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Abstract

In a recent paper Fay and Philippe (2002) proposed a goodness-of-�t test for long-range depen-

dent processes which uses the logarithmic contrast as information measure. These authors estab-

lished asymptotic normality under the null hypothesis and local alternatives. In the present note

we extend these results and show that the corresponding test statistic is also normally distributed

under �xed alternatives.
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1 Introduction

Nowadays long-range dependent processes represent a well accepted class of stochastic processes for

modelling real phenomena in such diverse areas as hydrology, behaviour research, network tra�c or

�nance [see Koutsoyiannis et al. (2009), Stroe-Kunold et al. (2009), Park and Willinger (2000), Granger
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(1980), Greene and Fielitz (1977) among many others]. Numerous parametric models have been pro-

posed for the analysis with long-range dependent processes. The most important among them are

fractional ARIMA processes which were independently introduced by Granger and Joyeux (1980) and

Hosking (1981) and fractional Gaussian noise processes [see Beran (1994)]. Many of the methods assume

that the speci�c form of the spectrum is known except for a �nite dimensional parameter. The results

of the statistical analysis depend sensitively on pre-speci�ed model assumptions, and the conclusions

from the data may be misleading if these assumptions are violated. For this reason several authors have

pointed out the importance of being able to check the goodness-of-�t of a speci�c model assumption

in long-range dependent processes. Beran (1992) proposed a method for testing how well a speci�ed

model, such as a fractional Gaussian noise, �ts the data. His results were extended by Deo and Chen

(2000) who investigated an integral of the squared periodogram. Chen and Deo (2004) suggested a

generalized Portmanteau test based on the discrete spectral average estimator and obtained the asymp-

totic null distribution for Gaussian long-memory time series. While most of the tests proposed by these

authors are based on the estimation of the L2 distance between the unknown spectral density and the

best approximation by the parametric class, Fay and Philippe (2002) used a logarithmic contrast for

the construction of a test for a speci�c parametric form of the spectral density [see also Mokkadem

(1997) or Dette and Spreckelsen (2003) for an application of this measure in the context of ARMA

processes]. These authors established the asymptotic normality of a corresponding test statistic under

the null hypothesis and local alternatives.

As pointed out by Chen and Deo (2004), most theoretical results in the context of goodness-of-�t testing

address the asymptotic behaviour of a test statistic when the null hypothesis is correctly speci�ed,

and an additional question of interest is the power property of the corresponding test when the null

hypothesis is actually misspeci�ed. This problem requires asymptotic inference under the alternative

and has found considerable interest in the context of classical regression analysis [see Dette (1999) or

Dette (2002) among others]. Dette and Spreckelsen (2003) investigated the asymptotic properties of

an L2-test proposed by Paparoditis (2000) for the parametric form of the spectral density in stationary

short-range dependent processes, but less results are available for goodness-of-�t tests in long range

dependence processes.

The present paper is devoted to the asymptotic analysis of the test statistic proposed by Fay and Philippe

(2002) under �xed alternatives. In Section 2 we introduce the necessary notations and assumptions and

review the results of Fay and Philippe (2002). Section 3 presents our main results which show that the

test statistic proposed by Fay and Philippe (2002) is also asymptotically normally distributed under

�xed alternatives. We state a general result which contains the situation of a �true� null hypothesis as a

special case and also discuss potential applications of our results. Finally, for the sake of a transparent

presentation, some technical details are deferred to an appendix in Section 4.
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2 Preliminaries

Let X = (Xt)t∈Z denote a stochastic process which admits the linear representation

(2.1) Xt = σ
∑
j∈Z

ajZt−j

where
∑

j∈Z a
2
j < ∞ and (Zt)t∈Z denotes a Gaussian white noise process. Following Fay and Philippe

(2002) we represent the spectral density f of the process (Xt)t∈Z as

f(λ) = σ2|1− eiλ|−2d1f ∗(λ); λ ∈ [−π, π](2.2)

where d1 ∈ [0, 1/2) and f ∗ is a twice continuously di�erentiable function de�ned on the interval [−π, π]

and bounded away from zero. We are interested in the problem of testing for a speci�c parametric form

of the spectral density of the process (Xt)t∈Z, that is

(2.3) H0 : f ∈ F0 .

Here F0 denotes a parametric class of spectral densities de�ned by

(2.4) F0 =

{
f(λ) = σ2|1− eiλ|−2dg∗(λ; θ)

∣∣∣ (d, θ) ∈ D ×Θ, σ2 > 0, g∗ ∈ G
}
,

where D is a compact subset of the interval [0, 1/2), Θ ⊂ Rl denotes a compact set (l ∈ N) and G is

the set of positive and symmetric functions de�ned on the interval [−π, π] satisfying∫ π

−π
log g∗(x; θ)dx = 0 .

For a given g∗ ∈ G we de�ne

g(λ; d, θ) = |1− eiλ|−2dg∗(λ; θ).

For the testing problem (2.3) Fay and Philippe (2002) proposed to measure deviations from the null

hypothesis by

inf
d∈D,θ∈Θ

S(f, f(·, d, θ))(2.5)

where

S(f, f(·, d, θ)) = log

∫ π

−π

f(λ)

f(λ, d, θ)

dλ

2π
−
∫ π

−π
log

f(λ)

f(λ, d, θ)

dλ

2π
(2.6)

denotes a logarithmic contrast between the spectral density f and an element of the class F0. Note that

the information measure in (2.6) is always nonnegative and that the null hypothesis is satis�ed if and

only if the expression in (2.5) vanishes. The logarithmic contrast has been used before by Mokkadem
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(1997) and Dette and Spreckelsen (2003) for testing hypotheses in ARMA processes. In order to estimate

the minimal distance Fay and Philippe (2002) proposed to consider a tapered Fourier transform of the

series {X1, . . . , Xn} that is

d
(p)
n,k =

1√
2πn

n∑
t=1

w
(p)
n,tXte

iλkt; k = 1, . . . , n

where λk = 2πk/n are the Fourier frequencies,

w
(p)
n,t =

(
2p
p

)− 1
2
(
1− ei

2πt
n

)p
; t = 1, . . . , n

is the data taper and p ∈ N0 denotes the order of the taper (note that p = 0 yields w
(0)
n,t = 1, t = 1, . . . , n).

These quantities are used to de�ne a pooled periodogram by

I
X

n,k :=
1

m

(m+p)k−p∑
j=(m+p)(k−1)+1

|d(p)
n,j|2; k = 1, . . . , Kn.

Throughout this paper I
Z

n,k denotes the pooled and tapered periodogram of the Gaussian white noise

Z1, . . . , Zn. Note that the interval [0, π] is decomposed in Kn = b n−1
2(m+p)

c intervals (m ∈ N) of the form

[λ(k−1)(m+p), , λk(m+p)]

and that the center of the kth interval is given by

(2.7) xk := (m+ p)
2π

n

(
k − 1

2

)
.

Fay and Philippe (2002) introduced the discretized version of (2.6), i.e.

Sn

(
I
X

n , g(·; d, θ)
)

= log

(
1

Kn

Kn∑
k=1

I
X

n,k

g(xk; d, θ)

)
− 1

Kn

Kn∑
k=1

log

(
I
X

n,k

g(xk; d, θ)

)
+ γm,p

where the constant γm,p is de�ned by

(2.8) γm,p = E
[

log 2πI
Z

n,k

]
which is a centering constant, such that the expectation under the null hypothesis vanishes asymptoti-

cally. For the cases

1.) d0 = 0, m ≥ 5 and p = 0 or p = 1

2.) d0 > 0, m ≥ 5 and p = 1
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Fay and Philippe (2002) proved that under the null hypothesis, i.e. f(λ) = g(λ, d0, θ0) for some (d0, θ0) ∈
D×Θ and certain assumptions of regularity [see Section 3 for details], the statistic

√
KnSn(I

X

n , g(·; d̂n, θ̂n))

converges weakly, that is

(2.9) Tn =
√
KnSn

(
I
X

n , g(·; d̂n, θ̂n)
)

d→ N
(

0, τ 2
0

)
,

where (d̂n, θ̂n) is any estimator of the �true� parameter (d0, θ0) satisfying∥∥(d̂n, θ̂n)− (d0, θ0)
∥∥ = Op

( 1√
n

)
and the asymptotic variance in (2.9) is given by

τ 2
0 := Var

(
2πI

Z

n,k − log
(

2πI
Z

n,k

))
.

For a discussion of the quantities γm,p and τ
2
0 we refer to Hurvich et al. (2002). Note that these authors

did not assume a Gaussian white noise process, but considered a general white noise process (Zt)t∈Z

with several assumptions regarding the characteristic function E[exp(iZt)]. In this case there appears

an additional constant in the asymptotic variance depending on the fourth cumulant of the white noise

process. In the following we will study the asymptotic properties of the statistic Tn if the null hypothesis

is not satis�ed. For the sake of simplicity, we restrict ourselves to the Gaussian case. The general case

is brie�y discussed in Remark 3.2.

3 Weak convergence under �xed alternatives

If the null hypothesis is not satis�ed, then the minimum distance in (2.5) is positive. Throughout this

paper we assume that there exists a unique pair (d0, θ0) ∈ (D ×Θ)0 such that

inf
(d,θ)∈D×Θ

S(f, g(·; d, θ)) = S(f, g(·; d0, θ0)),

where C0 denotes the interior of the set C ⊂ Rl+1 and D in (2.4) is de�ned by D = [δ, 1/2 − δ] for

some 0 < δ < 1/4. We further assume that the set Θ is additionally convex [see Chen and Deo (2006)].

Note that (d0, θ0) is the parameter corresponding to the best approximation of the spectral density f

by densities of the class F0. Throughout this paper let (d̂n, θ̂n) denote a Whittle type estimate [Whittle

(1953)] which is de�ned as the minimizer of the objective function

Qn(d, θ) =
π

Kn

Kn∑
j=1

I
x

n,j

g(xj, d, θ)
(3.1)

where xj is de�ned in (2.7). In the case where the model is correctly speci�ed, the asymptotic behaviour

of the maximum likelihood estimator was investigated by Dahlhaus (1989). The Whittle estimator
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was investigated by Fox and Taqqu (1986) and Giraitis and Surgailis (1990) for Gaussian and linear

processes, respectively. Recently, Chen and Deo (2006) derived the asymptotic properties of an estimator

minimizing an approximation to the negative of the exact Gaussian likelihood [Whittle (1953)] in the

case of misspeci�ed long-range dependent processes. Note that in contrast to these results, the objective

function considered in (3.1) is based on the tapered and pooled periodogram in this de�nition, while

Chen and Deo (2006) considered the �classical� periodogram in the objective function (3.1). A careful

inspection of the proofs in this reference shows that the main results, in particular Theorem 2 and

Lemma 2 of Chen and Deo (2006), remain valid in this case. It is also notable that the asymptotic

properties � in particular the rate of convergence � depend sensitively on the distance d1 − d0. If

d1 − d0 ≤ 1/4 the estimator
√
n((d̂n, θ̂n) − (d0, θ0)) is asymptotically normal distributed, while in the

case d1− d0 > 1/4 the di�erence converges in distribution with a di�erent rate to a non-Gaussian limit.

In particular, the rate of convergence can be arbitrarily small in this case. In our main result we specify

the asymptotic behaviour of the test statistic proposed by Fay and Philippe (2002) in the case of a

misspeci�ed model. For this purpose we de�ne by

D(d0, θ0) := log

(
1

π

∫ π

0

f(x)

g(x; d0, θ0)
dx

)
− 1

π

∫ π

0

log

(
f(x)

g(x; d0, θ0)

)
dx(3.2)

as the minimal distance between the true spectral density f and the parametric class de�ned in (2.4) with

respect to the logarithmic contrast introduced in (2.6). Note that the null hypothesis (2.3) is satis�ed

if and only if D(d0, θ0) = 0. We assume that (Xt)t∈Z is a stationary process with linear representation

(2.1) where the innovations (Zt)t∈Z de�ne a Gaussian white noise process and the spectral density of

(Xt)t∈Z is given by (2.2).

Theorem. 3.1. Let (Xt)t∈Z be a stationary process with linear representation (2.1) and Gaussian white

noise (Zt)t∈Z, d1 ∈ (0, 1/2), p = 1, m ≥ 5, d1 − d0 < 1/4, and assume that the following conditions are

satis�ed:

(A1) g∗(λ; θ) is three times continuously di�erentiable .

(A2) infθ infλ g
∗(λ; θ) > 0, supθ supλ g

∗(λ; θ) <∞.

(A3) supλ supθ

∣∣∣∂g∗(λ;θ)
∂θi

∣∣∣ <∞; 1 ≤ i ≤ l.

(A4) supλ supθ

∣∣∣∂2g∗(λ;θ)
∂θi∂θj

∣∣∣ <∞, supλ supθ

∣∣∣∂2g∗(λ;θ)
∂θi∂λ

∣∣∣ <∞; 1 ≤ i, j ≤ l.

(A5) supλ supθ

∣∣∣ ∂3g∗(λ;θ)
∂θi∂θj∂θk

∣∣∣ <∞; 1 ≤ i, j, k ≤ l.

(A6)
∫ π
−π log g∗(λ; θ) dλ = 0 for all θ ∈ Θ.
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If n→∞, then √
Kn

{
Sn

(
I
X

n , g(·; d̂n, θ̂n)
)
−D(d0, θ0)

}
D−→ N (0, τ 2

∆)

where D(d0, θ0) denotes the minimal distance between the parametric class F0 and the unknown spectral

density f de�ned in (2.2) and the asymptotic variance is given by

τ 2
∆ := (∆− 1)Var

(
2πI

Z

n,k

)
+ Var

(
2πI

Z

n,k − log 2πI
Z

n,k

)
with

∆ = π

∫ π

0

(
f(x)

g(x; d0, θ0)

)2

dx

(∫ π

0

f(x)

g(x; d0, θ0)
dx

)−2

.(3.3)

Proof. Recalling the de�nition of the statistic Tn in (2.9) we introduce the decomposition

Tn =
√
Kn

{
Sn

(
I
X

n , g(·; d̂n, θ̂n)
)
−D(d0, θ0)

}
=
√
Kn

{
An +Bn + Cn

}
,

where the random variables An, Bn and Cn are de�ned by

An := Sn

(
I
X

n , f(·)
)
,(3.4)

Bn := Sn

(
I
X

n , g(·; d0, θ0)
)
− Sn

(
I
X

n , f(·)
)
,(3.5)

Cn := Sn

(
I
X

n , g(·; d̂n, θ̂n)
)
− Sn

(
I
X

n , g(·; d0, θ0)
)
,(3.6)

respectively. In the Appendix we will show that

An =
1

Kn

Kn∑
k=1

{
2πI

Z

n,k − 1− log 2πI
Z

n,k + γm,p

}
+ op

( 1√
Kn

)
,(3.7)

Bn =
Kn∑
k=1

(
βn,k −

1

Kn

)(
2πI

Z

n,k − 1
)

(3.8)

+ log

(
1

Kn

Kn∑
k=1

f(xk)

g(xk; d0, θ0)

)
− 1

Kn

Kn∑
k=1

log

(
f(xk)

g(xk; d0, θ0)

)
+ op

( 1√
Kn

)
,

Cn = op

( 1√
Kn

)
(3.9)

where I
Z

n,k denotes the pooled and tapered periodogram of the Gaussian white noise process (Zt)t∈Z and

the constants βn,k are de�ned by

βn,k =

f(xk)
g(xk;d0,θ0)∑Kn
j=1

f(xj)

g(xj ;d0,θ0)

=
|1− eixk |−2(d1−d0) f∗(xk)

g∗(xk;θ0)∑Kn
j=1 |1− eixj |−2(d1−d0) f∗(xj)

g∗(xj ;θ0)

.
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Observing the approximation

log

(
1

Kn

Kn∑
k=1

f(xk)

g(xk; d0, θ0)

)
− 1

Kn

Kn∑
k=1

log

(
f(xk)

g(xk; d0, θ0)

)

= log

(
1

Kn

Kn∑
k=1

|1− eixk |−2(d1−d0) f ∗(xk)

g∗(xk; θ0)

)
− 1

Kn

Kn∑
k=1

log

(
|1− eixk |−2(d1−d0) f ∗(xk)

g∗(xk; θ0)

)
= D(d0, θ0) +O

(
n−1+2(d1−d0)+

)
,

it follows that the weak convergence of the statistic Tn can be obtained from the asymptotic properties

of the random variable

T̃n =
√
Kn

Kn∑
k=1

{(
βn,k2πI

Z

n,k −
1

Kn

log 2πI
Z

n,k

)
−
(
βn,k −

1

Kn

γm,p

)}
.

For this purpose we use the central limit theorem of Ljapunov. To precise we note that the random

variables 2πI
Z

n,k are independent identically distributed with existing fourth moment satisfying

E
[
2πI

Z

n,k

]
= 1; k = 1, . . . Kn.(3.10)

Therefore we obtain for the variance of T̃n by a straightforward calculation

Var[T̃n] = Var
(

2πI
Z

n,k

)
Kn

Kn∑
k=1

β2
n,k + Var

(
log 2πI

Z

n,k

)
− 2

{
E
[
2πI

Z

n,k log 2πI
Z

n,k

]
− γm,p

}
.

Observing the approximation

1

Kn

Kn∑
k=1

(
f(xk)

g(xk; d0, θ0)

)j
=

1

Kn

Kn∑
k=1

(
|1− eixk |−2(d1−d0) f ∗(xk)

g∗(xk, θ0)

)j
=

1

π

∫ π

0

(
f(x)

g(x; d0, θ0)

)j
dx+O

(
n−1+2j(d1−d0)+

)
; j = 1, 2

we obtain by a tedious calculation

lim
n→∞

Kn

Kn∑
k=1

β2
n,k = ∆,

where ∆ is de�ned in (3.3) and

(3.11)
Kn∑
k=1

β2
n,k ≤

C

n

(note that d1− d0 <
1
4
by assumption). Combining these results gives for the asymptotic variance of T̃n

lim
n→∞

Var[T̃n] = τ 2
∆
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where τ 2
∆ is de�ned in Theorem 3.1. Note that E[log 2πI

Z

n,k]
4 is constant, then a similar calculation

yields for the numerator in the Ljapunov condition

K2
n

Kn∑
k=1

E
[
βn,k

(
2πI

Z

n,k − 1
)
− 1

Kn

(
log 2πI

Z

n,k − γm,p
)]4

≤ K2
n

Kn∑
k=1

∣∣∣∣β4
n,kE

[
2πI

Z

n,k − 1
]4

− 4β3
n,k

1

Kn

E
[(

2πI
Z

n,k − 1
)3(

log 2πI
Z

n,k − γm,p
)]

+6β2
n,k

1

K2
n

E
[(

2πI
Z

n,k − 1
)2(

log 2πI
Z

n,k − γm,p
)2]

−4βn,k
1

K3
n

E
[(

2πI
Z

n,k − 1
)(

log 2πI
Z

n,k − γm,p
)3]

+
1

K4
n

E
[

log 2πI
Z

n,k − γm,p
]4
∣∣∣∣

= O(1)

{
K2
n

Kn∑
k=1

β4
n,k +Kn

Kn∑
k=1

β3
n,k +

Kn∑
k=1

β2
n,k +

1

Kn

+
1

Kn

}
= O

( 1

n

)
,

where we have used (3.11) for the last estimate. This establishes the Lyapunov condition and the

asymptotic normality of Tn follows observing that Tn and T̃n have the same asymptotic behavior.

Remark. 3.2. Note that Theorem 3.1 holds under the null hypothesis and under the alternative,

in particular it reduces to Theorem 3.1 in Fay and Philippe (2002). These authors did not assume a

Gaussian white noise in the linear representation (2.1). This assumption was made here for the sake

of transparent presentation and Theorem 3.1 remains valid in the general case, where the asymptotic

variance has to be replaced by

τ 2
∆ +

κ4αm,p
8(m+ p)

.

Here the constant αm,p is de�ned by

αm,p = E2
[
‖ζ‖2Φm,p(ζ)

]
with

Φm,p(x) =
ψm,p(x)

2m
− 1− ln

(ψm,p(x)

2m

)
+ γm,p,

ψm,p(x) =
(

2p
p

)−1
m∑
j=1

∣∣∣∣ p∑
l=0

(
p
l

)
(−1)l

(
x2(j+l)−1 + ix2(j+l)

)∣∣∣∣2
and ζ is a 2(m + p)−dimensional standard Gaussian vector. Note that αm,p is the same as in the

asymptotic variance under the null hypothesis in Fay and Philippe (2002).
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Remark. 3.3. In this remark we indicate two important applications of the Theorem 3.1. For a more

detailed discussion we refer to Dette and Munk (2003).

(1) IfD(d0, θ0) is used as a measure for the deviation of the �true� spectral density from the parametric

class F0, we obtain from Theorem 3.1 a consistent estimate of D(d0, θ0), and it follows that the

interval [
0, Ŝn

(
I
X

n , g(·; d̂n, θ̂n)
)

+
τ̂∆√
Kn

u1−α

]
is an asymptotic (1−α) con�dence interval for the logarithmic contrast D(d0, θ0), which measures

the deviation from the parametric class F0. Here u1−α denotes the (1−α) quantile of the standard

normal distribution and τ̂ 2
∆ is a consistent estimate of the asymptotic variance τ 2

∆.

(2) As pointed out by Fay and Philippe (2002) an application of the asymptotic normality of the

statistic Sn(I
X

n , g(·; d̂n, θ̂n)) under the null hypothesis consists in the construction of an asymptotic

level α test for the hypothesis of a parametric form of the spectral density of the long range

dependence process. A consistent test is obtained by rejecting the null hypothesis whenever

Sn

(
I
X

n , g(·; d̂n, θ̂n)
)
≥ τ0√

Kn

u1−α

where τ 2
0 denotes the asymptotic variance under the null hypothesis (which has to be estimated

in the case of a non Gaussian white noise). The asymptotic power of this test can now be

approximated by Theorem 3.1, that is

PH1( � H0 is rejected� ) ≈ Φ

(√
Kn

D(d0, θ0)

τ∆

− τ0

τ∆

u1−α

)
,

where τ0 and τ∆ denote the (asymptotic) standard deviation of
√
KnSn

(
I
X

n , g(·; d̂n, θ̂n)
)
under the

null hypothesis and alternative, respectively, and Φ is the distribution function of the standard

normal distribution.

Example. 3.4. In this example we illustrate the accuracy of the con�dence interval for the distance

D(d0, θ0) in Remark 3.3(1) by means of a small simulation study. We assume that the process X =

(Xt)t∈Z is a Gaussian FARIMA(0, d, 0)-process with spectral density

g(λ; d, θ) =
1

2π

∣∣1− eiλ∣∣−2d

but generated data from a Gaussian FARIMA(0,0.4,1)-process with spectral density given by

f(λ) =
1

2π
|1− 0.1eiλ|2|1− eiλ|−2·0.4.

Using the formula 3.631(8) in Gradshteyn and Ryzhik (1980), we approximately calculate d0 and D(d0)

as 0.3400325 and 0.003725739, respectively. We generated 5000 replications of the process for sample
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n = 100 n = 200 n = 500 n = 1000

0.8 0.6822 0.7244 0.7846 0.7966

0.9 0.9076 0.896 0.9164 0.9122

0.95 0.9876 0.975 0.9682 0.9698

Table 1: Simulated coverage probabilities of the asymptotic con�dence intervals de�ned in Remark 3.3(1)

sizes n = 100, 200, 500 and 1000 using the farimaSim function in the fArma package in R. The parameter

d0 in the variance τ 2
∆ was estimated by the Whittle estimator in (3.1). The other quantities in the

asymptotic variance have been determined explicitly by numerical integration and are given by

γm,p = −0.1400195,

Var(2πI
Z

n,k) = 0.2795195,

Var(2πI
Z

n,k − log 2πI
Z

n,k) = 0.03776237.

For each series the 80% , 90% and 95% con�dence intervals (p = 1, m = 5) were calculated and the

proportion of the intervals containing the true value D(0.34) are listed in Table 1. We observe reason-

able coverage probabilities in most cases. While the 90% con�dence interval is already approximated

accurately for the samples size n = 100, larger sample sizes are required for the 80% and 95% con�dence

interval.

4 Appendix: Technical details

In this appendix we provide the technical details for the stochastic expansions (3.7) - (3.9).

4.1 Proof of (3.7)

We use a Bartlett decomposition technique, i.e. we relate the periodogram of X to the periodogram of

Z and then apply Lemma 4.2 in Fay and Philippe (2002) to show that the di�erence is stochastically

small, i.e.

An = Sn

(
I
X

n , f(·)
)

= Sn

(
2πI

Z

n , 1
)

+Rn

= log

(
1

Kn

Kn∑
k=1

2πI
Z

n,k

)
− 1

Kn

Kn∑
k=1

log
(

2πI
Z

n,k

)
+ γm,p + op

( 1√
Kn

)
.

Using (3.10) and the independence of the I
Z

n.k we can expand the �rst term into a Taylor series and

obtain the stochastic expansion in (3.7).
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4.2 Proof of (3.8)

Recall the de�nition of Bn in (3.5). For a proof of (3.8) we use the Bartlett decomposition twice, which

yields

Bn = log

(∑Kn
k=1 I

X

n,k/g(xk; d0, θ0)∑Kn
k=1 2πI

Z

n,k

)
− log

(∑Kn
k=1 I

X

n,k/f(xk)∑Kn
k=1 2πI

Z

n,k

)

− 1

Kn

Kn∑
k=1

log

(
f(xk)

g(xk; d0, θ0)

)

= log

(
1

Kn

Kn∑
k=1

I
X

n,k

g(xk; d0, θ0)

)
− log

(
1

Kn

Kn∑
k=1

2πI
Z

n,k

)

− 1

Kn

Kn∑
k=1

log

(
f(xk)

g(xk; d0, θ0)

)
+ op

( 1√
Kn

)
= log

( Kn∑
k=1

βn,k
I
X

n,k

f(xk)

)
+ log

(
1

Kn

Kn∑
k=1

f(xk)

g(xk; d0, θ0)

)

− log

(
1

Kn

Kn∑
k=1

2πI
Z

n,k

)
− 1

Kn

Kn∑
k=1

log

(
f(xk)

g(xk; d0, θ0)

)
+ op

( 1√
Kn

)
,

where the second estimate follows from Lemma 2 in Hurvich et al. (2002). We note that by the central

limit theorem

(4.1)
1

Kn

Kn∑
k=1

(
2πI

Z

n,k − 1
)

=
1

Kn

Kn∑
k=1

2πI
Z

n,k − 1 = Op

( 1√
n

)
.

We will show at the end of this section that

(4.2)
Kn∑
k=1

βn,k

(
I
X

n,k

f(xk)
− 1

)
= Op

( 1√
n

)
,

then the expansion of the function log(1 + z) = z+ o(z2) yields with the estimates (4.2) and (4.1) (note

that
∑Kn

k=1 βn,k = 1)

Bn =
Kn∑
k=1

βn,k

(
I
X

n,k

f(xk)
− 1

)
− 1

Kn

Kn∑
k=1

(
2πI

Z

n,k − 1
)

+ op

( 1√
Kn

)
+ log

(
1

Kn

Kn∑
k=1

f(xk)

g(xk; d0, θ0)

)
− 1

Kn

Kn∑
k=1

log

(
f(xk)

g(xk; d0, θ0)

)
.

Observing Lemma 11 in Hurvich et al. (2002) we have

E
∣∣∣∣ Kn∑
k=1

βn,k

(
I
X

n,k

f(xk)
− 2πI

Z

n,k

)∣∣∣∣ ≤ Kn∑
k=1

βn,kE
∣∣∣∣ IXn,kf(xk)

− 2πI
Z

n,k

∣∣∣∣ ≤
 O

(
n−1+2(d1−d0)+

)
if d1 − d0 6= 0

O
(

logn
n

)
if d1 − d0 = 0
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which yields

(4.3)
Kn∑
k=1

βn,k

(
I
X

n,k

f(xk)
− 2πI

Z

n,k

)
= op

( 1√
n

)
.

(note that d1 − d0 <
1
4
by assumption). Therefore the assertion in (3.8) follows from (4.2) and (4.3).

We conclude this section with a proof of the statement (4.2) which is obtained observing the decompo-

sition

Kn∑
k=1

βn,k

(
I
X

n,k

f(xk)
− 1

)
=

Kn∑
k=1

βn,k

(
I
X

n,k

f(xk)
− 2πI

Z

n,k

)
+

Kn∑
k=1

βn,k

(
2πI

Z

n,k − 1
)

= Op

( 1√
Kn

)
where the last estimate follows again from (4.3) and a straightforward application of Chebyshev's

inequality.

4.3 Proof of (3.9)

Observing the de�nition (3.6) we decompose Cn as follows

Cn = C(1)
n + C(2)

n

where

C(1)
n = log

(
1

Kn

Kn∑
k=1

I
X

n,k

g(xk; Γ̂n)

)
− log

(
1

Kn

Kn∑
k=1

I
X

n,k

g(xk; Γ0)

)
,(4.4)

C(2)
n =

1

Kn

Kn∑
k=1

log
g(xk; Γ̂n)

g(xk; Γ0)
,(4.5)

and we have used the notation Γ̂n = (d̂n, θ̂n) and Γ0 = (d0, θ0). The assertion in (3.9) is now obtained

by treating these terms separately, that is

C(j)
n = op

( 1√
n

)
, j = 1, 2.(4.6)

For a proof of (4.6) in the case j = 1 we note that the estimate Γ̂n = (d̂n, θ̂n) is de�ned as a solution of

the equation
∂Qn(Γ̂n)

∂Γ
= 0,

where the function Qn is de�ned in (3.1). Therefore a Taylor expansion yields

C(1)
n = logQn(Γ0)− logQn(Γ̂n)

=
1

2

(
Γ0 − Γ̂n

)T 1

Qn(Γ̂n)

∂2Qn(Γ̂n)

∂Γ∂ΓT
(
Γ0 − Γ̂n

)
+ o(‖Γ0 − Γ̂n‖2).
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An extension of Theorem 2, Lemma 2 and 3 in Chen and Deo (2006) to the objective function (3.1)

yields

Γ̂n − Γ0 = Op

( 1√
n

)
1

Qn(Γ̂n)

P−→ 1

Q(Γ0)
=

(∫ π

0

f(λ)

g(λ; Γ0)
dλ

)−1

,

∂2Qn(Γ̂n)

∂Γ∂ΓT
P−→ ∂2Q(Γ0)

∂Γ∂ΓT
,

and assertion (4.6) follows in the case j = 1.

In order to prove the statement in the case j = 2 we recall the de�nition in (4.5) and obtain by a Taylor

expansion

C(2)
n =

1

Kn

Kn∑
k=1

{
1

g(xk; Γ0)

∂g(xk; Γ0)

∂Γ

(
Γ̂n − Γ0

)}
+Op

( 1

n

)
= Op

( 1√
n

) 1

Kn

Kn∑
k=1

{
1

g(xk; Γ0)

∂g(xk; Γ0)

∂Γ

}
+ op

( 1√
n

)
(4.7)

where we have again used an extension of Theorem 2 in Chen and Deo (2006) to the loss function (3.1).

From the assumption g(λ; Γ) ∈ F0 we have∫ π

−π
log g(λ; Γ) dλ =

∫ π

−π
log g∗(λ, θ)dλ = 0

for all Γ ∈ D × Θ, which implies (observing the symmetry of the function g) that the sum in (4.7)

converges to 0 (a.s.). This proves the statement (4.6) in the case j = 2.
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