
Retargetable Compilers for Embedded DSPs

Rainer Leupers, Peter Marwedel

University of Dortmund

Department of Computer Science 12

44221 Dortmund, Germany

email: leupersjmarwedel@ls12.cs.uni-dortmund.de

Abstract

Programmable devices are a key technology for the design of embedded systems, such
as in the consumer electronics market. Processor cores are used as building blocks for
more and more embedded system designs, since they provide a unique combination of
features: exibility and reusability. Processor-based design implies that compilers capable
of generating e�cient machine code are necessary. However, highly e�cient compilers
for embedded processors are hardly available. In particular, this holds for digital signal
processors (DSPs). This contribution is intended to outline di�erent aspects of DSP
compiler technology. First, we cover demands on compilers for embedded DSPs, which
are partially in sharp contrast to traditional compiler construction. Secondly, we present
recent advances in DSP code optimization techniques, which explore a comparatively
large search space in order to achieve high code quality. Finally, we discuss the di�erent
approaches to retargetability of compilers, that is, techniques for automatic generation of
compilers from processor models.1

1 Introduction

The consumer electronics market can be characterized by rapidly growing complexities of
applications and a rather short market window. Therefore, more and more complex designs
have to be completed in shrinking time frames. Meeting short time-to-market requirements
is only possible, if system design technologies permit exibility, so as to accommodate late
speci�cation changes, and reuse of predesigned components. Both conditions are met, if
embedded processors are used as building blocks in system design. They provide exibility
through programmability and enable the reuse of software modules, such as C function li-
braries. Therefore, a trend towards processor-based design of embedded systems is currently
observed. As a consequence, the major part of design e�ort is frequently spent in develop-
ment of embedded software rather than in design of custom hardware [1]. Fig. 1 shows a
design scenario for embedded software. An application source program is speci�ed, typically
in C language, and is pro�led, so as to identify (and possibly accelerate) "hot spots" in the
program. Next, machine code for the embedded processor is generated using a high-level
language compiler. The generated code is simulated and debugged, and the source program
is adapted in case that errors have been identi�ed. This process is iterated until a feasible
implementation has been achieved.
In most cases, code is generated for a �xed processor only, for instance a certain standard

DSP. However, such an "o�-the-shelf" processor frequently is not the most e�cient solution in
terms of computation speed, chip area, and/or power consumption. Instead, an application-

speci�c processormay much better serve the needs of a particular application. Therefore, from
a more general viewpoint, the design (or at least: the selection) of a suitable target processor

1Publication: 7th European Multimedia, Microprocessor Systems and Electronic Commerce Conference
(EMMSEC), Florence/Italy, Nov 1997.

1



retargeting
compiler

machine

generation
code 

processor and
firmware 

synthesis

instruction set
specification

poor
resource
utilization

insufficient
performance

incorrect
behavior

source program
specification

profiling

OK analysis
code

simulation
debugging

Figure 1: Embedded software design ow

is also part of the embedded software design process. In such a scenario, an initial target
processor model, e.g. an instruction set, is speci�ed and the compiler is retargeted to that
instruction set. Then, the program is compiled as described above. Performance information
gained during the simulation/debugging phase or during a subsequent code analysis phase can
suggest bene�cial adaptations of the target processor model. This retarget-and-compile cycle
is iterated until a satisfactory solution in terms of both software and target processor hard-
ware has been obtained. Finally, the target processor and the "�rmware" machine program
can be synthesized. Retargetable (and optimizing) compilers for embedded processors have
received much interest recently, because they permit to study the interplay of target hardware
architectures and program execution speed [2].
In this paper, we focus on retargetable code generation for embedded DSPs. The organiza-

tion of the paper is as follows. First, in section 2, we summarize the demands on compilers for
embedded DSPs. In section 3, we consider code generation and, in particular, optimization
techniques. Approaches to retargetable compilation are treated in section 4, and an example
for a retargetable DSP compiler system is presented in section 5. Finally, conclusions are
given in section 6.

2 Demands on compilers for embedded DSPs

DSPs are programmable processors with instruction sets that are tuned to fast execution
of arithmetic-intensive programs. The general demands on DSP compilers arise from the
characteristics of DSP applications as well as from the characteristics of system environments
which DSPs are embedded in.

Extremely e�cient code: DSP programs frequently operate under real-time constraints.
Meeting real-time constraints usually requires exploitation of the full amount of capabil-
ities of a DSP, so that very e�cient code must be generated. Furthermore, as program
code is typically stored in on-chip memories, also the size of machine programs is critical.
Thus, any loss of e�ciency caused by a compiler increases the silicon area. In addition,
violations of real-time constraints in compiler-generated code must be compensated by
higher clock rates. In turn, this increases the power consumption. In general compiler

2



construction, generation of extremely e�cient code has traditionally been treated with
lower priority than high compilation speed. Therefore, many C compilers available for
standard DSPs show an unacceptable code quality [3], and most of the DSP software is
still written at the assembly level.

Support for DSP algorithms and architectures: DSP algorithms show characteristics
usually absent in general-purpose computing. These include bit-true speci�cations,
rounding behavior of arithmetic operators, and cyclic bu�ers. DSP processor archi-
tectures include special hardware to accommodate such characteristics. However, com-
mon programming languages like C do not directly support DSP-speci�c programming
constructs, but certain work-arounds have to be used. In turn, this often disables the
compiler to e�ciently map such constructs to the corresponding hardware. One way
to avoid this problem is to use a DSP-speci�c programming language, such as DFL [4].
Nevertheless, DSP compilers still face the problem of mapping program constructs to
highly irregular architectures, as they are typically found in DSPs.

Retargetability: A large number of processor cores, including microcontrollers, RISCs, and
DSPs, are currently available from vendors [5]. Cores are macro cells, which can be
instantiated like library components, and which are shipped in form of "soft" register-
transfer (RT) level VHDL models or in form of "hard" VLSI layout cells. For such
cores, compilers might even be not available at all. In order to avoid the necessity of
developing a new compiler for each new processor core, retargetable compilers are a
promising solution. Such compilers can be adapted, so as to generate machine code for
each member of a de�ned class of processors. Retargetable compilers are also important
tools for the extended software development cycle outlined in section 1.

3 Code generation and optimization

In classical compiler construction, code generation and optimization are often treated as
separate compilation phases. First, a program is translated into a valid (possibly poor-quality)
machine program, which is later optimized by applying transformation rules. For DSPs, such
an approach is not viable, because irregularities in the processor architecture cause a high
interdependence between all di�erent code generation phases. In order to avoid code quality
overhead due to separate execution of code generation phases, phase coupling is necessary.
For instance, instruction selection should be done while taking into account its impact on
scheduling. Simultaneously, allocation of registers for program values must be considered.
In order to minimize combinational delays and to permit pipelined execution of instructions,
DSPs typically show special-purpose registers connected to speci�c functional units in the data
path. Obviously, an unfavorable instruction selection may cause a large number of data moves
between such registers.
An important source of potential optimization is parallelism at the instruction level. Most

DSPs are capable of executing a set of RT operations in parallel in each machine cycle. This
includes parallel operations such as "multiply-accumulate" and also parallel computation of
memory addresses. In order to cope with these special requirements, a number of new code
generation/optimization techniques have been developed. Important projects in this area
include:

SPAM: In the SPAM project, graph-based approaches to tight coupling of instruction se-
lection, register allocation, and scheduling have been developed for di�erent standard
DSPs, such as TI TMS320C2x and Motorola DSP56k [6, 7, 8]. In certain cases, opti-
mality has been proven, and commercial compilers have been outperformed in terms of
code quality. Further contributions from the SPAM project include optimization tech-

3



niques for parallel memory address computation [9, 10], aiming at high utilization of
auto-increment capabilities of address registers.

FlexWare: In this project, a rule-based C compilation technique for application-speci�c
DSPs has been implemented [11]. There, compilation of source code constructs into
target machine instructions is guided by translation templates provided by the user.
The more templates are available, the higher is the optimization potential for the com-
piler. Additionally, the compilation process can be steered by low-level programming
constructions, such as manual binding of values to physical registers. It has been shown,
that this approach can yield code quality comparable to that of manually written as-
sembly programs. However, detection of good translation rules may be di�cult, and the
e�ort of low-level C programming may become close to assembly programming. Another
contribution of this project is a C to C translator, which replaces array references in
programs by pointer arithmetic operations [12]. Since pointers and pointer arithmetic
can be directly mapped to address registers and arithmetic operations on these, a higher
exploitation of auto-increment capabilities of address registers can be achieved than in
the original array-style C program.

Mutation Scheduling: The Mutation Scheduling (MS) approach developed at UC Irvine
[13] aims at a tight coupling of all di�erent code generation phases. The main idea is
to maintain di�erent translation schemes ("mutations") for each source program value
during compilation. For instance, the value "x * 2" may be equivalently written as "x +

x" or "x << 1". If a value has multiple occurrences in a program, it may be recomputed
each time or may be kept in a register for later reuse. The most appropriate mutations
are selected based on data path resource availability in each program control step. Due
to its "ideal" phase coupling, MS can yield very high quality code, however, at the
expense of long compilation times.

Another research project { the Record compiler { will be described in more detail in section
5.

4 Retargetable compilation

Retargetable compilers are useful if target processors for embedded software change frequently,
but the main architectural characteristics remain constant. In that case, these target proces-
sors belong to a common class, for instance the class of �xed-point DSPs. We call a compiler
retargetable, if it can be adapted, so as to generate machine code for any processor within a
class, in such a way that the largest part of the compiler source code is retained. With retar-
getable compilers, target processors can be switched by simply adapting the compiler instead
of completely developing a new compiler from scratch. This is particularly important in the
area of consumer electronics, where a large variety of di�erent application-speci�c processors
are in use. Retargetable compilers are also important for design space exploration in case that
the target processor is not completely �xed in advance (see �g. 1).
A common characteristic of retargetable compilers is, that they read another input besides

the source program to be translated, namely a target processor description given in some mod-
elling formalism. A well-known approach to retargetable compilation is the GNU C compiler
[14]. GNU C has been successfully ported to a number of di�erent CISC and RISC machines,
but it does not support frequent changes of the target processor due to a complicated target
processor modelling formalism. Therefore, researchers have looked at more convenient proces-
sor modelling formalisms. In the projects mentioned in the previous section, retargetability
is achieved as follows:

SPAM: The target processor model mainly consists of a set of tree-shaped instruction pat-

terns, which are textually speci�ed in form of a tree grammar. Code generation is

4



considered as the process of parsing source program assignments with respect to the
given tree grammar. Retargeting to a new processor is realized by replacing instruc-
tion patterns in the grammar. However, the grammar can become relatively large, and
potential parallelism between instructions cannot be captured.

FlexWare: The target processor model is implicit in the set of translation rules that are pro-
vided to the compiler, i.e., new instructions are modelled by specifying new translation
rules. The main problem in this approach, however, is that mainly the user { and not
the compiler { is responsible for e�cient exploitation of available instructions, since the
compiler only applies the rules by a macro-expansion mechanism.

Mutation Scheduling: Similar to FlexWare, the available target machine instructions are
implicitly encoded in the set of possible mutations for each program value. However,
the compiler is burdened with appropriately selecting instructions. Therefore, a higher
degree of automation and a higher optimization potential are achieved.

All of the above approaches use rather speci�c processor modelling formalisms. However,
as the design of processor-based systems usually takes place within a hardware design en-

vironment, standardized hardware description languages (HDLs) such as VHDL are a more
promising solution, because they permit to use the same processor models for synthesis, sim-
ulation, and code generation. The Record compiler presented in the next section therefore
uses processor models described in an HDL.

5 An example: the Record compiler system

Record is a retargetable compiler for �xed-point DSPs [15]. Its coarse architecture is shown
in �g. 2.

DSP source program
(DFL language)

target processor model
(MIMOLA language)

CDFG generation instruction-set
extraction

tree parser generation
(iburg + C compiler)

code selection and
register allocation

integrated

scheduling + spilling
mode register setting

address assignment

code compaction

vertical code augmented
with AGU operations

transformation
rule library

available
RT patterns

versions for RTs and NOPs
alternative encoding

application-
specific
rewrite rules

expression trees

expression trees
covered by RT patterns

vertical code

target-specific tree parser

Figure 2: The Record compiler system

5



5.1 Retargeting

The target processor model is speci�ed in the MIMOLA HDL, which corresponds to a subset of
VHDL. In contrast to other related approaches, Record accepts both behavioral (instruction-
level) and structural (RT-level) processor models. The user may select the most comfortable
modelling abstraction level. Independent of its abstraction level, the target processor model
is translated into a canonical behavioral model by instruction-set extraction (ISE). ISE elimi-
nates structural details from the model, which are not required for code generation, and yields
a set of RT patterns, i.e., primitive data path operations executable on the target processor
as well as the corresponding instruction encodings (opcodes). From the extracted patterns
set, an executable processor-speci�c code selector ("tree parser") is constructed by means of
standard tools. After performing these steps once, Record is retargeted to the speci�ed
processor, and programs can be compiled into its machine code.

5.2 Code generation

In order to accommodate the special characteristics of DSP algorithms, Record uses DFL [4]
as a source program language. The DFL program is compiled into an internal control/data-
ow graph (CDFG) representation. The atomic CDFG entities are expression trees (ETs),
for each of which instruction selection and register allocation are invoked. These phases
are executed in an integrated fashion by means of the automatically generated processor-
speci�c tree parser. The result is an optimal covering of the ET by means of RT patterns
with respect to the accumulated costs of selected patterns. Covered ETs are passed to a
scheduling phase which heuristically minimizes spill code for special-purpose registers. The
result of scheduling is vertical (i.e. sequential) machine code. The vertical code is augmented
with additional operations which implement necessary memory address computations. In this
"address assignment" phase, several graph-based optimizations are applied, so as to achieve a
high utilization of parallel address generation unit (AGU) capabilities. As a last compilation
phase, the generated machine code is compacted, i.e., potential parallelism at the instruction-
level is exploited. During this phase, constraints imposed by the instruction format need to be
taken into account. This information is passed to code compaction by means of the encoding
information obtained by ISE. A novel compaction techniques implemented in Record ensures
optimal exploitation of parallelism within basic program blocks. The �nal result is a binary
machine code listing.

5.3 Results

Record has been retargeted to several application-speci�c and standard DSPs, including TI's
TMS320C25. Once a new HDL processor model is available, retargeting can be performed
with a few CPU minutes on a SPARCstation. Thus, very short turnaround times are achieved
for evaluating the impact of architectural changes in the target processor on program size and
speed. Due to the use of exhaustive code optimization techniques, the compilation speed is
rather low (approx. 1 instr. per CPU second) compared to a target-speci�c compiler. However,
lower compilation speed is usually acceptable for embedded applications, where programs are
often rather short. The point is that { at the expense of lower compilation speed { much
higher code quality can be achieved. Fig. 3 shows an evaluation of relative code size for DSP
benchmark programs [3] and the TMS320C25 target processor. The hand-written reference
code is set to 100 %. The left columns show the size of code produced by TI's TMS320C25
C compiler. The right columns show the code size achieved by Record. For most cases, the
Record code is more compact, and in total the average overhead of compiler-generated code
as compared to hand-written assembly code has been halved.

6



real update complex
mult

complex
update

N real
updates

N complex
updates

fir biquad_one biquad_N dot product convolution
0

100

200

300

400

500

600

700

real update complex
mult

complex
update

N real
updates

N complex
updates

fir biquad_one biquad_N dot product convolution

Figure 3: Experimental results: code quality

6 Conclusions

Design of embedded systems based on programmable processors demands for compilers capa-
ble of generating very e�cient code. The key approach to achieve this goal is the development
of novel code optimization techniques, while treating compilation speed with lower priority
than in classical compiler construction. Simultaneously, the large variety of application-
speci�c embedded processors create a need for retargetable compilers, that can be quickly
adapted to new processors, so as to study the mutual dependence between processor archi-
tectures and program execution speed. In this paper, we have presented di�erent recent
approaches to retargetable and optimizing compilers with emphasis on DSPs. More and more
system designs are primarily based on programmable processors rather than on custom hard-
ware. It is therefore expected that such compilers can enable a productivity breakthrough in
embedded system design, as they permit to take the step from assembly-level to high-level
language software development.

7



References

[1] P. Paulin, M. Cornero, C. Liem, et al.: Trends in Embedded Systems Technology, in: M.G.
Sami, G. De Micheli (eds.): Hardware/Software Codesign, Kluwer Academic Publishers,
1996

[2] P. Marwedel, G. Goossens (eds.): Code Generation for Embedded Processors, Kluwer
Academic Publishers, 1995

[3] V. Zivojnovic, J.M. Velarde, C. Schl�ager, H. Meyr: DSPStone { A DSP-oriented Bench-

marking Methodology, Int. Conf. on Signal Processing Applications and Technology (IC-
SPAT), 1994

[4] Mentor Graphics Corporation: DSP Architect DFL User's and Reference Manual, V

8.2 6, 1993

[5] World Wide Web: "http://www.eedesign.com/EEdesign/SoftCoretables.html" and
"http://www.eedesign.com/EEdesign/HardCoretables.html"

[6] G. Araujo, S. Malik: Optimal Code Generation for Embedded Memory Non-Homogeneous

Register Architectures, 8th Int. Symp. on System Synthesis (ISSS), 1995, pp. 36-41

[7] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang: Code Optimization Techniques for

Embedded DSP Microprocessors, 32nd Design Automation Conference (DAC), 1995, pp.
599-604

[8] G. Araujo, S. Malik, M. Lee: Using Register Transfer Paths in Code Generation for Het-

erogeneous Memory-Register Architectures, 33rd Design Automation Conference (DAC),
1996

[9] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang: Storage Assignment to Decrease

Code Size, ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), 1995

[10] G. Araujo, A. Sudarsanam, S. Malik: Instruction Set Design and Optimizations for

Address Computation in DSP Architectures, 9th Int. Symp. on System Synthesis (ISSS),
1996

[11] C. Liem, P. Paulin, M. Cornero, A. Jerraya: Industrial Experience Using Rule-driven

Retargetable Code Generation for Multimedia Applications, 8th Int. Symp. on System
Synthesis (ISSS), 1995, pp. 60-65

[12] C. Liem, P.Paulin, A. Jerraya: Address Calculation for Retargetable Compilation and

Exploration of Instruction-Set Architectures, 33rd Design Automation Conference (DAC),
1996

[13] S. Novack, A. Nicolau, N. Dutt: A Uni�ed Code Generation Approach using Mutation

Scheduling, chapter 12 in [2]

[14] R.M. Stallmann: Using and Porting GNU CC V2.4, Free Software Foundation, Cam-
bridge/Massachusetts, 1993

[15] R. Leupers: Retargetable Code Generation for Digital Signal Processors, Kluwer Aca-
demic Publishers, 1997

8


