially in the elastic range.

The results for shear deformation are qualitatively the same as in the normal deformation
cases just considered. ForF23-shear, in which the interface lies in the shear plane, the predic-
tions of the laminate model and Taylor model correspond quite well. This is to be expected
since, in this case, both phases experience the same deformation state (see Figure 2.2). As be-
fore, for this case, the EPc model predicts softer behavior.As for the Taylor case, this is due to
the fact that the material behavior is independent of loading direction for an isotropic material.
ForF21-shear, the Taylor and EPc models predict the same behavior as before, in contrast to the
behavior of the laminate model. In this case, the Sachs modelwould give the best prediction,
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but for all other loading conditions this model is absolutely inappropriate.

In the literature (e.g., Gross and Seelig, 2001; Molinari etal., 1997), models like the EPc and
Taylor models are often shown to be too stiff. This is true forstructures with homogeneously
distributed spherical inclusions. For the inhomogeneous case, however, matters are more com-
plicated. An example of such a microstructure is consideredin Figure 2.13. As expected, the
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Figure 2.13: Distribution ofαP in an ideal composite microstruc-
ture with 30% (volume) spherical inclusions after 20% applied
strainE11.

largest deformation takes place in the matrix between the particles near these, and the deforma-
tion field is quite heterogeneous. The stress-strain behavior of this microstructure predicted by
the homogenization models under consideration is displayed in Figure 2.14 together with the
corresponding FE results. It can be seen that the homogenization methods first predict stiffer
behavior than the FE results. In the FE case, the soft phase can flow around the hard inclu-
sions, resulting in less stress concentration at the inclusion-matrix interface than predicted by
the homogenization models, which underestimate the amountof inelastic deformation near the
inclusions. This deformation in the matrix near the inclusions also results in higher strain-rates
than predicted by the laminate models and so higher stresses. With increasing deformation, this
results in a higher level of hardening being predicted by theFE model and so higher stress levels
than those predicted by the homogenization models. In any case, this comparison makes clear
that the homogenization models presented in this work are not reasonable for composites with
such microstructure.

2.7 The case of variable interface orientation

For simplicity, the phase interface orientationm has been kept fixed and oriented in the direc-
tion of the coating thickness. In reality, however, there isno reason to believe that it may not
vary locally in the coating during loading. To have a first look at the effect this might have on
the material behavior of the composite, we now allowm to vary. For simplicity, we assume to
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this end thatm is purely energetic and varies only in order to satisfy angular momentum at the
interface, i.e.,

0 = ∂
m
ψ = λ (1 − λ)[[∂

E
ψ]]Th (2.33)

vanishes there in equilibrium, yielding an implicit relation for m. This is of course subject to
the constraintm ·m = 1 which is taken into account by minimizing the associated Lagrangian
function

ℓ(EE, αP,m,h) = ψE(EE,m,h) + ψH(αP) + µ (m · m − 1) (2.34)

with Lagrange multiplierµ.

The values ofm obtained in this fashion show that the laminate interface isreorienting to
a diagonal in one plane, depending on the direction of loading as well as the initial condition.
This corresponds to a reorientation of45◦ for m0 = {1 0 0}. The corresponding stress-strain
behavior is shown in Figure 2.15 and compared to the case of fixed interface orientationm =

{1 0 0} as well as to the FE-result for spherical inclusion. Since the equilibrium value ofm
represents energetically the most favorable orientation,it results in the lowest stress levels.

On the other hand, a reorientation of45◦ of the interface for such laminates is physically
unrealistic. To prevent this, we assume that the interface has a certain stiffness in the sense
that reorientation beyond a certain degree is energetically unfavorable. To this end, we add a
corresponding penalty term to (2.34), i.e.,

ℓ(EE, αP,m,h) = ψE(EE,m,h) + ψH(αP)

+ 1
2
γ (1 − m · m0)

2 + µ (m · m − 1) ,
(2.35)

whereγ represents the interface resistance to reorientation relative to the initial orientationm0.

First results for compression are shown in Figure 2.16 for different values of the rationβ =

γ/Esoft of γ to Young’s modulusEsoft of the soft phase. The corresponding development of
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the reorientation angleα = arccos(m · m0) is displayed in Figure 2.17. For largeγ , the
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behavior of homogenization model for
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compression form0 = {1 0 0} and various
γ = β Esoft with λ = 0.7.

results agree with those for fixedm as expected. Asγ decreases and the interface becomes
more pliable, the stress level also decreases, again as expected. Consequently, a variablem
can have a significant influence on the stress level in the composite. The question arises, is the
variation ofm purely energetic in nature. More generally, one could expect inelastic / kinetic
/ dissipative processes to influence the orientation of the interface. In this case, (2.33) could be
generalized to

0 = ∂
m
ψ + ∂

ṁ
χ (2.36)

in terms of a dissipation potentialχ depending in particular on the ratėm of interface rota-
tion. Detailed analysis of results for variationalm under different loading conditions represent
ongoing research.

2.8 Discussion and conclusions

As mentioned in previous sections, in a more realistic approach, brittle failure would have to
be included in the model for the hard phase. To get a first impression how the model behaves,
a computation is done according to the loading cases in Figure 2.3. To model the behavior
of brittle failure and the resulting softening the materialparameters are chosen as displayed
in Table 2.1, but changing the parameters for the hard phase to sH = −1870MPa andcH =

100. The resulting behavior is shown in Figure 2.18. The differences for the extension and
compression load case are clearly visible. Due to the lower amount of deformation for the
hard phase in the compression case as in the extension case (see Figure 2.4) it takes more
overall deformation until the softening begins. Up to this point the soft phase was subjected
to deformation which leads to an inelastic behavior with resulting hardening. Therefore the
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differences in the effective yield stress as well as strain are higher for the two deformation cases
in contrast to ideal viscoplasticity.

In this work, we have investigated a novel application of first-order laminate theory as a
homogenization ansatz to model the inelastic behavior of thin-coating-like or thin-film-like
two-phase composites whose microstructural morphology ischaracterized by being layered or
lamellar in nature. This approach has been developed and compared with a number of exist-
ing homogenization methods as well as with a finite-element (FE) model for the microstructure.
The laminate-based homogenization model showed very good agreement with the FE model for
a number of different deformation conditions including extension, compression and shear. This
was the case both for homogeneous and inhomogeneous deformation conditions. Additional
comparisons were carried out with standard homogenizationassumptions like those of Taylor,
as well as with homogenization based on the assumption of phase-wise constant plastic strain
(EPc). These comparisons show that the Taylor model predicts the behavior for extension quite
well. On the other hand, the EPc model predicts the behavior well only for compression. The
Sachs model is not appropriate in any of these cases. In the last part of the work, the homog-
enization models are compared with the FE model for the classical homogenization problem
of a metal-matrix composite with spherical inclusions. It was shown that all homogenization
methods considered predict incorrect behavior for such a microstructure, i.e., in comparison to
the FE model.

For simplicity, the hard phase of the model microstructuresconsidered in this work was
treated as thermoelastic, ideal viscoplastic in nature, with elastic and yield properties signif-
icantly larger than those of the soft phase. It would be more realistic to model this phase as
thermoelastic and brittle. Also for simplicity, attentionhas been focused in this work on a con-
stant laminate interface normalm. In particular for more realistic lamellar-like microstructures,
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however, this will be variable within the limits of a cone around the initial orientation as first
results are shown. These generalizations of the current laminate-based approach, along with
the application of the approach to the modeling and simulation of the compaction of thermally-
sprayed coatings, represent work in progress, and will be reported on in the future.





Chapter 3

Crystal plastic modeling of the deformation
behavior of thin sheets with large grains

Abstract– The purpose of this work is the modeling and simulation of the deformation behavior
of thin sheets consisting of large grains of Fe-3%Si and comparison with experiment. To this
end, an explicit finite-element-, crystal-plasticity-based model is developed for each grain, the
grain morphology, and the thin sheet specimen as a whole. In particular, the crystal plasticity
model is rate-dependent and accounts for (local) dissipative hardening effects. The predictions
of the model are compared with experimental results of Henning and Vehoff (2005) for the
deformation behavior of thin sheets of Fe-3%Si loaded incrementally in tension. To this end,
attention is restricted to the two slip families{110} and {112}. To begin, all hardening is
neglected. Even for this oversimplified case, a good correlation with the experimental results
is obtained. This shows the importance of predicting initially active glide systems correctly.
Even better agreement is obtained with experiment when hardening is included. Finally, initial
results for the development of local orientation changes are discussed.

3.1 Introduction

The relation between microstructure, material propertiesand mechanical response is a basic
issue of research in material science and material mechanics (Groeber et al., 2007; Langer
et al., 2001). From the modeling point of view, a common concept used to account for the
effect of the microstructure on the material behavior is that of a representative volume element
(RVE). This concept is based on the assumption of scale separation between the microstructural
and macrostructural lengthscale. As the characteristic size of the microstructure (e.g., grain
size) approaches that of the system (e.g., sheet thickness), however, such scale separation is no
longer given and one must resort to other means of representing the effect of microstructural
heterogeneity on the system behavior. One possibility in this regard is based on distribution
functions (e.g., orientation distribution functions, e.g., Böhlke et al., 2009, 2010) and aver-
aging. As the macrostructural lengthscale approaches the microstructural one, the degree of
material heterogeneity increases drastically, such that the local microstructural behavior can
deviate significantly from the average macrostructural behavior (e.g., Kalidindi et al., 2003;
Pierard et al., 2007). In this case, the model has to account for the microstructural details such
orientation details of the grain structure (e.g., Raabe et al., 2001) or pore distribution (e.g.,
Wiederkehr et al., 2010).

In the extreme case, the microstructural and macrostructural lengthscales are the same or-
der of magnitude, and one must resort to numerical models of the microstructure, e.g., finite-
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element-based models. These are often constructed with thehelp of, e.g., optical and / or EBSD
data on the grain morphology. In specimens with more than onegrain over the thickness, the
common method of projecting the two-dimensional EBSD information uniformly in the third
dimension will generally lead to different behavior ( e.g.,Wiederkehr et al., 2010). If the spec-
imen is one grain thick, however, such an optical- / SEM- / EBSD-based approach should be
reasonable. For such a specimen, a number of size effects areexpected to influence its mechan-
ical properties. These effects have been known for years andare still subject of active research
(Engel and Eckstein, 2002; Fu et al., 2001; Fülöp et al., 2006). Janssen et al. (2008) reported at
least four size effects: (i) strengthening or weakening dueto constrained or free boundary layers
( e.g., Geers et al., 2006; Janssen et al., 2006), (ii) strengthening due to strain gradients ( e.g.,
Bargmann et al., 2010; Bayley et al., 2006), (iii) strengthening due to dislocation annihilation (
e.g., Greer et al., 2005), and (iv) size effects due to a lack of statistical microstructural averag-
ing ( e.g., Fülöp et al., 2006; Henning and Vehoff, 2007). In this work, the main focus is on the
fourth size effect. One cause for the occurrence of this sizeeffect is the change of number of
grains over the thickness. The overall mechanical responseis then strongly influenced by the
orientation of the individual grains (Fülöp et al., 2006). In the case of thin sheets the properties
in a given cross section are increasingly dominated by individual grains (Henning and Vehoff,
2005). Due to the different orientations of the grains located in the sheet plane, the deforma-
tion is no longer uniform even under homogeneous loading conditions. In order to predict the
mechanical response of thin sheets correctly it is necessary to account in particular the shape
of individual grains and their orientation (Fülöp et al.,2006). To understand and predict the
behavior correctly simulation and experiment have to be compared locally. Therefore detailed
experimental information of local details during plastic deformation are necessary (Henning
and Vehoff, 2005).

The purpose of the current work is the crystal-plasticity / finite-element-based modeling
and simulation of a bcc Fe-3%Si thin-sheet sample with largegrains loaded incrementally in
tension and comparison with experiment (Henning and Vehoff, 2005). This sample is grown
in such a way that throughout the sample there is only one grain over the thickness in which
the grain boundaries are perpendicular to the sample surface. The deformation of the individual
grains has been measured, as well as the local orientation after each loading step. In Henning
(2008), a software package has been developed to automatically construct finite-element meshes
directly from different measuring devices. This software is used to construct a FE mesh from
the investigated sample which is used in the crystal-plasticity-based finite-element simulations.

Crystallographic slip in body-centered cubic (BCC) metals, like Fe-3%Si, it is known to take
place in close-packed〈111〉 direction, but there are different opinions and experimental results
regarding the operative slip planes. In Takeuchi et al. (1967), three possibilities are discussed.
In the first case, it is assumed that the slip really takes place on any plane in the〈111〉 zone (e.g.,
Takeuchi and Ikeda, 1963). Other workers (e.g., Hull, 1963)assumed that the slip takes place
mainly on composite{110} planes. A third assumption (e.g., Erickson, 1962) is that slip occurs
on planes with low indices{110} and{112} or {110} and{112} and{123}. Simulations with
different active sets of glide system classes will be performed to investigate which slip planes
are active and dominant in the simulation.

The paper begins with a summary of the material model, its algorithmic formulation and
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numerical implementation. Next, the model identification and the used material parameters are
given. In the following the experimental results of Henningand Vehoff (2005) are reviewed
and the construction of the FE-model is discussed. On this basis, detailed and systematic com-
parisons between simulation and experimental results are carried out. In particular, we look at
the effects of assuming different combinations of the glide-system families{110} and{112} on
the development of deformation heterogeneity in the sample. In addition, we compare the cases
of modeling the deformation behavior with and without glide-system hardening. The paper
concludes with a short summary and outlook.

3.2 Model formulation for single-crystal plasticity

In the current work, a material model is formulated in the context of continuum thermodynamics
for crystal plasticity. In this context, the material behavior is related to energetic and dissipative
processes. For simplicity, attention is restricted to isothermal conditions. Here we are restricted
to dissipative hardening alone which means that no energetic hardening occurs. As usual, the
energetic part is determined by the free energy densityψ. For the case of anisotropic metals
with viscoplastic behavior, the form

ψ(F ,FP) = ψE(F ,FP) (3.1)

holds forψ. In particularψ is assumed to determine the elastic relation

P = ∂
F
ψ (3.2)

for the first Piola-Kirchhoff stressP . FP is assumed to be not affected by the elastic behavior,
in this case, it can be modeled as a change of local reference configuration (Svendsen, 2001). In
this case, the (local) intermediate configuration represents the preferred constitutive reference
configuration. In the context of “small” elastic strain relevant to metals,ψE takes the form

ψE(F ,FP) ≈ 1

2
EE · CE 0EE (3.3)

for ψE pertaining to metals, withCE 0 the elastic stiffness, at constant deformation. In the context
of small elastic strain, the approximationM ≈ SE of the Mandel stress by the elastic second
Piola-Kirchhoff stress

SE = ∂
E

E
ψE (3.4)

is justified.

In the following we are discussing the single-crystal / glide-system case. As usual, theath

glide system is represented by the corresponding glide directionsa, glide-plane normalna, and
direction transverseta := na ×sa to sa in the glide plane. The system(sa, ta,na) are assumed
constant with respect to the local intermediate configuration as determined byFP. In addition,
they determine its evolution via the constitutive form

LP =
∑

a

a=1
γ̇a sa ⊗ na (3.5)
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for LP in terms of the active glide-system shearsγ1, γ2, . . . , γa
, with a 6 g the number of active

systems, andg the total number of systems. Let
∑

a :=
∑

a

a=1 represent the sum over all active
glide systems. From this, we obtain in particular the form

− ∂
F

P
ψ · ḞP = M · LP =

∑

a
τa γ̇a (3.6)

for the inelastic stress power in terms of the Schmid stress

τa := sa · Mna . (3.7)

Sinceγa is interpreted here as the glide-system shear, it can be positive or negative and increase
or decrease, such thatγ̇a sa = |γ̇a| dir(γ̇a) sa = ± α̇a sa, where

α̇a := |γ̇a| (3.8)

represents the accumulated inelastic glide-system shear rate. Here the notationdir(a) := a/|a|
is used. Note thaṫαa > 0, andαa > 0 are always positive and monotonically-increasing for
all a = 1, . . . , g. This situation has motivated many workers to consider bothsa and−sa as
glide directions, i.e., at the expense of doubling the number of glide systems. In this case,
γ̇a sa ≡ α̇a + sa − α̇a− sa = [[α̇a]] sa. Alternatively, one works with the constitutive assumption

dir(γ̇a) = dir(τa) (3.9)

for the direction of the glide-system shear-rate. In turn, this implies the constitutive form

γ̇a = dir(τa) α̇a (3.10)

for the glide-system shear rates, and that

LP =
∑

a
γ̇a sa ⊗ na =

∑

a
dir(τa) sa ⊗ na α̇a (3.11)

for LP as a function ofα̇. Lastly, the reduced form

− ∂
F

P
ψ · ḞP = M · LP =

∑

a
|τa| α̇a (3.12)

follows for (3.6) in terms ofα̇.

In the following we assume that no activation energy has to beovercome so that slip can
directly start when a system becomes active. The viscoplastic flow rule is formulated according
to Kalidindi et al. (1992)

γ̇a = ∂τα
φ = γ̇0

∣

∣

∣

∣

τa
τ̂a

∣

∣

∣

∣

m

dir(τa) (3.13)

where the flow potential is determined via

φ(τ
a
) = γ̇0

∑

a

τ̂a
m+ 1

∣

∣

∣

∣

τa
τ̂a

∣

∣

∣

∣

m+1

. (3.14)

Here, γ̇0 represents a characteristic strain-rate associated with dislocation motion and̂τa the
energetic or athermal slip resistance is determined via (Asaro and Needleman, 1985)

˙̂τa =
∑

b
qab hb(τ̂b) |γ̇a| . (3.15)
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qab is the hardening matrix which describes the rate of strain hardening on slip systema due to
a shearing on the slip systemb by

qab =

















1 q0 · · · q0

q0 1 · · · q0
...

...
. . .

...

q0 · · · q0 1

















in whichq0 = 1.4 represents the ratio of latent to self-hardening. Following Brown et al. (1989);
Kalidindi et al. (1992), we consider the following form for the single slip hardening rate

hb(τ̂b) = h0 (1 − τ̂b/τ̂
sat
0 )n0 (3.16)

Here,h0 is the initial hardening rate,̂τ sat
0 the saturation value of̂τb, andn0 is the hardening

exponent.

3.3 Algorithmic formulation

The introduced material model in section 3.2 is implementedbased on the following algorithmic
flow rules. As usual, for algorithmic purposes, we are interested in transforming these relations
into algorithmic-numerical with respect to a time-interval [tn, tn+1] with tn the time at the start
of the interval,tn+1 > tn the time at the end of the interval, andtn+1,n := tn+1 − tn > 0 its
duration. In the context of large inelastic deformation, analgorithmical formulation ofḞP =

LPFP follows via volumetric-isochoric split

FP = vol(FP) uni(FP) = det(FP)1/3 uni(FP) , (3.17)

wheredet(A) describes the determinant anduni(A) the unimodular part of a second order
tensorA. Consider next the single time derivatives

˙
det(FP) = tr(LP)det(FP)

˙
uni(FP) = dev(LP)uni(FP) ,

(3.18)

wheredev(A) describes the deviatoric part ofA.

Algorithmically it follows for (3.18)1 with forward-Euler integration that

det(FP n+1) = (1 + tn+1,ntr(LP n))det(FPn) = det(FPn) (3.19)

holds for the case of plastic incompressibility,tr(LP) = 0. Here denotesFPn+1 ≡ FP(tn+1),
relative to thatFPn ≡ FP(tn) from the end of the previous time step. AsLP is full deviatoric
one can algorithmically formulate the evolution of plasticdeformation as

FP n+1 = uni(I + tn+1,nLP n) FPn . (3.20)
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In the following we are using an approximation of this equation which is based on the restriction
tn+1,n |LP n| ≪ 1, e.g. to “small” time steps. In this case and in the context that F = FE FP,
the direct algebraic approximation is

FE n+1 = F tr
E n+1uni(I − tn+1,nLP n) = F tr

E n+1uni(ΛPn+1,n) (3.21)

for FE in terms of its trial value

F tr
En+1 = F tr

E (Fn+1) := Fn+1F
−1
Pn = Fn+1,nFE n , (3.22)

with

Fn+1,n := Fn+1F
−1
n (3.23)

the relative deformation gradient. SinceF tr
E n+1 is an algebraic function ofFn+1,n and the

algorithmic constantFEn via (3.22), this approach is purely algebraic. The corresponding stress
algorithm is based on the Green measure

EE n+1(FEn+1) =
1

2
(F T

En+1FE n+1 − I) (3.24)

of elastic strain. The corresponding stress algorithm is completed by the general relation

Kn+1 = FEn+1SEn+1F
T
En+1 (3.25)

for the current Kirchhoff stressKn+1 in terms of the corresponding elastic second Piola-Kirchhoff
stress

SEn+1 = SE(EEn+1, . . .) (3.26)

andFEn+1.

Consider next the algorithmic formulation of the crystal plasticity material model. In this
case, the external variablesFn andFn+1 are known. Then the relative deformation gradient
Fn+1,n is also known. Further,FEn, γ̇0 andσD n, as well asαn, τn andτ̂n, are known from the
previous update. Consider first the explicit formulation asbased on forward-Euler integration.
In this case, the update of the inelastic state variables is based on that

αa n+1,n = tn+1,n γ̇0

∣

∣

∣

∣

τa n

τ̂a n

∣

∣

∣

∣

m

(3.27)

for the glide-system shears obtained from forward-Euler integration. In particular the update
for the slip resistance is given by

τ̂a n+1,n = tn+1,n

∑

b
qab hb n(τ̂b n) |γ̇an| . (3.28)

In particular,αn+1,n determines the updates

ΛP n+1,n = I −
∑

a
dir(τa n) sa ⊗ na αa n+1,n

= I −NP n αn+1,n ,
(3.29)
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from (3.21). This result then yields the “kinematic” updates

FEn+1 = FE(Fn+1) = F tr
E (Fn+1) uni(ΛP n+1,n)

EEn+1 = EE(Fn+1) = 1
2
{FE(Fn+1)

TFE(Fn+1) − I}
(3.30)

from (3.22) and (3.21). From these updates, we obtain those

Mn+1 = M (EEn+1) ,

τa n+1 = τa(Mn+1,αn+1) ,
(3.31)

for the constitutive stresses via (3.4) and (3.7), respectively.

As before, post-processing includes calculating the update

SE n+1 = SE(EE n+1) (3.32)

for the elastic second Piola-Kirchhoff stress, and so in turn that

Kn+1 = FEn+1SE n+1F
T
E n+1 (3.33)

for the Kirchhoff stress. The corresponding tangent is given by

∂ a
Λ

n+1
Kn+1 = I �Kn+1 + Kn+1 △ I

+ (FEn+1 �F T
En+1) CE0 (F T

E n+1 � FEn+1) sym .
(3.34)

In this last relation,sym = 1
2
(I � I+I △ I) represents the fourth-order tensor induced by sym-

metrization. Here is made use of the tensor products(A �B)C := ACB and(A△B)C :=

ACTB of any second-order tensorsA,B,C. Additionally use is made of the notation

∂
Λ
ϕ(F , . . .) := ∂

F
ϕ(F , . . .) (I �F )

for the push-forward of∂
F

ϕ(F , . . .) to the current configuration as based on thatdF = ΛF

for the infinitesimal deformation gradient, withΛ := (dF ) F−1.

For the simulations, the time step is controlled via‖mag(LP)‖ which value was previ-
ously identified via empirical one element tests. The simulations were performed on an Intel
Core2Duo P8600 machine with 2.4GHz and 4GB memory running Ubuntu Linux 8.04 in paral-
lel on 3 cpus. The computation time for the simulation without hardening for20% deformation
was roughly 4 weeks and for the simulation with hardening for20% deformation roughly 3
weeks. It was observed that the value for‖mag(LP)‖ has to be smaller for a stabile simulation
with hardening compared to simulation without hardening. The higher computation time for
simulation without hardening results from occuring deformation localization.

3.4 Model identification

It is assumed that the general mode of deformation in the silicon iron alloy is slip and that
the presence of mechanical twinning is negligible. As reported in Gell and Worthington (1966),
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mechanical twinning occurs for fine-grained material below180◦K and for coarse grained above
320◦K. Noble and Hull (1965) also did not observed any twinning and strain aging effects in
tensile tests at 293◦K on Fe-3%Si. The presented experimental results were obtained at room
temperature and therefore mechanical twinning as well as strain aging effects are not further
considered.

As mentioned in the introduction, it is well accepted that crystallographic slip in BCC metals
occurs in close-packed〈111〉 direction, but there is a disagreement regarding the operative slip
planes in the literature. Hull (1963); Noble and Hull (1965)reported that the main disloca-
tion movement is on{110} slip planes at 293◦K for different orientations. However, Erickson
(1962); Takeuchi et al. (1967); Taoka et al. (1964) reportedcontradictory results where the
{112} was identified as an operative slip plane as well as the{110} plane, depending on tem-
perature and orientation. The average direction of the slipbands was reported to be very close
to the trace of either{110} or {112}. Similar results were reported in Ito and Vitek (2001);
Šesták and Blahovec (1970);Šesták and Zárubová (1965). Some authors (e.g., Erickson, 1962)
also reported slip on all planes with low indices{110}, {112} and{123}.

In the following the glide systems{110}〈111〉 and{112}〈111〉 are investigated by finite
element simulations using single glide system class or combinations thereof actively. The{123}
slip plane will not be considered further due to its higher Schmid factors and lower Taylor
factors which results in a higher activation energy and therefore are not preferable for slip.

The values of the elastic constants for Fe-3%Si are taken from Routbort et al. (1971) and are
shown in Table 3.1. The unknown inelastic parameters are identified with inverse finite-element

CE,11 [GPa] CE,12 [GPa] CE,44 [GPa]

222 135 120

Table 3.1: Material properties of Fe-3%Si (BCC) (Routbort et al., 1971).

analysis by fitting the results for tensile tests on single crystals for different orientations to
corresponding experimental data extracted from Hull (1963). Due to the fact that no substantial
difference stress-strain curves for different glide system classes are available in the literature and
further results in the literature show nearly no differencein the yield stress at room temperature
for {110} and{112} slip planes (e.g., Taoka et al., 1964) the hardening parameters for both glide
system classes are assumed to be equal in a first step. Furthermore it is known that Fe-3%Si
shows a smooth upper and lower yield point depending on grainsize and sheet thickness ( e.g.,
Henning and Vehoff, 2010; Hull, 1963). However, due to lack of information about this effect
for the current grain size distribution this effect is not considered in the fitting process. Also
failure phenomena, like reported in Gell and Worthington (1966), are not considered further.
Due to the fact that no information about the strain rate sensitivity were available the strain rate
sensitivitym is set to 20 and the reference slip rateγ̇0 is set to be0.001s−1 for quasi-static
loading conditions

The determination of the remaining parameters is carried out using the program LS-OPT
in conjunction with ABAQUS/Standard. The fitted hardening parameters are shown in Table
3.2. The optimization techniques used rely on response surface methodology (RSM) (Kok and
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τ̂0 [MPa] γ̇0 [s−1] m [-]

161 0.001 20

h0 [MPa] τ̂ sat
0 [MPa] n0 [-]

243.9 1137 0.48

Table 3.2: Material properties of hardening of Fe-3%Si (BCC) fitted to the experimental results
of Hull (1963).

Stander, 1999), a mathematical method for constructing smooth approximations of functions in
a design space. The approximations are based on results calculated at numerous points in the
multi-dimensional design space. In this work, the hardening parameters are the design variables
and the model together with the data determine the objectivefunction of the corresponding
optimization problem.

3.5 Experimental methods

The tensile test sample was laser-cut from Fe-3%Si sheets (BCC) with a thickness of 1 mm.
The gauge length is about 5 mm in width and 15 mm in length. The mean grain size is about
2 mm which is of the order of the sheet thickness. In the case ofthe largest mean grain size of
approximately 5 mm, the grains are of the order of the specimen geometry. Whereas the size
effects mentioned in section 3.1 have been investigated in detail in the literature, size effects
upon miniaturisation caused by the adopted processing method of microparts have done by few
researchers. In Janssen et al. (2008), it is reported that machining induced damage to crystals
just below a newly created surface can be neglected in macroscopic analysis but not for volumes
with grain size near the geometrical size. It has to be taken care to avoid that the test sample
is influenced by such processing induced size effects. By thelaser-cutting it is hardly to avoid
such side effect but to remove these processing induced sizeeffects the specimen was annealed
at 1200◦C under vacuum for 48 h whereby a two-dimensional grain structure was achieved.
Afterwards, all surfaces of the samples were polished and etched. Etching was necessary to
remove the deformation layer caused by polishing. These further treatment should take care of
removing all induced processing size effects if possible aswell as the experiments did not show
any indication of these size effects.

The experimental results (Henning and Vehoff, 2005) concerning the properties of the sam-
ple (deformation, local orientation) are determined at several stages, namely at plastic strains
of αP ≈ {0%, 1.5%, 4%, 10%, 19.5%}. To compare the experimental and simulation results
concerning the deformation field only the grain boundary segments between two grain bound-
ary triple junctions, approximated as planes perpendicular to the sample surface as displayed in
Figure 3.1, are shown. The presented experimental results also show the orientation gradient,
however, the focus here is on the shape changes of the sample only. For details concerning the
orientation gradient see Henning and Vehoff (2005).

In Henning and Vehoff (2005), it is mentioned that the deformation results (presented in
Figure 3.3) are obtained by recording the positions of the grain boundary triple junctions. Grains
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Figure 3.1: Experimental results of the deformation field and orientation gradient (Henning and
Vehoff, 2005). Approximation of grain boundaries shown as red lines.

may undergo rigid-body rotation due to the plastic deformation of their neighborhood. These
rigid body rotations were eliminated following the calculation of a two-dimensional per-grain
average strain tensor by applying a least-square fit method as discussed in Lee et al. (1998),
which is slightly corrected in Henning and Vehoff (2005). Other methods to measure two-
dimensional strains are presented in Hoc et al. (2003); Tatschl and Kolednik (2003) (e.g. laser
or etching), the measurement is carried out in-grain, whichis done by introducing a grid on
the surface which leads to unknown surface effects. Side effects like these have been avoided
whenever possible.

The results obtained by experiment contain only information concerning the surface. This
is assumed to be sufficient due to the fact that in the experiment the grain boundaries remain
nearly perpendicular to the sample surface. At the grain boundaries, contraction perpendicular
to the sample surface seems to be negligible, which agrees with the results in Stölken and Evans
(1998). Therefore no investigation concerning the contraction in the third dimension will be
done in the following and only results at the sample surface are presented. The orientations of
the grains are obtained with electron backscatter diffraction (EBSD) using OIM. These are used
as initial orientation in the finite element model.

3.6 Finite element model

The measured two-dimensional grain structure and the grainorientations were used to construct
a finite-element model. The grain boundary segments betweentwo grain boundary triple junc-
tions were approximated as planes perpendicular to the sample surface. This task was done
by using the software DEFMEASURE (Henning, 2008). The experimental sample is modeled
by using the measured geometry for the creation of a finite element mesh. In order to model
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the experimental setup more closely at either end of the tensile specimen transition areas are
introduced. These are modeled using a simple isotropic elastic material model. This reduces
the boundary effects in the simulation by applying the tensile loading at the surrounding area
(Zisman and Rybin, 1998). It was observed that defects such as slip lines can start from grain
boundaries and edges of the sample (Polcarova et al., 1998).

The fact that neighboring grains do not share the same orientation and grain boundaries are
not necessarily parallel to the local crystallographic axes in combination with the anisotropic
elastic behavior may induce an inhomogeneous stress field within a single grain (Vehoff and
Nykyforchyn, 2003). Therefore the model has to be setup in 3Dwhich is done by simple
extrusion of the 2D geometry. The resulting FE-mesh is shownin Figure 3.2 which consists of
18657 brick (8-node) elements. The grain orientations, found by EBSD, are accounted for via

Figure 3.2: FE mesh used for simulations with grains numbered.

initialization of the state dependent variables (SDVs). The simulations are performed with the
FE software ABAQUS using material routines introduced in section 3.3 which are implemented
via the UMAT and UEL interface in ABAQUS/Standard. In what follows, the numbering shown
in Fig.3.2 will be used for clarity.

3.7 Results

3.7.1 Without hardening

In this section experimental results are recalled from Henning and Vehoff (2005) which are
compared to simulation results for different sets of glide systems active where the simulation is
preformed without hardening.

In Figure 3.3a) a micrograph obtained with a light-optical microscope displaying the length
of the specimen is shown. Also small topographic details like contamination marks caused by
EBSD become visible. However, the surface details visible are negligible in reality. Figure
3.3b)-e) display in the left column the experimental plastic strain component in tensile direction
and in the other three columns simulations results of the accumulated crystallographic slip for
all glide systemsαP =

∑

a αa for different active glide systems. The experimental strain com-
ponentsαP,22 (in Figure 3.3 described byεpl,22) in tensile direction are recalled from Henning
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and Vehoff (2005) which were identified for a whole grain. Thesimulation results are done
for {110}〈111〉 or {112}〈111〉 or {112}〈111〉 and{110}〈111〉 active glide systems in which
αP is displayed continuously over the structure. From this point on no exact agreement be-
tween the experiment and simulation can be expected quantitatively. For more details about
obtaining the experimental results see Henning (2008); Henning and Vehoff (2005). The sec-
ond column shows the simulation results for{110}〈111〉 and the third for{112}〈111〉 solely
active. The fourth column shows the accumulated slip results for both sets of glide system
classes{110}〈111〉 and{112}〈111〉 active simultaneously. Remarkably is that both glide sys-
tems sets show nearly the same amount of activity in the simulation which can be anticipated
by analyzing the Schmid factors. Comparing experimental and simulation results for both glide
system classes solely active the highest amount of slip occurs in the same region which is near
grain 14 and 15. However, in the experiment the highest deformation occurs in grain 15 and 16.
For the{112} case more deformation occurs in grain 15 as for the{110} case. The{110} case
shows a higher activity in grain 13 compared to the{112} case. In the beginning the experi-
mentally obtained deformation in grain 14 is higher than in grain 16 which is comparable with
the simulation results. But with increasing deformation grain 15 and 16 gets more active than
grain 14 which is contrary to the simulation results. Finally in the simulation a slip band be-
comes precisely visible in grain 14 and 15 whereas a slip bandoccurs in the experiment in grain
15 and 16 (see Figure 3.5). In the experiment grain 9 shows a high activity at the beginning
of the tensile test but with increasing deformation the deformation rate in this grain decreases.
Also the simulation results show initially a high activity in grain 9 (especially for{110}) and,
as in the experiment, the amount of deformation rate compared to other grains is decreasing
with increasing deformation (see Figure 3.3c) to e)). In Henning and Vehoff (2005) this ef-
fect is explained by the local differences in hardening but as can be seen from the experiment

a)
BCC 110 BCC 112 BCC 112 + BCC 110

b)

c)

d)

e)

Figure 3.3: a) Light-optical micrograph of the tensile testsample. b)-e) In the left column the
plastic strain component in tensile direction of the least square fit strain tensor for each grain for
αP ≈ {1.5%, 4%, 10%, 19.5%} Henning and Vehoff (2005) is shown. The other columns show
the accumulated crystallographic slip for all glide systems in the simulation for active glide
system class{110}〈111〉 or {112}〈111〉 or {112}〈111〉 and{110}〈111〉. The scale is according
to the experimental ones. The shape change of the grains is not reflected.
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an explanation is already given by the initial orientation and the following reorientation of the
glide systems with regard to the loading direction. From this follows that some grains become
more favorable for slipping just by reorientation of the grains. Finally the sample in the exper-
iment failed in grain 16 whereas in the simulation the element distortion is getting very severe
in grain 14. Due to the fact, that the simulation results in Figure 3.3 display the accumulated
crystallographic slip for all glide systems, it is impossible to identify which exact glide systems
are active at the analyzed deformation step after most of thesystems are already active. Once
a glide system is active, it will remain active for a longer period. Due to the different initial
orientation every grain behaves differently under the prescribed loading condition.

The results for{110}〈111〉 and{112}〈111〉 active simultaneously show a combination of
both results for solely active class. Firstly a lot of grainsare active in which grain 14 gets more
active with increasing deformation. From this first analysis it looks like that both glide system
classes have a strong impact on the resulting behavior. Thisimplies that neither of these set of
glide systems can be neglected in the simulation to obtain more realistic results.

BCC 110 BCC 112 BCC 112 + BCC 110

a)

b)

c)

d)

Figure 3.4: a)-d) Comparison between observed experimental deformation (red thinner
lines) for αP ≈ {1.5%, 4%, 10%, 19.5%} to simulation results (black thicker lines) for dif-
ferent active glide system classes ({110}〈111〉(left), {112}〈111〉(middle), {110}〈111〉 and
{112}〈111〉(right)) without hardening.

Figure 3.4 shows the observed experimental deformation compared with the deformation of
the grains in the simulation given by the boundary lines.

The shape changes are consistent with the previous described behavior for the plastic strain
(see Fig. 3.3). In the experiment strong necking is visible near grain 15 and 16 whereas these
grains undergo also a strong extension. UntilαP ≈ 20% no clear shear band is visible which
appear during the further deformation. Figure 3.5 shows this shear band in grain 15 and 16 at
αP ≈ 40% which leads to failure of the sample.

Simulations for the case of active{112}〈111〉 glide system class shows a higher contraction
than for simulations with active{110}〈111〉 glide system class only. In particular the defor-
mation in grain 16 indicates that a deformation by active{112}〈111〉 glide systems occurs in
the mesocrystal. The simulation with active{110}〈111〉 glide system class shows a very high
elongation of grain 14 and 15 compared to experiment. The results for a simulation with slip
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Figure 3.5: Optical photograph of the sample atαP ≈ 40% Henning and Vehoff (2005).

on {110} and{112} planes simultaneously show a slight dominance of the{110}〈111〉 glide
system class. However, the results for both systems active differ significantly from the results
for one single glide system class solely active, i.e., for the deformation behavior of grain 13.

In the following we want to investigate the reorientation field of the mesocrystal. The reori-
entation field maybe understood as a indicator where a high activity occur which may result in
crystal lattice changes which are produced by dislocations(Sedlác̆ek et al., 2001). The reorien-
tation fieldβn+1 with respect to the reference configuration can be calculated by

βn+1 := min| arccos

(

1

2

[

tr(REn+1 RT
E 0 OT

C) − 1
]

)

|, (3.35)

whereREn+1 is obtained by polar decomposition ofFEn+1 andRE 0 is given by the initial ori-
entation.OC describes the orientation matrix for all 24 symmetry matrices of cubic symmetry.
Note that the reorientation field describes the orientationdifference between the actual and orig-
inal orientation which is different from the concept of misorientation or orientation gradients.

Figure 3.6 shows the calculated reorientation field. It is not remarkable that the highest reori-
entation occurs in the region where the highest deformationoccurs. Especially at the beginning
of the deformation this can clearly be identified by comparing Fig. 3.3 atαP ≈ 1.5% with
Fig. 3.6 atαP ≈ 4%. The highest reorientation is visible in grain 14 for all different glide
system sets in which the{112}〈111〉 class show a much higher reorientation in grain 16 as the
{110}〈111〉 class. With both classes active the resulting reorientation is a combination of both.
It may be pointed out that the reorientation can not be directly compared with the obtained
orientation gradient in Figure 3.1.

By evaluation these results it has to be considered that the grains in this simulation are ideal
viscoplastic and therefore no hardening occurs. Furthermore the results aboveαP ≈ 15% have
to be evaluated carefully due to an occurring shear band and distorted elements. Figure 3.7
shows the mesocrystal atαP ≈ 40% and the resulting elements for the active{112}〈111〉 glide
system class, whereas the results for the other simulationslook similar. In the region of the
shear band the elements have bad aspect ratios and become distorted so that the results are not
reliable anymore. However, due to the explicit time integration scheme of the material routine
at the integration point level the simulation is stable and does not abort. But the necessary
time step for the simulation is getting very small. To keep a good element quality, remeshing
techniques have to be used in future work.
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Figure 3.6: Reorientation fieldβ for αP ≈ {1.5%, 4%, 10%, 19.5%} for active glide sys-
tems{112}+{110}(left) or {112} (middle) alone or{110}(right) alone, respectively, with-
out hardening.

Figure 3.7: Stress distribution atαP ≈ 40% with distorted finite element mesh

As input data for the simulation the measured EBSD data is used as initial orientation. The
orientation in every grain is assumed to be homogeneous which is in reality not the case. As
displayed by the orientation gradient in Henning and Vehoff(2005) local differences in the
orientation of1 − 2◦ are visible inside the grains at the beginning. To investigate the influence
of this distribution additional simulations are performedwhere the initial orientation inside the
grain is randomly distributed such that it can be vary±2◦ with respect to the mean value which
was used in the previous simulations. The results agree withthe previous presented results
which indicates that the influence of the scattering can herebe assumed to be negligible on the
deformation behavior.

In summary, the first simulation results with ideal viscoplasticy show already a good ten-
dency to experimental results. This indicates that the correct prediction of initially active slip
systems is a very important effect. This influences the entire history of inelastic deformation in
the sample substantially which is in agreement with the results in Henning and Vehoff (2005).
Furthermore, these first results show that next to the{110}〈111〉 further slip systems have to
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be considered. Also{112}〈111〉 seem to have a significant influence. Therefore both glide
system classes are included into one single simulation in which the influence on each other can
be better interpreted. However,{110}〈111〉 seems to be slightly dominant.

3.7.2 With hardening

In the following the deformation behavior of the structure for an activated hardening law, as
stated in section 3.3, is investigated. The material parameters identified for the used hardening
law can be found in section 3.4. All simulations are carried out for the slip systems{110}〈111〉
and{112}〈111〉 active separately and simultaneously. For simplicity no coupling between these
two glide system classes is assumed which is done by setting the coupling terms in the hardening
matrix qab to zero.

BCC 110 BCC 112 BCC 112 + BCC 110

Figure 3.8: Comparison between observed experimental deformation (red thinner lines) Hen-
ning and Vehoff (2005) forαP ≈ {1.5%, 4%, 10%, 19.5%} to simulation results (black thicker
lines) for glide system classes{110}〈111〉 and{112}〈111〉 separately and simultaneously active
with included hardening.

Figure 3.8 shows the obtained deformation in the simulationin comparison to the experi-
mental results. Comparing these results to Figure 3.4 untilαP ≈ 4% no deviation between
the simulation with and without hardening is visible. Also the results agree very well with the
experimentally observed deformation. However, for largerdeformation the results between the
two simulations deviate. First of all it can be observed thatwith increasing deformation the
results without hardening show a necking behavior in the region of grains 13, 14 and 15. For
the simulation with hardening nearly no necking can be observed. The results for{110} solely
active show the most contraction near grain 11 which is slightly overestimated compared to
experimental results. This behavior is not seen for{112} active alone. The simulation results
show very straight boundary lines also at high deformation states. Both simulations predict the
grain boundaries quite well. Nearly all boundaries in horizontal direction are consistent with
the experimental ones. Especially the largest elongation of grains 15 and 16 is represented quite
nicely. A few small differences between both results shouldbe pointed out which might not be
noticed immediately, however, it is difficult to say which depicts the experiment correctly: The
inclination of the boundary between grain 14 and 16 is different and therefore also the shape of
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grain 14 is slightly different. For{110} the grain 13 is elongated a bit more at the cost of the
elongation of grain 15. Grain 5 is more compressed in the caseof {110}.

The simulation results for both systems active are a combination of both previous discussed
simulation results. It shows a slightly smaller contraction near grain 11 as in the{110} case so
that the shape of the deformed specimen in the experiment is well represented in this region.
Compared to the case without hardening where{110} glide system class was anticipated to be
dominant, for the case with hardening this assumption can not be made due to the fact that in
the investigation of the deformation behavior both systemsplay an active part in determining
the deformation if both glide systems are active with activehardening.

In general the simulation results with hardening show a verygood agreement to the exper-
iment, leading to a very good improvement compared to the results without hardening, with
the exception that the largest contraction in the experiment between grain 15 and 16 is not rep-
resented by all simulations. It is to question if the occurring shear band atαP ≈ 40% could
be anticipated by this model. The distortion of the mesh at higher strains restrict a further in-
vestigation due to the fact that the results were not valid anymore. Therefore 3D remeshing
techniques are on-going work and will be used in the future. However, it is generally doubtful
that the shear band in grain 15 and 16 would be predicted correctly due to the smaller contrac-
tion in the simulation so far. The reason might be the overestimation of the hardening by the
parameter identification which was done based on experimental data from over 40 years ago.
Therefore the experimental and simulative identification of hardening parameters for Fe-3%Si
with nanoindentation will be on-going work. Also further methods like strain gradient plasticity
to cover length-scale effects will be investigated to get aneven better prediction.

Figure 3.9 shows the resulting reorientation fields for the simulations with included harden-
ing. It can be seen that the reorientation is not localized incontrast to the simulation results
without hardening. In nearly all grains a reorientation occurs in which the highest reorientation
takes place in grains 10, 11 and 16 for all simulations. For the case of{112} solely active a
high reorientation occurs in grain 15. It is clear that the highest reorientation takes place in
the region where the highest deformation occurs. Due to the reorientation the slip place might
become more favorable for slip resulting in deformation switching to these grains. Comparing
the results for{110} and{112} separately active certain differences can be observed but the
general reorientation field is similar. The simulation results for both systems active support the
previous assumption that both glide system classes are active at a similar level. As stated before
the reorientation field can not directly be compared to the experimentally obtained orientation
gradient and therefore no comparison to the experiment is made.

In conclusion it can be summarized that the simulation with included hardening shows a
much better agreement with the experiment as without hardening. The simulation with hard-
ening on both glide systems{110}〈111〉 and{112}〈111〉 active simultaneously shows the best
agreement with the experimentally obtained deformation compared to all other simulation re-
sults. To be able to compare the results more in detail and to understand the mechanical behavior
better we will investigate the evolution of dislocations and the orientation gradient during de-
formation in the future to include these fields in our material model to model the behavior of
this mesocrystal step by step in a realistic and understandable fashion.
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Figure 3.9: Reorientation fieldβ for αP ≈ {1.5%, 4%, 10%, 19.5%} for glide system classes
{110}〈111〉 and{112}〈111〉 separately and simultaneously active with included hardening.

3.8 Conclusion

In this work the modeling and simulation of the deformation behavior of thin sheets consist-
ing of large grains of Fe-3%Si and comparison with experiment is performed. For this an
explicit finite-element-, crystal-plasticity-based model is developed for each grain, the grain
morphology, and the thin sheet specimen as a whole. In particular, the crystal plasticity model
is rate-dependent and accounts for (local) dissipative hardening effects. The predictions of the
model are compared with experimental results of Henning andVehoff (2005) for the deforma-
tion behavior of thin sheets of Fe-3%Si loaded incrementally in tension. To this end, attention is
restricted to the two slip families{110} and{112}. To begin, all hardening is neglected. Even
for this oversimplified case, a good correlation with the experimental results is obtained which
shows the importance of predicting initially active glide systems correctly. The simulation re-
sults with both glide system classes active simultaneouslyshow that both classes have a certain
influence on the deformation, however,{110}〈111〉 seems to be slightly dominant. Therefore
it is concluded that both classes are necessary to simulate the experimental tensile tests. Even
better agreement is obtained with experiment when hardening is included. The contraction in
the region of the occurring shear band in the experiment was underestimated which indicates
that the hardening might be overestimated. Finally, first results for the development of local
orientation changes are discussed.

In future work the evolution of dislocations and the orientation gradient will be analyzed.
Further the model formulation will be extended by hardeningformalism based on GNDs. In
addition remeshing techniques will be used to obtain reliable results at high deformations.



Chapter 4

Crystal plastic modeling of the development of
orientation gradients and geometrically necessary
dislocations in thin sheets with large grains

Abstract– The purpose of this work is the modeling and simulation of the deformation be-
havior of thin sheets consisting of large grains of Fe-3%Si and comparison with experiment.
To this end, an explicit finite-element-, crystal-plasticity-based model is developed for each
grain, the grain morphology, and the thin sheet specimen as awhole. In particular, the crystal
plasticity model is rate-dependent and accounts for (local) dissipative hardening effects. The
predictions of the model are compared with experimental results of Henning and Vehoff (2005)
for the deformation behavior of thin sheets of Fe-3%Si loaded incrementally in tension. A
detailed investigation regarding the initial activity is performed on basis of the Schmidt and
Taylor factors. To this end, attention is restricted to the two slip families{110} and{112}. To
begin, all hardening is neglected. Even for this oversimplified case, a good correlation with the
experimental results is obtained for the deformation behavior which shows the importance of
predicting initially active glide systems correctly. However, further comparisons, e.g., with the
experimentally observed orientation gradient (OGM), showno correlation between experiment
and simulation. As a first improvement hardening is includedwhich leads to better results. The
deformation behavior as well as the orientation gradient show the same tendency in the sim-
ulation as in the experiment. Still certain deviations can be observed which might be related
to hardening effects not accounted for. Therefore initial results for geometrically necessary
dislocations as well as local orientation changes are investigated.

4.1 Introduction

A basic issue of research in material science and material mechanics is to determine the rela-
tion between microstructure, material properties and mechanical response (McPherson, 1981;
Wyss et al., 2004). The modeling of the mechanical behavior for a given microstructure can be
performed in different ways. A common concept is the use of statistical or averaging theories.
The associated homogenization can be performed on basis of arepresentative volume element
(RVE). This concept is based on the assumption of scale separation between the microstructural
and macrostructural lengthscale. As the characteristic size of the microstructure (e.g., grain
size) approaches that of the system (e.g., sheet thickness), however, such scale separation is no
longer given and one must resort to other means of representing the effect of microstructural
heterogeneity on the system behavior. As the macrostructural lengthscale approaches the mi-
crostructural one, the degree of material heterogeneity increases drastically, such that the local
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microstructural behavior can deviate significantly from the average behavior at the macroscale
(e.g., Kalidindi et al., 2003; Pierard et al., 2007). In thiscase, the model has to account for the
microstructural details such as orientation details of thegrain structure (e.g., Schneider et al.,
2010) or shape distribution (e.g., Arns et al., 2002). To include such details the microstructural
details can be accounted for by discretizing the domain and using local single crystal plasticity
models combined with finite element calculations. These models are often constructed with the
help of, e.g., optical and / or EBSD data on the grain morphology. In specimens with more than
one grain over the thickness, the common method of projecting the two-dimensional EBSD
information uniformly in the third dimension will generally lead to different behavior (e.g.,
Wiederkehr et al., 2010). If the specimen is one grain thick,however, such an optical- / SEM- /
EBSD-based approach should be reasonable. For such a specimen a number of size effects are
expected to influence its mechanical properties. These effects have been known for years and
are still subject of active research (e.g., Bargmann et al.,2010; Engel and Eckstein, 2002; Fu
et al., 2001; Fülöp et al., 2006; Geers et al., 2006; Greer et al., 2005; Janssen et al., 2006, 2008).

The overall mechanical response is strongly influenced by the orientation of the individual
grains if the number of grains over the thickness is fairly small (Fülöp et al., 2006). In the case
of thin sheets the mechanical properties in a given cross section are increasingly dominated by
each individual grain as reported in Henning and Vehoff (2005). Due to the different orienta-
tions of the grains located in the sheet plane, the deformation is no longer uniform even under
homogeneous loading conditions. This heterogeneity and the size-dependence of deformation
give rise to size effects (Henning and Vehoff, 2010). Different mechanisms can occur at differ-
ent stages of deformation. The initial yield stress is influenced by grain size, grain orientation
and elastic anisotropy (Hall, 1951; Petch, 1953; Prohászka and Dobránszky, 2003). With on-
going deformation strain hardening occurs which may be caused by geometrically necessary
dislocations (GNDs) (e.g., Ashby, 1970; Evers et al., 2004a,b; Ma et al., 2006; Nye, 1953).
The grain size dependent mechanical response in a polycrystal is successfully modeled by Ev-
ers et al. (2002) using a local strain gradient dependent crystal plasticity model accounting for
GNDs. Various interesting viewpoints concerning the modeling and experimental concept of
GNDs can be found in El-Dasher et al. (2003); Gao and Huang (2003); Kubin and Mortensen
(2003).

To understand and predict the behavior correctly simulation and experiment have to be com-
pared locally. Therefore detailed experimental information of local details during plastic defor-
mation are necessary. The measurement of local dislocationdensities and its evolution during
the deformation process is very time-consuming. Thus thereis a need for methods to perform
local quantitative characterizations of the microstructure. Henning and Vehoff (2005) used the
orientation gradient mapping (OGM) locally which is a measure of the the local strain harden-
ing. It is known that crystallographic slip in body-centered cubic (BCC) metals, like Fe-3%Si,
take place in close-packed〈111〉 direction, but there are opposed experimental results regarding
the operative slip planes (e.g., Erickson, 1962; Hull, 1963; Takeuchi and Ikeda, 1963). There-
fore all planes with low indices will be investigated, however, for the simulation attention is
restricted to the two slip families{110} and{112}.

The goal of this study is to model and understand the experimentally obtained results of a
bcc Fe-3%Si thin-sheet sample with large grains loaded incrementally in tension (Henning and
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Vehoff, 2005) by a step by step procedure. To understand eachmechanism in the simulation
as a first step we restrict ourselves to a simple phenomenological constitutive crystal-plasticity
model for ideal viscoplasticity. To get an idea how and wheregeometrically necessary disloca-
tions develop inside the microstructure which may lead to strain hardening we are investigating
the development of GNDs and the orientation gradient for different simulations with different
active slip families. In addition to a short investigation of the deformation behavior a compari-
son between the experimentally and simulativly obtained orientation gradient is performed. As
a next step hardening is included and comparisons to the casewithout hardening are made.

The paper is organized as follows. First the used material model for crystal plasticity is
shortly presented. In the next section the experimental results from Henning and Vehoff (2005),
the construction of the FE-model and the concepts of GNDs andOGM are discussed. Next the
results from experiment and simulation without and with hardening contribution are compared
and discussed in the context of their deformation behavior and the evolution of orientation
gradients, GNDs and orientation changes during deformation. The paper concludes with a
summary and outlook.

4.2 Model formulation for single-crystal plasticity

In the case of crystal plasticity the perfect single crystalis often used as reference state, however,
it is also possible to choose any state just before deformation or any state at any timet in an
incremental setting. The deformation gradient can be decomposed into an elasticFE and plastic
partFP called the Kröner decomposition (Kröner, 1961)

F = FEFP (4.1)

which is schematic illustrated in Figure 4.1.FE is the elastic deformation component which

Bref

Bint

Bcur

FEFP

F

reference configuration

intermediate configuration

current configuration

Figure 4.1: Decomposition of the total deformation gradient

represents the local elastic distortion of a material due tostretch and rotation of the microscopic
structure.FP is the plastic distortion which represents the local deformation due to the flow
of defects through the microscopic structure which is an irreversible permanent deformation.



72 CHAPTER 4

Therefore the transformation of the reference state byFP leads to an intermediate configura-
tion. Investigating the crystal lattice in the different configuration as shown in Figure 4.1, the
transformation viaFP from the reference to the intermediate configuration renders the lattice
unchanged and all the deformation is produced by dislocation slip. The plastic deformation is
assumed to be volume preserving which meansdetFP = 1. During the transformation from
the intermediate configuration to the current one viaFE , the lattice undergoes a purely elastic
shape change (Roters et al., 2010).

The corresponding stress algorithm for this model is based on the Green measure

EE(FE) =
1

2
(F T

E FE − I) (4.2)

of elastic strain. The corresponding stress can be calculated by the general relation

K = FESEF T
E (4.3)

for the current Kirchhoff stressK in terms of the corresponding elastic second Piola-Kirchhoff
stress

SE = SE(EE, . . .) (4.4)

andFE. In terms of small elastic strains relevant for metals the approximationM ≈ SE , i.e.,
of the Mandel stress by the elastic second Piola-Kirchhoff stress holds true. The Mandel stress
can then be calculated by

M (EE) ≈ CE 0EE (4.5)

whereCE 0 is the fourth order elasticity tensor.

Basic to almost all large-deformation inelastic model formulations is the general forṁFP =

LPFP for the evolution of the local inelastic deformationFP in terms of the inelastic “velocity
gradient”LP. As usual, theath glide system is represented by the corresponding glide direction
sa, glide-plane normalna, and direction transverseta := na × sa to sa in the glide plane.
As usual,(sa, ta,na) represent an orthonormal system and are assumed constant with respect
to the local intermediate configuration as determined byFP. In addition, they determine its
evolution the constitutive form

LP =
∑

a

a=1
γ̇a sa ⊗ na (4.6)

for LP in terms of the active glide-system shearsγ1, γ2, . . . , γa
, with a 6 g the number of active

systems, andg the total number of systems. The Schmid stress is given by

τa := sa · Mna . (4.7)

The viscoplastic flow rule is formulated according to Kalidindi et al. (1992)

γ̇a = γ̇0

∣

∣

∣

∣

τa
τ̂a

∣

∣

∣

∣

m

dir(τa) . (4.8)

Here the notationdir(a) := a/|a| is used.γ̇0 represents a characteristic strain-rate associated
with dislocation motion and̂τa the energetic or athermal slip resistance is determined via(Asaro
and Needleman, 1985)

˙̂τa =
∑

a

b=1
qab hb(τ̂b) |γ̇a| . (4.9)
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qab is the hardening matrix which describes the rate of strain hardening on slip systema due to
a shearing on the slip systemb by

qab =

















1 q0 · · · q0

q0 1 · · · q0
...

...
. . .

...

q0 · · · q0 1

















in whichq0 = 1.4 represents the ratio of latent to self-hardening. Following Brown et al. (1989);
Kalidindi et al. (1992), we consider the following form for the single slip hardening rate

hb(τ̂b) = h0 (1 − τ̂b/τ̂
sat
0 )n0 (4.10)

Here,h0 is the initial hardening rate,̂τ sat
0 the saturation value of̂τb, andn0 is the hardening

exponent.

The numerical implementation is based on an explicit algorithmic formulation as based on
forward-Euler integration. Details about this explicit formulation can be taken from section 3.3.

4.3 Experimental and simulation methods

4.3.1 Experimental results

The tensile test sample was laser-cut from Fe-3%Si sheets (BCC) with a thickness of 1 mm.
The gauge length is about 5 mm in width and 15 mm in length. The mean grain size is about
2 mm which is of the order of the sheet thickness. In the case ofthe largest mean grain size
of approximately 5 mm, the grains are of the order of the specimen geometry. As explained
in section 3.5 all size effects due to processing were tried to be avoided as best as possible.
Furthermore the experiments did not show any indication of these size effects.

The experimental results (Henning and Vehoff, 2005) concerning the properties of the sam-
ple (deformation, local orientation) are determined at several stages, namely at plastic strains
of αP ≈ {0%, 1.5%, 4%, 10%, 19.5%}. In Figure 4.2 the results of the orientation gradient
measurement are displayed at the deformed shape. The calculation of the orientation gradient
at points with improper orientation measurements was omitted, and the corresponding points in
Figure 4.2 are represented in black. The concept of the orientation gradient will be discussed
in section 4.3.5. The results obtained by experiment contain only information concerning the
surface. This is assumed to be sufficient as in the experimentthe grain boundaries remain
nearly perpendicular to the sample surface. At the grain boundaries, contraction perpendicular
to the sample surface seems to be negligible, which agrees with the results in Stölken and Evans
(1998). Therefore no investigation concerning the contraction in the third dimension will be
done in the following and only results obtained at the samplesurface are presented. The ori-
entations of the grains are obtained with electron backscatter diffraction (EBSD) using OIM.
These are used as initial orientation in the finite element model.
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Figure 4.2: (a)(e) Orientation gradient max(θx,θy) in (◦) for αP ≈
{0%, 1.5%, 4%, 10%, 19.5%}. The regions in black indicate failure of au-
tomatic orientation estimation. (Henning and Vehoff, 2005).

4.3.2 Finite element model

The measured two-dimensional grain structure and the grainorientations were used to con-
struct a finite-element model. The grain boundary segments between two grain boundary triple
junctions were approximated as planes perpendicular to thesample surface. In order to model
the experimental setup more closely at either end of the tensile specimen transition areas are
introduced. These are modeled using a simple isotropic elastic material model. This reduces
the boundary effects in the simulation by applying the tensile loading at the surrounding area
(Zisman and Rybin, 1998). It was observed that defects such as slip lines can start from grain
boundaries and edges of the sample (Polcarova et al., 1998).The fact that neighboring grains
do not share the same orientation and grain boundaries are not necessarily parallel to the local
crystallographic axes in combination with the anisotropicelastic behavior may induce an inho-
mogeneous stress field within a single grain (Vehoff and Nykyforchyn, 2003). Therefore the
model has to be set up in 3D which is done by simple extrusion ofthe 2D geometry. The re-
sulting FE-mesh is shown in Figure 4.3 which consists of 18657 brick (8-node) elements. The
grain orientations found by EBSD are accounted for via initialization of the state dependent
variables (SDVs). The simulations are performed with the FEsoftware ABAQUS using mate-
rial routines which are implemented via the UMAT and UEL interface in ABAQUS/Standard.
In what follows the numbering shown in Fig.4.3 will be used for clarity.
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Figure 4.3: FE mesh used for simulations with grains numbered (Henning, 2008).

4.3.3 Fe-3%Si

It is assumed that the general mode of deformation in the silicon iron alloy is slip and that
the presence of mechanical twinning is negligible. As reported in Gell and Worthington (1966)
mechanical twinning occurs for fine-grained material below180◦K and for coarse grained above
320◦K. Noble and Hull (1965) also did not observe any twinning andstrain ageing effects in
tensile tests at 293◦K on Fe-3%Si. The presented experimental results were obtained at room
temperature and therefore mechanical twinning as well as strain ageing effects are not further
considered. In the following the glide systems{110}〈111〉 and{112}〈111〉 are investigated
by finite element simulations using single glide system class or combinations thereof actively.
In section 4.4 also the{123} slip plane will be considered regarding the Schmid factor where
it is shown that their values are much lower compared to{110} and{112} and therefore not
preferable for slip.

The used elastic constants for Fe-3%Si are taken from Routbort et al. (1971) (see Table 4.1).
The hardening parameters in Table 4.2 are taken from section3.4 which were identified based
on experimental data from Hull (1963) using an inverse FE-optimization strategy.

CE,11 [GPa] CE,12 [GPa] CE,44 [GPa]

222 135 120

Table 4.1: Material properties of Fe-3%Si (BCC) (Routbort et al., 1971).

τ̂0 [MPa] γ̇0 [s−1] m [-] h0 [MPa] τ̂ sat
0 [MPa] n0 [-]

161 0.001 20 243.9 1137 0.48

Table 4.2: Material properties of hardening of Fe-3%Si (BCC) fitted to the experimental results
of Hull (1963).
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4.3.4 Geometrically necessary dislocations (GNDs)

During plastic deformation, two types of dislocation occur. One type are the statistically stored
dislocations (SSDs) which are accumulated by a random trapping process and are not consid-
ered here in detail. The second type of dislocations are the geometrically necessary dislocations
(GNDs) which are stored due to the locally heterogeneous plastic shear. The first concepts of
GNDs were introduced by Nye (1953) and Ashby (1970) to account for modes of plastic defor-
mation, where an internal accumulation of a density of dislocations is required to accommodate
the gradients of plastic strain induced by the deformation such as bending (Needleman and
Sevillano, 2003), therefore GNDs are necessary to preservelattice compatibility.

The simplest class of models for dislocation evolution is obtained for the case of self-
interaction, i.e., the dislocations on each glide system interact only with themselves, not with
those of other systems. Restricting to edge GNDs alone, a common self-interaction-based con-
stitutive model is given by the evolution

˙̺a = −s̄a · ∇γ̇a (4.11)

at small deformation consistent with the model of Ashby (1970) in terms of the glide-system
Burgers vector̄sa := b sa. Here the dislocation density̺ is expressed in a non-dimensional
form ̺ := b2 ρ with the help of the magnitudeb of the Burgers vector. Sincēsa is by definition
constant, the relation (4.11) can be integrated in time to yield the algebraic form

̺a − ̺a0 = −s̄a · ∇γa , (4.12)

assuminḡsa · ∇γa0 = 0. Generalization of this kind of relation to large deformation is often
explicitly or tacitly based on the constitutive assumptionof form-invariance. As shown in Gurtin
(2008); Kuroda and Tvergaard (2008); Svendsen and Bargmann(2010) on this basis (4.12)
generalizes to

̺a − ̺a0 = −F−1
P s̄a · ∇0γa , (4.13)

which can be rewritten to

̺a − ̺a0 = −FEs̄a · ∇cγa , (4.14)

where∇0 or∇c describe the spatial gradient with respect to the referenceor current configura-
tion, respectively. Here the relation

∇cγa = F−T∇0γa (4.15)

between the slip gradients is used. In the following̺a0 is assumed to be zero.

4.3.5 Orientation gradient mapping (OGM)

Dislocations are generated by plastic deformation which may be stored or leave the specimen or
annihilate. These phenomena occur inhomogeneously insidethe microstructure. E.g., Kovács
and Zsoldos (1973) derived strain hardening laws from interaction processes of dislocations
which implies that strain hardening is connected with the increase in dislocation density. As
stated before GNDs are necessary to preserve lattice compatibility. Therefore dislocations lead
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to local orientation changes in the crystal lattice (e.g. Sedlác̆ek et al., 2001). Roughly speaking
the higher the dislocation density the higher the expected misorientation.

Henning and Vehoff (2005) introduced a method to investigate the local orientation gradient,
called Orientation gradient mapping (OGM). OGM describes the orientation gradient between
two neighboring measurement points inx-direction via

∆θx = min| arccos(
1

2
tr{RE,x RT

E,x+1 OT
C − 1})| (4.16)

as well as for they-direction∆θy, respectively.OC describes the orientation matrix for all 24
symmetry matrices of cubic symmetry. In the following we usethe definition

∆θ∞ = max{∆θx,∆θy}. (4.17)

The advantage of the use of OGM is the distinct quantitative representation of the local
misorientations by which the result is independent from thesurrounding area. For further details
about the OGM see Welsch et al. (2007) and Henning and Vehoff (2010).

4.4 Determination of Schmid and Taylor factors

For the prediction which slip system is preferred to become active during deformation the
Schmid and Taylor factors are valid indicators. Assuming a test loading directionl in the sam-
ple coordinate system for macroscopic uniaxial tension with which follows for the Kirchhoff
stress

K = K l ⊗ l .

The Mandel stress can be written as

M = RT
EKRE = M l

′ ⊗ l
′

, (4.18)

where
l
′

= RT
El

describes the loading direction rotated into the crystal system. The Schmid stress can be rewrit-
ten to

τa = Sfac,aM , (4.19)

whereSfac,a describes the Schmid factor for each glide system which can be calculated by

Sfac,a = (na · l
′

)(sa · l
′

) . (4.20)

To predict the behavior of one single grain all Schmid factors of one glide system class have to
be averaged in some way. Here the following definition has been used

Sfac,avg =

√

∑

a S
2
fac,a

number of slip planes
(4.21)

as an average of all Schmid factors for the particular glide system class where the ”number of
slip planes” is 12 for{110} and{112} and 24 for{123}.
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a)

Schmid factor {110}
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Figure 4.4: Averaged Schmid-factorSfac,avg

in the single grains for a){110}〈111〉 and
b) {123}〈111〉 glide system for a test-
loading in [010] direction for the initial
specimen. The same qualitative results as
for {110}〈111〉 are obtained for{112}〈111〉
glide systems

Taylor

+2.500e+00
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+2.750e+00
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a)

b)

c)

Figure 4.5: Taylor-factorT in the single
grains for a){110}〈111〉, b) {112}〈111〉
and c) {110}〈111〉 and {112}〈111〉 glide
systems for a test-loading in[010] direction.

In Fig. 4.4 the averaged Schmid factors are shown for single grains showing that slip on
{110} and{112} planes is much more favorable than on{123} due to higher Schmid factors.
However, the distribution in the single grains looks quite similar for {110}, {112} and{123}.
The magnitude of the Schmid factor as well as its distribution are nearly identical between
{110} and{112}. For all cases the highest value for the averaged Schmid factor Sfac,avg occurs
in grain 14 (cf. Figure 4.3) which is20% higher than in any other grain. Therefore the highest
amount of slip at the beginning as well as the earliest slip inthe structure is expected to occur
in grain 14. Grain 12 direct next to it has one of the lowest Schmid factors and is therefore
unfavorable for slip which could lead to a sharp gradient in stress and slip activity between both
grains and to stress concentrations. The grains at the upperborder (4, 9, 13, 15) all show a quite
similar Schmid factorSfac,avg. This indicates that the deformation might be more homogeneous
at the beginning in this area, however, the deformation of other grains, like grain 14, influences
the deformation field.

Besides the Schmid factor as an indicator for plastic slip inside the grains the Taylor factor is
often used. Taylor (1938) postulates that slip systems are only active during plastic deformation
which minimizes the internal work. The Taylor factorT is defined (e.g., Rosenberg and Piehler,
1971) by

T =

∑

i |γi|
E

(4.22)

whereE is the applied amount of tensile or compressive strain on thesample whereas according
to the assumption of Taylor each crystal undergoes the same deformation (Taylor, 1938). Details
about the calculation can be found, e.g., in Bunge (1970); Chin and Mammel (1967).

Figure 4.5 shows the resulting Taylor factors for solely{110}〈111〉 or {112}〈111〉 glide
systems active as well as a combination of both. The results correspond quite well with the
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Schmid factors. The lowest Taylor factor is calculated in grain 14. The results for{110}〈111〉
or {112}〈111〉 differs only locally but the Taylor factors are quite similar. For simultaneously
active glide systems the Taylor factors are lower than for single systems which is in agreement
with reported results in the literature (e.g., Chin and Mammel, 1967; Rosenberg and Piehler,
1971). According to the evaluation of the distribution of the Taylor factors the prefered grains
for slip would be grain 13 and 14. However, these are only single factors for indicating plastic
slip. In order to achieve a better understanding and to checkthese assumptions the experimental
results are compared to simulation results obtained for different sets of active glide systems.

4.5 Results

4.5.1 Without hardening

In this section experimental results are compared to simulation results for different sets of glide
systems active performed for ideal viscoplasticity. Figure 4.6 shows‖mag(LP)‖ at different

BCC 110 BCC 112 BCC 112 + BCC 110

Figure 4.6: Simulation results without hardening for‖mag(LP)‖ for αP ≈
{1.5%, 4%, 10%, 19.5%} for active glide system{112}+{110}(left) or {112}(middle) alone
or {110}(right) alone, respectively. The legend is constant for alldeformation stages.
(red=10−6s−1, blue=0s−1)

values ofαP. LP describes the plastic part of the velocity gradient and therefore‖mag(LP)‖
is a measure for the plastic flow occurring between two time steps. Thus it represents a valid
indicator for activity of glide systems in the actual deformation step. In Figure 4.6 the shape
changes of the grains are depicted. The actual value of‖mag(LP)‖ is of minor importance
for the interpretation, however, it controls the time step in the simulation due to the explicit
integration scheme at the integration point level.

It can be seen that in the beginning the same level of plastic flow occurs in several grains for
both sets of glide system classes at the current time step. Local differences between the results
of the different sets of active glide system classes are visible whereas the main deformation
predicted for all simulations occurs in grain 14. However, it is impossible to identify which
exact slip systems of the glide system classes are active at the analyzed deformation step after
most of the systems are already active. Once a slip system is active, it will remain active for
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a longer period. Due to the different initial orientation every grain behaves differently under
the prescribed loading conditionl = [0 1 0] which was analyzed with respect to the Schmid and
Taylor factor in section 4.4. With the system active, however the amount of plastic slip will be
completely different in two grains after a certain time. After a small deformation ofαP ≈ 4%

a localization zone is identifiable where the deformation ismainly concentrated. This does not
change in the further deformation stages whereas a slip bandbecomes more precisely visible.

Simulations for the case of active{112}〈111〉 glide system class show a higher contraction
than for simulations with active{110}〈111〉 glide system class. In particular the deformation in
grain 15 and 16 in the beginning indicates that a deformationmay occur by active{112}〈111〉
glide systems in the mesocrystal. The simulation with an active {110}〈111〉 glide system class
shows a very high elongation of grain 14 compared to experiment. The results for a simulation
with slip on{110} and{112} planes simultaneously show a slight dominance of the{110}〈111〉
glide system class. However, the results for both systems active differ significantly from the
results for one single glide system class active, e.g., for the deformation behavior of grain 13.
This implies that neither of these set of glide systems mightbe neglected in the simulation to
obtain more realistic results.
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Figure 4.7: Sum of GND densities
∑

a ̺a of all systems without hardening forαP ≈
{1.5%, 4%, 10%, 19.5%} for active glide systems{112}+{110}(left) or {112}(middle)
alone or{110}(right) alone, respectively.

As a first step in further understanding and modeling the material behavior of the mesocrystal
the development of GNDs is analyzed in detail which could later be used as internal variables,
i.e., to describe the strain hardening behavior (e.g. Ekh etal., 2007; Taylor, 1934). The sum
of the GNDs densities

∑

a ̺a over all 12 or 24 glide systems, respectively, is shown in Figure
4.7. By definition it is clear that the highest concentrationof GNDs occur in the region where
the main deformation occurs. Especially at the beginning ofthe deformation this can clearly be
identified by comparing Fig. 4.6 atαP ≈ 1.5% with Fig. 4.7 atαP ≈ 4%. However, this relation
is more complex because the development of the GNDs depends on the gradient of the slip and
not directly on the slip. GNDs are required to accommodate the gradient of plastic slip. The
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highest GND densities are achieved at grain boundaries where the highest slip gradients occur.
With evolving slip band the GND density inside grain 13 and 14is strongly increasing which
indicates a strong strain hardening potential in this region.
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Figure 4.8: Orientation gradient for∆θ∞ in ◦ for αP ≈ {1.5%, 4%, 10% 19.5%} for active
glide systems{112} and{110} without hardening.

The experimental results of the OGM were shown incorporatedin Figure 4.2. Figure 4.8
shows the results for the orientation gradient mapping for the simulations without hardening
which were calculated in the post-processing. As it can be seen by comparison with Figure
4.2 the simulation cannot predict the correct tendency for the OGM in the experiment. This
leads to the conclusion that further effects like hardeninghave to be included to produce more
realistic results. Further the direct correlation betweenthe OGM and the evolution of the GND
can be seen by comparing the results to Figure 4.7. As mentioned before GNDs are necessary
to preserve lattice compatibility. Therefore it has to be noted that dislocations lead to local
orientation changes in the crystal lattice (e.g. Sedlác̆ek et al., 2001).

The corresponding reorientation fieldβn+1 with respect to the reference configuration can be
calculated by

βn+1 := min| arccos

(

1

2

[

tr(REn+1 RT
E 0 OT

C) − 1
]

)

|, (4.23)

whereRE n+1 is obtained by polar decomposition ofFEn+1 andRE 0 is given by the initial
orientation. Figure 4.9 shows the calculated reorientation field. By comparing the results to
Fig. 4.7 a dependency between the GNDs and local orientationchanges could be anticipated.
However, as results later will show this might not always be the case. Again, it has to be con-
sidered here that the grains in this simulation are modeled as ideally viscoplastic and therefore
no hardening occurs. Furthermore the results aboveαP ≈ 15% have to be evaluated carefully
due to an occurring shear band and resulting distorted elements. In the region of the shear band
the elements have bad aspect ratios and become distorted so that the results are not reliable
anymore. However, due to the explicit time integration scheme of the material routine at the
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Miso
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Figure 4.9: Reorientation fieldβ in ◦ for αP ≈ {1.5%, 4%, 10%, 19.5%} for active glide sys-
tems{112}+{110}(left) or {112}(middle) alone or{110}(right) alone, respectively, without
hardening.

integration point level the simulation is stable and does not abort but the necessary time step for
the simulation is becoming very small. To ensure a good element quality, remeshing techniques
have to be used in future work.

In conclusion the first simulation results with ideal viscoplasticy already show a good ten-
dency to experimental results. This indicates that the correct prediction of initially active slip
systems is a very important effect. The previously calculated Schmid and Taylor factors pre-
dicted mainly the correct grain activity. However, furtherresults like the orientation gradient in
the experiment could not be predicted correctly in simulations without hardening.

4.5.2 With hardening

In the following the deformation behavior of the structure for an activated hardening law, as
stated in section 4.2, is investigated. The material parameters identified for the used harden-
ing law can be found in section 4.3.2. All simulations are carried out for the slip systems
{110}〈111〉 and{112}〈111〉 active separately and simultaneously. For both systems active si-
multaneously for simplicity no coupling between these two glide system classes is assumed
which is done by setting the coupling terms in the hardening matrix qab to zero.

In Figure 4.10 the distribution for‖mag(LP)‖ is shown for different combinations of glide
systems active on the deformed shape. Comparing the shape ofthe simulation results with hard-
ening with the experimental ones in Figure 4.2 show a very good agreement to the experiment,
leading to an improvement compared to the results without hardening. However, the largest
contraction in the experiment between grain 15 and 16 is not represented by the simulations.
The distribution forαP ≈ 1.5% is very similar to the results in the simulation without hardening
as shown in Figure 4.6. Note that the value of the deformationrate is not important but rather its
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BCC 110 BCC 112 BCC 112 + BCC 110

Figure 4.10: Simulation results for‖mag(LP)‖ for αP ≈ {1.5%, 4%, 10%, 19.5%} for glide
systems{112} and{110} simultaneously and separately active with included hardening.
The legend is constant for all deformation stages. (red=10−6s−1, blue=0s−1)

distribution. For larger deformation the results between the two groups of simulations deviate.
The simulations without hardening show a localization in grain 14 and 15 whereas the simula-
tions with hardening show a high activity in many grains. In the beginning for all simulations
with hardening a high activity in grain 15 and 16 can be observed which is decreasing with
increasing deformation. The results for both glide systemsactive show neither a dominance of
the{110} nor{112} systems. In the end the main deformation takes place in grains 11, 12, 13
and 14. However, also the surrounding grains do not stop deforming plastically forαP ≈ 19.5%

which was the final investigated strain.
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Figure 4.11: Orientation gradient for∆θ∞ in ◦ for αP ≈ {1.5%, 4%, 10% 19.5%} for active
glide systems{112} and{110} with included hardening.
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Figure 4.11 shows the simulatively obtained OGM results forsimulation with hardening. As
it can be seen by comparison to the experiment the simulationresults with hardening show a
much closer prediction than the simulation results withouthardening. A lot of the experimental
details of the OGM can also be seen in all the simulations, e.g.,

• the high gradient band at the boundary between grain 1 and 4 ispredicted correctly,

• the gradient band at the boundary between grain 1 and 3 is predicted correctly in the
{110} case,

• the correct distribution in grain 9 and 14,

• the correct tendency in the grains 15 and 16 although the bands are not that fine and clear,

• correct tendency in the grains 17 and 19.

This shows that all simulations with hardening show a good tendency to the experiment, how-
ever, based on these results it is not possible to anticipateif one single glide system class is
dominant or required.
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Figure 4.12: Sum of GND densities
∑

a ̺a of all systems forαP ≈ {1.5%, 4%, 10% 19.5%}
for active glide systems{112} and{110} with included hardening.

As mentioned in the previous section GNDs are very useful to understand and model the
material behavior in a more realistic way. Therefore first results concerning the GND evolution
during the deformation process are given in Figure 4.12 and by comparison to Figure 4.11 the
direct correlation between OGM and GND can be seen for this formulation for the GNDs. Fur-
ther no direct correlation to the deformation can be made by comparing the results to Figure
4.10 which shows that GNDs calculated by the used formulation are not directly correlated to
the deformation behavior. Moreover the gradient in the deformation is very important for calcu-
lating GNDs which also explains the very good correlation tothe OGM results. As mentioned
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previously the contraction in grain 15 and 16 is underestimated in the simulations compared
to the experiment. Investigating the GNDs in this region, nearly no GNDs are existent in the
middle of grain 16 and also the amount is fairly small in grain15. Averaging the GNDs over
the cross-section the region through grain 15 and 16 may leadto the smallest value. This im-
plies that this region hardens less compared to other grainswhereby a higher contraction at this
position might occur. This will be one of the central questions in following works.

Figure 4.13 shows the resulting reorientation fields for thesimulations with included hard-
ening. It can be seen that the reorientation is not localizedas in the simulation results without
hardening. In nearly all grains an reorientation occurs in which the highest reorientation takes
place in grains 10, 11 and 16 for all simulations. Comparing the results for{110} and{112}
separately active certain differences can be seen but in general the reorientation field is similar.
The simulation results for both systems active support the previous assumption that both glide
system classes are active at a similar level. A very interesting investigation can be made by
comparing the reorientation field to the OGM or GND distribution. Partly the highest reori-
entation occurs at positions where nearly no GNDs or orientation gradients are developing. In
general the OGM as well as the GNDs are valid indicators for hardening potential inside the
microstructure. However, the behavior of the GNDs can also be influenced by the used ansatz
for calculating the GNDs so that a different approach (e.g. Gurtin, 2002) can lead to slightly
different results for GNDs especially compared to the reorientation which is not the case for the
OGM.
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Figure 4.13: Reorientation fieldβ in ◦ for αP ≈ {1.5%, 4%, 10%, 19.5%} for glide sys-
tem classes{110}〈111〉 and{112}〈111〉 separately and simultaneously active with included
hardening.

In conclusion it can be summarized that the simulation with included hardening shows a
much better agreement with the experiment as without hardening. The simulation with hard-
ening predict the correct tendency in the deformation as well as for the development of the



86 CHAPTER 4

orientation gradient. At this stage it is not possible to say, if both glide systems{110} and
{112} are necessary to predict the correct behavior in Fe-3%Si, however, the results show that
both systems should be considered further.

4.6 Conclusion

A crystal-plasticity-based model formulation for anisotropic elastic ideal viscoplastic materials
on the basis of an algorithmic flow rule for small elastic strain, small time steps and plastic
incompressibility based on finite kinematics is presented.In particular, the crystal plasticity
model is rate-dependent and accounts for (local) dissipative hardening effects. This material
model is used for the FE representation of the sample of a thinsheet metal specimen with large
grains. The experimental results of the tensile test obtained in Henning and Vehoff (2005) are
recalled and compared to the simulation results. The simulations were carried out for two sets
of glide system classes separately active, namely{110}〈111〉 and{112}〈111〉, as well as simul-
taneously active. To begin, all hardening is neglected. It was shown that results obtained with
either system class showed a slight deviation in the deformation structure, however, the main de-
formation zones were predicted correctly. The simulation results with both glide system classes
active simultaneously show that both classes are active at the nearly same level of deformation.
However, a certain dominance of{110}〈111〉 is observable in the deformation behavior. The
evolution of the GND density as well as the reorientation distribution were analyzed in detail
which show the huge strain hardening potential in the material which is not included so far.
Further the concept of OGM was recalled and the results were analyzed which show the direct
correlation of GNDs with the OGM concept. However, the orientation gradient in the simula-
tion show no correlation with the experimentally observed one. As an improvement hardening
is included. The simulation results show an even better prediction of the experimental results.
Also the correct tendency in the experimentally obtained OGM could be seen in the simulation
results. For these simulations no dominance at either glidesystem class could be observed.
Therefore it is concluded that both classes should be considered in following works. In future
work the model formulation will be extended by hardening formalism based on GNDs. The
presented results in this work can therefore be used as a reference to see each influence of the
model extension on the simulation results. Further remeshing techniques will be used to obtain
reliable results at high deformations.
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Identification of the macroscopic material
properties for thermal sprayed coatings based on
nanoindentation *

Abstract– The characterization of thermal sprayed coatings is oftenlimited to microstructural
analysis to evaluate the coatings morphology. Indentationis commonly used to determine the
mechanical properties of different kinds of engineering materials. However, due to the com-
plex structure of thermal sprayed coatings few results havebeen obtained so far. In this work
experimental nanoindentation tests and simulation results are compared. The experimental in-
dentation tests show scattering in the force-deformation data due to the complex structure of
the arc-sprayed coating which is investigated by means of anindentation test simulation. Based
on results for single constituent parts of the coating the Young’s modulus as well as further
mechanical properties are identified. A general procedure is presented to predict the effective
mechanical properties based on the microstructure, porosity, chemical composition and proper-
ties of the coating after thermal spraying.

5.1 Introduction

Arc sprayed deposits are being used increasingly in a wide range of industries. In order to un-
derstand, predict and improve the reliability of coated devices, it is necessary to characterize
their mechanical properties. The determination of the mechanical properties in thermal sprayed
coatings is quite complicated and often contradictory mechanical properties are reported. San-
tana et al. (2008) reported the Young’s modulus of HVOF sprayed WC-12Co to be 268 GPa.
This property was determined by depth-sensing micro-indentation using the method proposed
by Oliver and Pharr (1992) and Pharr et al. (1992). Ghafouri-Azar et al. (2006) also investigated
a coating of WC-12Co type, deposited by HVOF spraying, regarding residual stresses. The used
Young’s modulus in the simulation was 669 GPa, which is 3 times higher than the value reported
in Santana et al. (2008). Toparli et al. (2007) used a Young’smodulus of 398 GPa for HVOF
thermally sprayed WC-Co material in his simulation. This value originates from Delfosse et al.
(1997), who reported elastic-plastic properties for different WC-Co composites. However, these
values were determined for materials manufactured by powder metallurgical process, involving
several high pressure and high temperature treatments. Also Hussainova et al. (2001) reported
the mechanical properties of WC-Co composites, fabricatedby conventional PM technology.
The Young’s modulus determined using Vickers indentation for WC-8Co and WC-15Co was

* results published in Tillmann et al. (2010a)
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650 GPa and 560 GPa, respectively. These different reportedvalues show the complexity of
determination of mechanical properties of composites likeWC-Co, thermal sprayed as well as
powder metallurgy fabricated. It has to be accounted that the microstructural aspects of coatings
are different from bulk materials which can lead to unexpected mechanical behavior as well as
different mechanical properties (Brantner et al., 2003; Yin et al., 2009).

In this research work a twin wire arc spraying (TWAS) facility (Smart Arc PPT 350, Sulzer
Metco, Switzerland) was employed to spray WC-FeCSiMn coatings. The work principle of
the spraying process is described elsewhere (Nebel and Tillmann, 2010; Tillmann et al., 2008a).
The Duramat AS 850 flux-cored wire with a diameter of 1.6 mm (Durum GmbH, Germany) was
used as wire feedstock material. The wire is Fe based alloyedwith 2 wt.% C, 1.4 wt.% Si and
<1 wt.% Mn. It is filled with 50 wt.% of fused tungsten carbide (WC/ W2C) with grain sizes of
25-125µm. Based on the parameter optimization presented in Tillmann et al. (2010b) cleaned
medium carbon steel specimens (Mat.No. 1.0503, DIN C45, AISI 1045) applying a voltage of
30V, a current of 220 A, and an atomization gas pressure of 6 bar at a spraying distance of 100
mm. For the investigated WC-FeCSiMn coating, no material properties are available in the lit-
erature. Therefore, the determination of mechanical properties either from direct measurements
or parameter identifications are focused in this paper. Thishelps to understand the behavior
during forming processes much better. In general, as a first assumption it can be anticipated that
the properties are similar to WC-Co composites due to the similar mechanical properties of Co
and Fe as binder. However, in WC-Co the wt.% of WC is often above 80% whereas the here
investigated composite contains approximately 50% Fused Tungsten Carbide (FTC).

As reported in the literature (Hertzberg, 1995; Kim and Kweon, 1999; Okamoto et al., 2005),
the material properties of thermally sprayed coatings are different in tension and compression.
Conventional test procedures like bending and tensile tests are very complicated to realize on
coatings (Nebel and Tillmann, 2010). To determine mechanical properties of coatings nanoin-
dentation technique has been established. However, the strain fields under an indenter are com-
plex and the analysis of data is non-trivial especially for complicated material systems like
thermally sprayed coatings. A disadvantage of using nanoindentation for inhomogeneous ma-
terials to identify the mechanical properties is that only local properties are determined. These
local properties have to be identified for each single material phase which can then be used
to approximate the effective mechanical properties with the help of micrographs and different
homogenization techniques as shown in the following. Another possibility is to do a number of
nanoindentation tests and to average over the obtained results to receive the effective properties.
However, a large number of tests are necessary to obtain reliable results.

The focus of this paper is the application of a method to identify the mechanical properties
(elastic and inelastic) of an arc sprayed coating with the help of nanoindentation technique,
finite element modeling and homogenization methods.
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5.2 Nanoindentation

5.2.1 Experiment

The nanoindentation experiments were performed using a Nanoindenter XP with Berkovich tip
(MTS Nano Instruments, Oak Ridge, TN, USA) at the Institute of Materials, Ruhr University
Bochum. Two sets of experiments were performed where the indenter either penetrated the pol-
ished coating in its normal direction or a polished cross-section (see Fig. 5.1). The indentation
was done at 49 points in a regular pattern for three indentation depths (100 nm, 250 nm and
500 nm). Figure 5.1 shows an overview of the indentations into a cross-section of the coating
for a depth of 100 nm. Due to the fact that the chemical composition of an indented material is
not known a priori the indentations were analyzed in the Scanning Electron Microscope (SEM)
employing EDX afterwards, to identify which phase was indented and which points have a
chemical composition with a mass percentage of one of the constituents above 80% for FTC
and 80% for FeCSiMn, respectively. Only those indentations were considered where one sin-
gle phase without pores and cracks was indented. Therefore ahuge amount of indentations is
necessary to indent in certain single phases. Investigations of the micrographs of the coating
show that phases of different compositions can be identifieddue to the material contrast in the
backscattering mode of the SEM. However it has to be mentioned that no separation, e.g., be-
tween WC and W2C could be made. This also implies that it cannot be identifiedwhich phase
combinations (i.e. FeCSiMn) are generated during the thermal spraying process. This could
be one reason why deviations between the load-displacementcurves were obtained at different
sample points with nearly the same chemical composition. Another reason for these deviations
could also be due to different residual stresses at different locations. It is anticipated that the
indentation depth is small compared to the thickness of one single lamella and that the results
found for one chemical composition only represent the behavior of this specific composition.
This assumption is not valid for indentation into the coating surface due to the smaller thickness
of the lamellas in this direction. Therefore the following procedure is based on the results of
the nanoindentation test into cross sections. Figures 5.2 and 5.3 show exemplary back-scattered
electron images of indentation imprints into the coating aswell as the corresponding EDX re-
sults into nearly pure FTC composition (Fe<20wt.%) and FeCSiMn alloy (FTC< 20wt.%). As
it can be seen from the EDX analysis different pseudoalloy combination are existent.
The Young’s modulusE is one of the most important mechanical properties. It describes the
relation between stresses and strains in the elastic region. Nanoindentation can be used to de-
termine the Youngs modulus by analyzing the unloading part of the load-displacement curve
(Dao et al., 2001). The analysis and determination of the Youngs modulus is done with the
traditional Oliver-Pharr (OP) method (Oliver and Pharr, 1992; Pharr et al., 1992) at the cor-
responding unloading curves originated from an indentation into pure FTC (<20 wt.% Fe) or
FeCSiMn (<20 wt.% FTC), respectively. The traditional Oliver-Pharr (OP) method yields to
the contact stiffnessS

S =
2√
π
Ered

√
A (5.1)

and for the reduced modulusEred, which combines the modulus of both indenter and specimen,

1

Ered

=
1 − ν2

E
+

1 − νI2

EI

(5.2)
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Figure 5.1: Overview of indentations for a depth of 100 nm - TWAS WC-FeCSiMn coating.

Figure 5.2: Detail view of analyzed point of indentation into FTC for a depth of 100nm and
corresponding EDX analysis.

whereE andν are Young’s modulus and Poisson’s ratio of the test material, andEI = 1140GPa

andνI = 0.07 are the parameters of a diamond indenter (Shan and Sitaraman, 2003). Rewriting
this equation for a Berkovich indenter leads to the following set of equations (Giannakopoulos
and Suresh, 1999) for the reduced Young’s modulusEred

Ered =
1

c
√

A

(

dP

dh

)

(5.3)
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Figure 5.3: Detail view of analyzed point of indentation into FeCSiMn for a depth of 100 nm
and corresponding EDX analysis.

with c = 1.167 (King, 1987),A = 24.5h2, dP
dh

describes the slope of the unloading curve andE

the resulting effective Young’s modulus of the material

E =
(1 − ν2)EredEI

EI − (1 − ν2
I )Ered

. (5.4)

The Poisson ratio is chosen with respect to the bulk materialand therefore assumed for FTC
composition to beν = 0.19 and for the FeCSiMn alloyν = 0.3 (Hsieh and Tuan, 2005). The
evaluated Young’s modulus based on indentation into cross sections for a depth of 100nm for
the FTC and FeCSiMn phase are reported in Table 5.1. The averaged Young’s modulus over
all 49 indents in cross sections as well as the surface for thedifferent indentation depths are
reported in Table 5.2. As shown there the Young’s modulus is decreasing with increasing depth.
One assumption for this is that the depth and therefore the loads are already too high and failure
occurs in the coating which affects the results. Therefore mainly the results for a depth of
100nm are used where it can be assumed that no or at least a minimum of failure occurs which
makes the load-displacement curves and the obtained properties more reliable.

5.2.2 Finite element modeling of nanoindentation

As mentioned in the previous section, several analytical methods are available to determine
the Young’s modulus. However, limited studies are available to obtain the plastic properties
with the nanoindentation technique, e.g., Giannakopoulosand Suresh (1999); Venkatesh et al.
(2000).
Therefore the indentation loading process is simulated by afinite element model with the soft-
ware ABAQUS. The coating is modeled with continuum elementsconsisting of 8 nodes where
the coating is modeled as consisting of one single phase. Theinfluence of the neighboring
lamella on the mechanical behavior of the indented region isassumed to be negligible, such
that only the indented material (lamella) is modeled. This is assumed to be reasonable due to
the small indentation depth comparing to thickness of different material layers (compare Fig.
1) which leads only to loading in one phase. Therefore the modeling of the substrate is skipped.
The indenter is modeled with rigid shell elements of the typeR3D4. The surface of the coating
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as well as the surface of the indenter is defined as contact areas. Variation of the friction co-
efficient did not influence the obtained results which was already mentioned by authors before
e.g., Shan and Sitaraman (2003). For this reason the simulation is done frictionless. The size of
the modeled region is chosen in such a way that the stresses vanish at the free faces. The Finite
element model is shown in Figure 5.4.

Figure 5.4: Finite element mesh of in-
denter and coating.

Figure 5.5: Comparison between ex-
perimental and simulation data for in-
dentation into FTC and an indentation
depth of 100nm.

In the present study the used material behavior is assumed tobe of a type Voce hardening law
as given by

σ = σ0 + (σsat − σ0){1 − exp(−αpn0)} (5.5)

whereσ0 describes the initial yield stress,σsat the saturation value of the stress andn0 defines
the rate at which the size of the yield surface changes as plastic straining develops andαp is
the equivalent plastic strain. The unknown material properties in (5.5) are identified with in-
verse Finite-element-analysis by fitting the simulation results to the experimental obtained load-
displacement curves. This determination is carried out using the program LS-OPT in conjunc-
tion with ABAQUS. The optimization techniques used rely on response surface methodology
(RSM) (Kok and Stander, 1999), a mathematical method for constructing smooth approxima-
tions of functions in a design space. The approximations arebased on results calculated at
numerous points in the multi-dimensional design space. In this work, the material parameters
are the design variables and the model together with the datadetermine the objective function
of the corresponding optimization problem. The material parameters that lead to the best fitting
agreement can be considered to represent the constitutive behavior of the coating. Such a fit is
shown in Figure 5.5.
To find the material parameters, first a range for the design variables has to be defined. As initial
values the plastic properties of WC-Co are chosen from Hussainova et al. (2001). The simula-
tion model and optimization method were first tested on results reported in Lee et al. (2007) for
a steel coating. The identified material parameters agreed quite well with the reported one, so
that the method presented as well as the simulation model seems to be justified. Based on the
optimization history for one of the constituents it can be observed that after some iteration steps
the LSOPT specific optimization borders are converging to one resulting value which describes
the best fitting parameter for the problem. Table 5.1 displays the identified material parame-
ters of the nanoindenter tests for the two phases. Figure 5.5shows exemplarily the simulated
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load curve on top of the experimental one for indentation into FTC for an indentation depth of
100nm.

material E [GPa] σ0 [MPa]

FeCSiMn (< 20wt.% FTC) 190 ± 30 1900 ± 500

FTC (< 20wt.% FeCSiMn) 340 ± 40 4900 ± 600

σsat [MPa] n0 [-]

FeCSiMn (< 20wt.% FTC) 2650 ± 700 4.8 ± 1.5

FTC (< 20wt.% FeCSiMn) 6100 ± 700 60 ± 5

Table 5.1: Identified mechanical properties of single chemical composition for AS-850.

It has to be mentioned that these parameters varied, depending on the position analyzed and
the associated experimental data. The values displayed in Table 5.1 are estimated from results
of more than four points each for every phase. The deviation for the Young’s modulus was
≈ 15%. The deviation for the plastic properties was≈ 25%. These deviations occur from
the inhomogeneities inside the coating. Therefore the measured data describes only local prop-
erties at the microscale. To achieve the macro-properties like the effective Young’s modulus,
homogenization techniques are used which are described in the following section.

5.3 Construction of finite element models from real micrographs

To perform analysis of real microstructures, micrographs of the thermal-sprayed coating were
observed with different optical microscopes. As mentionedbefore, SEM micrographs served as
a basis for the determination of the chemical composition ofdifferent phases. The micrograph
provides the possibility to distinguish between the phaseswhich is possible due to their dif-
ferent brightness in the micrograph which is coming from regions with atoms having different
atomic numbers. Correlating to the huge difference in the relative atomic weight of tungsten
(183.84 g/mol) and iron (55.845 g/mol) the phases of the sprayed WC-FeCSiMn feature a good
contrast. In addition to these two phases many pseudoalloyed splats containing WC as well as
FeCSiMn are visible which cannot be clearly identified. For WC-FeCSiMn coating it can be
distinguished between the matrix material Fe, the inclusion FTC and pores. Figure 5.6a) shows
an exemplary micrograph obtained from the coating.
An image processing tool is developed which now identifies the phases and generates an image
consisting of Fe-, W-based alloys and pores only. The differentiation between the phases is car-
ried out by finding optimal thresholds based on the color distribution, from which the different
phases are separated. As it can be seen on the resulting imagein Fig. 5.6b), much noise and
small single pieces of the material-phases are included, which make this image inappropriate to
perform further analyses, especially with regard to plastic behavior. Therefore these parts have
to be smoothed out or removed by applying smoothing and cleanup algorithms. The resulting
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Table 5.2: WC-FeCSiMn Youngs moduli for compression stresses.

image is shown in Fig. 5.6c).
To generate a FE-mesh from such an image the software Object Oriented Finite Element 2
(OOF2), from the United States National Institute of Standards and Technology (NIST), is
used. This software was developed to investigate the behavior of microstructures. OOF2 takes
a non-reductionist approach to build a data structure on thedigitized image of the microstruc-
ture whereby it gets connected to the associated material properties. At the end OOF2 creates a
FE-mesh which reflects the shape of the different phases in the microstructure with the associ-
ated material parameters. The mesh is generated by minimizing an energy functional which is
composed of a homogeneity partEhom of the mesh and a shape partEshape of the elements via

E = αEhom + (1 − α)Eshape (5.6)

whereα is an adjustable parameter, with which the user can control if the mesh should be highly
accurate to the image with bad shaped elements (α = 1) or if the elements are well shaped but
with less accuracy to the shape of the phases in the micrograph (α = 0). A value forα between
these extremes will lead to an optimal choice. For further details about the exact formulation of
the energy functional and the features of the program OOF2 the readers are referred to Langer
et al. (2001) and Reid et al. (2008). The resulting mesh can beseen in Fig. 5.6d). The elements
representing pores are removed by which free surfaces are created on which contact elements
are applied to account for closing pores in the simulation. It is assumed that the phases are
perfectly bonded.
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Figure 5.6: a) An exemplary micrograph obtained from a wire (AS-850) arc-sprayed coating
with SEM. b) Distinguished material phases. c) Cleaned Image. d) FE-mesh on microstructure.

To obtain information about the microstructural behavior and macroscopic properties compres-
sion deformation tests are done. Due to the fact that plane strain and plane stress conditions,
respectively, would either over- or underestimate the lateral contraction which would lead to a
too stiff or weak behavior, respectively, a 3D-projection of the 2D-mesh is performed by simple
extrusion in normal direction of the mesh. At this point it iscrucial to investigate, how thick the
model should be and how many layers are necessary over the thickness. Therefore convergence
studies are performed. It was found that a thickness of by 6 layers gives an acceptable result.
The simple extrusion leads to columnar material phases which will still not predict the exact
behavior but it is an improvement of a 2D-simulation with plane strain or stress conditions. To
receive more exact impressions of the microstructure, real3D information of the coating would
be necessary which are not available at this point. As boundary conditions for compression
tests typical boundary conditions are chosen: three different lateral faces, which do not oppose
each other, are fixed in their respective normal direction. The compression test is displacement
controlled such that the displacement is applied to one of the free lateral sides in its respective
normal direction. The simulations are performed using the Finite Element software ABAQUS.
First tests are restricted to linear elasticity so that a comparison of the simulated with the pre-
dicted elastic constants from homogenization methods can be made. At this point it is assumed
that the micrographs fulfill the requirements for a Representative Volume Element. This is a
crucial assumption in order to compare the obtained resultswith those from the homogeniza-
tion methods. The elastic constants of the microstructure are obtained by evaluating the reaction
forces at the boundaries and the displacement at the free lateral sides. The received results are
presented in the next section.
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5.4 Discussion

To receive macroscopic properties homogenization techniques can be used. The approxima-
tions used here are the Voigt, Reuss and Hashin-Shtrinkman methods. These methods predict
maximal and minimal bounds for the effective Young’s modulus with respect to the volume
fraction of the two phases and pores. However, these methodsdo not take the morphology into
account. Details to these methods can be found in Nemat-Nasser and Hori (1999). The volume
fractions were identified on basis of the analyzed micrographs as mentioned in the previous
section. The used volume fraction of FTC varies from 33.3 vol.% up to 36.6 vol.% and for
the pores from 0.72 vol.% to 2 vol.% and the difference to 100 vol.% is used for FeCSiMn.
The obtained results with these methods are compared with results from compression tests with
real microstructures. Due to the lamellar structure of the coating (cf. Fig. 5.6a)) it behaves
anisotropic with respect to the normal (ND, perpendicular to the lamellar structure) and hori-
zontal direction (HD, in direction of the lamellar structure) which was previously reported for
coatings in Kim and Kweon (1999); Yin et al. (2009). Therefore the microstructure has to be
tested with two different load directions, parallel and perpendicular to the lamellae. This pro-
cedure discussed in the previous section is performed on seven different micrographs created
from the same part at different positions. The resulting calculated effective Young’s moduli
are shown in Fig. 5.7. The effect of anisotropy is not accounted in the homogenization tech-
niques due to the fact that these methods assume homogenous distributed spherical inclusion
and calculate the effective Young’s modulus on the basis of the volume fractions. However,
these methods provide a general impression about the value for the Young’s modulus. The pre-
dicted Young’s moduli obtained with help of the real microstructures do not violate the Voigt
and Reuss bounds which make the results valid. However, the effective Young’s modulus does
not lie between the Hashin-Shtrinkman bounds due to its anisotropy. It can be observed that the
effective modulus calculated for the micrographs slightlydifferentiates. The reasons for this are
the inhomogeneities of the coating. Therefore the effective Young’s modulus has to be evalu-
ated statistically over different micrographs. Here the resulting Young’s moduli are calculated
to beEHD = 230 GPa andEND = 212 GPa.

Compared with the calculated averaged values in the experiment from all indents for an in-
dentation depth of 100nm (EHD = 240 GPa(indentation in cross section) andEND = 154 GPa

(indentation in surface) , cf. Table 5.2), the predicted values fit for the horizontal direction.
However, the averaged nanoindentation test results in normal direction do not agree with the
predicted Young’s modulus. One reason for this could be the local nature of nanoindentation
tests. Due to the lamellar structure and relatively high aspect ratio of the lamellas and therefore
small thickness in normal direction the potential to indenta pore during nanoindentation tests
in the surface without noticing is much higher than in the case of nanoindentation test in the
cross-section due to the high thickness in this direction. In contrast the simulation determines
the macro Young’s modulus by what such local phenomena do notoccur.
Considering the elastic-plastic material parameters of the two phases both show a very high
yield stresses. The FTC phase shows a high rate of work hardening in which the saturation
value is only 20% higher than the yield strength. It is anticipated that the FTC phase would
break before hardening occurs. However, the investigated phases do not contain pure FTC. It



5.4 Discussion 97

Figure 5.7: Predicted effective Young’s modulus calculated from real microstructures compared
(HD = parallel to lamellar structure, ND= perpendicular to lamellar structure) with results from
different homogenization techniques. (HS+ = upper Hashin-Shtrinkman bound, HS- = lower
Hashin-Shtrinkman bound).

is still a composite of mainly FTC but also other in the wire included elements like Fe. The
FeCSiMn-phase shows a more significant hardening behavior compared to the FTC phase. The
yield stress is very high for Fe compared to conventional steels which will also depend on the
included FTC. In summary the single phases show very high mechanical properties although it
is not possible to identify these for every chemical composition. Furthermore it is typically as-
sumed that the mechanical properties are inferior comparedto bulk material. Although no bulk
material is available of this composite this assumption canbe approved for the elastic region
by comparing the results for the single phases with values from the literature, e.g., Okamoto
et al. (2005). However, the plastic parameters are much higher which might occur due to the
high temperature during the thermal spraying process whichleads to a hardening in the material
phases.

From experiments it is known that nearly no plastic deformation occurs in the coating. The
coating fails at very low stress states, especially under tensile load (Nebel and Tillmann, 2010).
This can be attributed to the weak interface between the splats which leads to significantly
poor mechanical properties compared to bulk materials. This means that the phases are not
perfectly bonded to each other and that the interface fails.To include these effects and to model
the coating more realistically an interface model in conjunction with a failure model for the
FTC phase has to be included. To do this the interface as well as failure mechanisms in FTC
have to be characterized in more detail in experiments whichare on-going work. Therefore we
restricted the application of the calculation on basis of the real microstructure to linear elasticity,
however, it can also be applied for the plastic region with help of the identified parameters in
Table 5.1 for the single phases. But the computing time gets much larger as well as further
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effects just mentioned have to be included to get sensible results. The incorporation of an
interface model is on-going work.

5.5 Summary and outlook

TWAS sprayed WC-FeCSiMn coatings have been evaluated regarding their mechanical prop-
erties. In this paper the coating was investigated with regard to nanoindentation tests in detail.
The analytical Oliver-Pharr method was used to determine the Young’s modulus of local points.
With SEM and EDX analysis the material composites indented by the nanoindenter were iden-
tified. The elastic-plastic properties were obtained for each phase composition with simulation
tools.
With help of an in-house image analysis software different chemical compositions could be
identified from SEM-micrographs. A method is presented generating FE-models on the basis
of these images which was successfully used to determine theglobal properties of the coat-
ing from the local properties of the single chemical compositions which was presented for the
elastic properties. These results were compared to the averaged experimental nanoindentation
results as well as to results obtained by several analyticalhomogenization approaches. The
obtained elastic properties in the simulation agrees quitegood with the averaged experimental
values from all indents in direction of the lamelar structure. However the predicted values do
not agree with the experimental measured Young’s modulus innormal direction.
The presented method will be further developed to incorporate the interface between the single
phases to model the global plastic behavior more realistically. Furthermore the failure behavior
will be investigated of the coating to be able to predict cracks occuring in the coating during
loading.



Appendix A

Basics of homogenization

This appendix gives a short insight into the basics of homogenization. In the following the
basic results of the Eshelby solution and different standard homogenization methods are briefly
discussed.

A.1 Eshelby solution

In this section we consider linear elastic composites underisothermal conditions. The main
number of works on mean field descriptions used in continuum micromechanics are based on
the work of Eshelby (1957). Therein the stress and strain distribution in homogeneous isotropic
elastic solids embedded in a surrounding elastic material is investigated. The main result can
be summarized as follows. Suppose that the inclusionω undergoes a spontaneous change in
its shape and/or size due to an ”eigenstrain” so that it no longer fits into its previous space in
the surrounding material. Assuming that if the surroundingmaterial was absent, the inclusion
would undergo some prescribed homogeneous deformation according to the eigenstrain. If the
inclusion is now re-embedded into the matrix which constrains the inclusion and forcing it to
assume a final strainE(x). Eshelby showed that if an elastic homogeneous ellipsoidalinclusion
is subjected to such uniform strainE∗, uniform stresses and strains are induced in the inclusion.
This uniform strainE is related linearly to the eigenstrainE∗ via

E(x) = E = Sω E∗ = const (A.1)

where the fourth order tensorSω represents the Eshelby tensor field. Due to the uniformity of
E∗ insideω the corresponding Eshelby tensor becomes constant overω as indicated in Figure
A.1. Typical examples of such eigenstrains are thermal strains, phase transformation strains or
disclocation-induced residual strains.

The constant stress in the inclusionω can be calculated by

T = C(E − E∗) = C(Sω − I)E∗ (A.2)

whereC is the elastic stiffness tensor of the material andI the symmetric fourth order identity
tensor. In general the Eshelby tensorS has merely minor symmetry. Results for ellipsoidal
inclusion can be found in Mura (1982). For the special case ofa spherical inclusion and isotropic
material the Eshelby tensorS can be calculated via

Sω =
1

3
αI ⊗ I + β(I2I − 1

3
I ⊗ I) (A.3)

with

α =
1 + ν

3(1 − ν)
β =

2(4 − 5ν)

15(1 − ν)
. (A.4)
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matrix matrix

matrix

inclusion

inclusion inclusion

cut

E∗ include
E

Figure A.1: The inclusion has undergone a stress-free transformation, eigenstrainE∗, and has
been placed back in the matrix. The matrix constrains the inclusion forcing it to assume a final
strainE , which can be related toE∗ using the Eshelby tensorS (dark area represents embedded
inclusion).

whereν is the Poisson’s ratio of the matrix material. Here,I represents the second order identity
tensor and we make use of the tensor products(A ⊗ B)C := (B · C)A and(A �B)C :=

ACB of any second-order tensorsA,B ,C .

The relation (A.2) only holds, if the elasticity tensor of the matrix and the inclusion are
identical. Generally this is not the case. Therefore an imaginary counter problem to the real
problem has to be constructed, in which the inclusion has thesame elastic stiffness as the matrix.
Due to the fact that the Eshelby solution applies in this case(see Figure A.1), the size and
eigenstrain for the imaginary inclusion can be assumed suchthat the final constrained strain
and stress are equal to those of the inclusion in the real problem.

CMCMCI

E∗
I E∗

Figure A.2: The inclusion and matrix consists of two different materials. The eigenstrain can
occur due to a change in temperature or a phase transformation, etc.. The equivalent imagi-
nary problem is constructed in the way that the inclusion andmatrix have identical material
properties so that the Eshelby formula can be applied, as shown on the right.

Suppose the inclusion undergoes a prescribed eigenstrainEI ∗, the residual stress in the in-
clusion can be calculated

T I = CI(E − EI ∗) (A.5)

whereE is the uniform residual strain in the inclusion. For the imaginary problem the similar
relation can be obtained

T I = CM(E − E∗) (A.6)

by assuming that the imaginary inclusion with the same elasticity tensorCM as the matrix un-
dergoes a eigenstrainE∗ which is imaginary construct. Therefore the Eshelby solution can be
used

E = SE∗ (A.7)
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from which a relation between the real eigenstrain and the imaginary eigenstrain can be deter-
mined

E∗ = ((CI − CM)S + CM)−1 CIE
I ∗ . (A.8)

This relation can be used with (A.2) to calculate the constant stressT I in the inclusion

T I = CM(S − I)E∗ = CM(S − I) ((CI − CM)S + CM)−1 CI E
I ∗. (A.9)

The same concept can be applied for the case of an externally applied strainE0 as indicated in

E0
E0

CMCM

CI

E∗ = 0

E∗ 6= 0

Figure A.3: a) Ellipsoidal inclusion embedded in a matrix. b) Homogeneous material with
eigenstrain subjected to an applied external load

Figure A.3. The stress in the inclusion can be calculated by

T = CI(E + E0) (A.10)

whereE denotes the mismatch strain in the inclusion. Reformulate this problem to an imagi-
nary problem where the inclusion has the same properties as the matrix yields to

T = CM(E + E0 − E∗) . (A.11)

Outside of the inclusion isE∗ = 0. The Eshelby solution can now be used to determine the
mismatch strain

E = SE∗ . (A.12)

The equivalent eigenstrain due to an externally applied strainE0 can then determined as

E∗ = −[S + (CI − CM)−1CM]−1E0 . (A.13)

The total strain in the inclusion can than be calculated via

EI = E0 + E = E0 + SE∗ (A.14)

EI = [I + SC−1
M (CI − CM)]−1E0 = const (A.15)

The expression[I + SC−1
M (CI − CM)]−1 is also referred to as influence or concentration tensor

A which describes the correlation between the total strain and the external load.
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A.2 Review of some standard homogenization methods

Basically, a macroscopic material point at a positionX in a fixed Cartesian frame is considered
next. In linear elasticity the macroscopic stressesT macro and strainsEmacro are related via the
macroscopic elasticity tensorCmacro with

T macro = CmacroE
macro. (A.16)

Homogenization procedures are mainly based on the definition of a local surrounding of a
macroscopic material point with microscopic volumeV and the boundary∂V . This volume
V represents a characteristic part of the material in terms ofits structure and behavior, respec-
tively. This implies that the size of heterogeneities at themicrolevel is at least one order of
magnitude smaller than the size of the volumeV of the macropoint. As it is shown by Nemat-
Nasser and Hori (1999) and Gross and Seelig (2001) the Hill-Mandel condition is fulfilled by
applying linear displacement, periodic or uniform traction or mixed boundary conditions (Pahr
and Zysset, 2008) on∂V . This section focuses on the detailed discussion of different homoge-
nization methods.

The basic concept of homogenization is shown in Figure A.4. At the macro-scale the mate-
rial is considered as homogeneous continuum where the microscale describes an infinitesimal
surrounding of a material point at the macroscale. The microscale is generally heterogeneous,
e.g., the morphology consists of different particles, inclusions, etc.. The microscopic lengthd
of an RVE has to be much larger than the dimensions of the single particlesl. In the context
of the principle of separation of scales, the characteristic lengthL at the macroscale has also to
be much larger than the size of the RVE. This characteristic lengthL is not determined by the
size of the macroscopic domain but rather by the spatial variation of the kinematic fields and
stress fields within that domain (Kouznetsova et al., 2010).Therefore the following relation has
to hold

l ≪ d≪ L (A.17)

in order that homogenization methods can be applied.
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Figure A.4: Principle of homogenization and different length scales
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A material point at the macroscale is related over an RVE to the volumeV of the microscale.
The microscale is subjected to fluctuated stress-strain fields as shown in Figure A.5. The me-
chanical state at the macroscale can be calculated over volume averaging the microscopic quan-
tities

T macro = 〈T 〉 =
1

V

∫

V

T (x) dV Emacro = 〈E〉 =
1

V

∫

V

E(x) dV (A.18)

where〈•〉 describes the average over the volume.

The constitutive law from the microlevel

T (x) = C(x) E(x) (A.19)

can be rewritten to the macroscale

〈T 〉 = C∗ 〈E〉 (A.20)

with the effective elasticity tensorC∗ = Cmacro. This relation is only valid if the average distor-
tion energy of the microscale is equal to the one at the macroscale exemplified by

〈ψ〉 =

〈

1

2
E(x) · C(x) E(x)

〉

=
1

2
〈E〉 · C∗ 〈E〉 (A.21)

which is captured by the Hill-Mandel-condition

〈T (x) · E(x)〉 = 〈T 〉 · 〈E〉 . (A.22)

This condition general means, that the fluctuation fields have to be energetically equivalent to
their averages as shown in Figure A.5. To calculate the stress and strain fields at the microlevel

T (x),E(x)

⇔
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Figure A.5: Micro fluctuation fields on the RVE boundary and their average.

in a volumeV next to the balance of linear momentum and the governing equation additional
boundary conditions have to be added at the boundary∂V . Due to the fact that the behavior
of the heterogeneous volume at the microlevel is represented only by a point at the macrolevel
homogeneous boundary conditions should be chosen as boundary conditions for the microlevel.
In principle there are four types of boundary conditions which fulfill the Hill-Mandel lemma:
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• linear displacements at∂V

• uniform tractions at the boundary∂V

• periodic boundary conditions at the boundary∂V

• mixed boundary conditions (Pahr and Zysset, 2008) at the boundary∂V

We restrict the composite to the matrix-inclusion type withperfect interfacial bonds between
inclusions and their immediate surrounding matrix. The matrix phase is labeled by M and the
inclusion is assumed to be of type-i and therefore labeled byi or I for one single inclusion. For
a multiphase composite consisting ofn phases,cα = Vα/V denotes the volume fraction of each
phaseα with respect to the total volumeV of the RVE, which are subjected to the restriction
∑n

α=1 cα = 1. The volumeV at the microlevel is subjected to linear boundary displacements
which corresponds to a macroscopic strainE0. The microscopic strain within the RVE depends
upon an initially unknown fourth-order tensorA(x) with

E(x) = A(x)E0 (A.23)

referred to as concentration tensor. In the following,A describes the volume average ofA(x).
As the averaging procedure is done phase-wise, this resultsin phase-wise constant concentration
tensorsAα. Hence, the effective elasticity tensor can be calculated via

C∗ =

n
∑

α=1

cαCαAα. (A.24)

For the special case of an ellipsoidal inclusion in an infinite matrix, the Eshelby solution can
be used to determine the so far unknown concentration tensorsAα. As shown by many authors
(e.q Gross and Seelig, 2001; Nemat-Nasser and Hori, 1999) and in the previous section (see
(A.15)), the strain in the inclusion can be calculated by

EI = A0
IE

0 =
[

I + SC−1
M (CI − CM)

]−1
E0 = const (A.25)

whereI denotes the fourth-order symmetric identity tensor,CM the elasticity tensor of the
matrix,CI the elasticity tensor of the inclusion andS the Eshelby tensor.

Similar results can be obtained by applying uniform tractions at the boundary of the vol-
umeV which correspond to a macroscopic stressT 0. The microscopic stress is related to the
macroscopic one via an unknown fourth-order tensorB according to

T (x) = B(x)T 0 (A.26)

whereB(x) is a concentration tensor. In the followingB describes the volume average ofB(x),
where this results in phase wise constant concentration tensorsBα. Therefore the effective
elasticity tensor can be calculated via

C∗ =





n
∑

α=1

cαC−1
α Bα





−1

. (A.27)
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A.2.1 Voigt- and Reuss-bounds

A homogeneous material loaded by homogeneous boundary conditions undergoes homoge-
neous state fields. For heterogeneous material this generally does not hold true but it is the most
primitive assumption to suppose constant microfields. Voigt (1889) assumed the strain to be
constant in the volumeV and therefore followsA = I. This assumption can be understood as
a parallel connection of the different materials. According to this the effective elasticity tensor
can be calculated by averaging the stiffnesses of the singlematerials.

C∗
(Voigt) = 〈C(x)〉 =

n
∑

α=1

cαCα (A.28)

Reuss (1929) assumed the stress to be constant in the volumeV and analogously to Voigt
follows thatB = I. This assumption can be understood as a serial connection ofthe different
materials. This leads to the result that the effective compliance tensor can be calculated by
averaging the compliance of the single materials.

C∗−1
(Reuss) =

〈

C(x)−1
〉

=
n
∑

α=1

cαC−1
α (A.29)

With the minimum of stored energy potential and dual (conjugated) potential it can be shown
that

C∗
(Voigt) ≥ C∗ ≥ C∗

(Reuss) (A.30)

where it is emphasized that the inequality implies that the eigenvalues of the tensorsC∗−C∗
(Reuss)

andC∗
(Voigt)−C∗ are non-negative (Zohdi and Wriggers, 2005). These bonds are the limits which

can occur for the effective elasticity tensor if the investigated microstructure meets the RVE
requirements mentioned before.

A.2.2 Mori-Tanaka method

The Mori-Tanaka method approximates the interaction between the phases by assuming that
each inclusioni is embedded, in turn, in an infinite matrix that is remotely loaded by the average
matrix strainEM or average matrix stressT M, respectively. Therefore the strain in the single
inclusion can be calculated by

EI
i = A0

I,iE
M, (A.31)

where the influence tensorA0
I,i is given by

A0
I,i =

[

I + SMC−1
M (CI,i − CM)

]−1
. (A.32)

In the case of ellipsoidal inclusions the Mori-Tanaka homogenization approach leads toEI,i =

A0
I(MT),iE

0, whereAI(MT),i is obtained by

AI(MT),i =

[

ciI + cM(A0
I,i)

−1 +
∑

j

cjA0
I,j(A0

I,i)
−1

]−1

. (A.33)
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With this result we can calculate the effective elasticity tensor

C∗
(MT) = CM +

∑

i

ci(CI,i − CM)AI(MT),i. (A.34)

In Benveniste (1987) the method is interpreted in the sense that ”each inclusion behaves like an
isolated inclusion in the matrix seeingEM as a far-field strain”.

A.2.3 Hashin-Shtrikman bounds

Following the approach of Hashin and Shtrikman (1963) leadsto the equation for the upper and
lower bound of the elasticity tensor for a two-phase material:

C∗
(HS+) = CI + cM

[

(CM − CI)
−1 + cISIC−1

I

]−1

C∗
(HS−) = CM + cI

[

(CI − CM)−1 + cMSMC−1
M

]−1
.

(A.35)

As can be seen the upper Hashin-Shtrikman bound correspondsto the Mori-Tanaka result. The
upper bound can also be obtained with the Mori-Tanaka methodjust by interchanging matrix
and inclusion material.

A.2.4 Interpolative Double Inclusion model (IDIM)

In Pierard et al. (2004) the following interpolative homogenization model for a two-phase ma-
terial was introduced:

C∗
(IDIM) =

[(

1 − cI + c2I
2

)

C∗−1
(MT−1) +

cI + c2I
2

C∗−1
(MT)

]−1

, (A.36)

in which C(MT) is the estimation for the effective elasticity from the Mori-Tanaka method.
C(MT−1) is the effective elasticity tensor following from the inverse Mori-Tanaka approxima-
tion in which, for a two-phase material, the smaller volume part becomes the matrix material
and vice versa. Therefore the interpolative double inclusion model can be seen as a properly
chosen interpolation between the Mori-Tanaka and inverse Mori-Tanaka method and between
the Hashin-Shtrikman bounds, respectively. This model wasfirst developed by Lielens (1999).

A.2.5 Self-consistent scheme

The self-consistent scheme approximates the interaction between the phases by assuming that
each phase is embedded in an infinite volume of an effective medium with elastic properties
C∗ of the composite. Therefore the effective elasticity stiffness of the material passes into the
matrix stiffness (CM = C∗) and we obtain the influence tensor

AI(SCS),i =
[

I + S∗ C∗−1
(

CI,i − C∗
)]−1

. (A.37)

Due to the fact that the influence tensorAI(SCS),i depends on the effective elasticity tensorC∗
E,

the equation is implicit and nonlinear.

C∗
(SCS) = CM +

∑

i

ci
(

CI,i − CM

)

AI(SCS),i (A.38)

Algorithmically, the method requires an additional iterative loop to calculateC∗
(SCS). In general,

the self-consistent method gives a sufficient prediction ofthe behavior of polycrystals but it is
less accurate in the case of two-phase composites as the IDIMas shown by Pierard et al. (2004).
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Crystalline Structure

B.1 Lattice structures of metals

Every metal consists of a crystalline structure that is regular and repetitive. The simplest possi-
ble choice to serve as a representative structural unit is called a unit cell. A real crystal mainly
consists of a multiplicity of unit cells. Therefore the structure can be described by one single
unit cell. All metals form their unit cell as close-packed aspossible. In metal structures the
three most important unit cells are the body-centered cubic(bcc), face-centered cubic (fcc) and
hexagonal close-packed structure (hcp) shown in Figure B.1.

Figure B.1: The most important lattice structures of metals(bcc, hcp, fcc) (Bauser
et al., 2001).

The bcc crystal consists of a simple cubic lattice structurewhich has one atom in every
corner and one atom in the center. The atoms at the corners areshared by eight adjacent unit
cells. The atomic packing factor is 68%. Typical metals withthis structure are chromium,
vanadium, molybdenum, tungsten,α-iron andδ-iron. The fcc structure has an atom at each
corner and at the center of every face. It belongs to the crystal structure with an atomic packing
factor of 74%, the highest value possible. Aluminum, nickel, copper, silver, platinum, gold and
γ-iron appear in this structure. The hcp structure is more complicated than the cubic structures.
The unit cell consists of three layers of atoms. The top and bottom layers contain six atoms
at the corners of a hexagon and one atom at the center of each hexagon. The middle layer
contains three atoms positioned in the gaps between the atoms of the top and bottom layers. As
the name already implies, hcp belongs to the structures thatare close-packed with an atomic
packing factor of 74%. Hcp structures are found in beryllium, magnesium,α-titanium, zinc and
zirconium (Bargel and Schulze, 2000).
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To describe the geometry around and inside a unit cell the Miller indices are used. The
following explanation applies only to cubic crystal structures. A description for hcp-crystals
can be found in the literature, e.g., Shackelford and Sullivan (2005). For describing lattice
planes a set of integers, usually calledh, k andl, represent the inverse of axial intercepts. That
means if the linesma, nb andpc describe the intersection between the lattice plane and the
coordinate axis (through the point of origin), the Miller indices result in the reciprocal value:

h : k : l =
1

m
:

1

n
:
1

p
.

The indices of planes are written in ( )-brackets and for negative indices a minus is placed above
the number (e.g.,1̄). The lattice directions are expressed as a set of integers,which are obtained
by identifying the smallest integer positions interceptedby the line from the origin and are
written in [ ]-brackets. Due to this definition the directionorthogonal to the plane is described
by the same set of integers.{}-brackets describe all planes which are crystallographically
equivalent due to the symmetry of the unit cell like (111), (1̄11), (1̄1̄1) and (̄11̄1̄) in the cubic
case.〈 〉-brackets describe the group of all equivalent directions.

Figure B.2: Miller indices (Bauser et al., 2001).
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B.2 Crystal defects

As described, a metal consists of repetitive unit cells but with the restriction that there are
structural flaws in the metal due to the fact that no material consists of a perfect repeating
crystal structure. These defects have an important effect on the mechanical properties of the
metal, e.g., plasticity, diffusion and conductivity are based on these mechanisms of defects.

The simplest type of flaw is the point defect which is associated with the crystalline point
lattice. The three common types of point defects are vacancy, interstitial and substitution atom
(see Figure B.3). Vacancy means an unoccupied atom site in the crystal structure. In interstitial
defects an atom takes a position in the crystal structure which is normally not occupied by an
atom in the perfect structure. Substitution atom means thata foreign atom (impurity) replaces
an atom in the crystal structure. This can only happen when the atoms are based on the same
lattice type and the atom diameters are nearly the same. Point defects are especially dependent
on the temperature. With increasing temperature the thermal vibration gets higher and with it
the energy of the atoms vacancies and interstitials can occur easier.

(interstitial)

(substitution)

impurity

distored lattice

interstitial

vacancy

impurity

Figure B.3: Different types of point defects

In comparison with point defects, which result from thermalagitation, dislocations are asso-
ciated with mechanical deformation. The two common types ofdislocations are edge and screw
dislocation shown in Figure B.4. The edge dislocation bearsthis name because the dislocation
line runs along the edge of an extra row of atoms. The dislocation line is movable in this plane,
the so called sliding plane. The screw dislocation derives its name from the spiral stacking of
crystal planes around the dislocation line.

Besides point and line flaws in crystalline materials it is also important to consider that the
material is contained within some boundary surfaces which are a distribution of the atomic-
stacking arrangement of the crystal. One special form is thetwin boundary, which separates
two crystalline regions that are structurally mirror images of each other. If the orientations
of two single crystals in the metal are different, the crystals are called grains and the contact
line is called grain boundary. Many properties of metals arehighly sensitive to such grain
structures (Shackelford and Sullivan, 2005). The influencedepends on the relative orientation
of the adjacent grains. If the adjacent grains are only tilted by a few degrees relative to each
other, also called the misorientation, the boundary is called low angle boundary. This can occur
through a few isolated edge dislocations (see Figure B.5). The misorientation angle for this



110 APPENDIX B

Figure B.4: Different types of line defects: a) edge dislocation b) screw dislocation (Bauser
et al., 2001).

case is usually defined to be smaller than15◦. All grains belonging to such a boundary are
not separated in single grains but in so-called subgrains. The boundary structure involving
adjacent grains which are tilted by a large misorientation angle is more complex than for small
misorientation angles (see Figure B.5). The boundary is a strongly disturbed region containing
a multitude of different defect mechanisms.

Figure B.5: Different types of grain boundaries: a) low an-
gle grain boundary (α < 15◦) b) high angle grain bound-
ary (Bauser et al., 2001).

Plastic deformation is the distortion and reformation of atomic bonds. In perfect crystals
the plastic deformation would occur by sliding one plane of atoms over an adjacent plane. The
necessary shear stress to deform the material would be hundreds to thousands times bigger than
it is in reality. This is based on the sliding of dislocationswhich needs a relatively small shearing
stress to slide through the metal. It is obvious that this slip mechanism would tend to be more
difficult as the atomic slip distance increases, which meansthat the dislocation motion will
always occur first in high-atomic-density-planes and directions. The motion of the dislocation
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will start when the shear stress on the plane exceeds a critical value. This shear stress is called
Peierls-stressτp which can approximately be calculated from

τp =
2µ

1 − ν
exp

(

− 2π

(1 − ν)

d

b

)

(B.1)

whereµ is the shear modulus andν the Poisson ratio of the material.d describes the distance
between the gliding planes andb the Burgers vector. This exponential dependence ond

b
explains

why high-atomic-density-directions are favorable due to the small occurring Burgers vector. For
cubic systems (lattice parametera) high indexed planes are favorable through the maximum
distanced between the planes with Miller indizes{hkl} given by

d =
a√

h2 + k2 + l2
. (B.2)

These preferred planes and directions combined are called slip systems and can be found in
different types of unit cells. The number of different high-density plane-directions is essential
for the characteristical deformability of a metal. Due to the fact that fcc has twelve of them,
determined through the 4 octahedron{111} slip planes with the 3 associated〈110〉 directions,
fcc is relatively ductile compared to hcp which has only three high-density plane-directions.
For bcc slip is possible on more than one family of planes ({110},{112} and{123}) in the 2
associated〈111〉 directions. This results in a maximum of 48 possible slip systems. However,
some of these slip systems are often only operable in certaintemperature ranges.

Figure B.6: Different deformation behavior
when applying shear stress: a) elastic deforma-
tion b) plastic deformation (Bauser et al., 2001).

1
τ

τ

τ

τ
4

3

2

Figure B.7: Frank-Read mech-
anism (Bauser et al., 2001).

The dislocation motion is also obstructed by different lattice defects so that the necessary
shear stress becomes higher. For example, foreign atoms in form of a substitution or interstitial
atoms serve as obstacles for dislocation. This phenomenon is called solution hardening which
is of major importance for aluminum alloys. In that case the foreign atoms create bracing. The
dislocation motion can also be hindered by other dislocations. During deformation the material
can harden through the accumulation of dislocations at obstacles like grain boundaries. Beyond
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these phenomena the motion of dislocation can also create new dislocations which become an
obstacle. Figure B.7 exemplarily shows the Frank-Read mechanism in which the overcoming
of the defects generates new dislocations.

B.3 Critical resolved shear stress

The yield stress which characterizes the start of plastic deformation varies for specimen consist-
ing of one single crystal. Deforming the single crystal under different orientations in a tensile
test results in different yield stresses. The orientation dependence can be explained by the
Peach-Koehler equation. As mentioned in the previous section plastic flow is related to disloca-
tion motion. A dislocation moves when it becomes subjected to a force parallel to the slip plane
in slip direction. Hence, it is not the completely applied stress, rather the resolved shear stress
in the slip system that causes dislocation motion. The resolved shear stress, also called Schmid
stress,τ is related to the applied tensile stressσ by

τ = σ cos(φ) cos(λ) = M σ , (B.3)

whereφ is the angle between the tensile direction and the slip planenormal andλ is the angle
between tensile direction and the slip direction. This principle relation is shown in Figure B.8.
The factorM = cos(φ) cos(λ) is called Schmid factor and assumes values0 ≤ |M | ≤ 0.5 for
tensile deformation. Therefore the force acting on the dislocations depends on the orientation
of the slip system relative to the tensile axis. For more possible slip systems, the Schmid-
factors are different for each system, meaning that the system with the highest Schmid-factor
experiences the highest resolved shear stress. Dislocations start to move if the force acting on
the dislocation, which is equivalent to the resolved shear stress, exceeds a critical valueσA

(Gottstein, 2004).

Figure B.8: Determining the
Schmid-factor (Shackelford
and Sullivan, 2005).



Appendix C

Basics of continuum mechanics

This appendix gives a short insight into the basics of continuum mechanics and makes no claim
of completeness. The underlying kinematics are introducedfor the general nonlinear case.
In the following the mechanical balance equations are givenwhich represent the fundamental
relations of continuum mechanics. Finally, the fundamental ideas of material modeling are
introduced, i.e. the principles of constitutive theory of materials.

C.1 Flow kinematics

The following kinematics are given in terms of finite deformation measures from which the
small deformation case can always be derived. If the motion is characterized with respect to
the material coordinatesX, this is called material, referential or Lagrangian description. In
the material description one follows the movement of a particle of bodyB in time. Another
possibility is the use of the spatial coordinatesx when the motion of bodyB has to be described,
which is called spatial or Eulerian description. In this formulation, attention is paid to a point in
space and the change of the motion with timet at this point. This description is called current,
spatial or Eulerian description of motion. LetX denote the fixed position of a material point in
the bodyB in the undeformed and stress free reference (material) configurationBref .

During deformation or motion the configuration changes withtime which is described by the
time-dependent vector field of the nonlinear spatial deformation map

ϕ : Bref → Bcur with ϕ(X, t) := x, (C.1)

wherex denotes the spatial position of the particleX in the current deformed (spatial) configu-
rationBcur at timet. This mapping has to be unique and continously differentiable. In complete
analogy to this spatial motion problem, the inverse material motion problem can be formulated.
This is described by the material deformation mapΦ which is given by

Φ : Bcur → Bref with Φ(x, t) := X . (C.2)

where physical particles are observed at fixed spatial coordinatesx.

The motion of a bodyB is characterized by the displacement vectoru, defined by

u(X, t) := ϕ(X, t) − X . (C.3)

To introduce the deformation gradientF we describe the distance between two neighboring
material points in the reference configuration by the vectordX. Due to the deformation this
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Bref Bcur

ϕ

Φ

FX x

Figure C.1: Kinematics: Deformation mapφ maps the ref-
erence configurationBref to the current configurationBcur

and the deformation mapΦ maps vice versa.

vector is mapped into its image in the current configuration given bydx = dX + du where
du is the differential total displacement vector. These vectors are connected by the deformation
gradientF via

dx =
∂x

∂X
dX =

(

I +
∂u

∂X

)

dX := F dX , (C.4)

whereH := ∂u

∂X
is also known as the displacement gradient or shape distortion tensor andI

denotes the second rank identity tensor and. The deformation gradient can therefore also be
written as

F = ∇rϕ(X, t) , (C.5)

where∇r denotes the derivative with respect to the reference configuration.F is a second order
two-field tensor which is in general non-symmetric. Since the deformation gradient is a linear
operator, the local transformation in (C.4) is also linear.To maintain the connection ofB during
the deformation process, the mapping has to be one-to-one which excludes a singularity ofF
which is formally guarantied by a condition for the determinant of the deformation gradient,
called Jacobian

J = detF 6= 0. (C.6)

To exclude a self penetration of the body, the Jacobian has tobe positive:J > 0. Due to this
requirementsF is invertible. (C.4) provides the transformation between line elements from the
initial to the current configuration. The transformation relations for area and volume elements
are given for completeness:

area element: da = nda = JF−T NdA = JF−TdA .

volume element: dv = JdV .
(C.7)

The deformation gradientF can be expressed as the product of a proper orthogonal rotation
tensorR with R−1 = RT and one of two symmetrical tensorsU andV which are a measure
for pure stretching. Two representations are possible

F = RU = V R (C.8)
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whereU andV are the right and left stretch tensor, respectively (Ogden,1984).

In continuum mechanicsF is the most important measure of deformation and basis for strain
measures. One strain measure used in this work is the Green-Lagrange strain tensor

E =
1

2
(F TF − I) (C.9)

whereC := F T F is the right Cauchy-Green tensor.

In the context of crystal plasticity three different coordinate systems are used (Roters et al.,
2010).

• shape coordinate system: This is a curvilinear system basedon the physical shape of the
body during deformation.

• lattice coordinate system: The coordinate axes are fixed locally parallel to the crystal-
lographic directions. The distinction between shape and lattice distortion is crucial for
calculating internal stresses (Bilby et al., 1958). The reason for this is that the shape de-
formation does not necessarily follow the deformation of the lattice. They only coincide
when no motion of crystal defects occurs (Roters et al., 2010).

• laboratory coordinate system: Often the deformation of thebodyB and its associated
lattice is described in a coordinate system that does not deform with the body.

In the case of crystal plasticity the perfect single crystalis often used as reference state,
however, it is also possible to choose any state just before deformation or any state at any timet
in an incremental setting. The deformation gradient can be decomposed into an elastic partFE

and a plastic partFP called the Kröner decomposition (Kröner, 1961)

F = FEFP (C.10)

which is schematically illustrated in Figure C.2.

Bref

Bint

Bcur

FEFP

F

reference configuration

intermediate configuration

current configuration

Figure C.2: Decomposition of the total deformation gradient.
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FE is the elastic deformation component which represents the local elastic distortion of a
material due to stretch and rotation of the microscopic structure. ThereforeFE occurs due to
reversible response of the lattice to external loads and displacements.FP is the plastic distor-
tion which represents the local deformation due to the flow ofdefects through the microscopic
structure. ThereforeFP is an irreversible permanent deformation. The transformation of the
reference state byFP leads to an intermediate configuration. Investigating the crystal lattice in
the different configuration as shown in Figure 4.1, the transformation viaFP from the reference
to the intermediate configuration renders the lattice unchanged and all the deformation is pro-
duced by dislocation slip. The plastic deformation is assumed to be volume preserving which
meansdetFP = 1. During the transformation from the intermediate configuration to the current
one viaFE , the lattice undergoes a purely elastic shape change. This means the external force
has to be maintained in order to preserve the shape changes (Roters et al., 2010).

The dependence of the deformationϕ(X, t) on time t has to be considered in nonlinear
problems in case that the constitutive behavior is history dependent. The spatial velocityv is
introduced as the material time derivative of the spatial motion map

v := Dtϕ(X, t) =
∂ϕ(X, t)

∂t
= ϕ̇(X, t). (C.11)

From this the time derivative for the deformation gradientF follows from (C.5) to be

Ḟ = ∇r
˙ϕ(X, t) = ∇cv̂F (C.12)

where∇c is the derivative with respect to the current configuration.v̂ describes the velocity of
a particle at pointx at timet in the current configuration given bŷv(x, t) = v̂(ϕ(X, t), t) =

v(X, t). The spatial velocity gradient is defined as

L := ∇cv̂ = ḞF−1. (C.13)

The relationship ofL to LE andLE can be obtained by taking the derivate of (C.10) and apply
the product rule of differentiation

Ḟ = ḞEFP + FEḞP (C.14)

which yields in combination with (C.13) to

L = ḞEF−1
E + FEḞPF−1

P F−1
E = LE + FELPF−1

E . (C.15)

Due to the fact that the spatial velocity gradient is calculated in the deformed configuration and
the plastic velocity gradientLP is evaluated in the intermediate configuration,LP has to be
mapped into the deformed configuration byFE.

C.2 Mechanical balance equation

Balance laws describe the universally valid physical principles which are independent of the
specific material properties. In the following the differential equations which describe the local
balance equations such as balance of mass, balance of linearand angular momentum as well
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as balance of energy and balance of entropy are derived from ageneral balance law introduced
next (see, e.g., Liu (2002)). These equations represent thefundamental relations of continuum
mechanics. A balance law is called conservation law if it hasvanishing sources.

Let us start with a general balance equation in integral formfor a closed system describing
the evolution of a physical quantityΛ in a bodyB in a spatial motion problem. The actual state
of a bodyB can mathematically be described by volume integrals over the specific density of
the physical quantityΛ. The impact of the surroundings has to be described by area orvolume
integrals over the corresponding volume or area densities of the applied loadings. A general
balance equation can then be written as

Dt

∫

Bref

Λ dV = −
∫

∂Bref

φn dA +

∫

Bref

ζ dV +

∫

Bref

ξ dV (C.16)

whereφn denotes the non-convective flux density vector,ζ the corresponding source density
andξ the production in the body. Assumingφn(x,n, t) depending on the positionx and the
outward unit normal vectorn and timet leads to the Cauchy lemma which states that there
exists a unique tensorΦ such that

φn(x,n, t) = Φ(x, t) n. (C.17)

Using this the balance equation can be rewritten

Dt

∫

Bref

Λ dV = −
∫

∂Bref

Φn dA+

∫

Bref

ζ dV +

∫

Bref

ξ dV. (C.18)

Applying the Gauss theorem to reformulate the area integralinto a volume integral and with the
knowledge that the integral has to hold for all volume elements letdV → 0 lead to the local
form of the balance equation

DtΛ = −DivΦ + ζ + ξ. (C.19)

Further details with respect to material and spatial motionproblem can be found, e.g., in Gurtin
et al. (2009).

C.2.1 Balance of mass

Only processes are considered in which the mass of a system isconserved. This implies that no
change in mass occurs and that the mass in the initial and current configuration has to be equal.
This leads to

ρ0dV = ρdv (C.20)

whereρ0 and ρ describe the densities in the initial and current configuration. The balance
of mass can also be derived from (C.19) by substitutingΛ by ρ0 and setting the fluxΦ, the
productionζ and source densitiesξ equal to zero which leads to

Dtρ0 = 0 (C.21)
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C.2.2 Balance of linear momentum

The balance of linear momentum can be understood as the continuum version of Newton’s
second law. The change of linear momentumρ0 v in time is equal to the sum of all external
forces acting on the bodyB. With the application of Cauchy’s stress theorem and use of the
divergence theorem one derives

Dtρ0 v = DivP T + ρ0b (C.22)

whereP denotes the unsymmetric first Piola-Kirchhoff stress relating spatial forces to material
area elements andb denotes the volume forces. The Piola-Kirchhoff stress is related to the the
Cauchy stressT via a push forward to the spatial configuration with

P = J T F−T . (C.23)

C.2.3 Balance of angular momentum

The change of angular momentum in time with respect to a pointA is equal to the sum of all
moments stemming from external volume and surface forcesb andt with respect to pointA.
Writing the balance of angular momentum in a spatial integral form leads to

dt

∫

Bcur

(x − xA) × (ρv)dv =

∫

Bcur

(x − xA) × t da +

∫

Bcur

(x − xA) × b dv. (C.24)

This equation yields after some manipulations to the symmetry of the Cauchy stress tensor

T = T T (C.25)

and the unsymmetry of the first Piola-Kirchhoff stress tensor

P F T = (P F T )T . (C.26)

C.2.4 Balance of energy

The balance of energy postulates the conservation of energyin a thermodynamical process
which is also known as first law of thermodynamics. The changeof the total energy in time is
equal to the sum of the mechanical power of all external loadsPext and the heat supplyQext

DtE = Pext +Qext (C.27)

where the total energy can be split into internalU and kinetic energyK. The balance of energy
does not provide any information about the direction of a thermodynamic process. The local
form of the first law of thermodynamics can be obtained by inserting relations forE,Pext and
Qext and some manipulation (e.g., Greve, 2003)

ρ0 Dtu = −DivQ +
1

2
S · Ċ + ρ0 r (C.28)

whereu denotes the internal energy density,Q the material heat flux vector andr the external
heat supply per unit mass.1

2
S · Ċ is named specific stress power.S describes the symmetric

second PiolaKirchhoff stress tensor which is related to thefirst PiolaKirchhoff stress tensorP
via

S = F−1P . (C.29)
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C.2.5 Balance of entropy

The direction of a thermodynamical process is given by the second law of thermodynamics
which states that the internal entropy production per unit massξ is non-negative

ξ ≥ 0. (C.30)

The balance of entropy states that rate of entropyη is equal to the divergence of the entropy flux
H plus the source and the production termss andξ

ρ0 Dtη = −DivH + ρ0(s+ ξ). (C.31)

C.3 Concepts in material modeling

The fundamental concepts of material modeling are introduced in the following. The previously
described kinematics and balance equations are a general basis for formulating the thermome-
chanical behavior of a continuum body. For the distinction of different materials constitutive
equations are necessary to complete the framework. The constitutive equations have to fulfill
principles of the constitutive theory of materials in orderto not contradict general physical ob-
servations. These principles are summarized (see, e.g., Holzapfel (2000); Truesdell and Noll
(1965)) as follows: The principle of equipresence demands apriori the same set of variables
for all constitutive equations. The principle of determinism describes the fact that the present
state of a particle is only determined by the history of the body and not its future. The principle
of local action states that the material functions are restricted to pointwise dependences and
the state of particles outside of an arbitrary neighborhoodcan be disregarded. The principle of
material frame-indifference states that the response of a material is independent of the observer.
The constitutive equations must be invariant with respect to frame changes (Truesdell and Noll,
1965). That constitutive equations are consistent with forms of symmetry that can exist in ma-
terials. This requirement is named the principle of material symmetry (Gurtin et al., 2009). The
principle of Isomorphism states that the elastic properties, if properly identified, are not effected
by yielding (Bertram, 2003). The used constitutive equations for modeling different material
behavior which fulfill these concepts can be found in the various chapters.
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Voigt, W., Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper,
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