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1    Introduction  

    

    

“ We cannot direct the wind… but we can adjust the sails ” 

Dolly Parton 

 

 

 

 

This dissertation contributes to the literature on credit scoring. It intro-

duces a new type of credit scoring model which specifies a multilevel structure to 

the data. To my knowledge, multilevel credit scoring models have never been ap-

plied in retail banking for credit scoring. These scorecards are improved alterna-

tives to the conventional scoring techniques which include discriminant analysis 

and logistic regression scorecards.  

The multilevel scoring model assesses credit worthiness of applicants for 

a loan by forecasting their probability of default.  I introduce and fit several ver-

sions of the multilevel models which vary by the degree of complexity and are de-

signed to answer different questions in application credit scoring. In addition, 

this thesis proposes a new way of data clustering for a multilevel structure which 

is more intuitive and relevant for efficient credit worthiness assessment.  

Credit scoring plays an important role in the general lending practice 

within a bank. Therefore, recently, the majority of credit scoring models are 

based on prominent statistical theory (Anderson (2007), Crook (2005)). This is a 

logical further development of the subjective credit rating provided by the human 

judgment alone. These scoring models are also called predictive statistical scoring 

models. They are used to assess the relative likelihood of the future event of in-

terest, based on some historical knowledge and past experience. The process of 

scoring involves collecting of relevant information about borrowers and then ap-



1. Introduction      2 

 

plying it in order to discriminate the population of applicants for a loan into two 

parts: accepted and rejected customers. Credit scoring models are also called 

scorecards. I will use these denotations interchangeably in this thesis. 

The motivation for the topic and the core idea of this dissertation are 

closely related to the main advantages of improved credit scoring and its applica-

tion into the decision-making process in retail banking. The main advantages are 

the accuracy gain and cost-saving. Improving credit scoring techniques helps to 

increase operating efficiency by increasing the predictive quality and reducing 

misclassification errors. From the cost-saving prospective, it also leads to profit 

growth and gives a higher return on capital. Accordingly, this thesis proposes 

several alternative specifications of the multilevel scorecards and demonstrates 

that these models outperform standard scoring models by providing a higher fo-

recasting accuracy.  

In credit scoring the main goal is to define factors which influence riski-

ness of individuals who apply for a bank loan. Accordingly, I introduce a particu-

lar type of multilevel structure which is relevant for a more efficient credit sco-

ring. The main advantage of this structure is that it makes use of information on 

unobserved characteristics which impact credit worthiness of borrowers addi-

tionally to the observed characteristics such as income, marital status and credit 

history. Accounting for unobserved determinants of default in a credit scoring 

model is important and helps to increase the accuracy of the model predictions.  

The scorecard assumes that these unobserved characteristics of credit worthiness 

are random-effects. This thesis introduces two types of multilevel structures 

which allow including random-effects at the higher-level of the hierarchy. The 

first structure nests applicants for a loan within second-level groups, microenvi-

ronments. Each microenvironment determines the living area of a borrower with 

a particular combination of socio-economic and demographic conditions. Microen-

vironment-specific effects impact the riskiness of borrowers additionally to the 

observed personal characteristics. Importantly, clustering within microenviron-

ments differs from simple geographical grouping. The difference is that microen-

vironments can include individuals from different cities or regions if their living 

area conditions are similar.  

The second type of multilevel structure extends the first. It cross-classifies 

individuals with different classifications according to similarities in particular 
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characteristics of their occupational activities, living area condition and infras-

tructure of shopping facilities in their residence areas.  

It is important to mention that in this dissertation I mainly focus on ap-

plication credit scoring which is implemented on the first stage of the decision-

making process in retail banking: when individuals apply for a loan and a lender 

has to decide whether to accept or reject a borrower.  In this case, lenders begin 

scoring by making an assessment of prospective customers according to their ca-

pacity to borrow, credit history and derogatory information, capital (credit re-

sources) and conditions of a credit deal. These assessments are based upon the 

lenders own experience, taking into consideration not only the historical informa-

tion, but also a forward-looking view of the borrowers’ prospects. Then this in-

formation is used in a credit scoring model which as a result provides a credit 

score. An application credit score provides the numerical assessment of bor-

rower’s credit worthiness and is regularly measured by probability of default. 

When application scores are estimated lenders choose the cut-off point which dis-

criminates the population of borrowers into two categories.  Applicants above the 

cutoff point are going to be granted a loan and applicants below the cutoff point 

are rejected.   

The quality of application credit scoring models should be of primary im-

portance for a retail banker as these scores are applied to a new cohort of cus-

tomers in the first place. Application credit scores also help to choose the most 

reliable borrowers from the population of all customers who apply for a loan to a 

bank. 

In spite of that, application credit scores are one of the most important for 

a bank, there exist other types of credit scores depending on where and how they 

are used. The most common are behavioral scores, Bureau scores and customer 

scores (Hand (1997), Baesens (2005)). I do not discuss these alternatives in this 

dissertation.  

There are a number of credit scoring techniques which aim to assess cre-

dit worthiness. The most commonly applied methods are logistic regression scor-

ing, probit models, decision trees and multiple discriminant analysis (Anderson 

(2007). The primary differences between these techniques involve the assump-

tions regarding the explanatory variables and the ability to model binary out-

comes. In addition to the multilevel scorecards, I also fit a logistic scorecard in 
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order to compare the predictive quality between the multilevel scoring models 

and a benchmark logit. 

 

1.1   Literature overview 

   

 

 

This subsection reviews the literature on multilevel modeling and dis-

cusses the main fields of recent application of multilevel models. In general, 

multilevel models combine features of known models such as variance component 

models, mixed effects models and random-effects models in panel data analysis. 

Variance component models are also called hierarchical linear models. It is as-

sumed that the data used in the variance analysis is grouped within one or more 

hierarchical categories.  According to Kreft and de Leeuw (1998) variance compo-

nent models were mentioned for the first time by the astronomer Airy (1879). 

However, the substantial work was done by Fisher (1918) who introduced the 

term “analysis of variance” in the literature and developed variance component 

models. Tipett (1931) was the first to employ linear models in the analysis of va-

riance. He considered the problem of selecting the optimal sampling design for 

particular experimental situations for a one-way random model.  

A further extension of a variance component model is a mixed-effects 

model which puts distinction between fixed and random effects in the model. A 

mixed-effects regression was introduced by Eisenhart (1947) and Henderson 

(1953) who also developed best linear unbiased estimates of fixed effects and best 

linear unbiased predictions of random effects (BLUP).    

Longitudinal or panel data model is a kind of mixed-effects model. A 

panel model assumes that the same characteristics are measured repeatedly over 

time for the same set of individuals or households. A comprehensive review of 

panel data models and estimation approaches are discussed in detail in Cham-

berlain (1984), Hsiao (2007) and Verbeke and Molenberghs (2006).  Strenio et al. 

(1983) were the first to relate panel data models and multilevel models. 
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In general, a multilevel model is a more advanced form of a mixed-effects 

model which includes fixed and random-effects at different levels of the model 

hierarchy. These statistical models imply that the data for the analysis is nested 

within groups. In the simple multilevel model with two levels observations are 

treated as level-one units which are clustered within level-two units, groups. 

Nested data structure or hierarchical structure is typical in social sciences and 

behavioral economics. The most prominent example in the literature where data 

has a hierarchical structure comes from the field of education where pupils or 

students are nested within schools or classes (Goldstein (2003), Blatchford (2002), 

and Steele (2007)).  The motivation for this kind of grouping is that it is assumed 

that individual units from the same group share more similarities than units 

from different groups. Goldstein et al. (1996, 1999) and Burkholder and Harlow 

(2003) apply multilevel modeling to analyze pupils’ examination results. They 

emphasize that pupils from the same school share more common characteristics 

than pupils randomly drawn from a population of pupils. The similarities in cha-

racteristics are explained by school-specific internal rules and customs, teaching 

methods and leisure activities. All these characteristics determine school 

specifics which make pupils within one school more similar to each other compa-

red to pupils from other schools.  

In an organizational behavior study, typical examples of hierarchical 

structures include employees-within-firms and firms-within-cities (Staw, Sandel-

ands and Dutton (1981)).  Browne and Prescott (2006) discuss the application of 

multilevel data structures in health economics and pharmaceutical industry.  In 

particular, they apply a two-level structure (patients-within-hospitals) to exa-

mine the differences between hospitals in their rates of post-operative complica-

tions. In political science Gelman (2007) uses a hierarchical structure to analyze 

voting preferences during the presidential election in 2000.   
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2      Multilevel Hierarchical Credit 

Scoring Model 

 

 

 

 

 

 

This chapter introduces a new type of a credit scoring model which has a 

multilevel structure. Multilevel credit scoring models have never been applied in 

retail banking for credit worthiness assessment. Here, I demonstrate that the 

multilevel scoring model is an improved alternative to a conventional logistic 

scoring regression which is regularly applied in retail banking. In addition, the 

chapter proposes a new type of clustering for a hierarchical two-level structure 

which is more intuitive and efficient in the application to credit scoring. This 

structure explores living area-specific effects which are viewed as unobserved de-

terminants of default. Including area-specific effects in the models improves the 

accuracy of the forecasts and allows evaluating the impact of the particular 

group-level characteristics on default.  

I introduce several versions of the credit scoring models which can be 

used in retail banking for a credit worthiness assessment of customers. Impor-

tantly, the thesis mainly focuses on application credit scoring. It implies that a 

scorecard is primarily used for forecasting the probability of default of a customer 

who applies for a bank loan and for whom a detailed credit history is collected. 

Accordingly, I do not discuss other types of credit scoring models here. However, 

the approach can easily be extended to the behavioural or relationship scoring 

models.  

 The chapter is divided into three parts: theory, empirical application and 

discussion of the results. The first section 2.1 presents the multilevel structure 

and gives a motivation for the particular type of a hierarchical structure.  A 

detailed description of the data used in the empirical analysis is given in section 

2.2. The data sample contains credit histories of borrowers which are collected 

from three different sources: personal data, Credit Bureau reports and socio-
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economic data for the living area of a borrower. I also use statistical data for 

regional economic accounts (counties and states) provided by the Bureau of 

Economic Analysis (BEA).  

The empirical part of the chapter (section 2.3) specifies the multilevel 

credit scoring models and applies them to the credit history data. The scorecards 

vary by the degree of complexity. I begin by presenting the simplest version with 

only a random-intercept and then elaborate it by including more random-effects 

and group-level characteristics.  

The data sample is divided into two parts: a training sample and a testing 

sample.  The training data sample is applied to fit the scorecards and the testing 

data sample is used for the postestimation diagnostics.   

I apply a ROC curve analysis to check the predictive accuracy of the 

estimated scoring models. The ROC curve plots and related metrics conclude the 

presentation of the empirical results for the scorecards in each subsection. In 

addition, I perform several other statistical tests which aim to assess the 

discriminatory power of the models. I summarize and compare the performance 

between the multilevel scorecards and a conventional scoring model in Chapter 3. 

In addition, this chapter discusses the main limitations and drawbacks 

associated with an application of the ROC curve (AUC) to credit scoring and 

proposes alternative methods for evaluating forecasting accuracy.   

 

 

 

 

2.1   Microenvironment and multilevel               

structure 

 

 

The scope for the application of multilevel structures is wide. It allows ad-

dressing various questions and fitting models of different complexity. In credit 

scoring the main goal is to define factors which influence riskiness of individuals 

who apply for a bank loan. Accordingly, I introduce a particular type of multilevel 

structure which is relevant for a more efficient credit scoring. The main advan-
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tage of this structure is that it makes use of the information on unobserved cha-

racteristics which impact credit worthiness of borrowers additionally to the ob-

served characteristics such as income, marital status and credit history.  Accoun-

ting for unobserved determinants of default in a credit scoring model is important 

and helps to increase the accuracy of the model predictions.  The scorecard as-

sumes that these unobserved characteristics of credit worthiness are random-

effects.   

I define a two-level hierarchical structure for a scoring model which 

includes random-effects. The structure nests applicants for a loan within 

microenvironments. I use the term microenvironment to determine the living 

area of a borrower. Each microenvironment represents a particular combination 

of socio-economic and demographic conditions. In this two-level structure 

borrowers are treated as the level-one units which are nested within the level-

two units, the microenvironments.  

 

 

2.1.1 Clustering algorithm 

 

 

The grouping of borrowers within microenvironments is done according to 

the similarities in the economic and demographic conditions in their residence 

areas. In order to nest the borrowers within microenvironments I use area 

descriptive data as well as BEA data on regional economic accounts.  The 

economic determinants of grouping include living area income, housing wealth 

and the percentage of retail stores, furniture outlets, gas stations and autohouse 

sales in the total sales in the market. The socio-demographic determinants of 

grouping are the share of individuals with a college degree in the living area and 

the share of African-American (Hispanic) residents in the district.  

I apply non-hierarchical clustering algorithm, k-means, to nest the 

borrowers within microenvironments. This algorithm was first used by MacQeen 

in 1967, though the idea goes back to Hugo Steinhaus in 1956.  The procedure 

follows a simple and easy way to classify a data set through a certain number of 

clusters fixed a priori. The main idea is to find k centroids, one for each cluster. 
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The next step is to take each point belonging to a given data set and associate it 

to the nearest centroid by minimizing an objective function. 

Given a set of observations ���, ��, … , ���, where each observation is a d-
dimensional real vector, k-means algorithm aims to partition n observations into 

k sets  	 
 �	�, 	�, … , 	�� (k<n) in order to minimize the within-cluster sum of 
squares (MacQeen (1967)): 

 


�� ���� ∑ ∑ ��� � ���� �� � ������ , 

 

where �� is the mean of points in 	�.  
The k-means clustering follows an iterative refinement technique.  Given 

an initial set of k centroids  �����, … , �����,  which may be specified randomly or 
defined a priori, the algorithm proceeds by alternating between two steps 

(Mackey (2003)): assignment step and update step. 

At the assignment step each observation is located to the cluster with the 

closest mean:   

 

	�� � 
 ��� :  "�� � ��� �" # "�� � ��$� �"  %&� 
'' �$ 
 1,… , )*. 
 

When no point is pending, the first step is completed and an early 

grouping is done. Given k new clusters the update step recalculates new 

centroids in the clusters and then reestimates new distances. 

 

��� +�� 
 �,���-�,  ∑ ���� � ���-�  . 

 

The procedure is repeated until centroids do not move anymore.  The 

clustering algorithm applies squared-Euclidian distance to k-means which is 

calculated as follows 

 .�/0
��12345�6�7� 
 8∑ ���,6 � ��,66 �� , 
 

where d  is the dimension of �� or the number of input variables (determinants of 
clustering) which are used to nest borrowers within microenvironments. 
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The k-means clustering is sensitive to the choice of initial cluster centres. 

Therefore, I define a grouping variable which provides initial clustering. To 

create the grouping variable, I sort the data by median income in the living area 

and split the data into 70 equal-size clusters. In addition, I normalize the input 

variables used in the clustering by subtracting mean and dividing by standard 

deviation. This makes the variables comparable as initially they are measured on 

different scales.  

After clustering is done I adjust the number of clusters by combining 

together clusters which have small number of observations and similar centroids. 

The final set of clusters consists of 61 microenvironments. It should be mentioned 

that it possible to specify other number of clusters or define other determinants 

of clustering for a multilevel scorecard. This choice should generally be 

determined by a researcher. In this thesis I focus on the two-level structure with 

61 microenvironments because I suggest that this is a reasonable amount of 

second-level clusters given the quantity and quality of the credit history data.  

 

 

 

2.1.2 Microenvironments: aims and advantages 

 

 

I define 61 microenvironments within which all borrowers are clustered. 

Each microenvironment includes borrowers with a unique combination of 

economic and demographic conditions in their living areas. In the credit 

scorecard the unobserved microenvironment-specific characteristics are captured 

by the random-effects and the observed living area characteristics are given by 

the group-level variables.  

There are several reasons why including information on the microenvi-

ronments in the credit scoring model is important and advantageous.  First, it 

shows that borrowers from dissimilar living areas are exposed to different risk 

factors which impact their probabilities of default. It is evident that poor living 

areas with an undeveloped infrastructure of shopping facilities have higher un-

employment rates and crime rates, contain a lower share of individuals with a 
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college degree and have a lower level of real estate wealth (percentage of families 

who own a house). In such environments, individuals have a higher chance to 

experience adverse events such as damage of a property, severe income cut, loss 

of the main job or health problems.  All these factors are living area-specific and 

influence the riskiness of borrowers who reside in such regions. It is also true 

that the quality of borrowers differs between low income areas and high income 

regions. The share of borrowers with a problematic credit debt and the share of 

individuals with derogatory credit history are higher in poor regions as compared 

to richer areas. This is because the amount of unobserved area-specific risks is 

much higher in a microenvironment with unstable economic conditions. I do not 

list all risks as it is assumed that the microenvironment random-effects aggre-

gate the information on all unobserved determinants of default and explain the 

area-specific hazards. Importantly, these area-specific effects impact probability 

of default given the personal characteristics of borrowers. For two applicants 

with exactly the same personal characteristics, probabilities of default are 

different and depend on the microenvironment in which they reside.  

Second, recognizing the two-level structure which nests borrowers within 

microenvironments allows exploring the impact of the microenvironment-level 

characteristics on default. The microenvironment-level information is given by 

the group-level variables. I define several second-level variables which 

characterize the conditions within a living area. A graphical illustration in 

chapter 3 provides a discussion about the impact of living area income and real 

estate wealth on the riskiness of borrowers from poor and rich areas. In order to 

explore the effect of the socio-demographic conditions in the region on default, I 

specify higher education and the share of African-American residents as the 

second-level variables.  

I provide a descriptive table in order to interpret the term microenviron-

ment. Table 2.1 reports the economic and demographic characteristics of the li-

ving area conditions within high income, average income and low income 

microenvironments. The region-specific characteristics are area income, real es-

tate wealth, share of college graduates and share of African-American residents. 

The first three microenvironments represent economically stable living 

areas where the average income is high and the majority of families own a real 

estate property. These areas also contain a higher share of high-skilled indi-

viduals (college degree) and a lower share of African-American and Hispanic 
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residents.  The last two columns describe the living conditions in poor microen-

vironments where the average level of income is low and only a minor share of 

families have a real estate property. The differences in the living area economic 

and demographic conditions between poor and rich microenvironments are huge. 

This implies that the exposure to the microenvironment-specific risks also varies 

considerably across the regions. 

 

 

Living area characteristics 
Microenvironment ID 

8 6 39 17 52 

Average area income, $ annually 75 000 55 250 42 940 24 360 18 420 

Housing wealth 
(% of families who own a house) 

 

80.40 

 

57.00 

 

81.20 

 

30.70 

 

3.20 

Share of college graduates , % 27.90 21.00 15.90 7.40 1.10 

African-American + Hispanic residents,% 2.60 8.80 15.30 29.60 98.80 

Median age 38.0 40.0 34.6 32.1 29.1 

Table 2.1. Descriptive summary for five microenvironments. Each microenvironment 

determines a unique combination of economic and demographic conditions in the living 

area of a borrower. 

 

 

The main aim of multilevel modelling is to make inference about a 

population. It is assumed that there is a population of microenvironments within 

which all borrowers reside. Observing a sample from this population helps to 

explore the parameter values in the population. Accordingly, in a credit scoring 

model the unobserved microenvironment-specific effects are assumed to be drawn 

from a population.  These effects are viewed as random and in the scorecards 

they are captured by the random-intercepts and random-coefficients (other than 

intercept).   

Importantly, I emphasize that the two-level structure which nests borro-

wers within microenvironments is a more efficient alternative to the conventional 

type of structure where individuals are nested in groups according to their geo-

graphical locations. The geographical grouping suggests clustering of individuals 

within small regions, cities or states.  The main difference between these two 

types of clustering is that the former structure is more relevant in application to 

credit scoring because it recognizes that borrowers within one group are similar 

in terms of their living area conditions. It implies that a particular combination 



13 

 

of economic and demographic characteristics within a microenvironment impacts 

the riskiness but not a geographical location itself. Accordingly, within one mi-

croenvironment it is possible to have applicants from different regions or cities if 

their living area conditions are essentially the same. For instance, in the case of 

Germany, a geographical clustering of borrowers shows nesting of individuals 

within one of the 429 urban or rural districts (Landkreise, 313, und Stadtkreise, 

116). This kind of grouping represents only residence locations of the borrowers 

and does not clarify which characteristics of their neighbourhoods impact the 

probability of default. Alternatively, if I nest individuals within microenviron-

ments, then it is clear which combination of the area-specific characteristics such 

as area income, unemployment rate, share of college graduates or foreign resi-

dents influence the probability. A microenvironment may contain borrowers from 

different rural districts or cities if their living area conditions are similar. In this 

case individuals within one microenvironment are exposed to the same triggering 

default factors and living area risks (poor regions, high crime rates, bad labour 

market, etc.) which impact their riskiness and probability of default.   

For instance, if we compare zip-code areas in Dortmund and Essen cities, 

there are good and bad areas within each of the cities. Pure geographical 

grouping would nest borrowers within clusters taking into account only their lo-

cation in Essen or in Dortmund. This creates many clusters (areas in Dortmund 

and Essen) which include regions with very similar, almost identical, economic 

and demographic conditions. In this case geographical grouping is inappropriate 

because it leads to wrong inferences about the between-groups variance. In const-

ruct, nesting of applicants within microenvironments resolves this problem by 

combining areas with similar economic conditions in one cluster.  In addition, it 

reduces the number of overall clusters and increases the precision of the parame-

ters’ estimates.  

In summary, the main weakness of a geographical grouping is that it is 

inappropriate if there are regions with similar economic conditions, like Dort-

mund and Essen. In this case, the multilevel structure recognizes two different 

living area-effects which are the same in reality. Grouping borrowers within mi-

croenvironments helps to resolve this problem.  
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2.2   Data and variables  

 

 

 

 

In this section I describe the data used in the empirical application of the 

multilevel credit scorecards and list the predictor variables used in the models. 

The dataset is part of American Express credit card database analyzed by 

W.Greene (1992). The full dataset contains 13 444 records on credit histories of 

individuals who applied for a loan in the past. In this sample 10499 applications 

are accepted for a loan and 2945 are rejected. The outcome variable (default or 

not default) is observed for the subsample of accepted borrowers and personal 

characteristics plus auxiliary information are available for the full sample of 

borrowers. In the empirical analysis I use the subsample of applicants who were 

granted a loan. There are 996 defaulters within this sample. Default occurs when 

a credit account is more than 6 months past due. 

 In addition, I collect data on regional economic accounts provided by the 

Bureau of Economic Analysis (BEA) in the United States (www.bea.gov). The 

BEA information includes annual personal income, full and part-time 

employment, taxes and gross domestic product. The regional-account data is 

measured at the county, metropolitan area and state levels. I apply this data in 

order to define the microenvironment-level characteristics and create the group-

level variables which are then used in the multilevel credit scoring models in 

section 2.3.  

The credit history data combines information on the applicant for a loan 

collected from three different sources: personal data, credit Bureau report and 

living area descriptive data. The personal data is collected through application 

forms which borrowers fill in when they apply for a credit.  It includes socio-

demographic characteristics such as family composition, age, level of education, 

annual labour income, additional income, occupational field, monthly expendi-

tures, accommodation ownership, employment duration in months, duration at 

current and previous living addresses and other information.  

The credit bureau report contains detailed information on the past credit 

history of a customer. It provides information on major and minor derogatory 
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reports, shows the history of previous credit file searches or enquiries, lists the 

past experience with a lender (such as banking saving and checking accounts or 

personal loans), shows the number of open (active) trade accounts and gives a 

detailed overview of the currently issued credit cards  and revolving credit lines. 

Consumer credit enquiries is a notice in a credit profile of  a borrower which 

shows how many times a customer applied for a new credit ( mortgage, auto loan, 

or credit card) prior to the current application. Credit inquiries appear in a credit 

profile whether the applications were approved or not. Given information on 

enquiries lenders can determine if a borrower has been trying to secure new lines 

of credit recently or obtain a loan to consolidate the past due bills.  

Living area descriptive data characterize the economic and demographic 

conditions in the borrowers’ neighbourhoods. These characteristics are measured 

for the areas defined by the 5-digit zip-code.  The major benefit of using a micro-

level statistical data is that it provides a better representation of the living area 

conditions within the bigger regions or states. States, regions and large cities 

usually combine micro-areas with very dissimilar conditions.  

The living area descriptive data contains the following characteristics:  

per capita income in the market, population growth rate, buying power index, 

unemployment rate, percentage of African-American (Hispanic) residents and 

detailed information on the shopping facilities available in the living area. The 

characteristics of the shopping facilities include the share of retail store, gasoline 

company, furniture outlet, dining place and drug store sales in the total retail 

sales in the market.  

The summary and descriptive statistics of the credit history data is 

provided in Table 2.2. 

Table 2.2. Summary and descriptive statistics of the credit history data.   

Variable Measure Mean Std.dev Min Max 

Personal information   

Labour  income1 Continuous, thd of $ 34.2 17.7 1.3 100.0 

Additional income1 Continuous, thd of $ 4.1 9.1 0 10.0 

Age Number 33.4 10.2 18 88 

Number of dependents in the  family Numerical 1.02 1.2 0 9 

Duration in months at current  address Numerical, in mths 55.31 63.08 0 576 

Duration in months at previous address Numerical, in mths 81.3 80.5 0 600 

House owner / renter Indicator 0.45 0.49 0 1 

Average revolving balance  Continuous, thd of $ 5.2 7.5 0 19 
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Occupation: 

Military 

Retail trade 

High-skilled professionals 

Management 

Clerical staff 

Proprietors 

Construction, transportation and others 

 

Indicator 

Indicator 

Indicator 

Indicator 

Indicator 

Indicator 

Indicator 

 

0.022 

0.078 

0.115 

0.074 

0.088 

0.057 

0.620 

 

0.14 

0.26 

0.31 

0.26 

0.28 

0.23 

0.48 

 

0 

0 

0 

0 

0 

0 

0 

 

1 

1 

1 

1 

1 

1 

1 

Credit Bureau report   

 

Derogatory information: 

Major reports 

Minor reports 

 

Numerical 

Numerical 

 

0.460 

0.290 

 

1.40 

0.76 

 

0 

0 

 

22 

11 

Previously had a loan with a lender Indicator 0.073 0.26 0 1 

Dollar amount of average revolving 

balance 

 

Numerical 

 

52.81 

 

75.90 

 

0 

 

190 

 

Miscellaneous data: 

Department credit card 

Gasoline credit card 

Indicator 

 Indicator 

 

0.150 

0.028 

 

0.34 

0.16 

 

0 

0 

 

1 

1 

Number of credit enquiries 

(applications for a loan) 

 

Numerical 

 

1.400 

 

2.20 

 

0 

 

56 

Number of trade lines 30 days past due Numerical 0.055 0.26 0 3.0 

Number of 30 day-delinquencies in last 

12 months 

 

Numerical 

 

0.365 

 

1.24 

 

0 

 

21 

Banking accounts: 

Checking account 

Savings account 

Checking and savings 

 

Indicator 

Indicator 

Indicator 

 

0.297 

0.034 

0.661 

 

0.45 

0.18 

0.47 

 

0 

0 

0 

 

1 

1 

1 

Number of current trade accounts Numerical 6.42 6.10 0 50 

Number of open trade accounts Numerical 6.050 5.20 0 43 

Number of active trade accounts Numerical 2.280 2.60 0 27 

Average revolving credit balance Continuous, thsd $ 5.28 7.5 0 190 

Living area descriptive data    

Real estate wealth  

(share of families which own a house) 
Percentage 53.9 28.2 0 100 

Per capita  area income1 Continuous, thds $ 28.34 10.4 0 75.1 

Demographic characteristics: 

African-American residents  

Spanish residents  

 

Percentage 

Percentage 

 

11.7 

7.7 

 

20.5 

13.1 

 

0 

0 

 

100 

96 

Employment in the living area Percentage 40.99 108.0 0 65.2 

College graduates  Percentage 10.7 8.5 0 54.9 

Average  age of residents Continuous 33.2 5.4 0 65 

Index of buying power in market ( 5 digit 

zip code) 

 

Index 

 

0.014 

 

0.009 

 

0 

 

0.113 

Population growth rate (annual) Percentage 22.4 18.7 -6.1 70.68 

Infrastructure of shopping facilities:      

Apparel Percentage 2.43 2.43 0 33.3 
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Autohouses  Percentage 1.49 1.32 0 33.3 

Gas Percentage 1.76 1.79 0 99 

Dining places Percentage 6.58 3.95 0 99.1 

Drug stores Percentage 1.30 1.77 0 15.2 

Build material outlets Percentage 1.12 1.23 0 33.3 

Furniture Percentage 1.86 2.51 0 99 
 

1   Income, additional income and per capita area income are measured in $1000 units and are 

censored at 100. 

 

The main aim of the thesis is to develop a multilevel credit scorecard and 

to show that this kind of a credit scoring model has a higher predictive accuracy 

than a conventional scorecard.  Here, I refer to a logistic regression scorecard as a 

standard credit scoring model.  Accordingly, in order to compare out-of-sample 

predictive performance between the multilevel scorecards and a logistic regres-

sion, I randomly split the sample into two subsets. First, I assign random num-

bers to each observation in the sample and then draw a random sample without 

replacement. The first subset is the training sample which is used in the estima-

tion stage. It contains 60% of observations. The second subset is the testing sam-

ple which is applied in the forecasting stage. The description summary for the 

training and testing datasets is given in Table 2.3. 

 

 

 Full sample Training sample Testing sample 

Default 996 571 425 

Non-default 9503 5748 3755 

Observations 10499 6319 4180 

Table 2.3.  Description of the training and testing subsets.  

 

 

There are 37 variables in the data sample which can be used in a credit 

scoring model.  I apply a forward selection method in order to choose the best per-

forming predictors which should be included in a scoring model. For more techni-

cal details on variable selection techniques I refer to the paper by Burnham and 

Anderson (2002).  

 According to the forward selection method variables are included in the 

model one by one until they decrease AIC or BIC criteria (Akaike, 1974; 

Schwartz, 1978). I use a logistic regression in the selection process. The resulting 
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set of explanatory variables consists of 12 variables which are then used in the 

credit scoring models within this chapter. Importantly, these explanatory 

variables are individual-level variables. Microenvironment-level variables 

included in the credit scorecards in section 2.3 are not given in this set.  

Additionally, I report the correlation matrix between all explanatory 

variables in order to check for multicollinearity. The table with the correlation 

coefficients is provided in Appendix I. The results confirm that multicollinearity 

is not a problem here: the correlation between explanatory variables is low (the 

highest absolute value is 0.15).  

 

 

 

 

 

2.3   Empirical analysis 

 

 

 

 

This section provides an empirical analysis for the multilevel credit 

scoring models.  I introduce and fit several versions of the credit scorecards which 

differ by the composition of the random-effects and group-level variables. All 

scoring models are specified with a two-level structure where borrowers are the 

level-one units which are nested within microenvironments, the level-two groups. 

The two-level structure allows recognizing the microenvironment-specific effects 

which are given by the random-effects in the models.  

I begin by providing the empirical results for the multilevel credit scoring 

model which includes only a random-intercept for the microenvironments. Then, 

this scoring model is elaborated to include more area-specific effects. Subsection 

2.3.2 introduces a credit scorecard which additionally to the microenvironment-

specific intercept specifies several group-level variables. Including group-level 

characteristics improves the estimation of the area-specific intercepts. The sco-

ring model in subsection 2.3.3 extends the random-intercept scorecard and allows 
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the coefficients of two individual-level variables to vary across microenvi-

ronments. Finally, I present a very flexible version of a multilevel scoring model 

which includes multiple random-coefficients, group-level variables and interacted 

variables (interactions between the individual-level and group-level variables).   

As discussed earlier I apply the training data sample for the model fitting. 

The testing dataset is used for the calculation of the postestimation diagnostics 

which include different assessments of the scorecards’ performance and the 

predictive accuracy check. In particular, I apply a ROC analysis and several 

other statistical measures to test the forecasting quality of the scorecards and 

compare the discriminatory power between scoring models as given in section 2.4. 

Additionally, I report the classification table for the optimal cut-off point, 

sensitivity and specificity pairs and calculate areas under the ROC curve.   

The credit scoring models presented in this chapter are fitted in Stata and 

MLwiN (StataCorp. 2007, Centre for Multilevel Modelling, University of Bristol 

(2009)) by maximum likelihood. There are several approaches proposed in the 

literature to estimate a logistic regression and its extension – a multilevel logistic 

regression. In the thesis I follow the literature and apply two of the most 

frequently used techniques: maximum likelihood and Bayesian Markov chain 

Monte Carlo.  Bayesian MCMC is applied to fit the complex credit scoring models 

with cross-classified structures which are presented in chapter 4. It should be 

mentioned that the estimation methods are not the main topic of this 

dissertation. Accordingly, I do not provide a comprehensive description of the 

technical details of the estimation within this chapter. Instead, I denote a single 

chapter 5 ‘Estimation’ where a brief summary is given for the estimation with 

maximum likelihood and Bayesian MCMC. Chapter 5 also reviews the main 

advantages/disadvantages of the estimation approaches and discusses which 

method is more appropriate for fitting a multilevel scoring model with different 

combination of random-effects.  

In order to compare the predictive performance between the multilevel 

scoring models and a conventional scorecard I report the empirical results for the 

logistic regression scorecard first.  The logistic regression scorecard is specified in 

[2.1].  The dependent variable 9� is binary (0,1). It equals one for the defaulted 
borrowers and zero for the non-defaulters. The model assesses credit worthiness 

of an applicant for a loan by estimating the probability of default.  
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I apply a forward selection to choose the variables which are then in-

cluded in the scorecards. The resulting set contains 12 individual-level variables. 

I will use the same set of variables for all credit scoring models within the chap-

ter.   The explanatory variables are annual income of a borrower (C��&�1�), the 
number of dependents in the family (.1D1�E1�0/�), the number of current trade 
accounts (G�
E1744H3� I�), a dummy variable  for customers who use bank savings 
and checking accounts (K
�)�), the number of previous credit enquiries 
(M�NO���1/��, a dummy variable for high-skilled professionals (Q�&%1//�&�
'�), the 
number of derogatory reports in the credit profile of a borrower (.S�), the average 
revolving credit balance  (S4UV6� I�), a dummy variable for borrowers who have pre-
vious experience with a lender such as a personal loan or a credit card �X�1E�0��, 
the number of 30-days delinquencies on the credit accounts in the past 12 months 

(Q
/063V�) and a dummy variable for the borrowers who own a house or a flat 
(YZ��). The logistic regression scorecard is estimated in Stata by maximum likeli-
hood. 

 

Variable Coefficient Std.error z P>|z| 

Total Income -0.043 0.003 -14.06 <0.001 
Number of dependents 0.088 0.023 3.54 <0.001 
Trade accounts -0.049 0.005 -7.90 <0.001 
Bank  accounts (ch/ savings)  -0.346 0.061 -5.57 <0.001 
Enquiries 0.392 0.012 30.80 <0.001 
Professional -0.369 0.106 -3.42 <0.001 
Derogatory Reports 0.625 0.023 27.19 <0.001 
Revolving credit balance 0.013 0.003 3.38 <0.001 
Previous credit  -0.091 0.030 3.03 0.005 
Past due 0.306 0.055 5.54 <0.001 
Own -0.053 0.066 -0.80 0.420 
Constant -1.380 0.104 -13.20 <0.001 

 

Table 2.4. Estimation results for the logistic regression credit scorecard.  
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The estimation results are presented in Table 2.4.  The first column in the 

table gives a variable name. The second and the third columns provide coefficient 

estimates and standard errors. The forth column reports a t-test (or z-test) to 

check the null hypothesis that a coefficient equals zero.  The last column provides 

the p-value for the corresponding two-sided test.  

The interpretation of the coefficients in the case of a generalized linear 

model is not straightforward as in the linear case. To interpret the estimates I 

calculate marginal effects of the explanatory variables by taking the first deriva-

tive, E9/E�. Table 2.5 presents the results. I set the continuous variables at their 
mean values (�\) while calculating marginal effects.  In the case of an indicator 
variable the marginal effect is the change in the probability given a discrete 

change of a dummy variable from 0 to 1. The other dummy variables are specified 

to take a value of one while calculating marginal effects. I denote dummy vari-

ables by *  in the table.   

 

Variable E9/E� Std.err. �\  
Total Income -0.0033 0.0002 30.11 

Number of dependents 0.0068 0.0010 1.02 

Trade accounts -0.0038 0.0004 7.17 

Bank  accounts (ch/ savings)* -0.0860 0.0050  

Enquiries 0.0301 0.0010 1.42 

Professional* -0.0910 0.0060  

Derogatory Reports 0.0481 0.0020 0.46 

Revolving credit balance 0.0009 0.0002 5.28 

Previous credit * -0.0220 0.0060  

Past due 0.0240 0.0040 0.15 

Own* -0.0140 0.0050  

Table 2.5. Marginal-effects for variables in the logistic regression 

scorecard evaluated at the mean value,  �\ . The mean values of independent 

variables are given in the forth column.  

 

The results in Table 2.5 confirm that the probability of default decreases 

with higher income, higher number of trade accounts, if a borrower holds any 

banking savings and checking accounts and if an applicant is a college graduate.  

In particular, a ten thousands increase in total income decreases the probability 

by 3.3% given that the other continuous variables are taken at their mean values 

and the dummy variables are equalized to 1. The probability of default is 2.2% 

smaller if a borrower had previous experience with a lender such as a personal 
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loan or credit card. It is also true that high-skilled professionals are less risky 

than other borrowers. In contrast, unsatisfactory credit history records such as a 

high number of derogatory reports or delinquencies on the past credit obligations 

have a positive impact on the riskiness of customers. 

An alternative to this method is a rule of thumb ‘divide-by-four’ which is a 

quick way of calculating marginal effects. According to this rule the marginal 

effect of a continuous variable can be approximated by dividing its estimated 

coefficient by 4. This gives an upper bound for the change in the dependent 

variable given a unit change in a predictor variable (Gelman (2007)).  

In order to check the goodness-of-fit of the logistic scorecard I apply seve-

ral postestimation diagnostics. Table 2.6 provides the results for the likelihood 

ratio test, Hosmer-Lemeshow chi-squared test, pseudo R-squared, Akaike infor-

mation criterion (AIC) and Bayesian information criterion (BIC). Later, I will ap-

ply these results to compare the goodness-of-fit and predictive quality between 

different multilevel credit scoring models and the logistic scorecard. I refer to 

Schwarz (1978) and Akaike (1974) for more technical details on information crite-

ria. 

 

 

Postestimation statistics                                                                                   p-value  

Likelihood ratio chi-square test 1730.6 <0.001 

Hosmer-Lemeshow goodness-of-fit test 40.50 <0.001 

Pseudo S� (full model)            0.2775  

Pseudo S� (reduced model)            0.0234  

AIC 4583.13  

BIC 4667.07  

Table 2.6. Postestimation diagnostics for the logistic regression scorecard. 

 

 

As might be expected, the likelihood ratio test for the logistic scorecard 

shows that a logit model with a full set of variables performs much better than a 

reduced form model with only an intercept. 

The pseudo S� and Hosmer-Lemeshow chi-square statistics assess the 
goodness-of-fit of the logistic scorecard. The Hosmer-Lemeshow statistics tests 

the null hypothesis that there is no difference between the observed and pre-

dicted values of the dependent variable (Hosmer and Lemeshow (2000)). Based 
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on the result for the test given in the table I reject the null hypothesis. This im-

plies that the model does not fit the data on the acceptable level.   

The pseudo S� is McFadden’s adjusted S�  which provides a logistic 
regression analogy to the standard S� in OLS regression. For more technical 
details on the calculation I refer to Agresti and Zheng (2000) and McFadden 

(1973). It is evident that the pseudo S� for the scoring model with the full set of 
explanatory variables is higher compared to the reduced model with only an 

intercept. However, the value of the pseudo  S� for the full model is still rather 
low suggesting that the logistic scorecard poorly predicts the outcome and further 

improvements are possible.  

The main aim of any scoring model is to measure credit worthiness of a 

borrower by forecasting the probability of default. Accordingly, concluding the 

presentation of the empirical results for the logit scorecard I provide the 

assessment of the model performance. I apply the same assessments to each 

credit scorecard discussed in this chapter and then summarize and compare the 

results for the different scorecards in chapter 3. 

I begin by evaluating the discriminatory power of the logistic regression 

scorecard. For this purpose the classification is given in Table 2.7.  This table 

summarizes the performance of the fitted scoring model given a specified cut-

point (Fawcett (2005)). A cut-point is a threshold which is used to discriminate 

borrowers’ scores (or predicted probabilities) into two classes: default (D) and 

non-default (ND). Table 2.7 reports results for two cut-off points (probabilities of 

default), �� 
 0.15 and �� 
 0.50. These thresholds are frequently used in credit 
scoring.  

Given the cut-off point �� 
 0.5, four possible outcomes are observed. If 
the outcome is positive and the scoring model classifies it as positive (true 

positive, 78); if it is classified as negative but the true outcome is positive, it is 

counted as a false negative (347). If the outcome is negative and it is classified as 

negative, it is counted as true negative (3630); if it is classified as positive, it is 

counted as false positive (125).  The predictions along the major diagonal in the 

table represent the correctly classified outcomes and the off-diagonal elements 

are the misclassified outcomes or errors.  
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 True (�� 
 0.15)  True (�� 
 0.5)  

Classified D ND Total D ND Total 

D 180 664 844 78 125 203 

ND 245 3091 3336 347 3630 3977 

Total 425 3755 4180 425 3755 4180 

Correctly classified, % 78.25  88.70 

False D rate for true ND (FPR), % 17.68  3.34 

False ND rate for true D (FNR), % 57.60  81.63 

ROC curve metrics: 
 

Area under the ROC (AUC) 0.707 

Standard error (AUC) 0.008 

95% Confidence Interval (AUC) [0.698; 0.716] 

Table 2.7. The classification table for the logistic credit scorecard given the cut-off 

points for probability of default: �� 
 0.15, �� 
 0.5. Summary results for the ROC curve 

analysis, area under the ROC curve. 

 

 

Based on the results in the classification table several common metrics 

can be calculated. The overall rate of correct classifications equals (1-MR),  where 

MR is the misclassification rate which shows the proportion of incorrectly pre-

dicted outcomes. For the cut-point �� 
 0.15 the calculation of the misclassifi-
cation rate is provided in [2.2] where the denominator is the sum of the false 

negative and false positive classifications.  

 

 

`S 
 ab+acdc+ab+ac+db 
 21.75%.                                        [2.2] 
 

 

The most common way of reporting the accuracy of a binary prediction is 

to analyze the true (false) positive and true (false) negative outcomes separately.  

This implies that a falsely classified negative prediction may have different 

consequences than a false positive one. In retail banking, a falsely classified non-

defaulter is much less costly for a lender than an incorrectly classified defaulter.  

The false positive rate gives the proportion of the false positive outcomes in the 

total negative as shown in [2.3]. The false positive rate is applied to calculate 

specificity which equals (1-FPR).  The false negative rate shows the proportion of 
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incorrectly classified negative predictions as given in [2.4]. True negative rate is 

also called sensitivity. It is derived using FNR: /1�/�0�h�09 
 1 � ijS.   

 

iQS 
 acac+db 
 17.68%,                                                        [2.3] 

 

ijS 
 abab+dc 
 57.60%.                                                        [2.4] 

 

It should be noted that the resulting values of the misclassification rate, 

true positive rate and true negative rate, are very sensitive to the choice of a 

particular cut-off point. Table 2.7 shows that the false negative rate at the cut-off 

point  �� 
 0.15 is 57.60% which is 23.83% smaller than the false negative rate at 
the cut-off point �� 
 0.5. In order to provide a more general representation of the 
sensitivity/specificity pairs I apply a ROC-curve analysis to the fitted model 

predictions.  

The receiver operating characteristic (ROC) curve is a technique which 

visualizes the performance of a predictive model. This method has long been ap-

plied in medicine for a diagnostic testing (Zou (2002), Swets (2000)). A standard 

ROC plot is a two-dimensional graph which provides a graphical illustration of 

the true positive rate (on the ordinate axis) versus false positive rate for all pos-

sible cut-off points. Each point on the ROC plot represents a sensitivity/specificity 

pair corresponding to a particular decision threshold. A model which provides a 

perfect discrimination has a ROC curve which passes through the upper left cor-

ner (100% sensitivity, 100% specificity). Accordingly, the predictive model is con-

sidered to show a higher discriminatory power if its ROC curve is closer to the 

upper left corner than curves for the other models (Zweig and Campbell (1993)). 

 In application to retail banking, a ROC curve shows the relative trade-off 

between benefits a lender gets by correctly classifying defaulters (true positive) 

and costs he acquires by incorrectly classifying non-defaulters (false positive). 

The receiver operating characteristics curve for the logistic regression scorecard 

is illustrated in Figure 2.1.  

The diagonal line in the plot represents the case when a credit scoring 

model randomly assigns borrowers into a class of defaulters and non-defaulters. 

In this case the model is expected to predict one half of the positive and one half 
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of the negative outcomes correctly. The ROC curve for the logistic scorecard is 

over the diagonal line. 

 

 

Figure 2.1. ROC curve and pointwise confidence 

bounds for the logistic regression scorecard.  

 

 

 

The discriminatory power of a model is usually evaluated by calculating 

the area under a ROC curve (Hanley and McNeil (1982), Bradley (1997) and 

Hand (2005)). If  	bm and 	m   are the scores given to the randomly and 
independently chosen individuals from D (defaulters) and ND (non-defaulters) 

respectivly, then noX 
 D�	m p 	bm�.  
If the ROC curve is defined as  9 
 %��� , where y is the true positive rate 

and x is the false positive rate, then ��0� 
 D�	 p 0|j.� is the false negative rate 
given a threshold t and 9�0� 
 D�	 p 0|.� is the true positive rate given a cut-off 
point t.  Area under the ROC curve is the average true positive rate, taken over 

all possible false positive rates within the range (0;1).   
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noX 
  q 9���E��@ . 

 

Given that the slope of the ROC curve at the point with threshold value t 

is 
6r6�  and  � s 0 as s ∞ ,  and  � s 1 as 0 s �∞ , the AUC can be calculated as 

follows: 
 

    noX  
  u 9�0� E�E0
>v

+v
E0 

 
 � u D�	 p 0|.� >v
+v

D�0|j.�E0 
 

 
   u D�	 p 0|.� +v
>v

D�0|j.�E0 
 
   u D�	m p 0 
�E 	bm 
 0|.�+v

>v
E0 

 
   u D�	m p 	bm|0�+v
>v

E0 
 
   D�	. p 	j.�. 

 

 

The AUC is always between 0 and 1. An optimal credit scorecard precisely 

separates between defaulted and non-defaulted borrowers. In this case the area 

under the ROC curve equals 1. A suboptimal scorecard would randomly assign 

probabilities to credit applicants. The ROC curve for a random guess model is 

given by the diagonal line and the area under the curve equals 0.5 in this case.   

The AUC can be directly related to the Gini coefficient (Gini) which is 

based on the Lorenz curve and its accuracy ratio (Keenan and Sobehart (1999), 

Engelmann et al. (2003)).  The only difference between a ROC curve and a Lorenz 

curve is that the former plots false positive rate versus true positive rate and the 

latter graphs true positive rate given the percentage of borrowers (Engelmann et 

al. (2003)). Similarly to the AUC, the quantitative measure of discriminatory 

power of a scoring model can likewise be based on the area between the Lorenz 
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curve and the diagonal line. It is called the Gini coefficient and equals twice this 

area as follows: 

 w��� 
   �2noX � 1� 
  
   nS /Q��j.�, 

nS   
   w���w���Hx �y75 
 w���Q��j.�, 
 

where D�.� and D�j.� are the probabilities of default and non-default 
correspondingly (Kraft et al. (2002)). 

The ROC curve metrics and the correct classification rate are given in 

Table 2.7. It also reports the AUC value, the Gini coefficient and the accuracy 

ratio for the logistic regression scorecard. The area under the ROC curve of the 

logit scorecard equals 0.707 which is fairly better than AUC of a random guessing 

model (AUC=0.5), however, further improvements are possible.  Additionally, I 

report the standard error of the area under the ROC and the 95% confidence 

interval for the AUC value. The 95% interval for the AUC is [0.698; 0.716]. The 

standard error is computed by applying a nonparametric approach which is 

described in detail by Hanley and McNeil (1982).   

An important feature of the AUC is that it allows comparing the 

discriminatory power of different credit scoring models fitted to the same dataset. 

In this sense the AUC measure can be applied to select a model which shows the 

best performance.  The next chapter provides a comparison of the AUC measures. 

In addition, I test whether the differences between the areas are significant using 

a z-test as described in detail in Hanley and McNeil (1983) and DeLong (1988).   

 

  

2.3.1   Microenvironment-specific intercept 

scorecard  

 

The following four subsections introduce several versions of the multilevel 

credit scorecards which differ by the combination of random-effects and group-
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level variables. Similarly to the logit scorecard, I conclude the presentation of the 

empirical results by providing the assessment of the predictive accuracy and 

other postestimation diagnostics. These results are of particular interest in the 

thesis as they aim to summarize the advantages of the multilevel scoring models 

over the logistic regression scorecard. The summary of the ROC curve analysis, 

the discriminatory power check   and goodness-of-fit tests are presented in 

chapter 3.  

The credit scoring model in this section is an extension of the logistic 

regression scorecard. It applies a two-level structure to the logistic scoring model 

and allows the intercept to vary at the second level of the hierarchy. The model 

specifies a random-intercept to determine the microenvironment-specific effects 

which represent the living areas with different economic and socio-demographic 

conditions. Including a random-intercept in the scorecard helps to relax the main 

assumption of the logistic regression of the conditional independence among 

responses for the same cluster (microenvironment) given other explanatory 

variables.  

The two-level credit scorecard with a varying-intercept and the individual-

level explanatory variables is presented in [2.5].  

 Q�z9� 
 1{�� , O�,@| 
   =&��0>��}�~�� A B�C��&�1� A B�.1D1�E1�0/� A BFG�
E1744H3� I� 
A  BJK
�)� A BLM�NO���1/� A BPQ�&%1//�&�
'� A BR.S� A BTS4UV6� � 
A  BWX�1E�0� A B�@Q
/063V� A B��YZ���,                                          [2.5] 
   }�~�� 
 }@ A O�,@ ,                                                                                                [2.6] 

   O�,@|��    ~  j �0, �3��,         %&� ����&1�h��&��1�0  � 
 1, . . ,61. 
 

Given the explanatory variables, the random-intercept follows a normal 

distribution with mean }@ and variance �3�.  This is a standard assumption in 
multilevel modelling which implies that random-effects for the microenvironment 

j are drawn from a normal distribution with mean }@ and variance �3�.  Impor-
tantly, it is possible to define other types of probability distributions for the ran-

dom-intercept if there is prior knowledge about the distributional type of the 

random-effects from similar studies or from other sources. Unfortunately, this is 
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not the case here as the hierarchical structure with borrowers-within-microenvi-

ronments has never been explored in the literature on credit scoring before. 

Therefore, this thesis follows the widely accepted practice and assigns a normal 

distribution to the microenvironment-specific effects.  

 The main difference between the formulation of the scoring model in [2.5] 

and [2.6] and the logit scorecard in [2.1] is that in the former model the intercept 

is allowed to vary across groups at the second-level and it is specified with the 

subscript j . The varying-intercept is modelled as given in [2.6].  

The second-level model for the random-intercept includes a population 

average intercept B@  and a random term O�,H. The residual  O�,H determines the 
unobserved characteristics of a microenvironment which influence the probabi-

lity. This area-specific effect is not included in the single-level logistic scorecard. 

The microenvironment-specific effect can be viewed as the aggregated impact of 

the unobserved determinants which explains why some borrowers are more risky 

(have higher probability of default) than others. In other words, the random-

effect helps to account for the unobserved heterogeneity in the probabilities of 

default between borrowers within different microenvironments.  

Consider two applicants for a loan (with the same personal characteris-

tics) whose microenvironments are very different in terms of economic conditions: 

poor and rich living areas.  Accordingly, the exposure to risk in the poor living 

area with low income, high unemployment, and bad infrastructure of shopping 

facilities is higher compared to the rich living area where average income is high, 

unemployment is low and infrastructure of shopping facilities is well-developed. 

In this case the microenvironment-specific effects are unobserved characteristics 

which impact the probability of default additionally to individual-level charac-

teristics of a borrower.   

In the credit scoring model the exposure to the poor (rich) area-specific 

risks is captured by the random-effect  O�,H. This implies that the intercept for the 
particular microenvironment  j  differs from the population average intercept by 

the value  O�,&. In order to illustrate this graphically I plot the fitted model lines 
for ten randomly chosen microenvironments. The graph is given in Figure 4.2.  

The abscissa axis in Figure 4.2 shows the linear part of the prediction 

given by ��?� 
 =&��0~Q��9 
 1|��� without the microenvironment-specific effect  O��,@ 
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and the ordinate axis illustrates the linear predictor with the area-specific effect 

as given by  ���?� A O��,@� 
 =&��0~Q��9 
 1|���.  
This graphical illustration of the microenvironment-specific lines confirms 

that a credit scoring model with the two-level structure provides more flexible 

modelling of the probabilities than a conventional logistic regression. 

 

 

 

 
 

Figure 2.2. Fitted model regression lines for ten 

randomly chosen microenvironments. The abscissa axis 

gives the linear part of prediction excluding the 

microenvironment-specific intercept.  The x’b+u is the 

linear part of the prediction including the area-specific 

intercept.  

 

 

 

The estimation results for the two-level credit scoring model with 

microenvironment-specific intercept are presented in Table 2.8. The estimated 

coefficients for the varying-intercept scorecard in [2.5] are similar to the 

estimates obtained from the logistic scorecard in [2.1].  

The last row in the table provides the estimate of the standard deviation 

of the random-intercept with the standard error given in the brackets. The 

standard deviation is large suggesting that there is a considerable variation in 

the area-specific intercepts among different microenvironments. Importantly, 

this variability was not captured in the logistic regression scorecard.   
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Variable Coefficient Std.err. z P>|z| 

Total Income -0.044 0.004 -9.88 <0.001 

Number of dependents 0.113 0.033 3.45 <0.001 

Trade accounts -0.039 0.008 -5.01 <0.001 

Bank  accounts (ch/ savings) -0.427 0.082 -5.19 <0.001 

Enquiries 0.376 0.017 22.48 <0.001 

Professional -0.327 0.093 -3.50 <0.001 

Derogatory Reports 0.622 0.030 20.65 <0.001 

Revolving credit balance 0.015 0.004 3.46 <0.001 

Previous credit -0.059 0.019 3.16 <0.001 

Past due 0.239 0.074 3.22 <0.001 

Own -0.321 0.109 -2.94 0.003 

Constant -1.270 0.211 -6.01 <0.001 

Random-effects 
Estimate 

(Std.err.) 

95% Confidence 

interval 

 

Standard deviation of intercept, ��3� 

Random-intercept 95% CI, �}�~��� 

0.61(0.09)

 

[0.43; 0.81] 

[-2.50;-0.07] 
 

 
Table 2.8. Estimation results for the two-level credit scoring model with microenviron-

ment-specific intercepts. The estimated standard deviation and its 95% confidence interval, 

95% confidence interval for the random-intercept. 

  

 

The 95% confidence interval for the microenvironment-specific intercept 

is reported in the last row in Table 2.8. Given the normality assumption the con-

fidence interval for the varying-intercept is calculated based on the following 

formula: XC 
 � B@� � 1.96 · ��3��, where  B0� is the estimated population average inter-

cept and ��3 is the standard deviation of the random-intercept. For a more 
detailed description on the calculation of confidence intervals for the random-ef-

fects in a multilevel model I refer to Rabe-Hesketh (2008).  The confidence inter-

val for the microenvironment-specific intercept equals ~�2.5; �0.07�. 
Similar to the logistic scorecard, I evaluate the performance of the 

multilevel credit scorecard by applying a ROC curve analysis. Figure 2.3 presents 

the ROC curve for the microenvironment-specific intercept scorecard given in 

[2.5].  Following Hilgers (1991), I also display 95% pointwise confidence bounds 

for the curve. The red triangle on the graph indicates the optimal cut-off point.  

This value provides a criterion which yields the highest accuracy (minimal false 

negative plus false positive rate). 
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Figure 2.3. ROC curve for the two-level credit 

scoring model with microenvironment-specific 

intercept. The optimal cut-off point is �� 
 0.1373. 

 

 

I should mention that this optimal threshold is only optimal with respect 

to minimizing the total misclassification error. However, it is possible to compute 

other cut-off points which are optimal according to a specified rule or given a 

budget constraint. For instance, in a cost-benefit analysis an optimal cut-off point 

defines a threshold at which the costs are minimized (Krämer and Bücker 

(2009)).  I do not provide a detailed discussion of these alternatives in the thesis 

because the decision about the cut-off point is generally driven by practical 

considerations within a bank. Given a scorecard a lender assesses the costs and 

benefits associated with different cut-off points and then decides which one 

satisfies the budget constraints and legislation requirements.   

The summary results derived from of the ROC curve in Figure 2.3 and the 

classification table for the optimal cut-off point are presented in Table 2.9.  
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 True   

Classified ��� 
 0.1373� D ND Total 

Default 293 1002 1295 

Non-default 132 2753 2885 

Total 425 3755 4180 

Correctly classified, % 72.87 

Sensitivity, % 69.00 

Specificity, % 73.31 

ROC curve metrics:  

Area under the ROC (AUC)                                                                                          0.801 

Standard error (DeLong)  0.005 

95% confidence interval [0.794;0.808] 

Gini coefficient  0.602 

Accuracy ratio  0.663 

Table 2.9. Summary metrics for the ROC curve of the microenvironment-

specific intercept model and the classification table for the optimal cut-off point: �� 
 0.1376.  

 

 

The optimal threshold for the microenvironment-specific intercept model 

in [2.5] is �1 
 0.1373 (minimal misclassification error). Selecting a threshold 
above 0.1373 increases the proportion of true negative classifications (increased 

specificity) but decreases the fraction of true positive classifications (reduced 

sensitivity). Selecting a cut-off below 0.1373 refers to the case when a scoring 

model predicts a higher fraction of true positive outcomes (increased sensitivity) 

but a smaller fraction of true negative outcomes (decreased specificity).   

The area under the ROC curve is 0.8015 which is higher than in the case 

of the logistic regression scorecard. The Gini coefficient and the accuracy ratio 

are also increased. It implies that specifying microenvironment-specific 

intercepts improves the discriminatory power of the credit scoring model.  

The 95% confidence interval for the AUC shows the bounds in which the 

true area under the ROC curve lies with 95% confidence ([0.794; 0.808]).  

Importantly, this interval is narrow and does not overlap with the confidence 

interval for the logistic regression scorecard. 
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2.3.2   Group-level variables in the two-level 

credit scorecard 

 

 

 

This subsection introduces the two-level credit scoring model which in-

cludes group-level characteristics. The scorecard is presented in [2.7]. It expands 

the random-intercept scorecard given in [2.5] by inserting the microenvironment-

level characteristics in the second-level model for the varying-intercept }�~��. The 
microenvironment-level variables are denoted by �´? in the second-level model. 
Specifying group-level characteristics in a scorecard helps to explore the impact 

of the microenvironment-level information on the probability of default. It also 

improves the estimation of the area-specific intercepts.  

Similarly to the previous case, the area-specific intercept is modelled as 

given in [2.8]. Additionally to the population average intercept  }0  and the ran-
dom term O�,@ the model for the varying-intercept now includes four 
microenvironment-level variables ��,y , for m=1,..,4. The group-level variables  ��,y  vary across J=61 microenvironments but take the same value for all bor-
rowers � 
 1, . . , ��  within a given microenvironment j.   

 Q�z9�� 
 1{��� , O�,@| 
     =&��0>��}�~�� A B�C��&�1� A B�.1D1�E1�0/� A BFG�
E1744H3� I� 
   A  BJK
�)� A BLM�NO���1/�� A BPQ�&%1//�&�
'� A BR.S� 
   A  BTS4UV6� � A  BWX�1E�0� A B�@Q
/063V� A B��YZ���,                 [2.7] 
 

  }�~��  
   }@ A �´? A  O�,@, 
   �´? 
   ?�n�1
_C��&�1� A ?�nnUVI�6V� I� A ?F	0&�1/� A ?JX&''1�1�,       [2.8] 

 O�,H |��  , ��  ~   j �0, �3��. 
 

Microenvironment-level variables characterize the economic and demog-

raphic conditions in the borrowers’ residence areas. The variables are n�1
��4HyV�- average income in the  living area j (measured in thousands of dol-
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lars); 	0&�1/� -percentage of retail, furniture, building materials and auto store 
sales in the total retail sales in the market; X&''1�1� - percentage of college gra-
duates in  the residence area and nnUVI�6V� I� – the share  of African-American 
(Hispanic) residents in the region.  

The two-level credit scoring model with the microenvironment-level 

variables and a varying-intercept is fitted in Stata by using maximum likelihood.  

Table 2.10 provides the estimated coefficients of the individual and group-level 

variables, and the standard deviation of the area-specific intercept.  

The fixed-effect estimates of the individual-level variables are essentially 

the same as in the scorecard presented in [2.5]. This is quite reasonable as 

including the microenvironment-level characteristics only modifies the random-

intercept model. The standard deviation of the microenvironment-intercept is 

smaller than in the credit scoring model without group-level variables. This is 

due to the fact that the second-level characteristics partly explain the variation 

between microenvironments. 

The estimated coefficients for the microenvironments-level variables show 

the impact of the living area conditions on the riskiness of applicants for a loan. 

Higher per capita income has a negative effect on the riskiness of a borrower. 

Similarly, the living area share of individuals with a university degree negatively 

impacts the probability of default. The result is intuitive and implies that the 

effect of higher education on default is negative not only at the borrower-level but 

also at the microenvironment-level.   

In contrast, the impact of the variable share of African-American 

residents on default is significant and positive. The coefficient of  nnUVI�6V� I� 
explains how the demographic composition of residents in the area influences the 

probability of default.  It is evident that borrowers within microenvironments 

with a large share of African-American and Hispanic residents have higher 

exposure to area-specific risks which trigger default.   
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Variable Coefficient Std.err. z P>|z| 

Total Income -0.041 0.004 -9.34 <0.001 

Number of dependents 0.114 0.033 3.47 <0.001 

Trade accounts -0.038 0.008 -5.02 <0.001 

Bank  accounts (ch/ savings) -0.426 0.082 -5.19 <0.001 

Enquiries 0.373 0.017 22.40 <0.001 

Professional -0.332 0.096 -3.47 <0.001 

Derogatory Reports 0.615 0.030 20.51 <0.001 

Revolving credit balance 0.015 0.004 3.45 <0.001 

Previous credit -0.060 0.018 3.16 0.004 

Past due 0.221 0.068 3.25 <0.001 

Own -0.285 0.100 -2.85 0.004 

Constant -0.860 0.210 -4.09 <0.001 

Microenvironment-level variables,   }�~��    

 

Living area per capita income 

 

-0.017 

 

0.008 

 

-2.12 

 

0.033 

Share of African-American residents 0.012 0.003 4.00 <0.001 

Share of college graduates -0.034 0.014 -2.42 0.015 

Infrastructure of shopping facilities 0.037 0.029 1.27 0.204 

Random-effects Estimate (Std.err.) 95% Confidence interval 

Standard deviation of intercept, �3�  0.38(0.08) [0.24; 0.59] 

Table 2.10. Estimation results for the two-level random-intercept model with microenviron-

ment-level explanatory variables.  The random-intercept variance is given in the last row in 

the table.  

 

 

The effect of the infrastructure of shopping facilities on default is positive. 

One possible interpretation of the result may be that a good access to various 

department stores and shopping malls provokes spending and initiates 

borrowing. In addition, I use in the empirical analysis the credit history data on 

the consumer loans which individuals regularly use for making small purchases 

of durable goods, buying cars or covering medical bills.  

I apply a ROC curve analysis to assess the classification performance of 

the credit scorecard with group-level characteristics and a varying-intercept. 

Figure 2.4 shows the ROC curve and pointwise confidence bounds.  
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Figure 2.4. ROC curve for the two-level credit 

scoring model with an area-specific intercept and 

group-level variables. The optimal cut-off point is 

indicated by the red triangle (�1 
 0.2264�. 
 

 

The summary of the ROC curve analysis, the Gini coefficient and a 

classification table for the optimal cut-off point are provided in Table 2.11.  

The area under the ROC curve and the Gini coefficient are increased. The 

AUC is 0.017 higher than in the case of the credit scoring model without the 

microenvironment-level variables. The difference is not large; however, the 95% 

confidence intervals for the AUC values do not overlap which implies the areas 

are significantly different from each other ([0.811; 0.825 ] versus [0.794; 0.808]).  

Another important improvement of the current version of the credit sco-

ring model over the scorecard without group-level variables is that the former 

model has a higher rate of correct classifications. The rate of correct 

classifications is calculated at the threshold which corresponds to the maximal 
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sensitivity/specificity pair (�� 
 0.2264). The specificity is also higher at this 
point. 

 

 True   

Classified ��1 
 0.2264� D ND Total 

Default 235 308 543 

Non-default 190 3447 3637 

Total 684 3755 4180 

Correctly classified, % 87.16 

Sensitivity, % 55.22 

Specificity, % 91.81 

ROC curve metrics:   

Area under the ROC (AUC)  0.818 

Standard error  0.005 

95% confidence interval [0.811; 0.825] 

Gini coefficient  0.636 

Accuracy ratio  0.701 

Table 2.11.  Summary for the ROC curve analysis and the classification table for 

the optimal cut-off point, �� 
 0.2264, for the microenvironment-intercept 

scorecard with the group-level variables. 

 

 

 

 

 

 

 

 

2.3.3   Microenvironment-specific coefficients in 

the credit scoring model 

 

 

In the case of the logistic credit scoring model, a coefficient estimate 

shows the population average effect of an explanatory variable which is fixed for 

all applicants and microenvironments. In this section I relax this assumption and 
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show how to elaborate the varying-intercept scoring model by allowing the coef-

ficients to vary across microenvironments.  

Specifying area-level coefficients makes a scorecard more flexible and im-

proves the estimation.  The area-specific coefficients combine information on the 

unobserved microenvironment-specific characteristics which impact default. In 

other words, a random-coefficient can be interpreted as an interaction effect bet-

ween the individual-level and area-specific effects.   

I specify random-coefficients for the two individual-level variables  M�NO���1/� and  Q
/063V�. The motivation for this choice is the following: I suppose 
that the impact of these variables varies considerably between microenviron-

ments with stable and unstable economic conditions. In particular, the area-spe-

cific coefficient of M�NO���1/� allows to measure the impact of credit enquiries on 
default for the customers within poor and rich living areas.   

Importantly, multilevel modelling assumes that random-coefficients are 

drawn from some population of the microenvironment-specific effects.  Therefore, 

parameters of these random-effects represent population values.  The estimated 

variances and covariances of the random-coefficients show the variability in the 

population. Thinking in terms of population is relevant for a more efficient credit 

scoring because lenders are primarily interested in developing scorecards which 

can be easily applied to a new cohort of applicants for a loan. These borrowers 

may be sampled from other microenvironments which are not present in the cur-

rent dataset. In this case, the estimated variances and covariances of random-ef-

fects can be applied to predict new area-specific effects. 

The credit scoring model with the microenvironment-specific coefficients 

is presented in [2.9]. The two-level structure of the scorecard remains unchanged. 

The varying-intercept is modelled by itself at the second-level. I include in this 

model four group-level predictors �´? whose coefficients do not vary by group. The 
main difference from the previous scorecard is that the coefficients on individual-

level variables are allowed to vary across microenvironments.  Random-effects at 

the second-level follow a multivariate normal distribution with zero mean and 

variance-covariance matrix  Σ� as shown in [2.11]. 
Models for the area-specific coefficients of the explanatory variables  M�NO���1/� and  Q
/063V�  are given in [2.10]. Similar to the random-intercept 

model, the random-coefficient model ?�~��V��   includes a fixed-effect of credit en-
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quiries  BV�� and a random-term O�,V��. The second-level model for  ?�~��x7I 
  contains 

the intercept  Bc7I  and an area-specific term  O�,c7I  .   
   

 

Q�z9� 
 1{�� , �� , O�,2��, O�,x7I | 
  =&��0>��}�~�� A B�C��&�1� A B�.1D1�E1�0/� A BFG�
E1744H3��  A   BJK
�)� A  ?�~��1�N M�NO���1/� A BPQ�&%1//�&�
'� 
 A   BR.S� A BTS4UV6� I��ABWX�1E�0� A ?�~��x7I  Q
/063V� 
 A   B��YZ�� �,                                                                                  [2.9] 

   �´? 
   ?�n�1
_C��&�1� A ?�nnUVI�6V� I� A ?F	0&�1/� A ?JX&''1�1� ,   }�~�� 
    B@ A�´? A  O�,@, 
 

             
     ?�V��  
      BV�� A O�,V��,    ?�x7I  
     Bx7I AO�,x7I ,                                                                             [2.10] 

 

   �O�,V��  , O�,x7I , O�,@{�� , �� , | ~ j
�
��   B@00 � , Σ� 
 � �V��� ��V���x7I ��V���3��V���x7I �x7I � ��x7I �3��V���3 ��x7I �3 �3�

� 
�
�. [2.11] 

 

 

Given the individual-level and microenvironment-level variables, random-

coefficients are allowed to be correlated and the correlation coefficient is given by  �  in the variance-covariance matrix in [2.11].  
Table 2.12 provides the estimation results for the scoring model with 

microenvironment-specific coefficients.   As might be expected, the probability of 

default decreases with higher annual income, experience in using credit and 

debit banking accounts, number of trade accounts and if the borrower owns a 

house. The effect of the number of derogatory reports is positive. Having previous 

experience with a lender significantly decreases the riskiness of a borrower. The 

effect of having a house or holding banking deposit accounts is negative. This 

makes sense as real estate property or other assets indicate financial stability of 

a borrower. These borrowers are also more reliable and have a higher incentive 

not to fall into arrears. In the case of default their property can be repossessed 
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and deposit accounts can be attached by a bank. Compared to the borrowers who 

rent accommodation, house owners are 5.1% less risky. 

 

Variable Coefficient Std.err. z P>|z| 

Total Income -0.037 0.003 -12.43 <0.001 

Number of dependents 0.131 0.023 5.60 <0.001 

Trade accounts -0.037 0.007 -4.96 <0.001 

Bank  accounts (ch/ savings) -0.384 0.059 -6.56 <0.001 

Enquiries 0.380 0.021 17.95 <0.001 

Professional -0.312 0.100 -3.11 0.002 

Derogatory Reports 0.605 0.038 15.81 <0.001 

Revolving credit balance 0.011 0.004 2.91 0.003 

Previous credit -0.061 0.018 -3.40 <0.001 

Past due 0.243 0.053 4.58 <0.001 

Own -0.215 0.081 -2.65 0.008 

Constant -1.380 0.100 -13.76 <0.001 

Microenvironment-level model,  }�~��    

 

Living area per capita income 

 

-0.075 

 

0.038 

 

-1.97 

 

0.048 

Share of African-American residents 0.008 0.002 3.80 <0.001 

Share of college graduates -0.025 0.011 -2.24 0.025 

Infrastructure of shopping facilities 0.009 0.008 1.18 0.238 

Random-coefficients 
Estimate  

(Std.err.) 

95% Confidence 

interval 

Std .deviation of  ?�~��1�N
  (credit 

enquiries) 0.122(0.019)                   [0.089; 0.167] 

Std .deviation of  ?�~��D
/0
 (Past due) 0.169(0.074)                   [0.071; 0.401] 

Std .deviation of  }�~�� 0.283(0.079)                   [0.129; 0.448] 

Correlation(O�,V��, O�,x7I )       0.79 
 

Table 2.12. Estimation results for the two-level microenvironment-specific coefficients 

credit scoring model: coefficients of the individual and group-level variables, standard 

deviations with their 95% confidence intervals and the correlation coefficient. 

 

 

The fixed-effect of the variable  M�NO���1/�  is 0.38 on the logit scale which 
is similar to the result for the scorecard without random-coefficients. The stan-

dard deviation of the microenvironment-specific slope  ?�~��1�N
  is 0.122 with error 
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0.019. This implies that the area-specific slopes differ by �3% on the probability 
scale.  

Following Hox (2002) I calculate the confidence interval for the varying-

coefficients. The 95%-confidence interval for the area-specific coefficient of credit 

enquiries equals [0.15; 0.61]. This interval shows the range within which 95% of 

the varying-coefficients are falling.  

Similarly, the fixed-effect of past due accounts  Q
/063V� is 0.243. The esti-
mated standard deviation of the varying-slope is  ��x7I � ¡= 0.169 on the logit scale. 
Translating it to the probability scale shows that the microenvironment-specific 

coefficient explains the change in the probability over and above the population 

average value by approximately  �4.3%. The confidence interval for the varying-
coefficient ?�~��D
/0

 shows that in 95% of times the area-specific coefficients of the 

variable past due accounts are going to lie within the interval [-0.08; 0.57].  

I check the discriminatory power of the credit scoring model with varying-

coefficients and group-level variables by applying a ROC curve as shown in 

Figure 2.5.  Following Hilgers (1991) I also display  95% confidence bounds for 

the curve. The threshold which yields the maximal sum of true positive and true 

negative rates is indicated by the red triangle on the graph.  At this threshold the 

misclassification error rate is minimized.  
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Figure 2.5. ROC curve for the two-level credit scoring 

model with the area-specific coefficients and microenvi-

ronment-level variables. The optimal threshold (proba-

bility of default) is  �� 
 0.1406. 
 

 

The summary results derived from the ROC curve and the classification 

table for the optimal cut-off point (�� 
 0.1406) are presented in Table 2.13. The 
area under the ROC curve is higher than in the case of the model without 

varying-coefficients. The AUC equals 0.824 and the 95% confidence interval for 

this value is [0.817; 0.83]. The confidence intervals for the microenvironment-

coefficients model and the intervals for the area-specific intercept scorecard do 

not overlap which indicates that the current version of a scorecard improves the 

predictive accuracy.  The Gini coefficient and the accuracy ratio are also 

increased.    

Given the optimal cut-off point �� 
 0.1406 the credit scoring model 
correctly classifies 80% of applicants for a loan. The true negative rate and the 

true positive rates are 81.9% and 65.6%, respectivly. 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

S
e

n
si

ti
v
it

y

1-Specificity

ROC: Microenvironment-coefficients credit Scorecard  

with group-level variables

ROC Lower bound Upper bound



45 

 

 True    

Classified ��� 
 0.1406� D ND Total 

Default 279 680 959 

Non-default 146 3075 3221 

Total 425 3755 4180 
Correctly classified, % 80.24 
Sensitivity, % 65.60 
Specificity,% 81.90 

ROC curve metrics:   

Area under the ROC (AUC)  0.824 

Standard error (DeLong)  0.005 
95% confidence interval [0.817; 0.830] 
Gini coefficient  0.648 
Accuracy ratio  0.714 

Table 2.13. Summary of the ROC curve analysis and the classification table for the 

optimal cut-off point:  �� 
 0.1406, for the two-level credit scoring model with the area-

specific coefficients and microenvironment-level variables. 

 

 

 

 

 

2.3.4  Multiple random-coefficients credit scoring  

model  

 

 

In this subsection I present a very flexible version of the credit scoring 

model which contains multiple random-coefficients, microenvironment-level va-

riables and interacted variables. The scorecard extends the varying-coefficients 

scoring model presented in the previous subsection. Complementary to the pre-

vious structure, I specify two random-coefficients for the individual-level ex-

planatory variables: the use of banking savings and checking accounts 

(K
�)�� and a house ownership indicator (YZ��).  
The two-level model with multiple random-effects is presented in [2.12]. 

The scorecard includes four individual-level explanatory variables whose coeffi-

cients vary by microenvironment.  The microenvironment-specific coefficients are 
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modelled as shown in [2.14].  Each second-level model for the varying-coefficient 

includes a population average coefficient  B and the second-level residual O�. Simi-
larly, the varying-intercept   model  }�~��  contains the constant term  }@, the sec-
ond-level characteristics ��? whose coefficients do not vary by group and the 
microenvironment-specific residuals O�,@ . The group-level coefficients in the 
microenvironment-intercept model are given by the 1 ¢ 4 vector ?. I fit the score-
card using the same set of the individual-level and group-level variables as in the 

previous scoring models.  

The interactions between borrower-level and microenvironment-level 

variables are denoted by )�£ in [2.12]. I create three interacted variables which 
are  Q
/063V� · nnUVI�6V� I�~�� – the number of the delinquent credit accounts in the 
past measured at the borrower-level and the living area share of the African-

American residents measured at the microenvironment-level; KO�E1�� · 	0&�1/�~��  - 
access to various shopping facilities in the residence area and current credit 

burden of a borrower; and the variable nE�1//� · YZ�1�/¤�D¥UV7,�~�� - the interaction 
between housing wealth within a living area and the duration (in months) a 

borrower stays at his current living address.  The main aim of the interacted 

variables is to explain the combined impact of the living area effects and 

individual-level characteristics on the probability of default.   

The YZ�� is a binary variable which takes a value of 1 when a borrower 
owns an accommodation and 0 otherwise. In the data sample the proportion of 

families who own a house is 53.9% (see the descriptive data table presented in 

section 2.2). The random-coefficient model of the variable YZ�� is presented in 
[2.14]. It shows that the average impact of having a real estate property on the 

probability of default is BH¦�. The  O�,H¦� is the microenvironment-level residual 
which explains the change in the probability over and above the population 

average value. The varying-coefficient model of the variable K
�)� is similar. It 
includes the microenvironment-level residual  O�,§7��  and the intercept  B§7�� . 

The variance-covariance matrix for the second-level random-effects is con-

strained to have an independent structure as illustrated in [2.15]. The reason for 

this specification is simple. I am primarily interested in estimating standard de-

viations of the microenvironment-specific effects and to a lesser extent in mea-

suring the covariances between the varying-coefficients. Additionally, the inde-

pendent structure of the variance-covariance matrix helps to speed up the esti-
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mation as the number of parameters is noticeably decreased. In this dissertation 

I do not provide a discussion about the alternative types of the variance-cova-

riance matrix specification (such as exchangeable, identity or unstructured). 

 Q�z9� 
 1{�� , O� , ��| 
   =&��0>� � }�~�� A B�C��&�1� A  B�.1D1�E1�0/� 
A  BFG�
E1744H3� I�  A   ?�~��§7��K
�)� A ?�~��V��M�NO���1/� 
A  BPQ�&%1//�&�
'�  A ?�~��m¨.S� A  BTS4UV6� I� A BWX�1E�0� 

 

 A  B�@Q
/063V�  A   ?�~��©¦�YZ�� A )′£�, [2.12] 

}�~�� 
  }@A  ��? A  O�,@,  

��? 
   ?�n�1
_C��&�1� A ?� nnUVI�6V� I� A ?F 	0&�1/� A ?JX&''1�1�, 
  ) ′£    
  £�Q
/063V� · nnUVI�6V� I�~��  A  £FnE�1//� · YZ�1�/¤�D¥UV7,�~�� A  £�KO�E1�� · 	0&�1/�, 

 

   ?�~��2�� 
    BV��   A  O�,V��,  

    ?�~��m¨
 
    Bm¨    A  O�,m¨,           

 ?�~��§7�� 
    B§7��  A  O�,§7�� ,  

     ?�~��©¦� 
    BH¦�   A  O�,H¦� ,       [2.14] 

�O�,V��  , O�,m¨ , O�,ª7�� ,  O�,©¦� , O�,@{�� , ��|~j 
�
«�
¬­
­­
®}@ A ��Z     BV��              Bm¨     B§7��   BH¦�   °̄°°

± , Σ�
�
³�, 

Σ� 
 
¬­
­­­
®�3� ´ 0
µ �V��� �m¨� �§7��� µ
0 ´ �©¦�� °̄°°

°±. [2.15] 

 

                                                                     

   
It is important to mention that the structure of the model in [2.12] is 

quite complex. It contains many random-effects, borrower-level and microenvi-
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ronment-level variables and interacted variables. Accordingly, the maximum 

likelihood estimation of this scorecard is not an easy task. This is because in a 

multilevel logistic regression random-effects should be integrated out in a likeli-

hood function which requires the application of numerical methods. An approxi-

mation of the likelihood produces decent results when the number of random-ef-

fects is low and the precision decreases as the number of random-effects in-

creases. In this case it is better to apply Bayesian Markov chain Monte Carlo. 

This approach allows more flexibility in modelling random-effects in this credit 

scoring model. However, I do not apply a Bayesian MCMC to fit the credit scoring 

model in this subsection in order keep it comparable to the previous scorecards 

fitted in Stata by maximum likelihood.  

The estimation results for the flexible version of the credit scorecard with 

multiple microenvironment-specific coefficients, group-level variables and inter-

acted variables are provided in Table 2.14. The estimated standard deviations of 

the microenvironment-specific effects are presented together with their 95% con-

fidence intervals.   

The population average effects of the individual-level explanatory va-

riables are very similar to the estimates from the previous credit scoring model. 

The standard deviation of the microenvironment-specific coefficient of credit en-

quiries equals 0.052 which is more than twice smaller than in the credit score-

card with only two varying-coefficients. A large variation is found between the 

coefficients of the variable YZ��. The standard deviations of the varying-coeffi-
cients of the number of derogatory reports .S� and banking accounts K
�)� are 
0.175 and 0.48 on the logit scale. 

The fitted model coefficients of the interacted variables are not precisely 

estimated which is not surprising, given I only have 61 level-two groups (micro-

environments). Nevertheless, the impact of the interaction KO�E1�� · 	0&�1/� on 
default is highly significant and positive. It shows that the effect of a higher 

credit burden differs across residence areas with different access to shopping fa-

cilities. Interestingly, this effect is more pronounced for over-indebted individuals 

who reside in microenvironments with a developed infrastructure of various 

department stores and shopping malls. The explanation is the following: in areas 

with highly developed infrastructure of shopping facilities, customers are offered 

a wider range of credit products because lenders locate more bank branches there 

in order to satisfy high demand for credit resources.   
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Variable Coefficient Std.err. z P>|z| 

Total Income -0.031 0.003 -9.92 <0.001 

Number of dependents 0.133 0.024 5.64 <0.001 

Trade accounts -0.031 0.006 -5.16 <0.001 

Bank  accounts (ch/ savings) -0.368 0.059 -6.28 <0.001 

Enquiries 0.366 0.021 17.76 <0.001 

Professional -0.259 0.100 -2.60 0.009 

Derogatory Reports 0.607 0.038 15.85 <0.001 

Revolving credit balance 0.005 0.002 2.34 0.019 

Previous credit -0.170 0.069 -2.48 0.013 

Past due 0.233 0.050 4.66 <0.001 

Own -0.260 0.112 -2.33 0.019 

Constant -1.890 0.286 -6.60 <0.001 

Microenvironment-level model  }�~��    

 

Living area per capita income 

 

-0.063 

 

0.034 

 

-1.86 

 

0.062 

Share of African-American residents 0.011 0.001 5.92 <0.001 

Share of college graduates -0.094 0.043 -2.15 0.031 

Infrastructure of shopping facilities 0.012 0.005 2.12 0.034 

 

Interactions 
 

    

Q
/063V� · nnUVI�6V� I�~��   0.015 0.019   

KO�E1�� · 	0&�1/�  0.310 0.076   

nE�1//� · YZ�1�/¤�D¥UV7,�~�� -0.089 0.041   

Random-coefficients 
Estimate  

(Std.err.) 

95% Confidence  

interval 

Std .deviation of  ?�~��V��
     (Credit enquiries) 0.052(0.016) [0.028; 0.100] 

Std .deviation of  ?�m¨       (Derogatory rep.) 0.175(0.085)            [0.068; 0.453] 

Std .deviation of   ?�~��§7��    (Banking) 0.048(0.020)            [0.005; 0.164] 

Std .deviation of   ?�~��©¦�     (Own/rent) 0.664(0.097)            [0.501; 0.884] 

Std .deviation of  α�~��    0.127(0.057)            [0.024; 0.269] 
 

 

Table 2.14. Estimation results for the flexible credit scoring model with multiple random-

coefficients, microenvironment-level variables and interacted variables. The estimated 

standard deviations of the random-effects are reported together with their 95% confidence 

intervals.   

 

 

The results confirm that the impact of the interacted variable nE�1//� ·YZ�1�/¤�D¥UV7,�~��, on probability of default is negative. This implies that in 
wealthy living areas with a high level of housing wealth the effect of the length of 
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stay at the address on default is higher than in regions where the majority of 

families rent their accommodation.  

I evaluate the discriminatory power of the flexible version of the two-level 

credit scorecard with microenvironment-specific coefficients, group-level va-

riables and interactions by applying a ROC curve analysis as illustrated in Figu-

re 2.6.  

The optimal cut-off point is indicated by the red triangle on the ROC 

curve. The classification table given the optimal threshold �� 
 0.1496, the sum-
mary results of the ROC curve analysis, the Gini coefficient and the accuracy ra-

tio are presented in Table 2.15.   

 

 

Figure 2.6. ROC curve for the flexible credit scoring 

model with area-specific coefficients, group-level variab-

les and interacted variables. The optimal cut-off point is �� 
 0.1496 (threshold for the probability of default). 
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The area under the ROC curve is increased to 0.825. The change in the 

estimated AUC value compared to the previous model is moderately small and 

the confidence intervals overlap. This is not surprising given the data limitations. 

The data sample is not large enough to provide the information required for a 

more precise estimation of a multilevel scorecard with many microenvironment-

specific effects.   Observing a larger sample on the credit histories of borrowers 

can improve the estimation and increase the predictive accuracy of a scorecard. 

 

 

 True  

Classified ��� 
 0.1496� D ND Total 

Default 273 623 896 

Non-default 152 3132 3284 

Total 425 3755 4180 

Correctly classified, % 81.46 

Sensitivity, % 64.12 

Specificity, % 83.42 

ROC curve metrics:   

Area under the ROC (AUC)  0.825 

Standard error (DeLong)  0.005 

95% confidence interval [0.818; 0.831] 

Gini coefficient  0.650 

Accuracy ratio  0.715 

Table 2.15. Summary of the ROC analysis results, Gini coefficient, accuracy ratio 

and the classification table for the optimal cut-off point:  �� 
 0.1496.  

 

 

Given the optimal threshold c1=0.1496 the credit scorecard correctly 

classifies 81% of applicants for a loan. I have to mention that this cut-off point 

implies that a lender equally weights true positive and true negative 

classifications which may not be the case in retail banking. I discuss alternative 

choices for an optimal threshold in the next chapter where I compare the 

predictive performance between different credit scoring models.  

In summary, this chapter shows that specifying a multilevel hierarchical 

structure for the credit scoring model provides relevant information for a more 

accurate credit risk assessment of borrowers. It makes the scoring model more 

flexible and allows accounting for area-specific effects which are given by 
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random-intercepts and random-coefficients. The microenvironment’s random-

effects are viewed as unobserved determinants of default which influence the 

riskiness of customers within a living area with a particular combination of 

economic and demographic conditions. Including these effects in the credit 

scoring model improves the predictive quality of a scorecard.  

The other important advantage of a multilevel structure is that it allows 

exploring the impact of the microenvironment-level characteristics on the 

probability of default. The microenvironment-level information is given by the 

group-level variables and interactions. It is investigated that living area income 

and the share of college graduates have a negative impact on the probability of 

default. Controversially, a positive effect is found for the interaction of the credit 

burden of a borrower with good access to shopping facilities. 

 

Scoring model Name 

Logistic credit scorecard  in [2.1] Scorecard 1 

Microenvironment-intercept scorecard in [2.5] Scorecard 2 

Microenvironment-intercept scorecard with group-

level variables in [2.7] Scorecard 3 

Microenvironment-coefficients scorecard with 

group-level variables in [2.9] Scorecard 4 

Multiple random-coefficients scorecard with group-

level variables and interactions in [2.12] Scorecard 5 

Table 2.16.  Renamed credit scoring models. 

 

The next chapter provides the summary of the ROC curve analysis results 

and shows how to test the statistical significance of the differences between the 

AUC measures for the multilevel credit scoring models and the logistic regression 

scorecard. Additionally, I calculate and report several postestimation diagnostic 

statistics which aim to check the goodness-of-fit of the credit scoring models.  

In this chapter I have presented the empirical results for five different 

credit scoring models which vary by the composition of the random-effects and 

group-level characteristics. In order to distinguish between different credit 

scoring models presented in this chapter I assign a name to each scoring model. 

It helps to simplify the presentation of the comparison results and shortens the 
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notation. Table 2.16 lists the scorecards and assigns the new names to them. The 

postestimation statistical tests and the ROC curve in the next chapter are also 

going to be named according to the new names as given in the table. 
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3      Predictive accuracy and goodness-of-

fit check 

 

 

 

 

In this chapter I provide several postestimation diagnostic statistics 

which aim to check the predictive performance of the credit scoring models 

presented in the previous chapter.  

In general, there are quite a few techniques discussed in the literature 

which can be used in order to check the goodness-of-fit and assess the 

discriminatory power of a regression. However, the number of possibilities 

decreases when a multilevel modelling is applied (Hox (2002)). The main 

complexity in a multilevel model which prevents application of the standard 

goodness-of-fit tests (Hosmer and Lemeshow, pseudo ��� is that the model 

includes characteristics measured at different levels. Accordingly, in this thesis I 

compute and report the measures of the goodness-of-fit of an estimated scoring 

model which are appropriate for multilevel modelling. Following Farrell (2004) 

and Zucchini (2000) I calculate Akaike information criterion (AIC) as well as 

Bayesian information criterion (BIC). AIC and BIC are the tools for a model 

selection which combine both the measure of fit and complexity. Given two 

models are fitted on the same data, the model with the smaller value of the 

information criterion is considered to be better. If � is the data and  K  is the 
number of parameters  � in a model, then Akaike information and Bayesian 

information criteria can be defined as follows 

 

��� 	 
2 � log� ���|�� � �  2 �, 
 

��� 	 
2 � log� ���|�� � �   � log ���, 
 

where ���|�� is the likelihood and � is the number of observations. The 

mathematical details of the calculation of AIC and BIC are provided in Burnham 

and Anderson (2002), Akaike (1974) and Schwarz (1978).  
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I summarize the results of the ROC curves analysis for the multilevel 

credit scoring models and the logistic regression scorecard in section 3.1. This 

section provides a pairwise comparison of the AUC measures and tests the 

statistical significance of the differences in the AUC values between the different 

credit scorecards. Additionally, I briefly discuss the application of the ROC curve 

metrics for the evaluation of a scorecard performance in retail banking and 

describe alternative measures of the predictive accuracy check. In particular, I 

compute the area under a specific region of the ROC curve (a partial AUC) and 

show how to incorporate asymmetric costs in the regular ROC curve analysis.    

Section 3.2 provides a comparison of a model fit by applying AIC and BIC 

criteria.  It also checks the discriminatory power between credit scorecards by 

calculating Brier scores, logarithmic scores and spherical scores (Krämer and 

Güttler (2008)).  These scalar measures of accuracy allow to compare the per 

observation error of the forecasts produced by the different scoring models.  

These techniques are relatively simple but at the same time they provide a 

transparent measure of the predictive quality.  

I conclude the chapter by presenting a graphical illustration of the 

predicted probabilities and the fitted model results. Section 3.3 evaluates economic 

significance of the two-level structure and provides a discussion on the role of random-

effects in a credit scoring model. In addition, I analyse the impact of the 

microenvironment-level characteristics on the riskiness of borrowers. It is explored that 

the quality of borrowers varies between living areas with dissimilar economic and socio-

demographic conditions. Poor living areas contain a higher share of borrowers with a 

derogatory credit history and problematic debt than richer regions. Living area 

conditions matter for more accurate credit risk assessment.  

 

 

 

3.1   Summary of ROC curve analysis 

 

 

In order to compare the ROC curves and related metrics between the 

multilevel credit scoring models and the logistic regression scorecard I provide a 
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summary plot in Figure 3.1. The plot combines five ROC curves for the credit 

scoring models which are presented in chapter 2. The curves are named 

according to the shortened notation as given in Table 2.16. The logistic regression 

scorecard is presented by the dashed line and it is given the name����. The 
���� and  ���� denote microenvironment-specific intercept scorecards with and 

without group-level variables. The curves ���� and  ���� illustrate the 
performance of the credit scoring models with two random-coefficients and 

multiple random-coefficients.  

 

 

Figure 3.1. The comparison of the ROC curves for the 

different credit scoring models presented in chapter 2.  

 

 

 

It is evident from the graph that the multilevel credit scoring models 

outperform the conventional logistic scorecard by showing a higher classification 

performance. Similarly, the comparison of the ROC curves between the 

multilevel models reveals that the scorecards with more microenvironment-

specific effects provide higher predictive accuracy.   The two-level scorecard with 
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multiple random-coefficients and group-level variables has a ROC curve which 

lies above the other curves.  

In order to give a meaningful interpretation to the graphical illustration 

of the ROC curves I make a pairwise comparison of the areas under the curves. 

The results are presented in Table 3.1. I use the logistic scorecard as a reference 

model and calculate the differences in the AUC measures as following: ∆� �! 	
� �"#$!% 
 � �&'(),  where � �&'() denotes the area under the ���*   for l=2,..,5. 
The standard error of this difference is given by 

 

+,-.( 	 /0+,-.(12� � 0+,-.(32� 
 24+,-.(1+,-.(3 , 
 

as reported in the third column in the table (+,-.(  and 4 are estimated according 

to Delong (1988)).  

 

 

ROC 

curve 

∆� � 	 

� �&'() 
 � �"#$!%� 
Standard 

error 

95% confidence 

interval 

z-

statistics 

p-

value 

���� 0.094 0.00566 [0.084;0.105] 16.65 <0.001 

���� 0.111 0.00623 [0.099;0.123] 17.81 <0.001 

���� 0.117 0.00615 [0.105;0.128] 18.98 <0.001 

���� 0.118 0.00623 [0.107;0.130] 19.02 <0.001 

* Logistic regression scorecard:  area under the ROCLogit  curve is  AUCLogit=0.707  
 

Table 3.1. A pairwise comparison of the differences between the  areas under the ���!  and 

the ROCLogit. The standard errors of ∆� � are calculated according to Delong (1988).  

 

 

Following Hanley and McNeil (1984) I calculate the z-statistics in order to 

test if the differences �∆� �6� are statistically significant. The z-statistics tests the 
null hypothesis that the difference between two AUC values is zero. The test 

results and the corresponding p-values are presented in the fifth and the sixth 

columns in the table. I also report the 95% confidence interval for the differences 

in the areas as reported in the forth column in the table.  It is evident, that AUC 

values are significantly smaller for the logistic regression scorecard as compared 

t the multilevel scorecards 2-5. Between the multilevel scoring models the AUC 
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values increase with the complexity of the models, although the differences in 

 ∆� �  are significant only in some cases.     

Next, I will take a closer look at a ROC curve analysis application to retail 

banking in general and discuss several alternative methods which help to assess 

the predictive accuracy of a scoring model. Under particular circumstances these 

alternative methods are more relevant and suitable than a standard ROC curve 

metrics.   

In general, a ROC curve illustrates the performance of a model by plotting 

true positive rate against false positive rate.  It is currently considered to be a 

benchmark method used to check the predictive quality of a model. Given a ROC 

curve, the predictive performance of a model is measured by computing the area 

under the curve. However, there are several limitations associated with the use 

of  AUC as a standard measure of accuracy (Termansen et al. (2006), Austin 

(2007), Hosmer and Lemeshow (2000)). In this dissertation I only briefly discuss 

the main drawbacks of the AUC measure when it is applied in credit scoring.   

First, ROC (AUC) ignores the predicted probability values and goodness-of 

fit of the estimated model (Ferri (2005)). The continuous forecasts of the 

probabilities are converted to a binary default-nondefault variable. This 

transformation neglects the information on how large is the difference between 

the threshold and the prediction.  Hosmer and Lemesow (2000) show that it is 

possible for a poorly fitted model (which overestimates or underestimates all the 

predictions) to have a good discrimination power. They also provide an example 

where a well-fitted model has a low discrimination power.  

A second limitation of the ROC curve and AUC is that they summarise a 

model performance over all regions of the ROC space including regions in which 

it is not reasonable to operate (Baker and Pinsky (2001)).  For instance, in retail 

banking, a lender typically defines a threshold for the accept/reject decision 

within a range (0.1; 0.3).  Therefore, he is rarely interested in summarizing the 

scorecard’s performance across all possible thresholds as given by a ROC curve 

(AUC) and related metrics. In this case the left and central areas of the ROC 

curve are of less importance for him.  

One solution to this weakness would be to compute an area under a 

portion of the ROC curve. Partial AUC is an alternative to the regular AUC 

measure which evaluates the discriminatory power of a model over a particular 

region of the ROC curve (Thompson and Zucchini (1989), Baker and Pinsky 
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(2001) and McClish (1989)).  When it is applied in credit scoring, the partial AUC 

is simply the area under the partial ROC curve between two cut-off points or 

given a specific range for the specificity/sensitivity pairs.  Computing a partial 

AUC is also helpful if a lender aims to satisfy a budget constrain or fulfil a 

banking legislation requirement. For instance, a partial AUC can be estimated 

over the region of the ROC curve between two cut-off points which yields the 

desired range of true positive rates.  

I do not provide a detailed discussion on the calculation of a partial AUC 

in the thesis as the decision about an assessment of a particular region of a ROC 

curve should be guided by practical considerations within a commercial bank.  

Here, I only consider the case when a lender decides to evaluate a scorecard 

performance over the region of the ROC curve between two cut-off points.   

On a ROC curve plot the performance of a predictive model is visualized 

by plotting TPR (true positive rate) versus FPR (false positive rate) over all 

possible cut-off points c.  If the TPR given a threshold c is 78��9� 	 Pr�< = 9|>� 	
+?�9� and the corresponding FPR is @8��9� 	 8A�< = 9|B>� 	 +C?�9� 	 D  then 
according to Pepe (2003) the area under the ROC curve from some point D� to the 
point D�  is defined as following 

 

E� � 	   F ����D�GD
%3

%1
 

 	  F +?0+C?H��D�2GD
%3

%1
 

 	 8 AI<? = <C?, <C? J   �+C?H��D��, +C?H��DK�� L, 
 

where <C? and <? are continuous variables with survivor functions +C? and +?. 
In application to credit scoring <C? and <? would define the classification scores 
(or probabilities) assigned to the non-defaulted and defaulted customers. Figure 

3.2 provides a graphical illustration of the partial area under the ROC curve 

between FPR(c2)  and FPR(c1) where c1  and c2 are the cut-off points. 

On the graph the partial area of the ROC curve is bounded above by the 

area of the rectangle that encloses it. This rectangle has sides of length 1 and 

�@8��91� 
 @8��92�� which leads to the following partial area  
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E� �NOP 	  @8��91� 
 @8��92�. 
 

This area is the maximum partial AUC given 9�   and  9�. The lower bound 
for the partial AUC is given by the trapezoid which lies below the 45° diagonal 

line on the ROC plot. The area of this trapezoid is  

 

E� �N!Q 	 ��RS&�T1�URS&�T3�
� �@8��9�� 
 @8��9���, 

  

E� �NOP  =  E� � =  E� �N!Q. 
 

Accordingly, the partial AUC given two cut-off points c1  and c2  lies 

between the maximum and minimum partial areas. In other words,   E� �NOP  
gives the area under the portion of a ROC curve of a perfect scoring model (100% 

sensitivity). Similarly,  E� �N!Q provides a partial AUC of a random guessing. 

 

 

 
Figure 3.2. Partial area under the ROC curve 

between FPR(c2) and FPR(c1). 
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Next, I apply a partial AUC to the five scorecards in order to evaluate the 

areas under the portion of the ROC curve between the cut-off points c1=0.1 and c2 

=0.3 and between c1=0.1 and c2 =0.2. To calculate a partial AUC I need to 

compute the sensitivity/specificity pairs corresponding to the cut-off points within 

the range [0.1, 0.3]. Table 3.2 presents the results. The sensitivity defines the 

true positive rate (TPR) and specificity gives the true negative rate (TNR). 

The results in the table are interesting by themselves and show how the 

discriminatory power of a scorecard changes if the threshold for an accept/reject 

decision increases from 0.1 to 0.3. Given the cut-off point c1 =0.1 the logistic 

scorecard correctly classifies 61.14% of true defaulters which is 10-17% smaller 

than the TPR predicted by the multilevel scoring models. If the cut-off point 

increases to c2=0.3 the differences in the classification performance become even 

more sharp between the logit scorecard and the multilevel models. Given the 

threshold c2=0.3 the logistic scoring model accurately forecasts only 14.56% of the 

true defaulters while scorecard 2 correctly classifies 42.34% of the true positive 

outcomes.  The TP rates at the cut-off point 0.3 produced by the scorecards 4 and 

5 are even higher.  The table implies that the multilevel scoring models show 

better classification performance over the region of the ROC curve between the 

cut-off point c1 and c2.  

 

Cut-

offs 

Scorecard 1 Scorecard 2 Scorecard 3 Scorecard 4 Scorecard 5 

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR 

0.10 61.14 68.45 78.88 61.74 71.25 73.30 72.91 73.18 73.22 73.07 

0.12 53.61 75.44 73.69 68.31 67.99 77.99 68.88 77.56 69.32 77.60 

0.14 45.68 81.18 68.21 74.34 64.62 82.27 65.62 81.63 65.12 81.79 

0.16 39.26 85.04 63.02 79.24 60.97 85.32 61.86 84.67 62.41 84.82 

0.18 33.53 88.29 59.26 82.32 58.82 87.71 59.65 87.16 59.54 87.13 

0.20 29.12 90.36 55.17 85.76 56.99 89.59 57.27 89.14 56.99 89.26 

0.22 24.70 92.10 51.85 87.55 55.50 91.28 55.89 90.84 55.78 90.97 

0.24 21.18 93.16 48.42 89.15 54.06 92.66 54.51 92.20 54.12 92.14 

0.26 18.37 94.22 46.10 90.72 53.01 93.61 52.85 93.44 52.85 93.40 

0.28 16.16 95.02 44.06 91.83 51.80 94.40 51.85 94.34 51.69 94.43 

0.30 14.56 95.83 42.34 92.70 50.75 95.20 50.97 95.18 50.58 95.02 
 

Table 3.2. Sensitivity/specificity pairs corresponding to the cut-off points for probability of 

default within the interval  �0.1; 0.3�.  
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The highest TN rate at the threshold c1=0.1 is provided by scorecard 3. 

However, given the threshold c2=0.3 the logistic regression scorecard slightly 

outperforms other scoring models and correctly classifies 95.83% of the true non-

defaulters.  The TNR provided by the scorecards 2-5 are only slightly smaller.  

The partial areas under the ROC curve are presented in Table 3.3.  I 

calculate and report partial areas for the two regions of the ROC space: between 

cut-off point 9� 	 0.1 and 9� 	 0.3 and between 9� 	 0.1 and 9� 	 0.2. Additionally 
to the pAUC values, the table provides the maximum and minimum bounds for 

the partial areas and the relative value of the partial AUC (
Z-.(

Z-.([\]).  

 

Cut-off points (interval)                 [0.1; 0.3] [0.1; 0.2] 

    
E� � E� �NOP E� �N!Q E� �

E� �NOP E� � E� �NOP E� �N!Q E� �
E� �NOP  

Scorecard 1 0.1036 0.2738 0.0489 0.394 0.0988 0.2191 0.0451 0.451 

Scorecard 2 0.1876 0.3096 0.0705 0.631 0.1609 0.2402 0.0630 0.670 

Scorecard 3 0.1335 0.2190 0.0344 0.635 0.1044 0.1629 0.0302 0.641 

Scorecard 4 0.1362 0.2200 0.0348 0.645 0.1038 0.1596 0.0300 0.651 

Scorecard 5 0.1358 0.2195 0.0350 0.645 0.1054 0.1619 0.0304 0.651 

                    

Differences between the relative partial AUC values     

Scorecard 1  2       0.237       0.219 

Scorecard 1  3       0.241       0.190 

Scorecard 1  4       0.251       0.200 

Scorecard 1  5       0.251       0.200 
 

Table 3.3. Partial areas under the portion of the ROC curve between the cut-off points c1=0.1 

and c2= 0.3 and between c1=0.1 and c2= 0.2. The differences in the relative partial AUC values 

for the logit scorecard and the multilevel scoring models. 

 

 

 Table 3.3 confirms that the multilevel scoring models outperform the 

logistic regression scorecard over the region of the ROC space between the cut-off 

points  91 and 92 . It is also true that the differences in the partial AUC values are 
higher than the differences in the total AUC given in Table 3.1. Given the 

thresholds c1 and c2 the scorecards 4 and 5 provide similar classification 

performance. Interestingly, given the region of the ROC space between the cut-off 
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point  91 	 0.1 and 92 	 0.2  scorecard 2 shows the highest predictive accuracy 
yielding the relative partial area 

Z-.(
Z-.([\]=0.67.   

The third important limitation of a standard ROC curve or the AUC value 

is that they do not account for the asymmetry of costs. The AUC implies that 

misclassifying a defaulter has the same consequence as incorrectly classifying a 

non-defaulter. However, this is not the case in retail banking where the costs of 

misclassification errors (false positive and false negative outcomes) are very 

asymmetric.  

Generally, incorrectly classifying a true defaulter leads to problematic 

credit debt. Management of delinquent credit accounts is very costly for a lender. 

When a scoring model incorrectly classifies a true defaulter/non-defaulter, the 

costs associated with a past due credit account are much higher than the 

opportunity costs of a foregone profit. This implies that in retail banking a lender 

is primarily interested in increasing the true positive rate in order to minimize 

the misclassification costs of the incorrectly predicted non-defaulters.   

There are several techniques proposed in the literature which aim to 

incorporate misclassification costs in the assessment of the predictive accuracy.  

Metz (1978) proposed to measure the expected losses (costs) by summing up the 

probability weighted misclassification costs and benefits of the correct and false 

predictions.  Given the probability of default E�>� and the probability of non-
default E�B>� the expected losses can be calculated using the following formula 

 

  ,^E_9D_G `abb 	    ��>|>� ·  E�>� · 78� �  ��B>|B>�  ·  E�B>� · 7B� �  
                ��>|B>� · E�B>� · @8� � ��B>|>� · E�>� · �1 
 78�� 
        	    78� · E�>� · 0��>|>� 
 ��B>|>�2 � ��B>|B>� · E�B>� � 
                @8� · E�B>� · 0��>|B>� 
 ��B>|B>�2 � ��B>|>� · E�>�, 

 

where ��B>|>� is the cost of a false negative classification, ��>|B>�  is the cost of 
a false positive classification.  The cost of the correct classification of the true 

defaulter is ��>|>� and the non-defaulter is ��B>|B>�, correspondingly.  
Next, I apply the expected loss approach to compare the misclassification 

costs between different credit scoring models. For simplicity, I assume that the 

cost of the correct classification of a true positive (negative) outcome is zero.  The 
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cost of an incorrectly classified defaulter is assumed to be 10 times higher than 

the cost of a misclassified non-defaulter (��B>|>� 	 100, ��>|B>� 	 10�. Table 3.4 
reports the expected losses a scorecard produces given three cut-off points for the 

accept/reject decision c1=0.1, c2=0.2 and c3=0.3.  

 

 

 

Table 3.4. Misclassification costs produced by a credit scoring 

model given three different cut-off points for the accept/reject 

decision. 

 

 

The results in the table suggest that the multilevel scorecards outperform 

logistic scoring model by providing smaller misclassification costs.  

Concluding the discussion about the application of a ROC curve and 

metrics derived from it in retail banking, I suggest that additionally to the ROC 

analysis it is important to compute and report alternative measures of accuracy 

and predictive performance.  In particular, the partial area under the curve, 

misclassification rates and expected losses given a threshold are good 

complements to the regular ROC curve analysis. In addition, it is also important 

to report goodness-of-fit measures together with a ROC (AUC) curve metrics in 

order to avoid situations where a poorly fitted model shows a high discriminatory 

power because it overestimates all positive instances and produces a very high 

TPR (sensitivity is close to 100%). 

 

 

 

Cut-off points: 9� 	 0.1 9� 	 0.2 9� 	 0.3 

Scorecard 1 7.97 10.40 11.89 

Scorecard 2 6.16 7.28 8.41 

Scorecard 3 6.19 6.70 7.06 

Scorecard 4 5.97 6.70 7.03 

Scorecard 5 5.94 6.73 7.09 
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3.2   Measures of fit and accuracy scores 

 

 

 

 

This section assesses and compares the goodness-of-fit between the 

multilevel credit scoring models and the logistic regression scorecard. I compute 

and report several measures of the fit of an estimated statistical model which are 

commonly applied in econometrics.  Following Akaike (1974) and Schwartz (1978) 

I calculate and report Akaike Information criterion (AIC) and Schwarz criterion 

or Bayesian Information criterion (BIC). AIC and BIC criteria are deviance-based 

measures of fit of an estimated  model. Generally, these criteria are applied to 

select the model which provides the best fit among the range of the fitted models 

while keeping the model parsimonious at the same time. 

Table 3.5 reports the AIC and BIC criteria for the multilevel credit scoring 

models and the logistic regression scorecard.  The model with the smallest values 

of both AIC and BIC criteria provides the best fit.  

 

Postestimation diagnostics AIC BIC 

   

Scorecard 1 2991.3 3090.2 

Scorecard 2 2957.1 3062.6 

Scorecard 3 2927.1 3045.7 

Scorecard 4 2909.2 3041.0 

Scorecard 5 2884.5 3029.4 

 

 

Table 3.5. Postestimation diagnostic statistics: Akaike information criterion 

(AIC) and Bayesian information criterion (BIC).   

 

 

According to the information criteria the multilevel scorecards (scorecard 

2-5) outperform the conventional logit scorecard. It is also true that among the 

multilevel models AIC and BIC values decrease with the degree of the model’s 

complexity. Credit scorecards which include more microenvironment-specific 

effects and group-level characteristics show a superior classification performance. 
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A flexible version of a scoring model with multiple random-coefficients, 

microenvironment-level variables and interactions (scorecard 5) is preferred by 

the information criteria.  

Next, I compute several scalar measures which aim to assess the 

predictive accuracy of the probability forecasts. Following Krämer and Güttler 

(2008) I use the predicted probabilities for the set of credit scoring models and 

apply a Brier score as well as logarithmic and spherical scores to check the 

accuracy of the forecasts.   

The Brier score is the mean squared difference between the predicted 

probabilities and the observed binary outcomes (Brier (1950), Murphy (1973), 

Jolliffe and Stephenson (2003)).  It is one of the oldest and most commonly used 

techniques for assessing the quality of the probability forecasts of a binary event 

(default/non-default).  

The formula for the calculation of a Brier score is given in [3.1].  It cali-

brates the average squared deviation of the predicted probabilities Ede  from the 

actually observed outcomes �!. Lower values for the score indicate higher accu-
racy.  The estimated Brier scores for the credit scorecards are reported in the 

second column in Table 3.6. 

 

�A6_A +9aA_ 	 �
C∑ ��! 
 EdeC�  �� ,    gh_A_    �! 	 i 1, G_jklmD               0 , �a� 
 G_jklmDn .        [3.1] 

 

The logarithmic score is another measure of the forecasting accuracy of a 

model. The calculation of the score is shown in [3.2]. The logarithmic score values 

are always negative. For �! 	 1 , ln �|Ede � �! 
 1|� is close to zero when Ede   
approaches one;  for �! 	 0 it is close to zero when E6e  is small. Accordingly, the 

scoring rule imposes that a model with the closest to zero logarithmic score shows 

the best performance. The third column in Table 3.6 presents the values of the 

logarithmic scores for the credit scoring models.  

 

`a�kA6Dhp69 b9aA_ 	 �
C  ∑ ln �|Ede � �! 
 1|�C!q� .                               [3.2] 

 

A slightly modified version of the logarithmic score is a spherical score 

which was introduced by Roby (1965).  The calculation of the score is shown in 

[3.3]. The logarithmic score approaches unity when the predicted probabilities 
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are close to the observed outcomes. The values of the spherical scores for the 

credit scoring models are provided in the last column in Table 3.6.  

 

+Eh_A69km b9aA_ 	 �C∑ � |ZrsUt)H�|
/Zu)3U��HZrs�3

C!q� �.                                      [3.3] 

 

 

Predictive accuracy 

scores: 
Brier score 

Logarithmic  

score 

Spherical 

score 

Scorecard 1 0.08090 -0.301 0.910 

Scorecard 2 0.06736 -0.235 0.926 

Scorecard 3 0.06252 -0.208 0.932 

Scorecard 4 0.05663 -0.187 0.938 

Scorecard 5 0.05652 -0.186 0.939 

 

Table 3.6. Score measures of predictive accuracy for the logistic regression 

and the multilevel credit scoring models: the Brier scores, logarithmic scores 

and spherical scores.  

 

 

The results of the Brier scores confirm that the logistic scoring model 

produces the crudest forecasts yielding the highest per observation error. It is 

also true, that among the multilevel scorecards (scorecard 2-5), models with more 

microenvironment-specific effects provide a better calibration of the probabilities 

of default. The smallest error of the forecasts (0.05652) is produced by the flexible 

version of a credit scoring model (scorecard 5) which includes multiple area-

specific coefficients, group-level variables and interactions.  

Similar conclusion is made after comparing the logarithmic and spherical 

scores. The spherical scores are reported in the last column in the table. The best 

results of the logarithmic and spherical scores are given by the scorecard 5. It is 

also true that the score values increase with the degree of the model complexity.  

To summarize the results of the predictive accuracy measures and the 

goodness-of-fit check, I conclude that the multilevel credit scoring models 

outperform the logistic regression scorecard. It is evident that the results of 

different postestimation diagnostics provide the same ranking to the credit 

scoring models discussed in the previous chapter. This confirms the main 
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contribution of this thesis is to introduce a multilevel scorecard which improves 

the forecasting quality of a scoring model.  

Multilevel credit scoring is more efficient because it allows specifying a 

two-level structure where borrowers are nested within microenvironments and 

modelling random-effects.  Microenvironment-specific effects vary across groups 

and show the impact of the economic and demographic conditions in the living 

areas on the riskiness of borrowers. These area-specific effects are viewed as 

unobserved determinants of default. Accordingly, including them in the scoring 

model improves the predictive quality and provides better fit to the data.  

Importantly, microenvironment-specific effects capture the information on 

unobserved determinants of credit worthiness of individuals which impact the 

probability of default additionally to the observed characteristics measured at the 

borrower-level or group-level. This implies that two identical borrowers with the 

same personal characteristics but different living area conditions (microenviron-

ments) are going to have different forecasts of probabilities because they are ex-

posed to different area-specific hazards.   

In the next section I apply a graphical illustration of the fitted model 

results in order to analyse the quality of borrowers and microenvironment-

specific effects in the living areas with different economic and demographic 

conditions. 
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3.3   Predictive quality comparison: bivariate 

probit   versus multilevel scorecard 

 

 

 

 

 

In this subsection I compare predictive quality of the multilevel scorecard 

to a credit scoring regression analyzed by W. Greene (1992). Both credit 

scorecards are fitted using the same data on credit histories of borrowers.   

In the paper W. Greene introduces a credit scorecard which takes into 

account the problem of reject inference. He applies a sample selection bivariate 

probit to model the probability of default on a loan. In this specification 

probability of default  8A�> 	 1|^, � 	 1�  is conditional on the application status, 
where � 	 1 means a borrower is granted a loan (accepted) and � 	 0 means that 

a customer is rejected. Accordingly, the main aim of the paper is to show that 

unconditional scoring model will give a downward biased estimate of default 

probability for an individual selected at random from the population because a  

part of the applicants (below the defined threshold) are not accepted by a lender. 

This implies that the probability default model should condition specifically on 

the application status in order to be applicable to the population at large.  

I use the multilevel scorecard with microenvironment-specific intercept 

from chapter 2 (as given in [2.5]) to compare the predictive accuracy.  In the 

paper W.Greene does not assess classification quality of the scorecard by ROC 

curve and related metrics such as AUC, Gini coefficient, accuracy ratio and 

logarithmic score. Therefore, in order to calculate these accuracy measures I 

replicate the estimation of the probit credit scoring model following the steps 

described in the paper. I take the same set of explanatory variables and sampling 

weights to predict the probabilities. Then, I apply these predictions to compute 

different accuracy measures and perform a ROC curve analysis.  The detailed 

description of the estimation procedure is given in Appendix I.  In addition, 

Appendix I reports the coefficient estimates for the bivariate probit regression 



3.  Predictive Accuracy and Goodness-of-fit Check      70 

 

which models probability of default conditional on the acceptance status (whether 

application for a loan is accepted or rejected by a lender).  

I start by comparing classification rates, sensitivity and specificity values 

for the probit scorecard and the multilevel scorecard which are computed given 

two cut-off points. In the paper W.Greene reports a classification table for the 

cut-off points 9� 	 0.094 and 9� 	 0.12. Therefore, in order to make classification 

rates comparable I accomplish similar calculations for the multilevel scorecard. 

Table 3.7 provides accuracy measures which are FPR, FNR, sensitivity, 

specificity and the correct classification rate.  

 

Classification performance 

xy 	 z. z{| x} 	 z. y} 

Probit 

 scorecard 

Multilevel 

scorecard 

 Probit 

scorecard 

Multilevel 

scorecard 

Correctly classified, % 57.21 63.28 
 

67.92 69.27 

False D rate for true ND (FPR), % 45.02 39.08  31.98 31.36 

False ND rate for true D (FNR), % 21.49 20.51  33.03 26.37 

Specificity, %  54.98 60.92  68.02 68.64 

Sensitivity, % 78.51 79.49  66.97 73.63 

 

Table 3.7.  Predictive accuracy rates for the multilevel scorecard and the probit scoring model 

given two cut-off points, 9�  and 9�. D-defaulters, ND-non-defaulters. FPR - false positive rate, 

FNR – false negative rate. 

 

The results confirm that the multilevel credit scoring model outperforms the 

bivariate probit scorecard in both cases: given thresholds  9� and 9�.  Given 9� 	 0.094 

multilevel scorecard correctly predicts 63.28% of the outcomes while the probit 

scorecard does only 57.21%. False negative rates are higher for the probit scoring 

model. Sensitivity and specificity rates are higher for the multilevel scorecard.  

Next, I compare classification performance of the scorecards by applying a ROC 

curve analysis. Figure 3.3 shows the ROC curve and its 95% confidence interval for the 

bivariate probit scorecard. In the table below the graph I report the AUC, the Gini 

coefficient and the accuracy ratio. In addition, Table 3.8 compares the AUC values 

between the scoring models.  I follow Hanley and McNeil (1984) and calculate the z-

statistics in order to test if the difference in the areas �∆� � 	 � �~lmD6m_�_m 

� �8Aa�6D� is statistically significant.  The z-statistics tests the null hypothesis that 
the difference between two AUC values is zero. 
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Figure 3.3. ROC curve for the bivariate probit credit 

scoring model. 

 

 

Predictive accuracy measures   

Area under the ROC������  (� �S�#�!%)  0.761 

Standard error (DeLong)  0.010 

95% confidence interval  [0.74 ; 0.78] 

Gini coefficient  0.474 

Accuracy ratio  0.522 

Difference in AUC values:   

∆� � 	 � ���*%!*���* 
 � �S�#�!%  0.039 

Z-statistics  -3.666 

p-value  <0.001 
 

Table 3.8. Summary of the ROC curve metrics, the Gini coefficient, the accuracy 

ratio and the difference in the AUC values. 

 

The area under the ROC curve for the probit scorecard is 0.761 with 

standard error 0.01 (DeLong, 1988).  The 95% confidence interval for the � �S�#�!%  
does not overlap with the confidence interval for  � ���*%!*���* .  The difference in 
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the AUC values between the multilevel and probit scorecards is statistically 

significant with a very small p-value. This confirms that the multilevel scoring 

model shows higher classification performance compared to the bivariate probit 

model.  

In addition, I check accuracy of the forecasts by computing several scalar 

measures of classification quality.  These measures are Brier score, logarithmic 

and spherical scores.  Table 3.9 reports accuracy scores for the probit scoring 

model and the multilevel scorecard.  

 

Accuracy scores:   
Brier 

score 

Spherical 

score 

Logarithmic 

score 

      
   

Probit Scorecard   0.0764 0.913 -0.269 

Multilevel scorecard 0.0674 0.926 -0.235 

            
 

Table 3.9. Accuracy scores: comparison between the probit credit  scoring 

model and the multilevel scorecard.  

 

The average error of the forecasts or Brier score is higher for the probit 

scoring model. This implies that the probit scorecard provides a lower 

classification quality compared to the multilevel scorecard. Similar conclusions 

can be made after comparing logarithmic and spherical scores.  

In summary, it is evident that the credit scoring model with a multilevel 

structure outperforms the bivariate probit scorecard. The ROC curve metrics and 

the classification quality measures show higher predictive accuracy for the 

multilevel scoring model.  
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3.4   Graphical illustration of the fitted model 

results 

 

3.4.1  Microenvironment-specific coefficients 

 

This subsection aims to visualize the fitted model results.  The credit 

scoring models introduced in chapter 2 include many microenvironment-specific 

effects at the second-level of the model hierarchy. The area-specific effects are 

captured by random-intercepts and random-coefficients in the scorecards. In 

order to emphasize the role of the microenvironment-specific effects I provide a 

graphical illustration of the fitted model varying-coefficients. In addition, I 

discuss  and visualize the differences between area-specific effects within poor 

and rich areas. 

Consider the credit scoring model 4 with two random-coefficients which is 

specified in [2.9].  Figure 3.3 illustrates the microenvironment-specific residuals  

lu�Q�,�  of the borrower-level variable ,��l6A6_b! (number of credit enquiries). I 

choose this variable for the graphical representation because the number of credit 

enquiries is a very powerful predictor which contains valuable information on the 

previous applications for a loan.  The varying-coefficient of  ,��l6A6_b!   implies 

that the effect of credit enquiries differs across living areas with dissimilar eco-

nomic and demographic conditions. 

Figure 3.4 visualizes the microenvironment-specific effects of the variable 

,��l6A6_b!. In the second-level model for the coefficient  ���!��Q� 	 ��Q� � l�,�Q� , the 
residual  l�Q�,� explains the change in the probability over and above the popula-
tion average value. The predicted area-specific effects  lu�Q�,�  are illustrated by 
the blue points on the plot and the population average effect of enquiries is given 

by the straight red line. The line is parallel to the abscissa axis which implies the 

impact of enquiries on default is constant across borrowers. Including area-spe-

cific effects  l�Q�,� in the model for the varying-coefficient brings more flexibility 

in modeling. The microenvironment-specific residual reflects the economic and 

socio-demographic conditions in the residence area and explains the unobserved 
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characteristics which impact the riskiness of a borrower who resides within a 

microenvironment  j.  

The abscissa axis on the graph shows the microenvironment ID. The 

highest values of the second-level residuals lu�Q�,�   are marked by the red 

triangles on the plot. These residuals correspond to low income areas with a high 

share of African-American residents and a low level of per capita real estate 

wealth.   

 

 
 

Figure 3.4. Second-level residuals of ,��l6A6_b! . Population 

average effect of enquiries is illustrated by the straight dotted line. 

 

 
If the fixed-effect coefficient is assigned to the variable ,��l6A6_b! then the 

impact of a unit change in the number of credit enquires is constant for all bor-

rowers and predicts the change in the probability by  �9.25%. This assumption 

may not hold given that nowadays retail bankers offer different credit opportuni-

ties under various conditions within different living areas. After monitoring and 

analysing the quality of borrowers a lender decides which kind of credit products 

to offer. Given a residence area of borrowers retail bankers may offer credit pro-

ducts with only fixed / flexible interest rates and with / without a revolving credit 

line.  
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of cases this borrower is rejected because of an unsatisfactory c
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Even if a bad credit history borrower is accepted for a loan he defaults with a 
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For these two strictly dissimilar types of borrowers (a good cre
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high number of enquiries. Consequently, if a fixed
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The living conditions in a microenvironment may also determine the 

quality of the customers. Richer living areas contain more individuals with a 

good credit history and poor districts have a higher share of borrowers with a bad 

credit history. A customer has a good credit history if he frequently applies 

types of loans and pays back his credit obligations according to the 

scheduled repayment time. At the same time, a customer with a bad credit 

often applies for a loan in different places. However, in the majority 

of cases this borrower is rejected because of an unsatisfactory c

which contains many derogatory reports and records on the past due accounts. 

Even if a bad credit history borrower is accepted for a loan he defaults with a 

For these two strictly dissimilar types of borrowers (a good cre

borrower and a bad credit history borrower), a lender would observe the same 

high number of enquiries. Consequently, if a fixed-effect coefficient is applied it 

leads to a situation when the impact of Enquiriesi on default is the same for a 

d and a bad borrower which is not realistic in practice. Assigning a varying

variable Enquiriesi helps to overcome this drawback. In this 

specific slopes are steeper in the poor living areas and flatter in the 

e areas.  

Figure 3.5. Predicted microenvironment-specific 
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with a bad credit 

often applies for a loan in different places. However, in the majority 

of cases this borrower is rejected because of an unsatisfactory credit history 

which contains many derogatory reports and records on the past due accounts. 

Even if a bad credit history borrower is accepted for a loan he defaults with a 

For these two strictly dissimilar types of borrowers (a good credit history 

borrower and a bad credit history borrower), a lender would observe the same 

effect coefficient is applied it 

on default is the same for a 

d and a bad borrower which is not realistic in practice. Assigning a varying-

helps to overcome this drawback. In this 

in the poor living areas and flatter in the 
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In order to visualize the last statement I graphically illustrate the impact 

of the number of credit enquiries on default within the low and high income 

microenvironments. Figure 3.5 illustrates the microenvironment-specific effects 

(uj,Enq) predicted for the five lowest (red charts) and five highest income regions 

(grey charts). The abscissa axis on the graph shows the estimated residuals 

measured on the logit scale.  

It is evident that the impact of the number of credit enquiries on 

probability is much more pronounced within the poorer microenvironments than 

within richer living areas.  

The next figure visualizes the relationship between two varying-coeffi-

cients which are included in the multilevel credit scoring model in [2.9]. It is as-

sumed that the area-specific coefficient of the variable  ,��l6A6_b!  and the coeffi-
cient of the variable 8kbD���,!  follow a multivariate normal distribution. 

Figure 3.6 presents the pairwise residuals comparison plot for the va-

rying-coefficients ���Q�  and  ��
SO�% which are specified in [2.10]. The second-level 

residuals  l�
�Q�  are plotted on the abscissa axis and  l�

SO�%   are given on the ordi-

nate axis. It is evident from the plot that the correlation between microenviron-

ment-specific effects is positive. This implies that the living areas with steep 

slopes of the number of credit enquiries are also going to have steeper slopes of 

the past due accounts.  The upper-right red triangle corresponds to a low income 

area, with a high share of African-American residents and a low share of college 

graduates. 

 
Figure 3.6. A pairwise residuals comparison plot. Microenvironment-

level residuals of the explanatory variable ,��l6A6_b!  (number of credit 

enquiries) are plotted against second-level residuals of the variable 

8kbD���)
 (number of credit delinquencies in the last 12 months ). The 

highlighted in red residuals is for the lowest income area.  
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3.4.2   Predicted probabilities and living area 

economic conditions 

 

 

 

 

In this subsection I show how to apply a graphical illustration of the fitted 

model predicted probabilities in the postestimation analysis and strategic 

planning in retail banking. Visualizing the probabilities not only allows easier 

interpretation of the results, it also helps to emphasize the role of the 

microenvironment-level characteristics and explore the impact of the economic 

and demographic conditions on default.  

To compare the forecasts within the living areas with different economic 

and socio-demographic conditions, I calculate the average predicted probabilities 

of default within microenvironments.  Figure 3.7 illustrates the results.  The up-

per graph a) presents the probabilities of default for a low income microenviron-

ment with a low / high share of college graduates in the market (orange bars), 

with a low/high share of African-American residents (grey bars) and with a 

low/high share of families who own a real estate property in the borrower’s 

neighbourhood (red bars). Each bar on the graph illustrates the average riskiness 

of borrowers within a microenvironment with a particular combination of the 

living area conditions.   

The comparison of the forecasts on the graph a) and b) reveals that the 

quality of borrowers is higher within the richer microenvironments compared to 

the poorer areas. Accordingly, the predicted probabilities of default in the high 

income areas are lower than in the low income regions. However, not only the 

regional level of income has an impact on the riskiness of customers. There are 

other microenvironment-level characteristics which should be considered.  The 

forecasts on the graph a) show that within poor microenvironments the exposure 

to risk is higher in the areas with a higher share of  African-American residents 

compared to the regions with a lower share of African-American residents (21.3% 

versus 11.1%). It is also true that within the low income regions the probability of 

default decreases if the level of the housing wealth or the share of college 

graduates in the market increase. Individuals within the areas where the 
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Figure 3.7. Average predicted probabilities for microenviron
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In this chapter I introduce a new version of a multilevel credit scoring 

model which has a non-hierarchical structure. First, I describe the multilevel 

structure and show how to cluster borrowers within it. Second, I apply a non-

hierarchical structure to the scorecards and estimate different versions of credit 

scoring models.  

Importantly, the credit scorecards discussed in the previous chapter are 

specified with a hierarchical multilevel structure. The hierarchical nesting im-

plies that all individual-level units (borrowers) are clustered within the second-

level units (microenvironments). This chapter presents an extended version of 

the structure discussed previously which is more realistic in application to credit 

scoring. The new structure is a non-hierarchical one. It clusters individual-level 

units within the higher level classifications which are not nested one in the other. 

This kind of a multilevel structure is called cross-classified or non-nested.   

The chapter is divided into three parts: structure, empirical analysis and 

predictive accuracy check. Section 4.1 introduces the structure and lists the 

characteristics which I apply to cluster borrowers within classifications at the 

second-level of the hierarchy. I present two specifications of credit scoring models 

with a cross-classified structure and provide empirical results for them in 

sections 4.2 and 4.3. The cross-classified scorecards differ by the composition of 

random-effects and explanatory variables measured at different levels of the 

hierarchy. The first version of a scorecard assigns a varying-intercept for each 

second-level classification. The second version elaborates the first and specifies 

group-level characteristics in the varying-intercept models at the classification-

level of the hierarchy. Group-level information is presented by the explanatory 

variables defined within each of the second-level classifications.  I apply a ROC 

curve analysis after estimation in order to check the predictive accuracy. In 
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addition, I compute several other accuracy measures and show how to calculate 

an optimal cut-off point under particular conditions. The comparison of the 

goodness-of-fit measures and accuracy scores concludes the presentation of the 

empirical results for the fitted scoring models in section 4.3.  

Importantly, credit scoring models with a cross-classified structure are 

computationally more complex than hierarchical scoring models. They contain 

several classifications which include random-effects and specify group-level 

characteristics at different levels. Maximum likelihood estimation is not an easy 

task in this case. Random-effects at the second-level have to be integrated out in 

the likelihood function which requires numerical integration techniques. 

Numerical approximation may fail to produce reasonable results when the 

number of random-effects is high. In order to overcome these computational 

problems, I apply Bayesian Markov chain Monte Carlo (MCMC) to fit the 

scorecards in this chapter. 

In the case of multilevel modelling, Bayesian MCMC is a superior estima-

tion approach.  It is increasingly used as a method for dealing with problems for 

which there is no exact analytic solution and for which standard approximation 

techniques have difficulties. The basic principal of MCMC is to apply a Bayesian 

rule and carry out the necessary numerical integrations using simulations (Gel-

fand and Smith (1990)). The other motivation for the choice of this estimation 

approach is the flexibility of modelling random-effects. MCMC allows specifying 

different prior distributions for the group-specific effects and for the structural 

parameters (standard deviations, covariances). I provide a short summary of the 

estimation with Bayesian Markov chain Monte Carlo in chapter 5.  

Before starting the next section, I briefly introduce the literature on non-

hierarchical multilevel modelling. Although cross-classified models are 

computationally more complex than hierarchical multilevel models, the interest 

in using these structures in applied research is growing rapidly. The major 

advantage of cross-classified structures is that they better represent the 

complexity of real world situations where individuals may be subjects for 

multiple classifications. In particular, Zaccarin and Rivellini (2002) use 

multilevel cross-classified modelling in order to evaluate the effects of women’s 

place of birth and women’s current place of residence on the choice of bearing a 

second child by Italian woman in the mid-1990.  In their structure the place of 

birth and current place of residence are the second-level classifications and 
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women are nested into groups within each of the classifications. Goldstein and 

Fielding (2005) apply non-hierarchical multilevel modelling in the field of 

economics of education. They analyze students’ examination results given that 

pupils are clustered within schools and at the same time within neighbourhood 

areas. The authors find that pupils’ achievements are highly influenced by both 

school-specific and neighbourhood-specific characteristics.  

 

 

 

4.1   Cross-classified structure of a scorecard  

 

 

 

 

The credit scoring models presented in chapter 2 are specified with a 

hierarchical two-level structure. This implies that individual-level units 

(borrowers) are nested within the second-level units (microenvironments) which 

represent their living areas. Here I discuss other ways of clustering data for a 

credit scorecard.  Alternatively, I could have defined a multilevel structure where 

borrowers are nested within clusters which describe their occupational activities 

or working experience.  In this case, the structure would remain hierarchical. 

Applying this structure to the scorecard allows exploring the impact of 

unobserved occupation-specific effects on the probability of default. In general, 

there are many occupational hazards which influence the riskiness of individuals 

who are employed in different industries. Accounting for unobserved profession-

specific characteristics improves the forecasting quality of a scorecard as more 

determinants of default are included.  

In general, both types of a two-level structure (borrowers-within-

microenvironments and borrowers-within-occupations) are relevant for more 

efficient credit scoring. Therefore in this chapter I combine these structures in 

one. The resulting multilevel structure is not hierarchical anymore because it 

nests borrowers within microenvironments and at the same time within their 

occupational activities. In this multilevel structure microenvironments and 
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occupations are the second-level classifications which are not nested into each 

other. 

The main advantage of a cross-classified structure over  a hierarchical 

structure  is that the former structure allows accounting not only for  unobserved 

living area risks but also for occupation-specific determinants of default. In addi-

tion, the structure can incorporate group-level information which shows the im-

pact of occupation-specific variables on the riskiness of borrowers. For instance, 

some changes within an industry may influence wages or employment which, in 

turn, impacts financial stability of individuals employed in these occupational 

fields. 

Furthermore, I assume that there are infrastructure-specific determi-

nants of credit worthiness which impact riskiness of borrowers additionally to the 

microenvironment-specific and occupation-specific effects.  In general, the 

amount of credit burden and credit opportunities offered by lenders are highly 

correlated with the infrastructure of shopping facilities in the living areas of in-

dividuals. It is also true that good access to various department stores and shop-

ping malls provokes spending and initiates borrowing. In order to satisfy the de-

mand for credit resources lenders locate more branches and offices in areas with 

a highly developed infrastructure of shopping facilities. Accordingly, I specify the 

third classification – infrastructure and cluster borrowers within groups within 

different infrastructures.    

Combining all three structures together produces a non-hierarchical mul-

tilevel structure with three classifications at the second-level: microenvironment, 

occupation and infrastructure. In this multilevel structure applicants for a loan 

are the individual-level units which are nested within groups and then within the 

second-level classifications. Separately, the structure within a classification is a 

hierarchical two-level. I cluster borrowers into groups according to the similari-

ties in the particular characteristics of their occupations, living environments 

and infrastructure of shopping facilities.  

It should be mentioned that it would be possible to specify other types of 

cross-classified structures which nest borrowers within different classifications 

and then within groups given a classification. However, in retail banking a 

decision about a particular structure for a credit scoring model should be guided 

by practical considerations within a lending institution.  This dissertation focuses 

on a cross-classified structure which nests borrowers within occupations, 
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microenvironments and infrastructures because, I suggest, that applying this 

structure helps to increase efficiency of credit worthiness assessment. The core 

idea here is that unobserved occupation, infrastructure and microenvironment-

specific determinants of default have a noticeable impact on the probability and 

explain changes in the riskiness additionally to the observed characteristics on 

borrowers such as income, marital status and education. 

 

 

 

4.1.1   Clustering within occupations 

 

 

 

Clustering of borrowers within occupations allows exploring the impact of 

professional hazards on the probability of default. I start with an example in 

order to make the interpretation easier.  Consider two individuals who apply for 

a bank loan, one is employed in military service and the other is in sales. 

According to some peculiarities of their professional activities they have different 

responsibilities, duties and working experience.  These borrowers are subject to 

profession-specific hazards which differ across industries and occupational 

activities of individuals.  On the one hand, a military man is exposed to multiple 

health-related hazards that originate in his working environment.   On the other 

hand, a person employed in sales is influenced by other types of risks such as 

instability of wages or high labour fluidity in retail trade sector. Consequently, 

clustering of borrowers within occupations helps to account for unobserved 

occupation-specific hazards which are not similar in these two cases and which 

explain different triggering default factors. 

I nest borrowers within occupations according to the similarities in the 

following characteristics of their professional activities: occupation, working 

experience and age.  Table 4.1 provides a detailed list of the characteristics used 

in clustering.  Each group within an occupation classification contains borrowers 

which are influenced by similar occupation-specific hazards. Alternatively, this 

group-effect can be viewed as an interaction effect of a particular profession with 

working experience and age.   
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Importantly, recognizing the impact of working experience and age on the 

riskiness implies that professional hazards have different impact on individuals 

with different experience and age given an occupation.   

I model the exposure to the occupation-specific risks by including a 

random-intercept at the second-level of the hierarchy for the occupation 

classification. I define 70 groups within this classification.  

 

 

 

4.1.2   Clustering within infrastructures 

 

 

 

Individuals apply for the loan because they would like to smooth their 

consumption intertemporally. They use credit resources to make small purchases 

of durable goods, furniture, ordering vacation tours and for many other purposes 

including a car purchase. In living areas with a highly developed infrastructure 

of shopping facilities customers have access to a wider variety of goods and 

services which provokes spending and initiates borrowing. Therefore, I assume 

that there are unobserved infrastructure-specific determinants of default which 

should be included in a scoring model for a more efficient credit worthiness 

assessment. 

I cluster borrowers within groups within the infrastructure classification 

according the similarities in the structure of shopping facilities in their 

neighbourhoods.  Each cluster within infrastructures represents individuals who 

have similar access to the various shopping facilities and services in their 

residence areas. I measure access to shopping facilities by the percentage of retail 

store, dining, gas station, furniture, build materials and autohouse sales in the 

total sales in the local market. The determinants of clustering within 

infrastructures are given in the second column in Table 4.1.  

The infrastructure classification has 50 clusters within which all borro-

wers are grouped. In a credit scorecard the infrastructure-specific effects are cap-

tured by a varying-intercept. Importantly, including unobserved infrastructure-
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specific characteristics explains that given personal information the riskiness of a 

borrower differs across living areas with good and bad access to various shopping 

facilities.  

 

 

 4.1.3   Clustering within microenvironments 

 

 

Clustering of borrowers within microenvironments slightly differs from 

the one used in chapter 2. The main difference is that the information on the 

infrastructure of shopping facilities is not used in grouping within 

microenvironments. This is because now I define a separate classification, 

infrastructure, and apply these characteristics to nest borrowers within 

infrastructures. The other determinants of clustering within microenvironments 

remain the same as in chapter 2. Table 4.1 lists these determinants.   

 

Occupation Infrastructure Microenvironment 

 

Professional activity:  

Management  

Military service  

Sales  

Construction  

High-skilled 

professionals 

Self-employed 

Others 
 

Working experience: 

Less than 2 years 

3-5 years 

6-10 years 

More than 10 
 

Age : 

18-24 

25-30 

31-44 

45-60 

61-more 

 

Share in total sales:  

Retail stores  

Autohouses  

Gasoline companies  

Dinning & Catering  

Medical & Drug stores 

Build materials 

Furniture stores 

Apparel stores  

 

 

Economic conditions:  

Area Income  

Housing wealth 

Buying power index 

 

Demographic 

conditions:  

African-American 

(Hispanic) residents  

Mean age 

Growth index 

College graduates 

 

 

Table 4.1. Determinants of clustering within second-level classifications: occupations, 

microenvironments and infrastructures. Each cluster represents an interaction of the   

characteristics. 
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I define 70 microenvironments within which individual applicants are 

nested according to the similarities in economic and socio-demographic conditions 

in their living areas. Each cluster within this classification represents a living 

environment of a borrower with a particular level of real estate wealth, per capita 

income, unemployment and with a particular demographic structure of residents 

(average age, share of African-American residents).  

Microenvironment-specific effects are captured by a varying-intercept in a 

cross-classified scoring model. This intercept explains the exposure to the 

microenvironment-specific risks and hazards which trigger default on a loan.   

 

 

 

4.1.4   Data and variables 

 

 

 

I apply the same data on credit histories as in the previous chapters.  The 

individual level data include personal information (income, marital status, 

dependents, etc.), Credit Reference Agency data (derogatory reports, enquiries, 

accounts past due, etc.) and living area descriptive data for the 5-digit area zip 

code in which a borrower resides (area income, demographic structure, house 

ownership, etc.). The full sample contains 9448 observations.  I randomly split 

the sample into two parts: training and testing subsamples.  The training dataset 

is applied to fit the scorecards. It contains 60% of the full sample. The testing 

sample is applied to check the classification accuracy of the out-of-sample 

predictions. It contains 3779 observations. 

I apply a forward selection method to choose explanatory variables which 

are going to be included in the cross-classified scorecards. The variables are 

selected based on AIC criterion. Table 4.2 provides a short description of the 

selected characteristics. Importantly, this set of variables does not include the 

classification-level characteristics which are included in the scoring model in 

subsection 4.2.2. I combine market descriptive data with BEA data on regional 

economic accounts in order to construct the group-level variables.  
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Variable Description 

 

������ 
 

Total annual income (including additional income) of an 

applicant for a loan, measured in thousands of dollars. 

���	
�
�� Number of credit enquiries in the credit profile of a bor-

rower. 


��� An indicator variable which takes the value of one if a 

borrower holds both bank savings and checking ac-

counts. 

��� Age, in years. 

����� Number of open and currently active trade accounts. 

������������  Total number of trade lines which are more than 30 day 

past due. 

���
�� Total number of 30-days delinquencies on credit obliga-

tions in the last 12 months. 

 ���
��!"  A dummy variable which equals one if a borrower has 

credit experience with a lender such as a personal loan 

or credit card (prior to the current application). 

#�$�� Number of major derogatory reports in a credit profile of 

a borrower. 

#
��� Number of minor derogatory reports in a credit profile of 

a borrower. 

��%��� Number of dependents in a family. 

���& A dummy variable which takes a value of one if a bor-

rower is a high-skilled professional, and zero otherwise. 

#
�
���' A dummy variable which takes a value of one if an indi-

vidual is employed in military service and zero other-

wise. 

()�*�+,  A dummy variable which equals one if a borrower owns 

a real estate property (house, flat) and zero otherwise. 

-�./*��0,  Revolving credit balance (average over last 12 months). 

 
Table 4.2. Description of the explanatory variables used in the cross-classified credit 

scoring models.  
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4.2   Empirical analysis 

 

 

 

This section provides an empirical analysis for the credit scoring models 

with a cross-classified structure of the data. I introduce two versions of a 

scorecard which differ by the composition of random-effects and group-level 

variables. The first credit scoring model specifies a varying-intercept at the 

second-level for each cross-classification.  The second version of a scoring model 

elaborates the first and additionally to the previous structure includes group-

level characteristics in the second-level models for the varying-intercepts. The 

group-level variables capture the impact of occupation, microenvironment and 

infrastructure-specific characteristics on the probability of default.  

I apply the training sample to fit the scoring models and the testing 

sample is used for the postestimation diagnostics. The credit scorecards with a 

cross-classified structure are complex and contain many random-effects. 

Therefore, I estimate them using a Bayesian MCMC approach.   A ROC curve 

analysis concludes the presentation of the empirical results and provides a 

summary of different predictive accuracy measures. A pairwise comparison of the 

ROC curves and AUC values between the cross-classified models and the logistic 

scorecard is provided in section 4.3. In addition, I check the goodness-of-fit by 

applying DIC (Deviance information criteria) and evaluate the forecasting 

performance using different accuracy scores (logarithmic, spherical and brier 

score). 

 

   

4.2.1   A cross-classified credit scorecard 

      

 The credit scoring model with a cross-classified structure is presented in 

[4.1].  The model assesses credit worthiness of borrowers by forecasting their 

probability of default. The dependent variable '0 is binary which takes a value of 

one if a borrower defaulted on his credit obligations and '0 1 0 if a borrower 
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returned a loan without delinquencies. The individual-level explanatory variables 

are chosen using a forward selection method. The set of the selected explanatory 

variables includes 15 predictors. Importantly, the scorecard specified in [4.1] does 

not include group-level characteristics. This extension will be added in the next 

subsection.  

In order to keep the notation transparent I do not apply multiple sub-

scripts to indicate borrowers nested within classifications and within groups 

given a classification. Instead, I assign a subscript j (for j=1,..,70) to the groups 

within microenvironments, a subscript k ( for k=1,..,70) to the groups within occu-

pations and a subscript l (for l=1,..,50) to the groups within different infrastructures.  

 

 

�� 4'0 1 16 70  , 	9,  	:  , 	; <  1 =��
�>?@AB C A0+/������0 C   AD+E���	
�
��0 C AFG+:
���0   

 C   AGH����0  C  A,*�����0  C  A"GI,�������� C  A��;���
��00 

 C   AJ* ���
�"*�K,0 C ALG9#�$��0 C AL0+#
���0 C A"*���&0 

 C   A��"��%�������0  C    AL0;#
�
���'0 C A*�K-�./*��0,� 

 C   AMN+()�0 C 	:40O
M//�"G,0M+ C 	940O

L0/*M�+K*, C 	;40O
0+P*GI,*�/,  Q.  [4.1] 

 

	940O
L0/*M�+K+,  ~   T U0, VL0/*M�+K*,

W X.                                                           

	940O
M//�"G,0M+   ~   T U0, VM//�"W X. 

	940O
0+P*GI,*�/,  ~   T U0, V0+P*GI,

W X.                                                               [4.2] 

 

 

The random-effects in the scoring model are presented by the varying-

intercepts within the second-level cross-classifications.  I include the population 

average intercept AB in the scorecard; therefore, the varying-intercepts within 

classifications are constrained to have a zero mean.  Similarly to the scorecards 

from the previous chapter, the classification-specific effects are presented by the 

second-level residuals. Residual 	9
L0/*M�+K+,  describes the impact of the microenvi-

ronment-specific risks which vary across living areas with different economic and 

demographic conditions. Profession-specific hazards are captured by the term  

	:
M//�"G,0M+

  which varies across occupational activities of borrowers. The random-

term   	;
0+P*GI,*    defines the infrastructure-specific effects. 
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Importantly, the classification-level residuals capture the information on 

unobserved determinants of default which influences riskiness of borrowers addi-

tionally to the individual-level characteristics such as income, marital status, etc. 

Given the explanatory variables it is assumed that the second-level random-ef-

fects follow a normal distribution with zero mean and variances  VL0/*M�+K,
W ,  VM//�"W   

and   V0+P*GI,
W   as shown in [4.2].   

Credit scoring models with a cross-classified structure are more complex 

than the scorecards with a hierarchical structure in chapter 2. In addition, it is 

computationally difficult to fit them with maximum likelihood because the 

number of random-effects at the classification-level is high. There are 70 varying-

intercepts within microenvironments, 70 varying-intercepts within occupations 

and 50 within infrastructures plus fixed-effects and variance parameters.  In this 

case Bayesian Markov chain Monte Carlo is a superior estimation approach 

which allows more flexibility in random-effects modelling. I apply this approach 

to fit the scoring models in this chapter.  According to the main Bayesian 

principle prior knowledge about random-effects distributions is updated by the 

data in order to obtain posterior distributions. Given posterior distributions it is 

straight forward to calculate mean and standard deviation of random-effects. I 

summarize the technical details of the estimation with Bayesian MCMC in 

chapter 5. In addition, this chapter discusses the alternative choices of prior 

distributions for random-effects and describes several tests which check the 

convergence of the algorithm. 

Table 4.3 provides the estimation results for the cross-classified credit 

scorecard specified in [4.1].  The second part of the table reports the estimation 

results for the classification-level models. Standard deviations of the varying-

intercepts are reported together with their 95% confidence intervals.   

The results confirm that there is a negative impact of income, use of 

banking checking and savings accounts, number of trade accounts and previous 

experience with a lender on the probability of default. It is also true that owner-

ship of real estate property decreases the riskiness.  
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Variable Estimate S.E. 
z-

statistics 

p-

value 

Income -0.031 0.006 -5.16 <0.001 

Enquiries 0.231 0.030 7.70 <0.001 

Bank -0.359 0.132 -2.71 0.007 

Age -0.015 0.012 -1.25 0.211 

Trade -0.206 0.035 -5.88 <0.001 

Past due trade lines 1.038 0.234 4.43 <0.001 

Delinquencies in the last 12 

months 0.100 0.062 1.61 0.107 

Credit experience with a lender -0.811 0.366 -2.21 0.027 

Major derogatory reports 0.400 0.148 2.70 0.006 

Minor derogatory reports 0.175 0.101 1.73 0.085 

Dependents 0.193 0.055 3.55 <0.001 

Professional -0.780 0.269 -2.88 0.005 

Military 0.109 0.349 0.31 0.775 

Own/rent -0.061 0.155 -0.52 0.603 

Revolving credits -0.017 0.012 3.29 <0.001 

Constant -1.937 0.354 5.47 <0.001 

Second-level model Estimate S.E. 
95% confidence 

interval 

Microenvironment     

Standard deviation  0.830 0.197 [0.475; 1.204] 

Intercept, 80% credible interval - - [-1.062; 1.062] 

Occupation    

Standard deviation 0.630 0.180 [0.304; 0.984] 

Intercept, 80% credible interval - - [-0.806; 0.806] 

Infrastructure    

Standard deviation 0.650 0.176 [0.332;       0.995] 

Intercept, 80% credible interval - - [-0.832; 0.832] 
 

Table 4.3. Estimation results for the cross-classified credit scoring model with 

random-effects of microenvironments, occupations and infrastructures. The 

standard deviations of the second-level residuals are reported with their 95% 

confidence intervals. 

 

 

At the same time, major and minor derogatory information has a 

significant and positive effect on the riskiness of individuals. A higher number of 

past due trade lines or delinquencies raises the probability of default.  Probability 

of default is smaller for high-skilled professionals compared to unskilled workers.  

It is evident that the estimated standard deviations of the second-level 

residuals are significantly larger than zero which confirms that the classification-
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specific intercepts vary across groups at the second-level of the hierarchy. 

Importantly, the 95% confidence intervals for these estimates do not include zero.   

Given the normality assumption I also calculate 80% credible intervals for 

the varying-intercepts. The credible interval for random-effects within 

occupations implies that 80% of the realizations of the occupation-specific effects 

in population are going to lie within the interval [-0.806; 0.806]. Similarly, I 

calculate credible intervals for infrastructure-specific and microenvironment-

specific effects which equal [-0.832; 0.832] and [-1.062; 1.062], correspondingly.  

In order to check the discriminatory power of the credit scoring model 

with a cross-classified structure I apply a ROC curve analysis and calculate 

several other accuracy measures. Figure 4.1 illustrates the ROC curve for the 

cross-classified scorecard I.  The upper and lower bounds on the graph represent 

the 95% pointwise confidence interval for the curve which are calculated 

according to Hilgers (1991).  Table 4.4 reports several accuracy measures derived 

from the ROC curve.   

 

 

Figure 4.1. ROC curve for the cross-classified score-

card I. 
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The area under the curve is 0.879 which is higher than the AUC value for 

the flexible credit scoring model in chapter 2 (scorecard 5). The Gini coefficient 

and the accuracy ratio are also increased. I test the difference in the AUC values 

between the cross-classified and a hierarchical scoring model by calculating the z-

statistics as described in the previous chapter. The p-value of this difference is 

low and the 95% confidence intervals for the AUC measures do not overlap. This 

implies that specifying a cross-classified structure improves the discriminatory 

power of the scorecard.   

 

ROC curve metrics   

Area under the ROC curve (�Y /*MIIZ)  0.879 

Standard error of AUC (bootstrap normal method)  0.009 

95% confidence interval  [0.861; 0.897] 

Gini coefficient  0.758 

Accuracy ratio  0.866 

Difference in AUC:   

∆�Y 1 �Y /*MII\ ] �Y ^  0.054 

z-statistics of ∆�Y   5.809 

p-value of ∆�Y   <0.001 
 

Table 4.4. The ROC curve metrics and the comparison of the AUC values between the 

cross-classified scorecard I and scorecard 5. 

 

 

On the next step I incorporate misclassification costs in the ROC curve 

analysis in order to compare the classification performance of the scorecards 

given asymmetric costs. In addition, I apply several alternative methods to com-

pute an optimal cut-off point. Figure 4.2 visualizes the performance criteria for 

different thresholds within the range [0; 1]. The graph illustrates the sensitivity 

and specificity curves, the correct classification rate and the Cohen’s kappa curve.  

Cohen's kappa coefficient is a statistical measure of inter-classifier agree-

ment for qualitative (categorical) items. It is generally thought to be a more ro-

bust measure than a simple percent agreement calculation since κ takes into 

account the agreement occurring by chance.  

Cohen's kappa measures the agreement between two classifiers by 

calculating the kappa coefficient k  as follows: 
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� 1
Pra�b ] Pr a�b
1 ] Pr a�b

, 

 

where ��a�b is the relative observed agreement among classifiers, and ��a�b is 

the hypothetical probability of a chance agreement (for details see Cohen (1960), 

Smeeton (1985)). In application to credit scoring ��a�b is the correct classification 

rate given a cut-off point and ��a�b is the sum of the joint probabilities 

 

��a�b 1 �cFIa�b · �e*��a�b C �cFIaT�b · �e*��aT�b, 

 

where �cFIa�b and  �cFIaT�b are the observed probabilities of default and non-

default ; �e*��a�b and �e*��aT�b are the predicted probabilities of default and 

non-default. If the prediction models are in complete agreement then κ = 1. If 

there is no agreement among the models’ predictions then κ ≤ 0.  

 

Figure 4.2. Classification performance criteria: sensitivity, specificity, correct 

classification rate and Cohen’s kappa curve. 

 

c(kappa)=0.27

c(fair)=0.105

c*=0.15

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
e

rf
o

rm
a

n
ce

 c
ri

te
ri

a

Cut-off point

Optimal cut-off points and performance criteria

Correct classification rate Cohen's kappa

Specificity Sensitivity



4.  A Cross-Classified Credit Scoring Model     96 

 

 

 

On the figure the Cohen’s kappa curve is illustrated by the green double 

line. It is evident that the best agreement between observed and predicted 

outcomes is achieved at the cut-off point  �:G""G 1 0.27.  

Table 4.5 illustrates several measures of the classification performance 

given the optimal threshold �:G""G on the kappa-curve and �? on the sensitivity 

curve. Given �:G""G 1 0.27 the cross-classified scoring model correctly forecasts 

158 of 355 true defaulters which yields a rather low sensitivity (44.5%).  

However, true negative rate and the rate of correct classifications are high. In 

addition, I evaluate the discriminatory power of a scorecard at the threshold  

�? 1 0.5  in order to compare the discriminatory power of the model at the kappa-

optimal point  �:G""G and at the cut-off   �?.  Setting a cut-off point at 0.5 indicates 

a very liberal way of accepting/rejecting applicants for a loan in retail banking. 

Given �? 1 0.5 the scorecard produces very high specificity (99.9%) which in turn 

leads a high overall accuracy rate of 93.3%. However, the rate of true positive 

classifications is low and equals 29.6%.  The classification performance of a 

scorecard at  �:G""G is superior to the performance at  �?  as shown by the kappa-

coefficient (0.5181 versus 0.4297). In application to retail banking, the cut-off 

point �?  can be viewed as the upper bound for a threshold for accept/reject 

decision.  

 

Cohen's kappa �:G""G 1 0.27 Cut-off point �? 1 0.5 

 
Classified   Classified 

 
True ND D Total ND D Total 

Non-default 3365 59 3424 3422 2 3424 

Default 197 158 355 250 105 355 

Total 3562 217 3779 3672 107 3779 

Sensitivity, % 44.5 
  

29.6 

Specificity, % 98.3 
  

99.9 

Correct classification rate, % 93.2 
  

93.3 

Cohen's kappa 0.518     0.429 
 

Table 4.5. Classification table for the �:G""G   and for the threshold   �?.  

 

 

 

The dashed orange curve on the graph presents the correct classification 

rate over all thresholds within the interval [0; 1].  I assume that the misclassifi-

cation cost of an incorrectly predicted non-defaulter is five times higher than the 
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cost of a falsely predicted defaulter. Then following Zweig and Campbell (1993) I 

calculate an optimal threshold for a accept/reject decision given asymmetric mis-

classification costs. The optimal cut-off point is indicated by the coloured circle on 

the dashed curve of correct classification rate. Table 4.6 presents the classifica-

tion table for the optimal cut-off point �i. Given �i 1 0.1525 the cross-classified 

scoring model properly predicts 3080 out of 3424 true negative outcomes which 

yields a rather high specificity (90%) and the correct classification rate (87.8%). 

The rate of true positive instances (sensitivity) is higher than at the threshold 

�:G""G and equals 66.5%.   

An alternative to the optimal cut-off point �i is a fair threshold which is 

illustrated by the empty circle on the sensitivity curve. This threshold is found on 

the intersection between sensitivity and specificity curves. Any thresholds above  

�PG0*  produce a higher true negative rate but a smaller true positive rate. 

Controversially, thresholds below  �PG0*  produce a higher true positive rate but a 

smaller true negative rate. Table 4.6 presents the classification table for the 

optimal and fair cut-off points. The results confirm that the threshold �&�
� 1 0.105  

is more conservative than the cut-off point  �i. Given �PG0* 1 0.105 the scorecard 

produces a higher rate of accurately predicted defaulters than at the optimal 

threshold �i. However, specificity is more than 10% smaller at  �PG0*  compared to 

�i. The overall rate of correct classifications is also smaller at the fair cut-off 

point than at the optimal threshold.  In retail banking, the fair cut-off point  �&�
� 

can be applied to set up a lower bound for an optimal threshold for an 

accept/reject decision.  

 

Optimal cut-off point c*=0.1525 Fair cut-off point: �PG0* 1 0.105 

Classified   Classified 

True ND D Total ND D Total 

Non-default 3080 344 3424 2737 687 3424 

Default 119 236 355 71 284 355 

Total 3199 580 3779 2808 971 3779 

Sensitivity,% 66.5 80.0 

Specificity,% 90.0 79.9 

Correct classification rate,% 87.8 80.0 

Cohen's kappa 0.4395     0.3372 
 

Table 4.6. Classification table for the optimal and fair cut-off points. The perfor-

mance criteria given the c*=0.1525 and �PG0* 1 0.105. 
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In summary, I calculate and discuss four alternative choices for an opti-

mal threshold for a accept/reject decision which range from a conservative �PG0* 

(moderate �i or �:G""G) to an liberal  �?. It is evident that given a cut-off point the  

classification performance of the scorecards varies considerably between these 

alternatives.   

In retail banking a lender can apply these methods to set up an optimal 

cut-off point which is applied in order to discriminate the population of borrowers 

into two classes: accepted and rejected applicants. Importantly, the choice of an 

optimal threshold should be guided by practical considerations within a financial 

institution. In general, lenders define a threshold for an application credit scoring 

based on their risk attitudes. A risk-averted creditor prefers to minimize losses 

given default. Therefore, he chooses the fair  �&�
� or optimal �i cut-off points 

which provide him a high sensitivity at the cost of low specificity.  A profit-maxi-

mizing lender chooses a threshold for a decision-making from the range between 

�:G""G  and  � 1 0.5. This guarantees him a high rate of correct classifications and 

a high true negative rate.   

 

 

 

4.2.2  Classification-level characteristics in the 

cross- classified credit scorecard 

 

 

 

In this subsection I introduce a new version of a cross-classified scoring 

model. This scorecard extends the previous model by including group-level 

characteristics at a higher level of the model hierarchy.   Group-level variables 

are included in the varying-intercept models within microenvironment, 

occupation and infrastructure classifications.  Accounting for classification-

specific characteristics improves the estimation and increases the accuracy of 

random-effects predictions. In addition, it allows exploring the impact of group-

level information on the probability of default. I combine living area descriptive 
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data with aggregated individual-level data in order to define group-level 

explanatory variables.  

The credit scoring model with group-level variables and varying-

intercepts is specified in [4.3]. I apply the same set of the explanatory variables 

as in the credit scorecard in [4.1]. Given group-level characteristics random-

intercepts within cross-classifications are modelled by themselves at the second-

level of the hierarchy. The varying-intercept models for microenvironment, 

occupation and infrastructure classifications are presented in [4.4]-[4.6]. 

 

 

��4'0 1 1670 , 	9, 	: , 	;< 1   =��
�>? @  AB C A0+/������0 C AD+E���	
�
��0 C AFG+:
���0 

C   AGH����0 C A,*�����0  C A"GI,�������� C A��;���
��00 

C   AJ* ���
�"*�K C ALG9#�$��0  C AL0+#
���0 C A��"��%������0 

C  A"*���&0  C    AL0;#
�
���'0 C AMN+()�0 C A*�K-�./*��0,� 

C  AF�*
	����0  C A940O
L0/*M�+K*, C A;40O

c//�"G,0M+ C A:40O
j+P*GI,* Q.       [4.3] 

 

         A940O
L0/*M�+K*, 1  kj+/����0+/ML�l C kcN+()�*�+,,9 C kmm�&�
���mL,9C	940O

L0/*M�+ .[4.4]                      

  A;40O
c//�"G,0M+ 1  k/M;;   ������;  C  kGH�  #���GH�; C k�!�7%; C 	;40O

M//�"G,0M+ .         [4.5] 

   A:40O
j+P*GI,*�/,�*� 1  kF�*  ���
�F�*n C k,* �����: C k��;���
��	��: C 	;40O

0+P*GI,* .   [4.6] 

  	940O
L0/*M�+K*,      ~    T a0, VL0/*M�+K*,

W b.               

   	:40O
M//�"G,0M+      ~    T U0, VM//�"G,0M+

W X.               

   	;40O
0+P*GI,*�/,     ~    T U0, V0+P*GI,*

W X.                                                                      [4.7] 

 

 

 The microenvironment-level model for the varying-intercept   A940O
L0/*M�+K*,  

contains information on the living area economic and demographic conditions and 

the area-specific residual  	940O
L0/*M�+K+*. The microenvironment-level variables are 

 ����0+/ML�,9 - per capita area income,  ()�%9 - the level of real estate wealth (per-

centage of families who own a house in a living area) and the share of African-

American residents in the living area of a borrower (�&�
���mL,9).   
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The occupation-specific intercept  A;40O
c//�"G,0M+

 explains exposure to occupa-

tional hazards given professional activity, working experience and age. The 

varying-intercept model contains three occupation-level characteristics and a 

random-term. The group-level variables are the share of college graduates 

( ������;), average age of borrowers (#���GH��b  and average working experience 

given an occupation (�7%��;).  The occupation-specific residual  	;40O
M//�"G,0M+

 explains 

changes in the probability over and above the population average value.  

The infrastructure-specific intercept  A:40O
j+P*GI,*�/,�*�

 captures the effect of 

shopping facilities in a living area on the probability of default.   The varying-

intercept model specifies three group-level variables which characterize 

borrowers’ credit worthiness within an infrastructure. The variables are  


	����4:O – average amount of the credit card burden per household member 

given an infrastructure, �����: – average number of currently active trade 

accounts in the last 12 months and  ���
��	��: – average number of 30-days 

delinquencies on credit obligations in the last 12 months.  

The model specification in [4.3] includes a population average inter-

cept  A0.  Therefore, the varying-intercept models for occupation, infrastructure 

and microenvironment classifications are constrained to have a zero mean.  

It is assumed that given the borrower-level and classification-level va-

riables the second-level residuals within microenvironments (	940O
L0/*M�+K*,), occupa-

tions (	:40O
M//�"G,0M+b and infrastructures (	;40O

0+P*GI,*
) are independently normally distri-

buted with mean 0 and variances  VL0/*M�+K*,
W , VM//�"G,0M+

W , V0+P*GI,*
W   as given in [4.7]. 

I apply Bayesian MCMC to estimate the cross-classified scoring model.  

Table 4.7 presents the estimation results for the individual-level explana-

tory variables and for the classification-level characteristics in the varying-inter-

cepts.  

It is evident that the population average effects of the individual-level 

variables are similar to the estimates from the previous scorecard.  Probability of 

default decreases if a borrower has previous experience with a lender, holds 

banking savings and checking accounts and owns a real estate property. 

Derogatory information in credit history has a significant positive impact on the 

riskiness of applicants for a loan.   
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Variable Estimate S.E. 
z-sta-

tistics 
p-value 

Income -0.031 0.007 -4.429 <0.001 

Enquiries 0.235 0.037 6.351 <0.001 

Bank -0.401 0.159 -2.522 0.011 

Age -0.021 0.010 -2.100 0.035 

Trade -0.206 0.038 -5.421 <0.001 

Past due trade lines 1.455 0.278 5.234 <0.001 

Delinquencies in the last 12 months 0.057 0.080 0.713 0.475 

Credit experience with a lender -0.922 0.430 -2.144 0.032 

Major derogatory reports 0.406 0.147 2.762 0.005 

Minor derogatory reports 0.189 0.102 1.853 0.063 

Dependents 0.231 0.066 3.500 <0.001 

Professional -0.769 0.260 -2.958 0.003 

Military 0.121 0.305 0.397 0.691 

Own/rent -0.109 0.154 -0.708 0.478 

Revolving credits 0.024 0.007 3.429 0.145 

Constant -2.920 1.031 -2.832 0.004 

Microenvironment-specific intercept 

model 
Estimate S.E 

95% confidence 

interval 

����0+/ML�l  -0.107 0.034 -0.056 -0.172 

()�*�+,,9  -0.106 0.024 -0.063 -0.150 

�&�
��� ] ����
���9 0.129 0.035 0.065 0.205 

SD microenvironment (intercept) 0.541 0.179 0.222 0.881 

Occupation-specific intercept model Estimate S.E 
95% confidence 

interval 

 ������; -0.137 0.048 -0.236 -0.041 

#���GH�;  0.108 0.036 0.053 0.189 

�7%;  -0.256 0.104 -0.460 -0.071 

SD occupation (intercept) 0.347 0.172 0.037 0.673 

Infrastructure-specific intercept 

model 
Estimate S.E. 

95% confidence 

interval 

�����: -1.082 0.209 -1.290 -0.511 


	����4:O 0.305 0.033 0.250 0.378 

���
��	��:  0.398 0.112 0.345 0.392 

SD infrastructure (intercept) 0.440 0.185 0.110 0.791 

 

Table 4.7. Estimation results for the cross-classified credit scoring model II. 

Estimated standard deviations of random-effects are reported together with 

their 95% confidence intervals.  
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The coefficient estimates of the microenvironment-intercept model imply 

that a thousand increase in the living area income decreases the probability by 

2.67%. A similar effect is found for the level of housing wealth in a residence 

area. The standard deviation of the random-term   	940O
L0/*M�+K*, is smaller than in 

the case of the credit scoring model without classification-level characteristics. 

This is intuitive as specifying group-level variables improves the estimation. The 

80% credible interval for the microenvironment-specific effects is [-0.69; 0.69].  

The estimation results for the infrastructure-level model show that the 

number of current active trade accounts has a negative impact on the probability. 

An increase in the amount of credit card burden (per household member) raises 

the probability by 7.6%. Additional delinquency leads to a 9.9% increase in the 

riskiness. The standard deviation of the infrastructure intercept is 0.44 on the 

logit scale. The 80% credible interval for the infrastructure-level residual equals  

[-0.56;0.56]. 

It should be mentioned that not all of the coefficients of the classification-

level variables are precisely estimated which not surprising is given the training 

data sample is not large enough. However, I keep reporting them in the credit 

scoring model.  I suggest, that economic significance of these variables is high 

and the information they incorporate is relevant for more efficient credit scoring. 

Observing a larger sample on credit histories of borrowers can resolve this 

problem and provide better inferences.   

Similarly to the previous model, I assess the predictive accuracy of the 

cross-classified scorecard with classification-level variables by applying a ROC 

curve analysis after estimation and by calculating other accuracy measures 

derived from the curve. In addition, I evaluate and compare several alternative 

values for an optimal threshold for an accept/reject decision.  Figure 4.3 

illustrates the ROC curve for the cross-classified scorecard 2. 

Table 4.8 reports the accuracy measures derived from the ROC curve.  

The area under the curve is 0.894. The difference in AUC values between the 

cross-classified scorecard II and scorecard 5 from chapter 2 is statistically 

significant with a very low p-value. Similarly, I compare the difference in AUC 

measures between the cross-classified scorecard I and scorecard II. The difference 

is small yielding a test result which is only significant at the 10% level.   
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Figure 4.3. ROC curve for the cross-classified 

scorecard with classification-level variables. 

 

 

Statistics   

Area under the ROC (�Y /*MIIZ)  0.894 

Standard error of AUC (bootstrap normal method)  0.009 

95% confidence interval  [0.876; 0.911] 

Gini coefficient  0.788 

Accuracy ratio  0.900 

Comparison of the areas under ROC curve   

1).    

∆�Y 1 �Y /*MIIp ] �Y ^  0.069 

z-statistics of ∆�Y   7.560 

p-value of ∆�Y   <0.001 

2).  

∆�Y 1 �Y /*MII\\ ] �Y /*MII\   0.015 

z-statistics of ∆�Y   1.601 

p-value of ∆�Y   0.101 
 

Table 4.8. ROC curve metrics and comparison of the AUC values between the cross-

classified scorecard II and scorecard 5 from chapter 2. 
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Next, I compare the classification performance of the scorecard at diffe-

rent cut-off points and compute an optimal threshold given an accuracy curve.  

Figure 4.4 illustrates sensitivity and specificity curves, correct classification and 

Cohen’s kappa coefficient curves.   

 

 

Figure 4.4. Classification performance criteria for the cross-classified 

scorecard II: sensitivity, specificity, correct classification rate and Cohen’s 

kappa coefficient.  

 

 

The highest Cohen’s kappa coefficient is reached at  �:G""G 1 0.265  as 

indicated by the empty triangle on the graph.  

Given �:G""G the cross-classified scorecard II produces a higher true posi-

tive rate than the scorecard I without group-level characteristics. However, the 

correct classification rates are practically the same. The Cohen’s coefficient at the 

cut-off point  ���%%�  is higher in the current case  which confirms that the cross-
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classified scorecard II provides a higher discriminatory power than the scorecard 

I. Table 4.9 compares the classification performance of the scorecards given �:G""G 

and  �? 1 0.5.  The overall predictive accuracy (or the correct classification rate) is 

higher at the liberal cut-off point  �? compared to the kappa-optimal  �:G""G. How-

ever, given  �:G""G  the credit scoring model II provides a higher true positive rate 

than given the cut-off point �?.  Specificity is higher at c1=0.5.  

 

Cohen's kappa ckappa=0.265 Cut-off point c=0.5 

 
Classified 

 
Classified 

 
True ND D Total ND D Total 

Non-default 3342 82 3424 3422 2 3424 

Default 184 171 355 238 117 355 

Total 3526 253 3779 3660 119 3779 

Sensitivity,% 48.2     33.0 

Specificity, % 97.6     99.9 

Correct classification rate,% 93.0     93.6 

Cohen's kappa 0.5233     0.4664 
 

Table 4.9. Classification tables for the Cohen’s kappa threshold and liberal cut-off 

point for probability of default.  

 

 

The optimal cut-off point for the correct classifications curve is illustrated 

by the coloured (red) circle on the graph. Table 4.10 shows that at the threshold 

c*=0.163 the credit scorecard II shows the best classification performance 

yielding a misclassification error of 11.2%. Given c* the true positive rate equals 

67.0% and the true negative rate equals 91.0%. Compared to the scorecard with-

out group-level characteristics, the overall accuracy rate and Cohen’s kappa at c* 

are increased.    

The intersection of sensitivity and specificity curves illustrates the opti-

mal threshold �PG0*. It is indicated by the empty circle on the graph. Given 

�PG0*=0.105 the cross-classified scoring model II provides a high classification rate 

of true positive outcomes (82%).  However, true negative rate and correct classifi-

cation rate are smaller than at the optimal cut-off point c*.  Comparing Cohen’s 

kappa coefficients reveals that the scorecard II outperforms scorecard I by 

showing better classification agreement between observed and forecasted out-

comes.  



4.  A Cross-Classified Credit Scoring Model     106 

 

 

 

In summary, I evaluate different predictive accuracy measures in order to 

compare the classification performance of the cross-classified scoring models. In 

addition, I apply several alternative methods to illustrate how to assess an 

optimal cut-off point for an accept/reject decision in retail banking. The results 

confirm that the cross-classified scorecard II outperforms the scorecard I by 

providing a higher discriminatory power.  

 

Optimal cut-off point c*=0.1630 Fair cut-off point: �PG0* 1 0.105 

  Classified 
 

Classified 
 

True ND D Total ND D Total 

Non-default 3117 307 3424 2762 662 3424 

Default 117 238 355 64 291 355 

Total 3234 545 3779 2826 953 3779 

Sensitivity,% 67.0     82.0 

Specificity,% 91.0     80.7 

Correct classification rate,% 88.8     80.8 

Cohen's kappa 0.4669     0.3557 
 

Table 4.10. Classification tables for the optimal and fair cut-off points.  

 

 

 

 

 

 

4.3    Goodness-of-fit and accuracy scores 

 

 

 

This section applies several postestimation diagnostic statistics in order 

to evaluate the goodness-of-fit of the estimated cross-classified scorecards. In ad-

dition, I apply several accuracy scores to check the forecasting performance. In 

particular, I compute and report deviance information criterion (DIC), logarith-

mic and spherical scores and Brier score. The logistic regression scorecard is used 

as a reference model for the between-models comparison.  

In multilevel modelling, deviance information criterion (DIC) is applied in 

order to select the best performing model among the range of models estimated 
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with Bayesian MCMC. In other words, the model with the smallest DIC is con-

sidered to be the model that would best predict a replicate dataset which has the 

same structure as the one currently observed. According to Spiegelhalter and 

Best (2002) DIC is calculated as follows: 

 

�� 1 �r C %s 1 �atub C 2%s, 

 

where �r is the expected measure of deviance  �r 1 �v4�atbO of how well the model 

fits the data. The deviance is defined as �atb 1 ]2 logU%a'|tbX, where ' are the 

data,  t are the unknown parameters of the scorecard and  %a'|tb is the 

likelihood function.  

The effective number of parameters of the model is given by  %s 1 �r ]

�atub, where tu is the expectation of  t. �r is the posterior mean of deviance and 

�atub is the deviance of the posterior means. Models are penalized by both the 

value of �r, which favors a good fit, but also (in common with AIC and BIC) by the 

effective number of parameters  %s. Since �r will decrease as the number of 

parameters in a model increases, the %� term compensates for this effect by fa-

vouring models with a smaller number of parameters. 

I apply DIC in order to assess the fit and compare the cross-classified 

scorecards and the logistic regression scoring model. Table 4.11 reports DIC, 

mean deviance and effective number of parameters. 

 

  
�r �atub %s  DIC 

Logistic scorecard 2080 2064 15.88 2095.9 

Scorecard I 1567 1430 137.1 1704.1 

Scorecard II 1479 1337 141.9 1621.9 
 

Table 4.11. Deviance information criterion, mean deviance and 

effective number of parameters. 

 

 

The results confirm that as the scoring models get more complicated, the 

mean deviance �r decreases (measure of fit) which makes sense. More elaborated 

structures provide a better fit to the data. The largest jump in the DIC values is 

found between the logistic scorecard and the scorecard I. This illustrates the im-

pact of a cross-classified structure application to a credit scoring model. The 
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scorecard II with three varying-intercepts and group-level characteristics pro-

vides the best fit.  

Next, I compute several accuracy scores in order to compare the forecas-

ting quality between the cross-classified scoring models and the logistic regres-

sion scorecard. Table 4.12 reports the logarithmic, spherical and Brier scores.  

 

Accuracy scores:   Logarithmic Spherical Brier 

Logistic scorecard -0.2685 0.9168 0.0771 

Scorecard I -0.1962 0.9415 0.0543 

Scorecard II 
 

-0.1922 0.9429 0.0532 

 

Table 4.12. Accuracy scores: comparison of brier score, logarithmic and 

spherical scores between cross-classified credit scorecards and logistic 

regression scoring model.   

 

In summary, it is evident that the accuracy scores provide the same 

ranking to the credit scorecards. The largest jump in the scores is found between 

the cross-classified scoring models and the logistic regression scorecard. The 

accuracy scores for the cross-classified scorecards are similar. However, it is 

evident that the cross-classified scorecard II provides a higher classification 

performance than the scorecard I. 
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5      Estimation techniques 

 

 

 

 

 

 

 

In this chapter I provide some technical details on the estimation 

approaches which are applied to fit the multilevel scorecards.  Since estimation 

techniques are not the main topic of this dissertation, I only give a basic overview 

of the methods used in the previous chapters.  

This thesis discusses two types of multilevel scoring models which cluster 

borrowers within hierarchical and cross-classified structures. For each structural 

type, I present several variations of scorecards which differ by the degree of com-

plexity and combine random-effects at different levels. Accordingly, I apply 

maximum likelihood to fit the hierarchical two-level models. Section 5.1 provides 

an overview of maximum likelihood estimation. The cross-classified scorecards 

are much more complex than the hierarchical scoring models. It is computa-

tionally more difficult to fit them by maximum likelihood. Therefore, I estimate 

the non-hierarchical credit scorecards with Bayesian Markov chain Monte Carlo.  

Section 5.2 discusses the main advantages of this estimation approach and ex-

plains the choices of prior distributions for random-effects and main model pa-

rameters. In addition, I report several diagnostics to check the convergence of the 

Monte Carlo algorithm.   

 

 

5.1    Maximum likelihood estimation 

 

 

The credit scorecards in chapter 2 are extensions of generalized linear 

models which are specified with a hierarchical two-level structure. In order to 
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estimate these models with maximum likelihood, random-effects at the second-

level have to be integrated out in the likelihood. This requires application of nu-

merical methods.  Following Rabe-Hesketh and Skrondal (2002) I apply adaptive 

Gauss-Hermite quadrature to approximate the marginal likelihood by numerical 

integration. 

As an example, I take a simple two-level logistic regression scorecard as 

given in [2.5] in order to illustrate the estimation with maximum likelihood and 

explain the main assumptions. The other hierarchical models can be estimated in 

a similar way. In reduced form the credit scoring model with random-intercept 

and a single predictor ��  can be written as follows 
 

 ����� � 1|�, �
 �   ��������  ����� � ����  �,                                   
         �����  �   �� � ��,�,  

     ��� ����� !"���!� !�#  $ �  1, . . , &.                                                                  [5.1] 
 

For a fixed microenvironment j, the marginal likelihood for the multilevel 

scorecard in [5.1] is the joint probability of all observed responses  ��  given the 
observed explanatory variable ��. Importantly, the dependent variables �� are 
conditionally independent given the second-level residual  ��,� and the predictor 
variable ��. Therefore, the conditional density function ����|�� , ��,�
  for 
microenvironment j, given the ��  , ��,� , is the product of the probabilities of 
individual responses as shown in [5.2].  The number of level-one units within a 

level-two microenvironment is given by  !�.  
 

����|��, ��,�
 �  ∏ ()* �+,-+. /0 - 12,,
30
�-()* �+,-+. /0 - 12,,
 .

42 
�5�                             [5.2] 

 

The last term in [5.2] is given by 

 

exp ��� � �� �� � ��,�
90
1 � exp ��� � �� �� � ��,�
   �  

:;
;;
< exp ��� � ���� � ��,�

1 � exp ��� � �� �� � ��,�
 , �� �� � 1

1
1 � exp ��� � �� �� � ��,�
 , �� �� � 0.

> 
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The random-intercept ��,�  is assumed to follow a normal distribution with 
mean 0 and variance ?1@.  The unconditional density ����  |��
  for microenviron-
ment j is the product of the conditional density and the distribution function for 

the random-effect  ����,�).  
 

����|��
 � A ����|��  , ��
  ����,��B��,�.                                            [5.3] 
 

The integral in [5.3] does not have a closed form solution which requires 

application of numerical approximation techniques. 

Assuming that microenvironments are independent, the marginal 

likelihood of all responses for all microenvironments can be written as the 

product of unconditional densities as shown in [5.4].  The marginal likelihood is a 

function of the parameters  ��,  �� and ?1@.  The maximum likelihood estimates of 
��,  �� and ?1@ are the values that jointly maximize  ����, ��, ?1@
. 

 

 ����, ��, ?1@
 � ∏ A����|��  , ��
  ����,��C�5� B��,�.                          [5.4] 

 

The Gauss-Hermite quadrature assumes that the integral over the 

random-effect in [5.3] can be approximated by the sum of R terms with   D  
substituted for the ��,�  and the normal density replaced by a weight  ED  for the r-
th term for   � � 1,…G. 

 

����|��
 H ∑ ����|��, ��,� �  D
JD5� ED .                                         [5.5] 

 

The approximation in [5.5] replaces the continuous density for the 

random-effect  ��,� by a discrete distribution with R possible values of  ��,� . This 
means that increasing the number of integration points R helps to improve the 

approximation.  

The adaptive quadrature is an extension of the standard Gauss-Hermite 

quadrature which allows accounting for situations where the number of 

observations within groups is large or intra-class correlations are very high. I 

refer to Rabe-Hesketh, Skrondal and Pickles (2002, 2005) for a more detailed 

description of the adaptive quadrature approach.  
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The adaptive quadrature improves approximation by applying some 

adjustments of the location  D . Similar to the regular quadrature, in order to 
maximize the likelihood the adaptive quadrature starts with some initial values 

for the parameters and then updates the parameters until the likelihood is 

maximized.  

In summary, Gaussian quadrature shows the best performance if second-

level groups are small and the intra-class correlation is not too high. In the 

multilevel models with many random-effects one has to use a large number of 

quadrature points in order to get a good approximation. Adaptive quadrature 

works much better than regular quadrature. In particular, it is suitable for the 

case of a non-normal density of random-effects.  

The alternatives to the Gauss-Hermite quadrature are the iterative 

generalized least squares (IGLS) or reweighted iterative generalized least 

squares (RIGLS) combined with marginal quasi-likelihood methods (MQL) or 

with penalized quasi-likelihood (PQL). Both, the MQL and PQL procedures use a 

linearization method based on a Taylor series expansion which transforms a 

discrete response model to a continuous response model. In this thesis I apply 

these estimation approaches to the scorecards fitted in MLwiN in order to 

provide the graphical illustration of random-effects in chapter 3. I refer to 

Goldstein [2003] for a more detailed description of MQL (PQL) approaches. 

 

 

 

 

5.2   Bayesian inference with MCMC 

 

 

 

 

This section provides a basic summary of the estimation with Bayesian 

Markov chain Monte Carlo. The cross-classified scoring models in chapter 4 are 

more complex than hierarchical   scorecards. They contain many random-effects 

and group-level variables at different levels of the hierarchy. Therefore, I apply 
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Bayesian MCMC to fit the non-hierarchical credit scorecards.  More technical 

details about the estimation procedure can be found in Lunn, Thomas, Best and 

Spiegelhalter [2000].  

There are two major reasons why I choose Bayesian MCMC for estimating 

cross-classified scoring models. First, the main advantage of this method over 

other estimation approaches is the flexibility of modelling complex structures 

which include random-effects at different levels.  In addition, Bayesian MCMC is 

intuitive in the case of a multilevel scorecard because it allows incorporating 

uncertainty about microenvironment-specific effects. The main difference from 

the classical statistical theory implies that some prior knowledge about the 

unknown model parameters (random-variables, standard deviations) can be used. 

Each parameter in the model is assigned with a prior probability distribution. 

Prior distributions express ex-ante believes about the parameters before the 

knowledge on the observed data is added.  

The second advantage of the Bayesian approach is computational 

efficiency. Bayesian MCMC performs better and produces more accurate results 

than maximum likelihood approaches in the case of non-hierarchical models.  

The basic idea of the Bayesian approach imposes that combining prior 

knowledge and the observed data it is possible to make statistical inference about the 

posterior distribution of unknown parameters given the data. The posterior distribution 

is viewed as the target distribution from which the random-effects are drawn. In the 

case of multilevel credit scoring models the main interest lies in making inferences 

about the population values of random-effects.  

In application to credit scoring posterior distributions of random-effects are cal-

culated by combining historical credit history data on borrowers and some knowledge 

about their prior distributions.  In mathematical terms, the Bayes theorem states that 

the posterior distribution K�L|�
  of scorecard parameters  L � ��, �, ?1� given the ob-

served data � can be written in the form presented in [5.7], where K�L
 is the prior 

distribution and K��|L
 is the likelihood. This implies that the posterior distribution is 

proportional to the likelihood  K��|L
  multiplied by the prior distribution K�L
.  

 

 K�L|�
 � M�9|N
 M�N

M�9
   O  K��|L
 K�L
.                                          [5.7] 

 

The general idea of the MCMC algorithm is to generate samples from the 

conditional posterior distribution of all unknown parameters in the model. Then 
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these samples are used to calculate point and interval estimates of the 

parameters of interest (Metropolis and Ulam (1949)). WinBugs uses three 

different sampling algorithms to simulate a Markov chain with the correct 

stationary distribution. I apply Metropolis-Hasting (MH) sampling to fit the 

scorecards in chapter 4.  

The MH algorithm generates values of L, the parameter of interest, from 
a proposal distribution and corrects these values so that the draws are actually 

simulating from the posterior distribution  K�L|�
. The proposal distribution is 
generally dependent on the last value of L drawn but independent of all other 
previous values of L (Markov property). The method works by generating new 
values at each time step from the current proposal distribution but only accepting 

the values if they meet a criterion. In this way the estimates of L are improved at 
each time step and the Markov chain reaches its equilibrium or stationary 

distribution, which by construction is the posterior distribution of interest.  

The MH sampling algorithm for an unknown parameter L is as follows: 
 

1. For each time step t sample a point from the current 

proposal distribution  KP�LQ|L�P��

.  
2. Calculate the acceptance probability RP � min �1, �P
  given 

the posterior ratio �P  defined as  
 

�P �  M�NQ|9
/MW�NQXN�WY.
�
M�N�WY.
|9
/MW�N�WY.
XNQ�. 

 

3. Accept the new value L � LQ with probability RP , otherwise 
let  L�P
 � L�P��
. 

 

The marginal distribution of L approaches the conditional posterior of 
interest as the number of iterations increases.  WinBugs utilizes a random-walk 

proposal distribution (normal distribution) centred at the current value of the 

parameter, L�P��
. Ideally, the MH algorithm accepts the candidate in 40% to 50% 
of the iterations. 
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5.2.1    Prior distributions 

 

 

The specification of prior distributions is important in Bayesian statistics 

since it influences posterior inference. Generally, if there is a strong belief of 

random-effects distribution in the credit scoring models then it would be possible 

to determine particular (informative) prior distributions for them. In this case, 

random-effects are assigned to have very small variances for unknown random-

effects which implies precise prior knowledge about their distributions.  

The credit scoring models I introduce in this dissertation have never been 

explored in credit scoring. Accordingly, there is no prior knowledge available 

about parameters’ distributions from previous studies or related work. Therefore, 

I choose and specify prior distributions based on the information from similar 

studies on multilevel modelling in sociology and health economics (Browne 

(2009), Bellanger and Zeynep (2008), Gelman and Hill (2007)).  

In the case of the cross-classified scoring models, I assign normal and 

multivariate normal prior distributions for random-effects within occupations, 

microenvironments or infrastructures. These prior distributions are non-

informative which means that they do not put any restrictions on posterior 

distributions.  

Importantly, the precision of random-effects predictions crucially depends 

on the choice of proper prior distributions for the scorecard variance parameters. 

Therefore, in order to make better inferences I estimate the models by specifying 

two types of prior distributions for the standard deviations (?12Z�[D\]4^�D\4Z]4P 

, ?1_\[[1M`P�\4 ,  ?1a�4bD`cPD1[P1D]) of the random-effects.  The choices are noninformative 
and weakly informative prior distributions.  

Given the two types of prior the credit scorecards are estimated one by one and 

then I compare the outcome results and random effects predictions.  

 A noninformative prior on a variance parameter ? means that a prior distribu-

tion for it is non-restrictive and allows the data to speak for themselves. There are quite 

a few authors who considered using noninformative prior distributions in their applied 

research including a proper uniform density on ?1 (Gelman (2004, 2006)) or inverse 

Gamma distribution �K�?�
~ �!". ef��f�0.001,0.001

 as described by Spiegelhalter et 

al. (1994, 2003). In the thesis I follow Gelman (2003, 2007) and use a uniform prior 

distribution on ?1  which has a finite integral near ?1 � 0. The uniform density on ?1  is 
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equivalent K�?@
 O ?1�� giving an inverse-g@ density with -1 degrees of freedom. This 

density can also be interpreted as a limit of the half-t family on ?1  where the scale 

approaches ∞.   

The main benefit of using uniform prior distributions for ?1 is that it implies that 

the posterior distribution is the same as the likelihood function. Accordingly, the 

standard deviations of the cross-classifications of credit scorecards in chapter 4 are 

specified to have independent uniform prior distributions 

 

?12Z�[D\]4^�D\4Z]4P  ~  �!����� h0, 1ij,  
            ?1_\[[1M`P�\4 ~  �!����� k0, �lm, 

       ?1a�4bD`cPD1[P1D]  ~  �!����� k0, �lm, 
 

where    
�
l � n is the precision which equals the inverse variance,  n � �

op  ( 

for details Spiegelhalter et al. (1997)). The commonly used value for i is 0.01. 
The second choice of prior distribution for the standard deviation of 

random-effects is a weakly informative. This prior distribution is a reasonable 

alternative to the noninformative prior which implies that some prior knowledge 

is available. The main advantage of weakly informative priors over 

noninformative is that the former helps to restrict  ?1  from very large values. In 
addition, assigning weakly informative priors helps to speed up the estimation as 

the algorithm reaches the convergence faster. I refer to Jakulin and Gelman 

(2008) for a more detailed description.   

In the case of the cross-classified credit scorecards weakly informative 

prior distributions for the standard deviations ?1Z�[D\]4^�D\4Z]4P , ?1\[[1M`P�\4 , 
?1�4bD`cPD1[P1D] are assigned to a class of half-t distributions. These distributions are 
half-Cauchy with scale parameter 25.  

In summary, I found that the iteration results for the variance parame-

ters in the case of noninformative and weakly informative priors are similar. 

However, the MCMC algorithm converges much faster when weakly informative 

priors are specified. In chapter 4 I report the empirical results for the scorecards 

which are assigned with weakly informative priors. 
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5.2.2    Initial values  

 

 

 

I fit the cross-classified scorecards in WinBugs (Lunn, Thomas, Best, and 

Spiegelhalter, D. (2000)). To start a simulation initial values for all stochastic 

nodes and parameters have to be defined. These values are the starting points for 

Markov chains which are required in order to start simulating samples from a 

target posterior distribution. In general, there are two choices for initial values. 

The first one is to generate starting points randomly. The second choice is to 

supply initial values. I apply the second alternative because randomly assigned 

initial values do not work well in the case of complex models with many random 

effects.  

In order to get starting values for the cross-classified credit scoring 

models I independently estimate three multilevel models for each classification in 

Stata. These scorecards cluster borrowers within two-level structures within 

microenvironments, occupations and infrastructures. Then, I predict occupation, 

microenvironment and infrastructure-specific effects for each scorecard and apply 

these estimates and predictions as initial values for the chains.  

I keep Bayesian MCMC running for a long time in order to obtain reliable 

results. The first 200 000 iterations are discarded from the estimation as a burn-

in sample. Then, the scorecards are run for 500 000 additional iterations.  

 

 

 

5.2.3   Convergence check 

 

 

 

Convergence implies that the MCMC algorithm starting with some initial 

values for the chains has reached a common equilibrium distribution. The 

equilibrium distribution is the true posterior distribution of the random-effects. 

Accordingly, monitoring convergence is essential for obtaining accurate and 
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reliable results. After the model has converged, samples from the posterior 

distributions are used to summarize the parameters’ estimates.  

There are many different approaches and rules applied in the literature to 

check if convergence is reached (Carlin and Cowles (1996)). In this dissertation I 

apply several convergence diagnostics methods. This subsection provides a short 

summary and graphically illustrates the results.    

The simplest way to check convergence is to monitor the Monte Carlo 

error. Small values of this error indicate that the parameter of interest is 

calculated with certain precision. The MC error shows the variability of the 

estimate due to the simulation and it should be low. According to Geyer (1992) 

and Carlin and Luis (2000) there are two most common ways to estimate MC 

error: the batch mean method and the window estimator method. I compute the 

MC error by applying the batch mean method to the cross-classified credit 

scoring models.  

The batch means method partitions the iteration output sample into K 

batches (usually K=30). Both the number of batches K and the sample size of 

each batch  � � C1Zq]D \b�P]D`P�\4c
r   must be sufficiently large in order to estimate 

the variance consistently (Carlin and Louis (2000)). To calculate the MC error of 

the posterior mean for each parameter I first calculate each batch mean and then 

the overall sample mean. The MC error is then obtained by finding the standard 

deviation of the batch means. The batch mean estimator of MC error is discussed 

in more detail by Hastings (1970), Geyer (1992), Roberts (1996), and Givens and 

Hoeting (2005).  

A second way to check convergence is to examine the trace plots. The trace 

plots are the plots of iterations versus the generated values. If all values are 

within a zone without strong periodicities and tendencies, this implies that the 

convergence is reached. In addition, I run two chains in parallel in order to 

compare how different chains mix.  The chains are assigned to have different 

initial values. The convergence is reached when the trace lines for different 

chains mix and cross.  
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a). Trace plots for the first 5000 of itera-

tions for the intercept and standard de-

viation of microenvironment-specific 

effects. Convergence is not reached. 

b). Trace plots for the following 220.000 

iterations for the intercept and standard 

deviation of microenvironment-specific 

effects. Convergence is reached.   

 

Figure 5.1 Diagnostics plots: trace plots. 

 

 

I choose two parameters from the credit scorecard specified in [5.1] to 

illustrate the convergence of the MCMC algorithm using the trace plots.  Figure 

5.1 illustrates the trace plots for the population average intercept and the 

standard deviation of microenvironment-specific effects.  The left hand side plots 

present the results for the first 5 000 iterations when the chains are far away 

from convergence. The right hand side plots on Figure 5.1 b) illustrate the case 

when the algorithm has reached convergence. It is evident, that in this case the 

chains mix well. Similarly, I assess convergence for the other scorecards’ 

parameters.  

The third possibility to monitor convergence is to apply statistical 

diagnostics tests. The most popular in the literature are Gelman-Rubin test and 

Raftery-Lewis diagnostics. In this thesis I follow Brooks and Gelman (1998) and 

apply Gelman-Rubin diagnostics to monitor convergence. Figure 5.2 visualizes 

Gelman-Rubin diagnostics for the microenvironment-specific intercept and 

standard deviation of random-effects. 
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a).  Gelman-Rubin diagnostics for the in-

tercept and standard deviation of ran-

dom- effects. Convergence is not reached.   

 

b). Gelman-Rubin diagnostics for the 

intercept and standard deviation of 

microenvironment-specific effects. 

Convergence is reached.  

Figure 5.2. Gelman-Rubin diagnostics.  

 

 

The basic idea of this diagnostics is to generate multiple chains (m) 

starting at different initial values. Then, the convergence is assessed by 

comparing within-chain and between-chain variability over the second half of m 

chains. The within-chain variance is  

 

s � �
Z∑ #�@Z�5� , 

 

where  #�@ � �
4��∑ �L�� t Luv�@4�5�   is the variance of the j-th chain and W is the mean 

of the variances of each chain.  

The between chain variance is the variance of the chain means multiplied 

by n because each chain is based on n iterations: 

 

w � 4
Z��∑ kL$xxxtLym2Z�5� , 
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where L{ � �
Z∑ LuvZ�5�  is the mean over all chains. The between and within chain 

variances are applied to compute the variance of the stationary distribution as a 

weighted average: 

 

|f�} �L
 � k1 t �
4ms � �

4w. 
 

Gelman-Rubin diagnostics  G~ � ��`D} �N

�   is a potential scale reduction 

factor which should tend to 1 as convergence is approached. It is assumed that 

the convergence is reached if 1<R < 1.05. On the graphs G~  is indicated by the red 
line.  

Figure 5.2 a) shows the situation when the algorithm is far away from 

convergence. The red line for R does not fall within the interval [1; 1.05]. Figure 

5.2 b) visualizes the situation when the convergence is reached.  

In summary, this chapter provides a basic overview of the estimation 

approaches applied to fit the credit scoring models. I apply maximum likelihood 

to the hierarchical scorecards in chapter 2 and Bayesian MCMC to the cross-

classified scoring models in chapter 4. The convergence of the Monte Carlo 

algorithm is checked by using several techniques including Gelman-Rubin 

diagnostics.  
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Conclusion 

 

 

 

 

 

 

This dissertation introduces a new type of credit scoring model which 

specifies a multilevel structure to the data. It is shown that the multilevel 

scorecards outperform conventional scoring models and can be considered as 

improved alternatives to the standard scoring techniques. Similarly to the 

logistic or probit regression a multilevel scoring model assesses credit worthiness 

of applicants for a loan by forecasting their probability of default. In addition, 

this thesis proposes a new way of data clustering for a multilevel structure which 

is more intuitive and relevant for more efficient credit scoring. I introduce 

different specifications of the multilevel scorecards which are developed using 

hierarchical and non-hierarchical data structures. These scorecards vary by the 

degree of complexity and are designed to answer different questions in 

application credit scoring.  The main goal in credit scoring is to define factors 

which influence riskiness of individuals who apply for a bank loan. In this case 

the multilevel structure is advantageous because it allows accounting for 

unobserved characteristics which impact credit riskiness of borrowers 

additionally to the observed characteristics such as income, marital status or 

credit history. Including unobserved determinants of default in a credit scoring 

model helps to increase predictive accuracy and improves a model’s performance.   

Hierarchical credit scorecards are assigned with a two-level structure. 

This structure treats borrowers as level-one units which are nested within level-

two units – microenvironments. Each microenvironment represents a living area 

of a customer with a particular combination of socio-economic and demographic 

conditions. The empirical results confirm that microenvironment-specific effects 

are heterogeneous across residence areas with dissimilar economic conditions. 

These effects are random in the model. They capture the impact of area-specific 

determinants of credit riskiness additionally to the observed personal charac-

teristics.  
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Importantly, clustering within microenvironments differs from a simple 

geographical grouping. The main advantage of the former structure is that 

microenvironments are allowed to include individuals from different cities or 

regions if their living area conditions are essentially the same.  This implies that 

area-specific conditions influence probability of default but not a geographical 

location itself. Geographical grouping can be misleading if living areas are 

similar in terms of socio-economic conditions but have different locations. 

 The second type of multilevel structure this dissertation applies to a 

credit scoring model is a non-hierarchical structure. It nests applicants within 

different classifications according to the similarities in particular characteristics 

of their occupational activities, living area conditions and infrastructure of 

shopping facilities in their residence areas. Specifying a cross-classified structure 

to the credit history data allows exploring the impact of occupation-specific, 

infrastructure-specific and area-specific characteristics on the riskiness and 

significantly improves discriminatory power of the scorecards.  

Empirical part of the thesis applies maximum likelihood and Bayesian 

Markov chain Monte Carlo to estimate various specifications of the credit scoring 

models. After estimation I use a ROC curve analysis in order to assess predictive 

accuracy of the scoring regressions and evaluate models’ performance at the 

particular cut-off points for probability of default. In addition to the standard 

ROC curve metrics, several other measures of classification performance are 

calculated. These measures include a partial ROC area, Gini coefficient, accuracy 

ratio, correct classification rates and forecasting accuracy scores (Brier, 

logarithmic and spherical). A partial area under the ROC curve assesses 

discrimination quality of the scorecards over a region of the ROC curve between 

two cut-off points. I perform a cost-benefit analysis in order to account for the 

asymmetric costs associated with falsely predicted positive and negative 

outcomes.  

Chapter 3 concludes the presentation estimation results for the multilevel 

scorecards with a two-level hierarchical structure. In addition, it compares the 

multilevel scoring regressions with the logistic scorecard and with the bivariate 

probit model discussed by W. Greene (1992). The comparison results confirm that 

the multilevel scorecards outperform conventional scoring techniques (logistic, 

probit) and produce more accurate forecasts of probability of default. I check 



Conclusion      124 

 

goodness-of-fit of the estimated credit scorecards by applying various information 

criteria (AIC, BIC and DIC).  

Complementary to the general accuracy metrics chapter 4 evaluates and 

compares classification performance between the cross-classified scorecards by 

evaluating discriminatory power at optimal threshold, fair cut-off point and the 

kappa-optimal threshold.  

To emphasize the role of the microenvironment-specific, occupation-

specific and infrastructure-specific effects I provide the graphical illustration of 

the fitted models results in chapter 3 and 4. In particular, visualizing second-

level residuals for various microenvironments allows clarifying the differences 

between area-specific random-effects within poor and rich regions. It is 

investigated that socio-demographic characteristics of microenvironments such as 

area income or housing wealth have a significant impact on probability of default 

and credit worthiness of borrowers. 
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Appendix IAppendix IAppendix IAppendix I 

 

 

 

 

Default equation is a latent regression: ��
� � ���� � 
� , where dependent 

variable might be indentified with the ‘propensity to default’ and �� are the 

explanatory variables.  If  ��
�  is sufficiently large relative to the attributes, that is, if the 

individual is in trouble enough, they default. Formaly,   

 

�� � 1 if ��
� � 0 and 0 otherwise. 

 

The probabilty of default given variables is 

 

�� � �������|���. 

 

Assuming that 
�  is normally distributed with mean zero and variance 1, the 

default probahilty is  

 

�� � �������
� � 0 |��� � �����
� � �

���|��� � Φ��
����, 

 

where Φ������ is the standard normal cumulative distribution function. The 

classification rule is: 

 

Predict  �� � 1  if Φ������ � �
�, 

 

where �� is a threshold value chosen by the analist.  

The quantity ultimately of interest here is the probabilty of default that would 

apply , if the individual were issued a credit, which is denoted by ������ �

1 |� � 1, ��, where C=1 means an application is accepted and C=0 means it is rejected. 

The default probability model that accoubts for the sample selection is 

constructed using bivariate probit regression. The structural equations are  
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Default equation:      �� � �
��� � 
� ,       �� � 1 if  ��

� � 0, and 0 otherwise. 

Acceptance equation:       ��
� � ���� � ��,       �� � 1 if  ��

� � 0,  and 0 otherwise. 

�� and  �� are only observed if �� � 1 

�� and  �� are observed for all applicants. 

 

Selectivity:                                    �
����~ � 0, 0, 1, !"#�. 

 

The vector of explanatory variables, ��, are the factors used in the approval 

decision. The probabilty of interest is the probability of default given that a loan is 

accepted, which is  

 

������� � 1|�� � 1� �
Φ%��

���, �
��� , !�

Φ������
, 

 

where Φ is the bivariate normal cumulative probabilty. If ! � 0, the selection 

is of no consiquence, and the unconditional model of probabilty is appropriate. 

Estimated acceptance equation joint with probahilty of default is given in 

Table A1.  

Table A1.  Probit model with sample selection              

 

Number of obs      =     13444:  

Censored/Uncensored obs  =  2945/ 10499 

Log likelihood =  -7312.57                    

Wald chi2(23)      =    401.73 

Prob > chi2        =    0.0000 

 
Default equation (conditional) 

Coefficien

t Std. Err. z P>z [95% Conf.interval] 

Age -0.0080 0.0033 -2.44 0.0150 -0.0144 -0.0016 

Acadmos 0.0007 0.0004 1.86 0.0640 0.0000 0.0015 

Adepcnt 0.0378 0.0269 1.40 0.1610 -0.0150 0.0906 

Aempmos 0.0007 0.0004 1.76 0.0780 -0.0001 0.0014 

Majordrg -0.1451 0.0522 -2.78 0.0050 -0.2474 -0.0427 

Minordrg 0.1105 0.0360 3.07 0.0020 0.0400 0.1810 

Ownrent -0.0167 0.0544 -0.31 0.7590 -0.1234 0.0900 

Apadmos 0.0005 0.0003 1.95 0.0520 0.0000 0.0010 

Amamind -0.0071 0.0921 -0.08 0.9380 -0.1877 0.1735 

Income -0.0093 0.0025 -3.68 <0.001 -0.0143 -0.0043 

Selfempl7 -0.0766 0.1073 -0.71 0.4760 -0.2869 0.1338 

Tradacct 0.0160 0.0052 3.08 0.0020 0.0058 0.0262 
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Incper 0.0011 0.0028 0.39 0.696 -0.0044 0.0067 

Exp_inc -0.4021 0.2307 -1.74 0.0810 -0.8543 0.0502 

Cptopnb 0.0105 0.0075 1.41 0.1590 -0.0041 0.0251 

Cptopng -0.1062 0.0171 -6.21 <0.0001 -0.1396 -0.0727 

Cpt30c 0.0978 0.0885 1.11 0.2690 -0.0756 0.2712 

Cptf30 0.0392 0.0219 1.79 0.0730 -0.0037 0.0820 

Cptavrv 0.0045 0.0026 1.72 0.0860 -0.0006 0.0097 

Cburden 0.0024 0.0011 2.19 0.0280 0.0003 0.0045 

Constant -1.4116 0.1252 -11.27 <0.0001 -1.6570 -1.1662 

Acceptance equation  

Age -0.0021 0.0030 -0.70 0.4850 -0.0081 0.0038 

Acadmos 0.0018 0.0005 3.76 <0.0001 0.0009 0.0028 

Adepcnt -0.0393 0.0284 -1.38 0.1660 -0.0949 0.0164 

Aempmos -0.0002 0.0004 -0.54 0.5890 -0.0010 0.0006 

Majordrg -0.7427 0.0361 -20.55 <0.0001 -0.8135 -0.6718 

Minordrg -0.0104 0.0376 -0.28 0.7820 -0.0841 0.0633 

Qwnrent 0.0497 0.0566 0.88 0.3790 -0.0612 0.1606 

Apadmos 0.0001 0.0003 0.43 0.6680 -0.0004 0.0006 

Amamind 0.1173 0.1120 1.05 0.2950 -0.1022 0.3369 

Income 0.0103 0.0030 3.38 0.0010 0.0044 0.0163 

Selfempl7 -0.4068 0.0945 -4.30 <0.0001 -0.5920 -0.2215 

Tradacct 0.0994 0.0087 11.45 <0.0001 0.0824 0.1164 

Incper 0.0019 0.0034 0.56 0.5770 -0.0047 0.0086 

Cptopnb -0.0287 0.0095 -3.01 0.0030 -0.0473 -0.0100 

Cptopng 0.0378 0.0185 2.05 0.0400 0.0016 0.0740 

Cpt30c -0.3130 0.0839 -3.73 <0.0001 -0.4775 -0.1485 

Cptf30 -0.0898 0.0188 -4.78 <0.0001 -0.1267 -0.0530 

Cptavrv 0.0059 0.0033 1.79 0.0730 -0.0005 0.0123 

Cburden -0.0015 0.0007 -2.16 0.0310 -0.0028 -0.0001 

Banksav -0.4709 0.0907 -5.19 <0.0001 -0.6486 -0.2931 

Bankboth 0.4658 0.0474 9.8200 <0.0001 0.3728 0.5587 

Credmajr 0.3147 0.0489 6.4400 <0.0001 0.2189 0.4105 

Acbinq -0.1647 0.0109 -15.01 <0.0001 -0.1863 -0.1432 

Constant -1.1215 0.1198 -9.35 <0.0001 -1.3565 -0.8865 

/athrho 

0.591927

1 0.07961 7.43 <0.0001 0.4358 0.7479 

rho 

0.531280

2 0.05713     0.4102 0.6333 

               **Wald test of indep. eqns. (rho = 0): chi2(1) =    55.27   Prob > chi2 = 0.0000 
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Appendix IIAppendix IIAppendix IIAppendix II    

  Default 
Add. 

Income 

Sav 

acc 

Banking 

sav+chec 
Age 

Other 

credit 

Depepn

dents 

Profes

sional 

Milita

ry 

Cleric

al 
Sales 

Selfempl

oyed 

Default 1.000 

           
Additional Income 0.013 1.000 

          
Savings account 0.035 -0.033 1.000 

         Banking savings and 

checking -0.044 -0.015 -0.229 1.000 

        
Age -0.059 -0.020 -0.043 0.006 1.000 

       
Other credit -0.041 -0.002 -0.020 0.005 -0.007 1.000 

      
Dependents -0.006 0.003 -0.036 0.005 0.257 -0.002 1.000 

     
Professional -0.041 -0.010 -0.010 -0.008 -0.039 0.020 -0.073 1.000 

    
Military 0.043 0.060 -0.001 0.028 -0.067 -0.001 0.031 -0.053 1.000 

   
Clerical 0.037 0.013 0.038 0.022 -0.050 -0.027 -0.100 -0.111 -0.041 1.000 

  
Sales -0.008 0.003 -0.018 -0.009 -0.063 0.002 -0.035 -0.113 -0.042 -0.089 1.000 

 
Selfemployed -0.011 0.008 -0.020 -0.012 0.122 -0.013 0.055 -0.057 -0.033 -0.047 -0.032 1.000 

Major DR 0.023 -0.013 -0.024 0.032 0.099 0.011 0.061 -0.004 -0.028 -0.030 0.015 0.020 

Minor DR 0.036 -0.042 -0.029 -0.015 0.093 -0.019 0.078 0.009 -0.027 -0.029 0.011 0.005 

Own/rent -0.063 -0.029 -0.068 0.045 0.394 0.031 0.141 -0.045 -0.069 -0.077 0.002 0.087 

Address/months 0.026 -0.073 0.040 0.000 0.000 -0.020 -0.111 -0.010 -0.027 0.009 0.004 0.012 

Income -0.113 -0.003 -0.050 -0.003 0.317 0.099 0.122 0.024 -0.073 -0.154 -0.001 0.146 

Trade accounts -0.069 0.032 -0.053 0.013 0.222 0.110 0.140 -0.025 -0.048 -0.039 0.018 0.033 

Open active TA -0.085 0.089 -0.058 -0.002 0.215 0.113 0.128 0.000 -0.014 -0.046 0.015 0.021 

Trade lines -0.130 0.038 -0.066 0.009 0.261 0.104 0.154 0.008 -0.040 -0.047 0.025 0.019 
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Delinquencies 0.077 0.006 -0.011 -0.019 0.020 0.003 0.017 0.004 0.007 -0.009 0.015 -0.013 

Past due 0.068 -0.023 -0.005 -0.042 0.054 -0.025 0.045 0.018 -0.016 -0.008 0.004 -0.020 

Average rev credit 0.019 -0.023 0.003 -0.045 0.093 0.072 0.080 0.005 -0.004 -0.022 -0.006 0.028 

Credit burden 0.137 -0.004 0.036 -0.072 -0.111 -0.028 -0.022 -0.018 0.026 0.035 0.028 -0.023 

BuyPower Index -0.010 0.031 0.018 -0.001 -0.037 0.019 -0.097 0.030 -0.026 0.043 0.018 -0.032 

Colleage graduates -0.061 -0.003 -0.026 -0.013 -0.003 0.053 -0.092 0.086 -0.056 -0.034 0.044 -0.005 

Med age -0.013 -0.058 0.022 -0.007 0.020 0.017 -0.054 0.024 -0.106 -0.003 0.012 0.021 

Med income -0.079 0.002 -0.055 0.005 0.024 0.046 0.007 0.034 -0.076 -0.041 0.046 0.001 

Housing wealth -0.039 -0.035 -0.049 0.014 0.073 -0.026 0.121 -0.027 -0.054 -0.052 0.026 0.018 

African-American 0.083 -0.061 0.080 0.001 0.032 -0.017 -0.047 0.010 0.011 0.073 -0.050 -0.030 

Hispanic 0.060 0.150 0.042 0.001 -0.027 -0.023 -0.024 -0.020 0.000 0.068 -0.042 -0.006 

             
  

Major  

DR 

Minor 

DR 

Own/ 

rent 

Address/

months 
Income 

Trade 

accoun 

Active 

TA 

Trade 

lines 

Delin 

quenc. 

Past 

due 

Aver 

rv.cr. 

Credit 

burden 

Major DR 1.000 

           
Minor DR 0.147 1.000 

          
Own/rent 0.047 0.084 1.000 

         
Address/months -0.015 -0.011 -0.031 1.000 

        
Income 0.111 0.066 0.119 -0.049 1.000 

       
Trade accounts 0.113 0.151 0.094 -0.049 0.105 1.000 

      
Open active TA 0.098 0.135 0.067 -0.054 0.135 0.150 1.000 

     
Trade lines 0.097 0.109 0.291 -0.044 0.157 0.078 0.087 1.000 

    
Delinquencies 0.090 0.121 0.009 0.004 0.010 0.062 0.076 0.045 1.000 

   
Past due 0.150 0.098 0.048 0.008 0.023 0.079 0.142 0.140 0.093 1.000 

  
Average rev credit 0.038 0.043 0.081 -0.003 0.119 0.034 0.046 0.066 0.032 0.026 1.000 
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Credit burden 0.022 0.023 -0.135 -0.013 -0.102 -0.087 -0.098 -0.119 0.049 0.042 0.105 1.000 

BuyPower Index 0.017 -0.007 -0.148 0.003 0.000 -0.056 -0.024 -0.021 -0.011 -0.003 -0.013 0.003 

College graduates 0.011 -0.008 -0.085 -0.030 0.135 -0.019 -0.004 0.037 -0.016 -0.026 0.004 -0.042 

Med age 0.002 -0.006 -0.034 0.033 0.044 -0.034 -0.019 -0.016 -0.009 -0.014 0.010 -0.006 

Med income 0.012 0.015 0.082 -0.016 0.159 0.038 0.082 0.115 -0.015 -0.015 0.025 -0.073 

Housing wealth 0.009 0.032 0.140 0.005 0.078 0.092 0.085 0.096 -0.001 0.013 0.021 -0.041 

African-American 0.033 0.019 -0.077 0.042 -0.103 -0.040 -0.027 -0.051 0.041 0.054 -0.006 0.051 

Hispanic 0.010 -0.031 -0.136 -0.013 -0.103 -0.032 -0.039 -0.059 0.001 -0.003 -0.016 0.033 

             
  

BuyPower 

Index 

Coll 

grad 
Med age 

Med 

income 

Hous. 

wealth 

Afr-

Amer 

His-

panic      

BuyPower Index 1.000 

           
College graduates 0.108 1.000 

          
Med age 0.122 0.155 1.000 

         
Med income 0.154 0.110 0.152 1.000 

        
Housing wealth -0.132 0.017 0.141 0.102 1.000 

       
African-American -0.014 -0.153 -0.122 -0.144 -0.102 1.000 

      
Hispanic 0.127 -0.115 -0.091 -0.159 -0.113 0.090 1.000 

      


