Compilers for Embedded Processors

Peter Marwedel
Universitat Dortmund, Informatik 12
44221 Dortmund, Germany

e-mail-alias: marwedel@acm.org

Abstract— This tutorial responds to the increasing
use of embedded processors for implementing systems-
on-a-chip. We will provide an introduction to embed-
ded processors and we will show that current com-
pilers do not provide the required efficiency. We will
give an overview over new compiler optimization tech-
niques, which aim at making assembly language pro-
gramming for embedded software obsolete. Finally,
we will present techniques for retargeting compilers
to new architectures. One of the approaches closes
the gap between electronic CAD and compiler gener-
ation.

I. EMBEDDED PROCESSORS, CORE PROCESSORS AND
EMBEDDED SYSTEMS

There has recently been a huge amount of interest in
embedded processors in general and in embedded core
processors in particular. What is the main reason be-
haind this huge interest?

The main reason is flexzzbility. It is possible to change
the overall behavior of a processor-based design by chan-
ging the program that is executed on the processor. This
way, 1t is possible to accommodate late changes of the spe-
cifications. These days, sepcifications change even after
the designers have already started to generate a design.
If this happens, ASIC designers may have to start all over
again. Designers of processor-based systems are in a bet-
ter position: they modify the program, re-compile and
re-load it.

Flexibility also simplifies upgrading a design. Upgrad-
ing does in fact include a number of things: it includes, for
example, both the generation of a more enhanced product
and downloading new firmware code into some product
already delivered to the customer.

In the special case of processors cores and other off-the-
shelf processors, there is one additional advantage and
that is reuse. Future chips, which are expected to contain
more than 10® transistors can only be designed in accept-
able time frames if complex components are reused.

Reuse of complex components has a number of advant-
ages:

e It cuts down design time to the required level.

e Reuse of cores also improves the efficiency of the
design, since cores are usually highly optimized.

e Testing is simplified because test engineers know the
components they have to test from previous designs.

Normally, it is very difficult to provide flexibility and
reuse at the same time. These two features are in fact in
many cases mutualy exclusive. Processors cores, however,
exhibit both features at the same time. It is this combin-
ation of features, which makes them so popular!.

Where will those processors and processor cores be
used? The various types of processors are intended to
be used in so-called systems-on-a-chip. In such systems,
there is a variety of different components: processors,
RAM and ROM memory, various converters and pos-
sibly some full custom glue logic. A very important con-
sequence of chip-level integration is that the size of RAM
and ROM is extremely important. This, in turn, means
that the code generated from application programs has to
be very compact and has to use RAM locations for vari-
ables very efficiently. This is different from board-level
integration, where the size of ROMs and RAMs does not
matter that much.

What are actually the main applications areas for
systems-on-a-chip? According to market analysts [22],
the fastest growing market in general and for systems-
on-a-chip in particular is the embedded systems market.
In this context, embedded systems can be defined as sys-
tems reading, processing and controlling physical quantit-
tes. For embedded systems, market analysts are predict-
ing so-called double-digit growth rates, or growth rates
beyond ten percent. This indicates that the embedded
systems market should receive an adequate amount of at-
tention. Information processing is not restricted to what
people come into contact with at the universities and at
their desk. Embedded systems are frequently not realized
as being present, because they do not come with a screen
and a keyboard.

Most of the functionality of embedded systems can
be implemented with software and embedded processors.
Due to the flexibility of software solutions and the trend

1FPGAs are the only others component providing the same com-
bination of features. But FPGAs are by far not as efficient as
Processors.

towards faster and faster processors, special hardware
solutions will become less and less important. The trend
towards software solutions does already exist for some
time and has already led to the wide-spread use of pro-
cessors in embedded systems. Two examples show that
this use has already exceeded the level that is expected
by most people:

1. According to Camposano [4], the New York Times
has estimated (in 1995) that the average American
comes into contact with about 60 microprocessors
every day. Even today (1997) most people believe
this number to be lower.

2. Due to personal information, some top-level cars in-
clude at least 100 microprocessors.

These numbers indicate that quite some fuctionality of
embedded systems has already been implemented by soft-
ware and processors.

The different processors that are used for embedded
systems can be classified by using three main character-
istics of processors.

The first characteristic (see fig. 1) is the form in which
processors are available. Processors are called core pro-
cessors, if they are available as an entry in a CAD library.
There are, of course, other forms in which processors are
available (for example, in packaged form).

Application specific features Processor available as
Packaged
CAD cdll (core)

possible(ASIP) >

Impossible (off-the
shelf IOFOC%Qf) None (Genera
' purpose architecture)

for DSP

Domain-specific features

Fig. 1. Cube of processor types

The second characteristic is the availability of domain-
specific features. Of course, some processors do not have
any of these domain-dependent features. They are called
general purpose processors. Some processors come with
domain-specific features. The goal of adding such features
is to find a good match between application domain and
processor architecture, leading to a high overall efficiency.
For example, processors for digital signal processing in-
clude saturating arithmetic, multiply /accumulate instruc-
tions and special addressing modes for implementing di-
gital filters and Fourier transforms. Others processors
exhibit special features for microcontroller applications,
such as sophisticated bit manipulation instructions.

Even more efficient designs are feasible with applica-
tion-specific features. If such features are present, the
corresponding processor is called an ASIP (application-
specific instruction set processor). There is some research
on how optimized ASIPs can be designed for given ap-
plications [1, 9]. It has also be proven, that ASIPs can
in fact be more efficient than domain-specific or general
purpose processors [8]. Off-the-shelf processors are pro-
cessors which do not include any application-specific fea-
tures. Application-specific signal processors (ASSPs) are
application-specific processors including special features
for digital signal processing. In a 3D representation of
processors by a cube, ASSPs correspond to one of the
edges.

In addition to the three coordinates, there are of course
other criteria for classifying processors.

II. EFFICIENCY OF COMPILERS FOR EMBEDDED
PROCESSORS

A. Existing Compilers

Now, the next question is: is it really a problem if fu-
ture systems will be implemented in software? There are
many mature software design environments which now
could also be used for the design of embedded systems.
The customer base for these environments is larger than
that for ECAD tools and hence more money is available
for their development. This could be used to make them
more reliable and robust than currently used hardware
design systems, for which the number of copies sold is
usually quite small. Does this mean than designers of
embedded systems will find all the tools they need on the
market?

This would be nice, but this will most likely not be
the case. Development tools for processor-based systems
currently have some severe limitations. This applies to
various kinds of development tools, but in this contribu-
tion we will focus on compilers.

Problems with using current compiler technology for
embedded processors have been mentioned by quite a
number of industrial designers. Detailed numerical data
has been published by a group of reseachers working at
the University of Aachen. Researchers at Aachen have
compared the size and the speed of assembly language
library routines with the size and the speed of compiled
code. According the results of this DSPStone benchmark
project [30], overhead of compiled code (in terms of code
size and clock cycles) typically ranges between 2 and 8.

As an example, we consider the results that have been
found for the ADPCM algorithm, which is a very com-
mon algorithm for speech encoding. For this algorithm
and three different processors, the data memory overhead
ranges between about 170 % and almost 400 %. Thus,
if compilers are used, the data memory has to be up to
almost b times larger than for assembly code.

For the same benchmark, the situation is even worse
if the speed overhead is taken into account. This over-
head ranges between about 500 and almost 700 %. This
means that up to 7/8th of all processor cycles are waisted
if compilers are used. This translates into a huge loss of
performance and electrical power and is clearly not ac-
ceptable for embedded systems. Optimizations for low-
power design should not be constrained to the hardware
level. From an overall point of view, a highly optimizing
compiler is one of the most tmportant contributions to low
power design.

Due to the current lack of highly optimizing compilers,
a major amount of applications is implemented in as-
sembly languages. The exact percentage varies from com-
pany to company and from application to application.
Paulin has computed this percentage for a closed set of
applications [20]. He found that a major percentage of
DSP applications and of controller applications is written
in assembly languages.

Implementing complex systems using assembly lan-
guages has all the well-known disadvantages, for example
a long time to the market, a low product quality and the
inability of retargeting the application to new processors.

Before we try to change this situation, we should ana-
lyze the reasons behind this poor performance of current
compilers. These reasons can be understood, if we look
at the how currently available architectures for embedded
processors were designed.

For most of these processors, the design goal was to
have very efficient processor hardware. This hardware
was designed to fit typical applications in the application
domain as good as possible. Ease of compilation was never
really a design goal.

As an example let us consider the TMS320C25, a very
popular digital signal processor. The microarchitecture
of this processor contains a variety of registers. There
are registers at the input and the output of the multiplier
and a special accumulator at the output of the adder.
Furthermore, there are special address registers, a special
address register pointer register and there 1s a small data
RAM. All these registers have a different functionality.
Due to this, the register set is said to be heterogenous.
This constrasts with the homogenous register files found
in most standard RISC architectures.

Having a heterogenous register set does indeed make
sense for DSP architectures. The registers at the multi-
plier and the adder can very efficiently be used to imple-
ment digital filters. The accumulator is appropriate for
storing partial sums during the filtering operation. Repla-
cing these specialized registers by homogenous registers
files would possibly extend the critical path for multiplic-
ations, would not speed up digital filtering, would increase
the chip area and it would restrict the maximum number
of accesses to registers in any clock cycle. The only ‘ad-
vantage” would be to make the design of a compiler easier.

Since embedded systems have to be efficient, processors

with special features for embedded systems, in particular
for DSP and microcontroller applications, will probably
be used for many years. This should generate interest in
compiler techniques supporting those features.

B. New Optimization Techniques

Bl Overview

As will be shown in the next sections, it is actually pos-
sible to significantly improve the performance of compilers
for embedded processors. Some researchers have recently
designed new optimization algorithms exploiting special
features of embedded processors.

Wess[28], Araujo and co-workers [2] have proposed re-
gister assignment techniques for heterogenous register
sets. These techniques extend register assignment tech-
niques for homogenous register sets that are used for

standard RISC- and CISC-processors.

Different operation modes are another typical feature
of embedded processors. Many DSP processors provide
a choice between saturating and wrap-around arithmetic
modes and also use modes for selecting significant bits of
fixed point numbers after multiplication. The instruction
sets of these processors include instructions for switching
between these modes (in microprogramming, the same
concept was called residual control). Compilers should
try to generate a minimized number of mode switching
instructions. Liao has published an algorithm performing
this type of optimization [14].

The recently announced ’C60 processor of Texas In-
struments offers a significant amount of instruction-level
parallelism. Up to 8 instructions of 32 bits each can be
executed in parallel. The parallelism of this and similar
machines can only be exploited if techniques for globally
rearranging code exist. These techniques are called global
scheduling techniques. Mutation scheduling (by Nicolau)
[19] is possibly the most sophisticated global scheduling
technique. It incorporates global code movement, consid-
eration of available hardware resources and the applica-
tion of algebraic rules.

Nicolau and his group have also worked on the integra-
tion of loop unrolling and register allocation [10], a tech-
nique required for finding a compromise between code
density and execution speed for loops.

Another feature, which is commonly found in many pro-
cessors 18 the presence of an address generation unit. Such
units allow address computations to be performed concur-
rently with other arithmetic operations. Bartley [3], Liao
[15], Leupers [11], and Sudarsanam [25] have recently pro-
posed algorithms exploiting this extra hardware.

Two optimizations will be explained in a little more
detail in the next section.

B2 Exploitation of instruction level parallelism

A number of architectures (such as the popular TMS
320C25) allow several register transfers to be encoded into
a single instruction [27]. This can actually be exploited in
practical examples. For a simple set of two C-statements,
we can generate a sequence of register transfers that are
legal for the ’C25. Already in this small example, a set
of three transfers can be identified, which can be encoded
in the same instruction and executed in one cycle. The
result is a reduction from 9 to 7 cycles.

u(n) = u(n-1) + KO e(n) + K1 e(n-1); e(n-1) e(n)
ACCU:=u(n-1); ACCU:=u(n-1);

TR := ¢(n-1); _ TR := ¢(n-1);

PR:=TR* K1; PR:=TR* K1;
TR:=en); o -3y TR:=e(n);[|ACCU := ACCU + PR;
e(n-1):=en); L II'e(n-1) = e(n);
ACCU :=ACCU +PR; -

PR :=TR* KO; PR :=TR* KO;

ACCU := ACCU + PR; ACCU := ACCU + PR;
u(n) := ACCU,; u(n) := ACCU;

9 cycles 7 cycles

Fig. 2. Compaction

Techniques for generating such compacted code have
already been studied in the context of microprogramming.
In the meantime, however, the speed of available com-
puters, the quality of integer programming packages and
the knowledge about modeling techniques have been im-
proved to an extend making optimal algorithms applicable
for not too small basic blocks. The technique developed
by Leupers [13] can be applied to basic blocks of up to
about 50 transfers. This is sufficient for most practical
examples. Partitioning of larger basic blocks into blocks
of this size not required except for few exceptional cases.

The results for compaction are excellent. For various
entries in the DSPStone benchmark suite, code size re-
ductions between about 5 and more than 30% have been
observed. There is only a single case (lattice2), in which
the reduction does not exceed 10 %. The execution times
for the compaction algorithm are very moderate: they
range from 2 to 35 seconds.

B3 Exploitation of multiple memory banks

In order to study the another optimization technique, we
consider the microarchitecture of the Motorola 56K pro-
cessor containing two memory banks. Each bank comes
with its own address generation unit (AGU). A move
between the X-memory bank and the the X-registers and
another move between the Y-memory and the Y-registers
can be performed in parallel. In addition, there are cases
in which yet another operation can be performed in par-

allel.

From AGU or From AGU or
immediate immediate
Shifter ’ Shifter ‘

Fig. 3. Mototorola 56k processor architecture

Techniques for allocating variables to memory such that
the total number of parallel operations is maximized have
been proposed by Sudarsanam and Malik [26]. They
are based on conflict graphs. In such graphs, nodes de-
note variables and symbolic registers. Edges between any
pair of nodes model potential parallel accesses to the cor-
responding values and hence indicate that these values
should be held in different memory banks or register sets.

An algorithm based on simulated annealing tries to re-
spect as many of these edges as possible. The results are
quite impressive: code size reductions for the DSPStone
benchmark range between 20 and almost 60 %.

These optimization techniques show that substantial
improvements of available compilers are feasible. There is
some hope that future compilers for embedded processors
will be much better than those that are currently avail-
able and that eventually this will lead to a replacement of
assembly language programming for embedded systems.

This concludes the description of new optimization
techniques. Next, we turn our attention towards retar-
getability.

III. RETARGETABLE COMPILERS

A. What is retargetability?

Let us first try to define the term. A compiler is said to
be retargetable; if it can be applied to a range of target
processors.

Actually, we can distinguish between different levels of
effort for switching to a new target:

e A high effort is required for so-called portable com-
pilers. Porting a compiler to a new target possibly
includes rewriting some parts of the compiler.

e More precisely than above, we say that a compiler
is retargetable if 1t includes almost no processor spe-
cific code. The characteristics of the target processor
msut be captured in a separate target description.

B. Why retargetability?

Retargetability is difficult to implement. Why then do
people investigate techniques for generating retargetable
compilers?

We would like to mention four different reasons:

1. Retargetable compilers are required to support us-
ing ASIPs. Many different instruction sets can be
defined by choosing values for the generic paramet-
ers of ASIPs. For each set of values, there will pos-
sibly be only a small number of designs. For this
small number, it will not be economically feasible to
design a specialized compiler. So, there should be a
retargetable compiler which can generate code for all
legal value sets of generic parameters.

As far as ASIPs are concerned, no retargetability for
very different processors is required. Retargetability
within the range of parameters is sufficient.

Why do we need ASIPs? The main reason for ASIPs
is that embedded systems require maximum effi-
ciency and maximum efficiency can only be obtained
through customization. It has been observed that
customization of processors results in more compu-
tations per Watt than can be achieved for standard
processors. Fully application-specific hardware (AS-
ICs) would achieve a even higher number of compu-
tations per Watt, but ASICs lack flexibility. Hence,
ASIPs are a good compromise between power con-
sumption and flexibility. Due to their low power con-
sumption, it has been observed that first generation
products are sometimes implemented with standard
processors and these are later replaced by ASIPs in
second generation products.

2. For embedded systems, there is a large range of ap-
plications. This range includes, for example, health
care applications in which the systems are inserted
into the human body, applications in telecommunic-
ations and applications in transportation systems.

Due to the large variety of applications, a large vari-
ety of processors is also required. Due to the mutual
dependencies between instruction set and microarchi-
tecture, we believe that there will be different instruc-
tion sets, each of which will provide a good match for
some applications.

This means that we also need compilers for different
instruction sets which are used for small or medium
number of applications. This will be economically
feasible only if compilers can be easily retargeted to
different instruction sets.

3. With retargetable compilers, 1t is possible to analyse
tradeoffs between adding more processor features and
the resulting size, speed and possibly also the power
consumption of the processor. At a high level, these
features may be instructions that can be added or

deleted. At a lower level, one could also experiment
with hardware features, provided that the compiler
can be generated from a hardware description.

4. Working on retargetable compilers also provides
some 1nsight into mutual dependencies between com-
pilers and architectures. This insight can also help
in designing a target-specific compiler. Hence, there
may be a benefit from research on retargetable com-
pilers even if only target-specific compilers will be
used.

C. Code selection
C1 Objective

Let us now discuss one of the key operations of any com-
piler and let us see how it can be implemented in a retar-
getable compiler. Possibly the most important operation
in any compiler is code selection. In code selection, ma-
chine instructions are selected.

Let us consider an example in which the program to
be compiled requires the computation of an expression
including two multiplies and one add (see fig. 4). This
expression includes references to four variables. In fig. 4,
they are denoted by nodes labeled ‘MEM’.

< ingr, cost |pattern

load |1 |rl:=MEM
mov2 | 1 r2:=rl

mov3 | 1 r3:=rl

add |2 |[rl=r1+r2
mul 2 rl:=rl*r2
mac |3 | rl:=(rl*r2)+r3

Fig. 4. Expression (a * b) + (¢ * d) and instruction patterns

Each of the nodes in fig. 4 has to be implemented by
some instruction of the available instruction set. Accord-
ing to fig. 4, we have one add instruction which adds the
contents of registers 1 and register 2 and stores the res-
ult into register 1. There is also a multiply instruction
using the same input and output registers. In addition,
there is a mac instruction and a load instruction. Finally,
there are move instructions for moving data from register
1 to registers 2 and 3. In fig. 4, the dotted ovals and
circles represent instructions. These do not yet include
move instructions that are required for moving data from
the output register of one instruction to the input register
of the next instruction.

Implementing all operations of the expression is equi-
valent to finding a cover of that expression by instruc-
tions. Even our small example allows different covers to
be generated and the question is: how can we generate the
cover for which the cost (representing the total number of
instructions or cycles) is minimal?

A number of techniques for generating optimum cov-
ers for data-flow trees have been published in the late
eighties?.

C2 Code Selection by Tree Parsing

As an example, we will consider cover generation using
iburg[5]. iburg is publicly available from Princeton Uni-
versity. iburg models cover generation as a language
parsing problem. For this purpose, the instruction set
has to be described as a grammar. In this grammar, per-
manent memory and operators are terminals and transi-
ent registers are non-terminals. The start symbol is actu-
ally not very important and can be defined in a number
of ways. Instructions correspond to rewrite rules of the
grammar.

iburg computes an optimum cover by first annotating
data-flow trees with triples representing target registers,
instructions used for storing results into those target re-
gisters and the cost for storing results into target registers.

_ regl:load:
_ -7 1reg2mov2:2~ o
- I reg3mov3:2, T~
T LN

./ <7 regl:mul:5
Y~ _reg2:mov2:6
, - .Jeg3:mov3:6- ~ _

) mov3

/
_~ Tregliadd:13
~ regl:mac:12

Fig. 5. Annotation and final cover generated by iburg

For example, MEM nodes are annotated with a triple
describing the load operation into target register 1. Fur-
thermore, there is another triple using register 2 as the
target register and using mov2 as the last instruction. Its
cost 1s 2, since both the load and the mov2 instruction
are required. A similar triple exists for target register 3.

Annotating the tree is also done for the multiply opera-
tion. The result of this operation can be stored in register
1, 2 or 3, resulting in costs of 5, 6 and 6 respectively.

2The problem of covering data-flow graphs resulting from expres-
sions containing common subexpressions is more complex. In this
text, we will restrict ourselves to data-flow trees.

Finally, there are two triples for the root node. The
triple using the mac instruction has lowest cost and is
seleted by iburg for the tree cover.

Interestingly enough, this cover includes ovals repres-
enting mov2 and mov3 instructions. These are auto-
matically selected by iburg. This is an improvement
over earlier approaches which used separate data routing
phases to cope with heterogenous register sets.

D. Retargetable Code Generator RECORD

iburg alone does not make a full retargetable compiler,
but it is a good building block. iburg is used in the
retargetable compiler RECORD designed by Leupers [12].

RECORD reads the program to be compiled and the
instruction set and then uses the iburg pattern matcher
generator to generate instruction covers for this program.

In contrast to iburg, RECORD exploits various algeb-
raic rules in order to find the best match between the
instruction set and the program. For this purpose, al-
gebraic rules are applied to the original expression trees.
Transformed trees are also used as input to the pattern
matcher and tree leading to the cover with minimum cost
is selected.

RECORD also includes comprehensive post-processing.
It includes code compaction and address generation unit
support as described in section B of this text. Also, there
are special optimizations for digital signal processing,
such as optimization for delayed signals that are needed
for digital filters.

The code generated by RECORD is surprisingly good.
It generates code that is more compact than the code pro-
duced by the target-specific TI compiler for the ’C25, even
though RECORD does not yet include any of the stand-
ard optimizations found in compiler text books and even
though it is a retargetable compiler. Using a set of DSP-
Stone examples; RECORD outperforms the TI compiler
in six cases, there are two cases in which both compilers
produce the same amount of code and two cases in which
the TI compiler generates more compact code.

E. Target Models

Retargetable compilers use a variety of target models.

RECORD is based on an HDL model of the target pro-
cessor. The HDL model can be a model either of the
instruction set or of the register transfer architecture or
any mixture thereof. From this HDL model, RECORD
computes the information that is required for the iburg
pattern matcher. For this purpose, instruction extrac-
tions [12] is used.

Due to this approach, no separate target modeling lan-
guage is needed and the gap between ECAD and compiler
worlds has been bridged.

There are, however, other approaches for modeling tar-
gets. One of these is used in the CHESS compiler designed
at IMEC in Leuven, Belgium [21]. CHESS is based on a

target model written in a language called nML. These
main idea of nML is to capture the information in the
processor reference manual as precisely as possible in tex-
tual form. Hence, various alternatives for opcode formats
are reflected in so-called OR-rules in nML. Applicability
of nML for simulation and code generation is decribed in
a paper at DAC 97 [7].

Another approach is used by Paulin and his group at
SGS Thomson [16]. They represent the information for
the compiler by a set of rules. Symbolic instructions are
emitted, whenever a matcher finds a match between a rule
and the internal representation of the program to be com-
piled. Hence, rule sets have to be specified everytime a
new processor has to be supported by a compiler. Sym-
bolic instructions are later replaced by real instructions
of the target processor during post-optimization.

F. More Approaches

In addition to the work mentioned so far, a couple of
other approaches exist:

e ISDL is a language that has been proposed for the
description of target processors [6].

e The GNU C compiler GCC [23] is frequently men-
tioned as a retargetable compiler. This compiler does
indeed generate code for various RISC processors
with homogenous register sets. However, it has not
been designed for heterogenous register sets and at-
tempts to do so usually fail.

e Flexware [17] is an earlier approach of Paulin and
co-workers. It has been replaced by the rule-based
approach mentioned above.

e At the University of Guelph, Wilson has proposed
models for integer programming-based compilation

[29].

e At the University of Vienna, Wess is using Trellis
diagrams as a different way of modeling targets [28§].

e For the special case of transport-triggered architec-
tures, Corporaal has designed compiler algorithms

(see [18]).

e Mavaddat is working on theoretical models called
Lindenmayer- or L-systems (see [18]).

e At Philips, there is work for both audio and video
applications [24].

e For VLIW machines, available parallelism 1s visible
at the instruction set level. Hence, scalability is a
problem, because more parallel machines come with
a different instruction set. Binary code compatabil-
ity even within a family of processor is not easy to
obtain. Rau and co-workers at hp-labs are working
on smart loaders. These loaders retarget symbolic
code to the actual architecture.

e Finally, the Stanford University Intermediate Form
(SUTF) has recently shifted from providing a frame-
work for parallelizing compilers towards a generally
usable compiler framework.

IV. CoNcLUSION

The following conclusions cane be drawn from this tu-
torial:

There is currently a clear trend towards cores in general
and towards embedded core processors in particular.

Current compilers for embedded processors do not pro-
duce high-quality code. However, recent achievements in-
dicate, that substantial improvements are feasible and fu-
ture compilers for DSPs and microcontroller could poten-
tially replace assembly language programming.

CAD companies and designers have to become aware of
the issues in generating software for embedded processors.
There are many such issues, including problems with cur-
rently available compilers, both also many more problems
with embedded debugging, software/hardware partition-
ing and software/hardware interface synthesis. Assuming
that products solving these problems can be designed by
subcontractors will potentially lead to problems such as
the poor code quality described in section B.

In the last section of this text, we have explained the
motivation behind research on retargetable compilers and
how they can be designed. It has been shown that the
gap between ECAD and compiler worlds can be bridged
and that retargetable compilers can compete favourably
with available target-specific compilers.

The current tutorial was made possible by the progress
made on code generation for embedded processors in re-
cent years. I would like to thanks those people, since it is
their work that made this tutorial possible.

REFERENCES

[1] A. Alomary, T. Nakata, Y. Honma, M. Imai, and
N. Hikichi. An ASIP instruction set optimization al-
gorithm with functional module sharing constraint.
Int. Conf. on Computer-Aided Design (ICCAD),
pages 526-532, 1993.

[2] G. Araujo and S. Malik. Optimal code generation for
embedded memory no-homogenous register architec-
tures. 8th Int. Symp. on System Synthesis (ISSS),
pages 36—41, 1995.

[3] D.H. Bartley. Optimizing stack frame accesses with
restricted addressing modes. Software - Practice and
FEzrperience, 22:101-110, 1992.

[4] R. Camposano and W. Wolf. Message from the
editors-in-chief. Design Automation for Embedded
Systems, 1996.

[5]

[18]

C.W. Fraser, D.R. Hanson, and T.A. Proebsting. En-
gineering a simple, efficient code generator generator.
ACM Letters on Programming Languages and Sys-
tems, volume 1, pages 213-226, 1992.

Hadjiyiannis97. ISDL: An instruction set descrip-
tion language for retargetability. Design Automation

Conference, 1997.

Hartoog. Generation of software tools from processor
descriptions for hardware/software codesign. Design
Automation Conference, 1997.

[.-J. Huang. Synthesis and exploration of instruction
set design for application specific symbolic comput-
ing. 2nd Workshop on Code Generation for EFmbed-
ded Processors (unpublished), 1996.

[.-J. Huang and A. Despain. Generating instruction
sets and microarchitectures from applications. Int.

Conf. on CAD (ICCAD), pages 391-396, 1994.

D.J. Kolson and A. Nicolau. Optimal register assign-
ment to loops for embedded code generation. ACM
Trans. on Design Automation of Electronic Systems

(TODAES), 1996.

R. Leupers. Algorithms for address assigment in DSP
code generation. ICCAD, 1996.

R. Leupers. Retargetable Code Generation for Di-
gital Signal Processors. Kluwer Academic Publishers,

1997.

R. Leupers and P. Marwedel. Time-constrained code
compaction for DSPs. [Int. Symp. on System Syn-
thesis (I15S5), 1995.

S. Liao, S. Devadas, K. Keutzer, and S. Tijang. Code
optimization techniques for embedded DSP micro-
processors. 32nd Design Automation Conference,

pages 599-604, 1995.

S. Liao, S. Devadas, K. Keutzer, S. Tijang, and
A. Wang. Storage assignment to decrease code size.
Programming Language Design and Implementation

(PLDI), 1995.

C. Liem. Retargetable Compilers for Embedded Core
Processors. Kluwer Academic Publishers, 1997.

C. Liem and P. Paulin. FlexWare — A flex-
ible firmware development environment. Proc.
Furopean Design & Test Conference (EDAC-ETC-
FEUROASIC), pages 31-37, 1994.

P. Marwedel and G. Goossens, editors. Code Gen-
eration for EFmbedded Processors. Kluwer Academic

Publishers, 1995.

[19]

[20]

[26]

[30]

S. Novack, A. Nicolau, and N. Dutt. A unified code
generation approach using mutation scheduling. in:
P. Marwedel, G. Goossens (ed.): Code Generation
for Embedded Processors, Kluwer Academic Publish-
ers, 1995.

P. Paulin, C. Liem, T. May, and S. Sutarwala. DSP
design tool requirements for embedded systems: A
telecommunications industrial perspective. Journal

of VLSI Signal Processing, pages 23-47, 1995.

J. V. Praet, D. Lanneer, G. Goossens, W. Geurts,
and H. De Man. A graph based processor model
for retargetable code generation. Furopean Design &
Test Conference, 1996.

M. Ryan. Market focus — insight into markets that
are making the news in EE Times. hitp://techweb.-
cemp.com/lechweb/eet/embedded /embedded. himl
(Sept. 11), 1995.

R. M. Stallman. Using and porting GNU CC. Free
Software Foundation, 1993.

M. Strik, J. van Meerbergen, A. Timmer, and J. Jess.
Efficient code generation for in-house DSP cores.
Furopean Design & Test Conference, pages 244-249,
1995.

A. Sudarsanam, S. Liao, and S. Devadas. Analysis
and evaluation of address arithmetic capabilities in
custom DSP architectures. Design Automation Con-

ference, 1997.

A. Sudarsanam and S. Malik. Memory bank and
register allocation in software synthesis for ASIPs.
Intern. Conf. on Computer-Aided Design (ICCAD),
pages 388-392, 1995.

E. Timmer. Conflict modelling and instruction
scheduling in code generation for in-house DSP cores.

32th Design Automation Conference, 1995.

B. Wess. Code generation based on Trellis diagrams.
in: P. Marwedel, G. Goossens (ed.): Code Gen-
eration for Embedded Processors, Kluwer Academic

Publishers, 1995.

T. Wilson, G. Grewal, S. Henshall, and D. Banerji.
An ILP-based approach to code generation. in: P.
Marwedel, G. Goossens (ed.): Code Generation for
Embedded Processors, Kluwer, 1995.

V. Zivojnovic and et al. DSPstone: A DSP-oriented
benchmarking methodology. Proc. of the Intern.
Conf. on Signal Processing and Technology, 1994.

