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Abstract

In this paper we introduce the well-balanced Lévy driven Ornstein-Uhlenbeck
process as a moving average process of the form Xt =

∫
exp(−λ|t − u|)dLu. In

contrast to Lévy driven Ornstein-Uhlenbeck processes the well-balanced form pos-
sesses continuous sample paths and an autocorrelation function which is decreasing
more slowly. Furthermore, depending on the size of λ it allows both for positive
and negative correlation of increments. As Ornstein-Uhlenbeck processes Xt is a
stationary process starting at X0 =

∫
exp(−λu)dLu. However, by taking a differ-

ence kernel we can construct a process with stationary increments starting at zero,
which possesses the same correlation structure.

MSC 2010: 60G10, 60E07, 91B24

Keywords: semimartingale, Ornstein-Uhlenbeck process, Lévy process, infinitely divisible
distribution, autocorrelation, financial modelling

1 Introduction

Recently moving average processes have attained much attention, both from the the-
oretical and application side, since they provide a large class of processes, only partly
belonging to the class of semimartingales and allowing to model correlation structures
including long-range dependence. The theoretical foundations of treating moving average
processes with driving Lévy processes have been provided in Rajput and Rosinski (1989)
and recently the question under which conditions these type of processes are semimartin-
gales has been considered in Basse and Pedersen (2009). A special case of Lévy driven
moving average processes are fractional Lévy motions (cf. Benassi et.al (2004) and Mar-
quardt (2006)), where the kernel function of the fractional Brownian motion is taken,
leading to the same correlation structure as fractional Brownian motion. Bender et.al
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(2010) derived conditions on the driving Lévy process and the exponent of the kernel
function under which the fractional Lévy motion is a semimartingale. It turns out that
this can only be the case in the long memory setting and then the process is of finite
variation. Barndorff-Nielsen and Schmiegel (2009) developed the idea of moving average
processes further by introducing a stochastic volatility component leading to Brownian
semi-stationary processes, which are a very promising class of processes for modelling
turbulence. Furthermore, these processes have also been applied to electricity modelling
(cf. Barndorff-Nielsen et.al (2010)). However, we can also view the well-known Ornstein-
Uhlenbeck process as moving average process, which due to its simple structure is very
popular for modelling mean reverting data (e.g. Barndorff-Nielsen and Shephard (2001),
Klüppelberg et.al (2009))

Motivated by this we introduce an exponential kernel exp(−λ|t − ·|), λ > 0 on the
whole real line leading to the well-balanced Ornstein-Uhlenbeck process. We show that
this process is well defined without having to assume further conditions on the driving
Lévy process, such as for fractional Lévy motions. The process possess infinitely divisible
marginal distributions and is stationary. In contrast to Lévy driven Ornstein-Uhlenbeck
processes it possesses continuous sample paths of finite variation and therefore it is a
semimartingale with respect to any filtration it is adapted to. Furthermore, the auto-
correlation function is decreasing more slowly than the one of the Ornstein-Uhlenbeck
process, namely it is of the order h exp(−λh). In addition the range of the first-order
autocorrelation of the increments is (−0.5, 1) in contrast to (0.5, 0) for the Ornstein-
Uhlenbeck process. Positive values are often associated to long range dependence, but
with the well-balanced Ornstein-Uhlenbeck process we see that this is not true.

Hence the well-balanced Ornstein-Uhlenbeck process might serve as a promising mean
process in financial models, e.g. as additive component in stochastic volatility models,
since it possesses the following desirable properties:

• the decay of the autocorrelation function is between fast pure exponential decay
and long memory,

• the autocorrelation between increments can be positive and negative, depending on
λ,

• it is a semimartingale,

• it has an infinitely divisible distribution.

In addition to the well-balanced Ornstein-Uhlenbeck process with the kernel given above
we also introduce the process with the corresponding difference kernel exp(−λ|t − ·|) −
exp(−λ| · |), motivated by the form of the kernel of fractional Brownian motion. This
process, in contrast to the previous one, is not stationary, but it possesses stationary
increments and starts in zero. Furthermore, the distribution of the squared increments of
both processes are obviously equal and the autocorrelation function has the same decay.

Let us give a brief outline on how the paper is organized: in Section 2 we introduce
the notation and define the processes, in Section 3 we show that both processes are
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semimartingales and derive the structure of their characteristics. In Section 4 we provide
the moments and correlation structure of the processes. In Section 5 we give a brief
empirical example to SAP high frequency data.

2 Definition of the well-balanced Ornstein-Uhlen-

beck process

As driving process we consider a Lévy process L given by the characteristic function
E(exp(iuLt)) = exp(tψ(u)) with

ψ(u) = iuγ − σ2u
2

2
+

∫ ∞
−∞

(
exp(iux)− 1− iux1|x|≤1

)
ν(dx),

where the Lévy measure ν satisfies the integrability condition
∫∞
−∞ 1 ∧ x2 ν(dx) <∞.

In the following we give conditions on a kernel function f(·, ·) : R+
0 × R→ R+

0 such that
processes of the form

Zt =

∫ ∞
−∞

f(t, s) dLs, t ≥ 0

exist. Here L denotes the two-sided version of the Lévy process which is defined in the
straight forward way by taking two independent copies L(1) and L(2) and defining

Lt :=

{
L
(1)
t if t ≥ 0

−L(2)
−t− if t < 0.

Here and in the following we deal with stochastic integrals on the real line as well as on
the positive half line. Integrals on R are meant in the sense of Rajput and Rosinski (1989),
i.e. we associate an independently scattered random measure Λ with the two-sided Lévy
process L. For details we refer the reader to Sato (2004) who even treats the more general
case of additive processes in law on [0,∞). The extension to R is straightforward. Λ is
defined on the δ-ring of bounded Borel measurable sets in R and the integral

∫
R g(s) dΛs

is introduced in a canonical way for deterministic step functions g. A function f is then
called integrable if there exists a sequence (gn)n∈N of step functions such that

• gn → f a.s with respect to the Lebesgue measure

• limn→∞
∫
A
gn(s) dΛs exists for every A ∈ B(R).

If a function f is integrable, we write
∫
R f dLs = limn→∞

∫
A
gn(s) dΛs. From time to

time we will switch between this integral and the classical Itô integral, namely in the
case

∫
R 1[0,t]f(s) dLs =

∫ t
0
f(s) dLs for f ∈ Cb. Both integrals coincide for predictable

integrands of the type f(s) = 1[0,s). The general case follows by a standard argument
using dominated convergence. Before we specify the function f(t, s) let us first briefly
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look at the setting of a general kernel. Rewriting the criteria of Rajput and Rosinski
(1989) for the existence of the integral we obtain: the stochastic integral

∫
R f dLs is well

defined if for t ≥ 0 ∫ ∞
−∞

∫ ∞
−∞
|xf(t, s)|2 ∧ 1 ν(dx) ds <∞∫ ∞
−∞

σ2f(t, s)2 ds <∞∫ ∞
−∞

∣∣∣f(t, s)
(
γ +

∫ ∞
−∞

x
(
1|xf(t,s)|≤1 − 1|x|≤1 ν(dx)

))∣∣∣ ds <∞
(cf. in this context Basse and Pedersen (2009)). Then the characteristic function is given
by

E(exp(iuZt)) = exp

(∫
ψ
(
uf(t, s)

)
ds

)
and Zt is infinitely divisible with characteristic triplet (γf , σ

2
f , νf )

γf =

∫ ∞
−∞

f(t, s)

(
γ +

∫ ∞
−∞

x
(
1|xf(t,s)|≤1 − 1|x|≤1 ν(dx)

))
ds

σ2
f =

∫ ∞
−∞

σ2f(t, s)2 ds

νf (A) = (ν × λ)
{

(x, s)
∣∣∣xf(t, s) ∈ A \ {0}

}
, A ∈ B.

Furthermore for u1, u2, · · · , um ∈ R and −∞ < t1 < t2 < · · · < tm <∞ we obtain

E
(

exp(
m∑
j=1

iujZtj)
)

= exp
(∫

ψ
( m∑
j=1

ujf(tj, s)
)
ds
)
.

If we now consider kernels of the form f(t− s) the resulting process Z is stationary since

E
(

exp(iuZt)
)

= exp
(∫

ψ
(
uf(t− s)

)
ds
)

= exp
(∫

ψ
(
uf(x)

)
dx
)
.

Furthermore it possesses stationary increments, since

E
(

exp(iu(Zt − Zs))
)

= exp
(∫

ψ
(
u(f(t− u)− f(s− u))

)
du
)

= exp
(∫

ψ
(
u(f(t− s+ x)− f(x))

)
dx
)
.

If we consider kernels of the form f(t − s) − f(s) we have Z0 = 0 a.s. and stationary
increments where the increments have the same distribution as the increments of the
process generated by the kernel f(t− s).

If f(t, .) ∈ L2(R) and the second moment of L exists and the first one vanishes, we denote
E(L2

1) = V , then Zt also exists in the L2-sense with isometry

EZ2
t = ||f(t, .)||2L2V.
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Now we can come back to our special cases and assume λ > 0. For the stationary Ornstein-
Uhlenbeck process the kernel is exp(−λ(t − s))1(−∞,t](s) = exp(−λmax(t − s, 0)) which
obviously leads to a well defined process. For the well-balanced Ornstein-Uhlenbeck pro-
cess the kernel is

exp(−λ|t− s|) = exp
(
− λ
(

max(t− s, 0) + max(−(t− s), 0)
))
.

From this reformulation we can see why we call the process well-balanced Ornstein-
Uhlenbeck process, namely

Xt =

∫ ∞
−∞

exp(−λ|t− s|) dLs =

∫ t

−∞
exp(−λ(t− s)) dLs +

∫ ∞
t

exp(−λ(s− t)) dLs

which is analogous to the well-balanced fractional Lévy motion (cf. Samorodnitsky and
Taqqu (1994), Marquardt (2006)). The initial distribution of X is given by

X0 =

∫ ∞
−∞

eλ|s| dLs =

∫ 0

−∞
eλs dLs +

∫ ∞
0

e−λs dLs.

As for the fractional kernel we can construct processes with stationary increments starting
from zero, which for the Ornstein-Uhlenbeck process leads to

Ũt =

∫ ∞
−∞

exp(−λmax(t− s, 0))− exp(−λmax(−s, 0)) dLs

and for the well-balanced Ornstein-Uhlenbeck process to

Yt =

∫ ∞
−∞

exp(−λ|t− s|)− exp(−λ|s|) dLs.

Now we can provide the characteristic triplet of the process X.

Lemma 2.1. The well-balanced Ornstein-Uhlenbeck process

Xt =

∫ ∞
−∞

exp(−λ|t− s|) dLs

is well-defined and infinitely divisible with characteristic triplet (γX , σ
2
X , νX)

γX =
2

λ
γ +

1

λ

(∫ ∞
1

ν(dx)−
∫ −1
−∞

ν(dx)
)

σ2
X =

1

λ
σ2

νX(A) = (ν × λ)
{

(x, s)
∣∣∣x exp(−λ|t− s|) ∈ A \ {0}

}
, A ∈ B

if and only if λ > 0 .

Proof. The result follows by straight forward calculations from the general formulae.

Here we see that in contrast to fractional Lévy motions the well-balanced Ornstein-
Uhlenbeck process is well-defined without imposing further conditions on the driving
Lévy process.
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3 Semimartingale Property and Characteristics

Since the processes X and Y differ only by a random variable which does not depend on
t ≥ 0, in the following we only treat only X. However, the results remain valid for Y .

In a first step we show that (Xt)t≥0 is a semimartingale with respect to a suitable filtration.
In order to do this we introduce the following decomposition∫ ∞

−∞
e−λ|t−s| dLs = e−λt

∫ 0

−∞
eλs dLs + e−λt

∫ t

0

eλs dLs + eλt
∫ ∞
t

e−λs dLs

and write the last term as

eλt
∫ ∞
t

e−λs dLs = eλt
∫ ∞
0

e−λs dLs − eλt
∫ t

0

e−λs dLs.

For reference purposes we write the above representation of (Xt)t≥0 in a short form

Xt = e−λtG+ eλtH + e−λtIt − eλtJt, (1)

using the following notation:

It :=

∫ t

0

eλs dLs and Jt :=

∫ t

0

e−λs dLs

and

G :=

∫ 0

−∞
eλs dLs and H :=

∫ ∞
0

e−λs dLs.

The first part e−λtG + eλtH is very simple because G and H are only random variables
which are multiplied with a deterministic process of finite variation. On the other hand
even this simple part matters if we are concerned with filtrations. Obviously the natural
filtration F0 = (F0

t )t≥0 of L(1) is not big enough for (Xt)t≥0 to be adapted to it, since G and
H are in general not measurable with respect to any F0

t . While it is a simple task to attach
an independent random variable, which is the case for G (cf. Corollary 1 to Theorem VI.11
in Protter (2005)), it is much more involved by using the common techniques to show
that L(1) is still a semimartingale with respect to Gt := σ(Ft ∪

∫∞
0
e−λs dLs). For further

details in this context compare Chapter VI of Protter (2005) and the references given
therein.

We will proceed as follows: using the characteristics of the semimartingale (e−λtIt +
eλtJt)t≥0 we show that X is a process of finite variation and hence - a posteriori - a
semimartingale with respect to any filtration it is adapted to.

Proposition 3.1. The process (e−λtIt− eλtJt)t≥0 is a semimartingale with respect to the
filtration F0.

Proof. Obviously e−λt and eλt are processes of finite variation on compacts. Furthermore∫ t
0
eλs dLs and

∫ t
0
e−λs dLs are F0-semimartingales by Jacod and Shiryaev (2003) I.4.34.

Since the class of semimartingales forms an algebra (cf. Protter (2005) Theorem IV.67),
the statement is proved.
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Proposition 3.2. The process (Xt)t≥0 is continuous. In particular the third characteristic
ν of the semimartingale (e−λtIt + eλtJt)t≥0 is zero.

Proof. By the representation (1) above and I.4.36 in Jacod and Shiryaev (2003) we obtain:

∆Xt = ∆(e−λtIt + eλtJt) = e−λt(eλt∆Lt)− eλt(e−λt∆Lt) = 0

for every t ≥ 0. Here we denote ∆Xt = Xt −Xt−.

Proposition 3.3. The second characteristic C of the semimartingale (e−λtIt + eλtJt)t≥0
is zero.

Proof. We use some well known results on the the square- and the angle-bracket:

[I, I]ct =

[∫ ·
0

eλs dLs,

∫ ·
0

eλs dLs

]c
t

=

∫ t

0

e2λsd [L,L]cs

=

∫ t

0

e2λsσ2ds.

We write

e−λtIt =

∫ t

0

e−λs dIs +

∫ t

0

Is− d(e−λs) + [e−λ·, I]t

and, since (e−λt)t≥0 is a process of finite variation on compacts and continuous, we obtain
by Jacod and Shiryaev (2003) Proposition I.4.49〈

(e−λ·I·)c, (e−λ·I·)c
〉
t

=
[
e−λ·I·, e−λ·I·

]c
t

=

∫ t

0

e−2λs d [I, I]ct = σ2t.

Analogously we obtain
〈

(−eλ·J·)c, (−eλ·J·)c
〉
t

= σ2t and for the cross terms〈
(e−λ·I·)c, (−eλ·J·)c

〉
t

= −σ2t =
〈

(−eλ·J·)c, (e−λ·I·)c
〉
t

and therefore Ct =
〈

(e−λ·I· − eλ·J·)c, (e−λ·I· − eλ·J·)c
〉
t

= 0.

Corollary 3.4. The process (Xt)t≥0 is of finite variation on compacts and hence it is a
semimartingale with respect to any filtration it is adapted to.

Note that by Proposition 3.2 and Jacod and Shiryaev (2003) Proposition I.4.23 the process
(Xt)t≥0 is even a special semimartingale with respect to every filtration it is adapted to.

For the remainder of the paper we fix the filtration F which is obtained by defining first
F1 = (F1

t )t≥0 via F1
t := σ(F0

t , G,H). Which is completed and made right continuous in
the usual way to obtain F.

In Basse and Pedersen (2009) and Bender et.al (2010) the authors treat the case of other
kernel functions. However, their conditions on the Lévy process are more restrictive.
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By our above results we know that the second and third characteristic of X (and Y ) are
zero. In order to write the first characteristic in an neat form we use the integration-by-
parts formula and obtain ∫ t

0

eλs dLs = −
∫ t

0

Lsλe
λs ds+ Lte

λt

respective

−
∫ t

0

e−λs dLs = −
∫ t

0

Lsλe
−λs ds− Lte−λt.

Putting these together we have for the first characteristic BX
t = Xt −X0 = Yt

BX
t = (e−λt − 1)

∫ 0

−∞
eλs dLs + (eλt − 1)

∫ ∞
0

e−λs dLs − e−λt
∫ t

0

Lsλe
λs ds− eλt

∫ t

0

Lsλe
−λs ds

=

∫ t

0

{
−
(∫ 0

−∞
eλs dLs

)
λe−λs +

(∫ ∞
0

e−λs dLs

)
λeλs

+ λe−λs
∫ s

0

Lrλe
λr dr − e−λsLsλeλs − λeλs

∫ s

0

Lrλe
−λr dr − eλsLsλe−λs

}
ds

=

∫ t

0

{
−Gλe−λs +Hλeλs − 2Lsλ+ λe−λs

∫ s

0

Lrλe
λr dr − λeλs

∫ s

0

Lrλe
−λr dr

}
ds

=

∫ t

0

λ

{
−Ge−λs +Heλs + λIse

−λs − λJseλs − 2Ls

}
ds.

If we consider the vector valued process S = (X,L,G,H)′ this is even a diffusion with
jumps in the sense of Jacod and Shiryaev (2003) Definition III.2.18 since we have a
representation of the characteristics which is of the form

BS
t =

∫ t

0

b(Ss, s) ds, CS
t =

∫ t

0

c(Ss, s) ds and ν(ω; dt, dx) = dtKt(St(ω), dx)

for measurable b : [0,∞) × R4 → R4, c : [0,∞) × R4 →
{symmetric nonnegative (4× 4)-matrices} and Kt is a Borel transition kernel from
[0,∞)× R4 into R4, with Kt(x, {0}) = 0. Namely for the first component we get

(BS
t )(1) =

(∫ t

0

λ
(
λXt − (λ+ 1)Ge−λs − (λ− 1)Heλs − 2Ls

)
ds

)
=

(∫ t

0

λ
(
λS(1)

s − (λ+ 1)S(3)
s e−λs − (λ− 1)S(4)

s eλs − 2S(2)
s

)
ds

)
.

By Theorem 2.26 in Jacod and Shiryaev (2003) we can conclude that S is a solution of
the following stochastic differential equation:

dSt =


λ
(
λS

(1)
t − (λ+ 1)S

(3)
t e−λt − (λ− 1)S

(4)
t eλt − 2S

(2)
t

)
γ
0
0

 dt+


0 0 0 0
0 σ 0 0
0 0 0 0
0 0 0 0

 dWt
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+ x(2) · 1|x(2)|≤1 (µL(dt, dx)− dtν(dx)) + x(2) · 1|x(2)|>1 µ
L(dt, dx)

with initial distribution S0 ∼ (G+H, 0, G,H)′.

Summarizing we can see that though integrating with respect to a general Lévy process
the special very regular form of the kernel leads to a semimartingale of bounded variation.
Hence the well-balanced Ornstein-Uhlenbeck process might serve as mean process in the
framework of semimartingale models, e.g. stochastic volatility models in finance.

4 Moments and Correlation Structure

In this section we will analyze the correlation structure of the well-balanced Ornstein-
Uhlenbeck process. We will see that though the process is closely related to the station-
ary version of an Ornstein-Uhlenbeck process the two-sided kernel leads to a different
behaviour in the autocorrelation function, namely to a slower decay than the one of the
classical Ornstein-Uhlenbeck process and to a bigger range of possible values, including
positive ones, in the first order autocorrelation of increments.

Proposition 4.1. Let Xt =
∫

exp(−λ|t−u|)dLu and assume that the driving Lévy process
possesses a finite second moment. We denote it by V and the first moment by µ, then we
obtain the following characteristic quantities for X

EXt =
2µ

λ

var(Xt) =
V

λ

cov(Xt+h, Xt) = V he−λh +
V

λ
e−λh

corr(Xt+h, Xt) = λhe−λh + e−λh.

Proof. From the general form of the characteristic function, we can calculate the second
moment of Zt =

∫
f(t, s)dLs, provided that L possesses a second moment and both f(t, .)

and f(t, .)2 are integrable. We obtain

EZt =

∫
f(t, s)ds

(
γ +

∫
x1|x|>1ν(dx)

)
EZ2

t =

∫
f(t, s)2ds

(
σ2 +

∫
x2ν(dx)

)
+

(∫
f(t, s)ds

)2(
γ +

∫
x1|x|>1ν(dx)

)2

.

In the following we denote σ2 +
∫
x2ν(dx) = V and γ +

∫
x1|x|>1ν(dx) = µ. Using this

together with the independent increment property of L, we obtain for Xt =
∫

exp(−λ|t−
u|)dLu and s ≤ t

EXt =
2µ

λ

EX2
t =

V

λ
+

4µ2

λ2

9



var(Xt) =
V

λ

E(Xt −Xs)
2 =

2V

λ

(
1− e−λ(t−s) − λ(t− s)e−λ(t−s)

)
.

Hence

Cov(Xt, Xs) =
1

2

(
EX2

t − E(Xt −Xs)
2 + EX2

s

)
− EXtEXs

= V (t− s)e−λ(t−s) +
V

λ
e−λ(t−s)

corr(Xt, Xs) = λ(t− s)e−λ(t−s) + e−λ(t−s).

Comparing this to the well known quantities of a stationary Ornstein-Uhlenbeck process
U we see, while the mean and the variance only differ by a multiple of two, the auto-
covariance and autocorrelation function have an extra term leading to a slower decay.
This might be an interesting feature for modelling data, especially coming from finance,
where a pure exponential decay often seem too fast to match the empirical autocorrelation
properly.

From the form of the second moment we can easily deduce Hölder continuity of the sample
paths.

Corollary 4.2. Assuming a finite second moment of the driving Lévy process, we obtain
that the well-balanced Ornstein-Uhlenbeck process is Hölder continuous of the order γ with
γ < 0.5.

Proof. Using Taylor expansion we obtain

E(Xt−Xs)
2 = 2V

(1

λ
−exp(−λ(t− s))

λ
−(t−s) exp(−λ(t−s))

)
= 2λV (t−s)2+O((t−s)3).

Hence by Kolmogorov-Centsov Xt is Hölder continuous of the order γ < 1/2.

This is also different to the classical Ornstein-Uhlenbeck process which inherits the jump
property from the driving process.

Also the correlation between increments might be of interest for modelling purposes and
follows by direct calculations from the proposition above.

Corollary 4.3. Assume the same conditions on L as in the previous proposition, then
we obtain

Corr(Xk+1 −Xk, X1 −X0) = exp(−λk)

(
1

2
+

1

2

1− exp(λ) + λ exp(λ)

1− exp(−λ)− λ exp(−λ)

)
+λk exp(−λk)

(
1

2
+

1

2

1− exp(λ) + λ exp(−λ)

1− exp(−λ)− λ exp(−λ)

)
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and as a special case the first-order autocorrelation

Corr(X2 −X1, X1 −X0) = exp(−λ)

(
1 + λ

2
+

1

2

1 + λ− exp(λ) + λ2 exp(−λ)

1− exp(−λ)− λ exp(−λ)

)
.

Note that in contrast to the classical Ornstein-Uhlenbeck process whose autocorrelation
function of increments Corr(Uk+1 − Uk, U1 − U0) = exp(−λk)(1

2
+ 1

2
1−exp(λ)
1−exp(−λ)) is always

negative in the range between -0.5 and 0, we can have positive and negative values,
in the range from -0.5 to 1 depending on λ for the well-balanced Ornstein-Uhlenbeck
process. Looking for example at the first-order autocorrelation Corr(X2 −X1, X1 −X0)
it is positive for λ < 1.25643 and negative for bigger values of λ. This provides much
more flexibility for modelling, e.g. we can obtain values for the first-order autocorrelation
which is often linked to long-range dependence. Assuming that BH

t denotes a fractional
Brownian motion with Hurst parameter H ∈ (0, 1), then by Kettani and Gubner (2006)∑n−1

i=1 (XH
i − X̄H

n )(Xi+1 − X̄H
n )∑n

i=1(X
H
i − X̄H

n )2
→ CH = 22H−1 − 1,

where XH
i = BH

i − BH
i−1 and X̄H

n = 1
n

∑n
i=1X

H
i . Hence we can see that as the first-

order autocorrelation of the well-balanced Ornstein-Uhlenbeck process CH ∈ (−0.5, 1)
and CH > 0 for H > 0.5.

For some applications it might of course be more realistic not to have a stationary pro-
cess, but a process with stationary increments like Lévy processes. In the context of
well-balanced Ornstein-Uhlenbeck processes we can construct processes with the same
correlation structure of increments and hence the same paths regularity by considering
the associated difference kernel.

Proposition 4.4. Let Yt =
∫∞
−∞ exp(−λ|t − s|) − exp(−λ|s|)dLs and assume that the

driving Lévy process possesses a finite second moment. We denote it by V and the first
moment by µ, then we obtain the following characteristic quantities for Y

EYt = 0

var(Yt) = V te−λt +
V

λ
e−λt

Corr(Yk+1 − Yk, Y1 − Y0) = exp(−λk)

(
1

2
+

1

2

1− exp(λ) + λ exp(λ)

1− exp(−λ)− λ exp(−λ)

)
+λk exp(−λk)

(
1

2
+

1

2

1− exp(λ) + λ exp(−λ)

1− exp(−λ)− λ exp(−λ)

)
.

Proof. The proof follows immediately by noting that Yt = Xt −X0.

Note that we can easily also construct a process which only possess this correlation
structure for a specific lag and is zero for larger lags. For a kernel on a compact interval
[0, a] we obtain the process Xt =

∫ t
t−a exp(−λ(t − s))dLs which possesses the second

moment EX2
t = (1 − exp(−2λa))/(2λ). Furthermore for increments Xt − Xs we obtain

E(Xt −Xs)
2 = (1− exp(−2λa)− exp(−λ(t− s)) + exp(−λ(2a + s− t)))/λ if t− s ≤ a

and if t− s > a: E(Xt −Xs)
2 = EX2

t + EX2
s . This leads to Cov(Xt, Xs) = (exp(−λ(t−

s)) + exp(−λ(2a+ s− t)))/(2λ) for t− s ≤ a and 0 otherwise.
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5 Application to SAP high frequency data

Finally we apply the well-balanced Ornstein-Uhlenbeck process to an example of real data
and show that the autocorrelation models the empirical autocorrelation quite well. Hence
this indeed offers the possibility of adding the well-balanced Ornstein-Uhlenbeck process
as an empirically convincing mean process to a classical stochastic volatility model.

We consider one trading day of the SAP share, namely of 1st February 2006 9:00 am to
5:30 pm consisting of 5441 trades.
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The picture shows the empirical autocorrelation function as solid line, the dashed line
is the fit with a classical Ornstein-Uhlenbeck process and the dotted line with the well-
balanced Ornstein-Uhlenbeck process. We can see that the autocorrelation function both
visually and by taking the residual sum of squares fits the data much better than the
Ornstein-Uhlenbeck process, except for small lags. This might be interpreted as the effects
of market microstructure. Namely the two kinks in the empirical curve are at a lag of 75
and 150 respectively. In this setting this correspond to a sampling frequency of 7 minutes
and 14 minutes. Values in this range are in the econometrics literature often seen as
sampling frequencies from which market microstructure effects start to be negligible. If
we start fitting the empirical data only for larger lags that 150, the values of λ and the RSS
for the Ornstein-Uhlenbeck process stay the same, whereas the RSS of the well-balanced
Ornstein-Uhlenbeck processes decreases to 4.39310−3.
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