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Summary

High-speed cutting is an important and widely-used process in modern production engineering.
Considering the fundamental non-linear nature of this thermomechanical process, the finite-
element method is the numerical simulation tool of choice. In this context, a realistic numerical
simulation of cutting processes places high demands on accuracy and efficiency. Since large
deformation and deformation localization are involved, continual remeshing and mesh adapta-
tion are required. In the context of a finite-element analysis, localized deformation patterns,
as observed in experimental observations, can be modeled using thermo-viscoplastic material
models including in particular the effect of thermal softening and in general damage as well.
As is well-known, such softening effects result in a loss of solution uniqueness, resulting in so-
called pathological mesh-dependence of the simulation results. In the last ten to fifteen years,
a number of extensions to classical local modeling of softening, damage and failure have been
proposed in order to account for the inherently non-local character of many processes contribut-
ing to such failure. For example, in the case of ductile failure in metal-matrix composites as
based on void development, the process of void coalescence leading to failure is inherently
non-local. From the mathematical / numerical point of view, many non-local models have the
additional benefit of regularizing the boundary-value problem and alleviating mesh dependence.
On this basis, the intention of the work presented in the following is to develop a general finite
element framework to model and simulate the process of metal cutting and related processes.
Here, we deal with two key issues. To resolve the complex deformation patterns, observed in
context of metal cutting, we develop an adaptive finite element framework, based on a combi-
nation of error estimation and refinement indication. Further, we present an extended thermo-
dynamic framework, with a general non-local description of several thermodynamic quantities.
In this context we also discuss the effect of ductile damage. In the context of standard isochoric
plasticity, the influence of hydrostatic pressure on the development of ductile damage is usually
accounted for in an indirect fashion, by defining, e.g., a pressure-dependent formulation for the
rate of damage. In contrast, the current work is based on both hydrostatic stress- and devia-
toric stress-driven inelastic deformation, damage, and failure. The former drives for example
primarily microvoid development, while the latter is related to micro-shear-band or microcrack
development. The extended non-local description allows the modeling of lengthscale-effects,
in general, but also the additional benefit of further reduction of mesh dependence is important
and will be discussed.



Zusammenfassung

Das Hochgeschwindigkeitsspanen ist ein wichtiger und weit verbreiteter Prozess in der moder-
nen Produktionstechnik. Beachtet man die grundsatzlich nichtlineare Natur dieses thermome-
chanischen Prozesses, so bietet sich die Finite Elemente Simulation als numerisches Werkzeug
an. In diesem Zusammenhang stellt eine realistische numerische Simulation hohe Anforde-
rungen an Genauigkeit und Effizienz. Da groRe Deformationen und Lokalisation von plasti-
scher Deformation auftreten, wird eine kontinuierliche Neuvernetzung sowie Netzadaptivitat
bendtigt. Im Kontext einer Finiten Elemente Simulation kdnnen die im Experiment beobach-
teten lokalisierten Deformationsmuster durch ein thermo-viskoplastisches Materialgesetz un-
ter Einbeziehung thermischer Entfestigung sowie Schadigung modelliert werden. Wie allge-
mein bekannt, geht mit einer solchen Entfestigung die Eindeutigkeit der Lésung verloren. Dies
auflert sich in der so genannten pathologischen Netzabhangigkeit der Simulationsergebnisse.
In den letzten zehn bis flinfzehn Jahren wurden ein Vielzahl von Erweiterungen der klassi-
schen lokalen Modellierung von Entfestigung, Schadigung und Versagen vorgeschlagen, um
dem von Natur aus nicht lokalen Charakter vieler entfestigender Prozesse Rechnung zu tra-
gen. Zum Beispiel ist der Prozess des Zusammenwachsens von Hohlrdumen, wie dieser bspw.
beim duktilen Versagen von Metall-Matrix Verbundwerkstoffen auftritt, von Natur aus nicht
lokal. Vom mathematischen und numerischen Standpunkt aus betrachtet, bringen viele die-
ser nicht lokalen Modelle den weiteren Vorteil, dass sie das entsprechende Randwertproblem
regularisieren und netzabhéngige Losungen vermeiden. Auf dieser Basis besteht die Intenti-
on der vorliegenden Arbeit darin, einen allgemeinen Finite Elemente Rahmen zur Simulati-
on des Zerspanens und dhnlicher Prozesse zu entwickeln. Wir beschaftigen uns hierbei mit
zwei Schlisselproblemen. Um die komplexen Deformationsstrukturen, wie sie beim Zerspan-
prozess auftreten, abbilden zu konnen, entwickeln wir zunéchst ein adaptives Finite Elemente
Werkzeug. Dieses basiert grundsatzlich auf einer Kombination aus Fehlerschatzung und Feh-
lerindikation. Weiterhin prasentieren wir eine erweiterte thermodynamische Formulierung, die
eine generelle nicht-lokale Beschreibung mehrerer thermodynamischen Groen beinhaltet. In
diesem Zusammenhang wird auch der Effekt duktiler Schadigung diskutiert. Im Zusammen-
hang der gewohnlichen isochoren Plastizitat wird der Einfluss hydrostatischer Spannungen auf
die Schadigungsentwicklung fur gewdhnlich in indirekter Weise, wie zum Beispiel durch ei-
ne druckabhangige Rate der Schadigung realisiert. Im Gegensatz dazu basiert die vorliegende
Arbeit auf einer separaten Betrachtung von hydrostatisch und deviatorisch angetriebenen inela-
stische Deformation, Schadigung und Versagen. Hydrostatische Spannungen treiben beispiels-
weise vorrangig die Entwicklung von Mikrohohlrdumen voran. Der deviatorische Anteil wird
in Zusammenhang mit Mikroscherbandentwicklung und Mikrorissen gebracht. Die erweiterte
nicht-lokale Beschreibung erlaubt die Modellierung von Langenskaleneffekten im Allgemei-
nen. Des Weiteren ist aber auch der zusatzliche Gewinn einer weiteren Reduktion der Netz-
abhangigkeit wichtig, was diskutiert wird.



Chapter 1

| ntroduction

High-speed cutting is an important and widely-used process in modern production engineering.
Considering the fundamental non-linear nature of this thermomechanical process, the finite-
element method is the numerical simulation tool of choice. A variety of applications of this
method in the context of high-speed cutting can be found in the recent literature, representing the
state of the art. For example, in Ozel and Zeren (2004), the determination of friction properties
for use in finite element simulations of metal cutting is discussed. Likewise, a general discussion
of thermomechanical effects playing a role in chip formation can be found in Mabrouki and
Rigal (2006).

Experimental results, presented in EI-Magd and Treppmann (2001); EI-Wardany and Elbestawi
(2001); Sievert et al. (2003); Tonshoff et al. (2005) show that shear banding represents the
main mechanism of chip formation and results in reduced cutting forces. In the context of a
finite-element analysis, such shear banding can be modeled using thermo-viscoplastic material
models including in particular the effect of thermal softening (and in general damage as well:
e.g., Sievert et al. (2003)). As discussed in the work of Sievert et al. (2003) simulation re-
sults for a formulation considering only thermal softening show an overestimation of the peak
temperatures. Thus, in order to decrease the mechanical power, the authors proposed an ad-
ditional damage formulation. Furthermore, ductile damage has been observed for the material
considered in this work (Inconel 718), in general (see e.g. Singh et al. (2003)).

As is well-known, such softening effects results in a loss of solution uniqueness, resulting in
so-called pathological mesh-dependence of the simulation results. Usually, this dependence is
expressed in terms of the size of the elements used, i.e., the element edge-length. However, it is
not restricted to this property of the elements. Indeed, as investigated in the current work, other
properties, e.g., element orientation, or interpolation order, are just as, if not more, influential in
this regard. As will be shown in the current work, the influence of the mesh orientation becomes
significant in the context of adiabatic shear banding, especially in connection with structured
meshes.

A realistic numerical simulation of cutting processes places high demands on accuracy
and efficiency. Since large deformation and deformation localization are involved, continual
remeshing and mesh adaptation are required. For example, Béker et al. (2002), use structured,
quadrilateral meshes in combination with a hanging-node-based remeshing scheme to model
continuous chip formation during metal cutting. In Baker (2006), this method is applied to
model chip segmentation. Marusich and Ortiz (2005) use adaptive remeshing to capture crack
propagation during machining operations. In Ozel and Altan (2000), unstructured quadrilat-
eral remeshing is applied to model chip formation during high-speed flat-end milling. On the
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other hand, a refinement strategy aimed in particular at accurately capturing thermomechanical
localization and shear-band formation during cutting has generally not been addressed. This
represents one of the goals of the current work.

In whatever context, the basic goal in any case is of course to avoid extreme element dis-
tortion. In this work, the authors investigated the strong mesh-dependence of the simulation
results for the process of adiabatic shear-banding. In particular, this dependence is related to
both the element size and element-mesh orientation in relation to the cutting direction. This
has a significant influence of both a qualitative and quantitative nature on the results. As will
be shown, adaptive remeshing can be used to significantly reduce such mesh-dependence. In
particular, this involves reducing the element size below the characteristic length of material
instability. A similar conclusion can also be found in Huerta and Pijaudier-Cabot (1994). In
general, the element size must be small enough to resolve the material instability. And even
then, pathological mesh-dependence remains.

The choice of a suitable refinement strategy for the case of adiabatic shear banding is still
an open question. Most of the refinement strategies offered in literature focus on error esti-
mation, which is technically mature for linear problems. Here, research mainly focusses on
error estimation based on local residuals, as introduced by Babuska and Rheinboldt (1978)
and recovery-based error estimation, as proposed by Zienkiewicz and Zhu (1987). For non-
linear problems, method investigation and development is still far from complete. For example,
Rodriguez-Ferran and Huerta (2000) apply residual-based error estimation in the context of a
non-local damage model. Using residual-based error estimation, Huerta et al. (2002) present a
general approach for the non-linear case. Application of recovery-based error estimation can be
found in Boroomand and Zienkiewicz (1999), here extended to general elasto-plasticity, or in
context of forging simulations in Boussetta et al. (2006).

Complementary to error-estimation methods are refinement-indicator-based methods. In par-
ticular, these facilitate a more physical interpretation of the refinement strategy. On the other
hand, they are in a sense less accurate than estimation methods, heuristic in nature. Further-
more, they are application-dependent. For example, Marusich and Ortiz (2005) use the local
value of the plastic power to detect the onset of localization locally. Another approach is pro-
posed by Ortiz and Quigley (1991). Here, variations in the velocity field are chosen to act as
the refinement indicator. In the present work, both error-estimation and refinement-indicator
methods are investigated for application in the context of localization problems.

The use of remeshing techniques may lead to a reduction of mesh-dependence, but of course
cannot eliminate it. The most simple solution, that arises intuitively, is based on enforcing
simulation results to be consistent with experimental data by means of varying and limiting the
minimal element size. Closely related to this approach Pietruszczak and Mroz (1981) developed
an element formulation with an embedded description of the localization thickness. Here, the
authors made an internal distinction between plastic active and elastic regions inside an element.
In context of modeling and simulation of crack bands, a corresponding formulation can be found
in the work of Bazant and Oh (1983). Following this approach, the fraction of energy, dissipated
inside the plastic or cracking regime, respectively and thus, the stress strain response of the
element is governed by the ratio between both regimes. Although such explicit description of



the localization thickness represent a robust and simple method to enforce a specific stress-
strain response, they simply sidestep the problem. Indeed, doing this ignores the fact that an
additional physical criterion is missing in the model, implicitly leading to a limited localization
width.

Motivated by the fundamental work of Eringen (1966) and here especially by the axiom of
neighborhood, various nonlocal continuum formulations have been developed with the aim to
close this gap. In literature, two families of such nonlocal formulations can be identified.

Nonlocal models of integral type generally consist in replacing a specific variable (e.g.,
strain, equivalent plastic strain, damage etc.) at each point by its nonlocal counterpart ob-
tained by weighted averaging over a neighborhood. Rather interested in the continuum based
description of interacting dislocations than developing a localization limiter Eringen (1981) pre-
sented a framework based on the nonlocal counterpart of the strain tensor. Later Bazant and Lin
(1988) proposed a formulation working with the nonlocal plastic strain tensor or alternatively,
working with the nonlocal average of the plastic multiplier. Performing a series of simulations
with different minimum element sizes, here in terms of an excavation process, Bazant and Lin
(1988) successfully demonstrated the ability of this formulation to act as a localization limiter.
An application of nonlocal averaging of the damage can be found, e.g., in the work of Bazant
and Pijaudier-Cabot (1988) and Tvergaard and Needleman (1995). Although the interpretation
of the integral type approaches is descriptive, the additional numerical effort, necessary when
calculating the nonlocal average quantity for every integration point, is their main drawback.
Moreover, the implementation inside a commercial finite element code is not simply to achieve.

The differential counterpart of the nonlocal integral approaches is represented by models of
gradient type. Instead of considering the influence of the neighborhood through integrals, this
family of models introduces the nonlocal character by incorporating higher order gradients into
the constitutive model. Influenced by the pioneering work of Toupin (1962) and Mindlin (1964),
Chambon et al. (1998) as well as Fleck and Hutchinson (1997) adapted the idea of higher order
stresses, work conjugate to strain gradients, to formulate a strain gradient plasticity framework.
While in the formulation of Chambon et al. (1998) the higher order stress enters only the balance
of momentum, the theory of Fleck and Hutchinson (1997) considers these additional stresses in
terms of the yield condition. Although physically motivated by the concept of statistically stored
dislocations (SSD) and geometrically stored dislocations (GND), the essential formulation of
Fleck and Hutchinson (1997) remains phenomenological. Contrarily, the group of mechanism-
based strain gradient (MSG) plasticity theories is based on micromechanical effects on the
flow strength of materials. An application of the MSG concept, originally formulated in Gao
et al. (1999) and Huang et al. (2000), can be found, e.g., in Qiu et al. (2003), here in context
of micro-indentation hardness experiments. While the above methods consider higher order
displacement gradients or corresponding stress quantities, models with gradients of internal
variables represent a more general concept to introduce non-locality. For example, Aifantis
(1984, 1992) and Maugin (1990) consider higher gradients of the equivalent plastic strain and
damage, respectively. In contrast to integral type approaches, the finite element implementation
of gradient type models is, in general, straight forward. However, the higher order displacement
gradients have to be considered in higher order element shape functions.
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A relation between integral type and gradient type nonlocal formulations is established by
applying a Taylor series expansion of the local quantity into the corresponding integral expres-
sion for the nonlocal quantity. Assuming isotropy of the used weight function, this results into
an explicit gradient type approximation, including the Laplacian of the local quantity. A de-
tailed derivation can be found, e.g., in the work of Engelen et al. (2003). As stated above, the
explicit incorporation of higher order gradients requires higher order element shape functions.
Thus, further improvements have been suggested by Peerlings et al. (1996). In this work the
author showed, that via mathematical manipulation of the explicit nonlocal approximation an
implicit formulation, including the Laplacian of the nonlocal quantity, can be established. In
case of using Green’s weight function, this formulation gives the exact representation of the
integral formulation as has been shown by Peerlings et al. (2001). Thus, working with the weak
form of the latter result, only C? interpolation of the corresponding quantity is required. While
the explicit gradient formulation considers the dependence on the infinitely close neighborhood,
the solution of the nonlocal field in terms of the implicit gradient formulation depends on the
local quantity in the entire body. Thus, in the sense of Rogula (1982), explicit gradient type
formulations are often referred to as weakly nonlocal, while implicit gradient type formulations
are, in the sense of Geers et al. (2000), called strongly nonlocal.

The intention of the work presented in the following is to develop a general finite element
framework to model and simulate the process of metal cutting and related processes. Here, we
deal with two key issues. To resolve the complex deformation patterns, observed in context
of metal cutting, we develop an adaptive finite element framework, based on a combination of
error estimation and refinement indication. Further, we present an extended thermodynamic
framework with a general non-local description of several thermodynamic quantities. In this
context we also discuss the effect of ductile damage. The extended non-local description allows
the modeling of lengthscale-effects, in general, but also the additional benefit of further reduc-
tion of mesh dependence is important. As basic works concerning the simulation of high speed
cutting have been achieved for Inconel 718 (see Sievert et al. (2003); Singh et al. (2003)) and
thus, a complete set of parameters is available, we restrict to this material throughout this work.
The work is organized as follows.

Chapter 2 discusses the basic problems of material softening in context of a finite element
simulation of metal cutting. Starting with a simple thermoelastic, viscoplastic material model,
discussed in Section 2.2, we give an introduction to the problem of mesh dependence in context
of shear band formation (Section 2.3), followed by a presentation of simulation results for the
cutting process, using an established finite element model (Section 2.4). As a main outcome
of these examinations we identify the problem of mesh orientation dependence, as well as the
inadequately modeling of the kinematic situation inside the main deformation zone, when using
standard finite element techniques. Especially the last point is relevant in context of resolving
the state of the resulting cutting surface.

Based on these basic observations, we propose the application of an adequate adaptive remesh-
ing technique, developed in Chapter 3. First, we give a detailed presentation of the algorith-



mic formulation of the remeshing process in Section 3.2. Possible model quantities relevant
to error estimation in context of material instability are discussed in Section 3.3. Next, the
error-estimation method and refinement indicators, developed in the current work, are applied
to investigate different refinement strategies in the context of shear-band formation. Building
on this, a complete refinement strategy is developed (Section 3.4). Finally, we apply this strat-
egy to the simulation of the high-speed cutting process in Section 3.5. At this stage, the finite
element framework allows a robust simulation of the process with an immense reduction of the
influence of mesh orientation. Also, the simulation of the resulting surface is now possible.

In Chapter 4 improvements are suggested by an extension of the material model by ductile
damage and further, by a nonlocal description of the material. A detailed derivation of the
extended thermodynamic framework is given in Section 4.2. The specific application to non-
isochoric thermo-viscoplasticity, including ductile damage is given in Section 4.3. A detailed
derivation of the algorithmic implementation and the algorithmic linearization, as needed in
context of a finite element implementation, are discussed in Section 4.4 and Section 4.5, re-
spectively. A detailed discussion of the kinematics in context of adaptive remeshing is given in
Section 4.7. In context of a model with internal variables this issue is of special importance.

In Chapter 5, finally, the complete framework, consisting of the adaptive remeshing scheme
and the extended thermodynamic formulation, is applied to the simulation of the high speed
cutting process and results are discussed. Here, we start with the discussion of heat conduction,
excluding damage (Section 5.1). As will be shown, thermal softening alone leads to a delayed
chip segmentation and furthermore to unrealistic high temperatures inside the main deformation
zone. Improvements are demonstrated in terms of an additional damage formulation, (Section
5.2). As will be shown, due to lack of any dependence on time- or lengthscale for local dam-
age development, as e.g. given for the development of temperature in terms of the heat balance
equation, simulation results show a dependence on the local element edge length for such a local
formulation. Improvements by a non-local formulation of damage are discussed in Section 5.3.
Here, we also discuss the implementation of the non-local formulation in a commercial code.
The issue of non-isochoric plasticity and the related pressure dependent damage development
are discussed in Section 5.4. This Chapter closes with the presentation of simulation results,
calculated in context of a benchmark study (Section 5.5).






Chapter 2

Simulation of chip formation during high-speed
cutting

Abstract- In this chapter we discuss the modeling and simulation of shear banding and chip
formation during high-speed cutting. During this process, shear bands develop where thermal
softening dominates strain- and strain-rate-dependent hardening. This occurs in regions where
mechanical dissipation dominates heat conduction. On the numerical side, we carry out a sys-
tematic investigation of size- and orientation-based mesh-dependence of the numerical solution.
The consequences of this dependence for the simulation of cutting forces and other technologi-
cal aspects are briefly discussed.

2.1 Introduction

High-speed cutting is a process of great interest in modern production engineering. In order to
take advantage of its potential, a knowledge of the material and structural behavior in combi-
nation with the technological conditions is essential. To this end, investigations based on the
modeling and simulation of the process are necessary. Initially such investigations were analyt-
ical in nature and focused on the process of machining (e.g., Lee and Shaffer (1951); Merchant
(1945)). For the significantly more complex processes and geometries of today, approaches
based on numerical and in particular finite-element simulation represent the state of the art, see
Baker (2003, 2006); Baker et al. (2002); Behrens et al. (2005); Mabrouki and Rigal (2006);
Ozel and Altan (2000); Ozel and Zeren (2004); Sievert et al. (2003). In order to account for the
effects of high strain-rates and temperature on the material behavior, most of these approaches
are based on thermoviscoplastic material modeling. For example, the Johnson-Cook model
Johnson and Cook (1983) is used in Behrens et al. (2005); Ozel and Zeren (2004); Sievert et al.
(2003) and in the current work.

Experimental results of EI-Magd and Treppmann (2001); EI-Wardany and Elbestawi (2001);
Sievert et al. (2003); Tonshoff et al. (2005) show that shear banding represents the main mech-
anism of chip formation and results in reduced cutting forces. In the context of a finite-element
analysis such shear banding can be modeled using thermo-viscoplastic material models includ-
ing in particular the effect of thermal softening (and in general damage as well: e.g., Sievert
et al. (2003)). As well-known this results in a loss of solution uniqueness, resulting in so-called
pathological mesh-dependence of the simulation results. Usually, this dependence is expressed
in terms of the size of the elements used, i.e., the element edge-length. However, it is not
restricted to this property of the elements. Indeed, as investigated in the current work, other
properties, e.g., element orientation or interpolation order, are just as, if not more, influential
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in this regard. All these element properties are relevant in the context of, e.g., the use of adap-
tive remeshing techniques, see Baker (2003, 2006); Béker et al. (2002); Ozel and Altan (2000);
Ozel and Zeren (2004), to deal with large element distortion, resulting almost invariably in un-
structured meshes. In the literature remeshing techniques using structured meshes can also be
found. In Béker (2006); Baker et al. (2002), for example, an arbitrary Lagrangian-Eulerian-like
approach is used to rearrange and refine a structured mesh. As will be shown in the current
work, the influence of the mesh orientation becomes significant in the context of adiabatic shear
banding, especially in connection with structured meshes.

The use of remeshing techniques may lead to a reduction of mesh-dependence, but of course
cannot eliminate it. This can be achieved only by working with models based on additional
criteria (e.g., penalization of “vanishingly thin” shear-bands via regularization). As a first step
in the direction of developing adaptive remeshing techniques for such regularized modeling, the
purpose of the current chapter is an investigation of the effects of variable element properties
such as orientation on simulation results for shear-band development and chip formation in the
context of metal cutting processes. This is done here primarily for structured meshes.

2.2 Material modeling

As is well-known, metal cutting is influenced by a number of competing physical processes in
the material, in particular heat conduction and mechanical dissipation. Consider, for example,
the cutting of the material X20Cr12 at different cutting speeds as shown in Figure 2.1. At

Figure 2.1: Cutting of the chrome alloy X20Cr13 at cutting speeds v, of 8 m/min (left) and 200
m/min (right) showing the dependence of chip formation on cutting speed (courtesy of Stefan
Hesterberg, Institute of Machining Technology, Dortmund University of Technology).

lower cutting speeds (left) and resulting lower strain-rates, heat conduction is sufficiently fast
to prevent a temperature increase due to mechanical dissipation which would result in thermal
softening. At higher speeds (right) and so higher strain-rates, however, heat conduction is too
slow to prevent the temperature from increasing to the point where thermal softening occurs,
resulting in shear-banding and chip formation.

The strong dependence of this process on strain-rate and temperature implies that the material
behavior of the metallic workpiece is fundamentally thermoelastic and thermoviscoplastic in
nature. For simplicity, isotropic material behavior is assumed here. In particular, the current
model is based the assumption of constant heat capacity and isotropic thermoelasticity for small
elastic strain. Further, isotropic Fourier heat conduction is assumed. In addition, a modified
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form of the Johnson-Cook model for metal viscoplasticity is employed. In this case, any energy
storage due to hardening is tacitly neglected. Restricting attention then to metals, small elastic
strain and dynamic conditions, the free energy density in this case is assumed to be given by the
thermoelastic Hooke form

V(0 ey, ep) = %’106%"‘%52[)“‘3"30% (90 —0) ey

+ pocg 10 — 0y — 0n(6/6,)} . (2.1)

Here, 1, := Ay + 2 11, represents the elastic bulk modulus, A, and 1, are the elastic longitudinal
and shear moduli, «,, the thermal expansion, p, the density, and ¢, the heat capacity, all at the
reference temperature 6,,. In addition, ¢ is the absolute temperature, and

ey = tr(lnVg),

= mag(dev(InVy)) , (22)

)
represent scalar strain measures derived from the elastic left logarithmic stretch InV;, = £ In(By,).
In turn, this measure is determined by the elastic left Cauchy-Green deformation B, = F C,' FT
depending on the deformation gradient F' and plastic right Cauchy-Green deformation Cp.
Here, dev(A) := A — 1 tr(A) I is the deviatoric part, and mag(A) := tr(ATA)'/? the magni-
tude, of any second-order tensor A. In what follows, we also work with the direction dir(A)
:= A/mag(A) of any non-zero tensor. The relations (2.1) and (2.2) determine in particular the
form

K =0,y ¥ = oy I + opdir(dev(InVg)) (2.3)
of the Kirchhoff stress K, with
oy = %tr(K) = 85H¢ = Koleg +3ay(0y—0)}, 2.4)
op = mag(dev(K)) = 85131/) = 2H¢p, '

its scalar hydrostatic and deviatoric parts, respectively. In the context of model class defined by
(2.1) note that the pairs (oy, €;y) and (op, €,) are natural thermodynamic conjugates.

Neglecting any deformation-dependent damage and assuming inelastically incompressible
von-Mises flow, the evolution of InVj; is given by the (objective) associated flow rule

in terms of the inelastic right Cauchy-Green deformation Cp, and accumulated equivalent in-
elastic deformation «,. Here,

Oym = \/%O-D = V6 g p, (2.6)

is the von Mises effective stress measure determined by the Kirchhoff stress. In the current
thermodynamic approach, this determines the evolution of oy, via the implicit evolution relation

OyM = adPX (2.7)

as based on the dissipation potential , again for the case of negligible energetic hardening. The
form of y compatible with the Johnson-Cook model (Johnson and Cook (1983)) for inelastic
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flow assumed here and with Fourier heat conduction is given by

= (1- Co) O-Yd(e'a CYP) ap o o
+ Cyoyy(0,ap) dpg (1 + ép/dpy) In(1 + dp/dpg) (2.8)
b 19Tk FTV0 - det(F) F-1V0.

X0, F,ap, V0, dp)

1
2

Here, k, represents the coefficient of thermal conductivity, and V4 is the referential temperature
gradient. Further, the material parameter C,, mediates the strain-rate dependence of hardening
and

ova(l, ap) == {Ag+ By ap’) } {1 = [(0 = 0,) /(Orgg — 0p)] ™0 } (2.9)

represents the temperature- and strain-dependent part of the effective yield stress. This yield
stress is determined by the initial yield stress A, the isotropic hardening parameters B, and
n,, as well as the melting temperature 6,,, and thermal softening exponent m,. In addition,
(z) = § (x + |2[) is the ramp function.

The current thermomechanical model formulation is completed by the field relation

00 609 =w—divg (2.10)
for the temperature 6. Here, w represents the rate of heating, and
—q/0 = dgpx (2.11)

the heat flux, here given by the Fourier model. Assuming no external supplies and the Taylor-
Quinney approximation, w takes the form

w =Ly bp—3kgd FT . F | (2.12)

determined in particular by the Taylor-Quinney coefficient ,. In Rosakis et al. (2000), it has
been shown that /3, is in fact not a constant but rather depends on strain and strain-rate to varying
degrees. In the following, this coefficient will be treated as constant as there is no experimental
data relevant to the determination of /3, for the material (Inconel 718) considered in this study.

Consider next the algorithmic formulation of the above model relations. Backward-Euler
integration of the flow rule (2.5) over atime interval [t,,, ¢, ,| with time-step ¢, ., . :==t,., —1,
yields its algorithmic form

Vi1 (/3 010 din(dev(nVg, 1)) = VR (2.13)
Here’ O[PnJrl,n = Qpp T Opyy
tr 1 —1 T 1 T
anEn—i—l = 5 ln(Fn-l—l CPn Fn—i—l) = 5 ln(Fn—l—l,n BEn Fn—l—l,n) (214)

represents the trial value of the elastic left logarithmic stretch, By, := FFy is the elastic left
Cauchy-Green deformation, and F,,,, , := F,  F, " the relative deformation gradient. In an
analogous fashion, backward-Euler integration of the rate of heating (2.12) yields

Wpt1 = BO OyMn+1 Op n+1,n/tn+1,n -3 Ko Qo 8n+1 ln(det(Fn+1,n))/tn+1,n : (215)
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In the special case of adiabatic conditions, this determines the algorithmic update

Po Cqy en + 50 O-VMTL-i-l Qp n+1,n
0 .= : 2.16
s Po Cy + 3 Ko Qo 1n<det(Fn+l,n)> ( )

for the temperature from (2.10). Returning to (2.13), it implies the updates

OHn+1 — ko {Gtﬁnﬂ +3ag (g —0,01)} (2.17)
Opnt1 = 2o €Hnrt — VO i Apptim
of oy and oy, ; Via (2.4). Note also that
dir(dev(InVy,,, 1)) = dir(dev(InVi' . 1)) (2.18)
follows from (2.13). On the other hand, backward-Euler integration of (2.7) yields
‘73\/{m1 = 3 Hyg Xpptin /
+ oya(lpi1s Opryr) {1 + Cy In (1 +— +Z = )} (19)
PO

via (2.8) and (2.13) to solve for ap,,. ;. As usual, this is done on a predictor-corrector basis
here. In particular, if 0%, < oyq(0,.1,ap,) holds for [t,, ¢, ], this is a thermoelastic step.
Otherwise, we have a corrector step based on the numerical solution of the implicit relation
(2.19) for ap,,, ;. From this, one obtains the update (2.17), for o,. Together with (2.17), and
(2.18), this determines K, ,; via (2.3).

The local behavior of the above model can be illustrated with the help of the adiabatic special
case and neglecting elastic strain. In this case, set ¢ = «p. One obtains the simple coupled
system

o(0,6,€) = oyq(0,€){1+CyIn(1+¢é/dpy)},

0(c,¢) = 0y+Byoé/cy,
from (2.16) and (2.19). At fixed strain-rate ¢, for example, these determine the stress and tem-
perature as a function of strain. For all calculations to follow, we work with the parameter values
for the material Inconel 718. These have been identified in Sievert et al. (2003) and are summa-
rized in Table 5.1. Now, when the material deforms plastically, the part of inelastic mechanical

(2.20)

0, [KT | A IMPa] | 12, [MPa] [ ap [K-'T [ po [kg/ '] | ¢, [I/kg K]
300 110476 80000 4.3107° | 8.1932510° | 435

A, [MPa] | B, [MPa] | n, Ovo [KT | my | C, cpo [S71] | 5y
450 1700 0.65 | 1570 1.3 | 0.017 | 0.001 0.9

Table 2.1: Johnson-Cook model parameters for Inconel 718 (partly from Sievert et al. (2003)).

dissipation transformed into heat (as determined by [3,) results in a temperature rise. On the ba-
sis of (2.20) and the above parameters, the temperature increase can be calculated. It is shown
as a function of equivalent strain in Figure 2.2 (left). In contrast to accumulated inelastic strain,
an increase of temperature results in softening. At points of maximal mechanical dissipation in
the material, softening effects may dominate hardening (Figure 2.2, right), resulting in material
instability, deformation localization and shear-band formation.

This completes the summary of the model. Next, we turn to the finite-element simulations and
the issue of mesh-dependence.
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Figure 2.2: Temperature (left) and yield stress (right) as a function of equivalent strain in dy-
namic uniaxial tension at two different strain-rates as based on (2.20).

2.3 Finite-element simulation of ther mal shear-banding

Since chip formation begins with the onset of shear-banding, we begin by looking at this pro-
cess. For comparison with the following results, consider the cutting process idealized as a
simple shear of the material in the shear zone as shown in Figure 2.3. Cutting of the region
enclosed in the dashed box is carried out at an assumed shear angle of ¢ = 40° and a cutting
depth of 0.25 mm. The deformation is assumed to be plane strain. The applied shear velocity
Ugnear COresponds to a cutting velocity v, in the shear zone of about 1000 m/min.

2 tool
§

0.25 mm
<
(e}

Figure 2.3: Cutting zone idealized as a shear zone in the material undergoing simple shear.

Roughly speaking, a shear band begins to form in the material at a point where the behavior
changes from hardening to softening. In particular, in a material deforming initially homoge-
neously, this will occur in regions of stress concentration, i.e., at geometric or material inho-
mogenities. In the technological context of chip formation, the contact of the tool edge with the
work piece and the subsequent loading results in such an inhomogeneity. In the context of real
materials, of course, material heterogeneity often plays a role as well.

As we have seen in Figure 2.1 for the material X20Cr13, the cutting speed plays a role in
whether or not shear-band and chip formation occurs during cutting. To look at this briefly
in the context of the simulation, consider the idealized notched specimen shown in Figure
2.4. Except where otherwise indicted, the simulations in this work have been carried out in
ABAQUS/Explicit using bilinear quadrilateral elements with reduced integration (CPE4R). The
reduced integration scheme is based on the uniform strain formulation, as introduced by Flana-
gan and Belytschko (1981). In this method, the element strain is assumed to be given by the
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average strain over the element.

\ 0.4 mm

vshear=vc/cos(40°) [m/min]

v

0.1 mm

Figure 2.4: ldealized notched structure discretized with bilinear elements oriented in the pre-
dicted shear-band direction. Average element edge-length here is 0.005 mm.

The notch in the idealized specimen represents a geometric inhomogeneity where stress concen-
trates upon loading. Consequently, the material yields there first, inelastic deformation accumu-
lates there the fastest, and the temperature increase due to inelastic dissipation is the greatest.
From the point of view of the material behavior as shown in Figure 2.2, the notch regions will
consequently be the first to soften, concentrating further inelastic deformation there and result-
ing in band formation.
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Figure 2.5: Temperature distribution inside the notched structure from Figure 2.4 subject to
a shearing rate equivalent to a cutting speed v, of 10 m/min. At this “slow” speed, thermal
conduction is sufficiently fast to prevent any increase of temperature in the structure to the point
where thermal softening begins and leads to shear-band formation.

Using this geometry, consider first the influence of strain-rate on shear-band formation. In
the technological context, the strain-rate is correlated with the cutting speed. Consider now
the shear deformation of the structure in Figure 2.4 at rates representing cutting speeds of 10
m/min and 1000 m/min, respectively. As shown in Figure 2.5, at 10 m/min, heat conduction
in Inconel 718 has sufficient time to prevent any significant temperature rise in the material
due to mechanical dissipation which could result in thermal and shear-band formation. On the
other hand, at 1000 m/min, thermal conductivity is simply too slow in comparison to the rate of
mechanical dissipation to prevent a sufficient temperature rise for thermal softening and shear-
banding to occur, as shown in Figure 2.6. For the case of Inconel 718, in the context of the
Johnson-Cook model, note that the temperature varies between the melting temperature (1570
K) and room temperature (300 K). In the above simulations, the thermal conductivity is fixed at
ko=20 [Wm~1K~!]. A temperature dependent description of this quantity is given in Pottlacher
et al. (2002).

Clearly, for Inconel 718 subject to a shearing rate corresponding to a cutting speed of 1000
m/min, mechanical dissipation dominates thermal conduction leading to thermal softening,
shear-band development and chip formation. Restricting now attention to this “high” cutting
speed, one can reasonably assume adiabatic conditions for simplicity. In this case, the spatial



14 CHAPTER 2

TEMP

(Ave. Crit.: 75%) s s
3

o
L
<105 s

”
6.175e+02 IISSS SIS
=

+1.570,
+ 4
+1.358,
+1.253,
+1.147,
+1.041e+
+9.350e+02
+8.292,
+7.233,
+6.175,
+5.117,

41

+3.000,

Figure 2.6: Temperature distribution inside the notched structure in Figure 2.4 subject to a
shearing rate equivalent to a cutting speed v, of 1000 m/min. In contrast to the case at low
cutting speeds in Figure 2.5, here thermal conduction is too slow to prevent thermal softening
and shear-band formation.

distribution of the temperature and the (equivalent) strain-rate are correlated, and either can be
used to display shear-band development.

Now, as discussed in the introduction, shear-band formation due to thermal softening in the
context of the local material model being used here is inherently dependent on the properties
of the mesh. Firstly, consider a change of element orientation at constant element edge length
for the structure from Figure 2.4. In particular, rotation of all elements in the corresponding
mesh at an angle of 45° to the expected (i.e., horizontal) shear-band orientation yields the alter-
native discretization shown in Figure 2.7. For simplicity, we will refer in what follows to the
discretization parallel to the shear direction (Figure 2.4) as being “parallel”, and that in Figure
2.7 as “rotated”. In what follows, we assume adiabatic conditions.

Figure 2.7: Idealized structure with elements oriented at 45° to the direction of shearing. As
before, the average element edge length here is 0.005mm.

Figure 2.8:  Temperature distribution in the mesh from Figure 2.7 after shearing at a rate
equivalent to a cutting speed of 1000 m/min. Temperature contours are the same as in Figure
2.6. See text for an explanation and details.

Corresponding to the case shown in Figure 2.6, the structure in Figure 2.7 is sheared at a rate
equivalent to a cutting speed of 1000 m/min. The resulting temperature field is shown in Figure
2.8. In contrast to the case of the mesh parallel to the direction of shearing in Figure 2.6, the
rotated mesh shows no shear-band formation in the expected direction. The material instability
proceeds, contrary to physical expectations, slanted across the structure.

To understand why the orientation of the mesh influences shear-band development in this
fashion, consider the situation shown in Figure 2.9.
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Figure 2.9: Lack of shear-band formation for rotated elements due to the incapacity of the
elements to resolve corresponding strain gradient.
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Figure 2.10: Averaged shear stress along upper, sheared edge of structure in the parallel mesh
(Figure 2.6; continuous curve) and rotated mesh (Figure 2.8; dashed curve) as a function of the
displacement of the upper edge of the structure.

In a coarse, rotated mesh such as that in Figure 2.8, any nucleating shear-band, which physically
“wants” to form in the direction of shearing, would have to cross the element interior. Since
the elements involved are constant-strain elements, however, they are unable to resolve the
corresponding strain gradient in their interiors (see Figure 2.9). In contrast, the strain field
can vary from one to the next across the element boundary, facilitating the resolution of strain
gradients associated with shear-band formation in the case of the parallel mesh. This is also
reflected in the development of the respective shear stresses as shown in Figure 2.10. The
inability of the rotated coarse mesh to resolve the shear-band leads to a stiffer behavior than in
the parallel case with shear band. On the other hand, if we increase the number of elements
(in the process decreasing the element edge-size down to 0.0025 mm), a sufficient number of
elements becomes available for the shear-band to form over multiple rotated elements which
together can resolve the strain gradient. This is shown in detail in Figure 2.11.

Since in the rotated case, many more elements are required to resolve the same strain-
gradient, the shear-band in this case is much wider and “smeared-out” than in the parallel case.
Because of this, the development of the shear band in the rotated mesh is also much more
sensitive to a change of element edge-length than in the parallel mesh.



16 CHAPTER 2

Figure 2.11: Shear-band development in a finely-discretized parallel (above) and rotated (be-
low) mesh at constant element edge-length of 0.0025 mm.

Up to this point, we have fixed the average element edge-length to 0.005 mm. Reducing this
size to 0.0025 mm, one obtains the results shown in Figure 2.12 for the parallel case and in
Figure 2.13 for the rotated case. In the case of the parallel mesh with constant strain elements,
the usual pathological mesh-dependence is evident. In this case, the shear-band volume tends
to zero as the number of elements tends to infinity. On the other hand, in the case of the rotated
mesh with such elements, the constant-strain constraint clearly prohibits this and would lead to
the attainment of a minimum shear-band width. Again, these tendencies are also reflected in
the corresponding ones for the shear stress as a function of upper-edge displacement as shown
in Figure 2.14. As expected, the coarser mesh in both cases, and the rotated mesh in general,
behave more stiffly, resulting in “delayed” shear-band development.

Figure 2.12: Temperature distribution in the notched structure discretized parallel to the shear
direction using different element edge lengths: 0.005 mm (above), 0.0025 mm (below). Tem-
perature contours are the same as in Figure 2.6.

Up to this point, we have worked with a fixed element formulation. For completeness, con-
sider now the use of (i) 4-node bilinear elements, and (ii) 8-node biquadratic elements, both
having an average element edge-length of 0.005 mm. Figure 2.15 displays the results obtained
for the average shear-stress as a function of displacement. These can be compared with the
analogous results for the 4-node reduced integration elements from Figure 2.10.

In both cases, the average element edge length remains constant. For the parallel mesh, sim-
ulations yield comparable results, as again, the shear-band localizes on aligned element bound-
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Figure 2.13: Temperature distribution in the notched structure discretized at a 45° angle to the
shear direction using different element edge lengths: 0.005 mm (above), 0.0025 mm (below).
Temperature contours are the same as in Figure 2.6.
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Figure 2.14: Averaged shear stress along upper, sheared edge of structure as a function of the
displacement of the top of the structure for the parallel mesh (left) and for the rotated mesh
(right) with average element edge-lengths of 0.005 mm (continuous curve) and 0.0025 mm
(dashed curve).

aries. As expected for the rotated mesh, an increase in interpolation order and the possibility
of resolving strain-gradients within the element results in an accelerated shear-band formation
and a slightly faster drop of the shear stress with displacement.

2.4 Finite-element ssimulation of chip formation

Based on the insight gained into the mesh-dependence of shear-band formation from the pre-
vious section, we now turn to the modeling and simulation of the cutting process and chip
formation. To this end, we work with the finite-element idealization of the tool / work-piece
system shown schematically in Figure 2.16, consistent with the model of Sievert et al. (2003).

For the simulations, the work piece (in blue) is discretized using 4-node bilinear elements with
reduced integration (CPE4R). Further, plane strain conditions are assumed. The mesh is ori-
ented at an angle ¢ to the cutting plane. Initially, we work with a 60x10 element mesh for the
work piece. The tool is treated here for simplicity as an analytical rigid body. Also indicated in
Figure 2.16 are the contact pairs between the tool and work piece surfaces as well as the fixed
nodes. The friction coefficient between tool and workpiece has been estimated and is fixed at



18 CHAPTER 2

1000.0 ‘ ; ‘ ‘ 1000.0

800.0 800.0

= =

gaoo.o E 600.0

g g

o 400.0 5 400.0

g g

200.0 200.0
ool 1 oo+
0.0 0.1 02 03 04 0.0 0.1 02 03 0.4

displacement [mm] displacement [mm]

Figure 2.15: Averaged shear stress along the sheared (upper) edge of structure as a function
of the displacement of the top of the structure for the 4-node bilinear element case (left) and
for the 8-node biquadratic element case (right). The continuous line represents the case of the
parallel mesh, and the dashed line that of the rotated mesh. Average element edge-length for all
meshes is 0.005 mm.

contact pairs

degrees of freedom fixed

Figure 2.16: Finite-element model for the work-piece / tool system used for the cutting simu-
lation. Mesh orientation relative to the cutting plane is represented here by the angle 6.

= 0.1. All simulations to follow have been carried out using ABAQUS/Explicit.

tool

failure zone

Figure 2.17: Failure zone in the work piece defined by the critical value e, of the accumulated
equivalent inelastic deformation. The result is a controlled separation of the chip at a defined
distance from the tool tip.

The separation of the chip from the work piece is modeled with the help of a failure zone
(Figure 2.17). Up to failure, this zone behaves according to the current Johnson-Cook-based
model described in Section 2.2. The failure of this zone takes place at a critical value e, of the
accumulated equivalent inelastic deformation ¢, set to a value of 2. Between failure zone and
the rest of the work piece, a rigid contact layer is used to avoid penetration of the work piece
into the area of the failure zone. This ensures a continuous shear deformation of the failure
zone and thus a controlled separation of the chip from the surrounding work piece in a defined
distance from the tool tip.

On this basis, consider now the simulation of cutting and chip formation in relation to the
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discretization. To begin, attention is focused on the relation between the shear angle ¢ and the
mesh discretization angle 6. Since there is no information about the value of ¢, we begin by
considering the well-known models of Merchant (1945) and Lee and Shaffer (1951). In the
context of the Merchant model, the relation

1
¢ = % ~5 (arctan g — =) (2.21)

between ¢ and the tool rake angle ~ holds, with 4 the coefficient of friction between chip and
tool. Assuming, for example, v = —5° and . = 0.1, one obtains ¢ = 40°. Alternatively, in the
model of Lee and Shaffer, one derives the relation

o= % arctan p + (2.22)

for ¢. For the same values of v and p, it predicts a smaller shear angle ¢ = 35° than the
Merchant model.

In the current adiabatic context, the shear angle is determined in the simulations on the basis
of the “orientation” of the temperature field within the chip (i.e,, normal to the temperature
gradient, see Figure 2.18). Determined in this fashion, ¢ varies between 30° and 35°. For
discretization angles 6 equal to ¢, one obtains effectively the case of parallel discretization
from the last section. Analogously, for § larger than ¢, the case of rotated discretization holds.
Indeed, as shown by the simulation results in Figure 2.18, chip formation becomes increasingly
inhibited and diffuse as ¢ increases beyond ¢.

Figure 2.18: Chip formation and temperature field development for different mesh orientation
angles o: 6 = 20° (left), 6 = 40° (middle), o6 = 60° (right). Temperature contours here, and in
the following are the same as in Figure 2.6

Also shown in Figure 2.18 (left), as well as close-up in Figure 2.19 (left), is the case § <
¢. In essence, this also represents the case of the rotated mesh in that shear-band formation
is distorted and more diffuse. This is in contrast to the case shown in Figure 2.19 (right),
representing in essence the case of the parallel mesh. The shear band is resolved by exactly one
layer of elements and there is practically no rotation of the elements. The primary deformation
is shear parallel to the element edges.

Turning next to the issue of element edge-length, consider the results shown in Figure 2.20.
As discussed above, a reduction of the characteristic element length causes an accelerated for-
mation of the shear band with, globally considered, smaller deformation. For the chip formation
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Figure 2.20: Chip formation with v = -5° and 6 = 30° for different discretizations. Left:
60x10 elements; middle: 150x20 elements; right: 250x30 elements. Note the mesh-dependence
of segmentation, i.e,, an increase in segmentation frequency with mesh refinement.

process, this implies that shear-band formation takes place at a smaller total deformation. As
usual, increasing the fineness of the mesh also makes it softer, leading to the tendency shown
for the cutting forces in Figure 2.21.

A reduction of the element size results in a reduction in cutting forces with increased seg-
menting frequency. As discussed above, a reduction of the element size causes stronger defor-
mation localization. This results in an increase of the local deformation-rate to the point where
the numerical simulation becomes unstable, as shown in Figure 2.21 (right; solid curve).

As discussed in detail in the previous sections, the finite-element simulation of shear banding
and chip formation is strongly dependent not only on mesh size but also on mesh orientation. In
light of this, the practice of using the mesh to fit the orientation and thickness of simulated shear
bands to experimental results is somewhat questionable and in any case must be done with great
care.

2.5 Preliminary Summary

A major issue in the numerical modeling of shear-banding and chip formation during high-speed
cutting is the strong dependence of the results on the choice of element size and orientation.
As shown in the current work, this choice can have a major influence on the prediction of, for
example, chip geometry and cutting forces. The common practice of using the choice of element
geometry to adjust simulation results to be in agreement with experimental results (e.g., Sievert
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Figure 2.21: Influence of the discretization on the specific cutting force for v = -5°; left: 60x10
elements, 150x20 elements (dashed); right: 150x20 elements (dashed), 250x30 elements. Note
that the specific cutting force is defined as the cutting force divided by the cutting cross section
(cutting depth times cutting feed). Again, note the increase in segmentation frequency with
mesh refinement.

et al. (2003)) simply sidesteps the problem. Indeed, doing this simply ignores the fact that an
additional physical criterion is missing in the model, the application of which would result in
a unique solution to the boundary-value problem in the softening regime. Various possibilities
exist, including variational (e.g., Yang et al. (2005)) and non-local approaches also involving
damage (e.g., Reusch et al. (2003)). In addition, error control and adaptive mesh-refinement
methods (also for variational and non-local models) are being implemented for efficient and
robust finite-element simulations of deformation localization (e.g., Comi and Perego (2004)).
In this context, the above results clearly show, that the application of adaptive remeshing must
primarily ensure the resolution of the gradients of internal variables. This has to be considered,
when discussing, e.g., reasonable remeshing criteria.






Chapter 3

Adaptive FE-simulation of shear banding and
high-speed cutting

Abstract— The purpose of this chapter is to extend the finite element framework in terms of
an adaptive remeshing scheme. In this context, possible model quantities relevant to error es-
timation in context of material instability are discussed. After a detailed presentation of the
algorithmic formulation and implementation, the error-estimation method and refinement indi-
cators, developed in the current work, are applied to investigate different refinement strategies
in the context of shear-band formation. Building on this, a complete refinement strategy is de-
veloped. Finally, we apply this strategy to the simulation of the high-speed cutting process.
At this stage, the finite element framework allows a robust simulation of the process with an
immense reduction of the influence of mesh orientation. Also, the simulation of the resulting
surface is now possible.

3.1 Introduction

In whatever context, the basic goals of adaptive remeshing are (i) to avoid extreme element dis-
tortion and (ii) to ensure the appropriate resolution of the underlying boundary value problem
at any time and thus, avoiding mesh dependent results. As will be shown, adaptive remeshing
can be used to significantly reduce mesh-dependence. In context of adiabatic shear banding,
this involves reducing the element size below the characteristic length of material instability. A
similar conclusion can also be found in Huerta and Pijaudier-Cabot (1994). In general, the ele-
ment size must be small enough to resolve the material instability. And even then, pathological
mesh-dependence remains.

The choice of a suitable refinement strategy for the case of adiabatic shear banding is still
an open question. Most of the refinement strategies offered in literature focus on error esti-
mation, which is technically mature for linear problems. Here, research mainly focuses on
error estimation based on local residuals, as introduced by Babuska and Rheinboldt (1978)
and recovery-based error estimation, as proposed by Zienkiewicz and Zhu (1987). For non-
linear problems, method investigation and development is still far from complete. For example,
Rodriguez-Ferran and Huerta (2000) apply residual-based error estimation in the context of a
non-local damage model. Using residual-based error estimation, Huerta et al. (2002) presents
a general approach for the non-linear case. Application of recovery-based error estimation can
be found in Boroomand and Zienkiewicz (1999), here extended to general elasto-plasticity, or
in context of forging simulations in Boussetta et al. (2006).

Complementary to error-estimation methods are refinement-indicator-based methods. In par-
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ticular, these facilitate a more physical interpretation of the refinement strategy. On the other
hand, they are less accurate than estimation methods, as heuristic in nature. Furthermore, they
are application-dependent. For example, Marusich and Ortiz (2005) use the local value of the
plastic power to detect the onset of localization locally. Another approach is proposed by Ortiz
and Quigley (1991). Here, variations in the velocity field are chosen to act as the refinement
indicator. In the present work, both error-estimation and refinement-indicator methods are in-
vestigated for application in the context of localization problems.

3.2 Adaptive algorithm and solution recovery

As stated above, the application of adaptive remeshing and mesh refinement is needed to ensure
the resolution of a developing material instability. In this section, we discuss the algorithmic
framework of our implementation, the theoretical background of the recovery technique used
for error estimation, as well as data transfer, in detail. These components form the basis for the
adaptive strategy. Error estimation and error indication, which control the process of remeshing
and in particular mesh refinement, will be discussed separately below in Section 3.3 and Section
3.4, respectively.

The finite element program Abaqus offers the opportunity to manage and combine all tasks
necessary for custom adaptive mesh refinement together using Python scripting. The current
adaptive strategy has been implemented in Abaqus/CAE and is shown in Figure 3.1. A detailed
outline of the general components is given in Table 3.1. The use of Python, or more gener-

. Geometry Sets. Initial conditions
Remeshlng step -Nodes -Element sets (Material) -DOFs
n -Elements -Node sets (bound.cond.) -SDVs
FE-Solution FE-Solver
Solution DOFs
extraction SDVs
v

Error est./ind. <3

Error estimation
Mesh generation | mesh generator

Mapping Mapping algorithm

algorithm

RemeShing step Geometry Sets Initial conditions
n+1 -Nodes -Element sets (Material) -DOFs

-Elements -Node sets (bound.cond.) -SDVs

Figure 3.1: Adaptive remeshing scheme based on object-oriented (Python) scripting.

ally scripting, in this way is not limited to Abaqus. It can be, and has been, exploited to “glue
together” a wide variety of numerical simulation tools. After the successful completion of a
given timestep, all information needed is contained in the nodes and integration points of the
current mesh. In particular, the structural degrees-of-freedom (DOF) are contained in the nodes,
and the state-dependent variable (SDV) information is stored in the integration points. The er-
ror estimator/indicator procedure uses this information, especially the SDV values, to provide
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Adaptive algorithm (general overview)

1. Information to run afinite element analysis:
Geometry

Nodes = {{1,z1,y1}, - . ANN, Try, Uny } }
Elements = {{17N117 N127 ng}, ceey {1, N”E17 NTLE27NTLE3}}1

Sets
Nodesets = { Nsety, ..., Nset,,} (boundary conditions, contact)
with Nset; lists of corresponding node numbers

Elementsets = {Elsety, ..., Elset,, .} (material assignments)
with Elset; lists of corresponding node numbers

Initial/boundary conditions, degrees of freedom
DOFs = {{QIl s >QInN} cee {{anOF1> s ’anOFnN}}

Initial conditions, state dependent variables at integration points
SDV's = {{q117 cee 7q1nint} s {{qnspvh ce 7anDVnint}}

2. Generate inputfile, run analysis

3. Extract information (see 1.)

4. Solution recovery (enhanced representation of SDVsin Nodes)
SDVsNodes = {{qi1,-- -, qinn} - - {{Gnspvis- - Gnspynn } }

5. Error estimation (see Section 3.3 for details)
Input: FE values SDV s, enhanced solution SDV sNodes
Output: list of adapted element sizes, given at nodes
ElementSizes = {hy, ..., hp,}

6. Mesh generation
Output: Nodes, Elements

7. Data mapping
Output: Nodesets, Elementsets, DOF's, SDV s

Continuewith 2. . ..

Table 3.1: Adaptive algorithm, general overview

the mesh generator with the information about the desired mesh density. After remeshing, the
SDVs have to be retransferred/mapped from the old mesh to the new one. Both the error es-
timator/indicator procedure and the mapping algorithm are based on a recovery procedure that
provides a smoothed field of information at the integration points stored in the nodes. The main
aspects of the adaptive scheme include (i) the finite element solver, (ii) the recovery procedure,
(iii) error estimation/indication, (iv) mesh generation, and (v) the data mapping algorithm. In
the current work, the finite-element solver being used is commercial (Abaqus). Further, the
mesh generator is a modified version of a source code developed by Topping et al. (2004), or
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the mesh generator in Abaqus. The routines for recovery, error estimation and the data mapping
algorithm have been developed by the author.

As the recovery procedure has a direct influence on the quality of both, error estimation and
mapping algorithm, we will now take a closer look into this component. A detailed discussion
of the point wise error estimation is given in Section 3.3. For now it is sufficient to point out
that a smoothed field of the inner quantities, contained in the nodes, can be used to perform an
error estimation and further allows a mapping of information from the old to the new mesh. In
the latter case, independently from the used recovery procedure, the values are retransferred to
the integration points with the usual finite element interpolation ansatz

q(€) =ag-h() . (3.1)

Here, qg is the vector of nodal values for element £, h(¢) is the shape function vector and ¢ is
the vector of local element coordinates.

A standard method to recover a solution to the nodes is simple nodal averaging. This method is
simple to implement and, from the numerical point of view, very efficient. Many commercial
finite element codes, such as ABAQUS have implemented it. Here, to display a continuous
representation of the gausspoint values. The problem with simple nodal averaging is the strong
effect of numerical diffusion when performing a large number of remeshing steps.

More advanced recovery procedures are based on polynomial smoothing techniques as, e.g.,
the well known superconvergent patch recovery method, introduced by Zienkiewicz and Zhu
(1992a,b) or local projection techniques. Hinton and Campbell (1974), e.g., use standard finite
element shape functions, to extrapolate the gauss point values of the 2 x 2 gauss point element
to the nodes. All these methods are based on the existence of certain points at the interior of the
element, where the finite element values are closer to the exact solution than elsewhere. These
superconvergent or best-fit points are used as sampling points to determine a patch field in the
considered neighborhood P C B of a point. In the context of a finite element approximation
we have

TNelem

B~ | B (3.2)
e=1

In this work, attention is restricted to three-node (i.e., lowest-order) two-dimensional triangular
elements B¢, e = 1,...nqem. In this context, the Cartesian components x¢(¢,x¢), i = z,v,
of the element position field, or the temperature field 6¢(¢, x¢), represent time-dependent scalar
fields on B¢. Such element fields take the algorithmic form

s°(t,%,) = s1(t) + s5(t) y + s5(0) (3.3)

in terms of s§(¢), ¢ = 1, 2, 3, the combinations of the nodal values of this field and the element
referential position coordinates x¢ = (z¢, y¢). Consequently, the corresponding gradient field

v? Se(t> X?) = (Sg(t)v Sg(t)) (34)

is constant in B. In the adiabatic case, the element temperature itself is spatially-constant.
Since the Kirchhoff stress depends non-linearly on the temperature (thermal softening) in the
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constitutive model from Section 2.2, the element Kirchhoff stress field
k(8 xE) = (K, (4, x5), G, (8, 0), 5, (,x)) (35)

is in general non-linear in x¢. In the adiabatic case, however, it will be spatially-constant in
the element. For three-node triangular elements, the element heat flux as based on the Fourier
model is in any case spatially-constant in the element. For simplicity, attention is restricted to
adiabatic conditions unless otherwise stated.

Consider next the patch field
KP(t, x,) = Ki(t) + k5(1) =, + k(1) v, (3.6)

linear in x,. Assume that k¢ and k” are weakly equal over B¢, i.e.,

(k°(t,x7)); = (K(t,x,)); = ki (¢) + k5(2) (z,)7 + K5(8) (4,)7 3.7)
where .
(fe=ge [ fodv (38)

represents the element volume average. The optimal sampling point in each element B¢ is then
given by the centroid
X3 = (x)¢ (3.9)

of the element. Although this formulation has been carried out with respect to the stress field
and here in combination with a linear patch field, we assume that this represents an analogous
optimal sampling point for other dependent constitutive fields (e.g., the state-dependent vari-
ables) and also for higher order patch fields in what follows.

Using the finite element value at the position of the centroid or gauss point, respectively, we can
now perform, e.g., a superconvergent node patch recovery (Zienkiewicz and Zhu (1992a,b)) to
obtain a smoothed field of derivatives contained inside the nodes. To determine the patch field
in the neighborhood BP? of the corresponding node, one works with the representation

¢ (x,a) =p(x)-a (3.10)

in terms of a set p(x) of polynomials and an array a of parameters to be determined via least-
squares minimization of the objective function

o@) = 3 lalx) — (). .11

with ¢(x?) the value of the finite element solution at the position of the sampling points (See
Figure 3.2). As usual, minimization of this with respect to a yields the system

{Z p(xi) ® P(Xf>} a=> ax))p(x)) . x(€PCB (3.12)

of equations to solve for a. Among other things, the condition « of the matrix > | p(x}) ® p(x})
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x q(x7)
o ¢ (x") x X 7" (x)
X @ x
P& X521

Figure 3.2: SNPR: The patch field ¢*(x) is determined via a least square fit to the given sampling
point values ¢(x?). The value at the position of the corresponding node is then calculated as

g (x").

in (3.12) is influenced by the number and distribution of sampling points available. Consider the
standard situation in a triangular mesh as given in Figure 3.3,. An investigation on the influence
of the position of the sampling points on the conditon x, when employing, e.g., the quadratic
ansatz

p(x) = (1, 2,9, 2°xy,y°), (3.13)

reveals the ill-conditioning of the problem for this or situations alike. As shown in Figure 3.3,
positions of the sampling point in an exactly regular mesh even cause the problem to be ill-posed
(k = 00). Here, the orientation of the mesh hardly effects the condition (see Figure 3.3; ;).
The cause for this fact is revealed when optimizing the condition number for the given number
of surrounding sampling points. Figure 3.4 shows the positions of the sampling point for an
optimal condition, found by an evolution strategy implemented by the author. Obviously the
lack of information inside the patch causes the ill-conditioning. Thus, when performing a su-
perconvergent node patch recovery with higher order ansatz functions, a sufficiently wide area
for the sampling points must be considered. Additionally, the dimensions of the problem should
be normalized, as suggested from the results, shown in Figure 3.4.

In contrast to superconvergent node patch recovery techniques, that interpolate the nodal
value from neighboring elements and integration points, respectively, extrapolation techniques
perform a local, elementwise extrapolation (see Figure 3.5) with subsequent averaging

k
G=k"> q . (3.14)
=1

In the case of linear triangular elements, element field gradients are constant. As such, this
averaging is equivalent to simple nodal averaging. To go beyond this, additional sampling points
are utilized for extrapolation. Motivated by the work of Levine (1985), who demonstrated that
the average stress value is superconvergent at the midpoint of element edges for structured
triangular meshes, we can, again making use of (3.7), derive the position of these points for the
general case of unstructured meshes. In this case, the position of the optimal sampling point is
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Figure 3.3: Influence of the position of the sampling points on the condition of the matrix

Z?:l P(x;) ® p(x;).

Figure 3.4: Position of the sampling points for an optimal condition « of the matrix
Yo, p(x;) ® p(x;), found by an evolution strategy.

assumed to be given by the average position of the corresponding centers, i.e.,

1

X, =5 (R + (x)2) .

2

(3.15)
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Using the notation for a two-element patch as shown in Figure 3.6, we have in particular

{l’f :| _ 1 [xr1+2xr2+2xr3+xr4

— 3.16
yf yr1+2yr2+2yr3+yr4 ( )

6
for the corresponding sample point. Having now three sampling points for every neighboring
element, we can perform a linear extrapolation as demonstrated in Figure 3.7

2

Figure 3.5: Extrapolation of finite element derivatives.

(24, 94)
(x3,y3)
g i
(22, y2)

(3713?}1)

Figure 3.6: Optimal patch sampling point for a patch consisting of two neighboring elements.

Figure 3.7: Extrapolation of finite element derivatives in linear triangular elements. Here, the
additional sampling points (blue) allow linear extrapolation.

Now we turn to a comparison of simple nodal averaging (NA), superconvergent node patch
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1.0

0.05

Figure 3.8: Reference mesh for data mapping investigation, in particular along the cross-section
AA.

recovery (SNPR), and extrapolation with additional sampling points (EAS). For simplicity, we
start with the fixed mesh as shown in Figure 3.8. Three different prescribed “solution” fields in
the integration points are examined, i.e.,

q(z) = =z,
qlz) = 2%, (3.17)
q(z) = sin(27z).

The data mapping operation consists of solution projection (i.e., recovery) onto the nodes
and subsequent transfer to the integration points via shape function interpolation. A detailed
description of the mapping algorithm is given in Table 3.2. The distribution of the result as a
function of the method used will be examined along the cross-section AA shown in Figure 3.8.
Consider first the results for the linear case (3.17), after 100 mapping operations as shown in
Figure 3.9.

Since the shape functions are linear themselves, the SNPR method, based on a linear poly-
nomial, results in exact recovery of the initial field independent of the number of mapping oper-
ations. This is also true for the EAS approach. The small deviations observed in the EAS case
are due to the fact that, for elements with edges lying on the boundary, the lack of neighboring
elements is dealt with by choosing the integration point value as midpoint value. The percent-
age of affected elements for boundary node patches is high in comparison to that for elements
in interior node patches. To avoid numerical diffusion, then, linear polynomial smoothing is
used for boundary node patches. This effect of numerical diffusion is also quite evident for the
NA method. In the case of an increasing gradient at the boundary, for example, the recovered
value is always smaller than the maximum value of the surrounding elements. This results in an
artificial decrease of the results when mapped back to the integration points.

We turn next to the quadratic case (3.17), with comparison in Figure 3.10. As expected, the
SNPR method based on linear polynomials is incapable of resolving the quadratic field. The
usual remedy is to increase the polynomial degree p. To avoid an ill conditioned system matrix
in (3.12), a sufficient number of sampling points must be used. Thus we expand the node patch
to neighboring elements for interior node patches and use linear interpolation for boundary node
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Solution recovery and transfer (nodal based)

1. Solution field ¢(x) known everywhere on B.
2. Structural nodal positions x, i = 1, ...,n, on B are known.
3. Sampling point positions x{, i = 1,...,n, on B are known.

4. Determination of the corresponding subsets (patch regions)
P'i=1,...,n,,discretized by n’ elements.

5. Project solution field onto structural nodes *.

6. Retransfer of the field quantities to any point via
shape function interpolation : ¢(¢) = qg - h(¢).

* recovery procedure

nodal averaging (NA)
¢ (x) = & Salxs) , xe P
superconvergent node patch recovery (SNPR)

¢ (x}) = p(x}') - a; with a; determined via

{Trpix) @ pec) bai = Sk a(x)plxg) x5 € P
extrapolation with additional sampling points (EAS)

ny — 1y

q(x7) = nt 2j=14j (x7')

with ¢;(x) a suitable extrapolation function, defined on B € P*

Table 3.2: Algorithm of solution mapping combining nodal recovery and subsequent shape
function projection.

patches. The remaining deviation of the SNPR with p = 2 stems from the retransfer via lin-
ear interpolation functions (Figure 3.10) and from the mentioned use of linear interpolation for
boundary node patches.

Accepting the additional computational costs, the mapping transfer can be improved by sepa-
rating it from the recovery procedure and perform a superconvergent element patch recovery
(SEPR, see Figure 3.11 and Table 3.3 for further details) to enable a direct transfer between
integration points of different meshes. Using, e.g., an ansatz function of order p = 2, at least
for quadratic fields, no deviations are detected. Lastly, we have the case (3.17); and the results
in Figure 3.12. As shown, both the SNPR with polynomial order p = 2 and the EAS method
perform well. The most exact mapping can be stated for the SEPR method but again, the addi-
tional numerical costs have to be considered.
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0.5 7

initial value

----NA

—FH— SNPR linear

Figure 3.9: Distribution of (3.17); in the cross section AA after 100 mapping operations. Initial
distribution (continuous curve), nodal averaging (NA: dashed curve), polynomial smoothing
(SPR: quadrilaterals), extrapolation method (EAS: triangles).

0.25 »

initial value
----NA
—>*— SNPR, p=1
—H&— SNPR, p=2
—4A— EAS
—6— SEPR

Figure 3.10: Distribution of (3.17), in the cross section AA after 100 data mappings. Given
are the initial distribution (continuous) together with the mappings results based on nodal aver-
aging (dashed), linear polynomial smoothing (cross), quadratic polynomial smoothing (quad),
extraploation (triangle), and superconvergent element patch recovery (circle).

In the following, a short description of the complete approach used to transfer integration-
point and nodal quantities from the old mesh to the new mesh is now given. As usual, this is
based on determining the locations of the new integration points and nodes with respect to the
old elements. To do this, we first need to determine in which old elements these new points lie.
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Figure 3.11: SEPR: The patch field ¢*(x) is determined via least square fit to the given sampling
point values ¢(x). The value at the position of the corresponding new gausspoint is then
calculated as ¢* (x™*).

Direct solution transfer

1. Solution field ¢(x) known everywhere on B.

2. Integration point positions of target mesh (new mesh)
X i =1,...,n, on B are known.

3. Sampling point positions x;,i = 1,...,n, on B are known.

4. Determination of the corresponding subsets (patch region)
Pli=1,...,n., discretized by n! elements.

5. Direct projection of the solution field onto integration points *.

* transfer procedure

superconvergent element patch recovery (SEPR)

g*(xi") = p(x?) - a with a; determined via

{Z7 i) @ pc) pai = S8 g plxs) x5 € P

Table 3.3: Algorithm of solution mapping using a direct transfer between integration points of
different meshes

Given this knowledge, the usual interpolation relation
x, = > h(€)x (3.18)

can be solved for the corresponding master element coordinates £. Here, x, represent the
coordinates of any such point in the new mesh, x,,...,x,, are the coordinates of the nodes
of the old element, and h,(§),...,h,, (&) are the element shape-functions. In case of, e.g.,

linear triangular elements, a point is inside an element if 0 < ¢ < land0 < n < 1—-¢
hold. This is shown in Figure 3.13. To increase efficiency, the search for such elements can
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— initial value
----NA

—H&— SNPR, p=2
—4A— EAS

—6— SEPR, p=2

Figure 3.12: Distribution of (3.17)5 in the cross-section AA after 50 mappings. Given are
the initial distribution (continuous) together with the mappings results based on nodal aver-
aging (dashed), linear polynomial smoothing (cross), quadratic polynomial smoothing (quad),
extraploation (triangle), and superconvergent element patch recovery (circle).

3

Figure 3.13: Determination of local coordinates during the data mapping process (see text for
further details).

be restricted to subdomains of the entire mesh as follows. The entire mesh is divided into such
subdomains by a grid (see Figure 3.14). The assignment of elements to subdomains of the grid is
determined by the size (edge coordinates) of an rectangle, enclosing the corresponding element
(see Figure 3.14 below right). The search is then reduced to that subdomain and corresponding
set of elements containing the point in question (Figure 3.15). A detailed formulation of the
above searching algorithm is given in Table 3.4 and Table 3.5, respectively.  The size of
the subdomains is of special importance. Figure 3.16 shows the influence of the size of the
subdomains on the computational costs. The given reference calculation has been performed
with a rectangular background mesh, discretized by 2500 elements. As shown, setting the
subdomain size to that of the average element minimizes the computational costs (see Figure
3.16). To emphasize this further, the mesh is shown in the background. The second type of
information that has to be transferred is that for the boundary and contact conditions. The
determination of the corresponding boundary node sets is based on the distance of a given node
from the boundary. For simplicity, consider the 2D case shown in Figure 3.17. Here, a node is



36 CHAPTER 3

N/
[
N
gg
>
>
>
>
-

N
VAV

VAY
NN/

JAVAVA

JAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAI
4LVAVQ‘§g%AvAVAVAvAVAVAVAVAVAVAVAVAVAVAVNAVAVAVAVAVAVA
2a\\NAV\VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY
NVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV/

<]
“Xv

e

A.’L‘l
Axo : _ T2 max

™|
B

L2 min

L1 min L1 max

Figure 3.14: Division of the entire mesh into subdomains via a grid for the data transfer pro-
cess. The assignment of elements to subdomains of the grid is determined by the size (edge
coordinates) of an rectangle, enclosing the corresponding element.

T

Figure 3.15: Subdomain and corresponding elements for the data mapping process.

on the boundary if its position is inside the enclosing rectangle marking a boundary node set.
To reduce the node sets to be searched, use is made of the information from the previous data
transfer. Since the position of every point is known, the relevant node set reduces to the nodes
which are positioned inside the neighboring elements of the corresponding subdomain of the
surface.
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1. Determine the list of possible background elements E.
In general, we have E = {1,...,n.}.

the reduced set E = Ef.

2. Having the coordinates of the point x,,, solve
x, = i hi(§)xj, VeeE

in terms of the reference element coordinates &.

0<é<land0 <y <1 -¢.

Deter mination of the background element for an arbitrary point

Using the additional algorithm, as given in Table 3.5, we can work with

3. In case of, e.g., linear triangular elements, a point is inside an element if

1. Transfer of element sets.

presupposed, see Table 3.2).
3. Direct solution transfer. (see Table 3.3).

Determination of the corresponding background element allows:

2. Data mapping via shape function projection (upstream solution recovery

Table 3.4: Determination of background elements.

-Tl-
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Figure 3.16: Computational costs to identify the local coordinates of points (nodes and integra-
tion points) inside a background mesh. Setting the grid size of the subdomains comparable to
that of the average element size, minimizes the computational costs. To illustrate this fact, the

mesh is printed in the background of the diagrams.
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Allocation of reduced sets of possible background elements (optional)

1. Determine the limit coordinates 2. , =2 L. yB  of the domain B.

min’ max? ymzn ' yma:c

2. Define the rectangular domain B~ > B, bounded by the limit coordinates
xgw'n’ xﬁaw' Ymins Ymaz:
3. Define n,xn, rectangular subdomains BE c BY, bounded by the
limit coordinates
B .rB

wl] _ xB + (Z _ 1) macc Eun , wl‘] _ xB + Z LTmax min,

min min N mazx min ne

'L] _ + ( s 1)y7]:r31az yﬁzn Zj _ + yma:v ymln
Ymin = ymin J Ny v Ymazr = ymzn J n .

Y

4. Generate a table (matrix) B™ containing n,xn, empty lists BiD]:{}.
In the following process, the components BD will collect
the element numbers e of the elements, aSS|gned to the subdomains B :

5. Assign background elements to the subdomains BE:
For every background element with element number e € {1,...,n.}:

5.1 Determine its limit coordinates x5 ..., 5 .o+ Yins Yonax-
5.2 Determlne the indexes of the occupled subdomains

_ _ B

{I— maar:_aj nx]}U{ max_x znnljl}
ymm ymm yma:p ymm

{ ’Vymaz - ymzn y—‘ } U{ (ymax ymzn y—| }

53B] = {e}| JB]] VieI°AVjeJ°

Having an arbitrary point with coordinates x,,, the set of
possible background elements is given by

E" = B Wlth

i = {5 - ’" —n, 1}, j = {55 y’”fs” nyl}

“Ymin

Table 3.5: Algorithm for the allocation of reduced sets of possible background elements.

Node inside the nodeset

d d

n+1 )

A

Node outside the nodeset

Figure 3.17: Mapping of node sets. To detect all nodes which are inside the domain of a node
set, the distances from the nodes to the subdomain in question are determined. The set of
nodes to be tested can be reduced to the nodes positioned in the neighboring elements of the
corresponding subdomain.
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3.3 Error estimation at finite strain

As stated above, an adequate discretization of the boundary value problem has to be guaranteed
at any time. As this requirement holds of course for any problem solved by means of a finite
element analysis, an appropriate error analysis shall be the basis for our adaptive strategy. In
the literature, the focus of attention is on residual based error estimation and recovery based
methods. The residual based methods were originally introduced by Babuska and Rheinboldt
(1978). The idea here is to investigate residuals occurring in a single element (interior estima-
tion) and in a patch of elements (patch estimation). This is generally carried out by comparing
the current finite step solution to a reference solution obtained solving a series of local problems
defined on fine patches. A detailed explanation and a general overview can be found, e.g., in
Rodriguez-Ferran and Huerta (2000) and Huerta et al. (2002). The general drawback of the
residual based methods is the comparatively high numerical effort due to the additional finite
element computations.

A robust and easy to implement alternative was introduced by Zienkiewicz and Zhu (1987)
with the recovery method. In general, the error of a finite element solution can locally be
expressed by

e,=9—q (3.19)

where q is the array of exact solution values for any quantity (e.g., stresses, strains, temperature)
and g is the finite element approximation. As a substitute for the exact solution, recovery
methods are often used to calculate a higher-accuracy approximation q* and then define the
error as

e,=q —q. (3.20)

Originally, g* was obtained by simple nodal averaging (see Zienkiewicz and Zhu (1987)). In
later works, further advances were made by introducing the so called superconvergent patch re-
covery (see Table 3.2), which replaced simple nodal averaging (Zienkiewicz and Zhu (1992a,b)).
In the following error estimation based on recovery methods will be favored due to the follow-
ing facts. Although both, the recovery methods and residual based methods have proven their
worth, investigations of Babuska et al. (1994) show higher robustness for the recovery proce-
dures. Further, the implementation of recovery based procedures is, as recovery procedures in
form of transfer algorithms are generally part of an adaptive algorithm, comparatively effortless.

The main objective of adaptive mesh refinement strategies is to provide a finite element
solution with a prescribed level of error in a norm with a specific physical meaning. In context
of linear elastic problems, the standard norm to express the error is traditionally the elastic

energy norm
1/2
e |l = (/ eg C_lea dQ) (3.21)
Q

1/2
le.|| = (/ el Ce, dQ) (3.22)
Q

respectively, as it considers both the accurate resolution of the stresses and the strains. Noting

or
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that the elastic tangent C is only a weighting factor, the so called L, norm

1/2
leqll = </Q ele dQ) (3.23)

represents a direct measure for the error in strains. Here and in the following, e can be any strain
measure linked by the operator C to a conjugate stress measure.

The field of interest considered in the elastic energy norm is that for the strains, or more
general, the derivatives of the degrees of freedom (current positions or displacements). The
stresses are directly connected via the elastic tangent to the strains. This dependence allows a
direct capturing of both the error in the strains and, what is of course more relevant in engineer-
ing applications, the error in stresses with the same quality.

In context of large plastic deformations, the linear dependence between the derivatives of the
displacements and stresses is lost. In fact, due to the history dependence there is no explicit
dependence at all. Thus, only a separate calculation of the error for the history dependent
quantities (e.g., plastic strains, stresses) is possible. Even for monotonic loadings working
with the elastic energy error norm leads to poor results. From Figure 3.18 the underestimation
of the error in the derivatives with increasing deformation is easily to establish. Here, large
variations in total strains and plastic strains respectively cause only small variations of the elastic
energy and the stress, respectively. In the case of large plastic deformation the problem is, as
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Figure 3.18: Elastic energy density U as a function of equivalent strain in dynamic uniaxial-
tension at two different strain rates as based on the Johnson-Cook model. Note ¢, ~ ¢ for large
plastic deformations.

mentioned, the state dependent tangent. An error norm, analogous to the energy error norm,
can only be defined incrementally, if at all. Thus, we define the incremental energy error norm

1/2
A, ]| = (/ eggCeAE dQ) ) (3.24)
Q

Here, we chose an explicit dependence of ¢, as the strains are the only quantity directly con-
nected to our solution field (e.g., displacements). Noting again, that the tangent C is only a
weighting factor, we use the L, norm to express the error

1/2
fead = ( [ heeacd0) . 329)
Q
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Due to the history dependence of the tangent C, the error in total strains reveals nothing about
the error in stresses. Furthermore, the application of the tangent C even leads to an underesti-
mation of the error in total strains with increasing plastic deformation. Thus, if our goal is to
ensure the resolution of the field for the derivatives (total strain) and beyond the resolution of
the state-dependent quantities (stresses, plastic strains etc.), we are forced to perform a sepa-
rate calculation of the error for every single quantity of interest. The use of an incremental error
norm is no longer necessary and can therefore be replaced by using, e.g., the L, norm in general

1/2
llegll = (/ eq €q dQ) : (3.26)
Q

Here g can be identified with any quantity of interest (strains, stresses, temperature etc.).

The general refinement strategy when working with an integral form of the error norm, as
these defined above, is to obtain an equal distribution of the error in every subdomain and
element respectively. In the context of linear elasticity, it is a proven fact that, especially in
connection with the energy error norm, this strategy leads to optimal meshes (see ,e.g., Babuska
and Rheinboldt (1979)). The resulting meshes are optimal in the sense, that they provide the
lowest number of elements for a fixed amount of global error. Noting that the square of (3.26)
can be obtained by summing the corresponding element values

leall” =D lleall? - (3.27)
=1
the equal distribution of the error can be achieved by postulating

2
el = 11y o, (3.20

where subindex i indicates the element number and » the total number of elements, respectively.

Although this method leads to optimal meshes in the above sense, it produces a concentration
of errors in the zones with maximum element density. Normally, these are the zones where
attention is focused. In the context of simulating the process of adiabatic shear banding, a
concentration of errors in the area of the shear band is expected.

An alternative mesh refinement criterion based on the equal distribution of the density of
the error was proposed by Onate and Bugeda (2007). With the corresponding averages on the
whole domain €2 and on the element subdomain €2; the equal distribution of the error density

can be achieved by postulating
||eq||2 ||eq||2
) = —=—|VQ. 2
( Q; Q vk (3:29)

For the same amount of global error, this strategy produces more expensive meshes than the
classical method, but these meshes ensure a more reasonable distribution of error in the quanti-
ties of interest.

It is well known that for linear elements such as used in the current work, the derivative of
the finite element solution has the highest local error at interelement nodes (see Zienkiewicz and
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Zhu (1992a,b)). Further, the average of the error in the nodes is strongly related to the average
error for an element. Thus, Bugeda (2002) proposes a pointwise error estimation in the nodes.
This approach avoids evaluating the integral formulation of the error. Here, the error norm is
defined by

leqll = lla —dll (3.30)

and refinement in the neighborhood of a node n takes place to ensure
The following arguments suggest the application of a point-wise recovery-based error estimator:

e No more concentration of the error in sensitive areas, as with equal error distribution

e direct and and physically reasonable capturing of the errors and gradients, respectively,
for any quantity

e low numerical costs, as in comparison to standard norms the evaluation of the integral
formulation is avoided.

In the context of modeling and simulation of material instabilities we are mainly interested to
ensure the resolution of the gradients of our solution field and in particular the gradients of the
field of plastic deformation. Actually, the pointwise error estimation allows the estimation of
gradients in a numerical effective manner and will thus be used in the following investigations.

To guarantee the resolution in any of the surrounding elements &, we define the nodal error

leqlln = max(fla, — axll) - (3.32)

A projection method is, at least for linear elements, not needed, as the error of derivatives can
be evaluated directly from integration point values (see Figure 3.19). The error estimation is
merely the basis for our adaptive procedure. The information about the desired mesh density is
supplied by the remeshing criterion. Following the criterion of equal distribution of the error
density as proposed by Onate and Bugeda (2007) the criterion of equal distribution of the error
in every node seems to be consistent for a pointwise error estimation (see Bugeda (2002)).

To decide wether mesh refinement or mesh coarsening is needed, we define the refinement
parameter
¢ lealln (333
€] max
which provides a measure for the derivation of the pointwise error from the desired and maxi-
mum error, respectively.

The refinement strategy has to be completed by a rule for the new local mesh size h, to
satisfy the requirement of the refinement criterion. In general this requirement is achieved in
an iterative process. To ensure maximum effectiveness, we have to consider the convergence of
the error with respect to the element size. At least for linear elasticity it is fact that the error
in stresses at each point behaves as h”. In this case, having again the direct relation between
stresses and strains, we can assume this dependence for the derivatives of the solution field, in
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Figure 3.19: The pointwise error estimation in combination with nodal averaging allows the
capturing of gradients in a numerical effective manner, as the recovery procedure and the eval-
uation of the error can be combined in a single step.
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Figure 3.20: Distribution of the pointwise error in ¢, inside a notched shear specimen (Figure
3.25) at an early stage of deformation. As we are dealing with large plastic deformations and
small elastic deformations (¢ = ¢,) the h? dependence of the error in the derivatives, can also
be stated for ¢,. The simulations had been carried out with elementsize 2=0.0025 mm (above),
h=0.005 mm (middle) and ~=0.01 mm (below). Note the different scaling of the error.

general. A numerical certification for the equivalent assumption for the error in plastic strains
is presented in Figure 3.20. Considering the convergence behavior of the error
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h P n
(_) — HeqH — 57 (334)
h 1€ [ max
the new local mesh size can now be defined using the expression
- h

In addition, a description of the maximum error ||eq||max in terms of a prescribed number of new
elements n,, will be given. This approach ensures constrained computational costs. Assuming
that the number of new elements in the region of an old element is is given by

hi\
= =) 3.36
w= () (336)
with d the dimension, we can calculate the total number of new elements by

n d n n k % 4 "
h 1 el P
=2 (;7) =28 =) (; > ) = lleallok Y Teall” - @37
1= 1= 1= 1=

i=1 HequaX

Here, n is the total number of old elements, & and |le,||; are the elemental averages of the
corresponding nodal quantities for one element and k is the number of nodes per element.
Rearranging leads to

L i
leqllmax = (— > IquHi”) : (3.38)
Mp i=1

If desired, the latter result can be used within (3.34) and (3.35) to calculate the new local mesh
size in terms of a prescribed number of new elements.

With this rule the formulation of our error estimator is completed and we can now turn to the
investigation of its behavior in context of the analysis of localized material instabilities.

Before we apply the developed adaptive procedure on the problem of deformation localiza-
tion, a short comparison between the different recovery procedures in context of error estimation
should be given. For this purpose recall the numerical testing environment as given in Figure 3.8
(see Section 3.2). Again, we will set the initial distribution of the derivative by the distribution
functions

q(z) =z, q(z) = 2%, q(x) = sin(27x). (3.39)
Defining the average error
1 n
lefle =~ > lleglls (3.40)
=1
and the effectivity index
_ llell. (3.41)
leella

with ||e. ||, the averaged exact error, a comparison between the different recovery procedures is
possible. In the following, we treat the artificial distribution as the exact solution. Thus, ||ec||,
is calculated by comparing the finite element element values (integration point values) with the
distribution function.
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Figures 3.21-3.24 show the error and the effectivity index for the different recovery proce-
dures for different distribution functions with varying element sizes. The reference element
size is set to hy=0.05 mm. First of all, the results for the average exact error (Figures 3.21-3.24
left) approve the stated convergence rule (3.34). Starting with a linear distribution function,
the discussed problems with boundary elements, when using the NA or EAS method, are re-
vealed. With increasing element size, the fraction of boundary elements increases which leads
to an increasing deviation from the exact error using this methods . The SNPR method gives
an exact representation of the error for any element size(© = 1, Figure 3.21 left). Here and
in the following, the SNPR is performed with polynomial order p = 2, as described in Section
3.2. Comparing the results in the center point and thus, without any influence of the boundary
elements, all methods provide the exact error (see Figure 3.22). The results for the quadratic
distribution are shown in Figure 3.23. Obviously, the EAS method shows a stronger mesh-size
sensitivity than the SNPR method. Similar results can be observed for the trigonometric distri-
bution function (see Figure 3.24). Based on this results, we favor the SNPR method, in terms
of error estimation.
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Figure 3.21: Average error (left) and effectivity index (right) for the linear distribution function
for different element sizes.
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Figure 3.22: Error in the center point of the mesh (left) and effectivity index at the center point
(right) for the linear distribution function for different element sizes.
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Figure 3.23: Average error (left) and effectivity index (right) for the quadratic distribution func-
tion for different element sizes.
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Figure 3.24: Average error (left) and effectivity index (right) for the trigonometric distribution
function for different element sizes.
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3.4 Adaptive remeshing

Since chip formation begins with the onset of shear-banding, we start by looking at this process
more closely. As shown in Figure 3.25, for simplicity, one can start by idealizing the cutting
process as a simple shear of the material in the shear zone. Cutting of the region enclosed in the

0.25 mm

0,4 mm

0,03 mm 0,1 mm

0,05 mm

Figure 3.25: Cutting zone idealized as a region in the material undergoing simple shear.

dashed box is assumed to take place at a shear angle of ¢ = 40° and a cutting depth of 0.25 mm.
The deformation is assumed to be plane strain. The applied shear velocity v, .. corresponds
to a cutting velocity v, in the shear zone of about 1000 m/min. Since the shear specimen is
notched on only one side, the shear band can develop independent of the geometry.

The determination of the accuracy of any given finite-element approximation in general re-
quires a knowledge of the exact solution. Since this is generally not possible, one instead
compares a given finite-element solution with one of higher accuracy serving as the reference
approximation or numerical solution. In the current context of shear-band formation, such a
reference approximation is based on a fine discretization of the specimen. In a first step the
specimen is discretized with triangular elements oriented in the predicted shear-band direction.
In a second step the same analysis is carried out with continuous remeshing of an initially
coarser mesh. A constant element size is utilized throughout. The remeshing procedure yields
an unstructured mesh with no preferred direction for shear banding. Here and in the following,
all calculations have been carried out with linear triangular elements. Considering the patholog-
ical mesh dependence (see Section 2.3) and thus, to ensure comparability, the average element
edge length is fixed at 0.0025 mm for the simulations to follow.

Figure 3.26 shows the result for the oriented mesh. Due to the strong mesh dependence, the
shear band develops horizontally in the direction of the orientation of the mesh. Since for the
oriented mesh, the width of the shear band is determined by the local element length, only a
small amount of material has to be deformed beyond the critical point. This is also reflected by
the sharp decrease of the shear stress after passing the critical point of deformation as shown
in Figure 3.28. In contrast to the oriented mesh, the simulation with continuous remeshing
shows a more diffuse and wider shear band (Figure 3.27).  Since the elements involved are
constant-strain elements, they are unable to represent a strain gradient in their interiors. Thus,
in the oriented case, the shear band can localize along element edges, the strain gradient is
approximated as a strain jump at the element boudaries, and the resulting shear band is sharp.
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Figure 3.26: Shear-band development in the notched structure of Figure 3.25 finely-disretized
parallel to the shear direction.

Figure 3.27: Shear-band development in the notched structure of Figure 3.25 during continuous
remeshing. See text for details.

1000 4

800 -

2]
=3
S]

referenz
straight

shear stress [N/mm?]
&

200 ] referenz00025

0 0.05 0.1 0.15 0.2
displacement [mm]

Figure 3.28: Averaged shear stress along upper edge of structure as a function of displace-

ment there. Dashed curve: Oriented fine mesh (Figure 3.26). Continuous curve: Continuous
remeshing (Figure 3.27).

On the other hand, in the non-oriented case, no element edges are available and the shear-band
is forced to spread out over more than one element layer. As shown in Figure 3.27, this results
in a more diffuse shear-band. With increasing shear-band thickness, the amount of material
that has to be deformed beyond the critical point increases as well. This fact is represented by

delayed shear-band development as well as by an initially gradual decrease in the shear stress
after passing the critical point (see Figure 3.28).

In comparison to the approach of orienting the mesh, the simulation with remeshing demands
a higher number of elements to resolve the same thickness of the shear band. Nevertheless, in
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terms of simulating the process of cutting, remeshing allows a more realistic simulation of the
process as the orientation of the shear band is no longer affected by the orientation of the mesh.
Also the modeling of the separation of chip and workpiece is now possible without introducing
an artificial failure zone (see, e.g., Hortig and Svendsen (2007)). Keeping these results in mind
we will now turn to the investigation of suitable remeshing criteria.

As the choice of the maximum error ||eq ||max has a significant influence on both the accuracy
and the effectiveness of the adaptive strategy, we consider a reference simulation to determine
useful bounds for this quantity. Due to the ~2? dependence of the error, a transfer of results
between different mesh sizes is generally possible, but we have to consider variations caused
by the mesh dependence. To allow a sufficiently trusted transfer of the results in both directions
(coarser and finer meshes), we chose an element size between h,,., and h.,;,. Starting from
a mesh size of hy.= 0.01 mm and working with a minimum size of A,;,= 0.0025 mm as
chosen for the reference simulations above, we set the mesh size to A= 0.005 mm. A transfer
to the maximum and minimum mesh size is now possible by simply multiplying and dividing,
respectively with the factor 1! = 2 (p = 1, linear elements) (see also Figure 3.20).

Figure 3.29 and Figure 3.30 show the distribution of the error in ¢, and the distribution of
the equivalent plastic deformation ¢, respectively. The scaling in Figure 3.34 is set from ¢, =
0.0 to ¢, = 1.0 to display the areas of potentially shear-band formation. From Figure 2.2 it
can be stated, that for an adiabatic deformation, the critical point, where the material enters
the softening regime is nearly independent from the strain rate. For the given material this
point is identified by ¢, ~ 1.0. To ensure a sufficient resolution of the shear band, at least
the area of potential shear band formation has to be discretized with the highest mesh density.
For the given problem and the given mesh size of h = 0.005 mm the critical area shows an
error of |le. || > 0.1 (see Figure 3.29). Now, choosing the light grey areas in Figure 3.29
(Jlec,|| < 0.025) to be discretized with the maximum element size of h,,x = 0.01 mm the
allowable error has to be set to

0.0l mm
Mo = 0,025 ——— .05, 3.42
leco 0.005 mm (3.42)

to give the maximum element size in this area.

Comparing the distribution of the error and the distribution of the equivalent plastic defor-
mation itself (Figure 3.30), error estimation is suspected to lead to a delayed refinement of
the critical areas. This observation suggests the demand for an additional indicator. As stated
above, the critical point, when the material enters the softening regime is strongly connected to
ep. Thus, a direct use of €, as an refinement indicator is generally possible.

In the following we will apply the discussed strategy based on pointwise error estimation.
Additionally, we will test the applicability of ¢, as a direct refinement indicator. Therefore
we will link the new mesh size by a linear relation to ¢, (see Figure 3.31). In the following
simulation the refinement starts at ¢,, = 0.3 and ends at ¢,,, = 0.9. An algorithmic overview
for the process of error estimation/indication is given in Table 3.6.

Figure 3.32 to Figure 3.34 show the results for both strategies in comparison to the refer-

ence simulation with continuous remeshing and constant element size. As expected, the error
estimation leads to a delayed refinement (Figure 3.33). This results in a delayed shear band



3.4 Adaptive remeshing 51

PEEQZZnodalerror

bt

—+2.030e+00
+1.000e-01
+7.500e-02

ML .5 000e-02

[+ +2.500e-02
—L-+0.000e+00

]
13
1
o
15
5]
iy
9
a
3
2
0
"
o
R

Figure 3.29: Distribution of the pointwise error in ¢, inside the notched shear specimen (Figure
3.25) for an element size of ~ = 0.005 mm
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Figure 3.30: Distribution of equivalent plastic deformation ¢, inside the notched shear speci-
men (Figure 3.25) for an element size of 4 = 0.005 mm

development and also, in comparison to the reference simulation, in a more gradual reduction
corresponding shear stress after passing the critical point of deformation (Figure 3.32). This
behavior can be directly explained by the kinematics of a developing material instability. Here,
the steepest gradients are situated at the boundary and not in the interior. The resulting coarse
mesh at the tip of the developing shear band (see last stage of Figure 3.33) inhibits its devel-
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Figure 3.31: Refinement function h(e,). Here, ¢,, and e, allow the adjustment of the adaptiv
strategy.

Error estimation/indication

1. Calculate the pointwise error:
leqlln = max(llay, — akl)), Vne{l,... ny}

2. Calculate the refinement parameter in terms of the pointwise error:
£ =l e (100 ny)

~ leallmax?

3. Calculate the new local mesh size in terms of the pointwise error:
hr=to Yne{l,... ny}

&'’

4. Calculate the new mesh size in terms of the
refinement indicators r; (linear ansatz):

H . h —hAmi
|f’f’i1 < 7”,? < 7rio: hrin = hmax — —rﬁj;(im’?m (Tln — T'“) , Vn € {1, o ,nN}

3. palculate t[\e new Iocgl mesh size:
hn:mln(h” h™ '”h:}”'d>7 VnE{l,...,nN}

e’ 71

Table 3.6: Error estimation/indication, general overview.

oping. The strategy with refinement indication shows a better performance. The results nearly
coincide with the results for the reference simulation (Figure 3.32). The good performance of
the refinement indicator method is explained by the early and extensive remeshing behavior. In
contrast, the error estimation method is much more economical.

Considering the distribution of the equivalent plastic deformation, and in particular the area
of ¢, > 0.9 in Figure 3.33, a strategy combining the anticipatory character of the refinement
indicator method and the economy of the error estimation method suggests itself. The result for
a combined strategy is given in Figure 3.35 and Figure 3.36. As we are mainly interested in an
pre refinement of the critical area (see Figure 3.33), the refinement indicator method starts to
refine at a later point, at ¢, = 0.7. Thus, the basis of the combined approach is still the error
estimation. The influence of the refinement indicator is activated when it indicates a smaller
element size than the error estimator.

As a preliminary result for this section, it can be stated that error estimation without any
anticipatory refinement indicator is not capable to indicate a developing material instability.
On the other hand, refinement indication without error estimation is generally possible. But
only the combination ensures both a sufficiently fine discretization of the critical areas and the
reliability of the results.
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Figure 3.32: Averaged shear stress along upper, sheared edge of structure as a function of the
displacement of the upper edge of the structure for different remeshing strategies. Reference
simulation with continuous remeshing and constant element size (dashed), refinement basing
on error estimation (triangle) and direct use of ¢, as refinement indicator (circle).

For the additional refinement indicator any meaningful quantitity is possible. The onset of
shear banding is not only restricted to a critical amount of plastic deformation. Also, a lo-
cally increased strain rate and a locally increased rate of plastic work, respectively, indicate
the possible zone of deformation localization. In contrast to the equivalent plastic deformation,
which critical amount is directly given by the corresponding stress strain diagram, the refine-
ment boundaries for strain rate or plastic power are not given in advance. These have to be
determined for any specific problem. In this regard, working with quantities normalized to the
mean value, increases the expressiveness. For the given shear specimen, refinement between
ép,= 1 and ¢,,= 2 for the normalized rate of plastic deformation and between p,,= 1 and p,,,= 2
for the normalized plastic power, respectively, lead to an early and localized refinement of the
critical region, when used in combination with the error estimation (see Figure 3.37 and Figure
3.38).

Comparing the stress displacement diagrams (see Figure 3.39), as well as the development
of the meshes for the different additional refinement indicators, plastic power and equivalent
plastic strain rate, respectively, seem to be most effective to indicate the developing material
instability. But again, the refinement boundaries for these quantities are problem dependent.

In the following section we will test the discussed refinement strategies on the simulation of

the high speed cutting process. The allowable error of ||e., ||max = 0.05, identified by consider-
ing a virtual reference specimen will be used further on.
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Figure 3.33: Distribution of the equivalent plastic deformation inside the notched specimen for
the refinement strategy based on error estimation. Here, the allowable error is set to ||e,, || max =
0.05. Note the late refinement of the interior of the critical area. As the steepest gradients are
situated at the boundaries of a developing material instability, these areas are refined first. Inside
the developing shear band the gradients are quite smooth. The resulting coarse discretization
has a blocking effect on the development of the shear band.
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Figure 3.34: Distribution of the equivalent plastic deformation inside the notched specimen
for the refinement strategy based on refinement indication. Here, the element size is linearly

reduced between ¢, = 0.3 and ¢, = 0.9.
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Figure 3.35: Distribution of the equivalent plastic deformation inside the notched specimen for
the refinement strategy based on a combination of error estimation and refinement indication.

Here, the allowable error is set to ||le., |lmax = 0.05. The additional refinement indicator triggers
the refinement between ¢, = 0.7 and ¢, = 0.9.
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Figure 3.36: Averaged shear stress along upper, sheared edge of structure as a function of the
displacement of the upper edge of the structure for different remeshing strategies. Reference
simulation with continuous remeshing and constant element size (dashed), refinement basing
on error estimation (triangle), direct use of ¢, as refinement indicator (circle) and a combination
of error estimation and refinement indication (quad).
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Figure 3.37: Distribution of the normalized rate of plastic deformation inside the notched
specimen for the refinement strategy based on a combination of error estimation and refinement
indication. Here, the allowable error is set to |le.,||max = 0.05. The additional refinement
indicator triggers the refinement between ¢, = 1 and ¢,,,= 2.
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Figure 3.38: Distribution of the normalized plastic power inside the notched specimen for the
refinement strategy based on a combination of error estimation and refinement indication. Here,
the allowable error is set to ||e., |lmax = 0.05. The additional refinement indicator triggers the
refinement between p,,= 1 and p,,= 2.
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Figure 3.39: Averaged shear stress along upper, sheared edge of structure as a function of the
displacement of the upper edge of the structure for different remeshing strategies. Reference
simulation with continuous remeshing and constant element size (dashed) and refinement basing
on error estimation in combination with different refinement indicators. Plastic power (triangle),
rate of plastic deformation (circle), plastic deformation (quad).
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3.5 Simulation of high speed cutting via adaptive remeshing

The finite element model of the cutting process is given in Figure 3.40. During the simulation
the workpiece is subjected to permanent remeshing. Modeling of the separation of the chip
from the workpiece is, thus, possible only by means of plastic flow and without an additional
failure zone. The tool is modeled as analytically rigid and moves with a constant velocity into
the workpiece. The implemented material model is the discussed Johnson-Cook model with
parameters for IN718 (see Section 2.2). Enforcing adiabatic conditions, the cutting velocity is
set to v,=1000 m/min. The tool rake angle, the cutting depth and the tool edge radius are fixed at
~=-5° ¢=0.25 mm and »=20 pm, respectively. The friction coefficient between tool and chip has
been estimated and is fixed at =0.1. The above results for error estimation and error indication
have been carried out in a general manner. Thus, lacking any detailed experimental data at the
moment, the intention of the simulation results to follow, based on this generic situation, is
mainly to test and to demonstrate the developed adaptive scheme.

contact pair

workpiece
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Figure 3.40: Finite element model of the cutting process

To determine meaningful parameters for the additional refinement indicator, we start with
the refinement strategy, controlled only by means of error estimation. Figure 3.41 shows the
error distribution for this strategy at an early stage of chip formation. As a first result, we can
confirm the observations gained from the reference specimen. Again, we detect a refinement,
beginning at the boundaries of the developing instability. As Figure 3.41 and Figure 3.42 show,
areas of advanced equivalent plastic deformation as well as areas of highest plastic power and
equivalent plastic strain rate, respectively remain at a coarse level of refinement, which again
suggests these quantities to be acting as additional refinement indicators.

In contrast to the reference shear specimen, which deals with a potential zone of strain lo-
calization, more or less fixed in space, the problem of metal cutting confronts with a moving
zone, not known in advance. Here, the different indicators give more differentiated results, con-
cerning the areas of maximum refinement. Again, the equivalent plastic deformation appears
as a robust indicator, that gives reasonable results for the potential areas of localization. The
parameters ¢,,, and ¢, are directly given by the corresponding, adiabatic stress-strain diagram
and are thus independent from the specific application. As a drawback, in case of multiple and
moving localization zones, this quantity leads to a massive and irreversible refinement, as the
equivalent plastic deformation behaves monotonically nondecreasing. Here, the plastic power
and the equivalent plastic strain rate, respectively, seem attractive, as these quantities capture
the highly dynamic deformation field.
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Figure 3.41: Distribution of the error in equivalent plastic deformation (above) and equivalent
plastic deformation (below) at an early stage of chip formation.

The following figures demonstrate the process of chip formation, calculated with the devel-
oped adaptive remeshing scheme. Here, the additional refinement indicator is the equivalent
plastic strain rate (Figure 3.43) and the plastic power (Figure 3.44), respectively. Both figures
show the field of the corresponding indicator quantity, scaled to the adjusted lower and upper
boundary of refinement. Although the results for both indicators show good agreement, the plas-
tic power leads to an earlier indication of the potential zone of localization. This is explained
by the fact that, in this zone, not only accelerated deformation takes place, also the stress state
is increased. On the other hand, the plastic power ignores the fully developed shear band as
the stress state is decreased, although strain rates are increased. This is no drawback as, at this
stage, the resolution of the shear band is ensured by the error estimation. Figure 3.45 compares
the results for different quantities at the stage of chip formation as given in Figure 3.43 ¢) and
Figure 3.44 e), respectively. The plots for the von Mises stress (first line) and the equivalent
plastic strain (second line) show very good agreement. Differences in the progression of the de-
veloping shear band at the tip of the cutting tool can be explained by the earlier indication of the
shear band with the plastic power. The results reveal, that only an adaptive remeshing scheme is
capable of resolving the complex deformation field, especially in the primary deformation zone
at the tool tip. As can be seen in Figures 3.43 and 3.44, besides the primary shear bands that
develop under a specific shear angle, also secondary shear bands, perpendicular to the primary
ones, can be detected. Running a simulation without any remeshing and working instead with
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Figure 3.42: Distribution of the plastic power (above) and equivalent plastic strain rate (below),
normalized to the corresponding mean value. The scale has been adjusted, to give comparable
refined areas. (below) at an early stage of chip formation.

an oriented mesh, chip formation is still possible, as shown in Hortig and Svendsen (2007).
However, the complex deformation field will inevitably lead to massively distorted elements,
and finally to doubtful results, especially in the primary deformation zone (see Figure 3.46).



62

CHAPTER 3

d)

Figure 3.43: Process of chip formation. Here, the additional refinement indicator is the equiva-

lent plastic strain rate, normalized to the corresponding mean value. The figures show the field
of the indicator quantity, scaled to the adjusted lower and upper boundary of refinement.
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Figure 3.44: Process of chip formation. Here, the additional refinement indicator is the plastic

power, normalized to the corresponding mean value. The figures show the field of the indicator
quantity, scaled to the adjusted lower and upper boundary of refinement.
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Figure 3.45: Influence of different refinement indicators on the formation of shear bands. Here,
the left column shows the results for the equivalent plastic strain rate and the right column the
results for the plastic power. The first line shows the distribution of the von Mises stress, the
second line shows the distribution of the equivalent plastic deformation and the third line shows
the distribution of the error in equivalent plastic deformation.
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Figure 3.46: Chip formation without adaptivity. Here, the mesh has been oriented in the
direction of the predicted shear angle. The complex deformation field in the region of the tool
tip leads to massive distorted elements, and finally to doubtful results.
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3.6 Preliminary summary

The application of error estimation and refinement indication on problems dealing with localiza-
tion phenomena has been discussed and tested. It has been shown that classical error estimation
is not capable of detecting critical areas of deformation. On the other hand, by using refinement
indicator methods only, we suffer a loss in accuracy. Especially in context of sophisticated
applications, such as the simulation of the process of high speed cutting, only a combination
of error estimation and refinement indication ensures both, a control of accuracy and a pre-
determining character of the strategy, essential when dealing with localization problems. The
presented method of point wise error estimation is robust, easily implemented and is capable of
identifying the magnitude of gradients with a minimum of numerical cost. For the mapping of
internal variables, it has been shown that the classical finite element projection of the recovered
values leads to numerical diffusion. Here, a separated, direct transfer should be established.
The physical meaning of ¢, in context of localization phenomena has been shown and a possi-
ble application as a refinement indicator has been demonstrated through numerical examples.
In context of detecting material instabilities, also the rate of equivalent plastic strain as well as
the plastic power have turned out to work very well. Here, in contrast to ¢,, the parameters for
the refinement strategy are problem dependent and cannot be determined in advance. Simula-
tion results reveal that only an adaptive remeshing scheme is capable of resolving the complex
deformation field, especially in the primary deformation zone at the tool tip. Moreover, having
no more predefined separation zone, the modeling of the resulting surface becomes possible.
With these adaptive tools at hand the first part of our work is complete and we will now turn to
the discussion of an extended non-local material model.



Chapter 4

L ocal and non-local models for dynamic
thermoineasticity and damage

Abstract— In this chapter the thermomechanical formulation is improved by an extension of the
material model by ductile damage and further, by a nonlocal description of the material. After
the derivation of the extended thermodynamic framework, we present a specific application
to non-isochoric thermo-viscoplasticity including ductile damage. In this context a detailed
derivation of the algorithmic implementation and the algorithmic linearization, as needed in
terms of a finite element implementation, is given. Additionally, we discuss the kinematics in
context of adaptive remeshing. In regards to a model with internal variables this issue is of
special importance.

4.1 Introduction

Failure in metals during processes like metal cutting is influenced by a number of competing
physical processes in the material. For example, heat conduction and mechanical dissipation
play a strong role here in the sense of thermal softening. At lower cutting speeds and resulting
lower strain-rates, heat conduction is sufficiently fast to prevent a temperature increase due to
mechanical dissipation which would result in thermal softening. At higher speeds and accord-
ingly higher strain-rates, however, heat conduction is too slow to prevent the temperature from
increasing to the point where thermal softening occurs, resulting in shear-banding and chip for-
mation. Beyond thermal softening, other softening effects, such as damage are also present.
The strong dependence of this process on strain-rate and temperature implies that the material
behavior of the metallic workpiece is fundamentally thermoelastic and thermoviscoplastic in na-
ture. The material model presented in section 2.2 for thermoelastic viscoplasticity is restricted
to deformation behavior and adiabatic conditions. In the current work, the model is extended to
account for non-local inelastic deformation and damage processes as well as heat conduction.
In particular, isotropic Fourier heat conduction is assumed here for simplicity. Motivated by
the fundamental work of Eringen (1966) and here especially by the axiom of neighborhood,
various nonlocal continuum formulations have been developed with the aim to close this gap.
In literature, two families of such nonlocal formulations can be identified.

Nonlocal models of integral type generally consist in replacing a specific variable (e.g.,
strain, equivalent plastic strain, damage etc.) at each point by its nonlocal counterpart ob-
tained by weighted averaging over a neighborhood. Rather interested in the continuum based
description of interacting dislocations than developing a localization limiter Eringen (1981) pre-
sented a framework based on the nonlocal counterpart of the strain tensor. Later Bazant and Lin
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(1988) proposed a formulation working with the nonlocal plastic strain tensor or alternatively,
working with the nonlocal average of the plastic multiplier. Performing a series of simulations
with different minimum element sizes, here in terms of an excavation process, Bazant and Lin
(1988) successfully demonstrated the ability of this formulation to act as a localization limiter.
An application of nonlocal averaging of the damage can be found, e.g., in the work of Bazant
and Pijaudier-Cabot (1988) and Tvergaard and Needleman (1995). Although the interpretation
of the integral type approaches is descriptive, the additional numerical effort, necessary when
calculating the nonlocal average quantity for every integration point, is their main drawback.
Moreover, the implementation inside a commercial finite element code is not simply to achieve.

The differential counterpart of the nonlocal integral approaches is represented by models of
gradient type. Instead of considering the influence of the neighborhood through integrals, this
family of models introduces the nonlocal character by incorporating higher order gradients into
the constitutive model. Influenced by the pioneering work of Toupin (1962) and Mindlin (1964),
Chambon et al. (1998) as well as Fleck and Hutchinson (1997) adapted the idea of higher order
stresses, work conjugate to strain gradients, to formulate a strain gradient plasticity framework.
While in the formulation of Chambon et al. (1998) the higher order stress enters only the balance
of momentum, the theory of Fleck and Hutchinson (1997) considers these additional stresses in
terms of the yield condition. Although physically motivated by the concept of statistically stored
dislocations (SSD) and geometrically stored dislocations (GND), the essential formulation of
Fleck and Hutchinson (1997) remains phenomenological. Contrarily, the group of mechanism-
based strain gradient (MSG) plasticity theories is based on micromechanical effects on the
flow strength of materials. An application of the MSG concept, originally formulated in Gao
et al. (1999) and Huang et al. (2000), can be found, e.g., in Qiu et al. (2003), here in context
of micro-indentation hardness experiments. While the above methods consider higher order
displacement gradients or corresponding stress quantities, models with gradients of internal
variables represent a more general concept to introduce non-locality. For example, Aifantis
(1984, 1992) and Maugin (1990) consider higher gradients of the equivalent plastic strain and
damage, respectively. In contrast to integral type approaches, the finite element implementation
of gradient type models is, in general, straight forward. However, the higher order displacement
gradients have to be considered in higher order element shape functions.

A relation between integral type and gradient type nonlocal formulations is established by
applying a Taylor series expansion of the local quantity into the corresponding integral expres-
sion for the nonlocal quantity. Assuming isotropy of the used weight function, this results into
an explicit gradient type approximation, including the Laplacian of the local quantity. A de-
tailed derivation can be found, e.g., in the work of Engelen et al. (2003). As stated above, the
explicit incorporation of higher order gradients requires higher order element shape functions.
Thus, further improvements have been suggested by Peerlings et al. (1996). In this work the
author showed, that via mathematical manipulation of the explicit nonlocal approximation an
implicit formulation, including the Laplacian of the nonlocal quantity, can be established. In
case of using Green’s weight function, this formulation gives the exact representation of the
integral formulation as has been shown by Peerlings et al. (2001). Thus, working with the weak
form of the latter result, only C? interpolation of the corresponding quantity is required. While
the explicit gradient formulation considers the dependence on the infinitely close neighborhood,
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the solution of the nonlocal field in terms of the implicit gradient formulation depends on the
local quantity in the entire body. Thus, in the sense of Rogula (1982), explicit gradient type
formulations are often referred to as weakly nonlocal, while implicit gradient type formulations
are, in the sense of Geers et al. (2000), called strongly nonlocal.

For the development of the current non-local framework, we follow the continuum thermo-
dynamic rate variational approach developed in Svendsen (2004), which results in particular
in an implicit gradient type formulation for the thermodynamic field quantities. The dynamic
thermoviscoplastic flow behavior of the material is modeled with the help of a modified form of
the model of Johnson and Cook (1983) for metal thermoviscoplasticity with isotropic damage.
For simplicity, attention is restricted in this work to the evolution of inelasticity due to (i) the
motion of dislocations, and (ii) the deformation (dilatation / shear) of voids. As usual, the for-
mer is assumed to be initiated and driven primarily by deviatoric loading. On the other hand, the
latter may in general be initiated and driven by both hydrostatic and deviatoric loading. Both
(i) and (ii) are in general modeled non-locally. The current model formulation is continuum
thermodynamically in nature and is summarized briefly in the following section.

4.2 Continuum thermodynamic variational framework

Let B, be a reference configuration of the material in question with boundary 0B, and outward
unit normal »,. In the current extended thermomechanical context, the unknown continuum
fields are the deformation x, the temperature 0, and a set Kk = {k,, ks, ...} Of scalar-valued
non-local fields related to dislocation-based (e.g., hardening) and defect-based (e.g., softening)
processes. From the thermodynamic point of view, such processes are assumed to result in
energy storage and / or energy dissipation (i.e., energy loss). For simplicity, we neglect any
body forces or supply-rate densities, as well as any moving or stationary singular surfaces, in
what follows.

Energy storage in the current model class is represented by the general form
77er :wr(eava>FPv’{aer’) (41)

of the referential free energy density in terms of the deformation gradient ' = V*x and local
inelastic deformation Fy. The evolution of F}, takes the form

Fp, = F; 'L, FyFp | (4.2)
FP = LPiFP ) (4'3)

with
Ly = Z Fig Npio(0, VX, Fp, K, V'K) (4.4)

for Ly, linear in . These yield the constitutive form?

Cr = anr 0 + ava% ’ va
T . .
+ Za(aﬁawr + aprr FP ’ NPia) Kq + 0 Tmawr ’ vr’%a
1The notation 1/}, used for ¢, in earlier work Svendsen (2004) is unfortunately confusing at best. Indeed, as

just discussed, ¢, depends on multiple constitutive relations. Because of this, in contrast to ., (. is generally
non-integrable.

(4.5)
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for the energy storage rate density. Note that this density is linear in the rates £ and V'
associated with inelastic processes. Kinetics-based processes, e.g., dislocation activation, how-
ever, generally depend non-linearly on such rates. Consequently, the influence of these on the
material behavior is accounted for in the current formulation by a second potential, i.e., the
dissipation potential

Xor = Xorle -+, VIO, R, VTK) . (4.6)

As shown elsewhere (e.g., Svendsen, 2004), in the direct continuum thermodynamic approach
corresponding to the variational one being employed here, the dissipation principle (e.g., Sil-
havy, 1997, Chapter 9) is satisfied sufficiently when . is non-negative and separately convex
in its non-equilibrium arguments &, V' and V6. In this case, the dissipation-rate density

6r - aVrGer V0 + Z a}%aer g + aV’%Qer ’ Vr’{a Z Xy 2 0 (47)

is bounded below by x.,..

With the basic constitutive relations in hand, we are now in a position to carry out the con-
tinuum thermodynamic variational formulation of the evolution-field relations of the model
following Svendsen (2004). For simplicity, the following is restricted to a loading environment
for the material under consideration of the generalized deformation-traction type? generalized
to the current setting, i.e., applying to (x, x). On this basis, the formulation begins with the

rate functional®
R::/ Tvr—l—/ Ty (4.8)
B, oB,

TVI‘ = CI‘ + XVI‘ (4'9)

and surface r, rate densities, respectively, the latter determining the boundary flux densities

as hased on the volume

P = Ogry

Lo = 3:a7"sr (4.10)
associated with x and each x, € k, respectively. In particular, p, represents the boundary
traction vector field. For the current constitutive class, the form of r_, is determined by (4.1)
and (4.6). From an abstract point of view, R represents a functional on the tangent bundle of
the (infinite-dimensional) manifold of all admissible fields (x, ). The first variation of R in
the rates x and £, together with partial integration and the divergence theorem then yield

SR = / Oy Tyr - OX + / (Ogrg e T + 051 ) - 6X
B B,

. (4.11)
+ / Z 65 Ty 5’%a Z (aVrif Ty Ty + a/@ rsr) 6/%311 ’
B, a ¢ a @ @

+
B,

where
0,f :=0,f —div,(Og:,.f) (4.12)

20ther such environments, e.g., unilateral or bilateral contact (Silhavy, 1997, §13.3), are also possible.
3For notational simplicity, we dispense with the volume element dv and area element da notation in volume
and area integrals here and in what follows.
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represents the variational derivative. Stationarity of § R with respect to all 6 x vanishing on that
part OB, of OB, = 0B, U dB,,, where x is specified determines the variational form

o,r, = 0 onpB,,

X' vr

8vrx'rvr ’I’Lr + axrsr — O On aBrp 5

(4.13)

of the evolution-field relations and boundary conditions associated with . This is simply the
linear momentum balance in variational form, i.e.,

6xrvr = _din(ava%)a

avrxrvr n, + 8)'(T’sr = avfx¢r n,—D:;

(4.14)

from (4.5), (4.6), (4.9), (4.10), and (4.12), again for quasi-static conditions and no body forces.
In an analogous fashion, stationarity of ¢ /2 with respect to all 5, vanishing on that part B,
of 9B, = 0B, U0OB,, where & is specified yields the variational evolution-field relations and
boundary conditions

0pTve = 0 OnB.,

Ogeiy e My + 0, 7y, = 0 ondB,, , (4.15)

associated with each x, € . The particular form of these latter relations for the purpose at
hand, i.e., the modeling of non-local hardening and softening processes, is contingent on the
further model development, to which we now turn.

4.3 Non-local modeling of thermo-viscoplasticity including ductile dam-
age

The strong dependence of the deformation and failure of metals on the loading-rate and tem-
perature during dynamic loading is accounted for by modeling the behavior as thermoelastic
and thermoviscoplastic. In particular, the dynamic thermoviscoplastic flow behavior is mod-
eled with the help of a modified form of the model of Johnson and Cook (1983) for metal
thermoviscoplasticity with isotropic damage. For simplicity, attention is restricted in this work
to the evolution of inelasticity due to (i) the motion / glide / climb of dislocations, and (ii) the
deformation (dilatation / shear) of voids. As usual, the former is assumed to be initiated and
driven primarily by deviatoric loading. On the other hand, the latter may in general be initi-
ated and driven by both hydrostatic and deviatoric loading. In particular, we distinguish in this
work between hydrostatic (I = H) and deviatoric (I = D) stress states and loading processes.
Corresponding local damage processes are likewise modeled here via a local damage variable
d; I = H,D). As discussed in the introduction, dynamic processes like high-speed cutting
generally involve heat conduction. In particular, isotropic Fourier heat conduction is assumed
here for simplicity.

In context of the continuum thermodynamic rate variational approach developed presented
above, the deformation 1, the temperature ¢, as well as the the non-local accumulated equiva-
lent inelastic deformation &; and non local damage d; (due to, e.g., coalescence), with respect
to some reference configuration B, of the material in question, represent the fields of interest.
Further, let F}, represent the inelastic local deformation, F' = V*x the total local deformation
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or deformation gradient, and F, = F F;,' the local elastic deformation. Since the model of
Johnson and Cook (1983) includes local hardening effects on the inelastic flow behavior di-
rectly in the flow rule, energetic hardening is tacitly neglected. In the current non-local context,
however, GND-based hardening is assumed to be energetic and lengthscale-dependent. In this
case, the form of the free energy density generalizes to

2/)r(ev va7FP7 Knvrn) = wEr(eu FE) + %MU g%Odet<F) ’FﬁT vr@D‘2 : (416)

Besides the elastic part ¢,, we now have a non-local hardening contribution. The latter depends
only on dislocation-process-based (i.e., deviatoric) inelasticity and the corresponding energetic
lengthscale ¢,. The specific form of the gradient part of (4.16) is chosen in analogy to the
fourier type heat flux

qo, = —det(F)F'F Tk V'0 | (4.17)

assumed in the following model formulation, with £, the coefficient of thermal conductivity.
Here, we defined

Q= —det(F)F'F T Viay = —pp' Oge ¥, - (4.18)

This in turn determines the thermoelastic forms

K = 0py, F' = aFEwErFI;F?
- = aéwr = aGwEr7

for the Kirchhoff stress K and the referential entropy density 7,.

(4.19)

Besides isotropy, attention is restricted here to metals and to small elastic strain. In this
case, the elastic left logarithmic stretch InV}, = 1 In(By,) becomes relevant. By, = Fy, Fjj =
F C;' F" is the elastic left Cauchy-Green deformation, and Cp = F F}, is the plastic right
Cauchy-Green deformation. Besides isotropy, we assume that the heat capacity of the material
is approximately constant. The process of energy storage in the material can then be modeled
by the thermoelastic Hooke form

wEr(eaFE) - wEl(elealD)
+ {0 — 0, —0In(0/6)}

at small elastic strain. In this relation, , := A\,+2 11, represents the elastic bulk modulus, A, and
1, are the elastic longitudinal and shear moduli, respectively, « is the thermal expansion, and
¢, represents the heat capacity. All of these material properties are at the reference temperature
6,, 0 being the absolute temperature. Further,

ly = tr(InV4),

Ip = tr(dev(InVg)?)YV?, (4.21)

represent the first invariant of InV/;, and minus twice the second invariant of dev (InV},), respec-
tively. The relations (4.20) and (4.21) determine in particular the form

K = (aFE¢Er) F; = a1nVE¢E1 = ky I + kp dir(dev(InVg)) (4.22)
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of the Kirchhoff stress K, with

ky = str(K),

kp = tr(dev(K)*)Y?,
the hydrostatic part and deviatoric magnitude, respectively, of K. Here, tr(A) := I - A,
dev(A):=A—1itr(A)I, mag(A):=tr(ATA)/?and dir(A) := 0 ,mag(A) = A/mag(A)
represent the trace, deviatoric part, magnitude, and direction, respectively, of any second-order
tensor A. Note that

(4.23)

by = O ¥m = Ko{ly+3ag(0g—0)},
kp = 0 vYp = 2plp,
via (4.23). On this basis, then, in the context of the model class defined by (4.20), then, the

pairs (ky, ly;) and (kp, l;5) are natural thermodynamic conjugates. In what follows, we will also
work with the von Mises equivalent stress

b = /3 b (4.25)

(4.24)

determined by &,.

Consider next the inelastic constitutive relations. Following standard metal plasticity, as-
sume that dislocation glide is driven by deviatoric stress kp, alone. On the other hand, for
dynamic shear processes such as machining and cutting, assume that microvoid development is
driven by both hydrostatic %; and deviatoric &, stress. Furthermore, under the assumption that
(at least) the respective initiation processes are (at least partly) distinct, accumulated inelastic
deformation o, driven by deviatoric loading is assumed distinct from that «,; due to hydro-
static loading. In particular, these considerations bear on the constitutive form of the inelastic
“velocity gradient”

Ly, = F.F;',

L, = FELPiFE‘1 . (4.26)
On this basis, we work with the constitutive forms
tr(I’PC) = OéH nH )
for L, in terms of the respective directions
ny = ak'H(bHr )
4.28
Np = Oy, deV(aKk?D) ) ( )
and inelastic potentials
byl kg kp) = ky=itr(K),
" e s (4.29)

Dol b k) =y = \/3ky = | /3mag(dev(K)

given in the simplest possible case by the hydrostatic stress and von Mises equivalent stress,
respectively, both with respect to K. As implied by the dependence of ¢, on ky, both posi-
tive and negative hydrostatic stresses are relevant here, related for example to void growth and
closure or healing, respectively. In particular, the above formulations determine

Lpo = g b T+ ay /3 din(dev(K)) (4.30)
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Then .
Cr = a@wr 0 + avrx¢r ’ va

= = rL

(4.31)

follows for the energy storage rate density via (4.30) and (4.5), in terms of the thermodynamic
conjugate
op = K -Ogop, = ky

4.32
H K - Og by, = ky (4:32)

toa, forI =D, H.

Assume that both dilatation (i.e., void growth) and deviatoric (i.e., shear banding) loading drive
damage development under dynamic conditions. In this context, consider the saturation form

dI =T <541 - aId> (31 - JI) 071 (4.33)

of the local damage production for I = D, H. These relations depend on the initial amount
dy, = dy(a; = 0) of microcracks / microvoids, the saturation rates r;, the saturation values s,
the critical accumulated inelastic shear deformation &, for damage activation. Although, the
above form for the evolution of the local d; in terms of &; makes the failure process non-local
in general, the detailed determination of the specific effects, causing non-local interaction, is
still work in progress. Thus, we can generally assume an additional non-local development of
the different populations of damage d;, with the development of the corresponding non-local
quantities dy, driven by the d;. A specific relation for the d; will be developed below. For the
moment, just recognize, that d; is a quantity, representing macroscopically detected softening
due to microstructural development (voids, defects etc.). The constitutive relations, determining
the influence of this damage quantities (voids, defects etc.) on the thermodynamic stresses oy,
are derived in a framework, motivated from the concept of homogenization. Without going so
far as to formulate and solve the corresponding homogenization and boundary-value problem
for an RVE, which represents work in progress, consider now a possible framework as based on
the effective microscopic stress

O = 01/ f1(d). (4.34)
Here, the function f;(d) determines how the specific microstructure (e.g. voids, defects etc.)
transforms effective microscopic stresses oy, (€.g., in the matrix) in a model-dependent, phe-
nomenological, effective fashion to the macroscopic one o,. For simplicity we work with the
mixed quantity d instead of working with dy and dp, separately. Here, we simply assume

d:=dy +dp . (4.35)

Further, we define the undamaged state for ¢ = 0 and the totally damaged state for d = 1.
Consistently, we work with

dI =T <071 - ald) (31 - d) 5‘1 ) (4.36)

instead of (4.33). Since we have assumed plastic incompressibility for the undamaged material,
it makes sense to assume an infinite hydrostatic activation stress for the undamaged material and
zero activation stresses for the totally damaged state. These assumptions imply f,(d = 0) = 1,



4.3 Non-local modeling of thermo-viscoplasticity including ductile damage 75

fi(d = 0) = oo and f(d = 1) = 0. Again, lacking further information on the specific form

of f,(d) for the moment, we work with the simple relations

fold) = (1 —d) (4.37)

and
fH(J) =D (1 - J)/JD2 (4-38)

for these functions satisfying the given requirements. In any case, note that f;(d) transforms the
microscopic stress oy, into the macroscopic stress states represented by o; = ki and oy, = ky,
respectively. This issue becomes relevant again, when specifying the constitutive relation for
the o;. Keeping this in mind, we now discuss the non-local description of the relevant thermo-
dynamic quantities.

In the current non-local context, the activation of dislocation motion and of defect-based pro-
cesses is dissipative and assumed to be lengthscale-dependent. Further, defect development is
assumed to be purely dissipative (i.e, result in energy loss). Thus, in terms of the extended
thermomechanical framework presented above, we have k := (ap, ay, d), the corresponding
field quantities of the accumulated devatoric and spherical plastic deformation, as well as an
additional scalar valued softening quantity, henceforth referred to as damage. These imply the

form

(i i, i, Vi, 97) - (439)
= XDr(' e 70;4D7 vraD> + XHr( e 70;5H7 vr@H) + Xd( c 7d7 vrd) + XCr(' t vr0> .

of (4.6), embodying the dependence of the activation of non-local inelastic deformation and
non-local failure on kinetics-controlled processes which are dissipative. Here,

X (- - a&llvrdlj = Xml-- ) 541)"" % XIO g%o det(F') ’F_Tvr@IP ) .
Xar(- -+, d, Vid) = %Xdo (d —dp — dH)2 + % Xdo gﬁo det(F) ’F_TVrC”Q ) (4.40)
Xer(oo, VI0) = 1071k, det(F) |F~TV0)?,

for I = D, H. Again, choosing a form analogous to the potential, which defines the fourier type
heat flux

qo, = — det(F) FYF T kg V'O = —0 vy X, (4.41)
we defined
g, = —det(F)F'F T Va = —xp O, X » (4.42)
o - ; 4.42
gy, = —det(F)F'F T3 Vd = —xg aerXr

The damage terms in (4.40) are analogous to the models for non-local ductile damage developed
by Reusch et al. (2008, 2003). Here, x;,, I = D, H, x4, represent characteristic dissipation
levels associated with the nucleation and activation of dislocation and damage processes, re-
spectively. Further, ¢,,, I = D, H, ¢, are the corresponding characteristic material lengthscales
associated with the nucleation and activation of these as non-local processes. In addition, &, is
the coefficient of thermal conductivity. Specialising the variational approach Svendsen (2004)
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to the specific forms for ¢, (4.31) and x, (4.40), one derives in particular the forms

5aDrvr = a&DXDr — 0p + Xpo div,(ap,) ;
aVroiD/rvr ‘n,+ aaDrsr = “HogE:- 7fr — XDo qD‘r@D "n,+ a&D,rsr )
5aH7"vr = QiH Xpr — On + Xao div, (qm)
Vr&Hrvr ‘n,+ 8oiHrsr = ~Xpoqur - nr‘—i_ QiHrsr )
5d*rvr = andr + XdO dlvr(qdr) )

avrjrvr "N, + ad‘rsr = ~Xgoqdr "M, Tt 0jrsr ’

(4.43)

from (4.15) for a; € k, I = D, H via (4.32), (4.18) and (4.42), with

op = _a&Dér + divr(avraDCr) = kM — Ko divr(qEr) )

oy = =0, G+divi(Og, &) = ky (4.44)

from (4.32) and (4.31). Then

op = aaDXDr + Xpo div,(gpr)
Ho gEr = T + Xpo gDr * Ty 0,
8&HXDr + XHo din(QHr) ) (4_45)
XugoQqur -1, = 0,
0 = andr + Xao div,(qar)
XdoQar -1, = 0,

Qi
s
Il

follow for the case of zero-flux boundary conditions 8a1r = 0,1 =D,Hand 9jr, = 0.
Via generalized Legendre transformation, note that (4.45), , ¢ can be expressed in the conjugate

forms

ST

8&D80Dr = ap +div,(gny) ,
O = O +div,(qur) | (4.46)
dy +dy = d+div,(qq) -
In the limits ¢, — 0 and ¢, — 0, note that the non-local relation (4.45),, (4.46), reduces
to the analogous local relation &, — oy, ap, — ap. Likewise, as ¢, — 0, (4.45),, (4.46),
reduces to oy — oy, ayy — Gyy. Analogously, as £, — 0, the non-local relation (4.46), reduces
to the local relation d — d. The current thermomechanical model formulation is completed by
an evolution-field relation for the temperature. This is derived here from the Clausius-Duhem
dissipation balance
On, =9, — OgrgXy - V'O +div,(0 OgrpX,) (4.47)

assuming no external supplies. Using (4.20), (4.7), (4.16), (4.41), this reduces to
¢ = w, — div,(qcy) (4.48)

in terms of the volumetric rate of heating

Wy = Z (8kaXr - Kn ’ NPca - eananr) R
+ Z (avlkaXr — 0 avwanr) ’ Vr’%a (449)
+ KFT.F

n
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for the current non-local class, with

K, = —00mn F* (4.50)

n .
the entropic part of the Kirchhoff stress. Further, having
—0pn, = OpKFT (4.51)

the volumetric rate of heating can be rewritten as

roo Za(akaXr - eananr) "ia

Za(avrgaXr —0 aV.fnanr) ' Vr’L;”‘a (452)
0 OgOvi, Vi Fy - Fyg _
wp, + 0 aeaanEwErFﬁT - Fy,

w.

I+ +

In order to simplify the algorithmic implementation, neglect the effect of elastic heating and
approximate the plastic part of the rate of volumetric heating by the Taylor-Quinney form

in terms of the Taylor-Quinney coefficient 0 < 5, < 1 and thus, consider only deviatoric
deformation. Then, the evolution-field relation for the temperature is given by

co 0 = By by dp — div, (gex) - (4.54)
Our model formulation is summarized as follows. Additionally to the linear momentum balance
—div, (Ogry ) = 0, (4.55)

we have the evolution-field equations

dI — O?I + din(QIr) )
dp +dy = d + div,(qar) , (4.56)
w, = ¢o0+div.(qcr) ,

namely for the accumulated inelastic deformation a;, for the damage d and for the temperature
9, all defined on B,. Here, the local source terms for the evolution of damage d and temperature
0 are calculated as

dl = (o — o) (sy— d) 541 )
. 4.57
Instead of
ap = 851 Oy (4.58)

we can also work with the implicit, conjugate form
0 = 04Xt > (4.59)
| = D,H, with

op = kM + W £]230 din(er_éD) ) (4 60)
5-H == kH '
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and xq,, providing the constitutive relation between &, and ¢;. In this context, the issue of the
above discussed microscopic stresses o, becomes relevant again. Recalling relation (4.34) and
assuming the same relation for the non-local thermodynamic stresses a1, we can identify

oy = adIXIr = fl(d)adIXIm ) (4.61)

| = D,H, with xq,,, providing the constitutive relation between &, and ¢; for f; = 1. Neglecting
any coupling between ap, and ay for the moment, we choose the form

XIm("'vdI) = (1 _CjF) O-A‘d1| ) ] . ) (462)
+ ¢ 0p Apg (1 + || /dpg) In(1 + |éy|/crpy)

for the microscopic dissipation potential, consistent with the Johnson-Cook model Johnson and
Cook (1985) for dynamic viscoplastic deformation at the microlevel. In this particular form
both, positive and negative hydrostatic stresses are considered. This latter form depends in
particular on the activation stress

oal,ap) = {1 = [(0 — 00)/(Ono — 0p)]" } {a;. + by (1 — e M)} (4.63)

for inelastic deformation at zero inelastic strain-rate modeled in saturation-Voce form. In this
form we only consider deviatoric deformation, relevant to induce hardening effects. o, is de-
termined by its initial value a;., the hardening parameters b;. and n,., as well as the melting
temperature 0,,, and thermal softening exponent m,.. In particular, note that the decrease of
o (0, oq) with increasing temperature represents the effect of thermal softening in the current
model. For this specific choice, note, that (4.61) is satisfied by the specific form

XIr("'?dI) = (1_Cj )UAm‘aI’ (4 64)
t G Oam apg (1 + |dql/épg) In(1 + |dag|/cvpy) .

and

Oam(0,ap) = fi(d){1 = [{0 — 6p)/ (0o — Op)™ } {ajc + by (1 — e M)} (4.65)

Algorithmically equivalent to (4.61), but avoiding the calculation of the signum of &; we work
with

|o1] = fi(d)9y4, | X1m » (4.66)
instead of (4.61), in what follows.

With these relations at hand, our model formulation is complete and we now turn to its
algorithmic implementation.

4.4 Algorithmic implementation of non-local ther mo-viscoplasticity in-
cluding ductile damage

Consider next the algorithmic formulation of the above model relations. To this end, consider
first the time integration of (4.26) over a time interval [¢,,, ¢, ;] of durationt, ,, =t —1t,.
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Exponential backward-Euler integration of this relation over this interval together with the use
of F = F F}, and the properties of the exponential map yields the general algorithmic form

eXp<APCn+1,n> FEnJrl = Flérn+1 (467)

for Fy;,, . Here,

APCTL+1,?I = tn«l»l,n LPCTL+1 (4.68)

—

= 3 aHn+1,n anJrl I + aDn+1,n NDn+1

follows from (4.30) in the backward-Euler context, with

OHDntin = YHDnt1 — YHDn > (4.69)

and
F}fjrn+1 = Fn+1 FP_'i = Fn+1,n FEn (470)

is the so-called trial value of Fy,, ;.
Since (4.22), (4.30) and (4.68) imply that Ap,,, ., ,, and InV, ., commute, the relation

eXp<APcn+1,n) By, eXP(APcn+1,n)T = B}tilrn—H (4.71)

for By, , from (4.67) reduces to

exp(2 anFfl;H»l) = eXp(AP0n+1,n) eXpT<2 1nVEn+l) exp(APcn—i-l,n)T (472)
- exp(APc n+1ln + APanrl,n + 2 11’1‘/En+1)

via By = exp(2 InV4;), where

IHV£1;L+1 = % ln(Fn+1 CI;:L FnT+1) = % ln(FnJrl,n By, FnT+1,n) (4.73)

represents the trial value of InVj;,, ., = £ InBy,, . Taking the logarithm of both sides of (4.72)
then yields
InVgh o =InVg, . + % A1 Mner L+ 10 Nppga (4.74)

via (4.68). From this, we have the updates

lHn+1 = lgnJrl — Nypaa O_éHnJrl,n ) (475)
an+1 = l%n—‘—l - mag(NDn—l-l) aDn—i—l,n )
from (4.21), those
kiny1r = Ko {lgn—&-l + 3 (0 — 9n+1)f NHn+1 dHn—i—l,n} )
kpna = 2p {lgnJrl - mag(NDn+1) aDn+1,n} ; (4.76)
dir(dev(K,,,)) = dir(dev(InVy% ),
via (4.23), and so that

for the Kirchhoff stress from (4.22). Next, we turn to the calculation of the corresponding
source terms, driving the evolution of the accumulated inelastic deformation &, the damage d
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and the temperature 6. Neglecting the effect of energetic hardening (¢/go — 0), the combination
of (4.66) with (4.60) and (4.25) together with (4.28) and (4.29) results in the local algorithmic
system

g1l Ko Utngr 309 (0 —0,11) — Qi)
_fH(d)a|dH|XHm(en+la doi1, dy )

V6 1 {lgnjl - \/g@nnﬂ,n}
_fD(d)a|dD|XDm(€n+1’ dni1,dy )

tr a _
T<€n+1’ anEn—}—l? dn+l> dn+1> -

(4.78)
of two (scalar) equations in two (scalar) unknowns
€nt1 = (CHpt1, WD nt1) - (4.79)
Here 3
QHn+1
Qapp
dpir=| 5" (4.80)
dn+1
9n+1
are the corresponding field quantities determined via (4.56) and
O_éHn-i-l - dHn + tn—l—l,n (?Hn—i-l
an+1 - an + tn—l—Ln @Dn—&-l
o= - _ 5 4.81
el dn+1 - dn + tn—i—l,n dn+1 ( )
9 — 0n+1_9n
n+l1 tn+1,n

are the algorithmic quantities calculated via Backward-Euler integration / differentiation, re-
spectively, all fixed during the time interval [t,,¢,.,]. The trial strain InVy ., is calculated
for a given F, 4, via (4.73). For fixed F,, 1, (InV4} . ) and d,.1 (d,.1) (4.78) is solved via
Newton-Raphson iteration via the Jacobian O, r,. The remaining source terms in (4.56) are
calculated explicitly as

dln+l = T <dIn+1 - aId> (31 - Jn+1) &In+1 )

. B . (4.82)
wr = [y \/Eﬂo {l]tDn—H - \/g%nﬂ,n} ap .

Besides K, via (4.76) and (4.77) the solution of (4.78) also determines the algorithmic deriva-
tives

En+1rn) ’

aZn-|r1‘5n+1 = _(8en+1rn)_1<adn+1rn) .

Note, that the above formulations hold also for the case of modeling some of the field quantities
d as local (/o — 0,...), or assuming adiabatic conditions (ko — 0). In this case, the relation
for the corresponding fields given by (4.56) reduce to the local form. From these in combination
with (4.82), the substitutions

aﬁlVémlew 1= —(Oeuin) Oy (4.83)

dn+1 = dn + tn-i—l,ndn_l,_l 5 (484)

with .

dpir = Tp <07D_n+1 — apg) (Sp = dn1) aD;n+1 (4.85)
7y (@1 — Ona) (S5 = dnsr) Qpgy
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Ot = Onttogin ey By V6 {I5,00 — \@ Op i1} Op (4.86)
and further
Mpi1 = Opp+ i Qang (4.87)
with
dInJrl = Qipt1, (4.88)

activated in (4.78), in case of local modeling of the corresponding quantities become relevant.
These substitutions have to be considered by activating the corresponding partial derivatives in
context of calculating the Jacobian 0O, . ,r, and the algorithmic derivatives (4.83). Apart from
that, the local algorithm remains.

n—+1

In summary, the above algorithmic relations are formulated for the time interval [¢,, ¢, . ] of
durationt, ., , :=t,., —t,. Given are the values of the deformation gradient F, , the set of
field quantities d,,,; and the internal variables 6, , By, &y, ap,, and d,, at the beginning of
this interval. In addition, F,, ,andso F, ,,, = F, ,F, ', are determined. On this basis, we
have the following algorithm.

1. calculate trial quantities:

tr _ T tr 1 tr .
(a) BEnJrl - Fn+1,n BEn Fn+1,n7 1n‘/En+1 -2 lnBEnJrl’

(b) l%{rn—s—l = tr(anEtgH—l)' lltjrn+1 = mag(dev(anEm;z+1));
2. local iteration:

(@) sete, 1 =0

(b) while rl(egﬂl, ...) = tolerance and rg(efﬂl, ...) = tolerance, solve (4.78) for
€, iteratively using Newton-Raphson iteration, eventually based on substitutions
(4.84)-(4.88):

if ri(egﬁll, ...) < tolerance, i = 1,2, set r; = 0 and (aewr(eﬁfjl, . ))Z_j1 =0,

=1,2
k k k _ k
67(1:11) :e;jl—(a€n+1r(e;+>1,...)) 17"(67(1_’)_1,...), kE=0,...; (4.89)

(c) in case of local modeling update ag 1, d,, 1, and 6,,,; via (4.84)-(4.88);
(d) InVg,,,, via(4.74), By, ., = exp(2 InVg,,.,);

(&) Ky, andkp, ., via (4.76);

() K, from (4.77);

3. return;

This algorithm is highly nonlinear in F,, ., =V, x,,,, and d, ., forcing an implicit iterative
solution of the mechanical equilibrium relations for x,, ., and d,, at the structural level via
algorithmic linearization, to which we now turn.
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4.5 Algorithmic linearization

Consider again the time interval [¢,, ¢, ,,] of durationt, ,, , :=t, ., —t,. For the finite-element
formulation, we identify as usual the reference configuration B = B, with the initial configu-
ration (¢ = t,) of the material and structure in question. On this basis, consider the algorithmic
linearization of the model from the previous section. In the current non-local context, this is
based on the algorithmic linearization d*x,, ., of the current unknown deformation field x,, , ;.
and on the algorithmic linearization d*d, ., of the current unknown field quantities d, ;. In
particular, this induces that

daFnH =d*V, Xni1 = Vo daXnH = (vn+1daXn+1>F 41 = An+1 F, ., (4.90)

n

of the corresponding deformation gradient F, _ ,, with

Vn+1X = (VOX)FTL_—l—ll (4.91)

the push-forward of the referential gradient operator to the current algorithmic configuration.

Assuming there are no momentum supplies, the finite-element formulation of the mechanic
part of the model from the last section is based on the weak form

wX(XrH-la Xn-l,-la X*) = / QO Xn—i—l : X* + Pn+1 ’ VOX*

By

4.92
- /8 pn+1 e ( )

B()
=0
of referential momentum balance to solve for the unknown position field x holding for all test
deformation fields x, consistent with the boundary conditions. Here, p,, ., is the prescribed
referential traction field on the traction part of 0 B,. Depending on the type of loading environ-
ment present, of course, it may depend in general on x,,., and F, , = V;x,,,. Physically, of
course, boundary conditions are applied on the boundary 9, ,[5,] of the current algorithmic
configuration x,,,,[B,]. If t,, is the traction on this latter boundary, then

D, = det(F, ;) mag(F,;Tan) t, 1 (4.93)

follows from the corresponding transformation between area elements. In the case of dead
loading, which we assume here for simplicity, p, ., is by definition independent of x,,., and
VoXn1- Inthis case, ¢, , depends on these via (4.93). In any case, on this basis, the lineariza-
tion of (4.92) with respect to x,, . takes the form

a i
an+1 wxn+1 - /B

d;nJrl Xn—i—l = (a;n+1Xn+1) daXn+1 (495)
holds, with 05, ngnﬂ determined for example via the Newmark algorithm. Further,

X Q0% Fones + / Vox. di P, (4.94)
BO

0

In addition,

vOX>|< : d;,L+1Pn+1 - VnJrlX* : (d;7l+1Pn+1>FE+l (496)
- Vn—i—lX* : d;n_._lKn—i-l - (Vn—HX*) (Vn—i-ldaXn—i-l) ' Kn+1
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and
VoX - d;n+1Pn+1 = VoX.- 3liln+an+1[V0 daXn—i—l] (4.97)
= VX (8ﬁn+1Kn+1 — K, ATV, 1d* X 41] .
follows for the linearization of the stress term, with
ajanrlKn—H = <aﬁ—‘n+1 Kn—i—l) (I D Fn—l—l) (498)

the material part, and K, ,; A I the geometric part, of the algorithmic stress tangent. Here and
in what follows, the tensor products

(AOB)C = ACB,
(AAB)C = AC'B, (4.99)
(A B)IC = (B-C)A,

on second-order tensors are employed. For the current model class we have

Ok K = Oye K Op WV (4.100)
with
aliVEtrnﬂKn"'l - ahlVEtrn-HI{”"'l + a€”+1Kn+l aliVEmﬁJrlenJrl ' (4101)
Note, that the second term in (4.101), containing the algorithmic derivative
a _ —1
aanEtllfn+1 67’L+1 - - (a€n+1 rn) (alnvérn+1rn) Y (4102)
vanishes for /py > 0 and /59 > 0. Further we have
aFnHanEtI;LH = %8Bgn+1lntn+1 OF 1 BE 1 - (4.103)

Considering now the formulations for derivatives of isotropic tensor functions in spectral repre-
sentations as described, e.g., by Silhavy (1997), the first term of (4.103) is given by

aBgn+llntn+l = Hij e ® €; ®e; R €; (4104)
with o))
SO0 i b £ b,
Hy; = gy A A, (4.105)
b_i lf bz = bj
and
BgnJrl = bl e Xe;. (4106)

The second term of (4.103) is given by
8FnJrl‘Bltﬂrn-i-l =10 (FTL_JrllBgn-‘rl) + (Bgn—i—an_nTl) AI : (4107)

Based on this, the linearization of K with respect to d*x,,1 reduces to

a 1 a T T
04, Kt = 5Oy Ko Opy B, 0n, BE,.) (4.108)

n+1 n
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in combination with (4.101), (4.104) and

Here and in what follows, the superscript “a” on the partial derivative operator 9 indicates that
this is an algorithmic derivative of the corresponding quantities. As exemplified by 0 +1Kn 1
it depends on the algorithm chosen.

Accordingly, the linearization of (4.92) with respect to the field quantities d,, ; takes the form

dian«l»l wXTL+1 - \/; VOX* ' d(?an+1Pn+1 9 (4.110)
0
d, = dD, (i/H, d;, f, with
VOX* . d;a"+1P"+1 - Vn+1x* ' (dt?anHPn-i-l)FnT-i-l (4.111)
= Vn+1X* ’ ao?an+1Kn+1 dadan+1

and
a‘?a n+1Kn+1 = 8€n+1Kn+1 adaanJrlen—"_l ’ (4112)

Again, note that this derivative, containing the algorithmic derivative
0 €nt1 = —(OersiTn) " (Ody i) (4.113)

vanishes for /py > 0 and fg9 > 0.

Assuming no external heat supplies, a general weak form of the evolution-field equations (4.56)
is given by

wda (dan+17 da*) = / (dan+1 - Sdan+1)da* - qdan+1 : VOda*
B,

o (4.114)
+ qda07L+1 da* )
8B,
d, = &D,&H,J,G. Here, with
q/\da n+1 - - det(FnJrl) F{£1F7;+T:‘[ Cda voda n+1 (4'115)
and .
ar = Qrpt1
Sarntl = OIntl
CC_V[ - g%ﬂ
j - Jn—&—l
Sini1 = Apnt1 +dgns (4.116)
Ci = 6(210
é = 00(9n+1 - Hn)/tn-i-l,n
Son+1 = Wr

C@II{ZO
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The referential boundary flux is specified in terms of

da0 i1 = 4da0 iy * Mo 5 (4.117)

with g, o, the referential boundary flux vector. Further, with the flux boundary conditions given

by (4.45), 46, We have
/ qA&IO'nOO;éI*::O7
9B,

. (4.118)
| dipened.=0.
0B,
Now, using the results
dinﬂdet(l? = det(€n+1>I' <Vn+1daXn+1) )
d;nHFn:LTl = _FJ+1(Vn+1daXn+1)Ta (4.119)
d;n+1Fn_—|—1 = _(Vn+1daxn+1)TFn_+1v

and restricting to the case of a constant boundary heat flux, the linearization of (4.114) with
respect to x,,,1 takes the form

d;n+l Wd, = _/ afln_'_lsdan+1 ’ (anrldaXnJrl) da*
o (4.120)
_/B <ai"+lq/\dan+l (Vn+1daXn+1)> : vOda* )
0
with
aﬁnJrl Sda n+1 = {aFn+1anE§;r7L+1 (I D Fn+1)}T[a]?1VEtrn+l Sda n+1] Y (4-121)

determined via (4.103)-(4.107), (4.82) and (4.83) and

82714.1 (jdanﬂ = (jdam-l o Fn_+11DFn+1Qdan+1 - FJ_;}1AFn+1(de+1
- det(Fn+1) Fn_Jrll Cd, {Vn+1dan+1 ® I (4122)
_I‘jvn+1dan+l - IAVTH‘ldan—&-l}

Accordingly, the algorithmic linearization with respect to the field quantities d,, ; is given by

~

dg, ., Wa, = / (a;bnﬁ dant1 — 04y ., Sdg s ) dypy1 dy
Bo (4.123)
+ 61117/ det<Fn+1> Fn_Jrlan_fi Cd, vodadbn-H : vOda>s< )
BO
with arising algorithmic derivatives determined via (4.116) in combination with (4.82) and
(4.83) and 4, the Kronecker delta.
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4.6 Finite-dement formulation

Let ng,, represent the physical dimension of B, and n,, be the number of degrees-of-freedom
(DOFs) characterizing B as a continuum system. In the context of the developed non-local
framework, these DOFs are determined as usual by the deformation x and the additional field
quantities d. More specifically, the Cartesian components x,, :=%,, - X, m = 1,...,ng,,, Of
x represent the position DOFs of B, with (i,,...,4, ) the Cartesian basis. Let nj., be the
number of nodes in element e, ng . := nj 4 X ng;, represent the number of all position DOFs of
e, and ng ¢ 1= nt.q X ng.¢ 0 the number of all nodal DOFs associated with element e. Further,
let X7, represent the m™ position coordinate, and the m™ position DOF, of node & in element

e. The array

e e e e e
X ($17.-'7xndim7..-7x(ngod_l)><ndim+1,.-‘71‘”;08)7 (4 124)
= (X&,..., XS XS .. XS o),
dim nod nod *dim

contains all nodal position coordinates, and all nodal position DOFs, of element e arranged by
node. Alternatively, we have the n_; x ng;,, matrix

e e
X oo Xlndim

X, = : : (4.125)
Xe D '

Nfoal NfodMdim
of all such DOFs. In what follows, we will consider X, to be a function of x_, i.e., X, = X (x°).
On this basis, consider the polynomial approximation

X (€,x%) = X7 (x°) h*(§) = H(§) x* (4.126)

to the element deformation field x© via the identification x¢ = (x5, .. ., Xn,, ). This is based

1

on the ng,q array h*(§) := (hy(§). ..., h,. (£)), and the corresponding ny;, x ng., matrix
H_(&), containing the shape functions for the position DOFs of element e. As usual, these
represent polynomial functions of the array & := (&, . .. ,fndim) of position coordinates on the
master element Q := [—1,1] x - -+ x [—1, 1] (ng,, times). In particular, (4.126) determines the
form

Jo(€,x%) = 0 x“(€,x°) = X' (x°) O¢h*(§) (4.127)
for the ng;,,, X ng;,,, Jacobian matrix of the transformation between physical and master element
systems.

Next, let x¢ := x°(¢.) be the value of x° at an arbitrary discrete time ¢t = ¢_ during [0, d|
= Un[tn, t,.1). For example, we could have 7 = 0, i.e., the initial time, or 7 = n, i.e., the
start of the arbitrary time interval [¢,,¢,.,]. With respect to this, we can define the element
approximation

V°he(€,x5) = 0gh"(€) J.(€,x5) (4.128)

of the spatial gradient of h® relative to x¢. This yields in turn element representation
F_(&,x5,x°) = XT(x) V¢he(€, x5) (4.129)

for the matrix of Cartesian components of the deformation gradient. For the algorithmic formu-
lation to follow, the linearization

dF,(£,x5, dx°) = X7 (dx®) V°he(€,x5) (4.130)
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of F_ and its pushed-forward form
A (€,x°, dx®) = XT(dx®) V°he(€, x°) (4.131)
via dF = AF, are also used in what follows. Using the row-array representation

row(A) := (A, A, -, A (4.132)

ndimndim)
of any second-order tensor A, with n_, := 14, X Mg, We then have

fe(€,x5,x°) = G (€, x5)x° = row{dF. (£ x§,dx°)}, (4.133)
1°(&,x,dx?) = G_(&,x°)dx® = row{A_(£,x°dx°)}, '
in terms of the n,,,, x n¢; shape-function gradient matrix G (§,x$) and x°.

Beyond the mechanical DOFs y,, :=1¢,,-x, m = 1, ..., ny,,, We now have the non-local equiv-
alent inelastic deformation @y, the non-local damage field d and the temperature ¢ as additional

continuum DOFs. Then ngo = ngy, + Ngory- Letdg == (d5,, -+, dye ) be the array of nodal
values for the «'* additional DOF in element e, with, e.g. d¢, = am,dg,eg Further, let d°
= (dg,--- ,d;doH) be the array of all additional nodal values in element e (arranged by DOF).

Then, based on the nf,q array h*(§) := (hy(§), ..., h,e (£)), the polynomial approximation
to the element field quantity d, is given by

dg(§,dg) =he(€) - dg (4.134)
In particular, (4.134) in combination with (4.128) determines the form
Vede(€,x%) = Vehe (€, x4)Tde (4.135)

of the spatial gradient of d¢ relative to x¢, also used in what follows.

Consider next the finite-element approximation B, ~ (J!*¢ B§ of B, as based on n,, ele-
ments. Let x*, d? and d* := (dj,--- ,dsndoH) represent the array of structural nodal position
DOFs, the structural values for the o' additional DOF and the array of all structural nodal
values for the additional DOFs (arranged by DOF), respectively. Further, let P, P, and
P_ 4 represent the projection of these onto x°, d¢ and d¢, respectively, determined by element
connectivity, i.e., x* = P, x®. On this basis, the finite-element discretization induces the ap-
proximations

J— . ~ S S S S S
0 = wX<Xn+17 Xn+1a dn+17 X*) ~ Wy (Xn+17 Xn+17 dn-i-la )

0 = wda(Xn+1>Xn+1adn+l>da*) wga(XZH?iZH?dnHads) (4.136)

of the weak momentum balance (4.92) and the weak evolution-field equations (4.114), respec-
tively, with

w)s((x781+1’ j.(.?sz—i—l’ ds+17 S) = fs( S—i—l’ n—}—l? d781+1) : Xi (4137)
wja (Xp1: Xpp1:diyrad ) = fsa( s Xng, dig) - d
and
fs( fz—i-l? n+17 dfz—&-l) = Z 4 P;Fx f)i (P Xn+17 P Xn—i-l7 Ped dn+1) (4 138)

f5u< s Xy dnyy) = Zele Pl fe (Pex n+17P Xni1: Peadiyg)
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the structural nodal force arrays. In this relation,

feni = Mo Xnn

= [ 5O GIE KK du

— [ Jeot (3. x0)) ma () iy s (4.139)
0 = [ ) [~ 5)50 BE(E) ~ J5(O) VR(E D)L, v

+ mééaonﬂ |cof (J (&, %5)) ng| h*(€) dag

represent the element nodal force arrays in terms of the mass matrix
Miso = [ J5(€) 20 L€ FL(E) dug (4.140)

and

J7(§) := det(J (€, %7)) (4.141)
is the determinant of J (&, x¢). In (4.139) and in what follows, k := row (K) represents the row
array whose components are determined by the Cartesian components of the symmetric Kirch-
hoff stress K. For example, for ny,,, = 3, we would have k = (K, K5, K3, K5, Ky, Ko,
K3, Ky3, K33). Here, and in what follows the notations ¢, and 7, refer to quantities, deter-
mined at time ¢, in terms of elemental (x{ ,,%¢_,,dS ) and structural DOFs (x}_,,X? .,
d; ), respectively. With this notation we tacitly include the dependence on further quantities,
as given by the definitions above, e.g., we set k(f(§, x§, x5, ,)) := k. Further we avoid
redundant sub-/superscripts, e.g., we substitute f¢(x¢, %5 ,,,d5, ) = f55 ., = £, 4. In
particular, (4.139)-(4.137) follow from the results

e e
x¢ - f

xn+1
N / 00 X1 X + Koy - Vi XC dvg
Bg
_/ p2+1 XS da(e)
B3 (4.142)

=X

. ( [ 35(6) 00 B €)%y + 75(€) GT (61 K g

_ /8Q |cof (J,(&,x§)) ng| HY (€) P54, daQ)

for the approximation of weak momentum balance (4.92), and that

de, - fe

* dg n+1
o 7 e e ~e e je e
- (da - Sda)n+1 da* —44,n+1" VOda* dUO
Bg
@ de dat
5 Jda0n1 Gax X0 (4.143)

0

e, ( [ 56 (e = 50 7€) — 55O VW€ x0)d ., do

-/ azmﬂ\cof(Je@,xs))nQ\h€<e>dag) ,
o0
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for the approximation of the weak evolution-field equations (4.114).

89

In the current non-linear case, the solution of (4.136)—(4.137) in terms of the field quantities
x> and d}, ., attime t,.,, is determined iteratively, e.g., using standard Newton-Rhapson

iteration
£ (k) K ® ) 8 (1) _ x5 (k)
X x X e x dngors
3 () Les (k) e (k1) s (k)
dndof+ KX dnd0f+ .. Kdnd0f+ dndof+ dndof+ dnd0f+

(4.144)

This involves in particular the algorithmic linearization of £2(x;, 1, %}, d5q) and £§ (x5,

g s
Xnt1 dn+1)

S

a s _ ae.S
s fo 1 Kxxn+1d Xn+1
_ s ass s
- Kxanrl d* Xn+1 + Mxx() d XnJrl(d XnJrl) )
S — s a s
dd2n+1fx 1 KXd ontl d dan+1
and
a s _ s Aess
d n+1fdan+1 - Kd xn+1 d Xp+1 s
a S — s a s
ddlszn+1f an+1 o Kdadbn+1 d dbn+1
with
s _ a s Mele T e
1\/Ixxo 8)( xn+1 g P MxxO ,
S R a s ele T e
Kxxn+1 T xs 1an+1 Z P Kxxn+1 P ex
S . a 5 Tele T e
KXd n+l - 9, ol xn+l - § o P de n+1P ed,
and

Nele T
K(Siax n+1 = a}?fL fj n+l — Z Ped K(eiax n+1 Pex )
. Nele T
Kfibdbn-‘rl : ads il d ont+1l Z Ped fl d,n+1 Peda
via (4.138). Here, the corresponding element tangents are given by
Kfcx n+l axa _Hf;n—i-l

- / Je(€) QT (E,x0, 1) {07k — K ALY, GL(€, X% ) dvg |

e _ a e
dean+1 - adgn+1fxn+1

_ / Je(€) (GT(€.%51) (03K)%1) @ he(€)) dug

e _ a e
Kdaxn+1 - a f

x¢ 1 d,n+1
_ / JEE) Da(€) ® (050, )ur G (€, %)
—jS(E) vehe<€a XS) (alana)fLHGe( axfzﬂ) dvg ,

e _ a e
Kdadbn+1 - adg +1fd n+1

— [ 3506103 d— 05 50,05 (€ O 1(E)

6 (€)8us 4, VIR (€, x5) (F cof (F))°,, Vehe(€, x5)" dug

(4.145)

(4.146)

(4.147)
(4.148)

(4.149)

(4.150)

(4.151)

(4.152)
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In particular, these follow from the results

Xi ' K>e<x n+1 daxfl-‘rl
= /Be VSHXi : (8XK - K AI)ZH[VﬁﬂdaXfLH] dvg

0
_ xe { [ 5O GHEx) (07% ~ KA TN Gl X0 dvn} e,

Q

Xi : KidanJrl dad(ezn—i—l
= [ Viaxt 0K ' i

0
s { / Je(€) (GT(6,x01) (1K)ry) © ha(8)) dm} dede, |
dZ* ' Kaax n+1 daXfL—&—l
=~ [ @Osa)ir - (Ve dXer) .

B¢ (4.153)

- <(5ﬁﬁda)i+1(vﬁ+1daxiﬂ)) - V§de , du§
=i { =[O © @Gl

Q
o) VRE(€, x5) (800, G (6, X511) dvg}dsxzﬂ ,

dg* ’ Kgadbn—&—l dad§n+1

= [ (08— 0 su e e

+0a (FVcof (F))° ., cq, Vidods, | - Vede.. dug

e, { / JEE)(D2 du— 02 sa. )y HE(€) © BE(E)

S (E)0u ca, VORE(€,x5) (= cof (F))E.,, Voh (€, x)T dvg} ;L

via (4.97), (4.110), (4.120) and (4.123), respectively. The n , x n,,, matrix k A 1 is defined
by
row(A,) - (kAl)row(A) = A, - (KAI)A
= A -KA" (4.154)
= sym(A,A) - K.
Again, in (4.139) and this latter relation, k represents the row array whose components are
determined by the Cartesian components of the symmetric Kirchhoff stress K.
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4.7 Kinematicsin context of adaptive remeshing

Performing an analysis with adaptive remeshing, we face the problem of a reference configura-
tion B, changing with every remeshing step. In this context, consider the relations between the
involved different configurations, as illustrated in Fig. 4.1.

Figure 4.1: Relations between different configurations in context of adaptive remeshing.

The deformation gradient, mapping the original reference configuration B, to the configura-
tion B,, is given by
F, = Fremprem (4.155)

Here, F°™ is the deformation gradient, mapping the new reference configuration B;*™ to the
configuration B,. The relation between the original reference configuration B, and the new
reference configuration B{°™ is given by F™™. From the algorithmic point of view the determi-
nation of F;,,, via

F = F*® F (4.156)

n+ln+n

is preferable. Making use of this formulation F;, is simply updated as an internal variable and
is transferred by the mapping process. Beyond F,,,; the above finite element approximations
of the weak momentum balance and the weak evolution-field equations, as well as the corre-
sponding element tangents require the information about the reference coordinates x;. As will
be shown in the following, a mapping of this information can be avoided, by transformation of
the corresponding expressions. In this context, note that making use of

J5(€) dvg = det(Fy1) ™' 511 (€) duo (4.157)

and
Vhe(€,x5) = V°he(€,x7 ) F, (4.158)
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in combination with (4.115) and (4.135), the element nodal force arrays of the correspond-
ing finite element discretization of the weak momentum balance (4.139); and the weak field-
evolution equations (4.139), can be transformed to

fi n+1 . Mfc;enn}rl “Z-i-l
GT ¢ det(F)"'k)¢ . d
¥ / o1 (€) GT (€. X5) (det(F) k), dog 159)
— [ ool (3. x5 mol HE(€) i da
and
e = [ 35 €) (AP (0 = 50 D(E)
—ca, VORU(€, 6 1) VOB (€, %0 T ) dig (4.160)
+ / G oot (3,(6 5" ma | b (€) dag
respectively, with
M o= | Jia(€)det(Fuin) ™ o HE () HLE) dog. (4.161)

Here, x§™™ is the array of element reference coordinates, referring to the new reference config-
uration By, pyc" and ¢, are the referential traction field and boundary flux, respectively,
both prescribed on the corresponding part of 0 B;*™. Correspondingly, the transformations of
the element tangents (4.152) are given by

Ke

xx n+1

= /Q]n—ﬁ—l(g) G’er( n—i—l) det( n—i—l) 1{alak k A 1}n+1 e(E? XZ—i-l) va )

Ke

xd, n+1

Z/an+1(£) ((Ge (&,x7,41) det(F7,,) 7 (04, K)7 1) @ he(€)) dva

Kaxnit 1 (4.162)
_ / Jor (€) ha(€) ® (det(F) 105, )51 G (€,X,1)

Q
_j2+1 (5) Vehe(g’ Xi+1) (det(F)_lF ala(jda)yel-t,-lGe(ga XfH—l) dUQ )
Kgadb n+1

g je 1 (€)(det(F) 193 dy — det(F) ™03 s4,)%,1 h(€) ® he(€)
s i1(&)0ab ca, Ve (€, x5, 1) Vhe( 7X$L+1)T dvg, .

Note, that based on relations (4.108) and (4.122), 9’k and det(F) ' F 0;*qq, are independent
of F,.,. Further, the local algorithm to determine the current stress state k,,.; as well as
the source terms sg, .41 are based on InVi ; and thus on By, and F,;,. Then, in the
transformed relations above, the current deformation gradient is present only in terms of

det(Fn+1) = det(FEn+1) det(Fpn+1>

4163
— det(Brnsr)} exp(Gins) (4.163)
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The latter expression is based on the form

(det(Fpne)) = tr(Lpe) | (4.164)

in combination with (4.30). Consequently, in context of the above model formulation, the set of
state dependent variables, that have to be transferred reduces to (B, ap n, @11, dy ). In case of
an adiabatic analysis, we have the additional state dependent variable 6,,. With these definitions
at hand, our adaptive finite element framework is complete and we now turn to its application

in context of metal cutting.






Chapter 5

L ocal and non-local modeling of the cutting process

Abstract— In this chapter, the finite element framework, consisting of the adaptive remeshing
scheme and the extended thermodynamic formulation, is applied to the simulation of the high
speed cutting process and results are discussed. Here, we start with the discussion of heat
conduction excluding damage. As will be shown, thermal softening alone leads to a delayed
chip segmentation and furthermore to unrealistic high temperatures inside the main deformation
zone. Improvements are demonstrated in terms of an additional damage formulation. As will be
shown, due to lack of any dependence on time- or lengthscale for local damage development, as,
e.g., given for the development of temperature in terms of the heat balance equation, simulation
results show a dependence on the local element edge length for such a local formulation. In
this context improvements by a non-local formulation of damage as well as the implementation
of the non-local formulation in a commercial code are discussed. Additionally, we present the
issue of non-isochoric plasticity and the related pressure dependent damage development. This
chapter closes with the presentation of simulation results, calculated in context of a benchmark
study.

5.1 Implementation of local, thermo-viscoplasticity including heat con-
duction

In what follows, we apply our developed adaptive finite element framework to the modeling
and simulation of orthogonal cutting. For that purpose, our material model is implemented in
ABAQUS/Standard, in particalur in terms of the user subroutine UMAT. Starting our investi-
gation on the process of cutting we do not consider any damage development at the moment
and further, restrict ourselves to the simple case of local thermo-viscolplasticity, including heat
conduction (¢/;o = 0,1 = D, H, 40 = 0 and k, > 0). In particular, the development of damage
is deactivated by setting the saturation rates r;, I = D, H in (4.82); to zero. Now, in combi-
nation with (4.38) in (4.78) and D, > 0, isochoric plasticity is enforced. As discussed above,
local modeling of the field quantities d and &y, I = D, H is established in terms of the substitu-
tions (4.84), (4.85) and (4.87), (4.88), respectively. Consequently, the remaining evolution-field
equation is the heat balance equations as given by (4.56)s. Here, we make use of a temperature
dependent description of the thermal conductivity as given in Pottlacher et al. (2002). In partic-
ular & varies linearly between kq(6 = 300K )=10.85 [Wm~'K~'] and k(# = 1570K)=31.85
[Wm~!K~!]. As documented in the ABAQUS Theory Manual (ABAQUS-Manual (2008)), the
weak forms of the corresponding balance equations are formulated in terms of the current con-
figuration B,,,;. As gradients of the corresponding quantities are also calculated with respect
to the current coordinates, the ABAQUS implementation and our formulation, as given in terms
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of the transformed element nodal force arrays (4.159), (4.160) and corresponding element tan-
gents (4.162), respectively, correspond. (For further details, the interested reader is referred
to ABAQUS-Manual (2008), Theory Manual, 1.51 (Equilibrium and virtual work), 2.11 (Heat
transfer)). The implementation in ABAQUS-UMAT is generally achieved by passing the quan-
tities and corresponding derivatives, which depend on the constitutive formulation of the mate-
rial to the user subroutine. As documented in the Abaqus User Subroutines Reference Manual
(ABAQUS-Manual (2008), User Subroutines Reference Manual, 1.1.34 (UMAT)), these are

defined as
STRESS := (det(F)'k)¢,
RPL (det(F) ' w, )4y
DDSDDE := (det(F)™! 6752’;rr1(1)k),iJrl
DDSDDT := (det(F)™! 05k)S (5.1)
DRPLDE := (det(F)—lajym(l)wr);+1
DRPLDT := (det(F)'9fw,)% 4

Here, the linearization of the Kirchhoff stress K with respect to the symmetric part of A,, 1,
stems from a linearization, based on the Jaumann-rate of K (see ABAQUS-Manual (2008),
User Subroutines Reference Manual, 1.1.34 (UMAT) for further details). Note, that the deter-
mination of the above quantities follows from (4.159), (4.160) and (4.162) in terms of d, = 6.
The simulation results to follow are based on the material parameter values given in Table 5.1.
For all simulations to follow, the allowable error is set to ||e., |[max = 0.05. Additionally, we
apply the equivalent deviatoric plastic deformation ap and the deviatoric plastic rate ap, in
particular normalized to the mean value, as additional refinement indicators. Here, the element
size varies linearly between ap; = 0.7 and ap, = 0.9 for the deviatoric plastic deformation
and between a = 1.0 and a = 1.3 for the normalized deviatoric plastic rate. To study the
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o
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jc
450 2012.7 1.6332 | 1570 1.3 | 0.017 | 0.001 0.9

Table 5.1: Johnson-Cook model parameters for Inconel 718 (partly from Sievert et al. (2003))
determining the model relations (4.62) and (4.63).

influence of heat conduction on the development of chip formation, we choose three different
cutting speeds v, at two different tool rake angles ~. The tool edge radius is fixed at »=20 pm.
The cutting depth is chosen as ¢.=150 um. The different cutting conditions for the different
cases, discussed in the following are summarized in Table 5.2.

The simulation results generally confirm, that the decreasing influence of heat conduction with
increasing cutting speeds favors the formation of localized deformation patterns, up to shear
banding. The change from a continuous, to a segmented chip at a cutting speed of v.=200
mmin—!, as reported, e.g., by Hoffmeister and Wessels (2005) is, at least for the given cutting
conditions, not being reproduced. Further, the decrease of the specific cutting forces, gener-
ally observed in practice, is confirmed only for v=-7° (see Figure 5.1). As reported in the
work of Clos et al. (2003) the maximum temperatures inside the main deformation zone for
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heat conduction | v [°] | v. [mmin~!]
h 0100 0 100

h 0 200 0 200

h 0 1000 0 1000

h -7 100 -7 100

h -7 200 -7 200

h -7 1000 -7 1000

Table 5.2: Cutting conditions for the local model with heat conduction.

1,=1000mmin~—! have been detected with approximately 1000 K. In our simulation, we detect
temperatures of 1200 K and higher (see Figure 5.3). The deviation between the experimentally
detected and simulated temperatures suggests an additional softening effect, which decreases
the yield strength and thus, plastic heating inside these highly deformed areas. In literature, this
additional softening effect is often modeled in terms of ductile damage (see e.g. Sievert et al.
(2003)).

AR
A A3

Figure 5.1: Chip formation for the local model with heat conduction for different tool rake
angles (above: ~+=0° below: ~=-7°) at different cutting speeds (left: 100mmin—!, middle:
200mmin—1, right: 1000mmin—1). The contour plots show the distribution of accumulated
inelastic deformation.

5.2 Local, thermo-viscoplasticity including heat conduction and ductile
damage

Based on the above results, we will now activate the development of damage. In what follows,
we assume that damage development or more generally spoken, isotropic softening, induced
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Figure 5.2: Cutting forces for the cutting simulation with local modeling and heat conduction
for different tool rake angles ~ and different cutting speeds v., as specified in Table 5.2.
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Figure 5.3: Distribution of temperature for the cutting simulation at v,=1000mmin—1. Left:
~v=-7°. Right: v=0°. Contrary to experimental observations (see e.g. Clos et al. (2003)), the
temperatures inside the main deformation zone are above 1000 K.

by purely deviatoric plastic deformation dp, is activated beyond a critical value of plastic de-
formation (apq > 0). A similar behavior (rapidly increased development of damage beyond a
specific point) is modeled in Sievert et al. (2003) by describing the development of the softening
quantity in terms of an exponential function. Damage, related to spherical processes dy is inter-
preted as growth and coalescence of voids and thus, starts parallel with the development of ay,
which enforces apq = 0. Currently lacking any detailed experimental data, we fit the saturation
rate to the area of increased damage production, described by the model of Sievert et al. (2003).
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In particular we set rp=5.0. Rather than (4.36) for dy, we work with the simplified form
dH =y (1 —dy) dy (5.2)

Now, setting ry = 1 simply identifies dy as void volume fraction. For the moment, we recog-
nize the void volume fraction as the only softening quantity induced by ay. Incorporating other
effects (e.g., spreading of microcracks) can generally be expressed by setting g > 1. Assum-
ing that pressure dominates in the primary deformation zone, we restrict to the simple case of
isochoric plasticity, for the moment. This is actually enforced by choosing a sufficiently high
activation stress, in particular we set D; = 10° in (4.38). In context of simulating the process
of machining, the vanishing influence of heat conduction with increasing cutting speed, results
in enhanced thermal softening, shear banding and a change from a continuous to a segmented
chip at a critical cutting speed. Performing a series of thermo-mechanical simulations with heat
conduction at the desired critical cutting speed allows the identification of the onset of devi-
atoric damage triggered by apq. Although this parameter should be identified in terms of an
appropriate experiment in general, this method gives valuable hints for its lower boundary. As
presented in the previous section, the cutting conditions, here in particular the tool rake angle,
has a significant influence on the chip formation. Consequently, we have to restrict to a specific
set of cutting conditions, when performing such parameter studies. Lacking any detailed exper-
imental data, we restrict to a tool rake angle of v = 0° for the moment. The set of parameters
for the local damage model (4.36) and for the cutting conditions used in the following study are
summarized in Table 5.3

heat conduction with deviatoric damage | v [°] | v. [mmin™'] | rp | apg
hd01002.0 0 100 5 120
hd02002.0 0 200 5 120
hd 01000 2.0 0 1000 5 120
hd0100 1.5 0 100 5 |15
hd02001.5 0 200 5 |15
hd 01000 1.5 0 1000 5 |15

Table 5.3: Parameters for local damage model (4.36).

As can be seen from the contour plots for the chip formation (Figure 5.4), the minimum value
for the onset of deviatoric damage can be approximated with apq = 1.5. At this value, we
detect the onset of shear banding for the chosen critical cutting velocity v, =200mmin—!. Shear
banding is just repressed for v, =100mmin~!. For apq = 2 shear band formation is not detected
for both cutting speeds, v, =200mmin—! and v, =100mmin~—1!, respectively. Again, this result
is strictly related to the given cutting parameters in combination with the given parameters for
the discussed material model. Comparing the plots for the specific cutting force (Figure 5.5),
we observe an decrease with activated damage development. Additionally to the periodic stress
drops, induced by localized plastic deformation, we detect a decrease of the peak values as
well. The temperature plot for the main deformation zone shows a reduction of the maximum
temperatures to approximately 1100 K, which is still higher than the temperatures, observed
in experimental investigations. A further reduction can generally be obtained by modeling an
earlier onset of softening, which implies a lower value of apq. In context of our current model
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formulation this is unprofitable as this would also lead to an earlier onset of segmented chip
formation for lower cutting speeds. To resolve this conflict, the model can be enhanced by, e.g.,
introducing a rate dependent formulation of apgy. Lacking any detailed experimental data and
on a detailed micro mechanical motivation, we keep this in mind for future work but restrict to
the constant value of apq for the moment.

AR
AR

Figure 5.4: Chip formation for the local model with heat conduction and damage for different
triggering of deviatoric damage (above: apq = 2.0 below: apq = 1.5) at different cutting
speeds (left: 100mmin—1!, middle: 200mmin—!, right: 2000mmin—!). The contour plots show
the distribution of accumulated inelastic deformation.

5.3 Non-local formulation in combination with a commercial code

Recalling the set of governing equations given by the linear momentum balance (4.55) and the
additional evolution field equations (4.56), note that the mechanical boundary value problem
alone (4.55) is generally lengthscale independent. Working with a rate dependent constitutive
model for our material as we do, a dependence on the timescale is introduced at least. In the
above simulations with heat conduction, the model is enriched with an additional length- and
timescale dependence. In our simulations this additional dependence on the timescale shows in
the dependence of chip formation on the cutting speed (see Figure 5.1 and Figure 5.4). More-
over, due to the inherent dependence of the heat flux on the dimension of length, we also have
a lengthscale dependence. Considering, e.g., the case of adiabatic heating (k, — 0) in combi-
nation with a rate independent material model, the dependence on the cutting speed as well as
on the dimension of our model would actually vanish. In terms of the heat balance equation,
both, time- and lengthscale dependence are given for k&, > 0. Corresponding to &y — 0, the
influence on both time- and lenghtscale vanishes and the mechanical boundary value problem
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Figure 5.5: Influence of ductile damage on the specific cutting force and on the development of
temperature inside the main deformation zone.

is again independent on the lengthscale for local modeling of the plastic rates and local mod-
eling of the damage (e.g., /o — 0, /pg — 0, 30 — 0). Under the assumption of non-local
interaction of voids in terms of damage development or non-local interaction of dislocation ac-
tivation in terms of plastic processes, however, we would actually expect a dependence on the
dimension (lengthscale) of our boundary value problem. In context of a finite element solu-
tion of the boundary value problem given by (4.55) and (4.56), the following lengthscales are
significant. As discussed above we have the set of quantities discribing non-local processes
like heat conduction, interaction of voids and interaction of dislocation processes, in particular
the thermal conductivity kq and the internal length parameters ¢, o, respectively. Additionally,
we have the characteristic lengthscale of the boundary value problem /¢, (structural lengthscale,
e.g., cutting depth) and in context of a finite element solution the characteristic element edge
length ¢, given, e.g., by the minimum element edge length h,,;,. The ratio ¢4, 0/¢, is important
in context of mesh dependence. This issue will also be discussed in what follows. As shown in
Chapter 2, the onset of shear banding, and thus the segmentation frequency, is strongly related
to the minimum element edge length of the finite element discretization for local modeling of
the quantities governing the effect of softening. This so-called pathological mesh dependence is
deeply rooted in the local character of the governing equations and can thus not be elliminated
by adaptive remeshing. Starting with the discussed local formulation with heat conduction,
this effect becomes obvious. As can be seen in terms of the contour plots for the accumulated
inelastic deformation in Figure 5.6 further mesh refinement leads to a sharper localization of
plastic deformation and moreover, to completely different deformation patterns. Motivated by
the successfull application of a non-local formulation of the damage in previous works (see e.g.
Reusch et al. (2008)), here in terms of a non-local Gurson model, in context of crack propa-
gation in metal matrix composites, we will now apply such a non-local damage formulation in
context of simulating the process of cutting. In particular we make use of the model formula-
tion discussed in the previous chapter and, as in the discussion for the case of heat conduction,
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Figure 5.6: Demonstration of pathological mesh dependence. The reduction of the minimum
edge length causes sharper localization resulting in different deformation patterns. Here, the
minimum element edge length are set to A,,;,=0.1/16mm (left) and A,,;,=0.1/32mm (left). The
figures show the distribution of equivalent deviatoric plastic deformation.

restrict to the case of isochoric plasticity for the moment. The non-local damage formulation
as given in terms of (4.56), in combination with (4.66) and (4.37) is analogous to the non-local
class, applied in Reusch et al. (2008). Contrary to this work, the local development of damage,
induced by deviatoric processes d4, to which we restrict in case of isochoric plasticity for the
moment, is described by (4.33). As in contrast to nonlocal damage or nonlocal plasticity, heat
conduction is a standard implementation in commercial finite element codes, we will now make
an attempt to adapt our formulation to this implementation. For this purpose, recall the weak
evolution-field equations, as given in terms of (4.114). In this context note that making use of
the substitutions

ar = co(rp — O?In)/tnﬂ,n
Sayn+l — CO(dln+1 — Qg n)/tn—l—l,n
Cap = (CO g%o)/tn—i—l,n

d = coldnii = do)/tnsrn '

Sint1 CO<an+1 + CanH —dp) [tniin (5.3)
c;i = (a 030)/tnt1in
0 = collurr —0a)/tusin

80n+1 = Wy
co = ko

instead of (4.116) yields the identical formulation for the evolution-field equations, but now the
algorithmic formulation for the equivalent plastic deformation and damage correspond to that
for the temperature. Practically, the implementation of the non-local description is established
by setting the temperature DOF as d, and returning the rate of plastic heating and correspond-
ing derivatives as s,;, and corresponding derivatives of s, , respectively. The local algorithm
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remains untouched and the adaption of the corresponding derivatives is straightforward by fol-
lowing the general framework developed above. Working, e.g., with the finite element code
ABAQUS, the adaption of the heat conduction coefficient in terms of the time increment ¢,,;+ ,,
becomes possible by making use of the user subroutine USDFLD (user defined field) in com-
bination with a field dependent heat conduction coefficient. In particular, we make use of the
linear relation

codn)(ar) = co L0 a5 (5.4)

with the field quantity simply calculated as

4 =tpiin (5.5)
Note, that the information passed to the user subroutine is now given by the adapted terms

STRESS :=

( ( n+1
RPL := (det(F) 'sq,) 0
DDSDDE := (det(F)~ 92, k)., 56
DDSDDT = (det(F)~' 2 k)., |
DRPLDE := (det(F)~'9%., 4 54,)5:1
DRPLDT = (det(F)"'02 s4,)5.1 ,

with corresponding s,, given by (5.3). The user subroutine UMAT only offers the degrees of
freedom displacement and temperature, which enforces one to model the development of the
temperature as adiabatic. As @ is now treated as an internal variable we have to make use of
substitution (4.86).

To investigate the behavior of the non-local damage formulation separated from thermal soft-
ening we start with a simple numerical example without adaptive remeshing. Here, we apply
the example of a notched tensile specimen as introduced by Sievert et al. (2003) and later also
applied in the work of Flatten (2007). The specimen with dimensions and boundary conditions
as given in Figure 5.7 is elongated quasi-static, which allows isothermal conditions. Further,
the onset of damage is triggered at ap; = 0 to allow a pronounced development of damage
at early stages of elongation. This avoids distorted elements as expected in case of a required
long elongation of the specimen with ap, = 1.5. The simulation results given in Figure 5.8
and Figure 5.9 demonstrate the influence of the above introduced lengthscales /4,0, /s and ¢;,.
The structural lengthscale is arbitrarily fixed at /, :=1 mm. As stated above, we are mainly
interested in resolving lengthscale effects, but in terms of a numerical solution of the boundary
value problem also the issue of mesh dependence is important (see Figure 5.6). The simulations
have been carried out with three different meshes (¢,=0,25mm, ¢,=0,125mm, ¢;,=0,0625mm)
at two different material lengthscales (£40=0,1mm, /4,=0,5mm). As can be seen from both, the
force-displacement diagrams (Figure 5.8) and the corresponding contour plots (Figure 5.9), the
tendency of converging solutions can be observed for sufficiently large ratios ¢4o/¢;,. For small
values of this ratio, the well known pathological mesh dependence is observed. For the given
problem, adequate results are detected for /4q/¢;, > 2. Generally spoken, the local mesh size
should be smaller than the material lengthscale, to resolve the underlying BVP. The effect of
different ratios ¢, /¢ is emphasized in Figure 5.10. As can be observed, higher values of ¢, /¢
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Figure 5.7: Notched tensile specimen as introduced by Sievert et al. (2003) and later also applied
in the work of Flatten (2007).
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Figure 5.8: Force-displacement diagrams for the notched tensile specimen as given in Figure
5.7. The specimen is elongated quasi-static, which allows isothermal conditions. The tendency
of converging solutions can be observed for sufficiently large ratios ¢40/¢),
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Figure 5.9: Contour plots showing the distribution of damage for the notched tensile specimen
as given in Figure 5.7. The specimen is elongated quasi-static, which allows isothermal condi-
tions. Simulations are carried out for /490 = 0.1 (left column) and ¢400.5 (right column), with
element edge lengths ¢,=0.25 mm (above), /,=0.125 mm (middle) and ¢,=0.0625mm (below).
The structural scale is fixed at /, :=1 mm. See text for further details.

lead to a broadened area of the softening quantity causing the specimen to fail at a later point.
Different values of /4, are generally related to different materials (microstructures). Note, that
for quasistatic, isothermal loading, increasing of ¢, and thus increasing of ¢4, /¢ is correspond-
ing to decreasing /4 //s, €.9., downsizing the structure. Restricting here and in what follows
to ratios ¢4 /¢, > 2, we now demonstrate the behavior of the non-local damage formulation in
terms of a cutting simulation. Again, starting with an exclusion of thermal softening, which is
purely academic in case of cutting, we set the Taylor-Quinney coefficient to 5, —0 (isothermal
formulation). In the above investigations, we set the onset of damage to a high value to keep
the influence of thermal softening dominant, in particular, we found apy=1.5. Now, to allow
the onset of localized plastic deformation patterns without thermal softening, we work with
apq = 0.75 for this specific situation and keep all other parameters fixed. The first simulation
is calculated with a characteristic element edge length of ¢, =05 =h,,aihrmmin=0.1/16 mm. The
characteristic length of the structure is given by ¢, = ¢t = ¢,=0.15 mm. Further, lacking
on any detailed information for the specific microstructure we set the internal length, describ-
ing the non-local damage effects arbitrarily to the determined minimum value ¢4y := 2 £,
Now, increasing the internal length to /4o = 8 ¢:*f we detect results corresponding to those for
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Figure 5.10: Force-displacement diagrams and corresponding contour plots showing the distri-
bution of damage for the notched tensile specimen as given in Figure 5.7. The figures show the
effect of different ratios 40 /¢s. The structural scale is fixed at /, :=1 mm.

the simulation of the tensile specimen above. In contrast to the simulation with /4y := 2 ¢3!
(Figure5.11,) the simulation with /4o := 2 2" (Figure5.11;) does not show any segmentation
of the chip. Again, increasing the effect of non-local interaction or decreasing the structure,
respectively, leads to a broadened area of damage, resulting in a delocalization of plastic defor-
mation. As observed above, decreasing of the element edge length from ¢,=¢:°" (Figure5.11,)
to ¢,=¢:f /2 (Figure5.11,) does not show any prominent effects of mesh dependence. However,
this is not the case when having the additional effect of thermal softening. In this case, the
development of temperature is independent from any lengthscale resulting again in pathologi-
cal mesh dependence (Figure5.12,, Figure5.12.). Also the lengthscaling effect is less distinct
(Figureb.12,, Figure5.12;)). These results, as well as the results for the variation of the cutting
speed, as presented above suggest a formulation and implementation with a non-local descrip-
tion for all involved softening quantities, e.g., a combination of heat conduction and a non-local
formulation of damage. As the current UMAT-based implementation allows only one additional
degree of freedom, the presented formulation should be implemented in the more flexible user
element environment (UEL).
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Figure 5.11: Cutting simulation with non-local formulation of the damage at isothermal con-
ditions. Increasing the effect of non-local interaction leads to a broadened area of damage
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Figure 5.12: Cutting simulation with non-local formulation of the damage and adiabatic heating.
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in pathological mesh dependence (a,c). The lengthscaling effect is weakly distinct (a,b)
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5.4 Outlook hydrostatic/deviatoric coupling

As an outlook on future work, we present the modeling of non-isochoric plasticity. In contrast to
modeling the influence of the hydrostatic stress state on the development of damage indirectly,
in terms of some scalar value describing the level of triaxiality, as introduced, e.g., in the work
of Singh et al. (2003), we favor the approach of modeling this influence directly in terms of
hydrostatic activation and deformation processes. Corresponding to the work of Gurson (1977),
this approach is open to adjustments, motivated by micromechanical observations. These ob-
servations can be supported by, e.g., detailed finite element modeling and simulation of specific
microstructures. In the above formulation, o; = ky and o, = k,, are generally uncoupled at
the microlevel. Assuming that both, the hydrostatic and deviatoric parts of macroscopic stress
states, will activate and drive inelastic deformation at the level of the microstructure, they be-
come coupled. The stress-state coupling is based on a combined effective microscopic stress
T (TDms Oum) With op (0, 0 = 0) = op,, @and op (0p,, = 0, 0y,,) = Opy,- These are
satisfied for example by the form

O-Pm(O-Dmv OHm) - \/ U]%m + 012{m (57)

which we work with for simplicity here. As discussed above the microscopic stresses oy,
I = D, H are related to the macroscopic ones via

Om = 6I/fI(CZ) ) (5.8)

in terms of fi(d) representing the influence of the microstructure (e.g. voids, microcracks etc.),
given by (4.37) and (4.38). Defining next an effective microscopic deformation rate ¢, by

O Oy = 070y (5.9)
here in terms of the conjugate pair &, and ¢, the relations (5.7), (5.8) and (5.9) yield
by = O G /by + Oy Ot /6y = [ G O /6D, + i Oy Oy /Oy, - (5.10)

Assuming next, that the effective microscopic flow behavior is the same with respect to hydro-
static and deviatoric loading, we have o, . /dp = 0y / Qg @Nd SO

Obm = {f5 6D + fi 61} O/ O - (5.11)
This can be rearranged to obtain an expression for o, , and so that
o1 = gi(aw, an, d) fi(d) op,, (5.12)

via (4.34), with

i, dur, d) = &y fi(d)/\/ Fp(d)? 6 + fy(d)? 6 (5.13)
representing the effect of coupling. Based on (4.66) in combination with (4.62) and (4.63), we
choose

Opm = {1+Cjc In(1+|cp|/dpg) } {1=[(0—0p)/ (O1no—00)] "< } {ajc+bjc (1_6_njcap)} . (5.14)
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In this constitutive relation the accumulated plastic deformation and its corresponding rate is a
composite of ap, and ayy, in general. Assuming, that spherical plastic deformation is small in
comparison to deviatoric plastic deformation, we work with
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Qi
I
o]

for simplicity. Again, having o,; = ky and o, = k,,, the above relation represents the im-
plicit relation to determine ;. For the moment we abstain from deriving the corresponding
rate and dissipation potentials and simply work with the implicit constitutive relation given
by (5.12), instead of (4.66). Note that a corresponding uncoupled form is obtained for g;:=1
(5.13). Lacking of any detailed information about the specific microstructure, the parameters
for the relation moderating the transformation between macroscopic and microscopic hydro-
static stresses (4.38) are set to D, :=2/3 and D, :=1/2. These values actually stem from a
comparison between our model formulation and the well known model of Gurson (1977). This
issue will be illustrated in the following. The established model of Gurson (1977), here in the
form introduced by Tvergaard (1981), considers the influence of the hydrostatic stress in terms
of a yield surface given by
2
i > +2q; dcosh <q223 i ) —(ud)?*=1=0 (5.16)

OPm

o=

OPm

Slight rearranging leads in a first step to the relation between the macroscopic deviatoric and
spherical stresses kp and ky, respectively and the microscopic stress op,,, causing plastic yield-
ing inside the matrix material.

_ 2
1 2 (2q1d)? 3 ky
_k CH i h — 1) = opp? 5.17
(1—(]1d D) +O—P (1—q1d cos Q220'pm I ( )

In this form, the maximum deviatoric and hydrostatic stresses kp,_ .. and ky, ., respectively,
can be identified by simply setting &y or kp to zero (see also Figure 5.13).

N2
- 2 1l—qd
Fttex = fu(d) opm = —arccosh ﬂ + 1| opm (5.19)
3q2 (2q1d)2

Note that in general, spherical tension is not arbitrarily high, e.g., in case of a quasistatic simple
tension test

1
/{ZH = gO’pm . (520)
This motivates an approximation in terms of the series expansion of
$2
cosh(z) =1+ o +R (5.21)

in equation (5.17). This leads to

_ 2
1 2 (2q1d)z 1/ 3ky\’
_k m? - (= R)| = opn’ 5.22
(1—q1d D) +op <1—q1d 5 QQ2O_Pm + op (5.22)
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Figure 5.13: Gurson yield surface at a fixed damage d.

Again, for R := 0 this relation allows to identify the maximum stresses

kDmax - fD(d) UPm = (1 - ql d) O_Pm (523)

- 2 1—qd

Ftee = fu(d) 0pm 3 o (0 J)%Opm (5.24)
In Reusch et al. (2008) and other works the parameters for the Gurson yield surface are assumed
with ¢;=1.5 and ¢»,=1. Noting that the above comparison with a rate independent formulation
is just a first approach to have at least a qualitative determination of our parameters D; and
D-, we make use of the approximation ¢; = ¢; = 1. This identifies a transformation between
macroscopic and microscopic stresses similar to our model formulation in terms of (4.37) and
(4.38) with D, :=2/3 and D, :=1/2.

Starting with these parameters we will now again make use of the notched tensile specimen
to demonstrate the effect of additional hydrostatic-stress driven damage. Here we compare the
purely deviatoric formulation (D; = 105, D,=1/2.) with i) the uncoupled formulation (g; :=
1, D1=2/3, D,=1/2) and ii) with the coupled formulation (D,=2/3, D,=1/2). To avoid an infi-
nite hydrostatic activation stress and thus, to allow hydrostatic activity from the beginning, we
work with an initial damage of d = 10~3. Both, the uncoupled and the coupled formulation are
computed for ry=1 and ry=4 (increased hydrostatic-stress driven damage). The development
of deviatoric-stress driven damage is characterized by apg=1.5 (see discussion Section 5.2) and
rp=5. Comparing the corresponding force-displacement diagrams and the corresponding con-
tour plots for the distribution of damage, given in Figure 5.14 and Figure 5.15, respectively, we
observe that for both the uncoupled formulation, as well as for the coupled formulation failure
occurs at an earlier point in time, compared to the purely deviatoric formulation. Also the stress
drop is more distinct for the non-isochoric formulation. The difference between the coupled and
the uncoupled formulation becomes strongly distinct for an increased hydrostatic-stress driven
damage (rg=4). This is explained by the following facts. In the decoupled case, depending on
the specific form of f;(d), the point of activation of spherical plastic deformation is, in general,
related to high values of d. Thus, the onset of damage is still triggered by apq. The additional
hydrostatic-stress driven damage merely leads to an increased rate of damage production. In
the coupled case, both hydrostatic and deviatoric processes are active, simultaneously. This



112 CHAPTER 5

leads to earlier damage initiation, as dy develops parallel to ay. A comparison between the
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Figure 5.14: Force-displacement diagrams for the notched tensile specimen for different cases
of combined hydrostatic-deviatoric coupling, as based on (4.36), (5.2) and (5.12). The onset of
deviatoric driven damage is triggered at apq=1.5 with a saturation rate of rp=5. The uncoupled
formulation is yielded with g;=1. The simulations have been carried out with ry=1 and with
increased hydrostatic-stress driven damage (ry=4). See text for details.

results for the purely deviatoric formulation and the coupled formulation with an increased in-
fluence of hydrostatic-stress driven damage (D1=2/3, D,=1/2, ry=4), now in terms of a cutting
simulation is shown in Figures 5.16-5.18. Similar the notched tensile specimen the additional
hydrostatic-stress driven damage leads to an earlier development of the localized shear band
(see Figure 5.16) and thus, to an earlier stress drop for the specific cutting forces (see Figure
5.17). In contrast to the above results for the notched tensile specimen, the effect of hydrostatic
stress is only weakly present. This is explained by the small hydrostatic stresses inside the main
deformation zone (see Figure 5.18, left). More distinct is the stress drop of specific cutting
forces in comparison to the purely deviatoric formulation. Obviously, the additional mode of
spherical plastic deformation (see Figure 5.18, right) leads to a softer response of the structure
(chip). Again, the above results have been calculated with estimated parameters and thus, can
only reflect qualitative tendencies.

55 CIRP Benchmark

We close the presentation of our adaptive finite element framework with a result for a cutting
simulation generated in context of a benchmark study organized by the College International
pour la Recherche en Productique (CIRP, engl.: The International Academy for Production
Engineering). Besides other parameters, such as cutting velocity and tool rake angle, which in-
fluence has already been discussed above, the influence of the tool edge radius on cutting forces
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Figure 5.15: Development of ductile damage for the notched tensile specimen for different
cases of combined hydrostatic-deviatoric coupling, as based on (4.36), (5.2) and (5.12). The
onset of deviatoric driven damage is triggered at apy=1.5 with a saturation rate of rp=5. The
uncoupled formulation is yielded with g;=1. The simulations have been carried out with ry=1
and with increased hydrostatic-stress driven damage (ry=4). See text for details.

and resulting surface has been investigated. In fact, this investigation is predestined for the de-
veloped adaptive approach as here the accurate resolution of the deformation field in front of the
cutting tool edge becomes extremely relevant. The following simulations have been carried out
with the above developed formulation, based on the Johnson-Cook formulation for viscoplas-
tic flow. Here, we applied the purely deviatoric formulation without damage production. The
development of the temperature is modeled with heat conduction (ko=43 [Wm~'K~1]). The
cutting speed and cutting depth are given by v.=175 m/min—! and ¢,=0.05 mm, respectively.
The set of Johnson-Cook parameters for the material AI1SI11045, used in the following study, is
summarized in Table 5.4.

00 [K] | Ao [GPa] | 1y [GPa] | o [K™'T | py [kg/ m?] | ¢y py [I/kg K]

300. 110.5 80. 43x107° | 7.88x10° | 533
ajc [MPa] | b [MPa] | n, Ono [KT | myg | ¢ do [s™'1 | Bo
553 543.686 | 8.5757 | 1733 1. 10.0134 | 1. 0.9

Table 5.4: Johnson-Cook model parameters for AISI 1045, determining the model relations
(4.62) and (4.63)

Comparing the results for the forces for the tool edge radii of »=15um and »=55um the influ-
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Figure 5.16: Distribution of equivalent deviatoric plastic deformation for the cutting simula-
tion with non-local damage. Curves show the results for the simulation with isochoric plastic
deformation (left) and deviatoric/hydrostatic coupling (right).
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Figure 5.17: Specific cutting forces for the cutting simulation with non-local damage. Curves
show the results for the simulation with isochoric plastic deformation and deviatoric/hydrostatic
coupling.

ence of the tool edge radius is small, at first sight (Figure 5.19). Contrary, the effect on the
corresponding thrust forces is immense. This issue is clearly explained in terms of the mate-
rial flow in front of the cutting tool edge, as shown in Figure 5.20. As can be observed, in
a small distance to the tool tip the material flow is comparable for different tool edge radii.
Now, as the cutting force is mainly dependent on the shear and corresponding stresses inside
the main deformation zone, we observe comparable results for this quantity. In contrast, the
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Figure 5.18: Hydrostatic stress (left) and distribution of equivalent spherical plastic deformation
(right) for the cutting simulation with non-local damage. and deviatoric/hydrostatic coupling.
Due to the small hydrostatic stresses inside the main deformation zone the effect of hydrostatic
stress is only weakly present. Obviously, the additional mode of spherical plastic deformation
is needes, which leads to a softer response of the structure (chip). See also Figure 5.17.

thrust force is mainly dependent on the deformation below the tool tip. This deformation is
characterized by the stagnation point. As is clearly reflected in terms of the material flow, this
stagnation point, where the material separates into the chip and the resulting surface, is located
much higher for the larger tool edge radius (Figure 5.20, right). In effect, a higher amount of
material has to be deformed below the tool tip, resulting in higher thrust forces. This and the
increased contact time for the material forming the new surface is also reflected in terms of
higher temperatures inside the resulting surface (see Figure 5.21, left). Another effect is the
smoother trend of the cutting force and the thrust force for the larger tool edge radius (Figure
5.19). Considering the distribution of temperature and the distribution of equivalent plastic de-
formation as given in Figure 5.22 and Figure 5.23, respectively, we observe that a smaller tool
edge radius leads to a more localized plastic deformation. In effect, this leads to an inhomo-
geneous hardening/softening, causing stronger oscillations of the corresponding forces. As an
additional example to the distribution of temperature, we show the distribution of the von Mises
residual stress inside the resulting surface (see Figure 5.21, right). In accordance to the higher
plastic deformations inside the surface (see Figure 5.23), we detect higher residual stresses for
the larger tool edge radius, in general. The stress drop, directly below the surface is assumed to
stem from a complex mix of thermal softening and thermal residual stresses, induced by sub-
sequent cooling. However, this example demonstrates the complexity of the process of cutting,
which suggests interesting research topics for future work.
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Figure 5.19: Cutting force and thrust force for the cutting simulation with tool edge radii
r=15um (AIS11045-1) and r=55um (AISI11045-2).

Figure 5.20: Material flow in front of the cutting tool edge for the cutting simulation with tool
edge radii r=15um (left) and »=55um (right).
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Figure 5.21: Distribution of temperature and von Mises residual stress for the resulting surface.
The distribution for both quantities was taken along a vertical path, 0.2 mm behind the tool tip.

Figure 5.22: Distribution of temperature for the cutting simulation with tool edge radii =15, m
(left) and »=55um (right).
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Figure 5.23: Distribution of equivalent plastic deformation for the cutting simulation with tool
edge radii r=15um (left) and »=55um (right).



Chapter 6

Conclusion and Outlook

6.1 Conclusion

The current work contributes to an enhanced modeling and simulation of high speed cutting and
related processes by the following issues. The developed adaptive finite element framework al-
lows a robust and accurate modeling of the complex deformation processes, taking place during
metal cutting. Based on a combination of error estimation, refinement indication and remeshing,
an adequate resolution of the underlying boundary value problem with a prescribed accuracy
can be ensured at any time. In this context, the adaptive scheme has also proven its capability to
reduce the influence of mesh orientation. The presented method of point wise error estimation
is robust, easy implemented and is capable of identifying the magnitude of gradients with a
minimum of numerical cost. The physical meaning of the accumulated plastic deformation in
context of localization phenomena has been shown and a possible application as a refinement
indicator has been demonstrated on numerical examples. Additionally, in context of detecting
material instabilities, the rate of equivalent plastic strain as well as the plastic power have turned
out to work very well. Here, in contrast to the accumulated plastic deformation, these param-
eters for the refinement strategy are problem-dependent and cannot be determined in advance.
For the mapping of internal variables it has been shown that the classical finite element projec-
tion of the recovered values leads to numerical diffusion. Here, a separated, direct transfer has
been established. In contrast to standard models, based on, e.g. a predefined separation of the
chip from the workpiece, the adaptive approach ensures a reasonable resolution of the complex
deformation patterns and moreover allows the modeling of the resulting surface. The latter issue
is highly important in context of production engineering, as the state of the resulting surface is
decisive for the quality of the whole product. The presented adaptive framework is implemented
in @ modular fashion and is thus open for further improvements. The simulation results for the
cutting process, presented in this work show, that thermal softening only explains the effect of
segmented chip formation in general. A detailed investigation on the resulting temperatures,
however, suggests additional softening effects. Thus, the author developed an extended thermo-
dynamic framework, with a general non-local description of several thermodynamic quantities,
including the additional softening effect of damage. Contrary to standard isochoric formula-
tions, the current work is based on both hydrostatic stress- and deviatoric stress-driven inelastic
deformation, damage, and failure. This separated approach, allows further investigations and
specifications of microstructural effects and their influence on, e.g., the development of dam-
age. The presented form for the development of damage is capable of representing the effect of
pronounced localization patterns, up to shear banding and chip segmentation for increased cut-
ting speeds. Also the change from a continuous to a segmented chip at a critical cutting speed
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has been reproduced. Further, the effect of hydrostatically driven damage has been demon-
strated in terms of a notched tension specimen, as well as in terms of a cutting simulation. As
has been shown, the extended non-local description allows the modeling of lengthscale effects,
in general. This issue may become relevant when decreasing the structural lengthscale of the
problem as, e.g., in terms of micro-cutting. The additional benefit of further reduction of mesh
dependence is also prominent and has been discussed.

6.2 Outlook

The simulation results presented in the current work are essentially academic in nature, at this
time. Excepting the parameters for the thermo-viscoplastic part of the material model, which are
available in literature, the parameters for the presented damage formulation have not yet been
properly identified. In the present work the influence of the microstructure has been introduced
by a relation, moderating the transfer between macroscopic and microscopic stresses, based on
micromechanical assumptions. For starting, the parameters of this relation have been fit to the
specific form of the well known Gurson-model. In future work, further investigations should
start by determining the specific form of these microstructural relations. Here, we could start
by solving boundary value problems with an explicit representation of a specific microstructure
(e.g. voids), corresponding to the original boundary value problem introduced by Gurson. Ad-
ditionally, material testing with varying influence of hydrostatic stress must supplement such
investigations. Related to this are microstructural investigations and simulations with the aim
of identifying the interaction radius of voids. In the current work, we restricted to the appli-
cation of the general form of non-local damage and thus considered only non-local interaction
of, e.g., voids and microcracks. Assuming non-locality for the non-local rates of deviatoric and
spherical accumulated inelastic deformation and assuming further, that these quantities drive
the development of damage, the damage production is inherently non-local. In this context a
detailed investigation on the different involved lengthscales has to follow. The presented sim-
ulation results suggest a formulation and implementation with a non-local description for all
involved softening quantities, e.g., a combination of heat conduction and a non-local formula-
tion of damage. The current, UMAT-based implementation allows only one additional degree
of freedom. Thus, the presented formulation should be implemented in the more flexible user
element environment (UEL). This is already work in progress. In context of metal cutting, the
adaptive framework allows further investigations not possible with standard models. As has
been shown, the detailed resolution of the deformation field allows access to detailed informa-
tion about the state in the contact zone between workpiece and tool (pressure, relative velocities,
temperatures). This information is indispensable when investigating, e.g., the effect of tool wear
which will be future work.
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