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Summary

In the first part of this work homogenization methods in thategt of linear elasticity are
considered. Classical homogenization methods are comhparthe basis of the contrast in the
elastic properties of the constituents for spherical isidn. It is shown that this has a significant
influence on the accuracy of the homogenization method$ieidilowing three strategies for
dealing with irregular shaped inclusions in the contextahlogenization methods are investi-
gated, namely homogenization methods using an analytesalrgbtion for the Eshelby tensor,
the Mori-Tanaka method with replacement tensor approadhrl(R) and the direct discretiza-
tion of a real microstructure. The study shows that the RMTbthod is very good agreement
with FE-results whereas the analytical description didpredict the correct behavior for all
shapes. For a real microstructure the direct discretizasithe best strategy.

In the second part a homogenization method for the mateeiadvior of two-phase com-
posites characterized by a thin-layer-type microstructsiintroduced. The basic idea here is
to idealize the thin-layered microstructure as a first-otdminate. Comparison of the method
with existing homogenization schemes as well as with thereeice finite-element model for
idealized composites demonstrates the advantage of thent@approach for such microstruc-
tures. Further a first extension to a variable interfacentai#on is given.

The third and fourth part deal with the application of a caysilasticity material model
to a thin sheet metal specimen with large grains subjected temsile test. To this end an
explicit finite-element-, crystal-plasticity-based mbaedeveloped for each grain, the grain
morphology, and the thin sheet specimen as a whole. In platjahe crystal plasticity model
is rate-dependent and accounts for (local) dissipativédrang effects. The predictions of the
model are compared with experimental resuItE_oLI:Lenningxmmﬁ dZOQ_!IS) for the deforma-
tion behavior of thin sheets of Fe-3%Si loaded incremenialtension as well as for further
properties like the orientation gradient. To this end aiteris restricted to the two slip families
{110} and{112}. At the beginning all hardening is neglected. Even for thisreimplified case
a good correlation with the experimental results is obthiteven better agreement is obtained
with experiment when hardening is included. Results for GNOGM and local orientation
changes are investigated and discussed.

The last part of this work deals with the characterizatioth parameter identification of sin-
gle constituents in thermal sprayed coatings as well as fmi@vcoatings. Based on results in
nanoindentation tests the Youngs modulus as well as funtieehanical properties are identi-
fied for each constituent. A general procedure is presentededict the effective mechanical
properties based on the microstructure, porosity, chdmmaposition and properties of the
coating after thermal spraying.






Zusammenfassung

Im ersten Kapitel der Arbeit werden Homogenisierungsmagiham Kontext linearer Elasti-
zitat betrachtet. Klassische Homogenisierungsmethageden untersucht und fur sphar-ische
Einschlusse in Hinblick auf den Unterschied in den elabgs Eigenschaften der einzelnen
Materialphasen verglichen. Es wird gezeigt, dass diesemnegntscheidenden Einfluss auf die
Genauigkeit der Homogenisierungsmethoden hat. Im Fokyenederden drei Strategien fur
den Einsatz von Homogenisierungsmethoden fiur nichpsdide Einschlusse diskutiert und
untersucht. Zum Einen wird eine analytische Vorgehensmgisdie Ermittlung des Eshelby-
Tensors, zum Zweiten die Mori-Tanaka Methode mit einem tZtsasoransatz (RMTM) und
zum Schluss eine direkte Diskretisierung anhand der rédllerostruktur diskutiert. Die Studie
zeigte, dass die RMTM die beste Vorhersage gegenuber déteBHltaten liefert. Die analyti-
sche Vorgehensweise lieferte fiir einige Einschlusstypeint sehr brauchbare Ergebnisse. Fur
eine reale Mikrostruktur ist die direkte Diskretisierung beste Strategie anzusehen.

Im zweiten Kapitel der Arbeit wird eine Homogenisierungsnoele fur einen zweiphasigen
Verbundwerkstoff vorgestellt, welcher durch eine dunadeichtartige Mikrostruktur gekenn-
zeichnet ist. Die grundsatzliche Idee ist die Idealisigralieser Mikrostruktur mittels erster-
Ordnung Laminate. Vergleiche mit existierenden Homogerusgsmethoden sowie einem RVE
fur solche Mikrostrukturen zeigen die Vorteile der vorgdisen Modellierung. Des Weiteren ist
eine erste Erweiterung fur variable Interfacerichtungegeben.

Das dritte und vierte Kapitel dieser Arbeit behandeln diev&ndung eines Kristallplasti-
zitatsmodells auf einen Zugversuch von diunnen Blechgmohit grofen Kornern. Zu diesem
Zweck ist ein explizites Finite-Element-Modell, basiateauf Kristallplastizitat, entwickelt
worden. Im Besonderen, ist das Kristallplastizitatsntlathnratenabhangig und berticksichtigt
lokale dissipative Verfestigungsaspekte. Die Simula@gebnisse werden mit experimentellen
Ergebnissen vdn.l:l_ennmg_a.n.dMeM_tL(Zb%) bzgl. des Defoamsverhaltens von Blechen aus
Fe-3/%Si, welche durch inkrementellen Zug belastet worden siedglichen. Hierbei werden
nur die zwei Gleitsystemfamiliefit 10} und {112} betrachtet. Zu Beginn wird keine Verfesti-
gung beriicksichtigt. Schon fur diesen vereinfachtehvadl eine guteUbereinstimmung mit
den experimentellen Ergebnissen bzgl. des Deformatiohaitens erzielt. Eine noch bessere
Ubereinstimmung zeigen die Resultate mit aktiver Verégsiy. Ergebnisse bzgl. geometrisch
notwendiger Versetzungen, dem Orientierungsgradieimsiedokalen Orientierungsanderungen
werden untersucht und diskutiert.

Das letzte Kapitel der Arbeit behandelt die Charaktengigrund Parameteridentifikation
von einzelnen Materialbestandteilen in thermisch gedprit Schichten. Basierend auf den Er-
gebnissen aus Nanoindentation werden der E-Modul sowieergeMaterialeigenschaften fur
jeden Bestandteil identifiziert. Eine Methode, die effedéti Eigenschaften der Beschichtung,
basierend auf ihrer Mikrostruktur, Porositat und chemmescZusammensetzung zu ermitteln,
wird vorgestellt.






Chapter 1

Comparison of homogenization methods in the
context of multi-phase elastic composites with
variable shap

Abstract— In this chapter homogenization methods in the frameworknefar elasticity are
discussed. Classical homogenization methods are recatiddcompared on the basis of the
contrast in the elastic properties of the constituentsgbesical inclusions. It is shown that this
contrast has a significant influence on the accuracy of theogemization methods. Further-
more two recently developed approaches, the ESCS and IDBoahedire compared to standard
homogenization schemes as well as corresponding finitesglerasults. In the following three
strategies for the homogenization of materials with irtagy shaped inclusions are investi-
gated. Homogenization approaches are used in combinattbraw analytical expression for
the Eshelby tensor based on its irreducible decompositidre second strategy to be inves-
tigated is the Mori-Tanaka method with replacement tenppra@ach which is based on the
result of a calculation of a dilute inclusion embedded in@imite matrix. Subsequently the
third approach, namely the direct discretization of a re@rostructure via finite-elements, is
discussed. Numerous comparisons are carried out in ordambpare the different strategies
mentioned above appropriately.

1.1 Introduction

The prediction of the macroscopic stress-strain respoinseneposite materials is related to the
description of their complex microstructural behavior rapdified by the interaction between
the constituents. In this context, the microstructure efitiaterial under consideration is ba-
sically taken into account by representative volume eldm@RVE). In previous decades and
especially in the absence of computers, analytical and-aealitical approximations based on
RVEs and mean-field homogenization schemes were develddedn-field homogenization
methods were first developed in the framework of linear eligtind are now well-established.
These schemes provide efficient and straight forward algos for the prediction of, among
other properties, the elastic constants. These includeXample the Mori-Tanaka method

WMS) and the interpolative double irnclusnethod (IDIM) MI.,
). For elastic-plastic behavior, there is for examipgestelf consistent scheme (Mercier and
Molinarimﬂn Moreover, the reisubbtained can be shown to be upper

or lower bounds to the true solution of the underlying prabla most cases (e.g., Voigt-Reuss,

“results partly published in Klusemann and Svendsen (2010)
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Hashin-Shtrikman bounds, seée_Gross and Seelig,| 2001; Neasaer and Horl, 1999). Al

these methods are based on two steps to predict the maciosegponse. In a first step, a local
problem for a single inclusion is solved in order to obtaipraximations for the local field
behavior as outlined by Eshelby for elastic fields of an stipal inclusionmmn.
The second step consists of averaging the local fields taroitt@ global ones (e.g. Mercier and
Molinari,@).

In this context, the main requirements on homogenizatiotihaus for predicting the effec-

tive properties, according Lo_Zh_e.ng_a.n.d lb.u.(iOOl) are

a) a simple structure which can be solved explicitly, suct thphysical interpretation for
the behavior of all the components involved is possible;

b) a valid structure for multiphase composites with variowdusion geometries, isotropy
and anisotropy;

c) an accurate model for the influence of various inclusiatrihiutions and interactions
between inclusions and their immediate surrounding matrix

However, none of the aforementioned methods is actuallg &bifulfill these requirements
completely. The major disadvantages of these methods ane@ified by the fact that inclusion
distributions are unaccounted for and that the properfi¢éiseosurrounding matrix material do
not enter these methods directly. An interesting approaas presented by Guinovart-Diaz
et al. tmgb), namely the recursive asymptotic homogeiozaicheme (RAHS), which takes
the variation of properties around cylindrical fibers intwaunt by using multi-phase fibrous
elastic composites, wherein the constituents exhibisirarse isotropy.

A new micromechanical model has been proposdib;LZhﬂng_drdﬁﬂ]ni), namely the so-
called effective self-consistent scheme (ESCS), whiclagetd on the three-phase model which

corresponds to the generalized self-consistent schenﬁ$93$e4;€.hﬂslenﬂdﬂ..l§90). In the
three-phase model, the inclusion is embedded in a matrigtwitself is embedded in an un-
bound, initially unknown effective medium. This GSCS maetfolfills requirements b) and c)
but is still rather complicated in terms of its applicatiomedto its implicit structure and fur-
thermore restricted to spherical or cylindrical inclusidine ESCS overcomes the restriction of
spherical and cylindrical inclusions and still fulfills iggements b) and c) from above. How-
ever, its structure is as well rather complicated. A simgdifand explicit version of the ESCS
method, which is referred to as the Interaction Direct Daixe (IDD) estimate, was proposed
satisfying all three requiremeHIS_Zh.e.ng_a.n.d b_u_dZOOl). Tieshod has a simple structure
with physical meaning of the single constituent paLLi._Dd_Z.h.enb |(20_d2)|;_Zh.eng_a.n.d_bu
(@b show results for void distribution, although thenfimitation is also valid for spherical
inclusions. This encourages a first discussion of this ntetbgarding the inclusion as well as
its comparison to classical homogenization schemes preséenthis chapter.

A key point for the determination of the effective elastioperties of heterogeneous materi-
als is the investigation of the influence of single inclusion the macroscopic stiffness. In ma-
terials science applications, inhomogeneities may haegutar non-ellipsoidal shapes which
invalidate the analytical solution based on on the WO%’ ). The remarkable result



1.1 Introduction 3

found by Eshelby was that the Eshelby tensor f@&tdx) is uniform inside a 2D ellipse or 3D
ellipsoidal domainu embedded into an isotropic medium. LLn_G_aALazzl_a.n.d_La.gJ)MbO
numerical scheme was presented for an ellipsoidal inaiusiobedded into an anisotropic ma-
trix. For the case of irregular inclusions embedded intcsatropic matrim 6) proved
the impossibility of Eshelby’s uniformity result for any ehain with corners an off

roved it for domains with flat surface segments. Rﬂ!jcka.ng_a.n.d_MJlLo.h kZ)dS) and

) proved this result for any irregular inclusiom deneral three approaches can be

found in the literature for solving the problem of irregul@nomogeneities which can generally
be classified as follows:

e Analytical procedures for estimating the Eshelby tensor.

Rodin L’I_%b) presented an algorithmic closed-form sotutm a problem of classical
elasticity for an infinite homogeneous body that containslghgedral subdomain subject
to a uniform transformation strain. In this work the Eshetbgsor was derived by a
double or triple integral which was evaluated by dividing thclusions into two- or three
dimensional rectangular &mplexhs...N.azakLa.n.d_ITh;LaJl]IMi) proposed a procedure
for phase averaging the Eshelby tensor for inclusions witbtdlating microfields. A
complex variable approach to the Eshelby problem is destrib| Tsukrov and Novak

(2001 [ 2004), Kawashita and Nozaki (2001) an# Ru (1999).

e Direct computation of the effective elastic propertiesdogiven microstructure by dis-
cretizing the domain and using FEM.

Arnsetal. |(20_d2) presented a comparison between resuttsfelastic property-porosity
relationship derived directly from microtomographic ineagwith analytical results. A

similar approach was applled 10a)lah.diﬁn1a.an_el_fllll_(20_0|9a) for

evaluating the elastic properties in thermal sprayed ogati

e Computation of the contribution of one isolated inclusintoian infinite matrix material
and application to the effective behavior.

Such an approach is used in combination with the Mori-Tamaétod to predict the ther-

mal conductivity of diamond reinforced compositeSLb;LNman.d_B_b.h}rL(Z.O_d)S). This
method is an alternative approach to the compliance catimi formalism of Kachanov
et almm%mm& discussed the atratuof the effective stiffness

as a function of the shape factor concavity-convexity is tuntext.

The outline of this chapter is as follows: First the basi@idé homogenization methods is
discussed followed by an overview on the ESCS and IDD approacomparison of different
homogenization schemes with FE-results for different nwuractions of spherical inclusions
as well as different stiffness ratios are provided in sefi@. In sectiofi 114 three approaches for
dealing with irregular shaped inclusions, one based on aly@écal evaluation of the Eshelby
tensor, one based on calculating the contribution of orlatisd inclusion into an infinite matrix
and one method to discretize the microstructure directé/dascribed. A comparison of these
methods for different inclusion shapes with FE results v&iin the following. The chapter
concludes with a summary and outlook.
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Before we begin, a short word to notation. Use will be maddefdyadic or tensor product
(a ® b)c := (b - ¢)a of any non-zero Euclidean vectar Basic operations on second-order
Euclidean tensorgl used here includes symmetrizationn (A) := (A + AT). The orthog-
onal additive splitA := sph(A) + dev(A) of any A into sphericakph(A) := 3tr(A)I and
deviatoricdev(A) := A — 1tr(A) I parts is used.

1.2 Determination of effective elastic properties

Basically, a macroscopic material point at a posit®rin a fixed Cartesian frame is considered
next. In linear elasticity the macroscopic stresFE$< and straingE™**° are related via the
macroscopic elasticity tensgy, .., with

Tmacro — C Emacro . (1 . 1)

macro

Homogenization procedures are mainly based on the defindfca local surrounding of a
macroscopic material point with microscopic voluivieand the boundargl’. This volume
V represents a characteristic part of the material in ternits structure and behavior, respec-
tively. This implies that the size of heterogeneities athierolevel is at least one order of
magnitude smaller than the size of the volumef the macropoint. As it is shown by Nemat-
Nasser and Horl (1999) and Gross and Seelig (2001) the Hiitdiél condition is fulfilled by
applying linear displacement, periodic, uniform tractmnmixed boundary conditions (Pahr
and Zyssemw) onl.

The previous explanation emphasizes that the macro etgsensorC, .., averages out the

heterogeneities on the microlevel and characterizes a §enwus behavior at the macroscopic
level. The constitutive law from the microlevel

T(x)=C(z) E(x) (1.2)

can be rewritten to the macroscale
(T)=C"(E) (1.3)

with the effective elasticity tens@* = C,_,., for a multiphase composite consisting of
phasesg, =V, /V denotes the volume fraction of each phaseith respect to the total volume
V of the RVE, which are subjected to the restrictyo)i_, ¢, = 1. The effective elasticity tensor
has to be approximated for what often mean-field methods sed.uThese methods provide
relatively simple models to approximate the overall bebiaef the composites where the fields
on the microscale entering these methods by their phasagegrMost of the used mean-field
homogenization methods are shown schematically in FigileThe exact formulation of the
more standart methods can be taken from the liter 1; Nemat-Nasser
and Horm Pierard et aL_Z_( 04) or can also be fourld#h Ahe following provides an

overview on the recently developed ESCS and IDD approa 1).

1.2.1 ESCS and IDD approach

Effective self-consistent scheme (ESCS)

The effective self-consistent scheme (ESCS), proposé.dthjng_a.n.d_duL(ZO_d)l) is based on
the three-phase model. In the three-phase model the avetaags(T'); over all type¢ in-
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Figure 1.1: A schematic overview on different homogen@atschemes for estimating the
average stress or strain, respectively.

clusions is estimated by embedding a single inclugiona finite matrix material, the matrix
atmosphere, which is in turn embedded in the unbounded wike&iective medium, shown in
Figure[L2 a). In the following the inclusion together witk atrix atmosphere will be called
inclusion-matrix cell and will be denoted by a subscript,'Which implies that this cell has to
be representative for an inclusion distribution.

Shortly recall the assumptions made in order to obtain tfeetfe elasticity tensor for this
method. For a more detailed description IS_Q&D_u_a.n.d_iﬂ_endIZtlTﬁe volumé/ is subjected
to the uniform stress distributidR®. In the first step it is assumed that the inclusion-matrik cel
only consists of the matrix material, leading to stress dradrsbeing uniform according to the
Eshelby theorem and taking the form

EP =Cy'T", TP =(ZT-QH) T (1.4)

)

where(),, is the eigenstiffness tensor of the cell with respect to tilenown effective medium
which is also often referred as dual of the polarizationdaténsor, and{ describes the com-
pliance increment, defined by

H=C""1—Cy (1.5)

Qp, is calculated by
Qp, =C(T - S;) (1.6)

whereS; denotes the Eshelby tensor for the cell embedded into theawkeffective material.
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In the next step the uniform straiB” has to be incorporated in the original three-phase
model problem, by applying extra tractiom§n, with the outward normah on the inclusion
boundary. This additional stress contribution is caladdy

0 = (P Cy)EP. (1.7)

)

As depicted in Figur€dl2 b) and c) the solution for the orgjiproblem is thus obtained by

effective = effective = effective
medium (7,' medium (7,' ; medium |
incl sion‘(’ TiDn‘(' 7D n
= ‘ - &S ‘
‘é, matrix ‘é matrix + ‘matrix ;
a) b) c)
1} ~
Y
e D e D
/ matrix / matrix X O
é : é matrix |
inclfsion‘% TDn’% Dy
i i
= =
d) e) f)

Figure 1.2: A schematic overview on the ESCS approach (Zhaddh) 2001).

the superposition of two separate problems. A key ingredienrder to establish the ESCS
estimate is the approximation of the average stress, dehgt#* within the inclusion for the
decomposed problem as shown in Figurd 1.2 ci_Ln_D_u_a.n.d_tﬂm_thQ it has been shown,
that this average stre§§" can be approximated by an average stress, denotét byhich
occurs in a two-phase reference problem where the effectedium is replaced by the matrix
material as shown in Figuke1.2 f). The error due to this agpration is in the second order in
C.

By definition, the stress and strain are uniform in the maitmosphere in Figule1.2 b) and
equal toT” and EP. Therefore a two-phase model with a single inclusion eméddd the
unbounded matrix material is considered, which is subgetrea uniform stress field’® and
7Pn on the boundary of the inclusion. The obtained strain fielcbisstant and equal tB?.
Therefore the problems in Figurell.2 b) and e) are completgiywalent. Next the superposition
of the two problems illustrated in FigugeL.2 e) and f) leawla much simpler problem of the




1.2 Determination of effective elastic properties 7

matrix-inclusion problem. The average stress over theigich results in

(T)> = (T + OMH,) ™ (T — Qp,H) ' T (1.8)

7

As mentioned before, the substitution of the problem in EB§li2 c) by e) leads to an error
of O(c?) compared tqT)& and the exact average strédg); in the inclusion for the whole
estimate. ThereforéT'); can be replaced byT")¢. The average strain tensQF) can be
expressed by (sée_Nﬂmal;Nass.eLa.ndl |'|:|_O.LLd1993))

(E) =Cy' T° + Z c(C7H = Cy) (T (1.9)

Adopting the strain-equivalendé&) = C*~'T° yields to the relation

HT" =) H,(E); (1.10)

whereH, are defined as the compliance fluctuations
H, =C; ' — Cy. (1.11)

Using [I.11) together witH{1.4) leads to an implicit eqaatfor the compliance increment
represented by
H=HNT —QpH)™" (1.12)

which results in an error of third order dependent of7¢ can be interpreted as the dilute
estimate and is calculated by

HE =D e (M7 +Q0) (1.13)

This relation can therefore be used to determine the effeetiasticity tenso€*, thereby ob-
taining the relation

Clascs) = (H +Cyp) (1.14)
|Zh.eng_a.n.d_du|_(20_(|)1) showed that in the case thafgl| are identical, denoted by, the
solution of the ESCS method coincides with an effectivesstraodel for the estimation of the

average stress over any inclusion, which is embedded inrtheunded matrix material which
is subjected to a modified uniform far-field stré&S given by

T° = (T - QpH) ' T° (1.15)

rather than the real stre¥¥ which is also the physical explanation for the name prefiigctive
in the term of ESCS.

Interaction direct derivative (IDD)

Zheng and Du|_(2_Q(bl) derived an explicit version for estingfl* instead of an implicit equa-
tion like (I.14), namely the interaction direct derivatiy®D) estimate. First the right side of

(L12) is expanded to
H=H"+) HQH, (1.16)
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whereH? = >~ 'H{. This yields to an error of third order in Due to the fact tha®}}, is an
approximation of2,, with an error of first order i, this yields to the approximate solution

-1
H = <I = H?Q&) H (1.17)
and the effective elasticity tensor
* i -1
Chaay = (H“+Cy) (1.18)

This solution is called interactive direct derivative gsdte for the effective elasticity tensor
Cliaq)- TO estimate the average stress and strain, respectifedyyoinclusion, this inclusion
is embedded in the matrix material which is subjected to aifieadremote boundary traction
T"n with

-1
T" = (I > Q%ﬂH?) T° (1.19)
called the effective stress. As can be seen the IDD estiffjgte has always an explicit struc-
ture, which only involves physical and quantitatively wedifined quantities due to its deriva-
tion. The IDD method is valid for any physically possible miconcentration of inclusions and
is also capable of taking any inclusion distribution inte@ant. If the inclusions are of the
same type a much easier form can be obtainedL(s_e&Zh.eng_IaIIED.DﬂJ)X. In this case it can

also be shown that the IDD and Mori-Tanaka estimate coineitteeach other in the sense of
energy-equivalence. Note that

-1
™ — <I -> QZMH?> T° (1.20)

represents the analogous expressiofifo]1.19) in the daftthe Mori-Tanaka method.

1.3 Comparison of different homogenization approaches fotwo-phase
composites with spherical inclusions

Throughout this section we assume that the matrix and ifwiusre isotropic and only two-
phase composites in isothermal linear elasticity are cemed. We compare the prediction of
the macroscopic behavior of different classical mean-fiedchogenization methods with FE
results obtained from a RVE. Furthermore we will investgidite prediction of these methods
concerning different stiffness ratios of the inclusiontmegpair. Finally a comparison is made
regarding the ESCS and IDD method. Firstly the well-knowmamigeld homogenization meth-
ods for two different stiffness ratios over the inclusiomcentration are investigated. Figure
[L.3 shows the predicted macroscopic elastic modftusor a combination oft,; = 210 GPa
and E; = 430 GPa, where the subscript M is the matrix material and | th&usion. In the
following the Poisson ratio is assumed to:be= 0.25 for all phases. The concentratiorde-
scribes the volume fraction of the inclusion. Figlird 1.4shthe predicted macroscopic elastic
modulusE™ for a combination of,; = 21 GPa andf; = 210 GPa.
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Figure 1.3: Prediction of effective Young's Figure 1.4: Prediction of effective Young'’s
modulus £* with different homogenization modulus E* with different homogenization
methods fort,;, = 210 GPa,E; = 430 GPa  methods fort,, = 21 GPa,E; = 210 GPa
andv = 0.25. (MT = Mori-Tanaka; SCS andv = 0.25. (MT = Mori-Tanaka; SCS
= self-consistent; HS = Hashin-Shtrikman = self-consistent; HS = Hashin-Shtrikman
bounds; IDIM = interpolative double inclu- bounds; IDIM = interpolative double inclu-
sion model) sion model)

As expected the different methods deviate distinctly fraoheother for a higher contrast in
the material properties of the matrix and inclusion. For alécontrast, as shown in Figure
L3 for a ratio of~2, only small differences in the prediction of the elasticdulois using the
different methods can be seen. In this context we would bkemphasize the well-known fact,
that the Voigt-bound represents the maximum upper boundeslsehe Reuss-bound defines
the minimum lower bound of the stiffness. Voigt and Reussho@predict in general a distinct
different Young’s modulus, which can already been seen fmall stiffness ratio. Numerous
narrow bounds are provided by the Hashin-Shtrikman bourtd=evall other predictions are
located. To be able to distinguish better between the éiffehomogenization methods, we
investigate the different methods on Figlirel 1.4 where tleeliptions are done for a stiffness
ratio of 10. Here the difference between the methods is mieglg visible over the volume
fraction. In this case the Hashin-Shtrikman bounds areclge far from each other. The Mori-
Tanaka method shows a jump in the predicted elastic modatusohcentrations around 50 %
which results from the fact that in the Mori-Tanaka scheneentfatrix material is defined as the
material having the higher concentration. This shows theggending on which material is con-
sidered to be the matrix material, the Mori-Tanaka estiroatecides with the lower (for matrix
= softer material) or the upper (for matrix = harder matégrigdshin-Shtrikman bound. For a
small volume fraction of inclusions up 89% the Mori-Tanaka, self-consistent and IDIM esti-
mate nearly coincide with each other. However, with indregagolume fraction the difference
in the predictions is rather pronounced. The reason foightse different approximation of the
effective properties which leads to errors from the firsieongpwards irc. This leads to wrong
predictions for high volume fractions. Physically it is rpaissible to realize volume fractions
higher thari74%, as known for face-centered cubic crystal structure, foraégpherical inclu-
sions without letting the inclusion spheres intersect e#hbbr. IH&aslan&da.andMlisM%)
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it has been proven that the Mori-Tanaka method is generadlyrrect for higher concentrations
of inclusions. But it is hard to decide whether the IDIM esdtmor the self-consistent scheme
provide better results for higher volume fractions. A congzn with the obtained FE-results
of ideal spherical inclusion for volume fractions ugt@ will be provided later in this section.

Further analyses of these homogenization methods foreliftestiffness ratios and concen-
trations are presented in the following. Figlrel 1.9 101 .t0vige 3D-surface plots of the
prediction for the different methods for stiffness ratigsto 20. Due to the fact that it is not
possible to compare the behavior over different stiffnes®s by plotting the surfaces above
each other, in FigureZLLIL1 abd1.12 the resulting effectiastie moduluskE* normalized by
E,, over the stiffness ratio of inclusion and matrix materiaki®wn. As can be seen from

7 : : :
F \oigt 1
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L [ ] N
53 2;
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Figure 1.11: Prediction of effective Young's Figure 1.12: Prediction of effective Young’s
modulus £* with different homogenization modulus E* with different homogenization
methods for different stiffness ratids/F,;,  methods for different stiffness ratids;/ E,,
forc =10.3 forc =0.8

the surface plots, the behavior of the homogenization nustiover different stiffness ratios is
changed for different concentrations of the inclusion wedufractione, however, the general
behavior remains the same. The Voigt estimate shows a ltdegmndence of the effective elas-
tic modulus with respect to the volume fraction of the ina@usrepresenting an upper bound
as mentioned before. The Reuss estimate is the lower bourh whly shows an increase
of the effective elastic modulus in the end. Afore it remaats nearly constant level. The
same behavior can be observed for the upper and lower H&tikman bounds only at a
higher or lower level, respectively. For a relatively lonlwme fraction of inclusion the IDIM
and self-consistent estimate coincide, result in curvesvsig only small increase af*/E,,
with respect taF,/ E,,. For a large amount of inclusions & 0.8) both methods deviate from
each other, where the self-consistent shows a nearly linelaavior with increasing stiffness
ratio, whereas the IDIM estimate shows a more quadraticbehdoth are quite close to the
Hashin-Shtrikman bounds which is depicted for high coregiain ¢ of inclusions in Figure
4. As can be seen by interpretation of Figurell.12, thinesb ratio has an immense effect
on the effective properties, especially at high volumetfaas of inclusion, and therefore the
homogenization methods should also be checked for theavdehfor high stiffness ratios as
done here, instead of solely investigating their behavidiféerent volume fractions.



12 CHAPTER 1

YA,y
N AVASTE” s VAVAVAVi» )
i,

S
ANVVAVAVAVAVAVA WAV, VAYAVAAVAVAvavavaw YAVAVAVAYAVAI NS
NSRS, 0 L S Sl
O, &
ey Y OO RO s
RS X RN
KRR SRR
RRPIK RIS
SO ""’;ﬁﬁﬁﬁ’}ﬂ' )
%
= YAVAVAY y SN
TP Ay N AVAYs ) Vi S
[ SSXR TR
%% BN NI
VS Y/

52

Ko
P
Y

AV, 7’

2
1
PV

NP
9

/\
V\/ mmvﬁg

NN

AVAVA

NS

KA
50

\VAV/
VAVA
S

\/

AYAVAVA

VAVAVAVAVA'
]
B

NN
VAN

AN
SOKT

N

K/
v
NN SANN

AN
JAVAY

O AAAXV V\/
JAVAVAY o
=
AAAAVAvavav, VAV s A
ARG PO R

Figure 1.13: RVE with randomly dis-Figure 1.14: RVE with randomly
tributed spherical inclusions of a volumalistributed voids of a volume fraction
fractionc = 0.2 c=02

1.3.1 Comparison with FE-results

Before we compare these well-known homogenization methatlisthe ESCS and IDD esti-
mate, first the results obtained so far are compared withd=Element simulations. For this
purpose RVEs with randomly distributed inclusions are gateel for different volume fractions
using the software DIGIMAT. The model is generated by susigely placing randomly dis-
tributed equally sized spheres into the matrix materiall tiné desired volume fraction with
the desired number of spheres or voids is reached. If a ralyddaced sphere intersects an-
other already placed sphere, it is attempted to place thticplar sphere differently using yet
another random generator. The resulting models with spdlanclusion are shown in Figure
[L.I3 and with spherical voids in Figuke1l14. The FE simataiwere done with the soft-
ware ABAQUS/Standard applying linear displacement bomwndanditions to three faces of
the model so that these are fixed in their respective normecttiibn so that every degree of
freedom is fixed on one single face. The displacement isegpln a further face in its normal
direction.

In Figure[1.Ib the results of the different homogenizatiaihnds are compared for a stiff-
ness ratiok|/E,; = 10 with the obtained results from the FE-simulation up to arusion
volume fraction ofc = 0.35. It can be stated that for the case of spherical isotropilcignan
the IDIM shows the best agreement for higher inclusion vadractions found earlier by Pier-
ard et al. k29d4). However, as seen in Figure11.16 with irgingpstiffness ratid;/ £, the
FEM-results yield to a softer behavior as the IDIM but whit predicts the best agreement
compared to the other methods.

1.3.2 Investigation of ESCS and IDD approach in the contégpberical inclusions

Now we are investigating the ESCS and IDD method, in orderetafyw the implementation
of both approaches. Therefore the effective Young’s maglfituis calculated for an isotropic
matrix containing spherical holes, to compare these resuth results obtained by Zheng and
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Figure 1.15: Comparison of homogeniza- Figure 1.16: Comparison of homogeniza-
tion results for effective Young’s modulus tion results for effective Young’s modulus
E* with FEM-results forE,;, = 21 GPa, E* with FEM-results for different stiffness

E; =210 GPa and, = 0.25. ratiosE;/ E,, for ¢ = 0.3

void .porosityc. [-]

Figure 1.17: Comparison of different ho- Figure 1.18: Prediction of effective Young's
mpgenization results and numerical evalua-modulus £*|of ESCS method for different
tign for the effective Young’s modulug*  concentrations and stiffness ratiog’; / E,,
oflhomogenously distributed spherical voids
embedded in an isotropic matrix.

Du dZO_Qi). Figur&I.17 shows the resulting effective YoemgddulusE* over the void porosity
c for v = 0. For comparison, we also plot the corresponding self-cbasti scheme, IDIM,
Hashin-Shtrikman, Voigt and Reuss bounds as well as the ncaheesults obtained from FEM-
simulations. The Reuss bound as well as the Hashin-Shtrikoweer bound and IDIM provide
inappropriate results, meaning they are not appropriatedaishing stiffness of one phase.
The self-consistent scheme also predicts a very soft behavhere the maximum permitted
porosity isc = 0.5. The ESCS method does not predict a complete loss of stiffaes= 1
which is of course inappropriate. Here it becomes cleartthaimethod is only valid for small
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void porosityc. It can be seen that the IDD method agrees perfectly with tle-Vanaka
method or Hashin-Shtrikman upper bound, respectivEI;L_nZ.Imld_D_lJ l(ZQ_dl) showed that
the IDD method provides the best agreement for most magerndah numerical simulations,
especially forc — 1. The here presented results agree agree with their repaasedts for
voids.

10 7 ! :
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Figure 1.19: Comparison of homogeniza- Figure 1.20:  Comparison of homog-
tion results for effective Young's modulus enization results for effective Young's
E* for £\, = 21 GPa,E; = 210 GPa and modulusE™ for different stiffness ratios
v = 0.25. E/E\ forc=10.3

In the following the behavior of the ESCS and IDD method i€stigated regarding isotropic
homogeneously distributed spherical inclusions embeduea isotropic matrix for different
stiffness ratios. In Figure_LL1L9 the predicted effectiveig’'s modulusE* is shown over the
inclusion volume fraction: for a stiffness ratioF,/E,; = 10. As can be seen for the case
of voids, the IDD method agrees with the Mori-Tanaka estendthe ESCS predicts a lower
effective stiffness ratidz* than the IDD method. Although both methods predictdor 0.3
and a stiffness rati&, / £,; = 10 a similar effective Young’s modulus, with increasing stéés
ratio the ESCS methods predicts a slightly lower result asvahin Figure[1.ZD. Furthermore
the ESCS method has its numerical limits in predicting thective behavior. Investigating
the behavior in Figur€Z118 shows that this limit depends aih fiactors, inclusion volume
fraction and stiffness ratio. Therefore this method presidood results only for low stiffness
ratios and low volume fractions, moreover this method iserammplex than the IDD method.
The results found here from numerical analysis confirm tealtg analytically done by Du and
Zheng EEQ{E) where the effective elasticity tensor, hemrgdary for the Young’s modulus,
fulfills the following conditions:

Egcs < E* < Ejyq < Egges as By < By
(1.212)

Erges < Eijgg < B* < Egeg as By < B

It should also be mentioned that the Ponte Gasda-\Willis (PW) estimate (cf. Castaneda and
Willis ( )) coincides with the IDD-method if all inclusn-matrix cells have identical shape
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and orientation for identical inclusion-interaction distition, however, the PW does not have
an explicit form in all cases which makes the IDD estimatearfavorable.

1.4 Dealing with irregular (non-ellipsoidal) inhomogeneties
1.4.1 Eshelby tensor field
Zheng et al.m@ established the following irreducil@eamposition

S¥(x) =S¥ + Q“(x) (1.22)

for the Eshelby tensor field“(x). S° describes the isotropic part 6% for an arbitrary do-
mainw. For isotropic elasticity this part vanishes outsidesadind is uniform insidev. S is
identical to the Eshelby tensor for spherical inclusion3inand circular inclusions in 2D. Due
to the minor symmetry of the Eshelby tenssf, might have a maximum of nine independent
components in two dimensions. For the special case of dietlipnclusion for plain strain and
isotropic material the Eshelby tensSf can be calculated and written in matrix notation as a
second order tens®&- as

Sw == 7}/ v —1 5 —4v 0 ) (123)
0 0 3 —4v

wherer denotes the Poisson ratio. The p@¥rt(x) describes the anisotropic part8f. The
formalism [1.2P) is valid for arbitrary inclusiom in a two- or three- dimensional isotropic
medium which is a deviatoric fourth- or second-order terssat independent of the material
symmetry. Therefor&®@“ has a maximum of fourteen or four independent componentsen t
3D and 2D case. In the two-dimensional plane strain prolal#mesults in

1—-2v 1 1
R - d®i+t——D 1.24
Q@) =sayiedtog 4@t D (1.24)
with
1 1
d(x) = —gsymdevfwﬁz(ln g)dy (1.25)
2

D(x) = ——symdev/ z®z®z®zdy’ (1.26)

m w B

wherez = y — x andsym dev denotes the operation of taking the symmetric deviatonit pla
and D are material-independent and they have at maximum two ertégmt components (Zou
et aI.,|_2Q1b). Following the definition In Zou e ell_(zb10) are usingd = d;; andD = D,y
and the following definitions

p2=di, G =di2, ps=Dun, @ = Do (1.27)



16 CHAPTER 1

The matrix representation 6 is given by

(1 —=v)p2+pa VP2 — Pa 220+
w 1
Q = 11— —UpDg — P4 —(1 — I/)pg +p4 %qZ —+ qa . (128)
302 + da Vs — —pa

Zouetal, |(2Q1|0) derived the following complex-variableegral expression

Y2 (.T) pz(l’) 142 (SL’) 4mi §8w Zd (129)
nu(r) = pa(r) Hia(r) = o, 2

from which the entries inf1.28) can be identified. Hére /—1 is the imaginary unit and
the overbar describes the complex conjugated. For the gegnzalues of, and~, over the

inclusionw Zou et al. kZ).JJO) obtained

() = (p2) +ilge) = —g5 $y $o, 2dydx, (1.30)
(va) = (pa) +ilas) = —5ms $oo $oo 2dydx.
The decomposition
(8¥) =8 +(Q~) (1.31)

can be done similar t¢ {I.P2) for the average Eshelby teffor in two dimension.

1.4.2 Averaged Eshelby tensor characerized by Laurenhpatyals

In complex analysis, it is known that the Riemann mappingté states that for an arbitrarily
given simple-closed cun@w, there exists a biholomorphic mapping from the outer doréin
the unit disk/ onto the outer domain afw dl:l.enn.c”.lQl LBﬁma.n\ 1). This mapping can
be expressed in terms of the Laurent series

flw)=fo+a (w + Zbkw—’“> Ll > 1, (1.32)
k=1

wheref, is a unique inner point of the domain a is a positive real number and every complex
coefficientd, satisfiegb, | < 1/k dHJ.u_eLaJ.I_ZD_JJO). Without loss of generality, it is poseitn
setf, = 0 anda = 1 which leads to the following expression

FO)=e"+ e’ 0<6<2m (1.33)
k=1

This expression can be used to approximate various 2D shBgamples for such approxima-
tions are shown in Figufe_T.P1 with the associated Dolvnbwmg)ﬂ\d Zou
etal. ._20_'Lb) showed a solution procedure to obtain the gecEshelby tensor based ¢n(1.30)
and using the residue theorem for various inclusions ckexized by Laurent polynomials. The
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3) b) V

Figure 1.21: Laurent polynomial approximations for desiag various shapes. a) circleti 6),
ellipse: e ™*[1.5 cos( — 7 /4) +i0.5 sin(§ — 7/4)]. b) hypocycloid:e? + \e2i7/3) ¢=30,

P i0 1 _,-3i0
guasi-rectangulae §€ :

detailed solution procedure can be taken from there. Hershwely recall the basic solution
for inclusion characterized by the following Laurent pabymial

f(0) =€ + e + b e "0 (1.34)

by which the shown shapes in Figlire1.21 can all be approginakhe solution has the fol-
lowing explicit expression fo{y,) and(~,). dZQ_u_eLa.l LZO.’I]O)

e N=even numbep 2

2 lve) = —=b (1= [b]> = 2n[b,|*) + 002 b7
B () = —b2(1—|b]> = 3nb,]?) (1.35)
—n b2 b} n — (n+2)[b1]* = n? [b,]?]

e n=o0dd numberi{ =2k +1) > 3

2lva) = —bi (L= || = 2n|b,]?) +nbp b}
+n2‘bn‘2b2‘b1‘k
2lw) = =0 (L= |bu]* = 3nba]?)

—n by i n — (n 4+ 2)[bi [ — n® [, |?]

402 b3 O b, B (1 — 2[by 2

=gn? [on | + 502 b [on]* + |01 ])

— 81020 by ((n = 1)* = (n 4 1) [ba]
_ B +1>(n —Un g | )

(1.36)

1.4.3 Mori-Tanaka method with replacement tensor appr@@tir M)

The Mori-Tanaka method approximates the interaction betwtbe phases by assuming that
each inclusion is embedded, in turn, in an infinite matrix that is remoteded by the average
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matrix strainE,,; or average matrix stresg, respectively. This implies that the Mori-Tanaka
method estimates the behavior of the composite for a nartediolume fraction of inclusions
via dilute inclusions that are subjected to the effectiveaveraged matrix straif,, or stress

Ty, respectively[LM.QLLan.d_'[a.ndk 73).

E'= AAE™ = A; ) E°, (1.37)

where AY denotes the dilute strain concentration tensor (influerosdr) of the inclusion,
A; ) the Mori-Tanaka strain concentration tensor of the indosind E° the macroscopic
strain. The expression fot! is given bm @) to be

AV = [T+ 8C (G — )] (1.38)

In lB_emLen'Lsﬂe[(_’LQ_é?) the method is interpreted in the sdr@e@ach inclusion behaves like an
isolated inclusion in the matrix seeitg,, as a far-field strain”.

The effective elasticity tensor can be obtained via
C(*MT) =Cy + (G — CM)AI(MT)' (1.39)

The Mori-Tanaka gradient concentration tensors of theusioh A, ,,r, can be written for
spherical inclusion as
—171-1
AI(MT) - [CII + CM<A?> 1] . (140)

Nogales and B'Ohr’rL(Z}bS) presented a framework how to extenstandard Mori-Tanaka
scheme to inclusions with non-ellipsoidal shape which wasedirstly b)LD.Uﬁ_Qth_a.del’_(ZdM).
AIthoughLN.oga.L&S_a.n.d_B_b.HrJn_(ZiOS) focuses mainly on theprablems their approach can be
applied analogously for elasticity. Therefore a phaseapent dilute "replacement” elasticity
tensorCi*d and the dilute "replacement” inclusion gradient tenA(?)fed have to be introduced.
These replacement tensors have to fulfill the consistenaglition

1 red\ —
Ci*t = Cy + ZO(CS — Cy) (AP (1.41)

wherec; o describes the volume fraction adgl the effective stiffness tensor in the inclusion in
the dilute case. The name RMTM results from the introductibthese replacement tensors
in the classical Mori-Tanaka scheme. This leads to theviotlg Mori-Tanaka concentration
gradient tensor

-1
Arrvray = [CII + ey (AP (1.42)
and to the resulting effective elasticity tensor

Crrmrvy = Cu + er(C — Cat) A - (1.43)

For non-spherical inclusionét?”recl andC; have to be obtained numerically, e.g. with help of
the finite element simulation of a single inclusion of appraie shape and properties embedded
into an infinite matrix. For ideal interface4;"*! can be obtained from volume averages over
the inclusion. Therefore the 2D model is subjected to thieeally independent load cases,
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a)

Figure 1.22: a) An exemplary micrograph obtained from a H\8pfayed 88WC-12Co coating

with SEM (Tillmann et al., 2008b). b) FE-mesh on microstuuet

namely tension in x-, y-direction and one case of simpleslaiapplied as linear displacement
boundary conditions. The volume fraction for the inclusiaas for all presented cases between
0.4 — 0.8% of the total volume. The proposed resultis_'Ln_NQ.ga.I.eS_a.n.d:rHﬂQQb) stating that
the replacement tensor were found to be largely indeperadeht inclusion volume fraction
could be confirmed in this study.

In the end of this work we will analyze a combination of inchrss shapes. Therefore
we extended the presented framework slightly to a multiplesnposite. The Mori-Tanaka
concentration tensor for each inclusiois then given by

-1

AI(RMTM),i = e T + CM AO red + Z AO red O red>71 ’ (144)

which results in the effective elasticity tensor

Clrary) = M+Z (€ = Cy) Arrarravy - (1.45)

1.4.4 Construction of Finite Element Models from Real Mgnaphs

The investigated microstructure is manufactured by an HW@¥fmal spray process of sub-
micron WC-Co powders. In thermal spraying metallic and nogtallic surface coatings are
manufactured by melting the coating materials in the forrpamfders or wires in an oxy-fuel
gas flame, a plasma jet or an electrical arc and accelerdigm towards the surface to be
coated by means of the expanding combustion gases or a separaer gas. On the surface
the impacting particles flatten, cool and solidify and tigreorm a coating on the workpiece.

To perform analysis of real microstructures, micrographisimed with the Scanning Elec-
tron Micrographs (SEM) are used. These micrographs pravidepossibility to distinguish
between the phases which is possible due to their differggittmess in the micrograph caused
by regions of atoms with different atomic numbers. Corieato the huge difference in the
relative atomic weight of tungsten (183.84 g/mol) and co{f&8.933 g/mol) the phases of the
sprayed WC-Co feature a good contrast. Fidurel1.22a) shovexemplary micrograph ob-
tained from the coating. An image processing tool is useatlwhow identifies the phases and
generates an image consisting of Co- and WC-based alloys ®hk differentiation between



20 CHAPTER 1

the phases is carried out by finding optimal thresholds basetthe color distribution, from
which the different phases are separated.

To generate a FE-mesh from such an image the software Objemtt€d Finite Element

2 (OOF2), from the United States National Institute of Stmdd and Technology (NIST), is
used. This software was developed to investigate the bahai/microstructures. OOF2 takes
a non-reductionist approach to build a data structure omligfiéized image of the microstruc-
ture whereby it gets connected to the associated matedpéepies. At the end OOF2 creates a
FE-mesh which reflects the shape of the different phaseimtbrostructure with the associ-
ated material parameters. The mesh is generated by minignézi energy functional which is
composed of a homogeneity part of the mesh and a shape phé& elements via

E = OéEhom + (1 — (I)Eshape (146)

wherea is an adjustable parameter, enabling the user to contrbeifhtesh should be highly
accurate to the image with bad shaped elements (1) or if the elements are well shaped but
with less accuracy to the shape of the phases in the micrbdrap- 0). Choosing a middle
value will lead to an optimal choice. The homogeneity endarytriangle elements can be
calculated by

Epom = ZH (11 — N) (147)

in which the pixels are separated into N categories wherinalpixels belong to one material
group. For each mesh elementy;(t) describes the percentage of its area that overlies pixels
in categoryi. When the element lies on only one materiglt) = 1 so that it is minimized if

an element is completely homogeneous. The shapelgfp, is defined by

36 A
Eshape = Z (1 - EL_%I?) (148)

t

in which A, corresponds to the area of the elemeahd L, describes the perimeter. This term
is zero for equilateral triangular elements and one for degeed ones. For further details and
the features of the program OOF2 the readers are refer l. 1) and Reid
et al. [EQQE) The resulting mesh can be seen in Eig.] 1.22mhwhcludes~ 77vol.% WC
particles. It is assumed that the phases are perfectly lbontteobtain information about the

microstructural behavior and macroscopic propertiesioantests are done with plane strain
conditions.

At this point it is assumed that the micrograph fulfills thgu#ements for a Representa-
tive Volume Element. This is a crucial assumption in ordecampare the obtained results
with those from the homogenization methods. The elastistamts of the microstructure are
obtained by evaluating the reaction forces at the bounslamel the displacement at the free
lateral sides.
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1.5 Comparison of different homogenization approaches farregular (non-
ellipsoidal) inhomogeneities

Throughout this section we assume that the matrix and ifwiusre isotropic and only two-
phase composites in isothermal linear elasticity are demed. We restrict our analysis to the
case of plain strain. We compare the prediction of the maoys behavior of different clas-
sical mean-field homogenization methods (Voigt, ReusshidaShtrikman, Mori-Tanaka, in-
terpolative double inclusion model) and more recent metl{g&CS and IDD) with FE results
obtained from a RVE. Furthermore we will investigate thedmeton of these methods concern-
ing different stiffness ratios of the inclusion-matrix pand different shapes of the inclusion.
In the following we will use the Mori-Tanaka scheme with thatnx material as the softer
material instead of defining it over the higher volume frawctiTherefore the MT scheme coin-
cides with the lower Hashin-Shtrikman bound for all volurrections. For irregular inclusions
the averaged Eshelby tensor[b;LZo_u_étlal_dmlO) will be uséldese methods and the results
will be further compared to the RMTM method. A detailed as@yfor spherical inclusions
concerning different stiffness ratios can be founh_ln_lﬁlnﬂﬂn_a.n.d_&Len.dédn_(ZMO).

A comparison of the classical homogenization methods wigltBSCS and IDD method and
FEM results for circular inclusions for a stiffness ra%é = 10 is shown in Figuré_1.23 for
CY,. The FEM results are obtained for randomly distributedutac inclusions of equal size
(V1 = 1.5%V) applying linear displacement boundary conditions. It teeBe considered that
in the plain strain context the resulting elasticity tensoanisotropic also called "geometric
anisotropy” mllﬂg). This results in an uncoupledletion between tension and shear
components in the elasticity tensor. However, the homaggioin results in a similar behavior
of the single components in the elasticity tensor thereifotbe following we will concentrate
in a first step orC}; to analyze the behavior of the different methods.

It can be seen that the IDIM method provides the best fit to M Fesults. Further the
IDD method agrees perfectly with the Mori-Tanaka method ashin-Shtrikman lower bound,
respectively. The ESCS method predicts unti# 0.5 sensible results but afterwards the results
are unstable and inappropriate.

1.5.1 Square

As a first irregular shape we investigate a square as showigumdfL.Zb. For the calculation
of the average Eshelby tensor as described in selcfiod hd.Raurant polynony;quare(6) =
et — L e7%% s used as an approximation of the displayed square.

Figure[T.Z# shows the results fot, for —L = 10 with the different homogenization ap-
proaches. Here the shown FEM results were obtained for malyddistributed square inclu-
sions of equal sizel{ ~ 2%V’) without interpretation of each other. Linear displacemen
boundary conditions were applied. The FEM resultsifer 0.8 were obtained by aligning the
inclusions perfectly. The prediction with Voigt and Reussthe same as for circular inclusions
due to the independence of the shape of the inclusion in timeulation. The analysis shows
that the calculated Eshelby tensor for a square is only thighfferent compared to a circular
inclusion. Therefore the prediction is only slightly diféat as shown by the comparison be-
tween the results of the Mori-Tanaka method for square amedler inclusions. As previously
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Figure 1.23: Comparison of homogeniza- Figure 1.24: Comparison of homogeniza-

tion results for effective Young's modulus tion results for component?, from the ef-

E* for By = 21 GPa, By = 210 GPa fective elasticity tensat* for E,, = 21 GPa,

andv = 0.3 for circular inclusions. (HS FE; = 210 GPa andv = 0.3 for quadratic

= Hashin-Shtrikman bounds; IDIM = inter- inclusions. (RMTM = Mori-Tanaka method

polative double inclusion model) with replacement tensor approach Nogales
and Bohm MS); classic MT = results of
Mori-Tanaka method for circular inclusion)

4 A

N i

Figure 1.25: Approximated square describedtfy— £ ¢3¢ (dotted line) to calculate average
Eshelby tensor.

seen the IDIM method shows a very good prediction of the gffedehavior as calculated via
FEM. However, for smaller volume fractions< 0.8 the RMTM method seems to give the best
prediction of the effective behavior. For larger volumecfransc > 0.9 this method produces
insensible results. The reason for this is the fact that &R converges fore — 1 to Cred
rather than ta’; which is of course a certain limitation of the RMTM. The IDD thed coin-
cides with the lower Hashin-Shtrikman bound in this casetaedESCS predicts lower values
for C7, as the Hashin-Shtrikman bound and unreasonable resultsfar.4.

1.5.2 Triangle

Secondly we investigate an acute-angled triangle as showigure[1.2b. For the calculation
of the average Eshelby tensor the Laurant polynamg.(0) = ¢’ +0.3e7? + 0.3e3% is
used as an approximation of the displayed triangle. FiguE@ 4hows the results far;, for
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~
L

Figure 1.26: Approximated triangle described 8§ + 0.3e7% + 0.3¢73?% (dotted line) to
calculate average Eshelby tensor.

E% = 10 for triangular inclusions. The calculated averaged Esh&dhsor strongly deviates

from the Eshelby tensor for circular inclusions which résin different homogenization results
compared to circular inclusion as can be seen by comparisibyve curves for the classical MT

and lower HS bound. However, the general predicted behagpecially in comparison to

the RMTM is the same. Again the limitation for— 1 can clearly be seen. The performed
representative FE results predict a higher value(tgras most of the methods in which the
upper HS bound shows the closest prediction. This showsitfieutty of the prediction for

inclusions which introduce a high anisotropy due to theapss.
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Figure 1.27: Comparison of homogeniza- Figure 1.28: Comparison of homogeniza-
tion results for componenty; from the ef-  tion results for componerdy, from the ef-
fective elasticity tensat* for £,; = 21 GPa, fective elasticity tensa¢* for £,; = 21 GPa,
E; =210 GPa and’ = 0.3 for triangular in-  E; = 210 GPaand’ = 0.3 for hexagonal in-
clusions. clusions.

1.5.3 Hexagon

Lastly we investigate a compressed hexagon as shown inétighP as a kind of combination
of the previously discussed triangle and square. For tlelzdion of the average Eshelby ten-
sor the Laurant polynonfi,.,(6) = ¢? + 0.2¢e71? +0.05e~°%? is used as an approximation of
the displayed hexagon. The results gy, for E% = 10 for hexagonal inclusions are shown
in Figure[1.ZB. The averaged Eshelby tensor shows a sinaitar &s for the triangular case.
Therefore the predictions also look quite equivalent. Intcast the RMTM method shows a
completely different behavior as in the previous case. TRE'R predicts a lower value for
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Figure 1.29: Approximated hexagon describedelfy+ 0.2 e=*% 4 0.05e°? (dotted line) to
calculate average Eshelby tensor.

Figure 1.30: Prediction of effective Figure 1.31: Prediction of effective
Young’s modulusE* of Voigt method Young’s modulust™ of Reuss method
for different concentrations and stiff-  for different concentrations and stiff-
ness ratiody;/ £, for hexagonal inclu- ness ratios;/ E, for hexagonal inclu-
sions sions

*
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Figure 1.33: Prediction of effec-
Figure 1.32: Prediction of effec- tive Young's modulusE* of Hashin-
tive Young's modulusE™ of Hashin-  Shtrikman lower bound, Mori-Tanaka
Shtrikman upper bound for different estimate and IDD method, respectively,
concentrationsc and stiffness ratios for different concentrations and stiff-
E;/E\, for hexagonal inclusions ness ratios;/ F,; for hexagonal inclu-
sions

(7, as the lower HS bound. In general the HS bounds provides tliewest known bounds
between which the true value has to be. For this inclusiagithnot the case as the FEM re-
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sults show. The results of the RMTM are in very good agreemséiht the calculated FEM
results. Further analyses of these homogenization mettmuserning hexagonal inclusions
for different stiffness ratios and concentrations are gmé=d in the following. FigurEZ1.BO0 to
.37 provide 3D-surface plots of the prediction for theetiént methods for stiffness ratios up
to 20. Due to the fact that it is not possible to compare theabien over different stiffness
ratios by plotting the surfaces above each other, in Figig® the resulting effective enty/;;
normalized byCy, ,, over the stiffness ratio of inclusion and matrix materiadli®@wn. As can

¥

ES
Cll/CM,n
No R~ NN w b o

Figure 1.34:  Prediction of effec- Figure 1.35: Prediction of effective
tive Young’'s modulusE™ of double-  Young’s modulusE* of ESCS method
inclusion method for different concen- for different concentrations and stiff-
trationsc and stiffness ratiog);/ £, for  ness ratios; / E,,; for hexagonal inclu-
hexagonal inclusions sions

Figure 1.36: Prediction of effective Figure 1.37: Prediction of effective
Young’s modulusZ* of RMTM method  Young’s modulusE™ of Mori-Tanaka
for different concentrations and stiff-  estimate for different concentrations
ness ratiody;/ E,, for hexagonal inclu- and stiffness ratiog’;/ £, for circular
sions inclusions

be seen from the surface plots, the behavior of the homoggmizmethods over different stiff-
ness ratios is changed for different concentrations ofribkision volume fractiom, however,
the general behavior remains the same. The \Voigt estimatigssa linear dependence of the
effective elastic modulus with respect to the volume fiacwf the inclusion representing an
upper bound as mentioned before. The Reuss estimate istbelbound which only shows an
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Figure 1.38: Prediction of effective Young’s
modulusCY, with different homogenization
methods for different stiffness ratids / £,
for ¢ = 0.4 for hexagonal inclusions.

increase of the effective elastic modulus in the end. Afbremains at a nearly constant level.
The same behavior can be observed for the upper and loweirH8klrikman bounds only at
a higher or lower level, respectively. As mentioned preslguhe results for the IDD method
and the Mori-Tanaka method coincide with the lower HasHhitriman bound. The interpola-
tive double inclusion model shows a behavior between thel@md upper Hashin-Shtrikman
bounds. In the beginning the IDIM shows a similar behavioth@slower HS bound but with
increasing volume fraction the behavior of the upper HS ldches an increasing influence on
the behavior. It can be seen that the ESCS has a very unstideibr which depends strongly
on the stiffness ratio. By comparing the results from RMTMtiexagonal inclusions with the
results from the MT scheme for circular inclusions the gahleehavior is similar, however, the
values are in certain regions of the volume fraction and tiffeass ratio quite different.

As can be seen by interpretation of these surface plots anddfll.38, the stiffness ratio
has an immense effect on the effective properties, espeaidhigh volume fractions of inclu-
sion. The gradient in the effective stiffness compor@htbetween different stiffness ratios is
decreasing with increasing volume fraction, however, #rgye over the stiffness ratio where a
gradient is existent is increasing with increasing volumaetion. E.g., the RMTM shows for
¢ = 0.4 nearly no gradient after a stiffness ratio of five but for deradtiffness ratios a quite
high gradient. For = 0.8 this gradient is very small between the single ratios bltestistent
until high ratios. As Figuré_L.38 shows, the different homigation methods behave very
differently over different stiffness ratios which is alsisible in the surface plots.

Therefore the homogenization methods should also be ctidokeéheir behavior for differ-
ent stiffness ratios, as done here, instead of solely ilgagstg their behavior at different vol-
ume fractions. It was shown that the IDD method coincide& wie Mori-Tanaka estimate for
all investigated inclusion shapes if the material is ioitto Anisotropic material behavior will
be investigated in future work. The ESCS shows no sensibldtssin this study and therefore
will not be considered further. However, it has to be recdeisad in how far the IDD method is
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valid due to the fact that this method is derived from the ESI3f¢ analytical solution for the
Eshelby tensor is quite simple to evaluate due to its exgbem and shows quite good results
for the triangular and square shaped inclusion, howeveth#®ohexagonal inclusion the predic-
tion was wrong. It is to be expected that the results for nem¢ex shaped inclusions would
lead to larger errors as seen for the convex hexagonal inalughis implies that the analytical
solution for the Eshelby tensor for non-ellipsoidal indtuss cannot directly be applied without
considering that the prediction is valid. The investigd®dTM show a very good agreement
for the presented inclusion shapes. Only for very high vadiraction this method predicts un-
reasonable results. However, the potential of this methqulamising and could be combined
with a database approach (elg_.le.mize.r_a.n.dﬂtihbﬂﬁ.l hmaizer_a.nd_ZthLZQb?) to ob-
tain the elastic behavior for a distribution of differemegular shaped inclusions. In general the
homogenization schemes predicted acceptable result®feeltipsoidal inclusions where the
RMTM gave the best prediction. Also the IDIM showed good hessior triangular and square
inclusions, however, the quality depends on the validityhef analytic approximated Eshelby
tensor.

1.5.4 Distribution of shapes

In this section the effective elasticity tensor for a dlatition of inclusion shapes is calculated
with the previously compared methods. Further these ieatdtcompared with results obtained
from a discretized exemplary microstructure. It is assuthatithe analyzed microstructure can
be representatively described via the previously thredyaed shapes. The amount of each
inclusion shape is anticipated due to the fact that we do ae¢ la software which can do this
automatically. Therefore the following shape distribatis assumede, ., = 0.4, ¢,,; = 0.19

andc, ... = 0.18. Figure[1.3D shows the corresponding results. It can betseéthe RMTM

method predicts the same values for higher stiffness rasafie IDD method with analytical
Eshelby tensor. However, both do not predict the correcawen of the microstructure. The
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Figure 1.39: Prediction of effective Young’s Figure 1.40: Prediction of effective Young’s
modulusC7; with different homogenization modulusCy, with different homogenization
methods for different stiffness ratids/F,;  methods for different stiffness ratids / E,
for ¢, = 0.4, ¢,y = 0.19@ande, o = 0.18.  for ¢, = 0.2, ¢; = 0.1 andeyge = 0.1

(RMS = real microstructure)
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main reason for this is that the three shapes are not sufferehalso the orientation of the in-
clusion has to be taken into consideration. With a detailedacterization it would be possible
to determine this information, however, a lot of work has éodone which results in the fact
that it is "cheaper” to discretize directly the microstuuet.

In Figure[1.4D another comparison for a distribution wittvéo volume fraction is shown.
The presented FEM results are obtained from an ideal mraasie where the inclusions are
randomly distributed. As it can be seen the RMTM predicts tiessFEM results for all stiffness
ratios. Also the MT and IDD method with analytical Eshelbgiger predict the FEM results
more accurately compared to the results with the classic dhiEme for circular inclusions.
Generally this shows that also the effective propertiesafdistribution of irregular inclusion
shapes can be calculated via RMTM and also with the homogeoizmethods which use an
analytical expression of the Eshelby tensor for each iteggaclusion.

1.6 Summary and outlook

In this paper, a number of standard homogenization methedeaewed and their behavior is
compared. The comparison was performed with regard to tesion volume fraction, which
can usually be found in the literature, but also regardirgcitmtrast in the elastic constituents.
It was shown that the contrast has a significant influence ereghimates of these methods
and therefore has to be taken into consideration. Resulénaa from FEM were compared
with these predictions. It was shown that especially thevidbrees quite well with the FEM
results. Furthermore two relatively new approaches, theE&nd IDD method, were recalled
and compared to the classical homogenization results. @hdts obtained show that a further
analysis of the IDD method especially in comparison to theiManaka estimate, is reasonable
due to its formulation. The IDD estimate has an explicitstinoe, with a physical explanation
of the involved components and it is valid for multiphase posites. It also takes into account
the influence of the interaction between inclusions andr theirounding matrix. Formally
the method has a universally applicable form to variousussion distributions. Therefore this
method fulfills the main requirements on homogenizationhoes as mentioned before.

Further three strategies have been evaluated to deterheneffective properties of elastic
media with irregular shaped inclusions. An analytical gchare for determining the Eshelby
tensor based on the irreducible decomposition of the Eghetsor iL_ZdOG) was
implemented and used in classical homogenization schemdesoanpared with results obtained
via the Mori-Tanaka method with replacement tensor approddis method is based on the
computation of the contribution of a dilute volume fractiohone inclusion into an infinite
matrix material. These comparisons were carried out faeldifferent irregular shaped inclu-
sions. Further these methods were also applied to a distibaf different irregular inclusion
shapes and the results were compared with a discretizedhreadstructure and a discretized
ideal microstructure. All investigations were not limitezlthe volume fraction but rather to
different stiffness ratios between matrix and inclusionicihhas an immense influence on the
results of the homogenization schemes.

It was shown that the IDD method coincides with the Mori-Tkaastimate for all investi-
gated inclusion shapes if the material is isotropic. Angoic material behavior will be inves-
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tigated in future work and it will be checked if a case can beioied in which both methods do
not agree. Due to the structure of the IDD method, with a gaygxplanation of the involved
components, this method will be considered in further wofkhe ESCS shows no sensible
results in this study and therefore can not be recommendadtimer studies. This study has
shown that the RMTM gives the best prediction of the effecproperties as long as the volume
fractions do not reach values 8% or higher. However, the evaluation is quite time consum-
ing. In our opinion this could be decreased by using this weth combination with a database
approach which would make the method really applicable $tridution of inclusion shapes.
Also the homogenization methods using an analytical espyador the Eshelby tensor show
for most inclusion shapes good results. Also for a combamatif different inclusion shapes
these method show acceptable results. However, for evexyesit has to be checked if the
solution is valid or not.

A procedure for discretizing a real micrograph was preskatel the results were compared
with the previous mentioned method. It was not possible terd@ne the exact distribution of
shapes and therefore the results of the comparison werer fadlor. To determine the elastic
properties of a real microstructure it is recommended toaudescretization instead of using
another method. For ideal microstructures these homogenmizmethods show valid results.






Chapter 2

Homogenization modeling of two-phase composites
with a layered microstructure

Abstract— The purpose of this chapter is to introduce a homogenizatiethod for the mate-
rial behavior of two-phase composites characterized bymal#lyer-type microstructure. Such
microstructures can be found for example in thermallysgpdacoating materials like WC/Fe
in which the phase morphology takes the form of interpetiaggdayers. The basic idea here is
to idealize the thin-layered microstructure as a first-ofaminate. Comparison of the methods
with existing homogenization schemes as well as with thereeice finite-element model for
idealized composites demonstrates the advantage of thent@approach for such microstruc-
tures. For completeness, the current method is also apilitee classical case of two-phase
microstructure with spherical inclusions, which demoatsts clearly the limits of the approach.
Further a first extension to a variable interface orientaisgresented.

2.1 Introduction

The modeling of the material behavior of composites is gahebased on a model for the be-
havior of each constituent or phase of the composite togetitle one for the interaction of the
phases. Traditionally, highly-idealized analytical amdns-analytical models were developed
for this purpose with the help of volume-averaging or honmizegion methods (e.g., Reuss,
Voigt, Hashin-Shriktmann, and so on (@Nﬂmal;Nass.eLamb M), and are limited to
linear thermoelasticity. More recently, methods for thisgose based on the assumption of
scale-separation and the concept of representative vadlengent (RVE) have been developed
and applied (e.g., the Mori-Tanaka method (é.g_._B_eméh]ﬁ&b) the double inclusion model
(e. g LPi 1IL_ZQb4) Interactlon Direct DerivatfiDD) method|( Du and Zhehb,_zdoz

5 Mo (1987) or Mercier and
1), Nemat-Nasser
)9). Generally-speaking, these Iattehtms consist of two steps. In the first
step, a local problem for a single inclusion is solved in otdeobtain a model for the material
behavior at the RVE-level. The prototype here is the apﬂrmﬂ@y@?) for the case
of an ellipsoidal elastic inclusion in an infinite matrix. &8econd step consists of averaging
the RVE-fields to obtain those for the composite as a Who@,tM&LQLQLaDd_M.QLlnerZO.d)Q)
As before, the focus here has been on linear thermoelgsadso in order to exploit linearity
in the mathematical formulation. By analogy, extensiontheke methods to the inelastic case

are generally based on linearized incremental formulat{erg. Llﬂ).nlﬂ.asla.n.eda_a.n.d_s.dquet

) pertaining mainly to metal inelasticity. As discubg, e.g. II.(L‘Lb?) many
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of these neglect the interactions between the phases, lsimigp@thich results in too stiff behav-
ior. Because of this, more recent models take phase int@naicto account in some fashion
(e.g.,LLeb_ensghn_andldﬂe._lbb&_MQJinad_dtlaL_bS?). Ahe classical case of Eshelby,
many of these are based on particular assumptions aboutitphology of the microstructural
phases. This leads sometimes to limited use of the presergdtbds. If the size of the RVE is
very small, size effects can occur, which are not accourdedtfthe macroscale. Furthermore,
large spatial gradients at the macro-scale cannot be exbbly these methods and they are in
general restricted to standard continuum mechanics théary extension to second-order to
incorporate size-effects of the underlying microstruetcan be found by several authors (e.qg.,

Geers et all, 2010; Janicke et Mdﬂ&.&mznﬂsmdmlh Describing local deformation

state of microstructured materials by extended contintheuries is done (, e. Mdﬁb%
LlanLle_eLﬁllL_ZQ_d)Q) In other cases, e. d_._ln_B_o_hlke]dzaD_é) texture related microstructural
effects are accounted for by using orientation distribufinnctions and texture coefficients to
predict the resulting anisotropy in sheet metals and thie-gapendent mechanical properties.

The purpose of the current work is to introduce a homogeioizatpproach for two-phase
composites whose microstructure is characterized by deyey- or lamellar-like. Such mi-
crostructures are present for example in thermally-sgrayatings. The layered phase mor-
phology arising here is determined among other things byé#tere of the manufacturing pro-
cess. The current homogenization strategy is based onehézdtion of such microstructure
as first-order laminate (e.@.._Sithi\hL(;LbQY)). Althoughl¥keown as a model for the transfor-
mation interface between, e.g., austenite and martemstteeirealm of phase transformations
(e.g.,LISQ.uzn.er.OALa_eLlaL_ZLbOQ), its application in theemir context of structural two-phase

composites is novel.

The paper begins in secti@nP.2 with a brief summary of theogkastic material model
for each phase of the two-phase composite under consiolerdtor comparison with the cur-
rent approach, existing homogenization methods, in pdaic¢hat based on the assumption of
phase-wise constant plastic strain, are briefly reviewestatio[2Z.8. The current approach as
based on first-order laminate theory is introduced in sefid. After investigating the behavior
of this model with the help of simple deformation cases inisa@.3, a comparison of results
from the laminate model with analogous ones from selectéttieg homogenization models
(e.g., Taylor, phase-wise constant plastic deformati®gjven in sectiof 216 together with cor-
responding FE results for layered composites. As discussesample ilEiﬁ.L&LdﬁLbL(Z.dO?),
most of the available results for viscoplastic compositesi$ on composites containing spher-
ical particles which are periodically distributed withimetmatrix. To demonstrate the limits of
the current approach, it is applied as well to this case,the.“canonical” case of a two-phase
composite with spherical inclusions. Followed by a disaussf a variable interface direction
in sectiol2J7. The work ends (sectianl2.8) with a summaryamtlusions. For simplicity,
the current work is restricted to small deformation. In workprogress, the method is being
extended to large deformation.
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2.2 Material model

In the current work, material models are formulated in thetext of continuum thermodynam-
ics. In this context, the material behavior is related torgetc and dissipative processes. As
usual, the energetic part is determined by the free enemgsitye). For simplicity, attention
is restricted here to quasi-static conditions and metaiiterials exhibiting small deformation
and Voce (i.e., saturation) isotropic hardening. In thisecéhe additive form

1 1

(B, ap) = B Ey - CpEyg + sy {O‘P + o (eicHaP - 1)} (2.1)
H

of ¢ into elastic and hardening contributions, respectivelgasumed. In particular, the former

depends on the elastic strain

corresponding inelastic straiB,, and total (small) strailE = sym(F — I), with F' the
deformation gradient. Hereym(A) := (A + A"), represents the symmetric part of any
second-order tensod. The evolution ofE, depends on that of the accumulated equivalent
inelastic deformatiomy,, as shown in[(Z]6) below. Material properties here includedlastic
stiffness tensofy, the differences;; between the initial and saturated values of the yield stress
and the rate:; of hardening saturation. As usual, the free energy detexsnim particular the
stress

T =0 1. (2.3)

Assuming dislocation glide as the dominant mechanism déstie deformation, the inelastic
behavior is determined by an inelastic potentialmodeled by the simple viscoplastic form

bolc) = o k. {exp ((<p - UA>+) O 0A>+} (2.4)

Op 0p

for the activation of dislocation motion and inelastic defiation. Here(f), := 3(f + |f])
represents the ramp function. In particular, this potédetermines the flow rule

Sp—9aA

for ap. Here,o, is the initial activation (yield) stressy, represents the drag stress, and
is the characteristic deformation rate associated wittociégion motion. In additiong, =
oy — 0,1 is the thermodynamic conjugate ¢g for the current model, where,,(T') =

v

\/3dev(T) - dev(T') /2 represents the von Mises equivalent stress measure. dtered ) :=

A — tr(A) I represents the deviatoric part, andA) the trace, of any second-order tensor
A. The evolution ofE;, is assumed to be activated by thatogf. Consider in this regard the
constitutive relation

for the evolution ofE, quasi-linear in,, with N, = d,0.,,(T) the flow direction. Here we
have assumed that the deformation is small enough so thagmdicant grain rotation and no
texture development takes place.
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For simplicity, the inelastic homogenization models to basidered in what follows are
based on the following explicit algorithm. This is formwddton an arbitrary time interval

[t,,t,,,] of durationt, , , :=t,,, —t,. The algorithm begins with the forward-Euler update

0 SPn < Oa
bps1n Oy | €XD )~ 1y 6, >0,
D

for ap from 2.3), withap ., ,, *= ap,, ., — ap,,. In turn, this induces the update
Ey,..=E,,—Fp,=E, ,—Ep, — Apptin Np,, (2.8)

of the elastic strain, and so that

Tn+1 - CE [EEn+1] (2-9)

of the stress. Consequently, the history variables for gaelse includer, and E, here.

The above model contains the material properdiessy;, cy, 0, op, anda,, which are to
be specified for each phase in what follows. This completesiiort summary of the material
model for each phase. Now we turn to the homogenization seb@frinterest in this work.

2.3 Model based on phase-wise constant plastic strain

The homogenization approaches to be discussed in whawiboe all based as usual on the
assumption of scale separation, which lies at the hearedRYHE concept. From the numerical
point of view, this facilitates the restriction of microsttural effects on the material behavior
to the integration-point level of a corresponding finiterakent simulation. In the current purely
mechanical incremental inelastic context, this invoh@asual the specification of deformation
gradientsF;,, andF;, , at the beginning#(= t,) and end{ = ¢, ,) of the current time interval
t..t,.1], as well as the values,, and E,,, of the internal variables at the beginning of this
interval. In this case, the total strali, = sym(F,, — I) andE,  , = sym(F, , — I) at the
beginning and end of this interval, respectively, are dfasti

The assumption of phase-wise constant plastic strain is@aase of the so-called Trans-
formation Field Analysis (TFA) proposed dk__(_'LbQZ)FAI' offers an interesting way
of reducing the number of macroscopic internal variablesagsguming that phase fields are
phase-wise constant. In particular, this assumption somable for microstructures consisting
of plastically-homogeneous domains. In general, howéwesults in a model for the effective
behavior of the composite which is too stiff. Indeed, thigmoe prohibits the localization of
inelastic deformation at phase boundaries as a means s$ sakaxation, resulting in unrealis-
tic stress concentration there and generally higher stse€3n the other hand, in special cases,
e.g., the current one of thin layer-like composites, thatine uniformity of the stress and strain
fields almost everywhere may minimize this error and lea@&sonable results.

To begin, consider an elastic problem with the same boundangitions as the inelastic



2.3 Model based on phase-wise constant plastic strain 35

case. The kinematically allowable fields are given by

u(z) = Eyx,
E(x) = A(x)E,, (2.10)
(E) = E,.

Here, E(z) is the strain field of the elastic problem with uniform disgenent boundary con-
dition u, and(f) represents the volume averagefof Further, E, is the applied strain at the
boundary, and4 represents the influence tensor whose form is determineadlbyian of the

boundary value problem (e.b_.ﬁ_mss_a.n.d_SlE'Ielig_J2001)aBKmJItiplication of the stress-strain
relationT = Cy[E — E;] from (Z2) and[[ZB) in terms o, with E and averaging yields

(T ) E) = <(ATCE)E> ‘Eo - <(ATCE)EP> ‘Eo )

B - (2.11)
= CE*KE) - EP] - Ey ,
where
Cp.(E) = ((A"Cp)E) (2.12)
“defines” the effective elasticity tensgy,, of the composite, and
Ep, = Cy,((A'Cp) Ep) (2.13)

represents the effective inelastic strain tensor. In paldr, for the current case of a two-phase
material with constant plastic deformation in every phase,

(Ep) = _ (2.14)
E,, inP,
one obtains )
EP = C}Ei 1 >‘w (AECEw>EPw (2-15)

for this tensor in terms of the phase properties and the velsaction\, = X\ of phase 1 and
X, = 1 — ), of phase 2 in the composite. Via the Hill-Mandel conditidh- E) = (T - (E)
= (T) - E,, the arbitrariness aF,, in (ZI11) then implies

<T> = CE*[<E> - EP] (2.16)

for the effective stress-strain relation of the inelastmposite. ldentifying then the composite
(mixture) stress” with (T'), the composite (mixture) strai with (E), and the composite
(mixture) inelastic straiF, with E;, the form

T =C,,|E — E,)| (2.17)

follows for the effective stress of the composite dependimghe effective elasticity tensgoy, , .

Consider next the relations )
E = szl A, E, (2.18)
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and
2 2
T= Zw:l )\W TW = Zw:l )\w CEw[Ew - EPw] (219)

for the mixture strain and stress, respectively, the lati@i{Z3). Enforcing equality between
ZI1) and[Z1I9) then results in the algorithmic system

Ry =Y M\E -E.

; (2.20)
RT = Zw:l Aw CEw[Ew - EPw] - CE*[E - EP]

to solve for theE, and E,. Given or known here are the total straih the volume fractions
A, and ), as well as the material properti€s, and(Cy, of each phase. As discussed above,
the effective composite elasticity tensgy, is determined via analytical solution of the cor-
responding elastic homogenization problem using for exarnt@ Mori-Tanaka method (e.g.,
INemat-Nasser and Hbti (1999)).

Algorithmically the solution is obtained as follows. Foetburrent time stef, andE,
are known. The constant plastic straii§, and Ef, are calculated via trial values fd&{", .
andE}, . Ep can be found with[{Z15). With help of the Newton-Raphsoroatgm, the
algorithmic system{Z.20) can be solved

(k) (k)
k+1 k
Og, Ry Om Rp EFY _ g _ [ RBs 2.2

k1 k
Op, Ry Op, Ry nt1 B - B nt1 Ry nt1

for E*1Y) and E5'Y), which are used to calculate the nd&{f'""), EYY and B . This
algorithmic system is iteratively solved untiR ;| and| R .| are smaller than0—°. Using the
converged results, one can then calculate

T n+l — CEw[Ew - EPw] (222)

w

and the total stress vie{2]19). The corresponding stregeta

2
aEn-HT'nJrl = szl )\w aEn+1Tw n+1 (223)

results from a simple mixture of the stress tangents of thgdsimaterials. Note that the iterative
solution is particularly efficient in this case due to thet that the plastic strain is constant.

2.4 Laminate model

As discussed in the introduction, layer or laminate-likemstructures arise in technological
processes such as thermal spray coating. Both from thid pbwiew, and as an alternative
means to model the interaction of the phases in a compoghelha corresponding morphology,
it is interesting to formulate the corresponding homogatnin model and compare it with
selected existing ones for the inelastic case. For sintpligitention is restricted here as in the
previous section to the case of small deformation. For tise cé micron-thick thermal spray
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coatings, for example, this assumption is certainly reabten In this case, the kinematics of
the two-phase system is determined by the mixture relation

F =A\F,+(1—)\)F,=F, + \[F] (2.24)

for the deformation gradien¥', where[f] = f, — f, represents the "jump” of across the
phase interface. In particular, in the laminate conteg..m ), the jumpF] in de-
formation state across the phase interface is modeleditdivaly via the rank-one connection

[Fl=h®m (2.25)

determined by the interface deformation vedwoand interface unit normate. In this case,
note thath = [F']m and[F'] (I —m ®m) = 0 hold at the interface. Solvin§{ZI?4) and(3d.25)
for H,=F, —1I,i=1,2, we obtain

H (H,\hm) = H+(1-\MNh®m,

(2.26)
H,(H,A\,hm) = H—-)\hm.
In turn, these yield the corresponding strains
E(E,ANhm) = E+(1—))symh®m),
i ) (1= A)sym( ) 2.27)

E,(E.A\,h,m) = E —Asym(h®m),

as functions of the mixture straifi, the volume fractior\ of phase 1, and the interface proper-
tiesh andm. Like the deformation and strain, the free energy densiti@®mixture is modeled
as a volume-fraction-weighted convex combination

V(E, N\, h,m,Ep ,ap,, Ep,y, ap,)
= A¢(E1(E7A>h7m) _EP1>QP1) (228)
+ (1 - )‘)w(EQ(E7 )\7 h7m) - EP27QP2>

of the corresponding phase quantities, withgiven by [Z1). In this case, we neglect any
additional possible contributions, e.g., coming from thieiface itself. In these relations, the
total strainE is given, and the phase quantiti®s , , anday , , are determined by the evolution-
constitutive relations[{215) an@{2.6), respectively. sTliaves)\, h andm as independent
constitutive variables in the model yet to be determined.pdrticular, since\ is basically
determined by the technological process and known, we nmbdglconstant here. In addition,
we begin by assuming that the orientatien of the laminate interface is fixed and parallel to
the thickness direction of the coating / composite. To deitee i, we assume that it is purely
energetic in nature and require its value to satisfy medadueiguilibrium

0=0,1 =\ (1—\[T]m (2.29)

at the interfaceX # 0). This yields an implicit equation fdf.
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On this basis, we can use the following algorithm to solverttuelel relations formulated
as follows. As already stated above, for the current tineg;sk, = sym(F,_ , — I) and
E,, , =sym(F, ,—1I)areknown. Inadditiona,, Ey,,, apq,, Ep,,, andag,,, are known.
From the explicit update of the inelastic phase variabldbrmd in sectior Z]2, we then have
Qpyne @aNdEp . Using these, one can then calculate

EEwnJrl(h’) =
TwnJrl(h’) =

Ewn+1(En+17 h’) - EI‘gnJrl ’
CEwEEwn—f—l(h’) ’

(2.30)

and so solve[{Z.29) foh,,,,. A convergence study for the number of iteration steps fer th
solution ofh was carried out. The exact solution was defined for a deviatfd 0~ 12 between
h,., andh,. It was found that after one iteration step the deviationveen this value and the
exact solution is less than 0.1%. Therefore only one itenastep is necessary. Givés)
and the corresponding current phase stre@$¢s, andT, . ,, (Z19) determines the current
composite stress, and

aaEanlTnJ’»l - >\ aaEn+1T1 n+1 + (1 - >\) aaEn+lT2n+1

= A {aEn+1T1 nt1t (6hn+1T1 n+1)(6%n+1hn+l)}

=N {08 Toir + @ Ton )0, i)}

(2.31)

the corresponding stress tangent.

2.5 Model behavior

To apply the laminate model to a given microstructure, theme fraction\ of phase 1 and
normal directionm, which are considered fixed and known here in the case of raatwéd
composites, have to be chosen. In general, these could Berthdbitrarily. On the other hand,
in the case of thin coatings, the layered microstructureshasrmal direction approximately
parallel to the thickness direction of the coating, as shiowigure[2.1. As discussed in section
[Z4, we investigate the laminate model for a composite stingi of isotropic, thermoelastic,
viscoplastic phases, one being soft and the other hard.iF hesighly analogous to the case of
WC-FeCSiMn coatings shown in FigureR.1. The parameteregatinosen for the two phases
are given in TablE2]1. In addition, is fixed at10—3 s~*, corresponding to quasi-static loading

material| £ [GPa] | v [-] | o, [MPa] | sy [MPa] | ¢ [-]
soft 210 0.3 130 240 10
hard 430 0.19 2000 0 0

Table 2.1: Material properties of the two phases in the madetostructure.o, = 100MPa
andd, = 0.001s~! are for both phases the same.

conditions.
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’S\'_ 100 ym —

Figure 2.1: Example of a layered microstructure in an araygut WC-FeCSiMn coating which
has been thermally sprayed at 700 K onto a steel (Ck45) subsit room temperature. The
original micrograph was processed by an image processfhgase (Klusemann et al., 2009b).
Green and white regions represent Fe- and WC-based alkEgectively; blue regions signify
pores. Note that the normal direction to the interface betwayers is on average more or less
parallel to the thickness direction of the coating, whichresponds to the vertical direction in
the figure.

Realistically speaking, we should model a hard ceramicghlas WC as thermoelastic and
brittle. For simplicity, however, we restrict attention domodel microstructure in which the
hard phase is modeled as being thermoelastic and idealplést@. In particular, for lack of
more specific information, the value of, for the hard phase was set equal to the maximum

strength of WC/Co at low cobalt content (e[g__Han_ahH_lLdJ]QKa.m.om_eLdlLZO.bS).

Consider next the behavior of the model for this microsturitetvith the help of the follow-
ing four deformation conditions: (iJ’;;-extension parallel to the layers, (if);,-compression
parallel tom, (iii) F,,-shear parallel to the layers, and (i¥),-shear of both phases parallel
to the interface. These are shown schematically in Figulie Below, we will investigate the
stress-strain response of the composite subject to theselébormation conditions predicted
by different homogenization methods, including the curteminate-based one. Before doing
this, we first investigate the behavior of the laminate masaéhg single-element calculations.
To this end, uniform displacement boundary conditions a@ied to one face in the normal
direction while the three other faces are fixed in their regpe normal directions.

We begin with cases (i) and (ii), i.e;5-extension parallel to the layers, aAf -compression
parallel tom, respectively. The corresponding results are shown inrE[@B. As shown here,
the soft phase (solid squares) is almost immediately itieJashereas the hard phase (solid
circles) has a more pronounced elastic range. Note thatasgceinelastic transition fof,,-
extension takes place in the composite almost at the sanoentition state as in the hard
phase alone, numerically 4% later. On the other hand, thisition is displaced to more than
15% larger deformation in th&,-compression case. As deformation proceeds in the inelasti
range, the stress-strain response of the composite foe tiscases converges. Mechanical
equilibrium requires the normal traction at the interfac®¢ continuous. Because of this, the
elastic and inelastic strengthening effect of the hard @sslightly more pronounced in the
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Figure 2.2: Deformation conditions for investigation oé tomposite behavior.

~ F,,-compressio
~ Fiy-extension |

soft

» hard )
n Fys-extension

-~ F|,;-compressior

| L 1 L O X | L 1 L L L
1.1 1.15 1.2 1 1.05 1.1 1.15 1.2
Fyy, F33 Fiy, Fsg

Figure 2.3: Von Mises stress,,, in the com-  Figure 2.4: Relative normal deforma-
posite subject to different normal deformation tion A - m across the interface foF -
conditions as a function of',,(compression) compression and,,-extension af = 0.5.
or F;, (extension) for soft-phase volume frac-

tion of A = 0.5. Also shown for comparison is

the behavior of the pure hard (solid circles) and

pure soft (solid squares) for either extension or

compression.

F|,-compression perpendicular to the interface thahipextension parallel to the interface.

Consider next the development of the norrffal- m)m component ofh at the interface
during extension and compression deformation as showrgiw&Z%. Relative to the coordi-
nate system in Figuie2.2, note thtat m = [F},] holds. In addition, note thgi,,] = —[F};]
follows from continuity of the tangential deformation satt the interface. Consequently, as
exhibited in Figuré€_Zl4h - m is much larger inF};- than in F;;-compression. After transition
to the inelastic regimeh - m decreases slightly due to hardening in the soft phase.

The behavior in the case of shear is different than for exd@rsompression. In particular,
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for the F,,;-shear case, the results seem to be quite similar to thosewvalosin the extension-
compression case. In this case, the interface lies in thar gii@ne, and both phases are loaded
equally. Because of this, the resulting behavior is quiteilar to the behavior of the Taylor
model (Taylaor] 1938). On the other hand, i, -shear case, the laminate model shows com-
pletely different behavior. As shown in Figure? 5, -shear is dominated by the behavior of
the soft phase. The stress-strain curve of the compositeaigyncoincident with the curve for
the soft material. This result is quite similar to the bebawf the Sachs model (Sachs, 1928).
This behavior can be understood schematically as showrgun&fZ.6.

2.5 ‘ : .
2,
g 14
T
% i soft
< 1 *« hard
S ~ F,s-shear
0.5 - Fﬁl-shear
W—T
0.1 0.2
F217 F23

Figure 2.5: Von Mises stress,,; in the
composite subject to different shear defor-
mation conditions as a function of strain
in the form of displacement divided by
length! for soft-phase volume fraction of
A = 0.5. See text for details.

F21

— = = F{—compression

soft

1 hard Fy3—extension
2

Figure 2.6: Schematic behavior of laminateFigure 2.7: FE-model for laminate with ap-
model for shear parallel to the laminate, e.g.plied loading cases.
for F,,-shear.

The externally applied strain leads to large deformatiothefsofter phase while the hard
phase undergoes only small deformation due to a nearlyumistress distribution. Before
comparing different homogenization approaches below,rdicagion of the laminate model
will be carried out with the help of the FE-model shown in Fef. 1. The FE model consists
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of layers of hexahedral finite elements of the type C3D8 wiiht8gration points where the
different layers are tied together. To verify that the resmmoof the structural model is not
influenced by boundary effects the comparison between bottets is done on the structural
model. In this regard, the results for the laminate modebéatained from the structural model
by applying the same material parameters in both layersfiliie material model used for the
structural laminate model can be seen in sedfioh 2.2.

In contrast to the single element test, displacement bayratanditions are applied in such
a fashion that material flow which would otherwise lead tarfation of bulges at the faces
is prevented. This reflects that in a real compression exyeri, e.g. formation of a bulge
due to material flow would be prevented for interior regiopsbrrounded material. Therefore
the faces of the different layers are coupled for every sideegupling equations for example
in order to couple the displacement into 1-direction on tide svith their normal parallel to
1-direction the following equation hold

ul' —ugp, = 0 (2.32)

2 —
Uiy —Urp, = 0

wherew!! describes the displacement of layet1)(and u!' the displacement of layer 2)
into 1-direction as shown in Figute 2.8 P, describes a reference point which facilitates a

1“— T T ! I ! I

1
layer 1 (11) | Uy é « hard

f « Faa-extension
- le—compressmn

»» FE extension_
= FE compression

1.2%

o [GPa]

ﬁ layer 2 (12) —
1

]1 1.05 1.1 1.15 1.2
Fllv F33

Figure 2.8: Applied boundary conditions Figure 2.9: Comparison between the FE

and coupling conditions for one-element model and the laminate model far= 0.5.

case. Both models show the same behavior un-
der the applied loads.

displacement in the 1-direction equal at the faces of layand layer 2 on the corresponding
side. These boundary conditions guarantee that the defiomaonditions considered lead to
homogeneous deformation in every phase. Figude 2.9 sh@awe#ulting stress-strain curves
for the FE-model and homogenized laminate model. It can be 8&t their behavior agrees
quite well, i.e., in the case of homogeneous deformation.

Consider next inhomogeneous conditions. These are ralevwagxample to the technolog-
ical case of compaction of the coating via incremental fognmnethods. Related to this is the
material testing of such coatings with the help of indenésts. Consequently, consider the in-
dentation of the coating using a spherical indentor. Sinreexpect ideal RVE-related boundary
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conditions being employed in this work not to be completelyrect in this case, the relation of
the microstructural size to the indentor radius is examim&@. In particular, we examine the
dependence of the results on the ratio- of the widthw of the structure to the radiusof the
indentor. As this ratio increases, the boundaries aredadtvay from the region of loading.
Consequently, the difference in the stresses predictedélgamogenization model and the FE
model should decrease as this ratio increases.

The results of the indenter test are shown in Figurel2.168.dligar that the stress distribution

Figure 2.10: Comparison of von Mises stress distributiothanstructure predicted by the FE
model (above) and by the laminate model (below)dotr = 2 (left) andw /r = 10 (right).
Although more inhomogeneous in the FE-case, the stregsbdisbn in both cases is quite
similar. As shown, with increasing /r, better agreement is obtained (red imphkeg > 1000
MPa).

is more homogeneous for the homogenized laminate modebdhe fact that in the FE-model
there is a sharp transition at the interface between thedayee to the contrast in material
properties. In addition, the results as a functionugt- clearly show the decrease of boundary
effects (especially near the indentor at the top) on thecadigtress distribution. As shown and
as expected, the agreement improves the boundary influetceases, i.e., as/r increases.
Except for the differences due to such boundary effects), tive are justified in concluding
that the laminate homogenization model is a reasonablerirfiell” approximation to the FE
model results.

2.6 Comparison with other homogenization approaches

In this section, the current laminate-based homogenizatiodel is compared to standard ho-
mogenization assumptions like Taylor, as well as to thahafse-wise constant plastic deforma-
tion (EPc) considered in sectibnP.3. All of these are comgarith the laminate model. These
comparisons are carried out both for the thin-coating- or-tilm-like layered microstructure
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considered in the previous sections. These are carriecbothé loading conditions shown in
Figure[Z2. In addition, for completeness, we carry out toisiparison for the “standard” ho-
mogenization case of a metal-matrix composite with sphemclusions. As one might expect,
the laminate model performs poorly in the latter context.

To begin, consider first the compression and extension ofhiinecoating-like layered mi-
crostruture from Figure2.7. Figure 2111 shows the stressscurves for the different homog-
enization methods. In the elastic range, the Taylor modedesgquite well with the laminate

JRANRAR SR SN 2

= hard i ]
T « Faa-extension T r—-—-—-“‘" « Fiy-extension
% ~ Taylor % ~ Taylor
 1.21 ~ Fy,-compression = 1.5 « F,,-compressiof
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Figure 2.11: Comparison of stress-strain be-
havior predicted by different homogeniza-
tion approaches fok = 0.5.

Figure 2.12: Comparison of stress-strain
behavior of different homogenization mod-
els forA = 0.6 and\ = 0.3. Different
homogeneous methods show analogous re-
sults as described in Figure 2111.

model in the case of extension, whereas the EPc-model agrdethe laminate model in the
case of compression. In contrast to the laminate model, Beenkodel exhibits the same behav-
ior for different loading cases in the elastic range. In &ddj for the chosen material parameter
combination, the Taylor and EPc models show a behavior legtilee extension and compres-
sion response of the laminate model in the inelastic rangepatticular, the yield stress of
both models lies between the extremal values of the lamimatgel for extension and com-
pression. With increasing deformation the Taylor modgboese converges to the response of
the compression case of the laminate model, whereas theneBel response converges to the
extension case. The same behavior can also be observedféyenl volume fractions\ as
shown in Figurd212. Clearly, model differences are magghi€ipon increase of the volume
fraction of the soft phase, especially in the elastic range.

The results for shear deformation are qualitatively theesashin the normal deformation
cases just considered. Fbi,-shear, in which the interface lies in the shear plane, tedipf
tions of the laminate model and Taylor model correspondequiell. This is to be expected
since, in this case, both phases experience the same déforstate (see Figuie 2.2). As be-
fore, for this case, the EPc model predicts softer behari®for the Taylor case, this is due to
the fact that the material behavior is independent of logdinection for an isotropic material.
For F,,-shear, the Taylor and EPc models predict the same behavimfare, in contrast to the
behavior of the laminate model. In this case, the Sachs meoild give the best prediction,
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but for all other loading conditions this model is absolyiebappropriate.

In the literature (e.gl, Gross and Seelig, 2001; Molinasilet1997), models like the EPc and

Taylor models are often shown to be too stiff. This is truedtructures with homogeneously
distributed spherical inclusions. For the inhomogenease chowever, matters are more com-
plicated. An example of such a microstructure is considardelgure[ZIB. As expected, the

P

S

\

Figure 2.13: Distribution of, in an ideal composite microstruc-
ture with 30% (volume) spherical inclusions after 20% agxpli
strainF;.

largest deformation takes place in the matrix between thecfes near these, and the deforma-
tion field is quite heterogeneous. The stress-strain behatihis microstructure predicted by
the homogenization models under consideration is disglayd-igure[Z. Tl together with the
corresponding FE results. It can be seen that the homodemzaethods first predict stiffer
behavior than the FE results. In the FE case, the soft phas#ava around the hard inclu-
sions, resulting in less stress concentration at the imrusatrix interface than predicted by
the homogenization models, which underestimate the anafunélastic deformation near the
inclusions. This deformation in the matrix near the inausi also results in higher strain-rates
than predicted by the laminate models and so higher streégstsincreasing deformation, this
results in a higher level of hardening being predicted byRBenodel and so higher stress levels
than those predicted by the homogenization models. In as®, ¢this comparison makes clear
that the homogenization models presented in this work aresagonable for composites with
such microstructure.

2.7 The case of variable interface orientation

For simplicity, the phase interface orientation has been kept fixed and oriented in the direc-
tion of the coating thickness. In reality, however, theraasreason to believe that it may not
vary locally in the coating during loading. To have a firstkad the effect this might have on
the material behavior of the composite, we now allewto vary. For simplicity, we assume to
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Figure 2.14: Comparison of stress-strain
behavior for a metal-matrix composite
with spherical inclusion X = 0.7) pre-
dicted by the homogenization models con-
sidered in this work. For comparison, the
corresponding FE results are also shown.
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Figure 2.15: Comparison of stress-strain
behavior of homogenization model for
fixedm = {100} under compression and
extension with model with variationah

for A = 0.7 with m,;5. = {100}. For
comparison, the corresponding FE results
for spherical inclusions are also shown

this end thatm is purely energetic and varies only in order to satisfy aagmiomentum at the

interface, i.e.,

0=20p,Y=A(1-N0g¢]"h

(2.33)

vanishes there in equilibrium, yielding an implicit retatifor m. This is of course subject to
the constrainin - m = 1 which is taken into account by minimizing the associatedraagian

function

((Eg,ap,m,h) = Yg(Eg,m, h) +Yy(ap) +p(m-m —1)

with Lagrange multipliey.

(2.34)

The values ofn obtained in this fashion show that the laminate interfacedsienting to
a diagonal in one plane, depending on the direction of lapdmwell as the initial condition.
This corresponds to a reorientation4s for m, = {100}. The corresponding stress-strain
behavior is shown in FiguleZZl15 and compared to the caseedf finrterface orientatiom =
{100} as well as to the FE-result for spherical inclusion. Sineaeehuilibrium value ofm
represents energetically the most favorable orientaiioesults in the lowest stress levels.

On the other hand, a reorientation 4f° of the interface for such laminates is physically

unrealistic. To prevent this, we assume that the interfaaeahcertain stiffness in the sense
that reorientation beyond a certain degree is energsticalfiavorable. To this end, we add a

corresponding penalty term 1o {2134), i.e.,
E(Ean‘Pamvh) = ¢E(EE7mvh)+¢H(aP) (235)
+ oy —mem? i (mem - 1),

wherey represents the interface resistance to reorientatiotivela the initial orientationn,,.

First results for compression are shown in Fidurel?.16 ftfexint values of the ratiofi =
v/ E.g Of v to Young's modulust, ;, of the soft phase. The corresponding development of
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the reorientation angle = arccos(m - m,) is displayed in Figur€Z17. For large the
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Figure 2.16: Comparison of stress-strain  Figure 2.17: Development of the reorien-
behavior of homogenization model for tation angleow = arccos (m - my) during
variablem for different values of the in- compression fom, = {100} and various
terface resistance = g E, ; under com- v = By With A = 0.7.

pression withm, = {100} and\ = 0.7.

For comparison, the corresponding results

for fixedm = {100} are also shown.

results agree with those for fixeeh as expected. As decreases and the interface becomes
more pliable, the stress level also decreases, again astegpeConsequently, a variabia

can have a significant influence on the stress level in the ositgp The question arises, is the
variation ofm purely energetic in nature. More generally, one could ekedastic / kinetic

/ dissipative processes to influence the orientation ofritexfiace. In this casd, {2133) could be
generalized to

0=0,10+0,y (2.36)

in terms of a dissipation potentigl depending in particular on the rate of interface rota-
tion. Detailed analysis of results for variational under different loading conditions represent
ongoing research.

2.8 Discussion and conclusions

As mentioned in previous sections, in a more realistic aggnpbrittle failure would have to
be included in the model for the hard phase. To get a first isgioa how the model behaves,
a computation is done according to the loading cases in €[@B. To model the behavior
of brittle failure and the resulting softening the mateparameters are chosen as displayed
in Table[Z1, but changing the parameters for the hard plasg & —1870MPa andcy =
100. The resulting behavior is shown in Figdre3.18. The diffieess for the extension and
compression load case are clearly visible. Due to the lowsyumt of deformation for the
hard phase in the compression case as in the extension ess&i(grd 2W) it takes more
overall deformation until the softening begins. Up to thamnp the soft phase was subjected
to deformation which leads to an inelastic behavior withulisg hardening. Therefore the
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Figure 2.18: von Mises stress,, in the composite subject

to different normal deformation conditions as a function of
F},(compression) of;, (extension) for soft-phase volume fraction

of A = 0.5. The material parameters of the hard phase are changed
to s; = —1870MPa andcy; = 100. Also shown for comparison

is the behavior of the pure hard (solid circles), modeledh \saft-
ening behavior and pure soft (solid squares) for eithemeskta or
compression.

differences in the effective yield stress as well as stregrhagher for the two deformation cases
in contrast to ideal viscoplasticity.

In this work, we have investigated a novel application oftfinxler laminate theory as a
homogenization ansatz to model the inelastic behavior iof¢bating-like or thin-film-like
two-phase composites whose microstructural morphologhasacterized by being layered or
lamellar in nature. This approach has been developed angarech with a number of exist-
ing homogenization methods as well as with a finite-elemei) (hodel for the microstructure.
The laminate-based homogenization model showed very ggregment with the FE model for
a number of different deformation conditions includingesdion, compression and shear. This
was the case both for homogeneous and inhomogeneous dé&torroanditions. Additional
comparisons were carried out with standard homogenizassomptions like those of Taylor,
as well as with homogenization based on the assumption afepivése constant plastic strain
(EPc). These comparisons show that the Taylor model peetiietbehavior for extension quite
well. On the other hand, the EPc model predicts the behawtiromly for compression. The
Sachs model is not appropriate in any of these cases. Inghpda of the work, the homog-
enization models are compared with the FE model for the iclalssomogenization problem
of a metal-matrix composite with spherical inclusions. #sashown that all homogenization
methods considered predict incorrect behavior for suchcaasiructure, i.e., in comparison to
the FE model.

For simplicity, the hard phase of the model microstructwessidered in this work was
treated as thermoelastic, ideal viscoplastic in naturé) elastic and yield properties signif-
icantly larger than those of the soft phase. It would be mesdistic to model this phase as
thermoelastic and brittle. Also for simplicity, attentibas been focused in this work on a con-
stant laminate interface normad. In particular for more realistic lamellar-like microsttures,
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however, this will be variable within the limits of a cone amal the initial orientation as first
results are shown. These generalizations of the currenh#aibased approach, along with
the application of the approach to the modeling and simudatf the compaction of thermally-
sprayed coatings, represent work in progress, and will perted on in the future.






Chapter 3

Crystal plastic modeling of the deformation
behavior of thin sheets with large grains

Abstract— The purpose of this work is the modeling and simulation efdeformation behavior
of thin sheets consisting of large grains of Fe-3%Si and @mpn with experiment. To this
end, an explicit finite-element-, crystal-plasticity-bdsnodel is developed for each grain, the
grain morphology, and the thin sheet specimen as a wholearicplar, the crystal plasticity
model is rate-dependent and accounts for (local) dissatrdening effects. The predictions
of the model are compared with experimental results_of Hemaind Vehoff (2005) for the
deformation behavior of thin sheets of Fe-3%Si loaded merally in tension. To this end,
attention is restricted to the two slip familigs10} and {112}. To begin, all hardening is
neglected. Even for this oversimplified case, a good cdroglavith the experimental results
is obtained. This shows the importance of predicting ifijtiactive glide systems correctly.
Even better agreement is obtained with experiment wherenard is included. Finally, initial
results for the development of local orientation changesiagcussed.

3.1 Introduction

The relation between microstructure, material properied mechanical response is a basic
issue_of research in material science and material mecha@i |...Z2Q7; Langer
et al., ). From the modeling point of view, a common cpheesed to account for the
effect of the microstructure on the material behavior ig tia representative volume element
(RVE). This concept is based on the assumption of scale sgpabetween the microstructural
and macrostructural lengthscale. As the characteristie af the microstructure (e.g., grain
size) approaches that of the system (e.g., sheet thickrmesggver, such scale separation is no
longer given and one must resort to other means of repreggtite effect of microstructural
heterogeneity on the system behavior. One possibility i ibgard is based on distribution
functions (e.g., orientation distribution functions, .e.h?;ﬂhlke_el_ai.LZQ_dd_ZQIlO) and aver-
aging. As the macrostructural lengthscale approaches tbmstructural one, the degree of
material heterogeneity increases drastically, such ti@aidcal microstructural behavior can
deviate significantly from the average macrostructuralabar (e.g. LISa.LLdJ.ndJ_eI_a{I LZQ(bS
lELQl’.&Ld.&LdILZO_(b?) In this case, the model has to accoutié microstructural details such
orientation details of the grain structure (e. b__Baa.b_dJeiZﬁQi) or pore distribution (e.g.,
Wiederkehr et 41, 2010).

In the extreme case, the microstructural and macrostraidiemgthscales are the same or-
der of magnitude, and one must resort to numerical modelseofrticrostructure, e.g., finite-
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element-based models. These are often constructed wittetpef, e.g., optical and / or EBSD
data on the grain morphology. In specimens with more thangoai& over the thickness, the
common method of projecting the two-dimensional EBSD inmfation uniformly in the third
dimension will generally lead to different behavior ( ehMﬂd.&tkﬂhL&LﬁllL_ZQiO). If the spec-
imen is one grain thick, however, such an optical- / SEM- / EB#sed approach should be
reasonable. For such a specimen, a number of size effecgeeted to influence its mechan-
ical properties. These effects have been known for yearsamnstill subject of active research
in, 2002; Fu e blibblﬂbp.bLaD@dzlanssan.eﬂMOS) reported at
least four size effects: (i) strengthening or weakeningtdwnstrained or free boundary layers
( e.g.,|_G_e_e5_e1_hL_2d0|ﬁ:_la.nssm_bLa1J2006), (i) stnengng due to strain gradients ( e.qg.,
|Barcmann_et_elIL_20_|lb_;_Ba¥l_egLet| iL,_ZbOG) (iii) strengthg due to dislocation annihilation (
e.g.,Q_Le_ELet_iiilL_ZQbS) and (iv) size effects due to a laskatistical microstructural averag-
ing ( e.g.LEulﬁ.p_eLilL_mbb;_Hﬂnmng_andMehbﬂJOOﬂ)thls work, the main focus is on the
fourth size effect. One cause for the occurrence of thisedfteet is the change of number of
grains over the thickness. The overall mechanical respengen strongly influenced by the
orientation of the individual grainla_(_ELlIb_p_eII &.L_ZbOBjthe case of thin sheets the properties
in a given cross section are increasingly dominated by iddai grainsl(.l:l.enning_an.dlehbff,
). Due to the different orientations of the grains ledan the sheet plane, the deforma-
tion is no longer uniform even under homogeneous loadinglitons. In order to predict the
mechanical response of thin sheets correctly it is necgssaccount in particular the shape
of individual grains and their orientatioh_(_ELlI_b_p_ei 12_0_0_45). To understand and predict the
behavior correctly simulation and experiment have to bepamed locally. Therefore detailed
experimental information of local details during plastefarmation are necessary (Henning
and Vehofﬂ__ZES).

The purpose of the current work is the crystal-plasticitynitéi-element-based modeling
and simulation of a bcc Fe-3%Si thin-sheet sample with lamgéns loaded incrementally in
tension and comparison with experimelnL(_I:Lennin.g_a.n.dAAe ). This sample is grown
in such a way that throughout the sample there is only one gneer the thickness in which
the grain boundaries are perpendicular to the sample surfde deformation of the individual

rains has been measured, as well as the local orientatemeaich loading step. Mng
), a software package has been developed to autoftyatmastruct finite-element meshes
directly from different measuring devices. This softwaseised to construct a FE mesh from
the investigated sample which is used in the crystal-glgtbased finite-element simulations.

Crystallographic slip in body-centered cubic (BCC) metigite Fe-3%Si, it is known to take
place in close-packef 11) direction, but there are different opinions and experirabrasults
regarding the operative slip pIanes.LLn_'[a.keu.th_bﬂ_al_'dJ,eree possibilities are discussed.
In the first case, it is assumed that the slip really take ny plane inthél11) zone (e.g.,
Takeuchi and Ikeda, 1963). Other workers (e Impmed that the slip takes place
mainly on composit¢110} planes. A third assumption (e.é,_._ELu:klsbﬂJ%Z) Is thptosicurs
on planes with low indice$110} and{112} or {110} and{112} and{123}. Simulations with
different active sets of glide system classes will be penfxt to investigate which slip planes
are active and dominant in the simulation.

The paper begins with a summary of the material model, iterdfgnic formulation and
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numerical implementation. Next, the model identificatiod &he used material parameters are
given. In the following the experimental resultsLoLI:LennmNALehQ_ff |(20_d5) are reviewed
and the construction of the FE-model is discussed. On thuis paetailed and systematic com-
parisons between simulation and experimental resultsaareed out. In particular, we look at
the effects of assuming different combinations of the ghglstem familief110} and{112} on

the development of deformation heterogeneity in the sanhpladdition, we compare the cases
of modeling the deformation behavior with and without giglestem hardening. The paper
concludes with a short summary and outlook.

3.2 Model formulation for single-crystal plasticity

In the current work, a material model is formulated in theteahof continuum thermodynamics
for crystal plasticity. In this context, the material betwas related to energetic and dissipative
processes. For simplicity, attention is restricted tohisomal conditions. Here we are restricted
to dissipative hardening alone which means that no energatidening occurs. As usual, the
energetic part is determined by the free energy densityror the case of anisotropic metals
with viscoplastic behavior, the form

holds fori. In particulary is assumed to determine the elastic relation
P = 0p0 (3.2)

for the first Piola-Kirchhoff stres®. F}, is assumed to be not affected by the elastic behavior,
in this case, it can be modeled as a change of local referemégaration |(_SALe.n.d5|5h._2d01). In
this case, the (local) intermediate configuration reprissdre preferred constitutive reference
configuration. In the context of “small” elastic strain ned@at to metalsy, takes the form

1
Vg (F, Fp) ~ 2 Ey - CyoEx (3.3)

for ¢ pertaining to metals, witfi; , the elastic stiffness, at constant deformation. In theexdnt
of small elastic strain, the approximatidd ~ Sy of the Mandel stress by the elastic second
Piola-Kirchhoff stress

is justified.

In the following we are discussing the single-crystal / gglstem case. As usual, thé
glide system is represented by the corresponding glidetebres , glide-plane normak,,, and
direction transversg, := n, x s, to s, in the glide plane. The systefs,, t,,n,) are assumed

constant with respect to the local intermediate configoradis determined b¥}. In addition,
they determine its evolution via the constitutive form

LP = Z:Zl ;Ya S, ® n, (35)
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for Ly in terms of the active glide-system she&fsy,, . . ., 7,, With a < g the number of active
systems, ang the total number of systems. Lgt_ := > "_, represent the sum over all active
glide systems. From this, we obtain in particular the form

—Op Y Fp=M-Lpy=) 7,4, (3.6)
for the inelastic stress power in terms of the Schmid stress

T, =8, Mn,. (3.7)

a

Sincey, is interpreted here as the glide-system shear, it can b&ysosr negative and increase
or decrease, such that s, = |5, dir(%,) s, = £ &, s,, where

a “a’

A (3.8)

represents the accumulated inelastic glide-system satartiere the notatiodir (a) := a/|a

is used. Note that, > 0, anda, > 0 are always positive and monotonically-increasing for
alla = 1,...,g. This situation has motivated many workers to consider Bgtand —s,, as
glide directions, i.e., at the expense of doubling the nuntbeglide systems. In this case,
Yo 80 = Oy, 8, — G, _ s, = [¢,] s,. Alternatively, one works with the constitutive assumptio

dir(%,) = dir(7,) (3.9
for the direction of the glide-system shear-rate. In tunig implies the constitutive form
5, = dir(1,) &, (3.10)

for the glide-system shear rates, and that

L, = Z Yo 8, @M, = Z dir(,) s, ® n, &, (3.11)
for L, as a function otx. Lastly, the reduced form
— 0 Fp=M-Ly = |]d, (3.12)

follows for (3.8) in terms ofx.

In the following we assume that no activation energy has tous¥come so that slip can
directly start when a system becomes active. The viscopléstv rule is formulated according

tolKalidindi et al. (1992)

$o = 006 =3 [2] dir(r,) (3.13)
where the flow potential is determined via
T o
=4 -2 14
) =502 i1 |7 (3.14)

Here, 5, represents a characteristic strain-rate associated \vglbcdtion motion and, the

energetic or athermal slip resistance is determinedMa.@an.d.N.e_e_dLembh._lé85)

Ta= D o (7)1l (3.15)
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q,, 1s the hardening matrix which describes the rate of strarddrang on slip system due to
a shearing on the slip systeniy

L g - @

qo 1 qo
oy = . . .

@ 0 q 1|

in WhICh o = 1.4 represents the ratio of latent to self-hardening. FoII@}BmAALn_eLa' |(_’L9_d9)
tl_%b) we consider the following form fdre single slip hardening rate

hyp(7y) = ho (1 — 7'b/Asat) (3.16)

Here, h, is the initial hardening rate;;** the saturation value of,, andn, is the hardening
exponent.

3.3 Algorithmic formulation

The introduced material model in sect[onl3.2 is implemebsskd on the following algorithmic
flow rules. As usual, for algorithmic purposes, we are irgtge in transforming these relations
into algorithmic-numerical with respect to a time-intdrig, ¢,, . ,] with ¢, the time at the start
of the intervalit,,, > t, the time at the end of the interval, angd,, , :==¢,,, —t, > 0its

duration. In the context of large inelastic deformation agorithmical formulation off}, =
L, F}, follows via volumetric-isochoric split

F, = vol(Fp) uni(Fp) = det(Fp)"? uni(Fp), (3.17)

wheredet(A) describes the determinant andi(A) the unimodular part of a second order
tensorA. Consider next the single time derivatives

dot(Fy) = tr(Lp)det(Fp)

. (3.18)
uni(Fp) = dev(Lp)uni(Fp),
wheredev(A) describes the deviatoric part 4f.
Algorithmically it follows for (ZI8) with forward-Euler integration that
det(Fp,,4q) = (1 + topintr(Lp,))det(Fp,,) = det(Fp,,) (3.19)

holds for the case of plastic incompressibility,L,) = 0. Here denotedy,,, ., = Fp(t,,),
relative to thatF,,, = Fy(t,) from the end of the previous time step. Asg is full deviatoric
one can algorithmically formulate the evolution of plasteformation as

Fo,=wmi(l +ty10Lp,) Fp, - (3.20)
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In the following we are using an approximation of this eqoiativhich is based on the restriction
tniin [ Lp,| < 1, €.9. to “small” time steps. In this case and in the conteat i = Fj; Fy,
the direct algebraic approximation is

FEnJrl = F]*grnJrluni(I - thrl,nLPn) = Fél” +1uni(APn+1,n) (321)

n

for Fy, in terms of its trial value

FérnJrl = Fl*gr<Fn+1> = Fn+1FFT$ = FnJrl,nFEn ) (322)
with
FnJrl,n = Fn+1Fn_1 (323)

the relative deformation gradient. Sindg, , is an algebraic function of’, , , and the
algorithmic constanfy, ,, via (3.22), this approach is purely algebraic. The corragpw stress
algorithm is based on the Green measure

1

EEn+1(FEn+1) - 5 (FETn+1FEn+1 - I) (3-24)

of elastic strain. The corresponding stress algorithm mspleted by the general relation
K, = Fu1Spn Finn (3.25)

for the current Kirchhoff stresk’, , , in terms of the corresponding elastic second Piola-Kiréhho
stress
Spni1 = SE(EEnJrD ..2) (3.26)

andFy,, ;.

Consider next the algorithmic formulation of the crystagilcity material model. In this
case, the external variablds, and F,, , are known. Then the relative deformation gradient
F, .., is also known. Furthedy,, , 4, andoy, ., as well asx,,, 7, andr,,, are known from the

n

previous update. Consider first the explicit formulatiorbased on forward-Euler integration.
In this case, the update of the inelastic state variableagedbon that

m
—¢ . Tan
aan+1,n - "n+1n Yo

~
an

(3.27)

for the glide-system shears obtained from forward-Euleggration. In particular the update
for the slip resistance is given by

%anJrl,n = thrl,n Zb qap hbn<7:bn) |f‘yan| . (328)

In particular,c,, ,  ,, determines the updates

APn—i—l,n = I- E adlr(Tan) s, ¥n, Qyn+tin

=1 _NPnanJrl,n )

(3.29)
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from (321). This result then yields the “kinematic” update

Fypin = FE(FnJrl) = Fér(FnH)uni(APnH,n)

) (3.30)
EEn+1 = EE(Fn+1) = 3 {FE(Fn+1)TFE(Fn+1) - I}
from (322) and[[321). From these updates, we obtain those
Mn+1 = M(EEn+1) ) (3.31)
TanJrl = Ta(MnJrl? anJrl) )
for the constitutive stresses v[a(3.4) ahd)(3.7), respelgti
As before, post-processing includes calculating the wgpdat
SEn+1 = SE(EEn—H) (3.32)
for the elastic second Piola-Kirchhoff stress, and so in that
K, = FEn+1SEn+1FETn+1 (3.33)
for the Kirchhoff stress. The corresponding tangent ismive
0, K.y = 10K, + K, AT (3.34)

+ (FEn+1 O FETn+1) CEO (FETn—I—l ] FEn+1) sym .

In this last relationsym = %(I O I+1 A I)represents the fourth-order tensor induced by sym-
metrization. Here is made use of the tensor produdts] B)C .= ACB and(A A B)C =
ACT B of any second-order tensass B, C. Additionally use is made of the notation

d,p(F,...) = dpp(F,..)(IOF)

for the push-forward 0®,¢(F,...) to the current configuration as based on ihAt= AF
for the infinitesimal deformation gradient, with := (dF) F~'.

For the simulations, the time step is controlled Yiaag(Ly)|| which value was previ-
ously identified via empirical one element tests. The sitnaha were performed on an Intel
Core2Duo P8600 machine with 2.4GHz and 4GB memory runningntibLinux 8.04 in paral-
lel on 3 cpus. The computation time for the simulation withlsardening foR0% deformation
was roughly 4 weeks and for the simulation with hardening2fdf; deformation roughly 3
weeks. It was observed that the value[farag(L)|| has to be smaller for a stabile simulation
with hardening compared to simulation without hardeningpe higher computation time for
simulation without hardening results from occuring defation localization.

3.4 Model identification

It is assumed that the general mode of deformation in theosiliron alloy is slip and that
the presence of mechanical twinning is negligible. As rm]bmbﬁlLandM&LLhLDglchJ&b@,
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mechanical twinning occurs for fine-grained material bel®# K and for coarse grained above
320°K. Noble and Hull |(19_d5) also did not observed any twinning atrain aging effects in
tensile tests at 29K on Fe-3%Si. The presented experimental results wereradatat room
temperature and therefore mechanical twinning as wellrasnsaging effects are not further
considered.

As mentioned in the introduction, it is well accepted thgstallographic slip in BCC metals
occurs in close-packed 11) direction, but there is a disagreement regarding the dpersiip
planes in the Ilteraturel._I:LbIL(19|6 t]ﬁb@éb)orted that the main disloca-
tion movementis o4 110} slip planes at 29% for different orientations. Howev
dl%i);ﬁa.ke.u.chj_el_ilill_(_’l.&b ,.._'[a.o.lsa_ej M964) repodextradictory results where the
{112} was identified as an operative slip plane as well as{thi®} plane, depending on tem-
perature and orientation. The average direction of thebslipls was reported to be very close
to the trace of eithef110} or {112}. Similar results were reported in_lto_and Vitek (2b01)

7®estak and Zarubova (1965). Some authors (B.0., ExichE6?)
also reported slip on all planes with low indicgsl0}, {112} and{123}.

In the following the glide system$§110}(111) and {112}(111) are investigated by finite
element simulations using single glide system class or coatibns thereof actively. Thgl23}
slip plane will not be considered further due to its highehr8a factors and lower Taylor
factors which results in a higher activation energy andefoee are not preferable for slip.

The values of the elastic constants for Fe-3%Si are takmlﬁaulb.oﬂ.et.dll(_’l_‘)_‘}’l) and are
shown in Tabl€3]1. The unknown inelastic parameters argifdel with inverse finite-element

Cpa1 [GPa] | O, [GPa] | O 4y [GPa]
222 135 120

Table 3.1: Material properties of Fe-3%Si (BCC) (Routhowle|1971).

analysis by fitting the results for tensile tests on singkestals for different orientations to
corresponding experimental data extracted Ito__mll-m 9B8e to the fact that no substantial
difference stress-strain curves for different glide systéasses are available in the literature and
further results in the literature show nearly no differemcthe yield stress at room temperature
for {110} and{112} slip planes (e.g., Taoka et al., 1964) the hardening paasier both glide
system classes are assumed to be equal in a first step. Fuotieeit is known that Fe-3%Si
shows a smooth upper and lower yield point depending on giagand sheet thickness ( e.g.,

ll:l.eaning_a.n.dALehL‘ﬂ_ZQidl:_l:ljJiLlﬂm). However, due to latknformation about this effect

for the current grain size distribution this effect is nonsmlered in the fitting process. Also
failure phenomena, like reported hnﬁ_eu_andmnmnbﬂaﬂﬂdl) are not considered further.
Due to the fact that no information about the strain rateisigitg were available the strain rate
sensitivitym is set to 20 and the reference slip rgtgis set to be0.001s~! for quasi-static
loading conditions

The determination of the remaining parameters is carrigdusing the program LS-OPT
in conjunction with ABAQUS/Standard. The fitted hardeniraygmeters are shown in Table
B2. The optimization techniques used rely on responsacarhethodology (RSM) (Kok and



3.5 Experimental methods 59

o MPa] | 4 [s7'] | m[]
161 0.001 | 20
ho [MPa] | 75 [MPa] | n [-]

243.9 1137 | 0.48

Table 3.2: Materlal properties of hardening of Fe-3%Si (B@d to the experimental results

of Hull

StandeﬂEQ), a mathematical method for constructingpfimagpproximations of functions in

a design space. The approximations are based on resultdatatt at numerous points in the
multi-dimensional design space. In this work, the hardgp@rameters are the design variables
and the model together with the data determine the objedtivetion of the corresponding
optimization problem.

3.5 Experimental methods

The tensile test sample was laser-cut from Fe-3%Si she@€)Bvith a thickness of 1 mm.
The gauge length is about 5 mm in width and 15 mm in length. Thamgrain size is about
2 mm which is of the order of the sheet thickness. In the casleeofargest mean grain size of
approximately 5 mm, the grains are of the order of the speatiggametry. Whereas the size
effects mentioned in sectidn_B.1 have been investigateetaildn the literature, size effects
upon miniaturisation caused by the adopted processingadethmicroparts have done by few
researchers. Iln_\la.nss.en_dtlal_(iOOS), it is reported thettimag induced damage to crystals
just below a newly created surface can be neglected in mampasanalysis but not for volumes
with grain size near the geometrical size. It has to be takee © avoid that the test sample
is influenced by such processing induced size effects. Byager-cutting it is hardly to avoid
such side effect but to remove these processing inducee@fexts the specimen was annealed
at 1200C under vacuum for 48 h whereby a two-dimensional grain sirecwvas achieved.
Afterwards, all surfaces of the samples were polished adigeet Etching was necessary to
remove the deformation layer caused by polishing. Theshdutreatment should take care of
removing all induced processing size effects if possibleatas the experiments did not show
any indication of these size effects.

The experimental resultk_(.H.enning_andA@b_t[._iOOS) camogrthe properties of the sam-

ple (deformation, local orientation) are determined akesa&vstages, nhamely at plastic strains
of ap ~ {0%,1.5%,4%,10%,19.5%}. To compare the experimental and simulation results
concerning the deformation field only the grain boundaryvsags between two grain bound-
ary triple junctions, approximated as planes perpendic¢althe sample surface as displayed in
Figure[31, are shown. The presented experimental redatisshow the orientation gradient,
however, the focus here is on the shape changes of the sanipld-or details concerning the

orientation gradient sé&H.ennmg_an.dALelhb.tf_(iOOS)
lI:Leumng.a.n.dALeh.dffL(m%) it is mentioned that the defation results (presented in

FlgureES:B) are obtained by recording the positions of taegyoundary triple junctions. Grains
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Figure 3.1: Experimental results of the deformation field anentation gradient (Henning and
Vehoff, 5). Approximation of grain boundaries showneglines.

may undergo rigid-body rotation due to the plastic deforamabf their neighborhood. These
rigid body rotations were eliminated following the caldida of a two-dimensional per-grain
average strain tensor by applying a least-square fit methatisaussed |MI 98),
which is slightly corrected i off (2b05) hét methods to measure two-
dimensional strains are presentedLln.HQg_Eﬂ_al_dZd.QS.)nﬂihde_KoJﬂimH(ZO_dB) (e.g. laser
or etching), the measurement is carried out in-grain, wisatlone by introducing a grid on
the surface which leads to unknown surface effects. Sidesfiike these have been avoided
whenever possible.

The results obtained by experiment contain only informmatoncerning the surface. This
is assumed to be sufficient due to the fact that in the expeatithe grain boundaries remain
nearly perpendicular to the sample surface. At the graimbaties, contraction perpendicular
to the sample surface seems to be negligible, which agrebgivei results i Stolken and Evans

). Therefore no investigation concerning the comitvadn the third dimension will be
done in the following and only results at the sample surfaegpeesented. The orientations of
the grains are obtained with electron backscatter difstadEBSD) using OIM. These are used
as initial orientation in the finite element model.

3.6 Finite element model

The measured two-dimensional grain structure and the grantations were used to construct
a finite-element model. The grain boundary segments betivaegrain boundary triple junc-
tions were approximated as planes perpendicular to thelsasnpface. This task was done
by using the software DEFMEASURI 08). The expental sample is modeled
by using the measured geometry for the creation of a finimett mesh. In order to model

:
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the experimental setup more closely at either end of thel¢éesigecimen transition areas are
introduced. These are modeled using a simple isotropitielasterial model. This reduces
the boundary effects in the simulation by applying the tensiading at the surrounding area
dZisma.n_a.n.d_R;Lb.lrLlQ_b8). It was observed that defects ssidifalines can start from grain
boundaries and edges of the samb.l_e_(RQ.LQa.LOALd ELa.L| 1998).

The fact that neighboring grains do not share the same atientand grain boundaries are
not necessarily parallel to the local crystallographicsaxecombination with the anisotropic
elastic behavior may induce an inhomogeneous stress fi¢hdva single grain (Vehoff and
Nykyforchyn,,_m_ob). Therefore the model has to be setup inv8iich is done by simple
extrusion of the 2D geometry. The resulting FE-mesh is shioviigure[3.2 which consists of
18657 brick (8-node) elements. The grain orientationspdiooy EBSD, are accounted for via
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Figure 3.2: FE mesh used for simulations with grains nunthere

initialization of the state dependent variables (SDVs)e Smulations are performed with the
FE software ABAQUS using material routines introduced ictisa[3.3 which are implemented
viathe UMAT and UEL interface in ABAQUS/Standard. In whalldavs, the numbering shown

in Fig[32 will be used for clarity.

3.7 Results
3.7.1 Without hardening

In this section experimental results are recalled fLo.m_I:iimmn.dALethf kZJdS) which are

compared to simulation results for different sets of gligetems active where the simulation is

preformed without hardening.

In Figure[3:Ba) a micrograph obtained with a light-opticatmmscope displaying the length
of the specimen is shown. Also small topographic details ikntamination marks caused by
EBSD become visible. However, the surface details visibéeregligible in reality. Figure
B3b)-e) display in the left column the experimental plastiain component in tensile direction
and in the other three columns simulations results of theraatated crystallographic slip for
all glide systemsy, = > «, for different active glide systems. The experimental staim-
ponentsy 5, (in Figurel3.B described by, ,,) in tensile direction are recalled from Henning
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and Vehoff @5) which were identified for a whole grain. Taulation results are done
for {110}(111) or {112}(111) or {112}(111) and{110}(111) active glide systems in which
ap is displayed continuously over the structure. From thisipon no exact agreement be-
tween the experiment and simulation can be expected qatweily. For more details about
obtaining the experimental results i_e_e_l:l_e.dn[ng_dZd.O_&).ntﬂma.n.dJe.thl(ZD_dS). The sec-
ond column shows the simulation results fdr10}(111) and the third for{112}(111) solely
active. The fourth column shows the accumulated slip redolt both sets of glide system
classeq110}(111) and{112}(111) active simultaneously. Remarkably is that both glide sys-
tems sets show nearly the same amount of activity in the sithoal which can be anticipated
by analyzing the Schmid factors. Comparing experimentdlsaimulation results for both glide
system classes solely active the highest amount of slipredouhe same region which is near
grain 14 and 15. However, in the experiment the highest dedtion occurs in grain 15 and 16.
For the{112} case more deformation occurs in grain 15 as for{the} case. Thg 110} case
shows a higher activity in grain 13 compared to {ié2} case. In the beginning the experi-
mentally obtained deformation in grain 14 is higher thanriaig 16 which is comparable with
the simulation results. But with increasing deformatioaigrl5 and 16 gets more active than
grain 14 which is contrary to the simulation results. Fipatl the simulation a slip band be-
comes precisely visible in grain 14 and 15 whereas a slip baodrs in the experimentin grain
15 and 16 (see FigufeB.5). In the experiment grain 9 showgladgtivity at the beginning
of the tensile test but with increasing deformation the deftion rate in this grain decreases.
Also the simulation results show initially a high activity grain 9 (especially fof110}) and,
as in the experiment, the amount of deformation rate condptre@ther grains is decreasing

with increasing deformation (see Figurel3.3c) to e))]_l.n_lhiﬂg_a.n.dAleh.Qh l(ZldS) this ef-

fect is explained by the local differences in hardening lsut@n be seen from the experiment

BCC 112 BCC 112 + BCC 110

Ria il X T P 0
el B X e

Figure 3.3: a) Light-optical micrograph of the tensile tesinple. b)-e) In the left column the
plastic strain component in tensile direction of the legsiese fit strain tensor for each grain for
ap ~ {1.5%, 4%, 10%, 19.5%} Henning and Vehaff (2005) is shown. The other columns show
the accumulated crystallographic slip for all glide syssem the simulation for active glide
systemclas$110}(111) or {112}(111) or {112}(111) and{110}(111). The scale is according

to the experimental ones. The shape change of the grainsiisflexted.
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an explanation is already given by the initial orientatiowl éhe following reorientation of the
glide systems with regard to the loading direction. Frors thllows that some grains become
more favorable for slipping just by reorientation of theigsa Finally the sample in the exper-
iment failed in grain 16 whereas in the simulation the elenaéstortion is getting very severe
in grain 14. Due to the fact, that the simulation results igur¢[3.B display the accumulated
crystallographic slip for all glide systems, it is impodsito identify which exact glide systems
are active at the analyzed deformation step after most aéyteeems are already active. Once
a glide system is active, it will remain active for a longeripd. Due to the different initial
orientation every grain behaves differently under the @ibed loading condition.

The results fo{110}(111) and{112}(111) active simultaneously show a combination of
both results for solely active class. Firstly a lot of gradme active in which grain 14 gets more
active with increasing deformation. From this first anadyisiooks like that both glide system
classes have a strong impact on the resulting behavior.ifipiges that neither of these set of
glide systems can be neglected in the simulation to obtaire mealistic results.

BCC 110 BCC 112 BCC 112 + BCC 110
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Figure 3.4: a)-d) Comparison between observed experihéefarmation (red thinner
lines) forap ~ {1.5%,4%,10%,19.5%} to simulation results (black thicker lines) for dif-
ferent active glide system classeSl(0}(111)(left), {112}(111)(middle), {110}(111) and
{112} (111)(right)) without hardening.

Figure[33 shows the observed experimental deformatiorpaosd with the deformation of
the grains in the simulation given by the boundary lines.

The shape changes are consistent with the previous desdcr@avior for the plastic strain
(see FigE33RB). In the experiment strong necking is visildarrgrain 15 and 16 whereas these
grains undergo also a strong extension. Uatil~ 20% no clear shear band is visible which
appear during the further deformation. Figlrd 3.5 showsghear band in grain 15 and 16 at
ap ~ 40% which leads to failure of the sample.

Simulations for the case of actiy@12}(111) glide system class shows a higher contraction
than for simulations with activ¢110}(111) glide system class only. In particular the defor-
mation in grain 16 indicates that a deformation by acfivé2}(111) glide systems occurs in
the mesocrystal. The simulation with acti{€l0}(111) glide system class shows a very high
elongation of grain 14 and 15 compared to experiment. Thdteefor a simulation with slip
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Figure 3.5: Optical photograph of the samplexat~ 40% [Henning and Vehdff (2005).

on {110} and{112} planes simultaneously show a slight dominance of{thi®}(111) glide
system class. However, the results for both systems adffeg dignificantly from the results
for one single glide system class solely active, i.e., ferdbformation behavior of grain 13.

In the following we want to investigate the reorientatiorndief the mesocrystal. The reori-
entation field maybe understood as a indicator where a hig¥itg@ccur which may result in

crystal lattice changes which are produced by dislocatdﬁ&djéfzek_eLilL_ZQ_bl). The reorien-
tation field 3, , with respect to the reference configuration can be calalilaye

1
B,4+1 := min| arccos (5 [tr(Ry,, | RE,OL) — 1}) l, (3.35)

whereRy,,, is obtained by polar decomposition B}, and Ry, is given by the initial ori-
entation.O, describes the orientation matrix for all 24 symmetry masiof cubic symmetry.
Note that the reorientation field describes the orientatifarence between the actual and orig-
inal orientation which is different from the concept of migmtation or orientation gradients.

Figure[3.6 shows the calculated reorientation field. It isseamarkable that the highest reori-
entation occurs in the region where the highest deformatoours. Especially at the beginning
of the deformation this can clearly be identified by comparig. [33 atap =~ 1.5% with
Fig.[38 atap, ~ 4%. The highest reorientation is visible in grain 14 for allfdient glide
system sets in which thgl 12} (111) class show a much higher reorientation in grain 16 as the
{110}(111) class. With both classes active the resulting reoriemtati@ combination of both.

It may be pointed out that the reorientation can not be direzmpared with the obtained
orientation gradient in Figuie-3.1.

By evaluation these results it has to be considered thatriegin this simulation are ideal
viscoplastic and therefore no hardening occurs. Furthezitie results above, ~ 15% have
to be evaluated carefully due to an occurring shear band &torigédd elements. Figufe—B.7
shows the mesocrystal a, ~ 40% and the resulting elements for the actjd 2} (111) glide
system class, whereas the results for the other simulakbmkssimilar. In the region of the
shear band the elements have bad aspect ratios and becdontediso that the results are not
reliable anymore. However, due to the explicit time intéigrascheme of the material routine
at the integration point level the simulation is stable andsinot abort. But the necessary
time step for the simulation is getting very small. To keeppadjelement quality, remeshing
techniques have to be used in future work.
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BCC 110 BCC 112 BCC 112 + BCC 110

Figure 3.6: Reorientation field for ap ~ {1.5%,4%, 10%, 19.5%} for active glide sys-
tems{112}+{110}(left) or {112} (middle) alone o{110}(right) alone, respectively, with-
out hardening.

Figure 3.7: Stress distribution at, ~ 40% with distorted finite element mesh

As input data for the simulation the measured EBSD data id asenitial orientation. The
orientation in every grain is assumed to be homogeneoudwiin reality not the case. As
displayed by the orientation gradienthn_H.ennLng_a.n.dALéldﬁﬁQ".ﬁ) local differences in the
orientation ofl — 2° are visible inside the grains at the beginning. To investigiae influence
of this distribution additional simulations are performelere the initial orientation inside the
grain is randomly distributed such that it can be va? with respect to the mean value which
was used in the previous simulations. The results agree tivttprevious presented results
which indicates that the influence of the scattering can berassumed to be negligible on the
deformation behavior.

In summary, the first simulation results with ideal viscaiey show already a good ten-

dency to experimental results. This indicates that theecbprediction of initially active slip
systems is a very important effect. This influences the ehistory of inelastic deformation in

the sample substantially which is in agreement with thelteguHenning and Vehdfl (2005).

Furthermore, these first results show that next to{th}(111) further slip systems have to
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be considered. Als¢112}(111) seem to have a significant influence. Therefore both glide
system classes are included into one single simulation inlwthe influence on each other can
be better interpreted. Howevérn 10}(111) seems to be slightly dominant.

3.7.2 With hardening

In the following the deformation behavior of the structuoe &n activated hardening law, as
stated in sectioi 3.3, is investigated. The material patarméentified for the used hardening
law can be found in sectidn3.4. All simulations are carriatifor the slip system§110}(111)
and{112}(111) active separately and simultaneously. For simplicity naptimg between these
two glide system classes is assumed which is done by sdtermpupling terms in the hardening
matrix ¢, to zero.

BCC 110 BCC 112 BCC 112 + BCC 110
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Figure 3.8: Comparison between observed experimentatrdetmn (red thinner lines) Hen-
ning and Vehoffl(2005) fory, ~ {1.5%, 4%, 10%, 19.5%} to simulation results (black thicker
lines) for glide system class¢$10}(111) and{112}(111) separately and simultaneously active
with included hardening.

Figure[338 shows the obtained deformation in the simulatiocomparison to the experi-
mental results. Comparing these results to Fidure 3.4 wptik 4% no deviation between
the simulation with and without hardening is visible. Alé®tresults agree very well with the
experimentally observed deformation. However, for ladgfiormation the results between the
two simulations deviate. First of all it can be observed thidh increasing deformation the
results without hardening show a necking behavior in théregf grains 13, 14 and 15. For
the simulation with hardening nearly no necking can be oleskrThe results fof 110} solely
active show the most contraction near grain 11 which is #iigbverestimated compared to
experimental results. This behavior is not seen{for2} active alone. The simulation results
show very straight boundary lines also at high deformattates. Both simulations predict the
grain boundaries quite well. Nearly all boundaries in homial direction are consistent with
the experimental ones. Especially the largest elongafigrains 15 and 16 is represented quite
nicely. A few small differences between both results shda@ghointed out which might not be
noticed immediately, however, it is difficult to say whichpilets the experiment correctly: The
inclination of the boundary between grain 14 and 16 is diifiéiand therefore also the shape of
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grain 14 is slightly different. Fof110} the grain 13 is elongated a bit more at the cost of the
elongation of grain 15. Grain 5 is more compressed in the c&§e10}.

The simulation results for both systems active are a conibmaf both previous discussed
simulation results. It shows a slightly smaller contracti®ar grain 11 as in thgl 10} case so
that the shape of the deformed specimen in the experimentlis@presented in this region.
Compared to the case without hardening whigfie} glide system class was anticipated to be
dominant, for the case with hardening this assumption cam@onade due to the fact that in
the investigation of the deformation behavior both systpiag an active part in determining
the deformation if both glide systems are active with adtigedening.

In general the simulation results with hardening show a gayd agreement to the exper-
iment, leading to a very good improvement compared to theltseegithout hardening, with
the exception that the largest contraction in the experirbetween grain 15 and 16 is not rep-
resented by all simulations. It is to question if the ocawgrshear band at, ~ 40% could
be anticipated by this model. The distortion of the mesh gléi strains restrict a further in-
vestigation due to the fact that the results were not valhame. Therefore 3D remeshing
techniques are on-going work and will be used in the futureweéler, it is generally doubtful
that the shear band in grain 15 and 16 would be predictedattyridue to the smaller contrac-
tion in the simulation so far. The reason might be the overedion of the hardening by the
parameter identification which was done based on experahdata from over 40 years ago.
Therefore the experimental and simulative identificatibhardening parameters for F&3i
with nanoindentation will be on-going work. Also further theds like strain gradient plasticity
to cover length-scale effects will be investigated to ge¢aen better prediction.

Figure[3.® shows the resulting reorientation fields for iheutations with included harden-
ing. It can be seen that the reorientation is not localizedointrast to the simulation results
without hardening. In nearly all grains a reorientationuwsan which the highest reorientation
takes place in grains 10, 11 and 16 for all simulations. Ferddise of 112} solely active a
high reorientation occurs in grain 15. It is clear that thghleist reorientation takes place in
the region where the highest deformation occurs. Due todbeentation the slip place might
become more favorable for slip resulting in deformationtskng to these grains. Comparing
the results for{110} and {112} separately active certain differences can be observedcbut t
general reorientation field is similar. The simulation testor both systems active support the
previous assumption that both glide system classes axeatta similar level. As stated before
the reorientation field can not directly be compared to thgeerentally obtained orientation
gradient and therefore no comparison to the experiment @ema

In conclusion it can be summarized that the simulation wiitiuded hardening shows a
much better agreement with the experiment as without hardemhe simulation with hard-
ening on both glide syster{410}(111) and{112}(111) active simultaneously shows the best
agreement with the experimentally obtained deformatianmared to all other simulation re-
sults. To be able to compare the results more in detail andderstand the mechanical behavior
better we will investigate the evolution of dislocationglahe orientation gradient during de-
formation in the future to include these fields in our matlanadel to model the behavior of
this mesocrystal step by step in a realistic and undershd@d@shion.



68 CHAPTER 3

BCC 110 BCC 112 BCC 112 + BCC 110

Figure 3.9: Reorientation field for ap ~ {1.5%, 4%, 10%, 19.5%} for glide system classes
{110}(111) and{112}(111) separately and simultaneously active with included hargen

3.8 Conclusion

In this work the modeling and simulation of the deformatiahavior of thin sheets consist-
ing of large grains of Fe-3%Si and comparison with experimerperformed. For this an
explicit finite-element-, crystal-plasticity-based mbdedeveloped for each grain, the grain
morphology, and the thin sheet specimen as a whole. In p&atjche crystal plasticity model
is rate-dependent and accounts for (local) dissipativédrang effects. The predictions of the
model are compared with experimental resuItEJ)LI:LeﬂninglMIdJﬁ dZQ_OJS) for the deforma-
tion behavior of thin sheets of Fe-3%Si loaded incremeniallension. To this end, attention is
restricted to the two slip familie§110} and{112}. To begin, all hardening is neglected. Even
for this oversimplified case, a good correlation with theezkpental results is obtained which
shows the importance of predicting initially active glidessgems correctly. The simulation re-
sults with both glide system classes active simultaneaisbyv that both classes have a certain
influence on the deformation, howevét,10}(111) seems to be slightly dominant. Therefore
it is concluded that both classes are necessary to simtlatexperimental tensile tests. Even
better agreement is obtained with experiment when harddasimcluded. The contraction in
the region of the occurring shear band in the experiment wadgnestimated which indicates
that the hardening might be overestimated. Finally, firsults for the development of local
orientation changes are discussed.

In future work the evolution of dislocations and the origioia gradient will be analyzed.
Further the model formulation will be extended by harderfmgnalism based on GNDs. In
addition remeshing techniques will be used to obtain rédiadsults at high deformations.



Chapter 4

Crystal plastic modeling of the development of
orientation gradients and geometrically necessary
dislocations in thin sheets with large grains

Abstract— The purpose of this work is the modeling and simulation ef deformation be-
havior of thin sheets consisting of large grains of Fe-3%f8i @mparison with experiment.
To this end, an explicit finite-element-, crystal-plagtidobased model is developed for each
grain, the grain morphology, and the thin sheet specimenvasoée. In particular, the crystal
plasticity model is rate-dependent and accounts for (Jadigkipative hardening effects. The
predictions of the model are compared with experimentalltssf[Hﬁnning_andALehdeL&bS)
for the deformation behavior of thin sheets of Fe-3%Si loanherementally in tension. A
detailed investigation regarding the initial activity isrformed on basis of the Schmidt and
Taylor factors. To this end, attention is restricted to the slip families{110} and{112}. To
begin, all hardening is neglected. Even for this oversifiggicase, a good correlation with the
experimental results is obtained for the deformation benavhich shows the importance of
predicting initially active glide systems correctly. Hovee, further comparisons, e.g., with the
experimentally observed orientation gradient (OGM), simavcorrelation between experiment
and simulation. As a first improvement hardening is includédch leads to better results. The
deformation behavior as well as the orientation gradieotstihe same tendency in the sim-
ulation as in the experiment. Still certain deviations camobserved which might be related
to hardening effects not accounted for. Therefore initeufts for geometrically necessary
dislocations as well as local orientation changes are tigasd.

4.1 Introduction

A basic issue of research in material science and materiehamecs is to determine the rela-
tion between microstructure, material properties and raeicial responseL(_M_QEh_edsd_n,_lb81;
MALSS.&L&\I.L&M). The modeling of the mechanical behawioa fgiven microstructure can be
performed in different ways. A common concept is the useatistical or averaging theories.
The associated homogenization can be performed on basigepfesentative volume element
(RVE). This concept is based on the assumption of scale sgpabetween the microstructural
and macrostructural lengthscale. As the characteriste af the microstructure (e.g., grain
size) approaches that of the system (e.g., sheet thickiesg@ver, such scale separation is no
longer given and one must resort to other means of repreggtite effect of microstructural
heterogeneity on the system behavior. As the macrostaldemgthscale approaches the mi-
crostructural one, the degree of material heterogenettgases drastically, such that the local
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microstructural behavior can deviate significantly frora #tverage behavior at the macroscale
(e.g.. Kalidindi et al.| 2003; Pierard e 07). In thése, the model has to account for the
microstructural details such as orientation details ofgtaen structure (e.g.|.§_chn.e.i.d.er_e1 al.,
M) or shape distribution (e.b_,_Ar_ns_ek b.L._ﬂOOZ). Tdude such details the microstructural
details can be accounted for by discretizing the domain anmtyuocal single crystal plasticity
models combined with finite element calculations. Theseetsare often constructed with the
help of, e.g., optical and / or EBSD data on the grain morpipltn specimens with more than
one grain over the thickness, the common method of progdhe two-dimensional EBSD
information uniformly in the third dimension will genergllead to different behavior (e.g.,
hNiﬂdﬂkﬂhLel_dlL_ZQiO). If the specimen is one grain thickyever, such an optical- / SEM- /
EBSD-based approach should be reasonable. For such a spezinumber of size effects are
expected to influence its mechanical properties. Thesetsffeave been known for years and
are still subject of active research (e.0.. BaramannlePal0: Enael and Eckstein, 2002; Fu
et aI.TZOO . FUlop et X

The overall mechanical response is strongly influenced byotientation of the individual
grains if the number of grains over the thickness is fairl)aBrdEilLb_p_eLa'.LZOdB). In the case
of thin sheets the mechanical properties in a given croggseare increasingly dominated by
each individual grain as reported.in_H.eaning_a.n.dA@H.o.ﬁ_daO(Due to the different orienta-
tions of the grains located in the sheet plane, the defoamadino longer uniform even under
homogeneous loading conditions. This heterogeneity amgitte-dependence of deformation
give rise to size effect s_(_tl_enning_a.n_dldlb_t[,_dOlO). De#fgrmechanisms can occur at differ-
ent stages of deformation. The initial yield stress is inflieel by grain size, grain orientation

and elastic anisotropL(.I:lIalL_lddl.'_Bétth ; & ¢ 3). With on-

going deformation strain hardening occurs which may be ey geometrically necessary

dislocations (GNDs) (e.g.. Ashby, 1970; Evers dtlal., 206idkia et al.[ 2006, NYe, 1953).

The grain size dependent mechanical response in a polgtiysiuccessfully modeled by Ev-

ers et al.|25&l2) using a local strain gradient dependestalrplasticity model accounting for

GNDs. Various interesting viewpoints concerning the mmoaeand experimental concept of

Cd%gf can be found in_El-Dasher ef al. (2003); Gao and Huan@a2&ubin and Mortensen
).

To understand and predict the behavior correctly simuladintd experiment have to be com-
pared locally. Therefore detailed experimental inforimatf local details during plastic defor-
mation are necessary. The measurement of local dislocadéinsities and its evolution during
the deformation process is very time-consuming. Thus tiseseneed for methods to perform
local quantitative characterizations of the microstrthH_eaning_a.n.dALeh.(LfL(ZQb5) used the
orientation gradient mapping (OGM) locally which is a measof the the local strain harden-
ing. It is known that crystallographic slip in body-centi@ibic (BCC) metals, like Fe-3%Si,
take place in close-packéd11) direction, but there are opposed experimental resultsdeya
the operative slip planes (e.h_EmHsandﬁZJHuﬂlmhLand_MMB). There-
fore all planes with low indices will be investigated, howevfor the simulation attention is
restricted to the two slip familiefl 10} and{112}.

The goal of this study is to model and understand the expeitaiig obtained results of a
bcc Fe-3%Si thin-sheet sample with large grains loade@mentally in tension (Henning and
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Vehoff, M) by a step by step procedure. To understand m&chanism in the simulation
as a first step we restrict ourselves to a simple phenomeicalagnstitutive crystal-plasticity
model for ideal viscoplasticity. To get an idea how and wiggemetrically necessary disloca-
tions develop inside the microstructure which may leadra@ishardening we are investigating
the development of GNDs and the orientation gradient fdedeht simulations with different
active slip families. In addition to a short investigatidrilee deformation behavior a compari-
son between the experimentally and simulativly obtainéehtation gradient is performed. As
a next step hardening is included and comparisons to thensds®ut hardening are made.

The paper is organized as follows. First the used materiaainfor crystal plasticity is
shortly presented. In the next section the experimentaltﬂgﬁsole:l_e.amng_a.n.dMe.h.cbﬁ_(ZQbS),
the construction of the FE-model and the concepts of GNDLHBN are discussed. Next the
results from experiment and simulation without and withdesuiing contribution are compared
and discussed in the context of their deformation behaunar the evolution of orientation
gradients, GNDs and orientation changes during deformatibhe paper concludes with a
summary and outlook.

4.2 Model formulation for single-crystal plasticity

In the case of crystal plasticity the perfect single cryistaften used as reference state, however,
it is also possible to choose any state just before defoomati any state at any timein an
incremental setting. The deformation gradient can be deosed into an elastiEy and plastic
part F, called the Kroner decompositiMEbM)

which is schematic illustrated in Figuie B.F;, is the elastic deformation component which

intermediate configuration

Fy

reference configuratiorF p current configuration

Figure 4.1: Decomposition of the total deformation gratlien

represents the local elastic distortion of a material dugregich and rotation of the microscopic
structure. F}, is the plastic distortion which represents the local defrom due to the flow
of defects through the microscopic structure which is agversible permanent deformation.
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Therefore the transformation of the reference statépyeads to an intermediate configura-
tion. Investigating the crystal lattice in the differenindiguration as shown in Figute3.1, the
transformation viaF}, from the reference to the intermediate configuration rentiee lattice
unchanged and all the deformation is produced by dislocadip. The plastic deformation is
assumed to be volume preserving which medstd}, = 1. During the transformation from
the intermediate configuration to the current oneWja, the lattice undergoes a purely elastic

shape changé (Roters ef al., 2010).

The corresponding stress algorithm for this model is basetti® Green measure

1
EE(FE) = §(F}:ZFFE_I) (4.2)
of elastic strain. The corresponding stress can be caéxuitat the general relation
K = F, S, F (4.3)

for the current Kirchhoff stresK in terms of the corresponding elastic second Piola-Kir¢hho
stress
SE — SE(EE7 .. .) (4.4)

and Fy,. In terms of small elastic strains relevant for metals thereximationM ~ S , i.e.,
of the Mandel stress by the elastic second Piola-Kirchhodlss holds true. The Mandel stress
can then be calculated by

M (Ey) ~ CyoEy, (4.5)

whereCy,, is the fourth order elasticity tensor.

Basic to almost all large-deformation inelastic model fatations is the general for, =
L F}, for the evolution of the local inelastic deformatidfy in terms of the inelastic “velocity
gradient”L. As usual, the:'® glide system is represented by the corresponding glidetitire
s,, glide-plane normah,,, and direction transvers, := n, x s, to s, in the glide plane.
As usual,(s,,t,,n,) represent an orthonormal system and are assumed constamespect

to the local intermediate configuration as determinedFhy In addition, they determine its
evolution the constitutive form

Lp= Z::1 4.8, 0m, (4.6)

for Ly in terms of the active glide-system shegsy,, . .., v, With a < g the number of active
systems, ang the total number of systems. The Schmid stress is given by

T, =8,-Mn, . 4.7)
The viscoplastic flow rule is formulated according to Katidiet al. (1992)
N o
’Ya = ’YO ~ dlr(Ta) . (48)

Here the notationlir (a) := a/|a| is used.5, represents a characteristic strain-rate associated
with dislocation motion and, the energetic or athermal slip resistance is determine@hgaro
and Needlema-lmSS)

a

T =D h(7) [l - (4.9)
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q,, 1s the hardening matrix which describes the rate of strarddrang on slip system due to
a shearing on the slip systeniy

L g - @

qo 1 qo
oy = . .

@ o q 1|

in whichg, = 1.4 represents the ratio of latent to self-hardening. FoII@}Bmmm_eLd.le_dQ);
idindi ), we consider the following form fdre single slip hardening rate

hy(Ty) = ho (1 — 7, /75 )" (4.10)

Here, h, is the initial hardening rate;;** the saturation value of,, andn, is the hardening
exponent.

The numerical implementation is based on an explicit atgoric formulation as based on
forward-Euler integration. Details about this explicitriftulation can be taken from sectiionl3. 3.

4.3 Experimental and simulation methods
4.3.1 Experimental results

The tensile test sample was laser-cut from Fe-3%Si she@€)Bvith a thickness of 1 mm.
The gauge length is about 5 mm in width and 15 mm in length. Thamgrain size is about
2 mm which is of the order of the sheet thickness. In the casheofargest mean grain size
of approximately 5 mm, the grains are of the order of the spenigeometry. As explained
in section[3b all size effects due to processing were tielet avoided as best as possible.
Furthermore the experiments did not show any indicatiomes$¢ size effects.

The experimental resultk_(.H.enning_andA@b_t[._iOOS) camogrthe properties of the sam-

ple (deformation, local orientation) are determined akesa&vstages, hamely at plastic strains
of ap ~ {0%, 1.5%,4%,10%,19.5%}. In Figure[42 the results of the orientation gradient
measurement are displayed at the deformed shape. Theatadoubf the orientation gradient
at points with improper orientation measurements was ediitind the corresponding points in
Figure[4.2 are represented in black. The concept of thetatien gradient will be discussed
in sectiol4.36. The results obtained by experiment cordaly information concerning the
surface. This is assumed to be sufficient as in the experithengrain boundaries remain
nearly perpendicular to the sample surface. At the graimbaties, contraction perpendicular
to the sample surface seems to be negligible, which agrebgivei results i Stolken and Evans

). Therefore no investigation concerning the comitvadn the third dimension will be
done in the following and only results obtained at the sarspléace are presented. The ori-
entations of the grains are obtained with electron bactescdiffraction (EBSD) using OIM.
These are used as initial orientation in the finite elemerdeho
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Figure 4.2: (a)(e) Orientation gradient méxg,) in (°) for ap =~
{0%, 1.5%, 4%, 10%, 19.5%}. The regions in black indicate failure of au-

tomatic orientation estlmatlor{_(_l:l_eamng_a.n_dlehbﬁ._ZDOS

4.3.2 Finite element model

The measured two-dimensional grain structure and the gna@mtations were used to con-
struct a finite-element model. The grain boundary segmegitgden two grain boundary triple
junctions were approximated as planes perpendicular teah®le surface. In order to model
the experimental setup more closely at either end of thel¢éesigecimen transition areas are
introduced. These are modeled using a simple isotropitielasterial model. This reduces
the boundary effects in the simulation by applying the tensiading at the surrounding area
lesma.n_and_B;Ldr{._lab& It was observed that defects ssidi@alines can start from grain
boundaries and edges of the samb.l.&(_Eo.LQa.Lmd et al.| 1988)fact that neighboring grains
do not share the same orientation and grain boundaries arenessarily parallel to the local
crystallographic axes in combination with the anisotragastic behavior may induce an inho-
mogeneous stress field within a single gri'Ln_(Meh.o.ﬁ_a.n.d_lﬂmlgh;L[HZQQb). Therefore the
model has to be set up in 3D which is done by simple extrusicgh@®D geometry. The re-
sulting FE-mesh is shown in Figute ¥.3 which consists of Za86%ck (8-node) elements. The
grain orientations found by EBSD are accounted for viaafigation of the state dependent
variables (SDVs). The simulations are performed with thesbfivare ABAQUS using mate-
rial routines which are implemented via the UMAT and UEL nfeee in ABAQUS/Standard.
In what follows the numbering shown in Hig.K.3 will be useddtarity.
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Figure 4.3: FE mesh used for simulations with grains numbelES).

4.3.3 Fe-3%Si

It is assumed that the general mode of deformation in theosiliron alloy is slip and that
the presence of mechanical twinning is negligible. As rmli)MB_QLLaDdJALQLLh'LD.gLM_(]_QbG)
mechanical twinning occurs for fine-grained material bel®W K and for coarse grained above
320°K. Noble and Hull k19_d5) also did not observe any twinning atrdin ageing effects in
tensile tests at 298 on Fe-34Si. The presented experimental results were obtained at roo
temperature and therefore mechanical twinning as wellragsageing effects are not further
considered. In the following the glide systefislO}(111) and{112}(111) are investigated
by finite element simulations using single glide systemstascombinations thereof actively.
In sectior4.4 also th¢123} slip plane will be considered regarding the Schmid factoereh
it is shown that their values are much lower compared1t} and {112} and therefore not
preferable for slip.
The used elastic constants for Fe-3%Si are taken from Rigbal. L’I_Cﬂll) (see Table3.1).
The hardening parameters in Tablel 4.2 are taken from sd&#bwhich were identified based
on experimental data froﬂ@%) using an inverse FEropation strategy.

Cpa1 [GPa] | O, [GPa] | O 4 [GPa]
222 135 120

Table 4.1: Material properties of Fe-3%Si (BCC) (Routhowle|1971).

7o IMPa] | 4y [s™'] | m[] | hy [MPa] | 75** [MPa] | n, [-]
161 | 0.001 | 20 | 243.9 1137 | 0.48

Table 4.2: Material properties of hardening of Fe-3%Si (B@=d to the experimental results

of Hull (@).
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4.3.4 Geometrically necessary dislocations (GNDs)

During plastic deformation, two types of dislocation ocdDne type are the statistically stored
dislocations (SSDs) which are accumulated by a randomitigggocess and are not consid-
ered here in detail. The second type of dislocations areg¢hegtrically necessary dislocations
(GNDs) which are stored due to the locally heterogeneoustiplahear. The first concepts of
GNDs were introduced H;LN})/E(J_QSS) e{nd_AS]hb;L(iWO) to acttmrnmodes of plastic defor-
mation, where an internal accumulation of a density of d&limns is required to accommodate
the gradients of plastic strain induced by the deformatiochsas bending (Needleman and
Sevillano _mds), therefore GNDs are necessary to presatice compatibility.

The simplest class of models for dislocation evolution isaoted for the case of self-
interaction, i.e., the dislocations on each glide systet@ract only with themselves, not with
those of other systems. Restricting to edge GNDs alone, ancomself-interaction-based con-
stitutive model is given by the evolution

0, = —8, V7, (4.11)

at small deformation consistent with the modemmgﬁ terms of the glide-system
Burgers vectos, := bs,. Here the dislocation density is expressed in a non-dimensional
form o := 0? p with the help of the magnitudeof the Burgers vector. Sincg, is by definition
constant, the relatioli.{4.111) can be integrated in timeetoythe algebraic form

Oq = Oq0 = _'§a ' V’Ya ) (412)

assumings, - Vv,, = 0. Generalization of this kind of relation to large deforroatis often
explicitly or tacitly based on the constitutive assumptdform-invariance. As shown I@hn
(2008);|Kuroda and Tvergaard (2008); Svendsen and Bargr(@81®) on this basi<{Z12)

generalizes to

Oq = Oap = _Fglga ' VOfYaL ) (413)

which can be rewritten to
Oq — Qg0 = _FEga ' vc’Ya 5 (414)

whereV, or V_ describe the spatial gradient with respect to the referencarrent configura-
tion, respectively. Here the relation

Vo, =F 1V, (4.15)
between the slip gradients is used. In the followingis assumed to be zero.

4.3.5 Orientation gradient mapping (OGM)

Dislocations are generated by plastic deformation whici beestored or leave the specimen or
annihilate. These phenomena occur inhomogeneously itisédaicrostructure. E.g., Kovacs

and Zsoldos.;EPS) derived strain hardening laws from auson processes of dislocations
which implies that strain hardening is connected with tre¥ease in dislocation density. As

stated before GNDs are necessary to preserve lattice cimtipatTherefore dislocations lead
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to local orientation changes in the crystal lattice (e.gdI&&ek et al), 2001). Roughly speaking
the higher the dislocation density the higher the expectisdmentation.

Henning and Vehof‘_(ZQ_(bS) introduced a method to investigfa¢ local orientation gradient,
called Orientation gradient mapping (OGM). OGM descriliesdrientation gradient between
two neighboring measurement pointsifdirection via

1
A6, = min| arccos(atr{REm Ri,. ., Of —1})] (4.16)

as well as for the/-directionAd,, respectively.O describes the orientation matrix for all 24
symmetry matrices of cubic symmetry. In the following we tlse definition

Ay = max{Af,, A0, }. (4.17)

The advantage of the use of OGM is the distinct quantitatagrasentation of the local
misorientations by which the result is independent fronmstimeounding area. For further details

about the OGM sele Welsch ef al. (2007) and Henning and Vepoff().

4.4 Determination of Schmid and Taylor factors

For the prediction which slip system is preferred to becowrte/@ during deformation the
Schmid and Taylor factors are valid indicators. Assumingsi bbading directiom in the sam-
ple coordinate system for macroscopic uniaxial tensioi wikich follows for the Kirchhoff
stress

K=KI®Il.

The Mandel stress can be written as
M =RIKR,=MI'®l, (4.18)
where
' = RLI
describes the loading direction rotated into the crystslesy. The Schmid stress can be rewrit-

ten to
Tg = Sfac,aM 5 (419)

whereSk,. , describes the Schmid factor for each glide system which easaltzulated by

/ /

Staca = (M, - U)(s, - 1) . (4.20)

To predict the behavior of one single grain all Schmid fastwfrone glide system class have to
be averaged in some way. Here the following definition has lbsed

Za szac,a

number of slip planes

(4.21)

Sfac,avg =

as an average of all Schmid factors for the particular glidgesn class where the "number of
slip planes” is 12 fo{110} and{112} and 24 for{123}.
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Figure 4.4: Averaged Schmid-factsy,.,,, ~ Figure 4.5: Taylor-factorl” in the single
in the single grains for aj110}(111) and grains for a){110}(111), b) {112}(111)
b) {123}(111) glide system for a test- and c) {110}(111) and {112}(111) glide
loading in [010] direction for the initial systems for a test-loading j010] direction.
specimen. The same qualitative results as

for {110}(111) are obtained fof 112} (111)

glide systems

In Fig.[44 the averaged Schmid factors are shown for singiing showing that slip on
{110} and{112} planes is much more favorable than fi23} due to higher Schmid factors.
However, the distribution in the single grains looks quiteitar for {110}, {112} and{123}.
The magnitude of the Schmid factor as well as its distributioe nearly identical between
{110} and{112}. For all cases the highest value for the averaged Schmidrfagt ., occurs
in grain 14 (cf. Figur€4l3) which i80% higher than in any other grain. Therefore the highest
amount of slip at the beginning as well as the earliest slifhéstructure is expected to occur
in grain 14. Grain 12 direct next to it has one of the lowestrfsichfactors and is therefore
unfavorable for slip which could lead to a sharp gradientiess and slip activity between both
grains and to stress concentrations. The grains at the bppeer (4, 9, 13, 15) all show a quite
similar Schmid factors;, ... This indicates that the deformation might be more homogesie
at the beginning in this area, however, the deformation leéiograins, like grain 14, influences
the deformation field.

Besides the Schmid factor as an indicator for plastic skpli@the grains the Taylor factor is
often usedmu_lab& postulates that slip systemsrayeaative during plastic deformation
which minimizes the internal work. The Taylor factBiis defined (e.g.LRDs.en.b.QLg_a.n.d_Ei.éhler,

@) by

o Zz |'Yz|
T = =5 (4.22)

whereF is the applied amount of tensile or compressive strain os le whereas according
to the assumption of Taylor each crystal undergoes the safoendationi(Tayl @8). Details
about the calculation can be found, e.gl, in Buinge (1970h &hd Mammell(1967).
Figure[45 shows the resulting Taylor factors for solély0}(111) or {112}(111) glide
systems active as well as a combination of both. The resahltegpond quite well with the
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Schmid factors. The lowest Taylor factor is calculated aigrl4. The results fof110}(111)
or {112}(111) differs only locally but the Taylor factors are quite simil&or simultaneously
active glide systems the Taylor factors are lower than foglsi systems which is in agreement
with reported results in the literature (e.dj__Chin_andJMﬁ]h%_jVLRQs.enbﬂg_and_ELehler,
). According to the evaluation of the distribution of fhaylor factors the prefered grains
for slip would be grain 13 and 14. However, these are onlylsifagtors for indicating plastic
slip. In order to achieve a better understanding and to ctiexde assumptions the experimental
results are compared to simulation results obtained féerdiht sets of active glide systems.

4.5 Results
4.5.1 Without hardening

In this section experimental results are compared to sitoulaesults for different sets of glide
systems active performed for ideal viscoplasticity. FeJdr® showg|mag(Ly )| at different

BCC 112 BCC 112 + BCC 110

Figure 4.6: Simulation results without hardening fdimag(Lp)| for ap =~
{1.5%, 4%, 10%, 19.5%} for active glide systeni112}+{110}(left) or {112}(middle) alone
or {110}(right) alone, respectively. The legend is constant fordaformation stages.
(red=10"%s71, blue=0s~1)

values ofap,. L, describes the plastic part of the velocity gradient andetfoee | mag(Lp)||

is a measure for the plastic flow occurring between two tirepsst Thus it represents a valid
indicator for activity of glide systems in the actual defation step. In FigurE-4.6 the shape
changes of the grains are depicted. The actual valugreg(Ly)|| is of minor importance
for the interpretation, however, it controls the time steghe simulation due to the explicit
integration scheme at the integration point level.

It can be seen that in the beginning the same level of plasticdccurs in several grains for
both sets of glide system classes at the current time stegal differences between the results
of the different sets of active glide system classes ardleisvhereas the main deformation
predicted for all simulations occurs in grain 14. Howeveisiimpossible to identify which
exact slip systems of the glide system classes are active ainalyzed deformation step after
most of the systems are already active. Once a slip systentive ait will remain active for
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a longer period. Due to the different initial orientatioreey grain behaves differently under
the prescribed loading conditidr= [0 1 0] which was analyzed with respect to the Schmid and
Taylor factor in sectioi4l4. With the system active, howealie amount of plastic slip will be
completely different in two grains after a certain time. ékfa. small deformation aof, ~ 4%

a localization zone is identifiable where the deformatiom&nly concentrated. This does not
change in the further deformation stages whereas a slip l@c@hmes more precisely visible.

Simulations for the case of actif@12}(111) glide system class show a higher contraction
than for simulations with activé110} (111) glide system class. In particular the deformation in
grain 15 and 16 in the beginning indicates that a deformatiag occur by activé112}(111)
glide systems in the mesocrystal. The simulation with aivadti10}(111) glide system class
shows a very high elongation of grain 14 compared to experinihe results for a simulation
with slipon{110} and{112} planes simultaneously show a slight dominance of th®} (111)
glide system class. However, the results for both systenmgeadiffer significantly from the
results for one single glide system class active, e.g. herdieformation behavior of grain 13.
This implies that neither of these set of glide systems miighbheglected in the simulation to
obtain more realistic results.

BCC 110 BCC 112 BCC 112 + BCC 110

Figure 4.7: Sum of GND densities, o, of all systems without hardening fer, ~
{1.5%,4%,10%,19.5%} for active glide systemq112}+{110}(left) or {112}(middle)
alone or{110}(right) alone, respectively.

As afirst step in further understanding and modeling the ni@tsehavior of the mesocrystal
the development of GNDs is analyzed in detail which couldrlée used as internal variables,
i.e., to describe the strain hardening behavior d.e.g_EIﬂdeMi?ﬁa;derlQM). The sum
of the GNDs densities _, o, over all 12 or 24 glide systems, respectively, is shown irufég
4. By definition it is clear that the highest concentratidiiSNDs occur in the region where
the main deformation occurs. Especially at the beginning@edeformation this can clearly be
identified by comparing Fi§. 4.6 at, ~ 1.5% with Fig.[41 at, ~ 4%. However, this relation
is more complex because the development of the GNDs deperitie gradient of the slip and
not directly on the slip. GNDs are required to accommodagegtfadient of plastic slip. The
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highest GND densities are achieved at grain boundariesentherhighest slip gradients occur.
With evolving slip band the GND density inside grain 13 anddldtrongly increasing which
indicates a strong strain hardening potential in this negio

BCC 110 BCC 112 BCC 112 + BCC 110

Figure 4.8: Orientation gradient faxd,, in ° for ap ~ {1.5%, 4%, 10% 19.5%} for active
glide systemgq 112} and{110} without hardening.

The experimental results of the OGM were shown incorporatdeigure[4.2. Figuré€ 418
shows the results for the orientation gradient mapping Herdimulations without hardening
which were calculated in the post-processing. As it can le@ $ comparison with Figure
B2 the simulation cannot predict the correct tendencyler®@GM in the experiment. This
leads to the conclusion that further effects like hardemiage to be included to produce more
realistic results. Further the direct correlation betwdenOGM and the evolution of the GND
can be seen by comparing the results to Figurk 4.7. As mettibafore GNDs are necessary
to preserve lattice compatibility. Therefore it has to beéedaothat dislocations lead to local

orientation changes in the crystal lattice (dg_Sﬂmﬂll. ,LZQQIl).
The corresponding reorientation figl], ; with respect to the reference configuration can be
calculated by

1
B,41 = min|arccos <§ [tr(Ry,. RE,OF) — 1}) l, (4.23)

where Ry, 1 IS obtained by polar decomposition #:,,.; and Ry, is given by the initial

orientation. Figuré_4]9 shows the calculated reorientafield. By comparing the results to
Fig.[41 a dependency between the GNDs and local orientatianges could be anticipated.
However, as results later will show this might not alwaystee ¢ase. Again, it has to be con-
sidered here that the grains in this simulation are modedadeally viscoplastic and therefore
no hardening occurs. Furthermore the results alagve: 15% have to be evaluated carefully
due to an occurring shear band and resulting distorted eltsmia the region of the shear band
the elements have bad aspect ratios and become distortéatsiné results are not reliable
anymore. However, due to the explicit time integration sebef the material routine at the
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BCC 110 BCC 112 BCC 112 + BCC 110

Figure 4.9: Reorientation fieldin ° for ap =~ {1.5%, 4%, 10%, 19.5%} for active glide sys-
tems{112}+{110}(left) or {112}(middle) alone of 110}(right) alone, respectively, without
hardening.

integration point level the simulation is stable and dodgsabort but the necessary time step for
the simulation is becoming very small. To ensure a good etneality, remeshing techniques
have to be used in future work.

In conclusion the first simulation results with ideal vistagticy already show a good ten-
dency to experimental results. This indicates that theectprediction of initially active slip
systems is a very important effect. The previously caledgchmid and Taylor factors pre-
dicted mainly the correct grain activity. However, furtmesults like the orientation gradient in
the experiment could not be predicted correctly in simatagiwithout hardening.

4.5.2 With hardening

In the following the deformation behavior of the structuoe &n activated hardening law, as
stated in sectiof 4.2, is investigated. The material parermédentified for the used harden-
ing law can be found in sectidn 4.8.2. All simulations areriear out for the slip systems
{110}(111) and{112}(111) active separately and simultaneously. For both systensezsit
multaneously for simplicity no coupling between these tidegsystem classes is assumed
which is done by setting the coupling terms in the hardeniagimg,, to zero.

In Figure[4.ID the distribution fdfmag(Ly)|| is shown for different combinations of glide
systems active on the deformed shape. Comparing the shépeomulation results with hard-
ening with the experimental ones in Figlirel4.2 show a verydgmyeement to the experiment,
leading to an improvement compared to the results withotddrang. However, the largest
contraction in the experiment between grain 15 and 16 is efesented by the simulations.
The distribution for, ~ 1.5% is very similar to the results in the simulation without hemthg
as shown in Figure4.6. Note that the value of the deformatitanis not important but rather its
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BCC 110 BCC 112 BCC 112 + BCC 110

Figure 4.10: Simulation results fmag(Ly)|| for ap =~ {1.5%, 4%, 10%, 19.5%} for glide
systems{112} and {110} simultaneously and separately active with included harden
The legend is constant for all deformation stages. (t6d%s~!, blue=0s1)

distribution. For larger deformation the results betwdenttvo groups of simulations deviate.
The simulations without hardening show a localization iaigrl4 and 15 whereas the simula-
tions with hardening show a high activity in many grains. He beginning for all simulations
with hardening a high activity in grain 15 and 16 can be obsgnwhich is decreasing with
increasing deformation. The results for both glide systantye show neither a dominance of
the {110} nor {112} systems. In the end the main deformation takes place ingfdin12, 13
and 14. However, also the surrounding grains do not stophéfg plastically forap ~ 19.5%
which was the final investigated strain.

BCC 110 BCC 112 BCC 112 + BCC 110

Figure 4.11: Orientation gradient féx6, in ° for ap ~ {1.5%, 4%, 10% 19.5%} for active
glide systemgq 112} and{110} with included hardening.



84 CHAPTER4

FigurelZ.T]l shows the simulatively obtained OGM resultsfoulation with hardening. As
it can be seen by comparison to the experiment the simulagisuits with hardening show a
much closer prediction than the simulation results with@rtdening. A lot of the experimental
details of the OGM can also be seen in all the simulations, e.g

¢ the high gradient band at the boundary between grain 1 angrédscted correctly,

e the gradient band at the boundary between grain 1 and 3 iscpgddcorrectly in the
{110} case,

¢ the correct distribution in grain 9 and 14,
¢ the correct tendency in the grains 15 and 16 although thesxaedhot that fine and clear,

e correct tendency in the grains 17 and 19.

This shows that all simulations with hardening show a goodéacy to the experiment, how-
ever, based on these results it is not possible to anticipatge single glide system class is
dominant or required.

BCC 110 BCC 112 BCC 112 + BCC 110

Figure 4.12: Sum of GND densitigs , o, of all systems fory, ~ {1.5%, 4%, 10% 19.5%}
for active glide system§112} and{110} with included hardening.

As mentioned in the previous section GNDs are very usefulnetstand and model the
material behavior in a more realistic way. Therefore firsutes concerning the GND evolution
during the deformation process are given in Fidgurel4.12 gncbimparison to Figure 411 the
direct correlation between OGM and GND can be seen for tiaditation for the GNDs. Fur-
ther no direct correlation to the deformation can be madedmparing the results to Figure
HLT0 which shows that GNDs calculated by the used formuiaie not directly correlated to
the deformation behavior. Moreover the gradient in the aeé&dion is very important for calcu-
lating GNDs which also explains the very good correlatiothesOGM results. As mentioned
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previously the contraction in grain 15 and 16 is underedgchan the simulations compared
to the experiment. Investigating the GNDs in this regiorariyeno GNDs are existent in the
middle of grain 16 and also the amount is fairly small in gréth Averaging the GNDs over
the cross-section the region through grain 15 and 16 mayttedte smallest value. This im-
plies that this region hardens less compared to other gndiegeby a higher contraction at this
position might occur. This will be one of the central quessian following works.

Figure[4IB shows the resulting reorientation fields fordimeulations with included hard-
ening. It can be seen that the reorientation is not localagenh the simulation results without
hardening. In nearly all grains an reorientation occurs limcW the highest reorientation takes
place in grains 10, 11 and 16 for all simulations. Comparirgresults fo{110} and {112}
separately active certain differences can be seen but iergktine reorientation field is similar.
The simulation results for both systems active support teeipus assumption that both glide
system classes are active at a similar level. A very intergshvestigation can be made by
comparing the reorientation field to the OGM or GND distribnt Partly the highest reori-
entation occurs at positions where nearly no GNDs or oriemtaradients are developing. In
general the OGM as well as the GNDs are valid indicators fodéraing potential inside the
microstructure. However, the behavior of the GNDs can assmfluenced by the used ansatz
for calculating the GNDs so that a different approach (M, M) can lead to slightly
different results for GNDs especially compared to the esdation which is not the case for the
OGM.

BCC 110 BCC 112 BCC 112 + BCC 110

Figure 4.13: Reorientation field in ° for ap =~ {1.5%,4%, 10%, 19.5%} for glide sys-
tem classe$110}(111) and{112}(111) separately and simultaneously active with included
hardening.

In conclusion it can be summarized that the simulation wiitiuded hardening shows a
much better agreement with the experiment as without hargermhe simulation with hard-
ening predict the correct tendency in the deformation as asefor the development of the
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orientation gradient. At this stage it is not possible to, sapoth glide systemg110} and
{112} are necessary to predict the correct behavior in Fe-3%8ieber, the results show that
both systems should be considered further.

4.6 Conclusion

A crystal-plasticity-based model formulation for aniggic elastic ideal viscoplastic materials
on the basis of an algorithmic flow rule for small elastic stramall time steps and plastic
incompressibility based on finite kinematics is presentiedparticular, the crystal plasticity
model is rate-dependent and accounts for (local) dissgditardening effects. This material
model is used for the FE representation of the sample of astieet metal specimen with large
grains. The experimental results of the tensile test obthinLI:Lenning_a.n.dJeh.cbfLmbS) are
recalled and compared to the simulation results. The stouakwere carried out for two sets
of glide system classes separately active, narfiel9}(111) and{112}(111), as well as simul-
taneously active. To begin, all hardening is neglected.alt ®hown that results obtained with
either system class showed a slight deviation in the defoomatructure, however, the main de-
formation zones were predicted correctly. The simulatesults with both glide system classes
active simultaneously show that both classes are activeeatg¢arly same level of deformation.
However, a certain dominance ¢f10}(111) is observable in the deformation behavior. The
evolution of the GND density as well as the reorientatiortridiation were analyzed in detail
which show the huge strain hardening potential in the malterhich is not included so far.
Further the concept of OGM was recalled and the results weakyzed which show the direct
correlation of GNDs with the OGM concept. However, the otaion gradient in the simula-
tion show no correlation with the experimentally observad.oAs an improvement hardening
is included. The simulation results show an even betterigtied of the experimental results.
Also the correct tendency in the experimentally obtainedMDssuld be seen in the simulation
results. For these simulations no dominance at either giygéem class could be observed.
Therefore it is concluded that both classes should be ceresidn following works. In future
work the model formulation will be extended by hardeningratism based on GNDs. The
presented results in this work can therefore be used asr@meteto see each influence of the
model extension on the simulation results. Further renngsteichniques will be used to obtain
reliable results at high deformations.




Chapter 5

|dentification of the macroscopic material
properties for thermal sprayed coatings based on
nanoindentation

Abstract— The characterization of thermal sprayed coatings is diteited to microstructural
analysis to evaluate the coatings morphology. Indentas@@mmonly used to determine the
mechanical properties of different kinds of engineeringemals. However, due to the com-
plex structure of thermal sprayed coatings few results e obtained so far. In this work
experimental nanoindentation tests and simulation resué compared. The experimental in-
dentation tests show scattering in the force-deformatema due to the complex structure of
the arc-sprayed coating which is investigated by means wfdantation test simulation. Based
on results for single constituent parts of the coating thangs modulus as well as further
mechanical properties are identified. A general procedupeasented to predict the effective
mechanical properties based on the microstructure, ggrosemical composition and proper-
ties of the coating after thermal spraying.

5.1 Introduction

Arc sprayed deposits are being used increasingly in a widigeraf industries. In order to un-
derstand, predict and improve the reliability of coatedickes, it is necessary to characterize
their mechanical properties. The determination of the raeidal properties in thermal sprayed
coatings is quite complicated and often contradictory raeatal properties are reported. San-
tana et al. 8) reported the Young's modulus of HVOF spalay/C-12Co to be 268 GPa.
This property was determined by depth-sensing micro-itadem using the method proposed
by|Qli3LeLa.n.d_Eha|r||_(_’L9_i92) and Pharr et hl_(ill9h2)_£_haiﬂuaf_et_a.| |(20_d6) also investigated
a coating of WC-12Co type, deposited by HVOF spraying, réiggrresidual stresses. The used
Young’s modulus in the simulation was 669 GPa, which is 3 siimgher than the value reported
in |S.a.nla.na_et_ilil|_mb8b__'lb.paﬂi_et| elL(ZbO?) used a Youngidulus of 398 GPa for HVOF
thermally sprayed WC-Co material in his simulation. Thikresoriginates fromm.
), who reported elastic-plastic properties for défeé WC-Co composites. However, these
values were determined for materials manufactured by pome¢allurgical process, involving
several high pressure and high temperature treatmentelhﬂ]ssain.oia_et_hll_(Zle) reported
the mechanical properties of WC-Co composites, fabrichtedonventional PM technology.
The Young's modulus determined using Vickers indentatmmWC-8Co and WC-15Co was

“results published in Tillmann etlal. (2010a)
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650 GPa and 560 GPa, respectively. These different repudie@s show the complexity of

determination of mechanical properties of composites\ike-Co, thermal sprayed as well as
powder metallurgy fabricated. It has to be accounted theatrticrostructural aspects of coatings
are different from bulk materials which can lead to unexeeéehechanical behavior as well as

different mechanical propertiels_(.B_La.nln.e.LdtlaL_ideh;etLaj.]_Z.Od9).

In this research work a twin wire arc spraying (TWAS) fagil{fEmart Arc PPT 350, Sulzer
Metco, Switzerland) was employed to spray WC-FeCSiMn og@ati The work principle of
the spraying process is described elsew _eLe_(N_eb_eJ_amdm]hLZQJJdﬂLmaan_eLbL_ZQd8a).
The Duramat AS 850 flux-cored wire with a diameter of 1.6 mmr(DuGmbH, Germany) was
used as wire feedstock material. The wire is Fe based alleytbd2 wt.% C, 1.4 wt% Si and
<1 wt.% Mn. ltis filled with 50 wt% of fused tungsten carbide (WC/M¥) with grain sizes of
25-125um. Based on the parameter optimization presentEd_LnliJi]m.Laj. kZQ_ldb) cleaned
medium carbon steel specimens (Mat.No. 1.0503, DIN C45] A085) applying a voltage of
30V, a current of 220 A, and an atomization gas pressure of @ttespraying distance of 100
mm. For the investigated WC-FeCSiMn coating, no materiapprties are available in the lit-
erature. Therefore, the determination of mechanical ptgseeither from direct measurements
or parameter identifications are focused in this paper. Mips to understand the behavior
during forming processes much better. In general, as a §isstraption it can be anticipated that
the properties are similar to WC-Co composites due to thdaimechanical properties of Co
and Fe as binder. However, in WC-Co the%tf WC is often above 8@ whereas the here
investigated composite contains approximately Fused Tungsten Carbide (FTC).

As reported in the literature (Hertzberg, 1995; Kim and K/&t999| Okamoto et al., 2005),

the material properties of thermally sprayed coatings #ferent in tension and compression.
Conventional test procedures like bending and tensils st very complicated to realize on
coatingsl(_N_eb_eI_a.n_dliﬂma.hh._Zle). To determine meclsupioperties of coatings nanoin-
dentation technique has been established. However, #ia 8&lds under an indenter are com-
plex and the analysis of data is non-trivial especially fomplicated material systems like
thermally sprayed coatings. A disadvantage of using nalasitation for inhomogeneous ma-
terials to identify the mechanical properties is that oolydl properties are determined. These
local properties have to be identified for each single mait@ihase which can then be used
to approximate the effective mechanical properties withttblp of micrographs and different
homogenization techniques as shown in the following. Aapgossibility is to do a number of
nanoindentation tests and to average over the obtaineldsr&steceive the effective properties.
However, a large number of tests are necessary to obtaableliesults.

The focus of this paper is the application of a method to ifietitie mechanical properties
(elastic and inelastic) of an arc sprayed coating with the b& nanoindentation technique,
finite element modeling and homogenization methods.
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5.2 Nanoindentation
5.2.1 Experiment

The nanoindentation experiments were performed using aiNdenter XP with Berkovich tip
(MTS Nano Instruments, Oak Ridge, TN, USA) at the Institutdlaterials, Ruhr University
Bochum. Two sets of experiments were performed where thented either penetrated the pol-
ished coating in its normal direction or a polished crossisa (see Fig[Ckl1). The indentation
was done at 49 points in a regular pattern for three indematepths (100 nm, 250 nm and
500 nm). Figur€ 5]l shows an overview of the indentatiorss antross-section of the coating
for a depth of 100 nm. Due to the fact that the chemical contiposof an indented material is
not known a priori the indentations were analyzed in the SicanElectron Microscope (SEM)
employing EDX afterwards, to identify which phase was irtédenand which points have a
chemical composition with a mass percentage of one of thetitoents above 80 for FTC
and 80 for FeCSiMn, respectively. Only those indentations wenestdered where one sin-
gle phase without pores and cracks was indented. Therefoug@amount of indentations is
necessary to indent in certain single phases. Investigatdthe micrographs of the coating
show that phases of different compositions can be identifierlto the material contrast in the
backscattering mode of the SEM. However it has to be mentitim&t no separation, e.g., be-
tween WC and WC could be made. This also implies that it cannot be identifieath phase
combinations (i.e. FeCSiMn) are generated during the thkspraying process. This could
be one reason why deviations between the load-displacesuergs were obtained at different
sample points with nearly the same chemical compositiorotiAer reason for these deviations
could also be due to different residual stresses at diffdomations. It is anticipated that the
indentation depth is small compared to the thickness of orgeslamella and that the results
found for one chemical composition only represent the bienaf this specific composition.
This assumption is not valid for indentation into the cogsurface due to the smaller thickness
of the lamellas in this direction. Therefore the followingppedure is based on the results of
the nanoindentation test into cross sections. FidurésiBa® show exemplary back-scattered
electron images of indentation imprints into the coatingvali as the corresponding EDX re-
sults into nearly pure FTC composition 20wt.%) and FeCSiMn alloy (FTG: 20wt.%). As

it can be seen from the EDX analysis different pseudoalloglmoation are existent.

The Young's modulugr is one of the most important mechanical properties. It diessrthe
relation between stresses and strains in the elastic refjianoindentation can be used to de-
termine the Youngs modulus by analyzing the unloading platth@ load-displacement curve
(lD.a.o.eLa'.LZOdl). The analysis and determination of thengsumodulus is done with the
traditional Oliver-Pharr (OP) methotl (Oliver and Pharr929Pharr et dl), 1992) at the cor-
responding unloading curves originated from an indemtaitito pure FTC €20 wt% Fe) or
FeCSiMn 20 wt% FTC), respectively. The traditional Oliver-Pharr (OP) huat yields to
the contact stiffnesS

2
S =-—=FaVA 51
NG aVA (5.1)
and for the reduced modulus,,, which combines the modulus of both indenter and specimen,
11— V21—

= 52
Ered E - EI ( )
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Figure 5.1: Overview of indentations for a depth of 200 nm -ASAMVC-FeCSiMn coating.

o 2 4 & 8 10
Skale: 4528 cts Cursor: 0.000 keV
Element wt.% at.%
w 16.40 5.62
Fe 83.60 94.38
X 10,000 20,08 comro SEx Wb semm $00.00 fo0.00

Figure 5.2: Detail view of analyzed point of indentationaiTC for a depth of 200nm and
corresponding EDX analysis.

whereFE andv are Young’s modulus and Poisson’s ratio of the test matemalZ; = 1140GPa

andy; = 0.07 are the parameters of a diamond indeﬂl&l'_(s.ha.n_a.ndﬁltdrhmikl). Rewriting

this equation for a Berkovich indenter leads to the follayveet of equations (Giannakopoulos
and Suresh,_1999) for the reduced Young’s modilys

1 dP
Ered = m (a) (53)
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Figure 5.3: Detail view of analyzed point of indentationoiffeCSiMn for a depth of 100 nm
and corresponding EDX analysis.

with ¢ = 1.167 m,@),/& = 24.5h?, 4 describes the slope of the unloading curve &hd
the resulting effective Young’s modulus of the material

(1 — VQ) Ered EI

E = .
EI_(]'_VI2)Ered

(5.4)

The Poisson ratio is chosen with respect to the bulk matandltherefore assumed for FTC
composition to ber = 0.19 and for the FeCSiMn alloy = 0.3 (Hsieh and Tuan, 2005). The
evaluated Young's modulus based on indentation into cressass for a depth of 200nm for
the FTC and FeCSiMn phase are reported in TRDIe 5.1. Thegaeiéoung’s modulus over
all 49 indents in cross sections as well as the surface fodifferent indentation depths are
reported in TablEB]2. As shown there the Young’s modulusésehsing with increasing depth.
One assumption for this is that the depth and therefore #uslare already too high and failure
occurs in the coating which affects the results. Therefoagniy the results for a depth of
100nm are used where it can be assumed that no or at leastraumrof failure occurs which
makes the load-displacement curves and the obtained piegerore reliable.

5.2.2 Finite element modeling of nanoindentation

As mentioned in the previous section, several analyticahods are available to determine
the Young’'s modulus. However, limited studies are avadabl obtain the plastic properties

vd%he nanoindentation technique, e[g__Gianna.kamdmis_S_uLeﬂH_(lde)_Men.kamh_eh al.
).

Therefore the indentation loading process is simulated finyite element model with the soft-
ware ABAQUS. The coating is modeled with continuum elementssisting of 8 nodes where
the coating is modeled as consisting of one single phase. influience of the neighboring
lamella on the mechanical behavior of the indented regiassimed to be negligible, such
that only the indented material (lamella) is modeled. Thiassumed to be reasonable due to
the small indentation depth comparing to thickness of cfié material layers (compare Fig.
1) which leads only to loading in one phase. Therefore theatogl of the substrate is skipped.
The indenter is modeled with rigid shell elements of the ig3®4. The surface of the coating




92 CHAPTERS

as well as the surface of the indenter is defined as contaas$.ak@riation of the friction co-
efficient did not influence the obtained results which wasay mentioned by authors before
e.g.LSha.n_a.nd_Sila.La.n}'in_(zbos). For this reason the siomlatdone frictionless. The size of
the modeled region is chosen in such a way that the stressistia the free faces. The Finite
element model is shown in Figureb.4.

o * experiment
___ — = simulation .

= 9
€ 6 . 9
= [
T 4 P
[=] F] &
- [

2 s

L
a
0 ||—I—!
0 20 40 60 80 100
depth [nm]

Figure 5.4: Finite element mesh ofin-  Figure 5.5: Comparison between ex-

denter and coating. perimental and simulation data for in-
dentation into FTC and an indentation
depth of 200nm.

In the present study the used material behavior is assumeael o a type Voce hardening law
as given by

0 =0y + (0g — )1 — eXp(_apnO)} (5.5)
whereo, describes the initial yield stress,,, the saturation value of the stress anddefines
the rate at which the size of the yield surface changes afiq&igining develops and, is
the equivalent plastic strain. The unknown material priggin [55) are identified with in-
verse Finite-element-analysis by fitting the simulatisults to the experimental obtained load-
displacement curves. This determination is carried outgugie program LS-OPT in conjunc-
tion with ABAQUS. The optimization techniques used rely esponse surface methodology
(RSM) {.KQk_a.n.d_Sla.n.dleL_@Q), a mathematical method fosiraoting smooth approxima-
tions of functions in a design space. The approximationsbased on results calculated at
numerous points in the multi-dimensional design spacehigwork, the material parameters
are the design variables and the model together with thed#déamine the objective function
of the corresponding optimization problem. The materiaapeeters that lead to the best fitting
agreement can be considered to represent the constitethaior of the coating. Such a fit is
shown in FiguréXls.
To find the material parameters, first a range for the desigablas has to be defined. As initial
values the plastic properties of WC-Co are chosen from Hoega et al. |(20d1). The simula-
tion model and optimization method were first tested on tesaported iIIJ_Lee_eLbL(ZdO?) for
a steel coating. The identified material parameters agrage eyell with the reported one, so
that the method presented as well as the simulation modeisseebe justified. Based on the
optimization history for one of the constituents it can beerved that after some iteration steps
the LSOPT specific optimization borders are converging resulting value which describes
the best fitting parameter for the problem. Tdbld 5.1 dispthg identified material parame-
ters of the nanoindenter tests for the two phases. Flgufet®®s exemplarily the simulated
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load curve on top of the experimental one for indentatioa I C for an indentation depth of
100nm.

material E [GPa] o, [MPa]

FeCSiMn & 20wt% FTC) 190430 1900 = 500

FTC (< 20wt% FeCSiMn) 340 +£40 4900 + 600
Ot [MPQ] no [-]

FeCSiMn & 20wt% FTC) 2650 £ 700 4.8+1.5

FTC (< 20wt% FeCSiMn) 6100+ 700 60+ 5

Table 5.1: Identified mechanical properties of single cleatrgomposition for AS-850.

It has to be mentioned that these parameters varied, deygeodithe position analyzed and
the associated experimental data. The values displayeabie[b.1 are estimated from results
of more than four points each for every phase. The deviatoriife Young’s modulus was
~ 15%. The deviation for the plastic properties was25%. These deviations occur from
the inhomogeneities inside the coating. Therefore the uredslata describes only local prop-
erties at the microscale. To achieve the macro-propeikeshe effective Young’s modulus,
homogenization techniques are used which are describéé iimiilowing section.

5.3 Construction of finite element models from real microgrghs

To perform analysis of real microstructures, micrographthe thermal-sprayed coating were
observed with different optical microscopes. As mentionefdre, SEM micrographs served as
a basis for the determination of the chemical compositiodiiérent phases. The micrograph
provides the possibility to distinguish between the phasgei€h is possible due to their dif-
ferent brightness in the micrograph which is coming fromaeg with atoms having different
atomic numbers. Correlating to the huge difference in thetive atomic weight of tungsten
(183.84 g/mol) and iron (55.845 g/mol) the phases of theysut&/C-FeCSiMn feature a good
contrast. In addition to these two phases many pseudodllspgiats containing WC as well as
FeCSiMn are visible which cannot be clearly identified. FOC\WeCSiMn coating it can be
distinguished between the matrix material Fe, the inclusioC and pores. Figufe®.6a) shows
an exemplary micrograph obtained from the coating.

An image processing tool is developed which now identifiesiases and generates an image
consisting of Fe-, W-based alloys and pores only. The diffeation between the phases is car-
ried out by finding optimal thresholds based on the colorithstion, from which the different
phases are separated. As it can be seen on the resulting image [5.86b), much noise and
small single pieces of the material-phases are includeatiwhake this image inappropriate to
perform further analyses, especially with regard to ptas¢ihavior. Therefore these parts have
to be smoothed out or removed by applying smoothing and afeafgorithms. The resulting
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it/ mean Young’s
untlh . Young’s modulus
metho modulus deviation
GPa
c
9 % (Nanolndent. 500nm) 127 59
c 8
5 GPa 142 37
Qv (Nanolndent. 250nm)
£ E GPa
(Nanolndent. 100nm) 154 34
o GPa
C =
S 3 (Nanolndent. 500nm) 165 31
£ 0 GPa 203 52
23 (Nanolndent. 250nm)
£ o GPa
= (Nanolndent. 100nm) 240 70
c S GPa
o .=
=i (Ngnolndent. 1QOnm) 230 5
£32 in cross-section
£ ora 212 4
= c (Nanolndent. 100nm)
in surface

Table 5.2: WC-FeCSiMn Youngs moduli for compression s&ess

image is shown in Fid._hBl6c).

To generate a FE-mesh from such an image the software Objemttéd Finite Element 2
(OOF2), from the United States National Institute of Staddaand Technology (NIST), is
used. This software was developed to investigate the behai/microstructures. OOF2 takes
a non-reductionist approach to build a data structure omligfiéized image of the microstruc-
ture whereby it gets connected to the associated matedpépies. At the end OOF2 creates a
FE-mesh which reflects the shape of the different phase®imtbrostructure with the associ-
ated material parameters. The mesh is generated by minigrazi energy functional which is
composed of a homogeneity pdft,,,, of the mesh and a shape pait..,.. of the elements via

E = aEhom -+ (1 — Oé)EShape (56)

whereq is an adjustable parameter, with which the user can corffitttéd imesh should be highly
accurate to the image with bad shaped elements (1) or if the elements are well shaped but
with less accuracy to the shape of the phases in the micrograp 0). A value fora between
these extremes will lead to an optimal choice. For furthéaitkeabout the exact formulation of
the energy functional and the features of the program OO&2?dhders are referred to Langer
etal. 1) an i 08). The resulting mesh caeber in FigCR16d). The elements
representing pores are removed by which free surfaces eatecr on which contact elements
are applied to account for closing pores in the simulatidns hssumed that the phases are
perfectly bonded.
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Figure 5.6: a) An exemplary micrograph obtained from a wik8-850) arc-sprayed coating
with SEM. b) Distinguished material phases. c) Cleaned ndy FE-mesh on microstructure.

To obtain information about the microstructural behaviod anacroscopic properties compres-
sion deformation tests are done. Due to the fact that plaaexsind plane stress conditions,
respectively, would either over- or underestimate thedieontraction which would lead to a
too stiff or weak behavior, respectively, a 3D-projectidie 2D-mesh is performed by simple
extrusion in normal direction of the mesh. At this point itrsicial to investigate, how thick the
model should be and how many layers are necessary over tkadiss. Therefore convergence
studies are performed. It was found that a thickness of by&$agives an acceptable result.
The simple extrusion leads to columnar material phaseshahilt still not predict the exact
behavior but it is an improvement of a 2D-simulation withrastrain or stress conditions. To
receive more exact impressions of the microstructure 3@ahformation of the coating would
be necessary which are not available at this point. As bayncanditions for compression
tests typical boundary conditions are chosen: three diffielateral faces, which do not oppose
each other, are fixed in their respective normal directidre dompression test is displacement
controlled such that the displacement is applied to oneefrée lateral sides in its respective
normal direction. The simulations are performed using tinéd-Element software ABAQUS.
First tests are restricted to linear elasticity so that aganmson of the simulated with the pre-
dicted elastic constants from homogenization methods eandsle. At this point it is assumed
that the micrographs fulfill the requirements for a Représtére Volume Element. This is a
crucial assumption in order to compare the obtained resuttsthose from the homogeniza-
tion methods. The elastic constants of the microstructiweltained by evaluating the reaction
forces at the boundaries and the displacement at the frerallaides. The received results are
presented in the next section.
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5.4 Discussion

To receive macroscopic properties homogenization teciasiggan be used. The approxima-
tions used here are the Voigt, Reuss and Hashin-Shtrinkneginatls. These methods predict
maximal and minimal bounds for the effective Young’s moduwhith respect to the volume
fraction of the two phases and pores. However, these mettmdst take the morphology into
account. Details to these methods can be found in NemateNassg Hofi |{,19_d9). The volume
fractions were identified on basis of the analyzed microlgsags mentioned in the previous
section. The used volume fraction of FTC varies from 33.3%alp to 36.6 vol% and for
the pores from 0.72 vdk to 2 vol% and the difference to 100 véi. is used for FeCSiMn.
The obtained results with these methods are compared veitiitsdrom compression tests with
real microstructures. Due to the lamellar structure of thatiog (cf. Fig.[5.ba)) it behaves
anisotropic with respect to the normal (ND, perpendicutathie lamellar structure) and hori-
zontal direction (HD, in direction of the lamellar strualirvhich was previously reported for
coatings irLKlm_a.n.d_Kwe(brL(lde).;_Yin_etJaL(Z(bOQ). Thereftine microstructure has to be
tested with two different load directions, parallel andgerdicular to the lamellae. This pro-
cedure discussed in the previous section is performed angdi¥ferent micrographs created
from the same part at different positions. The resultingwated effective Young’s moduli
are shown in FigChl7. The effect of anisotropy is not accedrnih the homogenization tech-
niques due to the fact that these methods assume homogestitsited spherical inclusion
and calculate the effective Young’s modulus on the basi©efvblume fractions. However,
these methods provide a general impression about the \@itieef Young’s modulus. The pre-
dicted Young's moduli obtained with help of the real micrastures do not violate the Voigt
and Reuss bounds which make the results valid. Howeverffietiee Young’s modulus does
not lie between the Hashin-Shtrinkman bounds due to itooigy. It can be observed that the
effective modulus calculated for the micrographs slightfferentiates. The reasons for this are
the inhomogeneities of the coating. Therefore the effecioung’s modulus has to be evalu-
ated statistically over different micrographs. Here treuléng Young’s moduli are calculated
to be Eyp = 230 GPa and Exp = 212 GPa.

Compared with the calculated averaged values in the expatifrom all indents for an in-
dentation depth of 100nnEl;p = 240 GPa(indentation in cross section) aityp = 154 GPa
(indentation in surface) , cf. Table’b.2), the predictedugalfit for the horizontal direction.
However, the averaged nanoindentation test results in aadirection do not agree with the
predicted Young’s modulus. One reason for this could be dballnature of nanoindentation
tests. Due to the lamellar structure and relatively higleaspatio of the lamellas and therefore
small thickness in normal direction the potential to indamtore during nanoindentation tests
in the surface without noticing is much higher than in theecaSnanoindentation test in the
cross-section due to the high thickness in this directioncdntrast the simulation determines
the macro Young’s modulus by what such local phenomena doauofr.

Considering the elastic-plastic material parameters efttvo phases both show a very high
yield stresses. The FTC phase shows a high rate of work hagie@nwhich the saturation
value is only 20t higher than the yield strength. It is anticipated that th&€Rhase would
break before hardening occurs. However, the investigatedes do not contain pure FTC. It
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Figure 5.7: Predicted effective Young’s modulus calculdtem real microstructures compared
(HD = parallel to lamellar structure, ND= perpendiculardamiellar structure) with results from

different homogenization techniques. (HS+ = upper Has&titrinkman bound, HS- = lower

Hashin-Shtrinkman bound).

is still a composite of mainly FTC but also other in the wireluded elements like Fe. The
FeCSiMn-phase shows a more significant hardening behammopared to the FTC phase. The
yield stress is very high for Fe compared to conventionalstehich will also depend on the
included FTC. In summary the single phases show very highharecal properties although it
is not possible to identify these for every chemical comipasi Furthermore it is typically as-
sumed that the mechanical properties are inferior comparbdlk material. Although no bulk
material is available of this composite this assumption lmampproved for the elastic region
by comparing the results for the single phases with valus® fthe literature, e.q., Okamoto
et al. ). However, the plastic parameters are muchehighich might occur due to the
high temperature during the thermal spraying process whailfs to a hardening in the material
phases.

From experiments it is known that nearly no plastic deforamabccurs in the coating. The
coating fails at very low stress states, especially undeileload kNﬂb.eLandILllma.h 10).
This can be attributed to the weak interface between thdsspihich leads to significantly
poor mechanical properties compared to bulk materialss heans that the phases are not
perfectly bonded to each other and that the interface fadsnclude these effects and to model
the coating more realistically an interface model in conjion with a failure model for the
FTC phase has to be included. To do this the interface as wédlilre mechanisms in FTC
have to be characterized in more detail in experiments wdielon-going work. Therefore we
restricted the application of the calculation on basis efréal microstructure to linear elasticity,
however, it can also be applied for the plastic region witlp loé the identified parameters in
Table[51 for the single phases. But the computing time getshnfarger as well as further
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effects just mentioned have to be included to get sensilgleltse The incorporation of an
interface model is on-going work.

5.5 Summary and outlook

TWAS sprayed WC-FeCSiMn coatings have been evaluateddeggtheir mechanical prop-
erties. In this paper the coating was investigated withneeg@nanoindentation tests in detail.
The analytical Oliver-Pharr method was used to determie&tung’s modulus of local points.
With SEM and EDX analysis the material composites indentethe nanoindenter were iden-
tified. The elastic-plastic properties were obtained fahgahase composition with simulation
tools.

With help of an in-house image analysis software differdrenical compositions could be
identified from SEM-micrographs. A method is presented ggimey FE-models on the basis
of these images which was successfully used to determinglthl properties of the coat-
ing from the local properties of the single chemical compoiss which was presented for the
elastic properties. These results were compared to thagegrexperimental nanoindentation
results as well as to results obtained by several analyicalogenization approaches. The
obtained elastic properties in the simulation agrees quatel with the averaged experimental
values from all indents in direction of the lamelar struetuHowever the predicted values do
not agree with the experimental measured Young’s modulasiimal direction.

The presented method will be further developed to incotedtee interface between the single
phases to model the global plastic behavior more reallgtidaurthermore the failure behavior
will be investigated of the coating to be able to predict ksaoccuring in the coating during
loading.



Appendix A

Basics of homogenization

This appendix gives a short insight into the basics of homagdion. In the following the
basic results of the Eshelby solution and different stasilamogenization methods are briefly
discussed.

A.1 Eshelby solution

In this section we consider linear elastic composites umnst#hermal conditions. The main
number of works on mean field descriptions used in continudonamechanics are based on
the work o@y@?). Therein the stress and strainiloligion in homogeneous isotropic
elastic solids embedded in a surrounding elastic matevigviestigated. The main result can
be summarized as follows. Suppose that the inclusiamdergoes a spontaneous change in
its shape and/or size due to an "eigenstrain” so that it ngdoffits into its previous space in
the surrounding material. Assuming that if the surroundmagerial was absent, the inclusion
would undergo some prescribed homogeneous deformatiandacg to the eigenstrain. If the
inclusion is now re-embedded into the matrix which conesdhe inclusion and forcing it to
assume afinal straif’ (x). Eshelby showed that if an elastic homogeneous ellipsaidhision

is subjected to such uniform strali¥*, uniform stresses and strains are induced in the inclusion.
This uniform strainE is related linearly to the eigenstrali¥ via

E(x)=FE =S8“E" = const (A1)

where the fourth order tensét” represents the Eshelby tensor field. Due to the uniformity of
E* insidew the corresponding Eshelby tensor becomes constant.oaserindicated in Figure
AT Typical examples of such eigenstrains are thermaihstrahase transformation strains or
disclocation-induced residual strains.

The constant stress in the inclusiorcan be calculated by
T=CE-E)=C(S*—-I)E" (A.2)

whereC is the elastic stiffness tensor of the material @nithe symmetric fourth order identity
tensor. In general the Eshelby tensbhas merely minor symmetry. Results for ellipsoidal
inclusion can be found Mr 82). For the special casespherical inclusion and isotropic
material the Eshelby tensércan be calculated via

1 1
with
14 v 2(4 — 5v)

o= ﬁzm.

=) (A.4)
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Figure A.1: The inclusion has undergone a stress-freeftvanation, eigenstrai*, and has
been placed back in the matrix. The matrix constrains thiesnan forcing it to assume a final
strain £/, which can be related tB* using the Eshelby tensér(dark area represents embedded
inclusion).

wherev is the Poisson’s ratio of the matrix material. HeFegpresents the second order identity
tensor and we make use of the tensor produdis: B)C := (B - C)A and(AOB)C :=
AC B of any second-order tensass, B, C'.

The relation [[AR) only holds, if the elasticity tensor oftmatrix and the inclusion are
identical. Generally this is not the case. Therefore an i@y counter problem to the real
problem has to be constructed, in which the inclusion hasdhee elastic stiffness as the matrix.
Due to the fact that the Eshelby solution applies in this dase Figurd_All), the size and
eigenstrain for the imaginary inclusion can be assumed thaghthe final constrained strain
and stress are equal to those of the inclusion in the realgrob

G Pane— m—

Figure A.2: The inclusion and matrix consists of two difigrenaterials. The eigenstrain can
occur due to a change in temperature or a phase transformatm. The equivalent imagi-

nary problem is constructed in the way that the inclusion @eradrix have identical material

properties so that the Eshelby formula can be applied, asrsba the right.

Suppose the inclusion undergoes a prescribed eigendifairthe residual stress in the in-
clusion can be calculated

T' =C(E — E™) (A.5)

whereE is the uniform residual strain in the inclusion. For the iimagy problem the similar
relation can be obtained

T' = Cy(E — E¥) (A.6)

by assuming that the imaginary inclusion with the same ielastensorCy, as the matrix un-
dergoes a eigenstrali* which is imaginary construct. Therefore the Eshelby sotutian be
used

E = SE* (A.7)
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from which a relation between the real eigenstrain and tleginary eigenstrain can be deter-
mined
Er = ((CI — CM)S + CM)il CIEI* . (A8)

This relation can be used with{A.2) to calculate the cortstirssT™ in the inclusion
T = CM<8 — I)E* = CM(S — I) ((CI — CM)S + CM)il Cr E'™. (A9)

The same concept can be applied for the case of an exterpaligd strainE° as indicated in

LT E° ; . E°
| S A T
— - =
— Cr ‘? |
= =

,
. E*=0
\

\

Figure A.3: a) Ellipsoidal inclusion embedded in a matriX. Hbhmogeneous material with
eigenstrain subjected to an applied external load

Figure[A33. The stress in the inclusion can be calculated by
T =C/(E + E") (A.10)

where E denotes the mismatch strain in the inclusion. Reformulaigefgroblem to an imagi-
nary problem where the inclusion has the same propertidseasatrix yields to

T =Cy(E +E’—E"). (A.11)

Outside of the inclusion iF* = 0. The Eshelby solution can now be used to determine the

mismatch strain
E=SFE*. (A.12)

The equivalent eigenstrain due to an externally appliearsf® can then determined as
E* =—[S+(C—Cy) 'Cy] "E°. (A.13)
The total strain in the inclusion can than be calculated via

E' = E°+E=E"+SE" (A.14)
E' = [T+ 8C,'(Ci—Cy)] "E° = const (A.15)

The expressiofiZ + SCy,;' (Cr — Cy)] ™ is also referred to as influence or concentration tensor
A which describes the correlation between the total straihtla@ external load.
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A.2 Review of some standard homogenization methods

Basically, a macroscopic material point at a posit®rin a fixed Cartesian frame is considered
next. In linear elasticity the macroscopic stresF&$° and straingE™2<° are related via the
macroscopic elasticity tens6y, .., with

Tmacro — C Emacro . (A 16)

macro

Homogenization procedures are mainly based on the defindtfca local surrounding of a
macroscopic material point with microscopic voluivieand the boundaryV’. This volume
V represents a characteristic part of the material in ternits structure and behavior, respec-
tively. This implies that the size of heterogeneities athierolevel is at least one order of
magnitude smaller than the size of the volumef the macropoint. As it is shown by Nemat-
Nasser and Hori (19 ME:@OM) the Halhdi¢l condition is fulfilled by
applying linear displacement, periodic or uniform traotm mixed boundary conditions (Pahr
and Zysse ﬂ)8) oflV. This section focuses on the detailed discussion of diffenemoge-
nization methods.

The basic concept of homogenization is shown in Figuré A#thA macro-scale the mate-
rial is considered as homogeneous continuum where the stigi® describes an infinitesimal
surrounding of a material point at the macroscale. The maate is generally heterogeneous,
e.g., the morphology consists of different particles, usans, etc.. The microscopic length
of an RVE has to be much larger than the dimensions of theesjpaiticles!. In the context
of the principle of separation of scales, the characteristigth. at the macroscale has also to
be much larger than the size of the RVE. This characteristigth L is not determined by the
size of the macroscopic domain but rather by the spatiahtian of the kinematic fields and

stress fields within that domaih_(_KQuzn.eBmLa_éLaL._bOIBWefore the following relation has
to hold

l<d<L (A.17)

in order that homogenization methods can be applied.

Figure A.4: Principle of homogenization and different léngcales
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A material point at the macroscale is related over an RVEgwtiumel” of the microscale.
The microscale is subjected to fluctuated stress-strautsfiéé shown in Figuile_A.5. The me-
chanical state at the macroscale can be calculated oveneaueraging the microscopic quan-
tities

T2 = (T) = % /V T(x)dV  E™° = (E) = % /V E(z)dV (A.18)

where(e) describes the average over the volume.
The constitutive law from the microlevel
T(x) =C(x) E(x) (A.19)
can be rewritten to the macroscale
(T) =C*(E) (A.20)

with the effective elasticity tensal* = C, ... This relation is only valid if the average distor-

tion energy of the microscale is equal to the one at the meal®@gxemplified by

W) = (3B C@) Bla) ) = 3 (B) -C" () (a.21)
which is captured by the Hill-Mandel-condition
(T(x)- E(x)) = (T) - (E) . (A.22)

This condition general means, that the fluctuation fieldehawe energetically equivalent to
their averages as shown in FiglreJA.5. To calculate thesstned strain fields at the microlevel

T(x), E(x) (T),(E)

i i
- ‘ | S|

"A' =
oY [
oy “H !

1 it

Figure A.5: Micro fluctuation fields on the RVE boundary anelitlaverage.

in a volumel” next to the balance of linear momentum and the governingteguadditional
boundary conditions have to be added at the bound&ry Due to the fact that the behavior
of the heterogeneous volume at the microlevel is repredetily by a point at the macrolevel
homogeneous boundary conditions should be chosen as bguwahalitions for the microlevel.
In principle there are four types of boundary conditionsaktulfill the Hill-Mandel lemma:
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linear displacements af/

uniform tractions at the bounda&y”

periodic boundary conditions at the boundagy

mixed boundary conditionk_(Ea.h!_a.n.d_Z;LlSlieLJZOO8) at thadeny oV

We restrict the composite to the matrix-inclusion type vpiénfect interfacial bonds between
inclusions and their immediate surrounding matrix. Thermathase is labeled by M and the
inclusion is assumed to be of type-i and therefore labeleddny for one single inclusion. For
a multiphase composite consistingophasesg, = V., /V denotes the volume fraction of each
phasex with respect to the total volumg of the RVE, which are subjected to the restriction
>, co = 1. The volumel” at the microlevel is subjected to linear boundary displaees
which corresponds to a macroscopic strtBth The microscopic strain within the RVE depends
upon an initially unknown fourth-order tensdr(x) with

E(z)= A(z)E° (A.23)

referred to as concentration tensor. In the followidgdescribes the volume average.étx).
As the averaging procedure is done phase-wise, this respltgse-wise constant concentration
tensorsA,,. Hence, the effective elasticity tensor can be calculatad v

C'=> c,CuA,. (A.24)
a=1
For the special case of an ellipsoidal inclusion in an irgimitatrix, the Eshelby solution can
be used to determine the so far unknown concentration tenorAs shown by many authors

(e.qlGross and Seelig, 2001; Nemat-Nasser and Hori| 199P)nathe previous section (see

(&T13)), the strain in the inclusion can be calculated by

E'= AVE° = [T + 8C'(C; — Cy)] ™' E° = const (A.25)

whereZ denotes the fourth-order symmetric identity tengqy, the elasticity tensor of the
matrix, C; the elasticity tensor of the inclusion adthe Eshelby tensor.

Similar results can be obtained by applying uniform tratsi@t the boundary of the vol-
umeV which correspond to a macroscopic str@8s The microscopic stress is related to the
macroscopic one via an unknown fourth-order terfs@ccording to

T(x) = B(x)T° (A.26)

whereB(x) is a concentration tensor. In the followilgdescribes the volume averageRifr),
where this results in phase wise constant concentraticsotsi$,. Therefore the effective
elasticity tensor can be calculated via

-1

=1 cC'B.| - (A.27)
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A.2.1 \oigt- and Reuss-bounds

A homogeneous material loaded by homogeneous boundarytiomsdundergoes homoge-
neous state fields. For heterogeneous material this not hold true but it is the most
primitive assumption to suppose constant microfie%) assumed the strain to be
constant in the volum& and therefore followsd = Z. This assumption can be understood as
a parallel connection of the different materials. Accogdia this the effective elasticity tensor
can be calculated by averaging the stiffnesses of the smgterials.

CEkVoigt) = (C(x)) = anca (A.28)
a=1

@5@9) assumed the stress to be constant in the véluarel analogously to Voigt
follows thatB = Z. This assumption can be understood as a serial connectibwe dfifferent
materials. This leads to the result that the effective caanpk tensor can be calculated by
averaging the compliance of the single materials.

Clramss) = (C(@) ) = caCy! (A.29)
a=1

With the minimum of stored energy potential and dual (coajed) potential it can be shown
that

CEKVOigt) > C = CEkReuss) (A30)

where itis emphasized that the inequality implies that tgem/alues of the tensofs _CEkReuss)
andCfy;,,, —C" are non-negativ ' ' 005). These bordhadimits which
can occur for the effective elasticity tensor if the invgated microstructure meets the RVE

requirements mentioned before.

A.2.2 Mori-Tanaka method

The Mori-Tanaka method approximates the interaction betmtee phases by assuming that
each inclusioni is embedded, in turn, in an infinite matrix that is remoteded by the average
matrix strainE™ or average matrix stresEM, respectively. Therefore the strain in the single
inclusion can be calculated by

E} = A),EM, (A.31)

where the influence tensaft%i is given by

-1

AL = [T 4 8yCyf (Cr; — Cyy)] (A.32)

In the case of ellipsoidal inclusions the Mori-Tanaka hoerogation approach leads 16, ; =
Ay E°, whereA, ., ; is obtained by

-1

Ay, = |6Z + CM(A?,i)_l + ZCjA?,j(A?,i)_l : (A.33)
J
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With this result we can calculate the effective elastiogygor

Chur) = cM+Z (Cri — Cop)Araar), (A.34)

In lB.emLenisﬂeL(_’LQdﬂ) the method is mterpreted in the sdreee@ach inclusion behaves like an
isolated inclusion in the matrix seeidg" as a far-field strain”.

A.2.3 Hashin-Shtrikman bounds

Following the approach J)LI:I.ashjn_a.n.d_S.hlﬂkﬂnhn_(i963) leadise equation for the upper and

lower bound of the elasticity tensor for a two-phase malteria

_ _q17—1
Cusyy = Gten [(Cn = C) " oS¢ ]

_ _q1—1
Clusoy = Cu+to[(G—Cu)™ +euSuCy']

As can be seen the upper Hashin-Shtrikman bound correspotits Mori-Tanaka result. The
upper bound can also be obtained with the Mori-Tanaka metisidy interchanging matrix
and inclusion material.

(A.35)

A.2.4 Interpolative Double Inclusion model (IDIM)

In lEi.QLa.r_d_e.t_dl.L(Z_OjM) the following interpolative homagmtion model for a two-phase ma-
terial was introduced:

-1
. a+ad\ . La —|— a .
C(IDIM) = {(1 - TI) C M’i‘ 1) — C(M"} } ’ (A.36)

in which C,;, is the estimation for the effective elast|C|ty from the Mdeanaka method.
Cour-1y IS the effective elasticity tensor following from the ingerMori-Tanaka approxima-
tion in which, for a two-phase material, the smaller volunaet pecomes the matrix material
and vice versa. Therefore the interpolative double inclusnodel can be seen as a properly
chosen interpolation between the Mori-Tanaka and invereg-Vanaka method and between
the Hashin-Shtrikman bounds, respectively. This modelfisstsdeveloped bmm%).

A.2.5 Self-consistent scheme

The self-consistent scheme approximates the interacgéomden the phases by assuming that
each phase is embedded in an infinite volume of an effectivdiumrewith elastic properties
C* of the composite. Therefore the effective elasticity sgfs of the material passes into the
matrix stiffness,, = C*) and we obtain the influence tensor

Ayscs)i = [Z+SCct(C,—CY)]

Due to the fact that the influence tensdy . ; depends on the effective elasticity tensqy
the equation is implicit and nonlinear.

Ciscs) = M+ZCZ 1 — Cu) Axses) (A.38)

-1

(A.37)

Algorithmically, the method requires an addltlonal iteratioop to calculat€(y.g,. In general,
the self-consistent method gives a sufficient predictiothefbehavior of polycrystals but it is
less accurate in the case of two-phase composites as thed®#Wown biLEi.e.La.Ld_eﬂdl_(Zd)M).




Appendix B

Crystalline Structure

B.1 Lattice structures of metals

Every metal consists of a crystalline structure that is lmgand repetitive. The simplest possi-
ble choice to serve as a representative structural unitlesdca unit cell. A real crystal mainly
consists of a multiplicity of unit cells. Therefore the stiure can be described by one single
unit cell. All metals form their unit cell as close-packedpassible. In metal structures the
three most important unit cells are the body-centered ofluic), face-centered cubic (fcc) and
hexagonal close-packed structure (hcp) shown in Figuie B.1

Figure B.1: The most important lattice structures of metiat, hcp, fcc) (Bauser
et aI.,ml).

The bcc crystal consists of a simple cubic lattice structunéch has one atom in every
corner and one atom in the center. The atoms at the corneshared by eight adjacent unit
cells. The atomic packing factor is 68%. Typical metals wvihits structure are chromium,
vanadium, molybdenum, tungstemiron andd-iron. The fcc structure has an atom at each
corner and at the center of every face. It belongs to theargsucture with an atomic packing
factor of 74%, the highest value possible. Aluminum, nickepper, silver, platinum, gold and
~-iron appear in this structure. The hcp structure is moregtmaked than the cubic structures.
The unit cell consists of three layers of atoms. The top arttbbolayers contain six atoms
at the corners of a hexagon and one atom at the center of eaagjdre The middle layer
contains three atoms positioned in the gaps between thesatbtine top and bottom layers. As
the name already implies, hcp belongs to the structuresatieatlose-packed with an atomic
packing factor of 7%. Hcp structures are found in beryllium, magnesiuntitanium, zinc and
zirconium k_B_a.Lg_eLa.n_d_S_Qh_LﬂzIe_._ZLbOO).
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To describe the geometry around and inside a unit cell théeMithdices are used. The
following explanation applies only to cubic crystal stuugts. A description for hcp-crystals
can be found in the literature, e.b_.j.ha.ckejio.td_a.n.dﬁ.ﬂlitzoﬂb). For describing lattice
planes a set of integers, usually calfed: and/, represent the inverse of axial intercepts. That
means if the linesna, nb and pc describe the intersection between the lattice plane and the
coordinate axis (through the point of origin), the Milledines result in the reciprocal value:

h:k:l:i:l:l.

m n op

The indices of planes are written in ( )-brackets and for tiegandices a minus is placed above
the number (e.gl). The lattice directions are expressed as a set of integhish are obtained
by identifying the smallest integer positions intercepbgdthe line from the origin and are
written in [ ]-brackets. Due to this definition the directiorthogonal to the plane is described
by the same set of integers{ }-brackets describe all planes which are crystallogragifica
equivalent due to the symmetry of the unit cell like 1), (111), (111) and ((11) in the cubic
case.( )-brackets describe the group of all equivalent directions.

¥ ///////%% 3 - @ﬁ\\"" >y
(110) o
c) \ § s
2\ | S
~ oy |
o <y +y

Figure B.2: Miller indicesl(Bauser etldl., 2001).
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B.2 Crystal defects

As described, a metal consists of repetitive unit cells bith wthe restriction that there are
structural flaws in the metal due to the fact that no matemascsts of a perfect repeating
crystal structure. These defects have an important efife¢che mechanical properties of the
metal, e.g., plasticity, diffusion and conductivity aresbd on these mechanisms of defects.

The simplest type of flaw is the point defect which is assedatith the crystalline point
lattice. The three common types of point defects are vagamigystitial and substitution atom
(see Figur&BI3). Vacancy means an unoccupied atom site icryistal structure. In interstitial
defects an atom takes a position in the crystal structurelwisinormally not occupied by an
atom in the perfect structure. Substitution atom meansafiateign atom (impurity) replaces
an atom in the crystal structure. This can only happen wheratbms are based on the same
lattice type and the atom diameters are nearly the samet dRefects are especially dependent
on the temperature. With increasing temperature the tHemnimation gets higher and with it
the energy of the atoms vacancies and interstitials carr ezsier.

impurity
(substitution)

impurity

interstitial (interstitial)

distored lattict
vacancy

Figure B.3: Different types of point defects

In comparison with point defects, which result from theragikation, dislocations are asso-
ciated with mechanical deformation. The two common typedisibcations are edge and screw
dislocation shown in Figule B.4. The edge dislocation b#@ssname because the dislocation
line runs along the edge of an extra row of atoms. The dislmcéine is movable in this plane,
the so called sliding plane. The screw dislocation derit@aame from the spiral stacking of
crystal planes around the dislocation line.

Besides point and line flaws in crystalline materials it moaimportant to consider that the
material is contained within some boundary surfaces whrehaadistribution of the atomic-
stacking arrangement of the crystal. One special form idwhe boundary, which separates
two crystalline regions that are structurally mirror image each other. If the orientations
of two single crystals in the metal are different, the crigstae called grains and the contact
line is called grain boundary. Many properties of metals laghly sensitive to such grain
structures[(_S_ha_gkeJde_a.n_d_S_uﬂﬂ/én_ZbOS). The influetegends on the relative orientation
of the adjacent grains. If the adjacent grains are onlyditig a few degrees relative to each
other, also called the misorientation, the boundary isddibw angle boundary. This can occur
through a few isolated edge dislocations (see Figuré B.bhe misorientation angle for this
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a) &

slip plane

dislocation line

dislocation line

Figure B.4: Different types of line defects: a) edge distmrab) screw dislocation (Bauser
et aI.,ml).

case is usually defined to be smaller thai. All grains belonging to such a boundary are
not separated in single grains but in so-called subgrairtse @oundary structure involving
adjacent grains which are tilted by a large misorientatiogl@is more complex than for small
misorientation angles (see FiglireB.5). The boundary isoagly disturbed region containing
a multitude of different defect mechanisms.

grain boundary { grain boundary

)
NS
T
SN

X/
S0 c"p ol

a)

Figure B.5: Different types of grain boundaries: a) low an-
gle grain boundaryd < 15°)  b) high angle grain bound-

ary (Bauser et all, 2001).

Plastic deformation is the distortion and reformation afnaic bonds. In perfect crystals
the plastic deformation would occur by sliding one planetof@ over an adjacent plane. The
necessary shear stress to deform the material would be édstly thousands times bigger than
itisinreality. Thisis based on the sliding of dislocatiovisich needs a relatively small shearing
stress to slide through the metal. It is obvious that th{s siechanism would tend to be more
difficult as the atomic slip distance increases, which mehasthe dislocation motion will
always occur first in high-atomic-density-planes and dio&xs. The motion of the dislocation
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will start when the shear stress on the plane exceeds aatwtatue. This shear stress is called
Peierls-stress, which can approximately be calculated from

2u 2r  d
RN <_(1 —v) E) (B.1)

wherey is the shear modulus andthe Poisson ratio of the material.describes the distance
between the gliding planes ahthe Burgers vector. This exponential dependencéexplains
why high-atomic-density-directions are favorable dudsmall occurring Burgers vector. For
cubic systems (lattice paramet@r high indexed planes are favorable through the maximum
distancel between the planes with Miller indizd#k(} given by

d=-——24 (B.2)

VR + k2 + 12

These preferred planes and directions combined are cdifedystems and can be found in
different types of unit cells. The number of different higansity plane-directions is essential
for the characteristical deformability of a metal. Due te tact that fcc has twelve of them,
determined through the 4 octahedrpii 1} slip planes with the 3 associatéti0) directions,
fcc is relatively ductile compared to hcp which has only éhhegh-density plane-directions.
For bcc slip is possible on more than one family of plangd@},{112} and{123}) in the 2
associated111) directions. This results in a maximum of 48 possible slipeys. However,
some of these slip systems are often only operable in cdgaiperature ranges.

— T
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Figure B.6: Different deformation behavior  Figure B.7: Frank-Read mech-

when applying shear stress: a) elastic deforma-  anism (Bauser et al., 2001).
tion b) plastic deformation (Bauser ef al., 2001).

The dislocation motion is also obstructed by differenti¢attdefects so that the necessary
shear stress becomes higher. For example, foreign atorasndf a substitution or interstitial
atoms serve as obstacles for dislocation. This phenomencailed solution hardening which
is of major importance for aluminum alloys. In that case threign atoms create bracing. The
dislocation motion can also be hindered by other dislooati®uring deformation the material
can harden through the accumulation of dislocations atehest like grain boundaries. Beyond
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these phenomena the motion of dislocation can also createliséocations which become an
obstacle. FigurEBl7 exemplarily shows the Frank-Read ar@s in which the overcoming
of the defects generates new dislocations.

B.3 Critical resolved shear stress

The yield stress which characterizes the start of plasfwrdetion varies for specimen consist-
ing of one single crystal. Deforming the single crystal undiéerent orientations in a tensile
test results in different yield stresses. The orientatiepethdence can be explained by the
Peach-Koehler equation. As mentioned in the previous@eptastic flow is related to disloca-
tion motion. A dislocation moves when it becomes subjeategiforce parallel to the slip plane
in slip direction. Hence, it is not the completely appliedess, rather the resolved shear stress
in the slip system that causes dislocation motion. The vesiathear stress, also called Schmid
stressy is related to the applied tensile stresby

T =0 cos(¢) cos(A\) = Mo, (B.3)

where¢ is the angle between the tensile direction and the slip ph@neal and\ is the angle
between tensile direction and the slip direction. This @ple relation is shown in FiguieB.8.
The factorM = cos(¢) cos(A) is called Schmid factor and assumes valoies | M| < 0.5 for
tensile deformation. Therefore the force acting on theodeions depends on the orientation
of the slip system relative to the tensile axis. For more pbsslip systems, the Schmid-
factors are different for each system, meaning that theesystith the highest Schmid-factor
experiences the highest resolved shear stress. Dislosattart to move if the force acting on
the dislocation, which is equivalent to the resolved shé&ass, exceeds a critical valug

(Gottsteih| 2004).

Normal to slip plane

Figure B.8: Determining the
Schmid-factor  (Shackelford
and Sullivan 5).



Appendix C

Basics of continuum mechanics

This appendix gives a short insight into the basics of cantm mechanics and makes no claim
of completeness. The underlying kinematics are introddoedhe general nonlinear case.
In the following the mechanical balance equations are gwkith represent the fundamental
relations of continuum mechanics. Finally, the fundamlelk@as of material modeling are

introduced, i.e. the principles of constitutive theory cdterials.

C.1 Flow kinematics

The following kinematics are given in terms of finite defotiroa measures from which the
small deformation case can always be derived. If the mosorharacterized with respect to
the material coordinateX, this is called material, referential or Lagrangian dedmn. In
the material description one follows the movement of a plartf body B in time. Another
possibility is the use of the spatial coordinateshen the motion of bodys has to be described,
which is called spatial or Eulerian description. In thistadation, attention is paid to a pointin
space and the change of the motion with titva this point. This description is called current,
spatial or Eulerian description of motion. L&t denote the fixed position of a material pointin
the bodyB in the undeformed and stress free reference (material)groations,. ;.

During deformation or motion the configuration changes witte which is described by the
time-dependent vector field of the nonlinear spatial de&drom map
0 : B,y — B, with (X, t):==, (C.1)

ref

wherex denotes the spatial position of the partidfein the current deformed (spatial) configu-
ration3_,, attimet. This mapping has to be unique and continously differefgidn complete

analogy to this spatial motion problem, the inverse mater@ion problem can be formulated.
This is described by the material deformation ndaghich is given by

OB, — B with ®(z,t):=X. (C.2)

ref

where physical particles are observed at fixed spatial coatesx.
The motion of a body3 is characterized by the displacement veetpdefined by

u(X,t) = (X, t)— X. (C.3)

To introduce the deformation gradiehRtwe describe the distance between two neighboring
material points in the reference configuration by the vedi&r. Due to the deformation this
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Figure C.1: Kinematics: Deformation mapmaps the ref-
erence configuratioi8,; to the current configuratiofs_,
and the deformation map maps vice versa.

vector is mapped into its image in the current configuratimeryby dxz = dX + du where
du is the differential total displacement vector. These viescawe connected by the deformation
gradientF’ via

ox ou

whereH = g—; is also known as the displacement gradient or shape dmtansor and
denotes the second rank identity tensor and. The deformgtadient can therefore also be
written as

F=V,p(X,t), (C.5)

whereV, denotes the derivative with respect to the reference camafiign. F' is a second order
two-field tensor which is in general non-symmetric. Sincedleformation gradient is a linear
operator, the local transformation [D{C.4) is also linGarmaintain the connection @ during
the deformation process, the mapping has to be one-to-oiehwkcludes a singularity of’
which is formally guarantied by a condition for the deteramnof the deformation gradient,
called Jacobian

J =detF # 0. (C.6)

To exclude a self penetration of the body, the Jacobian hhe fmositive:.J > 0. Due to this
requirementd is invertible. [C3) provides the transformation betwdaar Elements from the
initial to the current configuration. The transformatiofatemns for area and volume elements
are given for completeness:

area element da = nda=JF TNdA=JF TdA. ©.7)
volume element dv = JdV. '

The deformation gradierf’ can be expressed as the product of a proper orthogonabmtati
tensorR with R~! = R” and one of two symmetrical tensdis and V' which are a measure
for pure stretching. Two representations are possible

F=RU=VR (C.8)
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whereU andV are the right and left stretch tensor, respectiv@g@).

In continuum mechanicE' is the most important measure of deformation and basisrainst
measures. One strain measure used in this work is the Gragrahge strain tensor

E:%uﬂF—I) (C.9)

whereC := FTF is the right Cauchy-Green tensor.
In the context of crystal plasticity three different cooraie systems are us@t al.,

e shape coordinate system: This is a curvilinear system baséloe physical shape of the
body during deformation.

e lattice coordinate system: The coordinate axes are fixegllJoparallel to the crystal-
lographic directions. The distinction between shape atictdadistortion is crucial for
calculating internal stressés_(.B_'LLb;LeJ E.L._;I.|958). Thesoadfor this is that the shape de-
formation does not necessarily follow the deformation @f fditice. They only coincide

when no motion of crystal defects occurs (Roters bt al.,[p010

e laboratory coordinate system: Often the deformation ofltbdy B and its associated
lattice is described in a coordinate system that does notwhedvith the body.

In the case of crystal plasticity the perfect single crystabften used as reference state,
however, it is also possible to choose any state just befefamhation or any state at any time
in an incremental setting. The deformation gradient candm®hposed into an elastic pdff
and a plastic parF}, called the Kroner decompositim 61)

F = F,F; (C.10)

which is schematically illustrated in Figure €.2.

intermediate configuration

reference configuratiorF p current configuration

Figure C.2: Decomposition of the total deformation gratien



116 APPENDIX C

F;, is the elastic deformation component which representsabal kelastic distortion of a
material due to stretch and rotation of the microscopiccstine. ThereforeF}, occurs due to
reversible response of the lattice to external loads arplatisments F}, is the plastic distor-
tion which represents the local deformation due to the flowedécts through the microscopic
structure. Thereford?, is an irreversible permanent deformation. The transfaonatf the
reference state b¥}, leads to an intermediate configuration. Investigating tigstal lattice in
the different configuration as shown in Figlirel4.1, the ti@msation viaF}, from the reference
to the intermediate configuration renders the lattice unghd and all the deformation is pro-
duced by dislocation slip. The plastic deformation is assdite be volume preserving which
meanslet F, = 1. During the transformation from the intermediate configorato the current
one viaF} , the lattice undergoes a purely elastic shape change. Tdassithe external force
has to be maintained in order to preserve the shape Chingml.LZQiO).

The dependence of the deformatigfiX,¢) on timet¢ has to be considered in nonlinear

problems in case that the constitutive behavior is histeyethdent. The spatial velocityis
introduced as the material time derivative of the spatialiomomap

dp(X, 1)
ot

From this the time derivative for the deformation gradi€htollows from {C5) to be

v:=Dp(X,t) = = (X, 1). (C.11)
F=V,0(X,t)=V.0oF (C.12)

whereV . is the derivative with respect to the current configuratidescribes the velocity of
a particle at pointc at timet in the current configuration given by(x,t) = v(p(X,1),t) =
v(X,t). The spatial velocity gradient is defined as

L:=V.t=FF" (C.13)

The relationship of to L;; and L can be obtained by taking the derivate[of (T.10) and apply
the product rule of differentiation

F = FyFy + FpFp (C.14)
which yields in combination witH{C.13) to
L=FyF,' + FeFpF,'Fy' = Ly, + FpLpFy . (C.15)

Due to the fact that the spatial velocity gradient is caltadan the deformed configuration and
the plastic velocity gradienL, is evaluated in the intermediate configuratidy, has to be
mapped into the deformed configuration By.

C.2 Mechanical balance equation

Balance laws describe the universally valid physical pples which are independent of the
specific material properties. In the following the diffeti@ahequations which describe the local
balance equations such as balance of mass, balance of éinéangular momentum as well
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as balance of energy and balance of entropy are derived frgeneral balance law introduced
next (see, e.gmi 2)). These equations represeffitititamental relations of continuum
mechanics. A balance law is called conservation law if it\Vesshing sources.

Let us start with a general balance equation in integral fimma closed system describing
the evolution of a physical quantity in a bodyB in a spatial motion problem. The actual state
of a bodyB can mathematically be described by volume integrals owesgecific density of
the physical quantity\. The impact of the surroundings has to be described by arealume
integrals over the corresponding volume or area densifiéiseoapplied loadings. A general
balance equation can then be written as

D, [
B

where¢,, denotes the non-convective flux density vectothe corresponding source density
and¢ the production in the body. Assuminfy,(x, n,t) depending on the positian and the
outward unit normal vecton and timet leads to the Cauchy lemma which states that there
exists a unique tensdr such that

AdV = — ¢ndA+/ CdV+/ ¢dv (C.16)
OBt B B

ref ref ref

¢n(xz,n,t) = ®(x,t)n. (C.17)

Using this the balance equation can be rewritten

Dt/ AdV:—/ <I>ndA+/
B OByor B

Applying the Gauss theorem to reformulate the area intégi@b volume integral and with the
knowledge that the integral has to hold for all volume eletsdetdV — 0 lead to the local
form of the balance equation

CdV+/ ¢dv. (C.18)
B

ref ref ref

DA = —Div® + ¢ + €. (C.19)

Further details with respect to material and spatial mapiablem can be found, e.qg., in Gurtin
et al. ,@).

C.2.1 Balance of mass

Only processes are considered in which the mass of a syst@nserved. This implies that no
change in mass occurs and that the mass in the initial andridwonfiguration has to be equal.
This leads to

podV = pdv (C.20)

where p, and p describe the densities in the initial and current configorat The balance
of mass can also be derived from(Qd.19) by substituingy p, and setting the fluxp, the
production¢ and source densitig&sequal to zero which leads to

Dypo = 0 (C.21)
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C.2.2 Balance of linear momentum

The balance of linear momentum can be understood as thenoamii version of Newton'’s
second law. The change of linear momentugw in time is equal to the sum of all external
forces acting on the bod§. With the application of Cauchy’s stress theorem and uséef t
divergence theorem one derives

D;po v = DivPT + p,b (C.22)

whereP denotes the unsymmetric first Piola-Kirchhoff stress ne¢pspatial forces to material
area elements ariddenotes the volume forces. The Piola-Kirchhoff stresslated to the the
Cauchy stres®’ via a push forward to the spatial configuration with

P=JTF . (C.23)
C.2.3 Balance of angular momentum

The change of angular momentum in time with respect to a pbiistequal to the sum of all
moments stemming from external volume and surface fobcasd¢ with respect to point.
Writing the balance of angular momentum in a spatial intefgran leads to

dt/ (w—:cA)x(p'v)dv:/ (:c—:cA)xtda—i—/ (x —x4) X bdo. (C.24)

This equation yields after some manipulations to the symnwétthe Cauchy stress tensor
T=T" (C.25)
and the unsymmetry of the first Piola-Kirchhoff stress tenso
PF" = (PF"T, (C.26)
C.2.4 Balance of energy

The balance of energy postulates the conservation of energythermodynamical process
which is also known as first law of thermodynamics. The chasfghe total energy in time is
equal to the sum of the mechanical power of all external ldadsand the heat supplg

ext

DE =P, + Q. (C.27)

where the total energy can be split into interfiahnd kinetic energys. The balance of energy
does not provide any information about the direction of artteelynamic process. The local
form of the first law of thermodynamics can be obtained byrmsg relations for~, P, . and
Q.. and some manipulation (e.dzle@oos)

1 .
po Dyu = —DivQ + §S - C+por (C.28)

wherewu denotes the internal energy dens@ythe material heat flux vector andthe external
heat supply per unit mas§s - C is named specific stress powet.describes the symmetric
second PiolaKirchhoff stress tensor which is related tditse PiolaKirchhoff stress tensd?
via

S=F'P. (C.29)
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C.2.5 Balance of entropy

The direction of a thermodynamical process is given by tlworse law of thermodynamics
which states that the internal entropy production per um st is non-negative

£>0. (C.30)

The balance of entropy states that rate of entrpgyequal to the divergence of the entropy flux
H plus the source and the production tersrend¢

po Dy = —DivH + po(s + €). (C.31)

C.3 Concepts in material modeling

The fundamental concepts of material modeling are intredurc the following. The previously
described kinematics and balance equations are a gensralfbaformulating the thermome-
chanical behavior of a continuum body. For the distinctibuliferent materials constitutive
equations are necessary to complete the framework. Theitwoie equations have to fulfill
principles of the constitutive theory of materials in ortlenot contradict general physical ob-
servations. These principles are summarized (see,Le_Qza.tf_eII tZ_O_O.b)Ill’_Uﬁ.d.e.IJ_a.nd_Nbll

)) as follows: The principle of equipresence demangeai the same set of variables
for all constitutive equations. The principle of deterrsimi describes the fact that the present
state of a particle is only determined by the history of théyband not its future. The principle
of local action states that the material functions are ictstt to pointwise dependences and
the state of particles outside of an arbitrary neighborhmoudbe disregarded. The principle of
material frame-indifference states that the response aitamal is independent of the observer.
The constitutive equations must be invariant with respe@tatme changels_(lr.u.esd.elLa.n.d_iloll,

). That constitutive equations are consistent witm#&of symmetry that can exist in ma-
terials. This requirement is named the principle of matsgienmetry kQ_uLLi.n_el_allL_ZD_d)Q). The
principle of Isomorphism states that the elastic propgrtfgoroperly identified, are not effected
by yielding tﬁt&i 3). The used constitutive equetitor modeling different material
behavior which fulfill these concepts can be found in theowgsichapters.
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