Retargetable Generation of Code Selectors
from HDL Processor Models

Rainer Leupers, Peter Marwedel

University of Dortmund, Dept. of Computer Science 12, 44221 Dortmund, Germany
email: leupers|marwedel@Is12.informatik.uni-dortmund.de

Abstract—Besides high code quality, a primary issue
i embedded code generation is retargetability of code
generators. This paper presents techniques for auto-
matic generation of code selectors from externally spec-
ified processor models. In contrast to previous work,
our retargetable compiler RECORD does not require tool-
specific modelling formalisms, but starts from general
HDL processor models. From an HDL model, all proces-
sor aspects needed for code generation are automatically
derived. As demonstrated by experimental results, short
turnaround times for retargeting are achieved, which
permils to study the HW/SW trade-off between proces-
sor architectures and program execution speed.

1 Introduction

Today, many designs of embedded VLSI systems are
based on programmable processors. Compared to cus-
tom hardware, processor-based design offers increased
reusability and flexibility. Many standard processors
are currently available in form of cores, which can be
instantiated like library components. However, certain
applications do not require the full amount of capabili-
ties of a standard processor. Thus, in order to avoid a
possible waste of resources, system houses are starting
to use customized processors, commonly called ASIPs.
This paper focusses on retargetable compilation of ASTP
machine code from high-level programming languages.

Due to the narrow application range of a particular
ASIP, high-level language (HLL) compilers are often not
available, but the largest part of ASIP software is still
developed manually using assembly languages [1]. A
promising approach to eliminate this bottleneck are re-
targetable compilers. We call a compiler retargetable,
if it can be adapted, so as to generate code for differ-
ent target processors (within a defined processor class)
in such a way that the largest part of compiler source
code is retained. According to Goossens’ classification
scheme [2], our RECORD compiler generates code for
ASIPs in the DSP domain, that satisfy the criteria in
table 1.

Availability of retargetable (and thus reusable) com-
pilers avoids the necessity of developing a dedicated
compiler for each new target ASIP. Furthermore, retar-
getable compilers have applications in HW/SW code-
sign, because they facilitate to study the mutual depen-

dence between processor architectures and code speed.

Retargetability can be realized by providing the com-
piler with an external formal model of the target pro-
cessor, for which code is to be generated. Early ap-
proaches to processor modelling for code generation
[3, 4] suffered from insufficient readability and versatil-
ity of tool-specific processor modelling languages. Also
the well-known GNU C compiler uses a special machine
description formalism, which excludes frequent retar-
geting. More convenient modelling from a hardware
designer’s viewpoint is possible by usage of hardware
description languages (HDLs). HDL models permit fast
accommodation of architectural changes, and also im-
ply an immediate link to CAD tools, e.g., for processor
synthesis and simulation.

parameter supported features
data type fixed-point
code type time-stationary

horizontal & encoded
load-store & memory-register
post-modify addressing modes
heterogeneous & homogeneous
standard jump instructions
mode registers

instruction format
memory structure

register structure
program control

Table 1: Target processor class in RECORD

From a code generation viewpoint, however, HDL
processor models are less favorable. HDL models may
comprise details of the hardware structure, which are
irrelevant for code generation. In contrast, models in-
tended for code generation should represent a processor
as a black box implementing a certain instruction set,
1.e., behavioral models are preferable. The purpose of
this paper is to present techniques which bridge the gap
between HDL processor models comprising structural
details and behavioral models suitable for code gener-
ation. For the processor class from table 1, we show
how an efficient processor-specific code selector, which
maps source program operations to processor-specific
machine operations, can be automatically constructed
from an HDL processor model.

1.1 Related work

Frequently, ASIPs show inhomogeneous architectures,
which exclude the use of general-purpose compilation

HDL processor RT template tree grammar processor-specific
model internal graph base tree parser
model g Q.Q N
=Y
QéD 2 Iy =2 (%) —
=2 (5, %) \C.S

| L

HDL frontend IS extraction

grammar construction

parser generation

Figure 1: Construction of code selectors from HDL processor models

techniques. For instance, presence of special-purpose
registers associated with specific functional units makes
register allocation by graph coloring, developed for ma-
chines with large homogeneous register files, less useful
for ASIPs. As a consequence, recent work on embed-
ded code generation (cf. [5] for surveys) focusses on new
compilation techniques tailored towards inhomogeneous
architectures.

Approaches to modelling of ASIP architectures for
code generation can roughly be divided into graph-
based and tree-based techniques. Graph-based mod-
els closely reflect the actual target processor structure.
Graph nodes represent hardware entities like registers
and functional units, while edges represent either phys-
ical connections or data flow between hardware entities.
A graph-based model has been used in the MSSQ com-
piler [6], which has been refined for the CHESS code
generator [7].

In contrast, tree-based models reflect the target ma-
chine in a behavioral manner through a set of tree-
shaped register transfer (RT) templates. An RT tem-
plate represents a primitive RT-level processor opera-
tion. Compared to graph-based models, RT templates
hide the detailed hardware structure and thereby permit
more efficient pattern matching between source code op-
erations and processor-specific RTs. Unfortunately, cur-
rent code generators operating on tree-based processor
models, such as [8, 9, 10], do not well support auto-
matic generation of the RT template base from more
common processor models. For realistic target proces-
sors, the RT template base may be considerably large,
and a local change in the processor data path or in-
struction decoder may have a global impact on many
of the RT templates. Therefore, tree-based models are
often less comfortable from a modelling viewpoint, in
particular if the architecture of the target ASIP is not
completely fixed beforehand. In the CBC compiler [11],
the RT template base is derived from a processor model
in the nML language, which, however, does not offer the
expressiveness of an HDL.

1.2 Overview of our approach

The processor modelling approach presented in this pa-
per (fig. 1) is intended to combine the advantages of
graph-based and tree-based processor modelling styles.
The processor model visible to the user is an HDL
model. This model optionally incorporates structural

hardware details, and its granularity is determined by
the user, dependent on the intended application and
the available target processor documentation. From the
HDL model, an internal graph model is constructed,
which represents primitive processor entities according
to the chosen model granularity as well as the inter-
connect structure. On the graph model, we perform
wstruction-set extraction in order to determine the set
of available RT templates, while also taking into ac-
count possible restrictions due to instruction encoding.
Exploiting semantical knowledge about hardware op-
erators, the extracted RT template base is extended by
further templates and is translated into a tree grammar.
Tree grammar construction creates a behavioral view of
the target processor, as required for efficient code selec-
tion. From the tree grammar, we obtain a processor-
specific code selector by existing compiler construction
tools. The code selector is used for mapping expression
trees in the intermediate source program representation
to processor-specific RTs. The remainder of this paper
provides a more detailed description of code selector
construction as well as an experimental evaluation.

2 Instruction-set extraction

Techniques for instruction-set extraction (ISE) have al-
ready been described in an earlier contribution [12]. In
order to provide the necessary background for this pa-
per, here we give a brief summary.

ISE operates on a netlist model of the target proces-
sor. Currently, the netlist model is constructed from a
processor description in the MIMOLA HDL [13]. The
concepts are, however, language independent, and a
VHDL frontend is planned. The primitive netlist enti-
ties are modules. Module I/O ports are interconnected
by wires or tristate busses. A module is described by its
I/0 interface and its behavior, which is given by a set
of concurrent assignments to ports or local variables of
the module. In contrast to the data path analysis tech-
nique in [14], ISE is not restricted to predefined compo-
nent types, but the behavioral complexity of modules
may range from primitive components like logic gates
or registers to complete data paths. From the netlist
model, ISE extracts the complete set of valid RT tem-
plates in the following two steps:

Enumeration of data transfer routes: For each
RT destination (register, memory, port) in the netlist,

a backwards traversal in the netlist is executed. The
netlist traversal searches for possible routes for trans-
porting data from a set of source registers or ports
through the data path to the destination within a
single machine cycle. The examined transfer routes
may cross module interconnections and combinational
modules. When reaching multiple-input modules (e.g.
ALUs, multiplexers) netlist traversal forks for each dif-
ferent input. In this way, all possible RT templates for a
certain destination are enumerated, and each template
is represented by a tree pattern.

Analysis of control signals: Each RT template is
assoclated with an ezecution condition, i.e., the con-
trol signals for all modules involved in an RT template
must be properly adjusted. Primary sources for con-
trol signals are the instruction memory and (optionally)
mode registers, which store control signals that change
only rarely. Analysis of control signals is performed by
netlist traversal from module control ports back to pri-
mary control signal sources. Tracing back control sig-
nals may pass random logic components, e.g., instruc-
tion decoders. Thus, analysis of control signals requires
support for Boolean manipulation of execution condi-
tions. We model execution conditions by means of bi-
nary decision diagrams (BDDs), in which the Boolean
variables correspond to the instruction word bits and
mode register bits. The extracted execution conditions
account for the required binary partial instructions and
mode register states for each RT template. This infor-
mation is used for code compaction and for revealing
unsatisfiable execution conditions (e.g. due to instruc-
tion encoding conflicts or bus contentions), resulting in
wmvalid RT templates, which are discarded from the tem-
plate base.

3 Code selector generation

In order to increase the search space investigated dur-
ing code selection, the RT template base delivered by
ISE is extended by further templates, which cannot be
directly derived from the processor model. Additional
templates are created by exploiting algebraic proper-
ties of hardware operators, e.g. commutativity: For
each RT template comprising a commutative operator,
a complementary template with swapped arguments is
added to the template base. Exploitation of commu-
tativity avoids potential code quality overhead due to
badly structured expression trees in the intermediate
program representation. This is particularly important
in the area of DSP, where sum-of-product computations
are dominant. Optionally, additional templates are also
created based on application-specific rewrite rules re-
trieved from an external transformation library.

3.1 Tree grammar definition

In the next phase, the extended RT template base is
translated into a tree grammar. Tree grammars, which
are a special case of context-free grammars, are the for-
mal basis of most contemporary code generation tech-
niques operating on expression trees. This section de-

scribes systematic translation of an RT template base
into a corresponding tree grammar representation. For-
mally, a tree grammar is a quintuple

G:(ETaENaSaRaC)

where X7 is an alphabet of terminals, X is an al-
phabet of non-terminals with Xy "Xy =0, S € Xy
is the start symbol, R is a finite set of rules, and
¢ : R — Njis a cost function. All rules r € R
are of the form X — 7, where X € Xy, and
t € TR(X7 UXN). For an alphabet A; TR(A) denotes
the tree language over A (cf. [15] for a formal defini-
tion). Let ¢1,t, € TR(Ep U Xy). t; derives t5 in G, if
there exists a rule r : X — t3 € R, such that ¢ results
from replacing a leaf labelled X in #; by 3.

For a given RT template base, the tree grammar G
must be constructed in such a way, that exactly the en-
tities of the intermediate program representation can be
derived from the start symbol in (. In our approach,
these entities are expression trees (ETs), each associ-
ated with a destination. E'Ts are unary or binary trees,
where inner nodes represent operators and leaves rep-
resent program variables, primary program inputs, or
constants. The destination into which an expression
tree i1s evaluated is explicitly taken into account, be-
cause for inhomogeneous data paths the instruction cost
for moving the result of an ET to its destination may
have impact on the code selected for the ET itself. We
assume that all primary source program inputs and pro-
gram variables are a priori bound to certain memory or
register resources, or are mapped to primary processor
ports. The same holds for the destinations, to which the
results of ETs are assigned. The grammar components
are constructed as follows:

Terminals: Let SEQ denote the set of all sequential
processor components (capable of storing data), PORTS
the set of primary processor ports, OP the set of oper-
ators available in hardware, and CONST the (possibly
empty) set of hardwired constants. Furthermore, let
TERM(x) denote an auxiliary function that returns a
unique terminal symbol for any object x. Then, X 1s

defined as

{ASSIGN} U

{TerRM(x) | 2 € SEQU PORTSU OPU CONST}

The designated terminal ASSIGN is used to capture the
actual assignment of ET results to a destination, which
is explained below.

Non-terminals: Intuitively, non-terminals in G rep-
resent hardware entities capable of temporarily storing
data, e.g., registers holding intermediate results dur-
ing ET evaluation. Since for inhomogeneous archi-
tectures, such ”temporary locations” cannot be distin-
guished from those locations that store primary ET in-
puts or ET results, all components in SEQ must also
appear in non-terminal form, in order to permit their
use for intermediate results as well. Let NoNTERM(2)
denote a function that returns a unique non-terminal
symbol for x. Then, X is defined as

{START} U

{NoNTERM(z) | z € SEQU PORTS}

START is the designated grammar start symbol. Besides
SEQ components, also the primary processor ports ap-
pear as non-terminals in X . This enables a uniform
derivation mechanism for ETs, independent of whether
the destination is a sequential component or a port,
which explained in the following.

Rules: The rule set R of G consists of three groups:

1. Start rules: The destination of an ET can be any
sequential component or processor output port. There-
fore, the start symbol for G must be ”generic”, i.e., it
must match any possible ET destination. This can be
achieved by introducing designated start rules of the
form

START — ASSIGN (TERM(dest), NONTERM(dest))

for each destination dest € SEQU PORTS. Start rules
ensure that for any ET with destination dest and hav-
ing a derivation from NoNTERM(dest), this derivation
1s always found independently of dest. Furthermore, it
is ensured that the cost of the derivation includes the
cost for moving the ET result to dest.

2. RT rules: RT rules correspond to the elements of
the RT template base, i.e., RT rules serve the purpose
of actually deriving ETs. For each RT template of the
form ”dest := exp” a grammar rule

NoNTERM(dest) — L(exp)

is constructed, where the left hand side L(exp) is defined
according to table 2.

exrp L(exp)
constant € CONST TERM(exp)
reference to SEQ NoNTERM(ezp)
reference to PORTS TERM(exp)

unary expression

op(exp1) (op € OP) TERM(op)(L(exp1))

binary expression

op(expy, expz) TERM(op)(L(exp1), L(expz))

Table 2: Specification of left hand sides of rules

3. Stop rules: For each REG € SEQ a rule of the form
NONTERM(REG) — TERM(REG)

is incorporated. Such ”stop rules” permit to terminate
derivations from REG, whenever ET leaves are reached
during derivation.

Cost function: Since we assume single-cycle RTs, we
set e(r) := 1if r € Ris an RT rule. Start and stop rules
are only needed for consistency, so that for these rules
e(r) is set to zero.

3.2 Tree parser generation

Optimal code selection for an expression tree T, i.e. cov-
ering 7" by a minimum set of RT templates, is equivalent
to computing a minimum cost derivation of 7" in the tree
grammar (. This process is called {ree parsing. Sev-
eral tree parser generators have been developed in the
compiler community. Currently, we use the iburg tree

parser generator from Princeton University [16]. iburg
reads a Backus-Naur specification of a tree grammar
G and emits C code for an efficient grammar-specific
tree parser for (G, based on the dynamic programming
paradigm. Tree parsers generated by iburg show the
following characteristics:

e The computation time is approximately linear in
the number of ET nodes, with a constant factor de-
termined by the underlying grammar. In practice,
several hundred RT templates per CPU second are
emitted on the average.

e The computed tree derivations are guaranteed to
be optimal with respect to the accumulated costs
of selected RTs. Simultaneously, the costs for pure
data transport operations are minimized. Since
special-purpose registers appear as grammar non-
terminals, also allocation of special-purpose regis-
ters for intermediate results is implied by the con-
structed parse trees. Furthermore, also chained
operations, e.g. multiply-accumulate or add-with-
shift operations, are optimally exploited.

Limitations of tree parsing mainly concern incorpora-
tion of register spills and instruction-level parallelism in
the cost function. We use an extension of the scheduling
technique from [8] in order to minimize register spills.
Exploitation of potential parallelism is performed in a
subsequent code compaction phase [17].

4 Experimental results

The retargeting procedure presented in this paper has
been implemented and has been applied to a num-
ber of different target processors. These include sim-
ple examples (demo, ref), educational purpose ma-
chines (manocpu [18], tanenbaum [19]) an industrial
ASIP (bass boost [20]) and a standard DSP (Texas In-
struments TMS320C25 [21]). Experimental results are
listed in table 3. The number of RT templates in the
extended template base is shown in column 2. Col-
umn 3 gives the total retargeting time, including ISE,
grammar construction, parser generation by iburg, and
parser compilation by a C compiler.

The results indicate, that our approach works for re-
alistic machines, and that retargeting — once a new HDL
processor model is available — at most takes some CPU
minutes. Such short turnaround times permit to ex-
plore different target processor architectures by means
of a retargetable compiler.

target number of retargeting time
processor RT templates SPARC-20 CPU sec
demo 439 356

ref 1703 84
manocpu 207 6.3
tanenbaum 232 11.7

bass boost 89 3.7
TMS320025 356 165

Table 3: Ezperimental results: retargeting time

600 1

5001

300+

200+
100+

Nreal
updates

real update complex complex

mult update

N complex
updates

fir biquad_one biquad_N dot product convolution

Figure 2: Experimental results: relative code size (in percent) for Texas Instruments TMS320C25 DSP

Efficient code selection for expression trees based on
tree parsing also forms the basis for generation of high
quality (compacted) code. The chart in fig. 2 shows
results for basic program blocks (taken from the DSP-
Stone benchmark suite [22]) and the TMS320C25 DSP.
The columns show the relative code size (hand-written
code set to 100 %) achieved by TT’s C compiler (left)
and RECORD (right). In many cases, RECORD achieves
a low overhead compared to hand-written code and out-
performs the target-specific compiler.

5 Conclusions

The growing diversity of application-specific program-
mable processors creates a need for retargetable com-
pilers. For a defined processor class, the presented re-
targeting procedure provides an automated path from a
structural or behavioral HDL processor model to an ef-
ficient code selector for expression trees. In this way,
short retargeting times are achieved, which support
HW /SW codesign at the processor level. Furthermore,
retargetability does not necessarily contradict high code
quality, which was demonstrated for a representative
DSP processor.

References

[1] P. Paulin, M. Cornero, C. Liem, et al.: Trends in Embedded
Systems Technology, in: M.G. Sami, G. De Micheli (eds.):
Hardware/Software Codesign, Kluwer Academic Publishers,
1996

[2] G. Goossens, J. Van Praet, et al.: Programmable Chips
in Consumer Electronics and Telecommuncations — Archi-
tectures and Design Technology, in: M.G. Sami, G. De
Micheli (eds.): Hardware/Software Codesign, Kluwer Aca-
demic Publishers, 1996

[3] R.S. Glanville: A Machine Independent Algorithm for Code
Generation and its Use in Retargetable Compilers, Ph.D.
thesis, University of California at Berkeley, 1977

[4] R.G.G. Cattell: Formalization and Automatic Derivation of
Code (Generators, Ph.D. thesis, Dept. of Computer Science,
Carnegie-Mellon University, Pittsburgh, 1978

[5] P. Marwedel, G. Goossens (eds.): Code Generation for Em-
bedded Processors, Kluwer Academic Publishers, 1995

[6] L. Nowak, P. Marwedel: Verification of Hardware Descrip-
tions by Retargetable Code Generation, 26th Design Au-
tomation Conference (DAC), 1989, pp. 441-447

[7] J. Van Praet, D. Lanneer, G. Goossens, W. Geurts, H. De
Man: A Graph Based Processor Model for Retargetable
Code Generation, European Design and Test Conference

(ED & TC), 1996

[8] G. Araujo, S. Malik: Optimal Code Generation for Embed-
ded Memory Non-Homogeneous Register Architectures, 8th
Int. Symp. on System Synthesis (ISSS), 1995, pp. 36-41

[9] B. Wess: Automatic Instruction Code Generation based on
Trellis Diagrams, IEEE Int. Symp. on Circuits and Systems
(ISCAS), 1992, pp. 645-648

[10] C. Liem, T. May, P. Paulin: Instruction-Set Matching and
Selection for DSP and ASIP Code Generation, European
Design and Test Conference (ED & TC), 1994, pp. 31-37

[11] A. Fauth, A. Knoll: Translating Signal Flowcharts into Mi-
crocode for Custom Digital Signal Processors, Int. Conf. on
Signal Processing (ICSP), 1993, pp. 65-68

[12] R. Leupers, P. Marwedel: A BDD-based frontend for retar-
getable compilers, European Design & Test Conference (ED
& TC), 1995, pp. 239 — 243

[13] S. Bashford, U. Bieker, B. Harking, et al.: A. Neumann, D.
Voggenauer: The MIMOLA Language V4.1, Technical Re-
port, University of Dortmund, Dept. of Computer Science,
September 1994

[14] C. Monahan, F. Brewer: Symbolic Modelling and Evalu-
ation of Data Paths, 32nd Design Automation Conference

(DAC), 1995

[15] A. Balachandran, D.M. Dhamdere, S. Biswas: Efficient Re-
targetable Code Generation Using Bottom-Up Tree Pattern
Matching, Comput. Lang. vol. 15, no. 3, 1990, pp. 127-140

[16] C.W. Fraser, D.R. Hanson, T.A. Proebsting: Engineering a
Simple, Efficient Code Generator Generator, ACM Letters
on Programming Languages and Systems, vol. 1, no. 3, 1992,
pp. 213-226

[17] R. Leupers, P. Marwedel: Time-constrained Code Com-
paction for DSPs, 8th Int. Symp. on System Synthesis
(ISSS), 1995, pp. 54-59

[18] M.M. Mano: Computer System Architecture, 3rd Edition,
Prentice Hall, 1993

[19] A.S. Tanenbaum: Structured Computer Organization, 3rd
Edition, Prentice Hall, 1990

[20] M. Strik, J. van Meerbergen, A. Timmer, J. Jess, S. Note:
Efficient Code (Generation for In-House DSP Cores, Euro-
pean Design and Test Conference (ED & TC), 1995, pp.
244-249

[21] Texas Instruments: TMS320C2x User’s Guide, rev. B, 1990

[22] V. Zivojnovic, J.M. Velarde, C. Schlager, H. Meyr: DSP-
Stone — A DSP-oriented Benchmarking Methodology, Int.
Conf. on Signal Processing Applications and Technology
(ICSPAT), 1994

